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Abstract: Computer-Controlled Optical Surfacing (CCOS) has been greatly developed and
widely used for precision optical fabrication in the past three decades. It relies on robust dwell
time solutions to determine how long the polishing tools must dwell at certain points over the
surfaces to achieve the expected forms. However, as dwell time calculations are modeled as
ill-posed deconvolution, it is always non-trivial to reach a reliable solution that 1) is non-negative,
since CCOS systems are not capable of adding materials, 2) minimizes the residual in the clear
aperture 3) minimizes the total dwell time to guarantee the stability and efficiency of CCOS
processes, 4) can be flexibly adapted to different tool paths, 5) the parameter tuning of the
algorithm is simple, and 6) the computational cost is reasonable. In this study, we propose a novel
Universal Dwell time Optimization (UDO) model that universally satisfies these criteria. First,
the matrix-based discretization of the convolutional polishing model is employed so that dwell
time can be flexibly calculated for arbitrary dwell points. Second, UDO simplifies the inverse
deconvolution as a forward scalar optimization for the first time, which drastically increases the
solution stability and the computational efficiency. Finally, the dwell time solution is improved
by a robust iterative refinement and a total dwell time reduction scheme. The superiority and
general applicability of the proposed algorithm are verified on the simulations of different CCOS
processes. A real application of UDO in improving a synchrotron X-ray mirror using Ion Beam
Figuring (IBF) is then demonstrated. The simulation indicates that the estimated residual in the
92.3 mm × 15.7 mm CA can be reduced from 6.32 nm Root Mean Square (RMS) to 0.20 nm
RMS in 3.37 min. After one IBF process, the measured residual in the CA converges to 0.19 nm
RMS, which coincides with the simulation.
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1. Introduction

With the rapid development of precision technologies, the demand of high-precision optics
has drastically increased in various cutting-edge applications, such as telescopes for space
exploration [1,2], X-ray mirrors for synchrotron radiation and free-electron laser facilities
[3–8], and optics in EUV lithography [9,10]. Precision optical surfaces are manufactured with
Computer Controlled Optical Surfacing (CCOS) [11,12] processes, including small-tool polishing
[13], bonnet polishing [14,15], magnetorheological finishing [16,17], Ion Beam Figuring (IBF)
[7,8,18–23], etc. Different CCOS processes can be adopted based on the requirement of the
precision and shape of the desired optical surfaces.

In a typical CCOS process, an effective area within an optical surface, named Clear Aperture
(CA), needs to be corrected to the specified error residual requirement. This process is
deterministically guided by the dwell time calculated along different tool paths from the
convolutional polishing model [11]. In this model, the removed material is equal to the
convolution between the Tool Influence Function (TIF) and the dwell time as

z (x, y) = b (x, y) ∗ t (x, y) , (1)

where "∗" represents the convolution operator, z(x, y) is the removed material, b(x, y) is the TIF
that describes the material wear of the polishing tool that can be measured in practice, and t(x, y)
is the dwell time of the TIF at (x, y). Substituting z(x, y) in Eq. (1) with the desired removal
zd(x, y), t(x, y) can be solved via deconvolution. Note that, as shown in Fig. 1, in order to obtain
the valid result in a CA, the size of zd(x, y) should be at least larger than the outline perimeter of
the CA by the radius of b(x, y) [7].

Fig. 1. The size of zd(x, y) should be at least greater than the outline perimeter of the CA by
the radius of a TIF.

Since deconvolution is an ill-posed inverse problem, it does not converge to a unique solution.
Therefore, the objective of dwell time calculation becomes obtaining a reasonable solution that
satisfies the following criteria.

1. t(x, y) ≥ 0, since CCOS systems are not capable of adding materials.

2. [zd(x, y) − z(x, y)]CA is minimized, where [·]CA represents only keeping the CA region of
"·".

3. The total dwell time, i.e.
∑︁

t(x, y), should be as short as possible to guarantee the stability
and efficiency of CCOS processes.

4. The samplings of zd(x, y) and t(x, y) can vary so that the calculated dwell time can be
flexibly adapted to different tool paths in practice.

5. The parameter tuning is simple that no manual selection of the hyper-parameters is needed
in the calculation.

6. The computational and memory cost of obtaining t(x, y) should be reasonable.
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Various dwell time calculation (i.e. deconvolution) algorithms that partially satisfy these criteria
have been proposed in the literature, which are the Fourier transform algorithm [24] (including
our proposed Robust Iterative Fourier Transform-based dwell Time Algorithm (RIFTA) [8] and
Robust Iterative Surface Extension (RISE) [7]), the iterative algorithm [25,26], the Bayesian
algorithm [27], and the matrix-based algorithms (including the minimum-norm algorithm [28–31]
and the least-squares algorithm [20,32–34]). The performances of the existing algorithms based
on the six criteria mentioned above are summarized in Table 1. The details of each algorithm
will be reviewed in Section 2.

Table 1. Evaluation of the existing dwell time calculation algorithms versus the proposed UDO
algorithm based on the six criteria of a desirable dwell time solution.

Algorithm t ≥ 0
min.

(zd − z)CA min.
∑︁

t
Flexible
dwell

Simple
parameter

tuning Speed

Fourier transform

Conventional [24] ✓ ✓ × × × ✓✓

RIFTA [8] ✓ ✓ ✓ × ✓ ✓✓

RISE [7] ✓ ✓ ✓ × ✓ ✓✓

Iterative [25,26] ✓ ✓ × × × ✓

Bayesian [27] ✓ ✓ × × × ✓

Matrix-based

Minimum-norm [28–31] × ✓ × ✓ × ×

Least-squares [20,32–34] ✓ ✓ × ✓ × ×

UDO (this work) ✓ ✓ ✓ ✓ ✓ ✓

The complexities of obtaining a desirable dwell time solution, as described above, are mainly
a result from solving it as an inverse deconvolution problem. Indeed, these complexities can be
simplified if the solution process is more appropriately modeled. Therefore, in this study, we
propose a novel Universal Dwell time Optimization (UDO) algorithm that universally considers
all the criteria of a desirable dwell time solution (see Table 1). In UDO, the matrix-based
discretization of Eq. (1) is first performed so that the dwell time can be directly calculated for
arbitrary dwell points. Second, instead of the inverse deconvolution, a forward scalar optimization
model is proposed to solve for the dwell time, which greatly increases the solution stability
and reduces the heavy computational burden of parameter tuning and equation solving in the
conventional matrix-based algorithm [28–30]. Finally, the RISE concept [7] is employed to
iteratively refine the dwell time solution by further minimizing the estimated residual in a certain
CA. A total dwell time reduction scheme is introduced in each iteration to minimize the increase
of the total dwell time.

To verify the superiority and general applicability of UDO, it has been applied to different
CCOS simulations with both the raster and spiral tool paths. We also adopt UDO in a real
application of improving an existing synchrotron X-ray mirror using Ion Beam Figuring (IBF)
[21] for the Coherent Hard X-ray scattering (CHX) beamline at the National Synchrotron Light
Source II (NSLS-II). The UDO simulation indicates that the figure error in a 92.3 mm × 15.7
mm CA could be reduced from 6.32 nm Root Mean Square (RMS) to 0.20 nm RMS in 3.37 min.
After one real IBF run, the measured figure error residual in the CA converged to 0.19 nm RMS,
which verifies the effectiveness of the proposed UDO algorithm.

The rest of the paper is organized as below. Section 2 reviews the existing dwell time calculation
algorithms. The proposed UDO concept is explained in Section 3. The simulations of applying
UDO to different CCOS processes are given in Section 4, followed by the details of the real
application of UDO to IBF in Section 5. Section 6 concludes the paper.
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2. Existing dwell time calculation algorithms

The existing dwell time calculation algorithms, including the Fourier transform algorithm
(including RIFTA and RISE), the iterative algorithm, the Bayesian algorithm, and the matrix-
based algorithms are reviewed in this section.

2.1. Fourier transform algorithm

The conventional Fourier transform algorithm. The Fourier transform algorithm transfers the
convolution in Eq. (1) to a frequency-domain pointwise multiplication as

Zd (u, v) = B (u, v) × T (u, v) , (2)

where Zd(u, v), B(u, v), and T(u, v) are the Fourier transforms of zd(x, y), b(x, y), and t(x, y),
respectively. The dwell time t(x, y) is then solved as

t (x, y) = F−1
[︃
Zd (u, v)
B (u, v)

]︃
, (3)

where F−1(·) represents the inverse Fourier transform. However, as the amplitudes at certain
frequencies of B (u, v) are very close to zero, the high-frequency errors and noise in Zd (u, v)
at those frequencies are enormously amplified, resulting in inaccurate t (x, y). Therefore, a
thresholded inverse filter B̄ (u, v;α) has been employed to stabilize Eq. (3) as

t (x, y;α) = F−1
[︃

Zd (u, v)
B̄ (u, v;α)

]︃
, (4)

where

B̄(u, v;α) =

{︄
B (u, v) , if |B(u, v)| >α
α, otherwise

, (5)

and α is the inverse filtering threshold.
The Fourier transform algorithm guarantees t(x, y) ≥ 0 as long as zd(x, y) is piston-adjusted

to be non-negative. Also, it is computationally efficient thanks to the Fast Fourier Transform
(FFT) algorithm. However, because α depends on the spectrum of Zd (u, v), it is hard to be
automatically tuned and thus cannot be guaranteed to minimize [zd(x, y) − z(x, y)]CA. Also, no
constraint is put on

∑︁
t(x, y), and the samplings of zd(x, y) and t(x, y) should be the same because

of the Fourier transform.
RIFTA and RISE. RIFTA automates the tuning of α with a direct search algorithm [8]. The

optimal α, i.e. αopt, is obtained by minimizing the RMS of the estimated residual in a CA as

αopt = argmin
α

RMS [zd(x, y) − z(x, y;α)]CA

= argmin
α

RMS [zd(x, y) − b(x, y) ∗ t(x, y;α)]CA .
(6)

In addition, RIFTA uses a two-level iterative scheme to minimize the total dwell time without
affecting the estimated residual in a CA. The inner-level iterations progressively adjust the piston
of zd(x, y) based on the residual in the CA, which guarantees that zd(x, y) is always adjusted by
the smallest (i.e. optimal) piston in each iteration so that the penalty on

∑︁
t(x, y) is minimized.

The outer-level iterations are added to minimize the size of the dwell grid, which further reduces∑︁
t(x, y).
Based on RIFTA, RISE [7] further refines a dwell time solution by iteratively extending the

estimated residual map in a CA until it is reduced to the specified Peak-to-Valley (PV) or RMS
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requirement. A polynomial fitting-based extension strategy is proposed to avoid the influence of
noise and data discontinuity, and ensures that only the correctable figure errors are extended. In
each iteration, an incremental dwell time is calculated using the extended surface map. The final
dwell time solution is then obtained as the sum of these incremental dwell time maps.

Note that t(x, y) calculated from RIFTA or RISE still has the same sampling as zd(x, y). To
adapt it to different machining intervals in practice, we proposed to use the bicubic resampling
algorithm. This works fine for raster tool paths with uniform sampling intervals, however, it can
hardly be adapted to the dwell points on a spiral or even random tool path.

2.2. Iterative algorithm

The iterative deconvolution algorithm was proposed by Van Cittert in 1931 [35] and introduced
in the optimization of CCOS [25] in 1977. In the iterative algorithm, βzd(x, y) is taken as t0(x, y),
the initial guess to t(x, y), where β ∈ (0, 1] is a constant. The Van Cittert iterations converge
to the inverse filtering in the Fourier transform algorithm [36] when noise is absent (which is
impossible in real applications). Various convergence criteria have been studied [16,36], however,
they are too strict for CCOS processes, especially when a TIF is not axially-symmetric and does
not have a central peak (i.e the strongest removal rate at the center) [16,25].

To improve the convergence performance, the Volumetric Removal Rate (VRR) of a TIF
has been introduced to determine a better t0(x, y) [26], in which β = 1

VRR is selected. Also, a
relaxation factor κ [16,26] has been introduced to damp the iterations as

tk+1(x, y) = tk(x, y) + κ
[︁
zd(x, y) − tk(x, y) ∗ b(x, y)

]︁
. (7)

The iterative algorithm is fast, since the convolutions in Eq. (7) can be accelerated by FFT.
The stopping condition for Eq. (7) can be set by examining [zd(x, y) − z(x, y)]CA. However,
a reasonable κ depends on both zd(x, y) and b(x, y), which has to be manually selected by
trial-and-error. To ensure t(x, y) ≥ 0, either the negative entries of tk(x, y) is set as zero or the
entire tk(x, y) is offset by its smallest entry. Therefore,

∑︁
t(x, y) is not minimized. Also, the

samplings of zd(x, y) and t(x, y) must be identical.

2.3. Bayesian algorithm

The Bayesian algorithm (i.e. Richardson–Lucy deconvolution [37,38]) has been introduced to
CCOS by assuming that t(x, y) satisfies the uniform distribution [27]. The Bayesian statistical
model describes the relationship among the posterior P (t|zd), the prior P (t), and the likelihood
P (z|t) as

P(t|zd) = P(zd |t)
P(t)
P(zd)

. (8)

Assuming that P(zd |t) satisfies the Poisson distribution with the parameter b ∗ t, maximizing
Eq. (8) can be transferred into the following minimization problem [27],

topt = argmin
t

J1(t), (9)

where
J1(t) =

∫ ∫
[b ∗ t − zd × log(b ∗ t)] dxdy. (10)

Setting the gradient ∇J1(t) = 0, with the calculus of variation, Eq. (10) is solved by a
multiplicative algorithm [37] as

tk+1 = tk ×

[︄
zd(−x,−y)∫ ∫
zd(x, y)dxdy

∗
z

b ∗ tk

]︄
. (11)

The division in Eq. (11) also brings the same noise amplification problem as that in the
Fourier transform algorithm. Therefore, to smooth and denoise the dwell time, a total variation
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regularization term

J2(t) = δ
∫ ∫

| |∇t| | dxdy (12)

is added to the MAP objective as

topt = argmin
t

(J1 + J2) , (13)

which is solved as

tk+1 =
tk

1 − δ div(∇tk)
|∇tk |

×

[︄
zd(−x,−y)∫ ∫
zd(x, y)dxdy

∗
zd

b ∗ tk

]︄
, (14)

where div(·) represents the divergence of "·" and δ is a constant.
Equation 14 has a good property that t(x, y) ≥ 0 is guaranteed if t0(x, y) ≥ 0. It can also be

accelerated by FFT to calculate the two convolutions [27]. The stopping condition for Eq. (14)
can be set by examining [zd(x, y) − z(x, y)]CA. However, δ in the denominator is hard to tune in
practice. Both t(x, y) and [zd(x, y) − z(x, y)]CA depend on δ. A small δ may achieve the expected
residual but cannot filter the noise of the dwell time, while a large δ smooths the dwell time so
much that the estimated residual would deviate from the expectation. Also, the samplings of
zd(x, y) and t(x, y) cannot vary.

2.4. Matrix-based algorithm

The matrix-based algorithm discretizes Eq. (1) as

zd
(︁
xj, yj

)︁
=

Nt−1∑︂
i=0

b
(︁
xj − ξi, yj − ηi

)︁
t (ξi, ηi) , (15)

for j = 0, 1, · · · , Nz − 1, where Nz is the number of elements in zd(xj, yj), Nt is the number of
dwell points, (ξi, ηi) is the ith dwell point, and b

(︁
xj − ξi, yj − ηi

)︁
represents the material removed

per unit time at point
(︁
xj, yj

)︁
when the TIF dwells at (ξi, ηi). Therefore, this discretization allows

zd(xj, yj) to have different samplings from t (ξi, ηi). Equation 15 can be expressed in a matrix
form as ⎛⎜⎜⎜⎜⎜⎜⎜⎝

zd0

zd1

...

zdNz−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠⏞ˉ̄⏟⏟ˉ̄⏞
zd

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

b0,0 b0,1 . . . b0,Nt−1

b1,0 b1,1 . . . b1,Nt−1
...

...
...

...

bNz−1,0 bNz−1,1 . . . bNz−1,Nt−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
B

⎛⎜⎜⎜⎜⎜⎜⎜⎝

t0

t1
...

tNt−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠⏞ˉ⏟⏟ˉ⏞
t

, (16)

where zd ∈ RNz and t ∈ RNt are vectors representing the flattened zd
(︁
xj, yj

)︁
and t (ξi, ηi),

respectively, and zdj = zd(xj, yj), bj,i = b
(︁
xj − ξi, yj − ηi

)︁
, and ti = t (ξi, ηi).

Minimum-norm solution. Since B is always rank deficient [28], the least-squares solution
to Eq. (16) is not unique, which may result in arbitrary t that hardly achieves the desired
[zd(x, y) − z(x, y)]CA [20,33]. Therefore, the Singular Value Decomposition (SVD) can be used to
obtain a unique, minimum-norm solution (i.e. minimizing | |t| |) to Eq. (16) [28] as

t =
Nz∑︂
j=1

u⊤
i zd

σi
vi, (17)

where σi, i = 1, 2, 3, . . . , Nt are the singular values appearing in non-increasing order; ui and vi
are the left and right singular vectors of B, respectively. However, the problem of Eq. (17) is
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that many of the singular values are very close to zero because B is not full-rank. These small
singular values can be truncated [30] and only the first M singular values are kept as

t =
M∑︂

j=1

u⊤
j zd

σj
vj, M ≤ Nz. (18)

Alternatively, a damping factor ζ has been introduced to Eq. (17) as

t =
Nz∑︂
j=1

σju⊤
j zd

σ2
j + ζ

2
vj, (19)

and the more efficient Least-Squares with QR factorization (LSQR) solver for sparse linear
systems is used [28,29,31].

In the minimum-norm solution, [zd(x, y) − z(x, y)]CA is minimized by including enough singular
values. However,

∑︁
t(x, y) is not guaranteed to be minimal, even though | |t| | is minimized. Also,

t ≥ 0 cannot be automatically guaranteed. An extra piston adjustment of zd or offsetting the
negative entries in t is required. In addition, either the number of singular values M or the
damping factor ζ is a hyper-parameter that has to be manually selected by trial-and-error, which
adds extra computational burden to the already computationally expensive SVD and LSQR
solvers when the resolution of zd is high or the dwell points are dense.

Least-squares solution. Equation 16 can still be solved in a least-squares manner by adding
certain constraints to regularize the search space. The Constrained Linear Least-Squares (CLLS)
algorithm [20,32,34] has been proposed to introduce different constraints to solve Eq. (16) as

topt = argmin
t

1
2
| |zd − Bt| |22

s.t. At ≤ b
τmin ≤ t ≤ τmax

(20)

where A is the adjacent element constraint matrix of t, b is the upper limit of the adjacent
elements of t [20,32–34], and τmin ≤ t ≤ τmax is the bounding constraint that guarantees t ≥ 0
and can be tuned based on the kinematic property of translation stages [32,34]. If the inequality
constraints are too strict, however, t would be so smooth that it may fail to achieve the desired
estimated residual in the CA. To solve this problem, a coarse-to-fine scheme [20] was employed.
On the coarse level, the constraints are applied to obtain a coarse result tcoarse, which is then
polynomial fitted as tfit. On the finer level, more strict constraints are applied to calculated tfine
based on the RMS of the estimated residual in the CA. The final dwell time map is the summation
of the coarse and the fine level results as t = tcoarse + tfine.

CLLS adds constraints to regularize the inverse deconvolution and the quadratic programming
is used to solve it. However, these constraints are not easy to properly define in practice and will
bring even heavier computational burden to the already time-consuming least-squares solver.

3. Principle of the UDO algorithm

With the motivation to universally satisfy all the criteria of a desired dwell time solution, the
UDO algorithm is proposed. As shown in Table 1, one distinctive advantage of the matrix-based
algorithm over the others is that it allows the dwell points to have different sampling than the
measured surface data. UDO also keeps this matrix-based formulation. While searching for the
optimal dwell time solution, a physical intuition on the expected distribution of the dwell time is
incorporated, turning the time-consuming vector optimization to a simple and efficient scalar
optimization. An iterative refinement is then applied to minimize the residual error in the CA.



Research Article Vol. 29, No. 23 / 8 Nov 2021 / Optics Express 38744

3.1. Analysis of the matrix-based formulation

We adopt the matrix-based formulation as elaborated in Eq. (16), from which the dwell time could
have been immediately determined by a pseudo inverse as t =

(︁
BTB

)︁−1 zd. However, as the TIF
removal effect overlaps multiple dwell points, the convolution matrix B is always rank-deficient
so that BTB is near singular and the solution of t is not unique [28]. To obtain a unique t, certain
constraints have been included to regularize the optimization of t. The SVD [28,30] and LSQR
[27,28] algorithms, as shown in Eqs. (18) and 19, constrain t by minimizing | |t| |. To avoid the
singularity problem of BTB, either the small singular values are truncated [30] or the damping
factor ζ is incorporated. Although this minimum-norm solution is mathematically correct, it
does not consider the specific requirement of the smoothness of t. On the other hand, the CLLS
algorithm [20,33] in Eq. (20) adds more rigorous constraints to the adjacent elements in t, which
regularizes the local distributions of t and thus has an effect on its smoothness. However, these
constraints are hard to determine properly, and the solution process is so time-consuming that it
restricts the application of CLLS to large-scale problems.

It is necessary to highlight the unique feature of the dwell time optimization in CCOS against
the conventional deconvolution. In the conventional deconvolution, the task is usually to
minimize the residual between the convolved signal (BTt) and the observed signal (zd), where t is
deconvolved and often expected to contain higher-frequency details (i.e. sharper) than zd because
the convolution is usually a low-pass operation. Nonetheless, in a CCOS process, our intuition
is that t should smoothly duplicate the shape of zd rather than contain any higher-frequency
components than those in zd, since an unsmooth t will incur frequent acceleration or deceleration
to the translation stages in a CCOS system and thus reduces the fabrication stability and affect the
convergence to the expected residual in the CA. In the existing algorithms, this physical intuition
can by no means be achieved automatically. We are thus pursuing a solution of t that directly and
smoothly resembles the distribution of zd.

3.2. Deconvolution as scalar optimization

With the above analysis, we now return to Eq. (16), and multiply the transpose of B on both sides
of it as

BTzd = BTBt. (21)

Equation (21) has two intriguing properties. First, on the left-hand side, BT transforms the
vector space of zd from RNz to RNt , i.e. the same vector space as t. Since BT is low-pass,
this transformation not only changes the sampling of zd but also smooths it. Second, on the
right-hand side of Eq. (21), BTB is symmetric and semi-positive definite. As the columns of
B are constructed by centering b(x, y) at different dwell points, the peak in a certain column
i appears to be at the bi,i entry of B. Many of the other entries in this column always rapidly
attenuates to zero. Therefore, as shown in Fig. 2, most of the energy of BTB concentrates on its
diagonal.

Based on these two properties of Eq. (21), we found that the distribution described by BTzd is
already an excellent smoothness constraint on t. Moreover, based on the energy-concentration
effect of BTB, we propose to approximate Eq. (21) by assuming that BTB is an identity matrix
and t is in the vector space defined by BTzd as

t = BTzd. (22)

With this assumption, our solution t smoothly resembles BTzd, as we desire. However,
such a brute-force solution is not ideal since it is an intuitive approximation and does not
minimize the fabrication residue in the CA. Therefore, while keeping t smooth, it is necessary
to simultaneously minimize the residual in the CA. To achieve this, we propose to damp the
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Fig. 2. Schematic of the distribution of BTB.

obtained t by introducing flexibility into the brute-force approximation, and then iteratively refine
the solution by minimizing the residual in the CA.

In detail, first, a damping factor γ is introduced to Eq. (22), and t is calculated as

t = γoptBTzd, (23)

where γopt is the optimal damping that can be determined from a scalar optimization as

γopt = argmin
γ

RMS (eCA)

= argmin
γ

RMS (zd − Bt)

= argmin
γ

RMS
(︂
zd − γBBTzd

)︂
CA

,

(24)

in which eCA represents the estimated residual in the CA. Second, t obtained from Eqs. (23)
and 24 may still be sub-optimal due to the incomplete assumption made in Eq. (22) and the
uncorrectable high-frequency components and noise in zd. Therefore, the RISE concept [7] is
employed to further refine the dwell time solution iteratively. In the kth (k ≥ 1) iteration, the
RISE-based surface extension is applied to eCA to obtain the desired removal zk

d, from which ∆tk

is calculated using Eqs. (23) and 24 as

∆tk = γk
optBTzk

d, (25)

which is then used to update the kth dwell time solution tk as

tk = tk−1 + ∆tk−1, k ≥ 1, (26)

until the desired eCA is achieved.

3.3. Reduction of the total dwell time

By applying Eqs. (25) and 26, the final dwell time solution t that produces the desired fabrication
residual is obtained. If a CCOS machine can remove and add materials simultaneously, t can
contain either positive or negative entries. However, since CCOS processes are only capable
of removing material, t is expected to be non-negative. Nonetheless, this non-negativity is not
necessary for the intermediate dwell time results, i.e. ∆tk and tk. Based on this point, the total
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dwell time reduction scheme is further proposed to eliminate the unnecessary increase of the
total dwell time during the iterations.

In detail, lettingˆ︁zk
d = zk

d − µzk
d
, where µzk

d
is the mean of zk

d. Equation 25 is rewritten as

∆tk = γk
optBT

(︂ˆ︁zk
d + µzk

d

)︂
= γk

opt

(︂
BTˆ︁zk

d + BTµzk
d

)︂
, (27)

where µzk
d
=

[︂
µzk

d
, µzk

d
, . . . , µzk

d

]︂T
∈ RNz . It is found in Eq. (27) that the distribution of ∆t

described by BTˆ︁zk
d is the same with that described by BTzk

d, while BTµzk
d

only introduces constant
dwell time to each entry in ∆tk except the ones along the boundary, which is unnecessary and
can be removed. Therefore, zk

d in Eq. (25) is substituted by its zero-mean version, i.e. ˆ︁zk
d, in

calculating ∆tk as
∆tk = γk

optBTˆ︁zk
d, (28)

where γk
opt is obtained by modifying Eq. (24) as

γk
opt = argmin

γk
RMS

(︂
ek

CA

)︂
= argmin

γk
RMS

(︂
zk

d − γ
kBBTˆ︁zk

d

)︂
CA

.
(29)

By doing so, tk has an equal possibility of positive and negative adjustment, and thus reduces
the increase of the total dwell time during the iterations. To keep the non-negativity of the final t,
a piston adjustment is first performed before calculating ∆t0 as

∆t0 = γ0
opt

[︂
BTˆ︁z0

d − min
(︂
BTˆ︁z0

d

)︂]︂
, (30)

where min(·) takes the minimum value in "·". If t still contains negative entries after the iterations,
their magnitudes are always small and can thus be safely offset to be non-negative.

To solve Eq. (29), a simple direct search algorithm [39] can be employed, since the scalar γk is
the only unknown and it is easy to optimize. A good initial guess for γk can be chosen as the
least-squares solution of 1

2
|︁|︁|︁|︁zk

d − γBBTˆ︁zk
d

|︁|︁|︁|︁2
2 as

γk
ini =

[︃(︂
BBTˆ︁zk

d

)︂T
zk

d

]︃
/

[︃(︂
BBTˆ︁zk

d

)︂T (︂
BBTˆ︁zk

d

)︂]︃
. (31)

3.4. Flow of UDO

The flow of the proposed UDO algorithm is schematically illustrated in Fig. 3, where Eqs. 26,
28, and 29 are included as the main steps of the algorithm. We divide the entire flow of UDO
in two phases, including the precomputation phase and the iterative scalar optimization phase.
First, since the convolution matrix B remain invariant, it is precomputed in Steps 1 ∼ 4. The
coordinates of the dwell points, i.e. (ξi, ηi), can be arbitrary. They can be either on a spiral
path or on a rectangular grid. The coordinates of zd, i.e. (xj, yj), should be at least larger than
the outline perimeter of the CA by the radius of b(x, y). In the case that certain entries of B,
i.e. b

(︁
xj − ξi, yj − ηi

)︁
, may reside at a position where b(x, y) has no corresponding values, an

interpolation Look-Up Table (LUT) is constructed to interpolate these entries.
In UDO, the desired removal in the CA, i.e. zCA(x, y), is first extended with RISE to

generate z0
d. Note that this step can be omitted if z0

d is directly measured. The iterative scalar
optimization process described in Eqs. (28), 29 and 26 is then performed. In each iteration,
the estimated residual in the CA, ek

CA, is calculated. If ek
CA satisfies the convergence criterion,
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Fig. 3. Flowchart of the proposed UDO algorithm.
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i.e. RMS
(︁
ek

CA
)︁
≤ ϵ , the iterative refinement ends. Otherwise, ek

CA is extended to zk
d with RISE

and the same operations in Steps 7 ∼ 11 are repeated. The convergence threshold ϵ can be set
according to the repeatibility of the metrology instrument [7] or the high-frequency components
of the surface.

The proposed UDO algorithm satisfies the six criteria of a desirable dwell time solution
mentioned in Table 1 in the following manner.

1. t ≥ 0 is achieved by intelligently offsetting its negative entries as mentioned in Section 3.3.

2. eCA is minimized, since it is the objective of the scalar optimization problem.

3.
∑︁

t is reduced by the total dwell time reduction scheme described in Section 3.3.

4. The flexible dwell points are reserved thanks to the matrix-based discretization of the
convolutional polishing model.

5. No manual parameter tuning is required. The only unknown γk is obtained via the scalar
optimization.

6. The most computationally expensive and memory consuming operation in UDO, as will
be illustrated in Section 4, is the construction of the convolution matrix B. This bottleneck
is eliminated by precomputing B.

4. Verification of UDO by simulations

The superiority and general applicability of the proposed UDO algorithm are verified with
three simulations. In Simulation 1, the superiority of the UDO model over the conventional
matrix-based algorithm is verified by comparing it with the LSQR algorithm. In the next two
simulations, the general applicability of UDO is studied by applying it to calculate the dwell time
for two different CCOS processes with different TIFs and tool paths. Simulation 2 is conducted
on a ZEEKO IRP200 rubber ball-end polishing machine with a raster tool path (Fig. 4(a)), while
Simulation 3 is for the OptoTech MCP250 bonnet polishing machine [14] with an equal-arc-length
spiral tool path (Fig. 4(b)). All the simulations are run until eCA cannot be improved further.

Fig. 4. Schematics of a raster tool path (a) and an equal-arc-length spiral tool path (b).

4.1. Simulation 1: verification of the UDO model with IBF

To study the effectiveness of the basic assumption on t described in Section 3, a simulation based
on the same experimental data shown in Section 5 is included, in which the figure error of a
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rectangular synchrotron X-ray mirror needs to be improved by IBF. The TIF and the desired
removal in the CA (92.3 mm × 15.7 mm), zCA used in the simulation are shown in Figs. 5(a)
and 5(b), respectively. The resolution of zCA is 0.09 mm/pixel, and the number of elements in
zd(x, y) is Nz = 298934. A raster tool path is used, and the sampling interval between each two
consecutive dwell points is 1 mm. The total number of the dwell points is 2899. More details of
the experiment are postponed until Section 5.

Fig. 5. The TIF (a) and the desired removal in the CA (b) for Simulation 1.

RISE, as the state-of-the-art, non-matrix-based algorithm, is included in the simulation as a
reference. To make the comparison fair, the RISE solution is calculated on the 0.09 mm/pixel
grid then resampled to the 1 mm interval. For the matrix-based algorithms, only LSQR optimized
by the strategies mentioned in [31] is studied, since the TSVD and the CLLS algorithms are too
computationally expensive and memory consuming to be included in this simulation. We would
like to see if UDO can achieve the same performance as RISE on the simplest raster tool path
with regular sampling intervals.

Figure 6(a) shows t calculated from LSQR [27,28] with a manually tuned damping factor
ζ proposed in [31] to guarantee the non-negativity of t. Without damping, the corresponding
eCA is shown in Fig. 6(b). As the estimation suggests, RMS (eCA) is reduced from 6.32 nm to
0.21 nm in 6.41 min. However, t calculated from LSQR in Fig. 6(a) contains higher-frequency
components than the desired removal map in the CA (especially along the boundary) shown
in Fig. 5(b). As illustrated in Section 3.1, even though these high-frequency details in t are
mathematically correct, they are undesired in a practical CCOS process. The high-frequencies
can be more clearly seen in Fig. 6(d), which plots the center profile of Fig. 6(a) in the tangential
direction. In fact, these high-frequency components are a result of the objective of minimizing
| |t| | in LSQR, which does not include any constraints on the smoothness of t.

The RISE estimation, as shown in Figs. 6(c) and 6(d), achieves the similar estimated residual
in the CA in shorter total dwell time than that obtained from LSQR thanks to the total dwell time
minimization scheme employed in RISE [7]. Also, the dwell time map smoothly duplicate the
shape of the desired removal map in Fig. 5(b), since RISE adds the smoothness constraints by
only considering the correctable figure errors in its iterative refinement of the dwell time solution.

As proposed in Section 3.2, UDO adds the simple, yet effective, smoothness constraints to t by
forcing it to resemble the shape of BTzd. As shown in Fig. 6(e), t is first optimized from Eqs. (24),
25, and 26 without using the total dwell time reduction scheme, and the corresponding eCA is
shown in Fig. 6(f). It is found that UDO has achieved the same level of eCA as that calculated
from LSQR, while the dwell time map, as shown in Figs. 6(e) and 6(i), is smoother compared
with that obtained from LSQR. This result verifies that the smoothness assumption in UDO is
appropriate and the iterative scalar optimization is effective. However, the total dwell time (6.55
min) is slightly higher than that calculated from LSQR due to unnecessary the dwell time as
introduced in Section 3.3.

With the total dwell time reduction included, t optimized by UDO and the corresponding eCA
are demonstrated in Figs. 6(g) and 6(h), respectively. The total dwell time is reduced to 3.37 min
while the same level of eCA is remained. Moreover, as shown in Fig. 6(i), the smoothness of t is
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Fig. 6. Simulation 1: Dwell time solutions are calculated with LSQR (a), RISE (c), UDO
excluding the total dwell time reduction scheme (e), and UDO (g). The corresponding
estimated residual in the CA are given in (b), (d), (f), and (h), respectively. The profiles of
the center lines of the dwell time solutions are compared in (i).

not affected. These results prove that UDO is superior to the LSQR algorithm, and it achieves
the performance comparable to the state-of-the-art RISE algorithm in terms of the minimized
total dwell time and the estimated residual in the CA. It is worth noting that, however, RISE is
only applicable to tool paths defined on regular grids, since the bicubic resampling can hardly be
adapted to non-uniform dwell points. For dwell points on spiral tool paths or even random tool
paths, as will be shown in Section 4.3, only the matrix-based methods can be directly applied to
obtain the dwell time.

4.2. Simulation 2: UDO applied to a ZEEKO IRP200 polishing machine with an
asymmetric TIF

To further study the general applicability of UDO to different CCOS processes, it is first applied
to a ZEEKO IRP200 rubber ball-end polishing machine in Simulation 2. The measured TIF for
the machine and the desired removal map in the CA are shown in Fig. 7(a) and 7(b), respectively.
The radius of the TIF is 3 mm. However, it is not axially-symmetric since the polishing head
is set to be non perpendicular to the surface to avoid the zero central removal effect. Thus, the
Peak Removal Rate (PRR = 149.9 nm/s) is not obtained at the center of the TIF. The CA is a 35
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mm × 35 mm square. The resolution of the desired removal map in the CA is 0.21 mm/pixel,
and the total number of elements in zd(x, y) is Nz = 38025. The raster tool path is used, and
the sampling interval between each two consecutive dwell points on the path is set to 0.5 mm.
The total number of dwell points is Nt = 6889. The final dwell time t and the corresponding
eCA optimized based on Figs. 7(a) and 7(b) using UDO are demonstrated in Figs. 7(c) and 7(d).
As the estimation suggests, RMS (eCA) is reduced from 1174.1 nm to 24.4 nm in 7 iterations,
achieving a convergence ratio of 97.9% in 58.4 min.

Fig. 7. Simulation 2: the TIF (a) and desired removal map in the CA (b), from which the
dwell time (c) and the estimated residual in the CA (d) is optimized by UDO.

4.3. Simulation 3: UDO applied to an OptoTech MCP250 polishing machine with a
w-shaped TIF

The TIF and the desired removal map in the CA for Simulation 3 are given in Figs. 8(a) and 8(b),
respectively. The TIF of the MCP250 is axially-symmetric with an effective radius of 2.5 mm
and the PRR is 47.3 nm/s. The CA is a ring with the outer radius of 80 mm and the inner radius
of 20 mm. The resolution of the desired removal map in the CA is 1 mm/pixel, and the number
of valid elements in zd(x, y) is Nz = 24313. The equal-arc-length spiral path is employed in this
simulation, in which case the non-matrix-based methods, e.g. RISE, cannot be applied. Both the
distance between each ring on the spiral path and the arc length between each two consecutive
dwell points are set to 1 mm. The total number of dwell points on the spiral path is Nt = 24055.
The final t and the corresponding eCA optimized based on Figs. 8(a) and 8(b) are demonstrated
in Figs. 8(c) and 8(d), respectively. As the estimation suggests, RMS (eCA) is reduced from
67.7 nm to 8.2 nm in 9 iterations, achieving a convergence ratio of 87.9% in 213.9 min. The
high-frequency components on the eCA seen in Fig. 8(d) are tool marks from previous fabrication
processes. A smaller TIF or a smoothing process is required to remove these tool marks.
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Fig. 8. Simulation 3: the TIF (a) and desired removal map in the CA (b), from which the
dwell time (c) and the estimated residual in the CA (d) is optimized by UDO.

4.4. Computational efficiency of UDO

The simulation results obtained in Sections 4.1, 4.2 and 4.3 have proved that UDO is an effective
dwell time optimization algorithm for various CCOS processes. The computational efficiency of
applying UDO to the three simulations is further studied in this subsection. The proposed UDO
algorithm is programmed in Python 3.8, and tested on a workstation equipped with an Intel Xeon
Gold 5118 CPU (2 processors, 12 cores/processor, 2.30 GHz main frequency) and 64 GB RAM.
Table 2 summarizes the computational statistics of the three simulations.

Table 2. Computational statistics for the three simulations, where the Convergence Ratio refers to
the ratio between the RMSs of the actual removal and the desired removal.

# Nz Nt Total [s] Precomputation [s] Average [s/Iter.] Iteration # Convergence Ratio

1 298,934 2,899 73.9 60.5 6.7 2 96.8%

2 38,025 6,889 47.2 14.9 4.6 7 97.9%

3 24,313 24,055 134.4 40.0 10.5 9 87.9%

The computation time for each simulation is obtained by running the program five times and
taking the average. It is found that larger Nz and Nt result in longer computation time. The
most time-consuming operation in UDO is the precomputation of the convolution matrix B. It
dominates the total computation time (30% ∼ 81%) while the average computation time per
iteration is much shorter. Also, since only several iterations are required to minimize eCA, the
iterative scalar optimization in UDO is thus a computationally efficient process.

The PV and RMS evolution versus the computation time for Simulations 2 and 3 are further
illustrated in Figs. 9(a) and 9(b), respectively. The most significant improvements on eCA happen
in the first iteration, which prove the appropriateness of our basic smoothness assumption on
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t in UDO proposed in Section 3.2. Moreover, the PVs and RMSs of eCA in both simulations
keep decreasing as the numbers of iterations increase, which verifies the effectiveness of the
iterative refinement process. Last, the computation time for each iteration is nearly constant,
which indicates that the direct search algorithm used to solve the scalar optimization per iteration
is stable.

Fig. 9. The PV and RMS evolution vs. computation time of Simulation 2 (a) and Simulation
3 (b).

It is worth mentioning that B may be so large that a dense representation of it may not fit the
limited RAM. Since B is sparse, a sparse representation of it can be thus further exploited to save
memory if the surface scale is even larger or the dwell points are denser.

5. Application of UDO

As shown in Fig. 10, UDO has been applied to a collaborated project where the task was to
improve the existing silicon flat synchrotron mirrors for the CHX beamline using our in-house
developed IBF system [21] demonstrated in Fig. 10(f). The rectangular shaped mirror (92.3 mm
× 15.7 mm), as shown in Fig. 10(c), already exhibits with excellent roughness. Therefore, our
main goal was to improve the flatness of the mirror without affecting the roughness.

The CA in the experiment is defined to be the entire mirror surface. The desired removal in the
CA to a perfect flat surface, as shown in Fig. 10(b), was measured with the in-house developed
Stitching Interferometry (SI) platform [40,41] at NSLS-II with the lateral resolution of 0.09
mm/pixel. The ion source parameters used in the experiment were beam voltage = 600 V, beam
current = 10 mA, accelerator voltage = −90 V, and accelerator current = 2 mA.

The TIF of IBF given in Fig. 10(a) was obtained by bombarding several ion beam footprints
on a silicon substrate for 30 s and taking the average of them. The radius of the TIF is 5 mm, and
the PRR is 7.96 nm/s. A rectangular raster tool path was used, and the distance between each
two consecutive dwell points was set to 1 mm. Since IBF does not have the overhang issue at the
edges of the mirror, the outline perimeter of the tool path is defined to be larger than the mirror
by the radius of the TIF, i.e. 5 mm.

The dwell time optimization process with UDO is given in Figs. 10(d) and 10(e). As the
estimation suggests, the figure error in the CA could be improved from 6.32 nm RMS to 0.20 nm
RMS (about a factor of 32) in 3.37 min after two iterations of UDO. This dwell time solution was
then sent to the IBF system. As shown in Fig. 10(g), after one IBF process, the figure error in the
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Fig. 10. Improving the figure error of an existing synchrotron mirror (b) with the proposed
UDO algorithm and the IBF system (f): based on the TIF of IBF (a) and the desired
removal in the CA (c) measured using the SI platform, the dwell time solution (d) and
the corresponding estimated residual in the CA (e) are optimized by UDO. The measured
residual in the CA after one IBF run (g) coincides with the estimation. The PSD (h) and
integrated PSD (i) curves along the tangential direction prove that the surface roughness is
not affected by the IBF process.
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CA was successfully reduced from 6.32 nm RMS to 0.19 nm RMS, which coincides with the
estimation given in Fig. 10(e).

The Power Spectral Density (PSD) curves and their corresponding integrated PSD RMS curves
along the tangential direction of the CA before and after the IBF process are shown in Figs. 10(h)
and 10(i), respectively. The SI measurements demonstrate the contribution of the proposed UDO
algorithm. In addition, the middle to high frequency surface roughness before and after the
IBF process was measured by a Zygo NewView white-light interferometer with 2.5× and 20×
magnifications, respectively. The spatial resolution of the 2.5× measurement was 4.38 µm and
the Field Of View (FOV) was 2.1 mm × 2.8 mm. For the 20× measurement, the spatial resolution
was 0.55 µm and the FOV was 0.26 mm × 0.35 mm. It can be seen that the surface roughness, at
the explored resolution levels, is not affected by the IBF process and still remain at an excellent
level for synchrotron X-ray mirrors.

The experimental results demonstrated above prove that the proposed UDO is applicable even
to the sub-nanometer level fabrication processes and our IBF system is highly deterministic.

6. Concluding remarks

In this study, a simple yet effective Universal Dwell time Optimization (UDO) algorithm was
proposed to obtain desirable dwell time solutions for various computer controlled optical surfacing
applications with different tool influence functions and tool paths. The optimized dwell time
satisfies the criteria of a desirable dwell time in the following manner.

First, it is non-negative. Second, the estimated residual in the CA is minimized by the
iterative scalar optimization. Third, in each iteration, the increase of the total dwell time is
reduced by the total dwell time reduction scheme. Fourth, the matrix-based discretization of
the convolutional polishing model is preserved to ensure the flexible dwell positions. Fifth,
the UDO algorithm is fully automatic. No manual parameter tuning is required. Last, the
computational complexity of UDO is low thanks to the precomputation of the convolution matrix.
The superiority and computational efficiency of UDO have been verified on the simulations by
applying it to different CCOS processes. The real experiment of successfully improving the figure
quality of a synchrotron X-ray mirror with ion beam figuring has even proved the applicability of
UDO to the extreme sub-nanometer level optical fabrication tasks.

It is also worth mentioning that UDO is a very computationally efficient algorithm which
has simplified the deconvolution process by eliminating many unnecessary operations. Due
to these advances, UDO is an excellent candidate to improve the performance of the more
computationally complicated non-sequential dwell time optimization for different tool sizes. [13].
We are currently working on this aspect, and will report our progress in the near future.
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