Solutions

Problem 1-1) The elementary integral can be readily evaluated, as follows:

$$\int_1^{x_0} x^{\varepsilon - 1} dx = \frac{x^{\varepsilon}}{\varepsilon} \Big|_1^{x_0} = \frac{x_0^{\varepsilon} - 1}{\varepsilon}.$$

Now, $(x_0^{\varepsilon} - 1)/\varepsilon = 1$ yields $x_0^{\varepsilon} = 1 + \varepsilon$, which results in $x_0 = (1 + \varepsilon)^{1/\varepsilon}$.

$$\begin{split} \varepsilon &= 1.0 & \to \quad x_0 = 2, \\ \varepsilon &= \frac{1}{2} & \to \quad x_0 = (1 + \frac{1}{2})^2 = 2.25, \\ \varepsilon &= \frac{1}{3} & \to \quad x_0 = (1 + \frac{1}{3})^3 = 2.37 \cdots, \\ \varepsilon &= \frac{1}{4} & \to \quad x_0 = (1.25)^4 = 2.44 \cdots, \\ \varepsilon &= 0.1 & \to \quad x_0 = (1.10)^{10} = 2.5937 \cdots, \\ \varepsilon &= 0.01 & \to \quad x_0 = (1.01)^{100} = 2.7048 \cdots. \end{split}$$

Clearly, x_0 is approaching e, the base of the natural logarithm ($e = 2.7183 \cdots$).

Note that, as $\varepsilon \to 0$, the function $x^{\varepsilon-1}$ approaches 1/x. Consequently

$$\int_{1}^{x_{0}} \frac{1}{x} dx = \ln x \Big|_{1}^{x_{0}} = \ln(x_{0}) - \ln(1) = \ln(x_{0}),$$

which equals 1 when $x_0 = e$. In fact, all properties of $\ln(x)$ can be derived from $\int_1^x x^{\varepsilon-1} dx$ in the limit when $\varepsilon \to 0$.