Opti 501 Solutions

Problem 2.19) a) Using symmetry, it is easy to see that H,, H,,, and H, must be independent of
the ¢ and z coordinates; these H-field components are functions of p only. In conjunction with
Maxwell’s 4™ equation, V - B = 0, we use a cylindrical volume centered on the z-axis to show
that H, = 0. We then use a circular loop in the xy-plane in conjunction with Maxwell’s 2"
equation, V X H = J., to demonstrate that H, = 0. Finally, the use of rectangular loops in the
pz-plane, again in conjunction with Maxwell’s 2" equation, reveals that

1) H, inside the solenoid is uniform;
il) H, outside the solenoid is also uniform;
III) HZ(inside) . HZ(outside) :]so-
Given that a uniform H, field residing in the entire space cannot, in any way, be related to
the solenoidal current /5, via Maxwell’s equations, we conclude that H°"*19®) = 0. Therefore,

]SOi; 0< p < Rll
H(p,¢,z) ={ 1
P o 0; >R, 1)
b) Applying Maxwell’s 1% equation (Gauss’ law) to a cylindrical surface of radius p and height L
centered on the z-axis, we find
(R2050/€0P)P; R, <p <Ry,

E(p, ,Z)={ 2
P 0; p <R, andalso p > R;. @

—(R2050 J50/€0P) ®; R, <p <Ry
0) S(r) = E(r) x H(r) = { 278050750 ? ! 3)
0; p <R, andalso p > R;.
Thus, in the free-space region between the cylinders, the electromagnetic energy appears to
be circulating at a constant rate in the - @ direction.

135 _
pop
(Note: The above result is consistent with the result obtained in Problem 2.17, as the E-field of the inner
cylinder in the present problem is perpendicular to the current-density J ¢ of the solenoid.)

Application of Gauss’ theorem to Eq.(4) now yields ¢ . §S-ds=[  (V-S)dv =0,
where the closed surface of integration may be inside one or both cylinders, or it may cross their

boundaries.

d) V-S(r) = 0. (4)

e) The electromagnetic angular momentum per unit-length along the z-axis is readily found to be

volume
p 2 2\%
L= fvolume(pp) X (S/Cz)dv = _(RZGSO ]S()/EOCZ)H(Rl - RZ)Z
= —pom(RE — RIR2050 Js02- (5)



The above angular momentum is created in the beginning, when the current-density of the
solenoid rises from zero to J;,@. During this early phase, say, from t = 0 to t = t, the magnetic
field inside the solenoid rises from B =0 to B = u, Js,2. In accordance with Maxwell’s 3"
equation, V x E = — dB/0dt, the induced E-field within the solenoid must have been

E(p: t) = _Vzﬂop(a]so/at)‘,p- (6)

The above E-field exerts an azimuthal force on the charge-density g, of the inner cylinder
(radius = R5), as well as on the charge-density —(R,/R;)ad, residing on the inner surface of the
solenoid (radius = R;).The net torque (per unit length along z) exerted on the two cylinders is
thus given by

N J
Y Yo
Inner cylinder Outer cylinder

= _HoﬂRSUso(a]so/at)ﬁ + #o”RzR%Uso(a]so/at)2

Z0+1 2
T(t) = f f(pzo{[RzP X 050E¢ (Ry, t)(p]R2d<p - [R1P X (R2/R1)050E (R4, t)‘P]R1d<P}dZ
zZ=Z \ J

= .uoT[(R% - R%)Rzaso(a]so/at)ﬁ- (7

Considering that T(t) = dL(t)/dt, the integral of T(t) over the time interval [0, 7] during
which the solenoidal surface-current-density rises from zero to its final value, J,, must equal the
mechanical angular momentum imparted to the cylinders during the same period of time. Thus,

T A
Jo T(®)dt = pem(R} — R3)Rz050 Jso2. )

Conservation of angular momentum then dictates that an equal but opposite angular
momentum must reside in the electromagnetic field, in agreement with Eq.(5).




