Problem 1-15) a) Consider the three vectors shown on the right-hand side. Since A and B are parallel, $A \times B = 0$. Therefore, $(A \times B) \times C = 0$. In contrast, $B \times C$ has magnitude BC = |B||C| and is perpendicular to the plane of the paper. Cross-multiplying A into $B \times C$ thus yields a vector of magnitude ABC = |A||B||C|, which is anti-parallel with C. Therefore, $(A \times B) \times C$ is not necessarily equal to $A \times (B \times C)$.

b)
$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}}) \times [(B_y C_z - B_z C_y) \hat{\mathbf{x}} + (B_z C_x - B_x C_z) \hat{\mathbf{y}} + (B_x C_y - B_y C_x) \hat{\mathbf{z}}]$$

$$= [A_y (B_x C_y - B_y C_x) - A_z (B_z C_x - B_x C_z)] \hat{\mathbf{x}}$$

$$+ [A_z (B_y C_z - B_z C_y) - A_x (B_x C_y - B_y C_x)] \hat{\mathbf{y}}$$

$$+ [A_x (B_z C_x - B_x C_z) - A_y (B_y C_z - B_z C_y)] \hat{\mathbf{z}}$$

$$= (A_y C_y + A_z C_z) B_x \hat{\mathbf{x}} - (A_y B_y + A_z B_z) C_x \hat{\mathbf{x}}$$

$$+ (A_x C_x + A_z C_z) B_y \hat{\mathbf{y}} - (A_x B_x + A_z B_z) C_y \hat{\mathbf{y}}$$

$$+ (A_x C_x + A_y C_y) B_z \hat{\mathbf{z}} - (A_x B_x + A_y B_y) C_z \hat{\mathbf{z}}$$

$$= (A_x C_x + A_y C_y + A_z C_z) B_x \hat{\mathbf{x}} - (A_x B_x + A_y B_y + A_z B_z) C_x \hat{\mathbf{x}}$$

$$+ (A_x C_x + A_y C_y + A_z C_z) B_y \hat{\mathbf{y}} - (A_x B_x + A_y B_y + A_z B_z) C_y \hat{\mathbf{y}}$$

$$+ (A_x C_x + A_y C_y + A_z C_z) B_z \hat{\mathbf{z}} - (A_x B_x + A_y B_y + A_z B_z) C_z \hat{\mathbf{z}}$$

$$= (A \cdot C) (B_x \hat{\mathbf{x}} + B_y \hat{\mathbf{y}} + B_z \hat{\mathbf{z}}) - (A \cdot B) (C_x \hat{\mathbf{x}} + C_y \hat{\mathbf{y}} + C_z \hat{\mathbf{z}})$$

$$= (A \cdot C) B - (A \cdot B) C.$$

Geometric Interpretation: The vector $\mathbf{B} \times \mathbf{C}$ is perpendicular to the plane of \mathbf{B} and \mathbf{C} . Therefore, when cross-multiplied into \mathbf{A} , the resulting vector must lie in the plane of \mathbf{B} and \mathbf{C} . In other words, the vector $\mathbf{A} \times (\mathbf{B} \times \mathbf{C})$ must be co-planar with \mathbf{B} and \mathbf{C} . As such, it can be written as a linear combination of \mathbf{B} and \mathbf{C} , that is, $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \alpha \mathbf{B} + \beta \mathbf{C}$. This is all that one can say about the $\mathbf{A} \times (\mathbf{B} \times \mathbf{C})$ triple cross-product. The fact that $\alpha = \mathbf{A} \cdot \mathbf{C}$ and $\beta = -\mathbf{A} \cdot \mathbf{B}$ comes out of the preceding calculations, with no obvious geometric interpretation.