The DOE and CGH calculator

Purpose:

A tool to help design different Diffractive Optical Elements and Computer Generated Holograms to be written in photo-resist. It is found in the drop down menu under accessories in the main OPTISCAN project window.

Last modified: 10/12/2011

Author List: TDM 3/26/2010 TDM 5/13/2011 TDM 10/12/2011

Contents

Main Window	2
Element List Description	4
Fresnel Lens	5
Grating	7
Supergaussian	8
Zernike	9
User BMP File	. 10
Ramp	. 11
Filled Rectangle	12
GS Beam Shaper	13
Box	. 14
Text	. 15
Arrange Button	. 16
Calculate Button	18

Main Window

🛃 Figure 3: DOE C	Calculator - Main	Window	,	
<u>File E</u> dit <u>V</u> iew Ins	ert <u>T</u> ools <u>D</u> esktop	<u>W</u> indow	<u>H</u> elp	لا ا
DOE Calculator Add/Edit (Analyze (Arrange Calculate	DOE Elements	DO X S V S Adl Res Inci	DE Master Definition ize (m) ize (m) dress unit AU (m) sist refractive index sist type (1 = pos, -1 = neg) dent refractive index	0.0015 0.0015 2.18e-006 1.7 1
		VVa Re:	velength (m) sist thickness (# wavelengths)	6.5e-007
File DOE_project	le		Save Project Get Pr	roject

DOE Calculator – Main Window – Master Definition			
FUNCTION	DESCRIPTION		
x size, y size	The size of the Master CGH being written. The Master		
	contains CGH Elements, which are edited in a separate menu		
	(See "Add/Edit DOE Elements" below). The size of the		
	Master CGH should be large enough to incorporate all		
	Elements. (units = meters)		
Address unit AU	The size of one pixel in the Master CGH. Pixel size of all		
	Elements in the Master will be the size of AU. (units =		
	meters)		
Resist refractive index	The refractive index of the photoresist (n_g) into which the		
	CGH will be written		
Resist type	1 = positive, -1 = negative		
Incident refractive index	The refractive index of the medium (n_t) in which the CGH		
	will used (air = 1, water = 1.33)		
Wavelength	The design vacuum wavelength of the CGH. (units = meters)		

Resist Thickness	The OPD in wavelengths corresponding to the photoresist
	thickness at Wavelength. That is, OPD in wavelength units
	= $(n_g - n_t)t/\lambda$, where t is the physical thickness of the resist.

DOE Calculator - Main Window – Buttons		
FUNCTION	DESCRIPTION	
Add/Edit DOE Elements	Used to change the element list containing separate	
	DOE Elements, like Fresnel lenses and gratings, which	
	are part of the Master DOE.	
Analyze DOE Elements	This function is under construction at the present time	
	(4/9/07).	
Arrange DOE Master	Used to arrange the separate Elements in the Element	
	List as to their positions and tiling in the Master DOE.	
	Also, the way (replace, add and subtract) in which the	
	Elements are added into the master can be specified.	
Calculate DOE Master	Opens panel that specifies type of linearization, border	
	and function for generating the Master DOE. (This	
	button controls the last step in the Master DOE	
	calculation.)	

DOE Calculator - Main Window – Project File		
FUNCTION	DESCRIPTION	
File	Specifies the file name to which the Project File will be saved. The Project File contains specifications for the Master DOE, the Element List and the Arrange DOE Master panel. Saving the project will allow the user to go back and edit any of these parameters for future work. The Project File doe not contain the actual BMP file of the Master DOE.	
Save Project	Opens a Browse Window in which the user specifies the filename of the project.	
Get Project	Opens a Browse window in which the user specifies a previously saved project to edit or re-create.	

Element List Description

Figure 3: DOE Calculator - Element List Description		
File Eait View Insert Tools Desktop Window He	eip •	
DOE elements		
Element List 1/2	Element Parameters (MKS units)	
fresnel_lens Supergaus To Clipboard	Size_xy 0.012 0.012	
Cut	Offset_xy 0 0	
Paste	Q_levels 256	
Paste Last		
Calculate	Focal_fxfy 1147.5227 1147.5227	
Clipboard:	k 0	
	A 0 -1.277 0 0	
Choose New Element to Paste	Index_Factor 587.56	
Fresnel Lens Paste New Last		
Help Cancel OK		

General		
MENU NAME	DESCRIPTION	
Element List	The elements to be written on the master CGH (note: the order	
	in which they appear on the list is the order in which they will be	
	written tiled on the master.)	
Element Parameters	The parameters that may be chosen to calculate the CGH	
	selected in the Element List	
Choose New	Where to select the elements to add to the Element List	
Element to Paste		
Help, Cancel, OK	Help – Opens OptiScan Help window	
Buttons	Cancel – Resets values according to previous edit	
	OK – Accept changes and return to Main Window.	

Fresnel Lens

Fresnel Lens - Element Parameters		
Parameter	Description	
Size_xy	Horizontal and vertical dimensions of the element (units = meters)	
Offset_xy	The horizontal and vertical offset of the center of the element. Note: this is an offset inside the Element Size_xy window, and does not specify the offset in the Master DOE. (units = meters)	
Q_Levels	Number of quantization levels in exposure. (ex. 2 = binary resist, 256 = 256 grey levels)	
Focal_fxfy	Focal length in the horizontal and vertical dimensions. (units = meters)	
Index_Factor	When converting from a sweat surface profile to a Fresnel lens using photoresist, the Index_Factor describes the additional surface height necessary to compensate for the large refractive index of the Sweatt model. The value entered is the value of the Sweatt refractive index used in the design program. (ex. Use 587.56 is use used a Sweat refractive index of wavelength in nm for the design wavelength of 587.56nm. See the "How To" file entitled "Example conversion from Zemax Sweatt to OptiScan Fresnel Surface" for more details.) The default value of this parameter is n _{resist} .	
k	Conic constant used to determine surface shape according to the formula.	
	When k and all A constants are zero: $z_{\text{Surface}} = x^2 / 2f_x + y^2 / 2f_y$,	
	and when k or any A constants are nonzero:	
	$z_{\text{Surface}} = \frac{\text{Index}_{\text{Factor}} - n_{\text{incident}}}{n_{\text{resist}} - n_{\text{incident}}} \left\{ \frac{\left(x^2 + y^2\right) / f_x}{1 + \sqrt{1 - (1 + k)\frac{\left(x^2 + y^2\right)}{f_x^2}}} + \sum_{i=1}^5 A_i \left(x^2 + y^2\right)^i \right\}$	
	Note: When a base surface radius is desired, rather than a focal length, the following formula may be used to determine the focal-length input for the DOE Calculator: $f = \frac{R}{n_{\text{resist}} - n_{\text{incident}}}$	
	The default value of Index_Factor = n_{resist} , so unless Index_Factor is changed, the net effect on the surface sag before quantizing is zero.	

А	Aspheric coefficients A1 A5 used to determine surface shape
	according to the formula above. (Five-element vector [A1 A5], units =
	inverse of corresponding spatial variable power)

Grating

Grating – Element Parameters		
Parameters	Description	
Size_xy	Horizontal and vertical dimensions of the element (units = meters)	
Q_Levels	Number of quantization levels in exposure. (ex. 2 = binary resist,	
	256 = 256 grey levels) (only important for blaze grating)	
Rotation_deg	The angle which the element is rotated about the center. (units =	
	degrees)	
Period	Period of the grating. (units = meters)	
Type_Duty	Type $(0 = \text{blaze grating}, 1 = \text{binary grating})$ For Blaze Grating: the	
	full Period is used to ramp the linear exposure increase, according	
	to Q_Levels. Duty is the duty cycle of the grating	
OPD_ptg	The percentage of the total OPD for the total thickness of the	
	element. For example, a blaze grating with OPD_ptg = 100 will	
	ramp the maximum thickness according to Resist Thickness on the	
	Main Window. If OPD_ptg = 50, the ramp will only be 50% of the	
	maximum thickness. For a binary grating, the OPD_ptg specifies	
	the difference between the maximum and minimum thicknesses in	
	the profile.	

Supergaussian

Supergaus – Element Parameters		
Parameters	Description	
Supergaus	Implements the two-dimensional super-Gaussian function	
equation	$f(x, y) = \exp\left\{-\left[\frac{(x - x_o)^2 + (y - y_o)^2}{r^2}\right]^N\right\}$	
Size_xy	Horizontal and vertical dimensions of the element. (units = meters)	
Offset_xy	The horizontal and vertical offset of the center of the element. Note:	
	this is an offset inside the Element Size_xy window, and does not	
	specify the offset in the Master DOE. (units = meters)	
Q_Levels	Number of quantization levels in exposure. (ex. $2 =$ binary resist,	
	256 = 256 grey levels)	
Radius	Radius of the super-Gaussian r (units = meters)	
Exponent	The super-Gaussian exponent N	
OPD_ptg	The percentage of the total OPD for the total thickness of the	
	element. For example, $OPD_ptg = 100$ will set the element	
	thickness to the maximum thickness according to Resist Thickness	
	on the Main Window. If OPD_ptg = 50, the element thickness will	
	only be 50% of the maximum thickness.	

Zernike

Zernike – Element Parameters			
Parameters	Description		
Zernike	Implements a Zernike-coefficient expansion of the OPD.		
description	Expansion coefficients are in the order specified in Malacara,		
	Optical Shop Testing.		
	See OptiScan help description under aberration panel in the lens		
	object for more detail on the Zernike description.		
Size_xy	Horizontal and vertical dimensions of the element. (units = meters)		
Offset_xy	The horizontal and vertical offset of the center of the element. Note:		
	this is an offset inside the Element Size_xy window, and does not specify the offset in the Master DOE. (units = meters)		
O Levels	Number of quantization levels in exposure. (ex. $2 = \text{binary resist.}$		
	256 = 256 grey levels)		
Radius	Radius over which the Zernike coefficients are defined. (units =		
	meters)		
Coef_Vector	More coefficients are inputted than can be shown. Use the arrows		
	and scroll keys (home and end) to see all of the coefficients. See		
	OptiScan help description under aberration panel in the lens object		
	for more detail on the Zernike description. These values can be		
	changed manually, or when the "Calculate" button is used, the		
	query box asks for the name of a file in which the coefficients are		
	stored. Usually, the file input is more convenient if the number of		
	coefficients is large. See OptiScan help description under		
	aberration panel in the lens object for more detail on the Zernike		
	file description.		
FringeScaleFactor	Factor used to multiply the Zernike coefficient vector during		
	Cell with forver fringes (Eringe Scale Factor (1) to graview action		
	con with lewer tringes (FringeScaleFactor <1) to review pattern		
	snape in optical testing applications.		

User BMP File

User_bmp_file – Element Parameters		
Parameters	Description	
User bmp	Writes a user defined bmp file to the photo-resist. (ex. A signature	
description	logo.)	
Size_xy	Horizontal and vertical dimensions of the element. (units =	
	meters)	
Offset_xy	The horizontal and vertical offset of the center of the element. Note:	
	this is an offset inside the Element Size_xy window, and does not	
	specify the offset in the Master DOE. (units = meters)	
Q_Levels	Number of quantization levels in exposure. (ex. 2 = binary resist,	
	256 = 256 grey levels)	
File_Name	The name of the file to be written. Using "Calculate" allows the	
	user to change the input filename and directory.	
Input-Type	1 = exposure input $2 =$ thickness input	
OPD_ptg	The percentage of the total OPD for the total thickness of the	
	element. For example, $OPD_ptg = 100$ will set the element	
	thickness to the maximum thickness according to Resist Thickness	
	on the Main Window. If OPD_ptg = 50, the element thickness will	
	only be 50% of the maximum thickness.	
BMP_sampling	The pixel size of the input BMP file. The output pixel size is	
	specified by AU on the Main Window.	
Snap_flag	= 0 when using interpolation to tile in Arrange Panel	
	= 1 when using nearest-position w/o interpolation in Arrange Panel	

Ramp

Ramp – Element Parameters		
Parameters	Description	
Ramp description	Writes a simple linear ramp.	
Size_xy	Horizontal and vertical dimensions of the element (units = meters)	
Q_Levels	Number of quantization levels in exposure. (ex. 2 = binary resist,	
	256 = 256 grey levels)	
Rotation_deg	The angle which the element is rotated about the center. (units =	
	degrees)	
OPD_ptg	The percentage of the total OPD for the total thickness of the	
	element. For example, $OPD_ptg = 100$ will set the element	
	thickness to the maximum thickness according to Resist Thickness	
	on the Main Window. If OPD_ptg = 50, the element thickness will	
	only be 50% of the maximum thickness.	

Filled Rectangle

Filled_rectangle – Element Parameters			
Parameters	Description		
Filled rectangle	Writes a simple rectangle with the interior filled in.		
description			
Size_xy	Horizontal and vertical dimensions of the element (units = meters)		
Q_Levels	Number of quantization levels in exposure. (ex. 2 = binary resist,		
	256 = 256 grey levels)		
Rotation_deg	The angle which the element is rotated about the center. (units =		
	degrees)		
OPD_ptg	The percentage of the total OPD for the total thickness of the		
	element. For example, $OPD_ptg = 100$ will set the element		
	thickness to the maximum thickness according to Resist Thickness		
	on the Main Window. If OPD_ptg = 50, the element thickness will		
	only be 50% of the maximum thickness.		

GS Beam Shaper

GS_beam_shaper – Element Parameters				
Parameters	Description			
GE beam shaper	Takes a bmp image file and creates a Fourier hologram for it using			
description	the Gerchberg-Saxton algorithm.			
Size_xy	Horizontal and vertical dimensions of the element (units = meters)			
Q_Levels	Number of quantization levels in exposure. (ex. 2 = binary resist,			
	256 = 256 grey levels)			
Target_far_field	Displays the name of the BMP image file to be used in the			
	calculation. Using the "Calculate" button will reset the filename			
	and the directory for the input file.			
N_Loops_N_FFT	A two-element vector. The first element is the number of loops			
	used in the Gerchberg-Saxton algorithm. The second element is the			
	size of one side of the square in pixels to be used for the Fast			
	Fourier Transform (FFT).			
H_range_deg	The full angular range corresponding to the input Target_far_field			
	BMP file. See figure below. (units = degrees)			
Disp_Flag	1 = display signal to noise ratio and estimated image. An image			
	estimate will be displayed for every ten loops of the GS algorithm.			
	The size of the image estimate depends on several the Wavelength			
	and AU (from the Main Window). The full angular width of the			
	image estimate display is Wavelength/AU in radians; $0 = don't$			
	display this information.			

Box

Box – Element Parameters		
Parameters	Description	
Box description	Writes a simple box.	
Size_xy	Horizontal and vertical dimensions of the element (units = meters)	
Q_Levels	Number of quantization levels in exposure. (ex. 2 = binary resist,	
	256 = 256 grey levels)	
Rotation_deg	The angle which the element is rotated about the center. (units =	
	degrees)	
Border	The width of the border. $(units = meters)$	
OPD_ptg	The percentage of the total OPD for the total thickness of the	
	element. For example, $OPD_ptg = 100$ will set the element	
	thickness to the maximum thickness according to Resist Thickness	
	on the Main Window. If OPD_ptg = 50, the element thickness will	
	only be 50% of the maximum thickness.	

Text

Text – Element Parameters		
Parameters	Description	
Text description	Writes text.	
Size_xy	Horizontal and vertical dimensions of the element (units = meters)	
Q_Levels	Number of quantization levels in exposure. (ex. 2 = binary resist,	
	256 = 256 grey levels)	
Text_string	The text to be written.	
Font_size	The size of the text to be written in pixels.	
OPD_ptg	The percentage of the total OPD for the total thickness of the	
	element. For example, $OPD_ptg = 100$ will set the element	
	thickness to the maximum thickness according to Resist Thickness	
	on the Main Window. If $OPD_ptg = 50$, the element thickness will	
	only be 50% of the maximum thickness.	
Font_Type	The font to be used to write the text.	

Arrange Button

📣 Figure 3: DOE Calculator - Arrange DOE Maste	
<u>File Edit View Insert Tools Desktop Window</u>	Help 🏻 🔊
Arrange Elements	
Element List 1/2	Element Placement in Master (MKS units) Center_Offset_xy N_Tiles_xy 1 Operation_flag 0 Tile_spacing_xy

Arrange DOE Master			
MENU NAME	DESCRIPTION		
Element List	The elements to be in which they appear written tiled on the "Add/Edit DOE Ele change the correspo	written on the master CGH (note: the order ar on the list is the order in which they will be master.) This list is modified under the ements" window. Selecting an Element will onding display for the Placement.	
Element Placement in Master	Center_Offset_xy	Offset of the element from the center of the Master DOE. This is a two-element vector (x and y). (units = meters)	
	N_Tiles_xy	Number of tiles in the x and y dimensions for the Element. This is a two-element positive integer vector (x and y) that is centered at Center_Offset_xy.	

	Operation_flag	0 = simple pixel-by-pixel replacement
		1 = add BMP values modulo 256
		2 = add BMP values, divide by 2 and take
		modulo 256
		3 = mask (BMP values=0 in Element are set
		to zero in Master DOE)
		4 = mask (BMP values>0 in Element are set
		to zero in Master DOE)
		5 = subtract, then take modulo 256.
		6 = subtract from 255 and replace
		7 = add 255 at locations of zeros
		8 = add 255 at locations of > zero values
		9 = 255 at locations where $>$ zero values of
		Element or background
	Tile_spacing_xy	Two-element vector (like
		Center_Offset_xy) that defines the spacing
		between elements in the tile. If blank or [0
		0], the elements are placed directly next o
		each other.
Help, Cancel, OK	Help – Opens Optis	Scan Help window
Buttons	Cancel – Resets val	lues according to previous edit
	OK – Accept chang	ges and return to Main Window.

Calculate Button

📣 F	igure	3: DOE	Calcula	tor - Ca	alculate N	1aster		×
Eile	<u>E</u> dit	⊻iew	Insert	<u>T</u> ools	<u>D</u> esktop	<u>W</u> indow	Help	ч
Ca	lcula	te Ma	ster					
	C:N PR	itput Dir Docume OJECTS	ectory (S ents and S SILG_slov	Specified Settings w_lens%	l by DOE F Vmilster My userdata	roject File Document	on Main Window)	
	Sp Sav	ecify M 'e As:	laster Ou Mastei	tput File r_lens	Name		Border Write Border Width(m): 1.09e-005 Border Text: E_Master 2007_11_10_8_12_5	
	-Re	sist Lin	earization	<u>ו</u>				
		🔲 Line	arize Ma	ster C	Calibration	File:	Browse	
		(Calculate			Differe	ntial Etch Rate	
							Help Cancel OK	

Calculate Master		
MENU NAME	DESCRIPTION	
Output Directory	Specified by the Project Name in the Main Window.	
Master Output File	Name of final output BMP file for the writer.	
name		
Border	Under construction. Not operational at this time (4/09/07).	
Resist Linearization	If linearization is required, use the checkbox. A linearization	
	characterization file is required that is entered through the	
	BROWSE button. The user will be directed to select the file and	
	the offset for linearization.	
Calculate	Select this button to start the calculation.	
Differential Etch	The ratio of the PR etch rate to the glass etch rate. (Under	
Rate	construction $11/10/07$).	
Help, Cancel, OK	Help – Opens OptiScan Help window	
Buttons	Cancel – Resets values according to previous edit	
	OK – Accept changes and return to Main Window.	