Problem 1-9) Each of the complex numbers $\exp(i\varphi)$ and $\exp[i(\varphi + \Delta\varphi)]$ has unit length. For small $\Delta\varphi$, the length of $\{\exp[i(\varphi + \Delta\varphi)] - \exp(i\varphi)\}$ is equal to $\Delta\varphi$ (see the figure below). Also, the vector representing $\{\exp[i(\varphi + \Delta\varphi)] - \exp(i\varphi)\}$ is orthogonal to $\exp(i\varphi)$, because it is tangent to a circle of radius 1 centered at the origin. Normalizing $\{\exp[i(\varphi + \Delta\varphi)] - \exp(i\varphi)\}$ by $\Delta\varphi$ thus yields a complex number of unit length which makes an angle of $\varphi + 90^{\circ}$ with the *x*-axis.

Analytically, we may write

Opti 501

$$\frac{d}{d\varphi}\exp(\mathrm{i}\varphi) = \mathrm{i}\exp(\mathrm{i}\varphi) = \exp(\mathrm{i}\pi/2)\exp(\mathrm{i}\varphi) = \exp\left[\mathrm{i}\left(\varphi + \frac{\pi}{2}\right)\right]$$

which is also a complex number of unit length that makes an angle of $\varphi + 90^{\circ}$ with the x-axis.