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Gravity is the weakest of all known forces. Measuring the force of gravity from micro and nano-
scale source masses is an essential first step toward low-energy quantum gravity tests. In addition,
measuring gravitational forces where the center-of-mass inter-distance is at the sub-mm scale extends
the experimentally achievable parameter space for tests of Yukawa-like corrections to Newtonian
gravity and tests for higher dimensions proposed to resolve the hierarchy problem of fundamental
forces. Here, we propose an experiment using two optically trapped particles in ultrahigh vacuum
conditions where the center of mass inter-distance is on the order of 102nm. In the proposed
experiment, the source mass is a rotating Janus nano-particle such that the test mass (sensor)
experiences a periodic gravitational potential. Using realistic experimental parameters, a signal-to-
noise ratio ≥ 1 is obtained for a Janus particle with radius ≥ 102nm and a mass ≥ 10 fg. The
proposed experiment extends the search of Yukawa corrections to gravity at ≈ 10−5 times gravity
regime at 102nm interaction range, opens the door to low energy tests for quantum gravity, and
enables experimental tests of extra-dimensional solutions to the hierarchy problem.

Introduction. Optically levitated microscopic particles
trapped in ultrahigh vacuum (UHV) environments are
mechanical oscillators with exquisite force sensitivity due
to their weak coupling to their mechanical and thermal
environment[1].Through optical or electronic cooling[2],
the center of mass motion of a trapped nanoparticle can
be cooled down from room temperature to its ground-
state of motion leading to a displacement sensitivity
down to ∼ 10−14 m√

Hz
[3]. This impressive displacement

sensitivity can be used to measure ultra-weak forces[4].

Using levitated nanoparticles was proposed to measure
gravitational forces at small length scales to determine
corrections to Newtonian gravity [4, 5]. The source mass
in the previously proposed experiments remains macro-
scopic in the order of a kg. On the other hand, measur-
ing gravitational forces from nanoscale source masses is
necessary to perform Quantum Cavendish Experiments
(QCEs), i.e. experiments that test gravitational ef-
fects from quantum states of the source mass [6]. The
constraints on realizing QCEs requires microscopic dis-
tances between solid-state source and test masses [6]. To
date, however, the smallest source mass measured is in
the 100 mg range with a center-of-mass inter-distance
≈ 1 mm which was measured through periodic modu-
lation of the interdistance between the source and test
masses [7]. On the other hand, the search for gravity-
related new physics, e.g., Yukawa potential corrections
[8] and higher-dimensional solutions corrections [9, 10],
requires measuring the gravitational force at small dis-
tance less than a few microns. However, decreasing dis-
tances requires a significant decrease in the source and
test mass dimensions which diminishes the signal force

FIG. 1. Schematic of the proposed experiment. The source
and test masses are optically trapped in a UHV environment.
The test mass is a silica nanoparticle. The source mass is a
Janus particle with one side made of gold and the other made
of silica.A metallic shield with thickness δ is situated between
the two masses to isolate direct Casimir force interaction and
electrostatic interactions between the Janus and test particles.
The Janus particle is spinning in the trap at a frequency ωj

which corresponds to a center of mass oscillation along the
x axis at the same frequency. The test mass oscillates under
the influence of gravity at ωj . The test mass is trapped in
an optical trap potential with a natural frequency ω0. The
trap’s natural frequency is modified due to interacting with
the shield to ωmod . When ωj = ωmod, the gravity induced
oscillation amplitude is amplified.

[8]. For example, the force of gravity scales as R4 for two
identical masses of radius R with a negligible surface to
surface distance d� R.
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In this work, we propose an experiment to measure
the gravitational force from nano/microscale objects us-
ing experimentally feasible conditions. A signal-to-noise
ratio > 1 for a gravitational force on the order of 10−30N
is realized through (i) decreasing the noise floor through
cooling the test mass to its ground state of motion, (ii)
using periodically modulated gravitational force through
a rotating Janus particle source mass, and (iii) match-
ing the source mass rotation frequency to the natural
frequency of the test mass trapping potential. The func-
tional form of the gravitational force at the nanoscale
can be probed using the proposed experiment. Measur-
ing gravitational forces at the nano/micro-scale opens
the door for testing quantum gravity theories, as well
as corrections to Newtonian gravity. We show that un-
der experimentally achievable conditions, the proposed
experiment can extend the search for Yukawa correction
to gravity to the regime of 10−5 times gravity for an in-
teraction range λ ≥ 10−1, hence, covering most of the
parameter space of theories of Yukawa potential modi-
fied gravity and extend current bounds at 0.1 micron by
up to 17 orders of magnitude. [5, 8].

Experiment. The proposed experiment is described in
Figure 1. Two particles are optically trapped and levi-
tated under UHV conditions[11]. The source mass is a
Janus particle [12] that consists of two materials with sig-
nificantly different densities, here, gold and silica. The
Janus particle is spinning in the trap at a frequency ωj
[13]. The test mass is trapped in an optical potential
with a natural frequency ω0. A metal sheet with thick-
ness δ ≈ 50 nm is present between the two masses to
eliminate the Casimir and electrostatic interactions that
may occur at the same frequency channel [14]. Due to
the interaction between the test mass and the shield, the
trap’s natural frequency is modified to ωmod. As a con-
sequence of the Janus particle’s oscillation, the measured
displacement spectral density of the test mass will peak
at the spin frequency of the source mass. When the
source mass spin frequency is equal to the resonance fre-
quency of the test mass, i.e. ωj = ωmod, the displacement
amplitude is amplified and becomes detectable under ex-
perimentally achievable conditions. It is worth noting
that the shield can be made of superconducting material
to eliminate the penetration of multipolar electromag-
netic interactions since the field penetration depth of a
superconductor is on the order of 10 nm - 100 nm [15]. In
addition, stray electromagnetic interactions can be coun-
teracted since electric fields, unlike gravitational fields,
can be neutralized [16]. Finally, the lack of convective
cooling in UHV environments can lead to excessive heat-
ing and melting of the half-metallic Janus particle. To
avoid that, the UHV chamber itself can be cooled down
to low temperatures to increase the efficiency of radiative
cooling (see Appendix for more details). In addition, an
all-dielectric Janus particle can be used on the expense
of reducing the density contrast and the displacement
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FIG. 2. Maximum amplitude of oscillations x̃max (in meters)
reached with different chamber Pressure values (in mbar) and
Janus particle radii (in meters). Parameter values used to
generate this plot are: v̄ = 430 m/s at room temperature,
ρg = 19320 kg/m3 and ρ = 2650 kg/m3. The angular fre-
quency of the Janus particle rotation is ωj = 10 kHz. The
radius of the test particle is R = 10−7 m, and the distance
between the surfaces of the two particles is 10−7 m. Thus, the
distance between the centers of geometry of both particles is
` = R+Rj + 10−7 m.

signal[17, 18].

Model formulation. We model the gravitational inter-
action of a test particle of mass m with a Janus parti-
cle of mass Mj separated by a distance between centers
of geometry `. This distance includes a metal shield of
thickness δ to isolate direct electrostatic and Casimir in-
teractions. Placing the test particle at the origin at a
distance d of closest approach to the shield and distance
` to the geometric center of the Janus particle. The Janus
particle is composed of a left and right hemispheres with
densities ρg and ρs. This makes the center of mass of the
Janus particle displaced towards the golden hemisphere.
We refer to the distance between the center of mass and
the geometric center as xj . As the Janus particle rotates
about its z-axis, its center of mass oscillates in the x di-
rection inducing an oscillation in the position of the test
particle at x, so that its distance from the test particle is
`+ xj cos(ωjt)− x.

The test and Janus particles are placed in optical traps
that act like springs with stiffness k and kj . We choose
kj sufficiently stiff so as to effectively suppress any trans-
lational motion of the Janus particle. The test particle
is subject to dipole-dipole, Casimir, and gravitational in-
teractions F sdip, F

s
c , and F sg with the shield. We refer to

all these forces due to the shield as fs. It is also subject
to an oscillating gravitational interaction F jg with the
Janus particle, which induces oscillation in the position
of the test particle. Letting x be the position of the test
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FIG. 3. Maximum amplitude of oscillations x̃max (in meters)
vs Pressure (mbar) and Separation Distance (m). The sepa-
ration distance between the particles is `−R−Rj . The Janus
particle radius is Rj = 10−7m. The parameters ωj , R, v̄, ρ, ρg
are the same as in Fig. 2

particle, then the ensuing equations of motion become

x′′ + γx′ + ω2
0x =

fs + F jg
m

+ ηth(t) + ηq(t). (1)

where ηth(t) and ηq(t) are the thermal and quan-
tum white noises respectively, and 〈ηi(t)〉 = 0 and
〈ηi(t)ηi(t′)〉 = σ2

i δ(t− t′) for i thermal or quantum. For
the rest of the paper we assume σth � σq, and leave the
σth � σq to the appendix.
The small oscillations regime. In the regime where the
displacement of the test particle is small x/d � 1, the
dipole-dipole, Casimir interactions, and gravity forces
between the test particle and metal shield are Tay-
lor expanded in x/d, while the gravitational force be-
tween the test and Janus particles is Taylor expanded

in
xj cos(ωt)−x

` . The constant terms in these expansions
yield a DC shift in the position of the test particle, while
the linear terms induce a modification of the test parti-
cle’s optical trap stiffness. The ensuing equation for the
DC shifted oscillator x̃ = x − FDC

m is a forced harmonic
oscillator of the form

x̃′′ + γx̃′ + ω2
modx̃ ≈

xjF
′j
g (0)

m
cos(ωjt) + η(t), (2)

where the modified frequency ωmod is given by

ω2
mod = ω2

0 −
F
′s
dip(0) + F

′s
c (0) + F

′s
g (d) + F

′j
g (0)

m
. (3)

The steady-state solution of the mean displacement of
Eq. (2) yields the signal 〈x̃(t)〉 = x̃max sin(ωjt+ φ) where
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FIG. 4. The signal-to-noise ratio as a function of Pressure
(mbar) and Janus particle radius (m). The distance between
the particles is ` = R+Rj +10−7m. The temperature is taken
from [3] as T = 7 · 10−7K. The parameters ωj , R, v̄, ρ, ρg are
the same as in Fig. 2

.

x̃max =
xjF

′j
g (0)

m

1√
(ω2

mod − ω2
j )2 + γ2ω2

j

(4)

and φ = tan−1
(
ω2

mod−ω
2
j

γωj

)
. Note that the driving force

depends only on the gravitational interaction between
the Janus particle and the test particle. Consequently,
the steady-state solution could be resonantly amplified
to measure the weak effect of gravity.

The thermal noise is obtained from the equipartition
theorem via 1

2mω
2
mod〈x̃2

noise〉 = 1
2kBT , which implies

〈x̃2
noise〉 =

kBT

mω2
mod

. (5)

Since 〈x̃noise〉 = 0, we see that σth =
√

kBT
mω2

mod
. Using

Eq. 5 and Eq. 4, we define the signal to noise ratio (SNR)
at ωj ≈ ωmod via

SNR =
x̃max√
〈x̃2

noise〉
=

xjF
′j
g (0)√

mγ2kBT
. (6)

Newton’s Gravity. If we assume that there are no cor-
rections to Newtonian gravity at the nano-scale, then the
maximum amplitude of oscillations experienced by the
test particle when ωmod ≈ ωj becomes

x̃max,N =
π2GRR4

j v̄ρ(ρg − ρ)

32l3Pgasωj
(7)
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FIG. 5. The detectable-Yukawa boundary (λ, α) as function
of Pressure (mbar). The separation distance between the par-
ticles is ` − R − Rj = 3 × 10−7m. The Janus particles has
radius Rj = 3×10−6m. The parameters ωj , R, v̄, ρ, ρg are the
same as in Fig. 2

.

where R and Rj are the radii of the test and Janus par-
ticles respectively, Pgas is the gas pressure at room tem-
perature, ρg and ρ are densities of gold and silica re-
spectively, and v̄ is the rms velocity of gas particles at
room temperature. In deriving Eq. (7), we used xj =
3(ρg−ρ)
8(ρg+ρ)Rj and the damping value γ = 16Pgas/(πv̄ρR)

found in ref. [19]. This maximum displacement is de-
tectable for a wide range of Janus particle radii and pres-
sures Pgas as seen in Fig. (2). The Newton signal to noise
ratio becomes

SNRN =
π5/2Gv̄R5/2R4

jρ
3/2(ρg − ρ)

16
√

3l3Pgask
1/2
B T 1/2

(8)

Yukawa-Corrections to Newtonian Gravity For short-
range gravitational interactions, corrections to Newto-
nian gravity are generally parameterized by a Yukawa-
like potential of the form [20]

V (r) = −Gm1m2

r

(
1 + αe−r/λ

)
, (9)

where the masses m1,m2 are at a distance r, λ is the
range of the interaction, and α is the relative strength the

potential. If we define Yα,λ(`) =
(

1 + `
λ + `2

2λ2

)
αe−`/λ.

For this potential, the maximum amplitude of oscillation
found in Eq. (4) at ωmod = ωj is given by

x̃max =
π2GRR4

j v̄ρ(ρg − ρ)

32`3Pgasωj
(1 + Yα,λ(`)) (10)

∼= x̃max,N + x̃max,Y . (11)

The ensuing signal-to-noise ratio becomes

SNR =
π5/2Gv̄R5/2R4

jρ
3/2(ρg − ρ)

16
√

3l3Pgask
1/2
B T 1/2

(1 + Yα,λ(`)) (12)

∼= SNRN + SNRY . (13)

Since any gravitational interaction whose strength does
not lead to an SNRY larger than one implies that Yukawa
corrections are not detectable, the detectable values of α
and λ satisfy

Yα,λ(`) ≥
16
√

3l3Pgask
1/2
B T 1/2

π5/2Gv̄R5/2R4
jρ

3/2(ρg − ρ)
=

1

SNRN
. (14)

The Yukawa-(α, λ)-detection boundary satisfies

α =
e`/λ

1 + `
λ + `2

2λ2

1

SNRN
≈
{ 1

SNRN
`
λ � 1

1
SNRN

2λ2

`2 e
`
λ

`
λ � 1.

(15)

Any theoretical massive-force carrying particles (mod-
uli) in the regions above the Yukawa-detection bound-
aries shown in Fig. 5 could be probed using the current
proposal. In particular, for pressures near 10−14 mbar,
we can detect forces that are O(10−5) smaller than the
force of gravity at an interaction range of 102nm, which
presents an improvement of O(1018) on the experimen-
tally excluded Yukawa-strength α.

Direct tests of extra-dimensions and the Hierarchy
problem To resolve the mass hierarchy problem of the
standard model (SM) between the weak scale and grav-
ity, proposals of quantum gravity theories lower the
scale of quantum gravity from the Planck scale ∼
1016TeV to about 1TeV. Models with large extra dimen-
sions, e.g. the Randall-Sundrum (RS) and the Arkani-
Hamed–Dimopoulous–Dvali (ADD) models [9, 10], in-
duces modification of the gravitational force. The 5D
RS model predicts gravitational corrections of the form
VRS(r) = GmM

r

(
1 + 1

r2k2

)
, which yields a maximum

mean displacement of x̃max = x̃max,N (1 + 6/k2`2) and
SNR = SNRN (1 + 6/k2`2). The maximum detectable k
becomes

k2
max = SNRN (6/`2). (16)

At 10−12 mbar pressure and Rj = 800 nm, R = 100 nm,
and all other parameters as in fig. 4, we can probe dis-
tances k−1 ≈ 2.5 × 10−8m. While the LHC can probe
much smaller distances of 10−19m or energies of order
13 TeV , its tests of extra-dimensional gravity remain
indirect. For example, the LHC searches for increased
productions of top-quarks or Kaluza-Klein excitation of
the graviton predicted by the RS model [21–23]. Direct
tests of gravity at the sub-micron scale can detect extra-
dimensions even if the underlying theory does not predict
particles at LHC accessible energy scales.
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Conclusions. Levitated nano-particles cooled to their
quantum ground state of motion represent one of the
largest non-classical systems ever realized. Introducing
rotating Janus particles is a new addition to the ex-
perimental toolkit of levitation optomechanics as they
provide a mechanical system that oscillates at frequen-
cies ≤ GHz. We showed that the gravitational force
of a Janus particle source mass could be measured by
optically levitated nanoparticles cooled and trapped in
ultrahigh vacuum conditions. In addition to the pro-
posed experiment, rotating Janus particles can be used
to probe Casimir forces and even to demonstrate the Dy-
namic Casimir Effect. Janus particles are programmable
mechanical oscillators making them attractive for estab-
lishing coherent superpositions of massive objects.
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APPENDIX

The perturbative effect of Gravity on the test par-
ticle. The gravitational force between the test and
Janus particles is ~Fg =

Gmjm

|−−−→rj−r|3
−−−→
rj − r where ~rj = (` +

xc cos(ωjt), xc sin(ωjt)) and ~r = (x, y) are the position
vectors of the Janus and test particles respectively. Tay-

lor expanding the force to first order in
xc cos(ωjt)−x

` and
xc sin(ωjt)−y

` yields two decoupled equations of motion in
the x̂ and ŷ directions representing two driven harmonic
oscillators. While solutions to the equations of motion
up to first order are accurate up to O(xc/l), O(d/l), and
O(x/l), numerical solutions to these equations can ob-
tain solutions whose accuracy is noise limited.
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Calculating the thermal average of x̃2. For the one-
dimensional harmonic oscillator whose Hamiltonian is

H =
p2

2m
+
mω2x2

2
+ fx cos(ωt). (17)

The average over one cycle of H yields H̄ which is the

classical Hamiltonian H̄ = p2

2m + mω2x2

2 . The thermal
average of x̃2 for H̄

〈x̃2〉 =

∫
x̃2e−

βmω2x̃2

2 dx̃
∫
e−

βp2

2m dp∫
e−

βmω2x̃2

2 dx̃
∫
e−

βp2

2m dp
=
kBT

mω2
. (18)

Deriving power spectral density of thermal noise. Let-
ting χ(ω) be the Fourier transform of x̃(t) and taking the
Fourier Transform of Eq. 2 we find that

χ(ω) =
1

m

F̂ (ω) + η̂(ω)

(ω2
mod − ω2) + iγω

(19)

where F̂ (ω) and η̂(ω) are the Fourier transform of F (t) =
xjF

′
g(0) cos(ωjt) and η(t) respectively. From this, we can

obtain the power spectrum of the noise component

Sx̃noisex̃noise
= Sηη(ω)|χ(ω)|2 =

Sηη
m2[(ω2

mod − ω2)2 + γ2ω2]
.

(20)
Since η(t) is white noise, Sηη is a constant independent of
the frequency ω. From the power spectrum, we calculate
the variance of the noise in the position (since 〈x̃noise〉 =
0) as

〈x̃2
noise〉 =

Sηη
2πm2

∫ ∞
−∞

dω

(ω2
mod − ω2)2 + γ2ω2

. (21)

Normalizing the power spectrum To determine the
value of the integral in Eq. 21, we close the contour in
the upper half-plane with a half-circle at infinity. We find
that there are two poles in the upper half-plane at

ω± =
iγ ±

√
4ω2

mod − γ2

2
. (22)

The value of the integral in Eq. 21 is the same as the con-
tour integral because the integral over the arc at infinity
(|ω| → ∞) renders the integrand zero. The contour inte-
gral is determined by the residues of the power spectrum
of x̃noise though

〈x̃2
noise〉 =

1

2π

∮
C

Sηη(ω)|χ(ω)|2 dω

= i
(
Resω=ω+

Sx̃noisex̃noise
+ Resω=ω− Sx̃noisex̃noise

)
=

Sηη
2m2ω2

modγ
(23)

where the residues are given by

Resω=ω± Sx̃noisex̃noise =
±Sηη

m2γ(−γ
√

4ω2
mod − γ2 ± i(4ω2

mod − γ2))
.

From Eq. 5 and Eq. 23, we find that Sηη = 2mγkBT.
The resulting power spectrum becomes

Sx̃noisex̃noise =
2γkBT

m[(ω2
mod − ω2)2 + γ2ω2]

. (24)

Quantum and classical noises. The eigenenergies of
the quantum harmonic oscillator are given by E =
h̄ω(n + 1

2 ). In the ground state, energy h̄ω
2 is shared

between the expected kinetic and potential energies i.e.
〈V 〉 = 〈K〉 = h̄ω

4 . The equipartition theorem implies
1
2mω

2〈x2
noise〉QM = h̄ω

4 i.e.

√
〈x2

noise〉QM =

√
h̄

2mω
. (25)

Comparing this to the thermal noise 〈x2
noise〉Th =

√
kBT
mω2 ,

we see that thermal noise is bigger than quantum noise
in the regime h̄ω

2 � kBT . When the two are of the
same order of magnitude, the noises add and the SNR
diminishes by a factor of

√
2. In the opposite limit h̄ω

2 �
kBT , quantum noise dominates and the SNR is

SNR =
x̃max√
〈x̃2

noise〉QM

. (26)

Radiative cooling of trapped nanoparticles. Metallic
nanoparticles are routinely trapped under ambient con-
ditions [24]. Heating of the trapped nanoparticles from
the trapping laser is commonly observed. However, con-
vective cooling is sufficient to cool the particle down. We
assume the trapping laser equally heats a trapped par-
ticle under ambient or UHV conditions. The convective
heat flux is given by

Qconvective = h(Tparticle − Tmedium) (27)

where the heat transfer coefficient h ≈ 10Wm−2K−1 [25,
26]. Under ambient conditions and assuming the trapped
particle temperature increases by 50 K as discussed in
[24], then Qconvective ≈ 500 Wm−2. On the other hand,
the total radiated heat flux is given by Stefan-Boltzmann
law,

Qradiative = σ(T 4
particle − T 4

medium) (28)

where σ = 5.62 × 10−8Wm−2K−4 is Stefan-Boltzmann
coefficient. If we cool the vacuum chamber to liq-
uid Nitrogen temperature (≈ 70K), then Qradiative ≈
700 Wm−2. Consequently, radiative cooling can effi-
ciently cool down trapped metallic nanoparticles.
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