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Gaussian Beams- Beam Collimation
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Gaussian Beams- Beam Collimation /Z
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Gaussian Beams - Far Felc /fmg/'e
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(ravesian Beoms - Wosetront Rodtug of Carvture
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Ganssian Beums - Apcd‘hre Trans mission
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Gaunssian Beams - Diffraction Effects
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. Gaussian  Eeams -.ij#ragﬁonfﬂff;ds

{ “top hat” diameter
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q=2w

{ 1/8 point
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d=rw
{ T ~99%
Ripple = + 17%

_{ d=46w
{ Ripple =~ 1%

FIGURE 17.4

Significant diameters for hard-edged truncation of a cylindrical gaussian
beam. Note that the d = mw criterion gives 99% power transmission,
but also £17% intensity ripples and intensity reduction in the near and far
fields.
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Grausstan Beams -
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Guussian Benms - Hermite Functions
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(Faussian Beams - Hermite Punctions
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Lagqerre- Gaussian Modes
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Transverse mode pat-
terns for Laguerre-gaussian
modes of various orders.
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Comparison of Bessel and Gaussian beams
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A comparison of beam divergence and power-transport efficiency is made between Gaussian and Bessel beams when
i both beams have the same initial total power and the same initial full width at half-maximum.

ye reported some experimental observa-
rified the theoretical predictions by Dur-
idepth of field of Bessel modes. Some of
8 of these modes are strikingly different
onding features of the well-known Gauss-
§ of the paraxial wave equation. For exam-
ideal form these modes represent perfectly
free waves with a sharply defined central
Here diffraction-free means that the wave
X, ¥, 2, t) has the property

= exp[—i(wt — B2)W(x,y,2=0,t = 0),
(1)

ime-averaged wave intensity satisfies

Wix,y, 2, OF = ly(x,y,2=0,t = 0)?
(2)

cording to Eq. (1) the wave travels in the z

and according to Eq. (2) the transverse in-

8tribution is independent of the propaga-
e 2.

est diffraction-free beam solution is?

¥(x,5,2=0,t = 0) = Jo(ap), (3)

8 the zero-order Bessel function of the first
¥(x* + y2), o and B are real constants that
B = (w/c)?, and c is the speed of light.
e width of the beam is proportional to 1/«
 extremely small, of the order of one wave-
M). We have shown! that finite aper-
TOXimations to a Bessel beam are easily realiz-

e laboratory by using only simple optical

Bessel beams are diffraction-free in the
d above, they are not so well localized as
ams, Each lobe (i.e., the area between
Ve zeros) of a Bessel beam carries approxi-
®Bame energy as the central spot, and thus a
M with 20 lobes, for example, contains only
Of the total energy within the central spot.
8ty of Bessel beams appears strongly disad-
L hen questions of power transport are
. In comparison with Gaussian beams,

0146-9592/88/020079-02$2.00

which contain 50% of their total energy within their
FWHM, it appears that a Bessel beam wastes most of
its energy off axis.

The purpose of this Letter is to explain that this
conclusion, although apparently obvious, is not at all
correct. We present order-of-magnitude calculations
that compare the properties of Bessel and Gaussian
beams with respect to both beam divergence and pow-
er transport efficiency. The comparisons are based on
observations made at a plane z = d given the following
two initial constraints on field distribution in the

plane z = 0: same initial total power and same initial
FWHM.

Consider an aperture of radius R at z = 0 and an
observation plane at z = d having a circle of radius a
upon it, as shown in Fig. 1. We shall assume that the
field distributions for the Gaussian and Bessel beams
in the plane z = 0 are of the form

E(x,y,z =0) = £; exp(—p?/26®) Gaussian, (4)

E(x,y,z2=0) = £5J(ap) Bessel (5)

for all p < R, and zero for all p > R. The total initial
power contained in each beam is given by

Pr= (2L> T % Gaussian, (6)
w) 2

Pp= (2i> £2% Bessel, ™
T o

assuming that R > ¢, 1/« (i.e., the aperture radius R is
large compared with the central spot sizes of the two
beams).

We now pose the following question: Given the
wavelength )\, the total initial power P, and a propa-
gation distance d, what is the maximum possible frac-
tion F of total initial power Prthat can be transported
to the disk of radius a? The case of greatest practical
interest, and that which we shall consider, is when d >»
a > A. The parameters to be optimized are £{; and o
for the Gaussian beam and £p and R for the Bessel
beam.

Because of the finite aperture radius R, the Bessel
beam will have a propagation range given by 2

© 1988, Optical Society of America
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Fig. 1. Aperture geometry. Both beams are assumed to be
confined to a finite aperture of radius R inthe planez =0. A
disk of radius a located in the plane z = d defines the area
over which the beam intensity is to be integrated.

Zomax = Rl(x/)? = 1]712, )

provided that x > a > 2w/R, where x = 2w/\ is the wave
number. Over that distance Zg,, the central spot
radius of the Bessel beam will remain fixed, while the
peak intensity oscillates slightly about its initial value.
We shall now choose the central spot radius of the
Bessel beam to equal the disk radius a so that the
fraction of total power contained within that disk at
the plane z = d is approximately the same as in the
initial plane, namely,

F=~aR =~ 1/(1+ 4N/3), 9

where N is the number of rings in the Bessel function
within the aperture radius R. In terms of a, the maxi-
mum propagation range [Eq. (8)] of the Bessel func-
tion is Zmex & wRa/\, and we therefore find that if we
choose the aperture radius R to be

R = Md/xa, (10)

the fraction F of total initial power Py that is con-
tained within the disk of radius a becomes

F = ma?/)\d. (11)

This also determines the Bessel beam amplitude to be
given by

£g2 = (4n/c)(Pr/Ra). (12)

In the case of the Gaussian beam, one can easily
show that both the peak intensity at z = d and the
fractional power contained within a disk of radius a
located at z = d will be maximized by choosing

o = d/x, (13)

£67 = (8n/c)(Py/Nd), N

regardless of the value of a. The maximum fractiop
total initial power contained within the disk of rad:
a at z = d is then found to be

F =1 - exp(—7a?/A\d) =~ n(a?/\d). (1

Thus, just as in the case of the Bessel beam, we fi
that fractional power incident upon the disk is appr
imately = times the Fresnel number of the disk, p
vided that the Fresnel number is much less than
(When the Fresnel number is comparable with
greater than 1 the effects of diffraction are sufficien
negligible that a plane wave of radius a suffices f§
power transport.) With regard to beam divergens
the Gaussian beam spreads by a factor of 2, while:
central maximum of the Bessel beam does not spre
at all.

Let us now consider the case in which the Bessela
Gaussian beams are assumed to have the same FWH!
in the plane z = 0, i.e., 02 = a2 If we define the ra
of the Gaussian beam as the distance z at whichi
peak intensity falls by a factor of 2, we find that

Bessel range ~ N X Gaussian range, (i

where N is again the total number of rings in 4
Besscl function in the plane z = 0. However, since®
total integrated power contained in each ring is #
proximately the same as that contained in the cent s
maximum of the Bessel beam, we also find that

total Bessel power ~ N X total Gaussian power. (!

Increased depth of field is therefore obtained at!
expense of power. :

In conclusion, we have shown that (1) comparé
efficiencies in power transport are obtained with o3
mized Gaussian and Bessel beams in practical s’
tions (i.e., when the Fresnel number of the targe!§
much smaller than unity) and (2) the depth of field®}
Bessel beam can be made arbitrarily larger than t
of a Gaussian beam having the same spot ¢
(FWHM), but at the expense of power. The appa®
advantage of greater localization in Gaussian be#
relative to that found in Bessel beams, is theref
nonexistent.
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