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This paper analyses losses caused by the misalignment of two fibers
Joined in a splice. We consider the posstbility that the two fibers of
different dimensions are separated in longitudinal direction and are
tilted or offset with respect to each other. Central to our discussion is
the observation that the modes of single-mode fibers are very nearly
gaussian in shape regardless of the fiber type—step-index or graded-
index. The splice losses are thus related to the corresponding losses of
gaussian beams. We specify the relation between the actual mode field
and the gaussian beam that matches this field optimally. The trade-off
between slice tolerances with respect to tilt and offset is expressed as
an “uncertainty principle.” Because of the near-gaussian nature of
single-mode fiber fields, our results are immediately applicable to the
excitation of single-mode fibers by gaussian-shaped laser beams.

I. INTRODUCTION

Light transmission losses of single-mode fiber splices depend on the
alignment accuracy of the fiber ends relative to each other.! We assume
that the fibers are immersed in index-matching fluid to minimize re-
flection losses at the fiber ends. Most troublesome are transverse mis-
alignments (offsets) and angular misalignments (tilts). Fiber splices
are surprisingly tolerant of longitudinal misalignment.

We begin our discussion by showing that the fields of single-mode,
step-index fibers are very nearly gaussian in shape. This observation
holds with even more assurance for parabolic-index fibers, because the
modes of the infinitely extended parabolic-index medium are themselves
gaussian and are changed only slightly by the truncation of the index
profile at the core boundary. Once it is established that fiber modes may
be closely approximated by gaussian field distributions, the evaluation
of splice losses reduces to the computation of transmission losses between
misaligned gaussian beams.2?

We present formulas for relating the width of the gaussian field dis-
tribution to the fiber parameters. An implicit relation for all types of
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fibers is given and explicit formulas are derived for the important caseg
of step-index and parabolic-index fibers. Next, we present simple ana-
lytical expressions for the transmission coefficient of fiber splices for the
case of longitudinal, transverse, and angular misalignment for fibers of
different dimensions.

Transverse splice tolerances become less stringent for fibers whoge
mode fields extend farther in transverse directions. Wide mode fields
can be obtained by selecting a core index that is very nearly equal to the
refractive index of the cladding. However, a wide fiber mode is less to-
erant of angular misalignments. The relative tolerance of fiber splices
with respect to offsets and tilts is expressed as an “uncertainty princi-
ple.”

We limit our discussion to “weakly guiding” fibers* defined by the
relation n;/n, — 1 «< 1, where n, is the maximum value of the refractive
index of the fiber core and n. is the value of the cladding index. The
transmission coefficient of weakly guiding fiber modes can be obtained
by matching only the transverse components of the electric field vector
of the two modes; their transverse magnetic field components are auy-
tomatically matched approximately. We designate the electric field
vectors of the modes (guided and radiation modes) of the fiber by the
symbol E,. The incident electric field E at the input end of the fiber can
then be expressed in terms of fiber modes as follows?:

E=3 ¢,E,. (1)

The summation symbol indicates symbolically summation over guided
modes (only one for single-mode fibers) and integration over radiation
modes. The symbol » labels the modes (we use v = 0 as the label of the
guided mode of the single-mode fiber). Mode orthogonality allows us
to obtain ¢ from (1),

1 2r @
= = X H,) e, . 2
- Qpﬂ dd)j; (E X H,) e. rdr 2)

H, is the magnetic-field vector of the guided mode, e, is a unit vector
in the direction of the fiber axis, and r and ¢ are cylindrical coordinates
in the plane at right angles to the axis of the fiber. We assume that the
fiber is receiving radiation from either an input fiber at a splice or from
a free-space gaussian laser beam. Correspondingly, E represents the field
that the first fiber of the splice generates at the input end of the second
fiber or, alternatively, the gaussian beam mode of a laser.

The power transmission coefficient, finally, is obtained from (2) by
the relation,

T = |co|% (3)
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Il. REPRESENTATION OF THE FIBER MODE AS A GAUSSIAN BEAM

The guided modes of weakly guiding fibers are very nearly transverse
and linearly polarized.* The electric field vector of the input field consists
likewise of one dominant transverse component.? Let us assume that the
input field is gaussian

9
E, = [4V'uo/ey P/mnow?]V/2 exp <— l%) e~inz, (4)
The refractive index n, equals the cladding index of the fiber, P is the
power carried by the field and is identical to the P parameter in (2), w
is the width parameter of the gaussian field, 3 is its propagation constant,
o and ¢ are the magnetic susceptibility and the dielectric permittivity
of vacuum.

We wish to compare the gaussian field to the mode of the step-index

fiber,”

/9 1/4 W J()<U £> i
/ a
H, = - —(i) — = n,P (5)
0 \/7r wo/  aVJy(U) 7 Jollh) <Wr
— =)rza.
Ko(W) ! a> a

The P parameter is identical to those in (2) and (4), W and U are related
to the important V parameter by the equation,

U2+ W2=V2= (n}—nik2a> (6)

The free space propagation constant of plane waves is k = 27/\ and a
is the core radius of the fiber. J, and J; are Bessel functions and K, is
the modified Hankel function. The parameter U can be related to the
propagation constant 3, [omitted from (5)] as follows:

U = (n{k2 - 9)1/2q. (7)

By substitution of (4) and (5) into (2) and (3), we obtain the trans-
mission coefficient of a gaussian input beam exciting the HE,; mode of
a fiber. The r-integral in (2) must be evaluated numerically. It is clear
that the value of T' depends on the width parameter w of the gaussian
beam; T assumes a maximum as a function of w. The maximum value
of T is plotted as a function of V in Fig. 1. It is remarkable how closely
T approaches unity over the range of V-values shown in the figure. At
the important point V = 2.4, we have T' = 0.9965. V = 2.4 is close to the
largest value at which the fiber supports only one mode. The next higher
mode comes in at V = 2.405. It is apparent that at V = 2.4 the field dis-
tribution of the fiber mode matches the gaussian field almost perfectly.
The best match is achievable at V = 2.8; T decreases very slowly for
larger values of V. For smaller V-values, the decrease and consequently
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Fig. I —Maximum value of transmission coefficient between a perfectly aligned and
optimally adjusted gaussian beam and a single-mode step-index fiber.

the mismatch between gaussian field and fiber mode is more pronounced;
but even at V = 1.2, we have T' = (0.946, a value very close to unity so that,
even for such small values of V, the gaussian beam is a reasonably good
approximation of the fiber mode. It can be shown that the optimum value
of w divided by the core radius is only a function of V. Figures 2 and 3
show the optimum values of w/a as a function of V as the solid line. This
function can be approximated very closely (to within a fraction of 1
percent) by the empirical formula,

w 1.619 2.879

;—0.65+W+ Ve *
This equation holds, of course, only for step-index fibers. The meaning
of the dotted curve in Fig. 2 will be explained later.

It is desirable to have similar relations for graded-index fibers because
this would enable us to predict their splice losses. The fields of general
graded-index fibers are not known explicitly, so that we cannot use egs.
(2) through (4) to optimize the width of the corresponding gaussian
beams. However, we can use a different approach. If we insist that (4)
should be used to approximate the guided mode of a single-mode fiber
with refractive index distribution n(r) for r <a and n(r) = ns forr > a,

(8)
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Fig. 2—Normalized optimum width parameter w/a as a function of the V-parameter
for step-index fibers. The dotted line is obtained from the approximate procedure ex-
pressed in egs. (19) and (20).

we may substitute (4) into the wave equation

d?E, 1dE,
__L+___.‘_+ 2 kQ_ 2E\=O’
dr? r dr in (7} FIE, (9)
and obtain ,
4 /r 5 5 _ ag _
[E (wZ— 1) +n2(r)k? - g2|E, = 0. (10)
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Fig. 3—Same as Fig. 2 for wider range of V-values.

For a graded-index distribution,

n(r)=n,[1—<§)"_\] (11)

with g = 2, (10) can be satisfied exactly. Note that (11) is an infinitely
extended parabolic-index profile. In this case, we find
5
w=" V a (12)
and
B = [nik2—2V/a2]1/2, (13)
We define the V-parameter for any value of g by the equation
V = nikav22. (14)

This expression is also a good approximation of (6), if we use

A=1-22«1 (15)
n,
Equations (12) and (13) are not correct for actual parabolic-index fibers
whose refractive index distributions are given by (11) (with ¢ = 2) only
for r < a, but assume the form n(r) = n, for r > a. We refer to profiles
of this kind as truncated index distributions.
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Fig. 4—Normalized optimum beam width w as a function of V for the parabolic-index
fiber. The dotted line applies to an infinitely extended parabolic-index profile.

of the accuracy of the method for other values of g are harder to make
since the exact field distributions are hard to obtain; no attempts were
made to evaluate the performance of the parameter optimization pro-
cedure for smaller values of g. However, there is little doubt that the
results for values near g = 2 will be much better than the comparison
shown in Fig. 2.

Figure 4 shows the numerical solution of (19) and (20) for the trun-
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Fig. 5—w/a as a function of V for several values of the power law parameter g defined
by (11).

cated parabolic-index profile—that is, for n(r) given by (11) with g =
2 for r < a and by n(r) = ny for r > a. The dotted line shown in Fig. 4
applies to the infinitely extended parabolic-index profile and represents
the solution (12). It is clear that the field distribution of the truncated
parabolic-index profile is wider than the field of the infinitely extended
profile because that part of the field that extends into the cladding is no
longer under the focusing influence of the graded-index distribution.
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Fig. 6—Several types of splice imperfections.

For large V values both curves coincide; at V = 5 the difference of the
two curves is already reduced to 1 percent. The solid line in Fig. 4 can
be expressed by the empirical approximation

w 2 023 18.01
;=\/‘—/+W+—VT' (21)

This equation gives the optimum width of the gaussian field profile that
best approximates the actual field distribution of a parabolic-index
fiber.

Figure 6 shows the optimum width w/a computed from (19) and (20)
for truncated graded-index profiles for several values of the exponent
g appearing in (11).

lll. SPLICE LOSSES

Henceforth, we represent the fields of single-mode fibers by gaussian
field distributions of the form (4) keeping in mind that the optimum
width parameters w of the gaussian can be obtained as solutions of (19)
and (20) for general graded-index fibers, or, explicitly, by (8) or (21) for
step-index and parabolic-index fibers.

The different types of splice defects are shown in F ig. 6. We allow both
fibers joined by the splice to have different parameters shown as different
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core diameters in Fig. 6. The actual differences may consist of different
refractive index distributions as well as different core diameters. For our
analysis, each fiber is represented by the width parameter of the opti-
mum gaussian field distribution, w; belongs to the fiber with radius a;,
and ws belongs to the fiber with ao.

The relevant formulas can all be derived by using (2) and (3) with the
fields of both fibers represented by gaussian field distributions of the
form (4). The E field in (3) is understood to be the gaussian field of the
first fiber transformed to the input plane of the second fiber. Such mode
matching calculations involving gaussian fields are not new, we present
here only the results.23

3.1 Longitudinal fiber separation

For the splice shown in Fig. 6a, we find the power transmission coef-

ficient
4[ 472 + “—‘,]
T= =3 . 3 (22)
[ Z2 + u] + 420 w_‘-:
ws wi
The normalized fiber separation distance is defined as
D
7 i (23)
nokwwe

Two special cases are of interest. At D = 0, we have

2wws \ 2
Ty = <)—',> , 24
0 wi+ ws (=80
For D — =, we obtain asymptotically
1 n-:ku'lu'o 2
7. = - (Chmn?
Z2 D (25)

3.2 Splices with tilt

For the fiber tilt shown in Fig. 6b, we obtain the power transmission
coefficient

T= (——Q.wlwz.)y exp [— ——-——2(7r.nzwll%y20)-]. (26)

w?+ w3 (w? + w3)A2

When the tilt angle # becomes large enough to make the exponent of the
exponential function in (26) unity, the transmitted power decreases to
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1/e of its maximum value. This angle is given by the expression,

2 2\ 1/2
b, = <w1 + uz> A ) 27)
2 TNoW W9

3.3 Splices with fiber offset

The power transmission coefficient through the fiber splice shown in
Fig. 6¢ assumes the form

T= <2w—1u)20)2 exp [— —ﬂ] (28)

= -
wi + w3 wi+ w3

The amount of offset that reduces the transmitted power to 1/e of its
maximum value can be defined as

w;z+ w:;) 1/2
d, = (— . 2
= ) (29)

For identical fibers with w; = ws, we obtain a very useful and interesting
relation by combining (27) and (29)

defe = — (30)

This expression is reminiscent of the uncertainty principle of quantum
mechanics, because it states that as one of two variables becomes smaller,
the other must become larger. If a single-mode fiber is designed with a
small value of A, to allow the field to spread out in transverse direction,
w becomes large and, consequently, d, may be large indicating that a
large offset can be tolerated. Equation (30) states that for large values
of d. the tilt angle tolerance decreases. A fiber that is tolerant of large
offsets is intolerant with respect to tilts and vice versa.

IV. DISCUSSION AND NUMERICAL EXAMPLES

Throughout our discussion, we are using the width parameter w of the
field distribution (4). Experimental observations of the light field of a
single-mode fiber detect the light power instead of the field intensity.
The power may also be approximated by a gaussian distribution of the
form

P = Py exp (—r2/w}). (31)

The power width parameter w,, is related to the field intensity width
parameter w by the expression

w, = _\’_"6 (32)
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Fig. 7—Power transmission coefficient 7 as a function of the ratio w/w. of the beam

width parameters of the two fibers joined by a perfectly aligned splice.

This relation is important if the width of the mode field is known from
measurements instead of being inferred from the known V-value of the
fiber.

We begin our discussion of splice losses by considering two perfectly
aligned fibers with different dimensions. Figure 7 shows a plot of the
power transmission coefficient T as a function of w;/w». This function
is, of course, identical if plotted versus wo/w;. A ratio w,/ws = 1.4 (or
0.71) causes a power loss of 10 percent. If we assume that we are dealing
with step-index fibers, we see from Fig. 2 that a reduction of the V-value
from V = 2.4 to V = 1.68 causes w/a to increase by a factor of 1.4. (An
increase of the V-value has far less influence on the beam size.) These
changes of V translate directly into changes of w only if a is kept constant
and V is changed by varying A. Now let us keep A constant and change
V from 2.4 to 1.68 by decreasing the value of the core radius a. This
change increases w/a by 1.4, which means that the beam width is actually
decreased by a factor of 0.98. This example shows that a change of the
core radius does not cause a proportional change of the beam width.

In the remainder of our discussion, we assume that the beam widths
of the guided modes of both fibers joined by the splice are identical, w
= w,. Figure 8 is a graph of (22) for a step-index fiber splice with A = 1
um, no = 1.457, and V = 2.4. The figure illustrates how insensitive a fiber
splice is to longitudinal separation of the fiber ends. However, this figure
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Fig. 8—Power transmission coefficient as a function of normalized longitudinal fiber
displacement for identical step-index fibers. The curve parameter is the ratio a/A of the
core radius to free space wavelength.

was drawn under the assumption that both fibers of the splice are im-
mersed in index-matching fluid. For splices in air, we must set n, = 1
in (22) and (23), which leads to lower values of T'. The figure shows that
larger core radii result in lower splice losses. However, it must be re-
membered that the figure is drawn for a fixed value of V = 2.4, fibers with
larger core radii, thus have smaller values of A.

The transmission coefficients for tilts and offsets are gaussian func-
tions of the tilt angle 6 or the amount of offset d. Using normalized
variables, wnowf/X for the tilt and d/w for the offset, we can represent
both cases in Fig. 9. For w; = ws = w (27) simplifies to

A
Tnow

and the amount of offset (29) that causes T to drop to 1/e = 0.368 of its
maximum value reduces to

0, =

’ (33)

d. = w. (34)

We illustrate the meaning of these expressions with a specific example.
Let V=24,A=1um,and A = 0.002 so that we obtain a core radius of
a =4.15 um for n, = 1.457. For the step-index fiber, we find from (8) or
Fig. 2, w/a = 1.1 or w = 4.56 um. (The corresponding value for the par-
abolic index fiber would be w = 4.48 um.) The power transmission
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Fig. 9—Power transmission coefficient as a function of normalized offset or tilt
angle.

coefficient would be T' = 0.368 ford = w = 4.56 um, or it would be T' =
0.9 for d = 1.5 um. If the axis of the fibers (joined by the splice) are lat-
erally aligned, but if there is a tilt, a tilt angle § = 0.048 radians = 2.7°
causes T = 0.368, while # = 0.91° reduces T from its maximum value to
T = 0.9. A fiber with a narrower width parameter w would be less tolerant
of offsets, but correspondingly more tolerant of tilts. This mutual rela-
tionship is expressed by the “uncertainty relation” (30).

V. CONCLUSION

Using the close match between gaussian beams and the field distri-
butions of single-mode fibers, we have presented formulas and graphs
for the power transmission coefficient of light through a fiber splice. The
fibers on either side of the splice need not be identical. Splice losses occur
for mismatched fiber parameters, transverse fiber displacement (offset),
angular displacement (tilt), and longitudinal displacement®. All four
cases have been discussed. Splice tolerances with respect to tilt and offset
are mutually exclusive. This relationship has been expressed by an “‘un-
certainty principle”.

The results presented in this paper are immediately applicable to the
excitation of single mode fibers by gaussian-shaped laser beams.” 8
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