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Opti 501 Solutions 

Problem 2.19) a) Using symmetry, it is easy to see that 𝐻𝐻𝜌𝜌, 𝐻𝐻𝜑𝜑, and 𝐻𝐻𝑧𝑧 must be independent of 
the 𝜑𝜑 and 𝑧𝑧 coordinates; these 𝐻𝐻-field components are functions of 𝜌𝜌 only. In conjunction with 
Maxwell’s 4th equation, 𝜵𝜵 ∙ 𝑩𝑩 = 0, we use a cylindrical volume centered on the 𝑧𝑧-axis to show 
that 𝐻𝐻𝜌𝜌 = 0. We then use a circular loop in the 𝑥𝑥𝑥𝑥-plane in conjunction with Maxwell’s 2nd 
equation, 𝜵𝜵 × 𝑯𝑯 = 𝑱𝑱free, to demonstrate that 𝐻𝐻𝜑𝜑 = 0. Finally, the use of rectangular loops in the 
𝜌𝜌𝑧𝑧-plane, again in conjunction with Maxwell’s 2nd equation, reveals that 

i) 𝐻𝐻𝑧𝑧 inside the solenoid is uniform; 

ii) 𝐻𝐻𝑧𝑧 outside the solenoid is also uniform; 

iii) 𝐻𝐻𝑧𝑧
(inside) − 𝐻𝐻𝑧𝑧

(outside) = 𝐽𝐽𝑠𝑠0. 

Given that a uniform 𝐻𝐻𝑧𝑧 field residing in the entire space cannot, in any way, be related to 
the solenoidal current 𝐽𝐽𝑠𝑠0𝝋𝝋�  via Maxwell’s equations, we conclude that 𝐻𝐻𝑧𝑧

(outside) = 0. Therefore, 

 𝑯𝑯(𝜌𝜌,𝜑𝜑, 𝑧𝑧) = �
𝐽𝐽𝑠𝑠0𝒛𝒛�;     0 ≤ 𝜌𝜌 < 𝑅𝑅1,

0;                   𝜌𝜌 > 𝑅𝑅1.
 (1) 

b) Applying Maxwell’s 1st equation (Gauss’ law) to a cylindrical surface of radius 𝜌𝜌 and height 𝐿𝐿 
centered on the 𝑧𝑧-axis, we find 

 𝑬𝑬(𝜌𝜌,𝜑𝜑, 𝑧𝑧) = �
(𝑅𝑅2𝜎𝜎𝑠𝑠0 𝜀𝜀o𝜌𝜌⁄ )𝝆𝝆�;         𝑅𝑅2 < 𝜌𝜌 < 𝑅𝑅1,

0;          𝜌𝜌 < 𝑅𝑅2   and also  𝜌𝜌 > 𝑅𝑅1.
 (2) 

 

c) 𝑺𝑺(𝒓𝒓) = 𝑬𝑬(𝒓𝒓) × 𝑯𝑯(𝒓𝒓) = �
−(𝑅𝑅2𝜎𝜎𝑠𝑠0 𝐽𝐽𝑠𝑠0 𝜀𝜀o𝜌𝜌⁄ )𝝋𝝋� ;            𝑅𝑅2 < 𝜌𝜌 < 𝑅𝑅1,

0;                      𝜌𝜌 < 𝑅𝑅2   and also  𝜌𝜌 > 𝑅𝑅1.  
 (3) 

Thus, in the free-space region between the cylinders, the electromagnetic energy appears to 
be circulating at a constant rate in the –𝝋𝝋�  direction. 
 
d) 𝜵𝜵 ∙ 𝑺𝑺(𝒓𝒓) = 1

𝜌𝜌
𝜕𝜕𝑆𝑆𝜑𝜑
𝜕𝜕𝜑𝜑

= 0. (4) 

(Note: The above result is consistent with the result obtained in Problem 2.17, as the 𝐸𝐸-field of the inner 
cylinder in the present problem is perpendicular to the current-density 𝑱𝑱𝑠𝑠 of the solenoid.) 

Application of Gauss’ theorem to Eq.(4) now yields ∮ 𝑺𝑺 ∙ d𝒔𝒔surface = ∫ (𝜵𝜵 ∙ 𝑺𝑺)d𝑣𝑣volume = 0, 
where the closed surface of integration may be inside one or both cylinders, or it may cross their 
boundaries. 
 
e) The electromagnetic angular momentum per unit-length along the 𝑧𝑧-axis is readily found to be 

 𝑳𝑳 = ∫ (𝜌𝜌𝝆𝝆�) × (𝑺𝑺 𝑐𝑐2⁄ )d𝑣𝑣volume = −(𝑅𝑅2𝜎𝜎𝑠𝑠0 𝐽𝐽𝑠𝑠0 𝜀𝜀o𝑐𝑐2⁄ )𝜋𝜋(𝑅𝑅12 − 𝑅𝑅22)𝒛𝒛� 

 = −𝜇𝜇o𝜋𝜋(𝑅𝑅12 − 𝑅𝑅22)𝑅𝑅2𝜎𝜎𝑠𝑠0 𝐽𝐽𝑠𝑠0𝒛𝒛�. (5) 
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The above angular momentum is created in the beginning, when the current-density of the 
solenoid rises from zero to 𝐽𝐽𝑠𝑠0𝝋𝝋� . During this early phase, say, from 𝑡𝑡 = 0 to 𝑡𝑡 = 𝜏𝜏, the magnetic 
field inside the solenoid rises from 𝑩𝑩 = 0 to 𝑩𝑩 = 𝜇𝜇o 𝐽𝐽𝑠𝑠0𝒛𝒛�. In accordance with Maxwell’s 3rd 
equation, 𝜵𝜵 × 𝑬𝑬 = −𝜕𝜕𝑩𝑩 𝜕𝜕𝑡𝑡⁄ , the induced 𝐸𝐸-field within the solenoid must have been 

 𝑬𝑬(𝜌𝜌, 𝑡𝑡) = −½𝜇𝜇o𝜌𝜌(𝜕𝜕𝐽𝐽𝑠𝑠0 𝜕𝜕𝑡𝑡⁄ )𝝋𝝋� . (6) 

The above 𝐸𝐸-field exerts an azimuthal force on the charge-density 𝜎𝜎𝑠𝑠0 of the inner cylinder 
(radius = 𝑅𝑅2), as well as on the charge-density −(𝑅𝑅2 𝑅𝑅1⁄ )𝜎𝜎𝑠𝑠0 residing on the inner surface of the 
solenoid (radius = 𝑅𝑅1).The net torque (per unit length along 𝑧𝑧) exerted on the two cylinders is 
thus given by 

 𝑻𝑻(𝑡𝑡) = � � ��𝑅𝑅2𝝆𝝆� × 𝜎𝜎𝑠𝑠0𝐸𝐸𝜑𝜑(𝑅𝑅2, 𝑡𝑡)𝝋𝝋��𝑅𝑅2d𝜑𝜑 − �𝑅𝑅1𝝆𝝆� × (𝑅𝑅2 𝑅𝑅1⁄ )𝜎𝜎𝑠𝑠0𝐸𝐸𝜑𝜑(𝑅𝑅1, 𝑡𝑡)𝝋𝝋��𝑅𝑅1d𝜑𝜑�d𝑧𝑧
2𝜋𝜋

𝜑𝜑=0

𝑧𝑧0+1

𝑧𝑧=𝑧𝑧0
 

 = −𝜇𝜇o𝜋𝜋𝑅𝑅23𝜎𝜎𝑠𝑠0(𝜕𝜕𝐽𝐽𝑠𝑠0 𝜕𝜕𝑡𝑡⁄ )𝒛𝒛� + 𝜇𝜇o𝜋𝜋𝑅𝑅2𝑅𝑅12𝜎𝜎𝑠𝑠0(𝜕𝜕𝐽𝐽𝑠𝑠0 𝜕𝜕𝑡𝑡⁄ )𝒛𝒛� 

 = 𝜇𝜇o𝜋𝜋(𝑅𝑅12 − 𝑅𝑅22)𝑅𝑅2𝜎𝜎𝑠𝑠0(𝜕𝜕𝐽𝐽𝑠𝑠0 𝜕𝜕𝑡𝑡⁄ )𝒛𝒛�. (7) 
 

Considering that 𝑻𝑻(𝑡𝑡) = d𝑳𝑳(𝑡𝑡) d𝑡𝑡⁄ , the integral of 𝑻𝑻(𝑡𝑡) over the time interval [0, 𝜏𝜏] during 
which the solenoidal surface-current-density rises from zero to its final value, 𝐽𝐽𝑠𝑠0, must equal the 
mechanical angular momentum imparted to the cylinders during the same period of time. Thus, 

 ∫ 𝑻𝑻(𝑡𝑡)d𝑡𝑡𝜏𝜏
0 = 𝜇𝜇o𝜋𝜋(𝑅𝑅12 − 𝑅𝑅22)𝑅𝑅2𝜎𝜎𝑠𝑠0 𝐽𝐽𝑠𝑠0𝒛𝒛�. (8) 

Conservation of angular momentum then dictates that an equal but opposite angular 
momentum must reside in the electromagnetic field, in agreement with Eq.(5). 
 

Inner cylinder Outer cylinder 


