Problem 2-18)

a) Total charge $Q = 4\pi R^2 \sigma_0$.

 ϵ

Symmetry dictates that the E -field be radial (i.e., aligned with $\hat{\mathbf{r}}$), and also have the same magnitude everywhere on a spherical surface of radius r . Maxwell's first equation then yields

$$
\oint \text{ spherical}_{\text{surface of radius } r} \mathcal{E}_0 \mathbf{E} \cdot d\mathbf{s} = Q
$$
\n
$$
\Rightarrow 4\pi r^2 \mathcal{E}_0 E_r(\mathbf{r}) = \begin{cases} 4\pi R^2 \sigma_0, & \text{if } r > R; \\ 0, & \text{if } r < R. \end{cases}
$$

Therefore,

$$
\boldsymbol{E}(\boldsymbol{r}) = E_r(\boldsymbol{r})\hat{\boldsymbol{r}} = \begin{cases} (\sigma_0 R^2/\varepsilon_0 r^2)\hat{\boldsymbol{r}}, & r > R; \\ 0, & r < R. \end{cases}
$$

b) The total energy $\mathcal E$ of the E-field is readily evaluated as follows:

$$
\mathcal{E} = \iiint_{-\infty}^{\infty} \frac{1}{2} \varepsilon_0 |\mathbf{E}|^2 dv = \frac{1}{2} \varepsilon_0 \int_{r=R}^{\infty} (\sigma_0 R^2 / \varepsilon_0 r^2)^2 (4\pi r^2) dr = (2\pi R^4 \sigma_0^2 / \varepsilon_0) \int_{r=R}^{\infty} dr / r^2
$$

$$
= 2\pi R^3 \sigma_0^2 / \varepsilon_0.
$$

c) The effective E -field acting on the surface charges is the average of the E -field just above and just below the sphere's surface. Thus, $\mathbf{E}_{\text{eff}} = (\sigma_0/2\varepsilon_0)\hat{\mathbf{r}}$. The force (per unit-area) acting on the surface charges is $\mathbf{F} = \sigma_0 \mathbf{E}_{\text{eff}} = (\sigma_0^2 / 2 \varepsilon_0) \hat{\mathbf{r}}$. When the shell radius shrinks from R to $R - \Delta R$, mechanical work (in the amount of W) must be done *against* this force. (The coulomb force, on its own accord, is trying to expand the shell.) The amount W of the requisite mechanical work is

$$
W = 4\pi R^2 \sigma_0 E_{\text{eff}} \cdot (\Delta R \hat{r}) = 2\pi R^2 \sigma_0^2 \Delta R / \varepsilon_0.
$$

d) We express the E-field energy $\mathcal E$ and the work $\mathcal W$ done to shrink the shell in terms of the total charge Q of the spherical shell. (This is because Q is independent of the radius R, whereas σ_0 will vary if R is changed.) We find $\mathcal{E} = Q^2/(8\pi \varepsilon_0 R)$ and $\mathcal{W} = Q^2 \Delta R/(8\pi \varepsilon_0 R^2)$. Consequently,

$$
\frac{\mathrm{d}\varepsilon}{\mathrm{d}R} = \frac{\mathrm{d}}{\mathrm{d}R} \left(\frac{Q^2}{8\pi\varepsilon_0 R} \right) = -\frac{Q^2}{8\pi\varepsilon_0 R^2} \qquad \to \qquad \Delta\varepsilon = \frac{Q^2\Delta R}{8\pi\varepsilon_0 R^2} = \Delta\mathcal{W}.
$$

