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LAB 7: AFOCAL SYSTEMS 

REFLECTIVE TELESCOPES 

 
History: 

 

James Gregory (1638-1675), a Scottish mathematician, invented the first reflecting 

telescope in 1663. He provided a description of the reflecting telescope in "Optica 

Promota," which was published in 1663. He never actually made the telescope, which 

was to have used a parabolic (primary) and an ellipsoidal (secondary) mirror.  

 

In 1668, Newton used a concave mirror to actually make the first reflective telescope. 

 

We learn more of this history from two articles published by Louis Bell in 1921.  Titled 

'Notes on the Early Evolution of the Reflector,' an excerpt is presented here: 

 

"James Gregory attemped to make a Gregorian telescope in 1664 with Reive 

(presumably Richard Reeve, father or son).  This six foot telescope was a failure because 

Reive used cloth to polish the speculum and was unable to achieve an accurate figure.  

Robert Hooke showed a Gregorian to the Royal Society 05 February 1674.  Newton 

presented the Royal Society with a 6 inch telescope on 11 January 1672.  The minutes of 

the Royal Society from 25 January, 1672 note 'There was produced a reflecting telescope 

4 feet long of Mr. Newton's invention which, though the metaline concave was not duly 

polished, yet did pretty well, but was under charged'.  It was improved for the next 

meeting, when the minutes note 'The 4 foot telescope of Mr. Newton's invention was 

produced again, being improved since the last meeting.  It was recommended to Mr. 

Hooke to see it perfected as far as it was capable of being'.  No further note is found in 

the minutes, nor is it certain who fabricated the 4 foot telescope.  About 30 years later, 

Newton experimented with glass telescope mirrors, silvered on the rear surface, an idea 

also proposed by James Gregory". 

 

(Louis Bell.  "Notes on the Early Evolution of the Reflector."  1921, 1922.   The Telescope.  1922.  287pp.)  

http://articles.adsabs.harvard.edu//full/1922JRASC..16..179B/0000180.000.html 

 

 

Bell further credits John Hadley with the invention of the reflecting telescope, because 

Hadley parabolized his mirror using effective tests and taught others the figuring skills he 

had developed." 

 

Wikipedia provides a detailed history of the telescope: 

http://en.wikipedia.org/wiki/History_of_the_telescope 

 

http://articles.adsabs.harvard.edu/full/1922JRASC..16..179B/0000180.000.html
http://en.wikipedia.org/wiki/History_of_the_telescope
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Theory: 
 

 The optical principles behind a mirror-based, reflective telescope are the same as 

for a lens-based, refractive telescope--an objective (positive power) forms a real image, 

which in turn is viewed through an eyepiece.  The refractive version uses a single positive 

lens as the objective (or more likely an achromatic doublet to minimize chromatic 

aberrations).  The reflective version can use either a single concave mirror (Newtonian 

design), or it can use two mirrors (a variety of designs) to form a real image.  The details 

of these systems will be discussed in a following section.  As for the refractive telescope, 

an eyepiece is used to view the final image.  In both cases, the eyepiece forms the final 

image at infinity, making these afocal optical systems. 

 

 Note that in modern-day reflective telescopes used by professional astronomers, 

an eyepiece is seldom (if ever) used.  Instead, the telescope forms a real image onto film, 

a CCD camera, or the entrance slit of a spectrograph.  In this case, the system is NOT 

afocal. 

 

MAGNIFICATION 
 

 The magnification of an afocal reflective telescope is described in terms of the 

angular magnification M, also called the magnifying power Mp.  The angular 

magnification is defined as the ratio of the angular size of the image subtended at the eye 

(seen through the telescope) to the angular size of the object subtended at the eye (seen 

without the telescope).  Stated another way, the angular magnification is the ratio of the 

apparent size of the image seen looking through the telescope to the apparent size of the 

object seen with the unaided eye.  For an object at infinity, the angular size of the object 

subtended at the eye is essentially the same as the angular size of the object subtended at 

the aperture stop of the telescope (the objective).  It is the angular subtense at the 

objective that will be used for the derivation of angular magnification. 

 

 As we showed for refractive telescopes, the angular magnification M is given as 

the ratio of the chief ray angle in image space to the chief ray angle in object space: 
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As before, the magnifying power of a reflective telescope may be expressed as the ratio 

of the focal lengths or the diameters of the pupils: 
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The minus sign denotes an inverted image if both fo and fe are positive quantities. 
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NOTE:  If the telescope is used without an eyepiece, the final real image that is formed 

has a lateral extent given by the height of the chief ray in the focal plane.  For a small 

Field of View: 

 

y f uo' '   

 

 

Conic Sections 
 

 The cross-sectional shape of any modern-day telescope mirror is that of a conic 

section.  Conic sections are a family of mathematical curves that have been studied for 

over 2000 years.  A conic section is the curve that results from the intersection of a plane 

with a right-angle cone: 

 

 

 
If the plane is perpendicular to the axis of the cone, the conic is a circle.  If the plane is 

parallel to the "side" of the cone, the conic is a parabola.  If the plane intersects just one 

piece of the cone (and not perpendicular to the axis), the conic is an ellipse.  Finally, if 

the plane intersects both pieces of the cone, the resulting conic is a hyperbola. 
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Another geometrical description of the conic sections may be given: 

Ellipse -- the set of all (x,y) points in the plane such that the sum of the distances from 

any point (x,y) to two fixed points is a constant.  The two points are the foci of the 

ellipse.  This explains why a string can be used to draw an ellipse (Tack each end down at 

what will be the two foci, and use a pencil point to stretch out the string.  Move the pencil 

around, drawing out the ellipse.  The sum of the distances from the pencil tip to the two 

foci is a constant, namely the length of the string!) 

Parabola -- the set of all (x,y) points in the plane that are the same distance from a fixed 

line (the directrix) and a fixed point not on the directrix (the focus). 

Hyperbola -- the set of all (x,y) points in the plane such that the difference of the 

distances from any point (x,y) to two fixed points is a constant.  The two points are the 

foci of the hyperbola. 

 

 Mathematically, a more formal definition of the conic sections is given by 

defining a relationship between a point (the focus) and a line (the directrix): 

 

 

 
 

Each conic section is the locus of points whose distance from the focus is proportional to 

the horizontal distance from the directrix.  Call this proportionality e, the eccentricity: 

 

    If e = 0, the conic is a circle. 

    If e = 1, the conic is a parabola. 

    If 0 < e < 1, the conic is an ellipse. 

    If e > 1, the conic is a hyperbola. 

 

The mathematical equation describing a conic section is given by: 

y Rz e z2 2 22 1 0   ( )  

where R is the radius of curvature at the vertex. 
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Implied in all of this is that a "3-dimensional" mirror is made by revolving a conic section 

around the optical, or z-axis.  The mathematical equation describing this is found by 

substituting 2 2 2 ( )x y  for y2: 

2 2 22 1 0   Rz e z( )  

 

Finally, as is usually done in the optical literature, define the conic constant K as K= -e2 

so that: 

2 22 1 0   Rz K z( )  

 

 

Types of Telescopes 
(from http://www.tivas.org.uk/socsite/scopes.html) 

 

 
 

- Invented in 1668 by Sir Isaac Newton. 

- A 45° prism can be used in place of the diagonal mirror. 

 

 
 

- Invented in 1672 by a Frenchman, Guillaume Cassegrain. 

- Small field of view, primarily due to coma. 
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- Invented in 1663 by the Scottish mathematician James Gregory. 

- First compound reflecting telescope. 

- Small field of view, primarily due to coma. 

 

 

 
 

- Invented in 1944 by a Soviet. 

- Telescope is 'catadioptric': correcting plate is a meniscus lens (deeply curved). 

- All surfaces are spherical surfaces. 

- The diagram above illustrates Maksutov-Cassegrain optics. 
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- Invented in 1930 by Bernhard Schmidt, an Estonian. 

- Telescope is 'catadioptric': the correcting plate eliminates spherical aberration, and the 

optics provide an extremely large field of view. 

 

 

Pre-Lab Questions: 

 
(Q1) What lens system is the Maksutov telescope an equivalent of?  (HINT:  We've 

already studied this particular lens system in detail!).  Write a paragraph to explain the 

differences and similarities. 

 

(Q2)  For a focal length of 1500 mm, calculate t, the spacing between the primary and 

secondary mirrors.  Use the specifications for the mirrors, found on page 7-10 of this 

handout. 

 

 

 

Lab Exercises: 

 
In this lab we will "dissect" a Maksutov telescope, to measure the radii of curvatures of 

the primary and secondary mirrors, and the overall focal length of the assembled 

telescope.  One approach to knowing the focal length would be to first measure the radii 

of curvatures, then measure the vertex-to-vertex separation of the two mirrors.  The 

problem with this is that the primary mirror has a hole in the center of it!  As such, we 

will "work the problem backwards" by first measuring the focal length, then calculating 

the corresponding mirror separation. 

 

*  NOTE:  Any fingerprints left on any of the mirror surfaces will deduct 50 points 

from the semester’s total, for everybody on your lab team!  NO EXCEPTIONS. 
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Mirror Radii of Curvature 

 

Use the setup provided to measure the radius of curvature of both the primary and 

secondary mirrors. 

 

Q1 ●  Give a complete written description of HOW you did your tests. 

 

Q2 ●  Give a complete written description of WHY the test setup works.  You must  

 mention something about the wavefront and ray concept of the test beam, and 

 how they relate to the surface under test, for full credit. 

 

 

Telescope Focal Length 

 

NOTE:  In all of the following steps, do NOT move the pinhole, light source, or 

collimating lens.  The pinhole is collimated and the beam is parallel to the optical axis 

of the telescope. 

 

Q3 ●  Describe the beam incident on the entrance pupil of the telescope.  Is the 

 pinhole source on-axis or off-axis, optically speaking? 

 

(Step 1)  Slide the eyepiece away from the back of the telescope.  Find the real image of 

the pinhole on a white card, behind the telescope.  The 2-mirror system functions as the 

objective lens in a refracting telescope, in that it forms a real image of our pinhole "star." 

 

Q4 Technically speaking, our 2-mirror system is not "yet" a telescope.  Describe how 

to use the eyepiece to make this into an afocal system (i.e. a telescope)! 

 

(Step 2)  Look through the eyepiece and move it back and forth along the optical rail, 

until it is focused on the image of the pinhole. 

 

***** At this point, the telescope is focused at infinity! 

 

Q5 ●  Give a complete optical description of how the final image that you are 

viewing relates to the original pinhole object: 

 

 - Where does the copy lens form an image of the pinhole? (real or virtual image?) 

 - Where is the object for the telescope located? 

 - Where does the telescope form the intermediate image? (real or virtual?) 

 - Where does the eyepiece form the final image? (real or virtual?) 
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(Step 3)  To measure the focal length of the telescope, hold a piece of lens tissue in front 

of the telescope to diffusely illuminate the primary mirror.  Use the microscope to 

measure the diameter of the exit pupil.  Then, calculate the focal length of the telescope: 
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Use this procedure to measure the focal length of the telescope, for 2 different positions 

of the adjusting screw, 2mm apart: 

 

  (1) with the threads just concealed into the assembly 

  (2) with the threads turned clockwise by ≈ 2mm. 

 

Q6 ●  Explain how rotating the screw moves the primary mirror. 

 

Q7 ●  Report the 2 different focal lengths.  How does focal length vary with mirror 

 separation?  Does this follow what you'd expect to happen?  Explain, and 

 compare to the telephoto lens. 

 

Q8 ●  For both focal lengths, calculate the separation of the mirrors, using the 

 equations from Pre-Lab (Q2). 

 

Q9 ●  Use the method of propagation of errors to estimate the error in focal length. 

 

Assume: 

  - a 10% error in knowing the focal length of the eyepiece 

  - your estimated error in knowing the entrance pupil diameter, E 

  - your estimated error in knowing the exit pupil diameter, E' 
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ZEMAX Layout 

 

Use ZEMAX to lay out the telescope: 

 -  Model the system using just the 2 mirrors (leave out the corrector plate). 

 -  Set the thickness between the primary and secondary mirror to be the value of  

    "t" predicted by the two-thin-lens equation for a Gaussian-reduced telephoto  

    lens. 

 -  Set the primary mirror to be the aperture stop. 

 

Answer the following questions for both measured focal lengths: 

 

Q10 ●  What are the focal lengths that ZEMAX calculates? 

 

Q11 ●  Use ZEMAX to trace a marginal and a chief ray through each system.  Print 

 out these pictures.  Using a pencil and ruler, locate the rear principal plane.  Scale 

 your drawings appropriately, and determine each focal length.  Does they match 

 the expected values? 

 

Q12 ●  What is the FOV? (trace off-axis rays and look for vignetting). 

 

Q13 ●  Print out a picture of the on-axis and off-axis bundle of rays. 

 

Q14 ●  Print out the corresponding spot diagrams.  What aberrations seem to be 

 present? 

 

 

Prescription of our Maksutov Telescope (from Meade): 

 

- All surfaces are spherical 

 

- Rprimary = 21.915" 

- Clear aperture = 5.00" 

 

- Rsecondary (concave) = 5.195"  (i.e. the outer glass surface) 

- Rsecondary (convex) = 5.48"  (i.e. the inner glass surface) 

- Thickness of the glass meniscus = 0.47"-0.50" 

 

 

* NOTE:  Any fingerprints left on any of the 

surfaces will cost everybody in your entire lab section 

50 points from the semester's total!  NO EXCEPTIONS. 
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More ZEMAX Analysis.....(if time permits) 

 

 

Q15 ●  What problem (discrepancy) have you noticed between your two measured 

 values of focal length, and the values predicted by ZEMAX (without the corrector 

 plate in the system)? 

 

Q16 ●  How would the corrector plate account for this? 

 

Q17 ●  Using paraxial equations for the corrector plate, calculate the: 

 - focal length 

 - power 

 - principal plane locations 

 

Q18 ●  Use ZEMAX to find the same values. 

 

Q19 ●  Go back into ZEMAX and add the corrector plate. 

 For both focal lengths, re-trace a marginal and a chief ray through the system.  

 Print out these pictures.  Using a pencil and ruler, locate the rear principal plane.  

 Scale your drawings appropriately, and determine each focal length.  Now do they 

 match the expected values? 

 

 

 


