Solutions

Problem 12) The pill-box's top and bottom surface areas are Δs . The pill-box can be made as thin as desired, so the side-walls may be assumed to contribute negligibly to the overall surface integral. On the top surface of the box, the surface-normal (pointing outward) is parallel to N, so the top surface-integral is $(E_1 \cdot N) \Delta s = E_1^{\perp} \Delta s$. On the bottom surface, the surface-normal (again pointing outward) is anti-parallel to N; therefore, the bottom surface-integral is $-(E_2 \cdot N) \Delta s = -E_2^{\perp} \Delta s$. Consequently, the net integral of E is given by $\oint E \cdot ds = (E_1^{\perp} - E_2^{\perp}) \Delta s$. Since the total charge enclosed by the pill-box is $Q = \sigma(r) \Delta s$, Gauss's law yields $\sigma(r) = \varepsilon_0 (E_1^{\perp} - E_2^{\perp})$.