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Abstract
Fabrication of smooth noblemetal ultrathin films is crucial tomany optical and electronic devices.
However, themetals’ adatom-adatom cohesive force is usually stronger than the adatom-substrate
adhesive force leading to aVollmer-Weber, island-like, growthmode. This phenomenon imposes
limitations on the surface smoothness andminimum (percolation) thickness necessary to obtain a
smooth film.Here, we demonstrate a facilemethod to fabricate ultra-smooth ultrathin silver (Ag)
films on silicon via physical vapor deposition. By removing the oxide layer on silicon substrates using a
hydrofluoric acid treatment, Ag atoms bind strongly to the energetically favorable silicon atoms
leading to smoothAg films.We compare the results for Ag deposited onHF treated and untreated Si
substrates for different Ag thicknesses. Our results show thatHF acid treatment and annealing lead to
a significant reduction in the surface roughness (∼0.5 nm), narrower peak-to-valley height
distribution, and higher Kurtosis. Continuous Agfilmswere obtained down toAg thickness of 5 nm.
We expect our results to play a crucial role inminimizing electronic and optical losses for
optoelectronic, plasmonic and opticalmetamaterial devices.

1. Introduction

The use ofmetallic filmswith thicknesses of a few to a few tens of nanometers is central tomany researchfields
and technologies. Ultrathin noblemetallic films, e.g., silver (Ag), gold (Au), and aluminum (Al) are used as
building blocks for plasmonic devices,metamaterials [1] andmetasurfaces [2], and nanoelectronic devices [3].
This is due to their high electrical conductivity and low optical losses,mainly in the visible-NIRwavelength
range. The applications and devices that rely on ultrathin noblemetallic films are versatile and numerous,
including bio-sensing [4],Water Sanitation/desalination [5], enhanced spontaneous emission rate [6, 7], and
enhanced photoelectric emission [8].

However, thinmetallic films deposited on oxides tend to exhibit a Vollmer-Weber (VW) growthmode, i.e.,
themetallic atoms tend to de-wet the surface and form islands [9]. This phenomenon leads to an increase in the
surface roughness of the deposited films, which degrades the efficiency of thin-filmdevices. In addition,
depositing a continuous ultrathin film (thickness<10 nm) is challenging, i.e., there exists a percolation
thickness belowwhich the deposited film is not continuous. High surface roughness and lack of continuity
increase the resistivity of the deposited film, increase the optical losses of the film, and decrease the surface
plasmon polariton propagation length, i.e., degrades its electronic and optical properties [3, 10].

In particular,minimizing the optical losses in plasmonic devices has been the center of extensive research
which has been realized by adding gainmaterial to the plasmonic system to compensate for plasmonic losses
[11], operating at long (IR)wavelengths where optical losses are low,minimizing the field confinement inside
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themetal [2], or by creating smoother plasmonic films to decrease electron-defect scattering [10]. Realization of
smooth plasmonicfilms deposited via physical vapor depositionwas demonstrated using variousmethods, e.g.,
deposition on special substrates [12], optimizing the deposition process [13] and using a seedwetting layer.

To obtain a smooth film, the surface adhesive forcemust be higher than the adatom cohesive force leading to
a Frank-van derMerwe (FM) growthmode [9]. To do so, previousworks showed that depositingGermanium
(Ge) [3, 14] or a copper (Cu) [15]wetting layers significantly decreases the surface rootmean square roughness
(Rrms) of Agfilms down to∼0.7 nm and 0.5 nm, respectively [3, 14, 15]. This is because the bond dissociation
energy betweenAg atoms ( =-

-H 162 KJ molAg Ag
1) is lower than that of Ag andGe andAg andCu atomswhich

are =-
-H 174.5 KJ molAg Ge

1 and =-
-H 171.5 KJ mol ,Ag Cu

1 respectively [16]. TheAg–Ag bond causes
deposited Ag atoms to cluster. Consequently, creating a stronger bond betweenAg atoms and a seed layer of Ge
orCu results in smoother films. Interestingly, the Ag–Si bond disassociation energy is =-

-H 185.1 KJ molAg Si
1

[16]. This suggests that in leu of depositing a seed layer on an SiO2/Si substrate [3], a possible alternative is to
directly deposit Ag on Si by removing the SiO2 layer.We note here that smooth thinfilm can be directly obtained
using atomic layer deposition [17] andDCmagnetron sputtering [18].

In this work, we create smoothAgfilms deposited via thermal physical vapor deposition by removing the
SiO2 layer fromSi surface with hydrofluoric (HF) acid.We show that removing the SiO2 layer prior to depositing
the Agfilm and annealing the Agfilm substantially increase the surface smoothness with surface roughness
∼0.5 nm.Continuous Ag films down to 5 nm in thickness are obtained. The deposited Agfilms enjoy
significantly lower root-mean-square surface roughness, narrower grain-size distribution, and higher Kurtosis.

2. Experimental section

As purchased p doped Si substrates have a native or grown oxide layer (figure 1(a)). Removing the native oxide
layer of Si usingHF acid treatment (figure 1(b))was demonstrated previously.We added 5 ml ofHFwith a
concentration�40% to 110 mlDIwater. The Si samples were dipped inside the solution for 2 min. After
washingwith theDIwater, the samples were driedwithN2 and placed inside the glove box to avoid re-oxidation
of the Si. Ag silver pellets (99.999%purity fromSigma-Aldrich) are then deposited via thermal vapor deposition.
Thermal evaporator (Beijing Technol Co., Ltd)was used to deposit the thin film. Ag thin films of 5 nm, 10 nm
and 20 nm thickness were deposited via thermal vapor depositionmethod on Si substrate. The film thickness
was determined using a calibrated quartz crystalmonitor.

Three types of Si substrates were studied; untreated Si substrates, Si substrate treatedwithHF acid (HF/Si),
andHF treated Si substrate annealed at 150 °C for 3 min on a hot plate (annealed/HF/Si). Vacuum annealing of
theHF treated Si substrate assists in volatilizing anymetal complexes remaining on the Si substrate [19]. These
metal complexes can act as nucleation sites thatmay limit the formation of homogenous and smoothAg films.
We note that annealing the treated Si substrate increases the surface roughness of theHF treated Si substrate
prior to Ag deposition.Minimum surface roughness was observed at annealing temperature of 150 °Cwhich
was used in all the samples. The thin filmswere deposited at 3×10−7 torr pressure and at 100-Watt and the
deposition ratewasmaintained at 6 Å s−1.We also note that we annealed the Si substrate prior to Agfilm
depositionwhich differs from the rapid post deposition annealing process demonstrated previously [14].

Figure 1. Fabrication of smoothAg films: (a) Silicon substrates have a native or grown Silicon oxide layer. (b)Weremove the native
oxide on Si substrates usingHF acid treatment. (c)Annealing the Si substrate evaporatesmetal complexes remaining on the Si
substrate. (d)Depositing Ag atoms via physical vapor deposition on a bare Si substrate increases its wettability and lead to smoothAg
films.
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The surface roughness of the prepared samples wasmeasured using BrukerMultimode-8 Atomic force
microscope and surfacemorphologywas studied by using FE-Scanning electronmicroscopeHITACHI, S-4800.
The rootmean square roughness (Rrms) is the square root of the all the surface heights and is sensitive to large
deviations from themean height.

Kurtosis is a dimensionlessmeasure of the combinedweight of a distribution’s tails relative to the center of
the distribution.We use it here to characterize the height distribution. TheKurtosis ‘k’ is given by

åk =
=N

Z
1

R

1

j

N

j
rms

4
1

4

whereN is the sumof all counts, and Z is themeasured height.

3. Results and discussion

Figures 2(a)–(c) show atomic forcemicroscopy (AFM) surface topography images over a 1μm×1μmarea of a
20 nmAg film deposited on an Si,HF/Si and annealed/HF/Si substrates, respectively. Clearly, afterHF
treatment the surface roughness dramatically decreases. Themeasured Rrms is 1.63 nm, 1.13 nm, and 0.72 nm
for Si, HF/Si and annealed/HF/Si substrates, respectively. Figures 2(d)–(f) show the scanning electron
microscope (SEM) images of the Si, HF/Si and annealed/HF/Si substrates, respectively. For the untreated Si
sample (figure 2(c)), the Ag film consists ofmetallic islandswith large distribution of grains, irregular shapes,
andmultiple cracks and voids, i.e., symptoms of theVWgrowthmode. On the other hand, Ag deposited onHF/
Si and annealed/HF/Si substrates showuniformAg film growthwith similar grain size distribution and limited
voids and cracks, i.e., the film growthmode is no longer aVWgrowthmode.

To test the efficacy of our approach for ultrathin Agfilmswe deposited 5 nm thick Agfilms on the three
substrates. Figures 3(a)–(c) show atomic forcemicroscopy (AFM) surface topography images over a 1μm×1
μmarea of a 5 nmAgfilm deposited on an Si, HF/Si and annealed/HF/Si substrates, respectively, which also
shows a noticeable decrease in the surface roughness afterHF treatment. Themeasured surface Rrms is 1.2 nm,
0.85 nm, and 0.95 nm for Si, HF/Si and annealed/HF/Si substrates, respectively.We note that the Rrms of the
film deposited on the annealed/HF/Si substrate slightly increased compared to thefilm onHF/Si substrate. As
wementioned earlier annealing is commonly utilized to evaporatemetal complexes remaining on the Si
substrate [19]. On the other hand, annealing increases the Rrms of the as treated Si substrate. Consequently, for
thicker films the evaporation of themetal complexes facilitates the Ag adatom adhesion to the Si substrate
leading to smoother Ag films.However, for thinner Agfilms, e.g., with 5 nm thickness, the overall Rrms canmay
be strongly affected by the substrate’s initial roughness. The advantage of annealing is evident, however, when
considering other surface parameters, e.g., peak-to-valley size distribution andKurtosis, as wewill detail later.
Figures 3(d)–(f) show the scanning electronmicroscope (SEM) images of the Si, HF/Si and annealed/HF/Si

Figure 2. Surface characterization of 20 nmAg film. (a)–(c)AFM images of a 20 nmAg film deposited on (a) untreated Si substrate, (b)
HF/Si substrate, and (c) annealed/HF/Si substrate. A significant decrease in surface roughness is clear followingHF treatment. (d)–(f)
SEM images of a 20 nmAg film deposited on (d) untreated Si substrate, (e)HF/Si substrate, and (f) annealed/HF/Si substrate.

3

Nano Express 1 (2020) 020012 MAsad et al



substrates, respectively. For the untreated Si sample (figure 3(c)), the Agfilm consists of nanoparticles, i.e., the
5 nmAgfilm is below the percolation thickness. Consequently, a 5 nmAgfilm is not continuous and suffers
from low electronic and optical quality as observed in previous reports [3, 15]. FollowingHF treatment, we see
interconnected grains which can allow for a decent electron transport (figure 3(e)). Depositing the 5 nmfilm on
the annealed/HF/Si substrate leads to a continuous filmwith voids (figure 3(f)). These results show that our
approach enables the creation of continuous, ultrathin plasmonic films.

Histograms of the 2D surface height values obtained fromAFMmeasurements are shown infigures 4(a)–(c)
for anAg layer with 5 nm, 10 nm, and 20 nm thickness, respectively. The results compare the surface roughness
of the Agfilms deposited on untreated Si (black), HF/Si (red), and annealed/HF/Si (blue). For all Ag
thicknesses, the peak-to-valley size distribution of the untreated Si sample is largest indicating amajor variation
in the sizes of grain and existence of voids and cracks. On the other hand, removing the oxide layer provides
narrower peak-to-valley valueswhich is further reduced after annealing. For instance, the peak-to-valley height
RPV of a 10 nmAg film reduced from∼12 nm for an untreated Si substrate to∼3.8 nm for annealedHF/Si
substrate (figure 4(b)). AlthoughRrms of the 5 nmAg filmdeposited on the annealed/HF/Si substrate was
relatively higher than that deposited onHF/Si substrate, we can clearly see a reduction in its RPVwhich is an
importantmeasure of the surface roughness (figure 4(a)).

Table 1 summarizes themain results of all the samples in terms of Rrms, peak-to-valley distributionRPV, and
Kurtosis. The surface roughness of a 10 nmAgfilm is 1.73 nm (Si), 0.87 nm (HF/Si), and 0.48 nm (annealed/

Figure 3. Surface characterization of 5 nmAgfilm. (a)–(c)AFM images of a 5 nmAg film deposited on (a) untreated Si substrate, (b)
HF/Si substrate, and (c) annealed/HF/Si substrate. A significant decrease in surface roughness is clear followingHF treatment. (d)–(f)
SEM images of a 5 nmAg film deposited on (d) untreated Si substrate, (e)HF/Si substrate, and (f) annealed/HF/Si substrate. The
SEM images show that prior toHF treatment theAg film is below its percolation thickness. AfterHF treatment and annealing, a
continuous Agfilmwith voids is obtained.

Figure 4.Histograms of the 2D surface-height values obtained fromAFM image analysis for anAg filmwith thickness (a) 5 nm, (b)
10 nm, and (c) 20 nm. The histograms are obtained for Ag films deposited on untreated Si substrates (black), HF/Si substrates (red)
and annealed/HF/Si substrates (blue). The results show that the narrowest peak-to-valley height values (annotated in the figures) are
obtained for Ag films deposited on annealed/HF/Si substrates.
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HF/Si)which is lower thanwhatwas reported previously usingGe seed layer [3] and comparable to the Rrms of
Cu seed layer [15].We note that using an Si seed layer differs fromusing an Si substrate. Formica et al [15]used
an Si seed layer which lead to a rougher Ag film compared to a Cu seed layer. Their results indicated that the Si
atoms acted as a nucleation dot for the growth of Ag islands. On the other hand, the growth of Agfilms on an Si
substrate provides homogenous nucleation sites that creates smoother surfaces. Table 1 also show theKurtosis
results for all the samples. Higher Kurtosis can indicate a sharper peakwhich reflects the homogeneity of the
grain height across thefilm. From table 1 andfigures 4(a)–(c), we can see that annealed/HF/Si samples have
considerably higher Kurtosis and sharper peaks compared to untreated Si substrates. This reflects the
predominance of a single grain height for the treated samples compared to untreated samples.We note thatHF/
Si samples have the highest Kurtosis evenwhen compared to annealed/HF/Si samples. This is likely due to the
increase in the surface roughness of the annealed/HF/Si substrates due to annealing which can increase the
relative value of the distribution’s tail relative to its peak. The surfacemorphology parameters for the Si, HF/Si
and annealedHF/Si substrate shows that there is no direct correlation between the substrate’smorphology and
themorphology of the deposited films. Finally, althoughHF treatment of Si can lead to the formation of Si–F
and Si–Hbonds, it is unlikely that this would deteriorate the Ag adhesion to the substrate since the bond
dissociation energy of theAg–F andAg–Hbonds is =-

-H 357 KJ molAg F
1/ and =-

-H 202 KJ mol ,Ag H
1/

respectively, which is higher than that of the Ag–Ag bond =-
-H 162 KJ molAg Ag

1/ [16].

4. Conclusion

We showed that by removing the oxide layer existing on an Si substrate viaHF acid treatment, we can
significantly improve the smoothness of deposited Ag films in terms of decreasing the surface rms roughness,
narrowing the peak-to-valley roughness distribution, and increasing the distributionKurtosis. Ourmethod
compliments other existingmethods to increase the quality of plasmonic andmetallic films deposited on Silicon
substrates. Indeed, we provide amore economicmethod aswe do not require using any seed layer.Moreover,
ourmethod is CMOS compatible and avoid introducing additionalmaterials, e.g., Ge, whichmay degrade the
optical properties of the deposited film.While we do not expect thismethod to be used formultilayer structures
as in the case of usingGe seed layer [14], we expect that it can at least decrease the overall roughness of the
multilayer structure without jeopardizing its optical properties. From a practical standpoint, we recommend the
annealing andHF treatment in general. However, for applications whereminimizing the surface roughness is
crucial, avoiding the annealing process for 5 nmfilms is recommended. Using other acids that remove the oxide
layer is also possible. Ourmethod can certainly be extended to other plasmonicmetals. For instance, we expect
that ourmethodwould increase the smoothness of gold (Au)films. The bond dissociation energy of Au-Au
atoms is =-

-H 226.2 KJ molAu Au
1/ while for Au–Si atoms it is =-

-H 304.6 KJ molAu Si
1/ [16].
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Table 1. Summary of surfacemorphology parameters for 5 nm, 10 nm, and 20 nmAg films deposited on Si, HF/Si, and annealed/HF/Si
substrates.

Peak-to-valley roughness- RPV (nm) RMS roughness- Rrms (nm) Kurtosisκ

5 nmAg- Si 11 1.2 0.4213

5 nmAg-HF/Si 9 0.85 1.922

5 nmAg- annealedHF/Si 8 0.95 0.9159

10 nmAg- Si 12 1.73 0.05

10 nmAg-HF/Si 8 0.87 3.27

10 nmAg- annealedHF/Si 3.8 0.49 2.95

20 nmAg- Si 11 1.63 0.0005

20 nmAg-HF/Si 7.3 1.13 0.946

20 nmAg- annealedHF/Si 6.5 0.72 0.32

Si 8.5 1.49 12.9

HF/Si 2.7 0.39 1.005

AnnealedHF/Si 2.6 1.6 2.15
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