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Abstract: Precision optics have been widely required in many advanced technological appli-
cations. X-ray mirrors, as an example, serve as the key optical components at synchrotron
radiation and free electron laser facilities. They are rectangular silicon or glass substrates where
a rectangular Clear Aperture (CA) needs to be polished to sub-nanometer Root Mean Squared
(RMS) to keep the imaging capability of the incoming X-ray wavefront at the diffraction limit.
The convolutional polishing model requires a CA to be extended with extra data, from which
the dwell time is calculated via deconvolution. However, since deconvolution is very sensitive
to boundary errors and noise, the existing surface extension methods can hardly fulfill the
sub-nanometer requirement. On one hand, the figure errors in a CA were improperly modeled
during the extension, leading to continuity issues along the boundary. On the other hand,
uncorrectable high-frequency errors and noise were also extended. In this study, we propose
a novel Robust Iterative Surface Extension (RISE) method that resolves these problems with a
data fitting strategy. RISE models the figure errors in a CA with orthogonal polynomials and
ensures that only correctable errors are fit and extended. Combined with boundary conditions,
an iterative refinement of dwell time is then proposed to compensate the errors brought by the
extension and deconvolution, which drastically reduces the estimated figure error residuals in
a CA while the increase of total dwell time is negligible. To our best knowledge, RISE is the
first data fitting-based surface extension method and is the first to optimize dwell time based on
iterative extension. An experimental verification of RISE is given by fabricating two elliptic
cylinders (10 mm × 80 mm CAs) starting from a sphere with a radius of curvature around 173 m
using ion beam figuring. The figure errors in the two CAs greatly improved from 204.96 nm
RMS and 190.28 nm RMS to 0.62 nm RMS and 0.71 nm RMS, respectively, which proves that
RISE is an effective method for sub-nanometer level X-ray mirror fabrication.
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1. Introduction

With the rapid development of precision technologies, the demand of high-precision optics has
greatly increased in various cutting-edge applications, such as telescopes for space exploration
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[1–3], optics in EUV lithography [4,5], and X-ray mirrors for synchrotron radiation and free-
electron laser facilities [6–10], such as National Synchrotron Light Sources II (NSLS-II). As
shown in Fig. 1(a), X-ray mirrors are used to deflect and focus the incoming X-ray beams.
They are usually made of Si or fused silica in a rectangular shaped substrate. As shown in
Fig. 1(b), a smaller effective region called the Clear Aperture (CA) is usually polished at the
center of the mirror. Due to the grazing incidence geometry, the tangential dimension (i.e. length
L = 100 mm ∼ 1 m) of a CA is much longer than its sagittal dimension (i.e. width W = 5 mm
∼ 20 mm). Depending on the mirror application, the mirror surface shape can be flat, circular
cylinder, elliptic cylinder, toroid, ellipsoid, etc. With the rapid evolution of third and fourth
generation synchrotron X-ray light sources, the requirement of precision and smoothness of
X-ray mirrors has greatly increased. Single or even sub-nanometer figure errors are required to
avoid destruction of the incoming wavefront and keep its imaging capability at the diffraction
limit [11,12]. Figure 1(c) illustrates the grazing angle θ and the figure errors z(x) along the x
direction, from which the wavefront error φ(x) is calculated as φ(x) = −2sinθ · z(x). According
to Maréchal’s criterion [13], the wavefront diffraction limit is achieved when φ(x) is less than or
equal to λ/14 Root Mean Square (RMS). This requires, as a first approximation, z(x) to be within
λ/(28 × θ) for a small θ. Assuming that λ = 0.1 nm and θ = 3 mrad (typical parameters for hard
X-ray), z(x) should be approximately 1 nm RMS. Such a high level of surface quality cannot be
achieved by conventional mechanical polishing techniques.

Fig. 1. Schematics of (a) the synchrotron beamlines at NSLS-II, (b) an X-ray mirror, and
(c) the figure errors of an X-ray mirror and the IBF process.

In fact, precision optical surfaces are always manufactured with Computer Controlled Optical
Surfacing (CCOS) processes, including small-tool polishing [14], bonnet polishing [15], mag-
netorheological finishing [16], Ion Beam Figuring (IBF) [6,9,10,17–21], etc. Different CCOS
processes can be adopted based on the requirements of the precision and the shapes of the desired
optical surfaces. IBF, as one ultra-precision CCOS technique, has been frequently used for optical
surface finishing [9,10,17,18,20–23]. As shown in Fig. 1(c), IBF removes material particles
from an optical surface via physical sputtering. Compared with conventional small-tool CCOS
techniques, IBF has the advantages of being non-contact, with no mechanical load force, minimal
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surface or subsurface damage, and no tool overhang. The Optical Metrology and Fabrication
Group at NSLS-II has been working on developing IBF methods and systems [9,10,18,20,21,23]
since early 2015. The investigation started with One-Dimensional IBF (1D-IBF) [18,20,21,23],
then a Two-Dimensional IBF (2D-IBF) system [9,10] was successfully developed.

IBF follows the convolutional polishing model,ˆ︁z(x, y) = t(x, y) ∗ b(x, y), (1)

where "∗" represents the convolution operation, b(x, y) is the Beam Removal Function (BRF),ˆ︁z(x, y) is the removed material, and t(x, y) is the dwell time. ˆ︁z(x, y) and b(x, y) are known, t(x, y) is
thus calculated via deconvolution [10,24,25], which is an ill-posed operation that is very sensitive
to boundary errors and noise.

Equation (1) implies that, to achieve the desired figure errors in a CA, t(x, y) is required to
be calculated on a Dwell Grid (DG) that is larger than the outline perimeter of the CA with the
radius r of b(x, y). Therefore, we can rewrite Eq. (1) asˆ︁zCA(x, y) = [ˆ︁zDG(x, y)]CA

= [tDG(x, y) ∗ b(x, y)]CA ,
(2)

where "[·]CA" represents the operation of cropping the CA region out of "·",ˆ︁zCA(x, y) andˆ︁zDG(x, y)
are the material removed in the CA and the DG, respectively, and tDG(x, y) is the dwell time on
the DG.

To fulfill the requirement given in Eq. (2), in our previous 2D-IBF solution, the entire mirror
was measured using our Stitching Interferometry (SI) platform [26,27] and the dwell time
optimization was performed on the DG using the Robust Iterative Fourier Transform-based dwell
time Algorithm (RIFTA) [10]. As shown in Fig. 2, this strategy has been successfully applied to
reduce the figure errors in a rectangular CA from 3.69 nm RMS to 0.49 nm RMS, where the
figure errors to be corrected are small. However, when the figure errors are large, this strategy is
no long appropriate. The reason is manifested in Fig. 3.

Fig. 2. Previous IBF result, where figure errors of a flat mirror with 8 mm × 100 mm CA
achieved 0.49 nm RMS after two IBF runs.

Figure 3 gives the SI measurements during the fabrication of an elliptic cylinder from a
spherical mirror (details of the experiment are explained in Section 4.1), where the figure errors
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Fig. 3. The initial spherical fringes obtained from SI (a) becomes denser after one IBF run
(b), indicating large figure errors along the boundary in the stitched figure error map of the
DG (c).

are much larger than those shown in Fig. 2. The fringes in one Field Of View (FOV) of the
initial sphere are shown in Fig. 3(a) and the corresponding fringes in the same FOV after one
IBF run are given in Fig. 3(b). After the IBF run, the fringes become much denser due to the
large figure error differences (approximately 1000 nm) inside and outside the DG, resulting in
the large boundary errors in the DG map shown in Fig. 3(c) stitched from multiple FOVs in
Fig. 3(b). Since deconvolution is very sensitive to boundary errors, if t(x, y) for the next IBF run
is deconvolved from this DG map, the solution will be unreliable and thus can hardly be used to
achieve the sub-nanometer figure error convergence in the CA.

In fact, a more proper way to calculate tDG(x, y) is to only use the figure errors in a CA and to
rely on surface extension to obtain the extra data outside. Therefore, a robust surface extension
method becomes the key to the success of the entire fabrication process. The existing surface
extension methods include the Papoulis-Gerchberg extension [28–33], the nearest-neighbors
extension [19,31], the Gaussian extension [19,31,34], and the smooth extension [19]. The
Papoulis-Gerchberg extension is a frequency domain method. It assumes figure errors to be
band-limited and Fourier transform is used to iteratively expand the error spectrum. The
nearest-neighbors extension, Gaussian extension and smooth extension directly extend the
surface in spatial domain. The nearest-neighbors extension generates an extension data point by
interrogating its nearest neighbors. If and only if there are at least three valid neighboring data
points around an extension point, it is assigned with the value as the average of these neighbors.
The Gaussian extension extends a CA by applying a Gaussian function between a certain CA
boundary point and the corresponding DG boundary point. The smooth extension guarantees
a piece-wise C1 continuity at the extension boundary using triangle-based interpolation [35].
Zhou et. al. also proposed a descending profile that can be multiplied to the extended regions
to drag down the extended errors and thus decrease the total dwell time [19]. Although these
surface extension methods have been widely adopted in CCOS of circular mirrors, their direct
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application to rectangular CAs in X-ray mirrors, however, can hardly achieve the sub-nanometer
RMS figure error requirement, exposing the following two challenges.

First, the known figure errors in a CA should be properly modeled to guarantee the continuity
along extension boundary, especially when the CA of an X-ray mirror has different shapes in
its tangential and sagittal dimensions. Second, high-frequency errors and noise that cannot
be corrected by a particular BRF should not be extended. Improper extension will bring
unsatisfactory boundary data and unexpected errors to the extended DG, which further result in
unreliable solutions of tDG(x, y) from the ill-posed deconvolution and fail the fabrication process.

Based on Eq. (1), material removal is analogous to a low-pass filtering process, where
corrections are more effective on lower-frequency figure errors. Inspired by this concept, we
propose a Robust Iterative Surface Extension (RISE) method that solves the above two problems
and optimizes dwell time with a polynomial-based extension strategy. First, RISE models the
figure errors in a CA using orthogonal polynomials. The polynomial orders vary according to the
different tangential and sagittal shapes of a CA, eliminating the continuity issues at the boundary.
Second, the polynomials ensure that only correctable errors are fit and extended. In addition,
boundary conditions are added during the polynomial fitting to balance the trade-off between the
desired figure errors in a CA and the total dwell time. Third, an iterative refinement of dwell
time is performed to compensate for the unreliable solutions brought by the extension and the
ill-posed deconvolution. In each iteration, a smart piston adjustment is employed to eliminate the
possible extra removal and thus reduce the total dwell time.

To verify the effectiveness of the RISE concept, an experiment is performed where the main
goal is to fabricate two 10 mm × 80 mm elliptic cylindrical surfaces starting from a spherical
mirror using IBF. The initial Radius of Curvature (ROC) of the spherical mirror is around 173 m,
and the target ellipse parameters are the object distance p = 30 m, image distance q = 0.3 m,
and grazing angle θ = 3 mrad. The figure errors in the two CAs are reduced from 204.96 nm
RMS and 190.28 nm RMS to 0.62 nm RMS and 0.71 nm RMS, respectively. Also, the surface
roughness before and after the IBF runs for both the CAs remain invariant, which prove that
RISE is an effective method for sub-nanometer X-ray mirror fabrication, especially when the
figure errors to be corrected in a CA is large.

The rest of the paper is organized as below. Section 2 reviews the principles of the existing
surface extension methods, followed by an explanation of the proposed RISE concept in Section
3. The experimental verification of RISE is then given in Section 4. Section 5 discusses the
limitations and the generalization of the proposed method. Section 6 concludes the paper.

2. Existing surface extension methods

For a rectangular CA, as shown in Fig. 4, surface extension can be defined as extending the
outline perimeter of the initial figure errors zCA(x, y) in the CA with the radius r (i.e four grids in
Fig. 4) of a BRF. Therefore, for a CA size of L × W, the size of the extended figure error map
zDG(x, y) in the DG is (L + 2r) × (W + 2r). In this section, the application of the existing surface
extension methods, including the Papoulis-Gerchberg extension [28,29], the nearest-neighbors
extension [19,31], the Gaussian extension [19,31], the smooth extension [19,36], and descending
multiplier [19,36], to a rectangular CA is reviewed.

It is worth mentioning that, two criteria are always used to decide whether a dwell time
solution tDG(x, y) calculated with a certain surface extension method is reasonable [19,31,36].
One criterion is the estimated figure error residuals in a CA, eCA |est(x, y), expressed as

eCA |est(x, y) = zCA(x, y) −ˆ︁zCA(x, y)
= zCA(x, y) − [ˆ︁zDG(x, y)]CA

= zCA(x, y) − [tDG(x, y) ∗ b(x, y)]CA .
(3)
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Fig. 4. The figure errors zCA(x, y) in a rectangular CA is extended to the figure errors
zDG(x, y) in its corresponding DG.

The other criterion is the total dwell time that is calculated as the summation of all the entries
in tDG(x, y). Ideally, it is expected that eCA |est(x, y) is minimized with the shortest total dwell time.

2.1. Frequency domain Papoulis-Gerchberg extension method

The Papoulis-Gerchberg extension [28,29] iteratively extends a CA in frequency domain. It
assumes that the figure errors zDG (x, y) are band-limited. Let zDG(x, y) have a spectrum

ZDG(fx, fy) = F [zDG(x, y)] , (4)

where F represents the Fourier transform. The spectrum is assumed band-limited and is nonzero
only over some region Ω so that a spectral pupil can be defined as

GΩ =

{︄
1; (fx, fy) ∈ Ω,
0; (fx, fy) ∉ Ω.

(5)

Since zDG is only known within zCA, the corresponding aperture GT in spatial domain is defined
by

GT =

{︄
1; (x, y) ∈ zCA,
0; (x, y) ∉ zCA.

(6)

The Papoulis-Gerchberg extension then iteratively extrapolates the unknowns in zDG as follows:
(1) Fourier transform zDGGT ; (2) multiply by the spectral pupil GΩ; (3) inverse Fourier transform;
(4) discard the known figure error in zCA by multiplying by (1 − GT ); (5) add in the known figure
error zDGGT ; and (6) go to Step 1, and repeat. From the above procedure, the ith estimate of zDG
can be written as

zi
DG = zDGGT + (1 − GT )BΩzi−1

DG, (7)

where z0
DG = zDGGT and the band-limiting operator BΩ is defined as BΩ = F−1GΩF , where

F−1 represents the inverse Fourier transform. Although the convergence of Eq. (7) has been
proved [29], the convergence rate is slow and many iterations are required to obtain a good
estimation of zDG. Otherwise, the edges of zCA cannot be smoothly extended. More importantly,
when the tangential and sagittal dimensions of a CA have different shapes, it is hard to determine a
proper spectral pupil GΩ, in which case either middle to high-frequency errors will be introduced
or even more iterations will be required.
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2.2. Spatial domain methods

Nearest-neighbors extension. The nearest-neighbors extension simply calculates the error for
an extension point in the DG using the known figure errors at its N nearest neighbors. As shown
in Fig. 4, the figure error for a point D(xi, yi) in the DG is calculated as

zDG (xi, yi) =
1
N

1∑︂
m=−1

1∑︂
n=−1

zDG (xi+m, yi+n) , m, n ∈ Z. (8)

Since not all the extension points in the DG have valid neighbors that already have values
assigned, the nearest-neighbors extension is thus required to be performed iteratively [31]. In
each iteration, if and only if there are at least three valid neighboring data points around an
extension point, it is assigned with the average of the figure errors at these neighbors using Eq. (8).
The iteration is performed until all the points in the DG are assigned with a figure error. The
nearest-neighbors extension is simple and easy to implement. However, it always leaves obvious
artifacts along the boundary of eCA |est(x, y), since the local averaging operations cannot model
zCA and its boundary continuity properly. Also, the result is sensitive to noise when N is small.

Gaussian extension. The Gaussian extension is commonly used in fabrication of circular-
shaped mirrors [19,31,34], since the removal functions are always axially symmetric and Gaussian
shaped. As shown in Fig. 4, to obtain the extended value zDG (xi, yi) at the point D(xi, yi) in the
DG, its closest CA boundary point C(xp, yp) is first identified. The figure error at D(xi, yi) is then
calculated as

zDG (xi, yi) = zCA
(︁
xp, yq

)︁
exp

(︃
−

l2

2σ2

)︃
, (9)

where σ is the standard deviation of the Gaussian function, and generally σ ≥ r/3 [31]; and l is
the distance between D(xi, yi) and C(xp, yp). Equation (9) indicates that the Gaussian extension
lowers down the edge errors at a CA boundary during the extension so that the dwell time can
be reduced in return. Nonetheless, the extension depends on the figure error value of only one
boundary point of zCA (i.e point C(xp, yp) in Eq. (9)). The continuity at the entire boundary of a
CA thus cannot be guaranteed. Especially, when the CA boundary point is noise, the extension is
even worse and the dwell time cannot be reliably calculated, eCA |est(x, y) will thus be large.

Smooth extension method. The smooth extension [36] uses a Delaunay triangulation of the
points in a CA to perform interpolation [35]. Piece-wise C1 continuity is satisfied at each cubic
surface of a triangle. Therefore, the smooth extension results in a continuous surface near the
boundary of a CA so that the dwell time is always more accurate than those calculated using
the other methods. However, this method triangulates the entire CA, and the uncorrectable
high-frequency errors and noise are also interpolated, which prevents eCA |est from reaching ≤ 1
nm RMS. Also, this method greatly increases the total dwell time if the figure errors along
the boundary of a CA are large [36]. A Gaussian function given in Eq. (9) can potentially
be multiplied to the extension region to lower down the extended figure errors. However, the
Gaussian extension falls so fast that a large eCA |est(x, y) is produced [36]. To obtain smaller
eCA |est(x, y) with relatively short dwell time, a slower descending multiplier [19] is proposed as

m(l) =
1
α

∫ r

−(r−l)
b(u)du, (10)

where α =
∫ r
−r b(u)du and b(u) is the 1D profile of the BRF. As will be demonstrated in Section

4.1, however, the descending multiplier will increase eCA |est(x, y).

3. Robust iterative surface extension method

Based on the description above, the factors that affect the estimated figure error residuals in a
CA, eCA |est(x, y), and the total dwell time are summarized as the followings.
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The deepest impact to eCA |est(x, y) comes from the inappropriate modeling of the figure errors,
especially the continuity along the boundary of a CA is not well handled, leading to incorrect
dwell time solutions and large eCA |est(x, y). Even worse, if a CA initially has large figure errors
along the boundary, the extension will amplify these errors, resulting in longer total dwell
time than necessary. In addition, high-frequency errors and noise influence the magnification
of eCA |est(x, y) if they are extended. These errors mainly come from the noise of metrology
instruments or the footprints of previous polishing tools, and they are not correctable by a
particular BRF. Added with the fact that deconvolution itself in dwell time calculation is ill-posed
and thus is very sensitive to boundary errors and noise, it is always hard to obtain a reliable
dwell time solution. To reduce the effects of these factors, the RISE method is proposed. As
schematically illustrated in Fig. 5, RISE includes two phases. In the initial extension phase, zCA
is modeled and extended with orthogonal polynomials, and the initial t0DG(x, y) is calculated by
RIFTA [10]. However, t0DG(x, y) obtained from the initial extension phase may still be sub-optimal
due to the errors introduced during the polynomial fitting and extension processes. Therefore, an
iterative refinement phase is added to progressively refine the dwell time solution until a desired
eCA |est(x, y) is achieved. In the rest of this section, the principle of RISE is explained in detail.

Fig. 5. Flowchart of the RISE method, where the initial extension is followed by the iterative
refinement.

3.1. Surface extension as polynomial fitting with boundary conditions

Surface extension is in fact analogous to extrapolation, in which it is required to estimate the
unknown zDG based on known distribution in zCA. The extended zDG is then followed by a
deconvolution process to calculate tDG. To achieve small eCA |est in a CA, zCA should be well
modeled so that the continuity at the CA boundary is guaranteed and the extended zDG is smooth.

In fact, this requirement can be fulfilled if zCA can be described in an analytical form. In
wavefront aberration analysis, orthogonal polynomials, including the Zernike polynomials [37]
for circular aperture, and the Legendre polynomials [38] and Chebyshev polynomials [39] for
rectangular apertures, have been used as an excellent fitting basis to analytically decompose and
interpret the test data. In this study, both Legendre polynomials and Chebyshev polynomials can
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be used to model the known zCA and the extension process. A set of 2D polynomials that are
orthogonal over a unit square can be described as

Qj(x, y) = Pm(x)Pn(y), m, n ∈ N, x, y ∈ [−1, 1], (11)

where j is a polynomial ordering index starting with j = 1, and m and n are the orders of the
corresponding 1D polynomials Pm(x) and Pn(y) in x and y directions, respectively [38,39]. Their
orthonormality is expressed by

1
K

∫ 1

−1

∫ 1

−1
Qj(x, y)Qj′(x, y)dxdy = δjj′ , (12)

where K is a normalization factor, and δjj′ is the Kronecker delta.
To fit zDG(x, y) using Eq. (11), its x and y coordinates are normalized to [−1, 1] by the

dimensions of the DG (L + 2r, W + 2r) (see Fig. 4). We define a boundary condition on a DG as
the outermost perimeter of zDG(x, y), i.e x, y = -1 or 1, and denote it as ∂zDG(x, y). In the fitting
process, besides the known zCA(x, y), ∂zDG(x, y) is also included to tune the fitting coefficients
and the extended data.

The simplest way is to set ∂zDG(x, y) = 0, however, it is so strict that may cause sudden jumps
in the extension region, which will in turn affect the dwell time calculation and increase eCA |est.
Therefore, we initialize ∂zDG(x, y) as the boundary of zDG(x, y) after the smooth extension, i.e
∂zDG(x, y) = ∂zDG |SE(x, y), where zDG |SE(x, y) represents the figure errors in the DG extended
using the smooth extension method, since it guarantees the C1 surface continuity. As mentioned
in Section 2, however, the smooth extension may provide unsatisfactory extension and increase the
total dwell time when the figure errors at the boundary of zCA(x, y) are large. We thus introduce
a factor k, k ∈ [0, 1] that is multiplied to ∂zDG |SE(x, y) to flexibly adjust the figure errors in the
extension region and consequently tune the dwell time. Also, an iterative scheme that will be
explained in Section 3.3 is added to further refine the dwell time solution.

Based on the above description, the optimal polynomial coefficientsˆ︁cj used in the polynomial
fitting are solved from the following least-squares problem

ˆ︁cj = arg min
cj

∑︂
i

|︁|︁|︁|︁|︁zDG(xi, yi) −
∑︂

j
cjQj (xi, yi)

|︁|︁|︁|︁|︁2 , (13)

with
[zDG(x, y)]CA = zCA(x, y)

[zDG(x, y)]∂zDG = k ·
[︁
zDG |SE(x, y)

]︁
∂zDG|SE

. (14)

The initial extension is thus obtained as z0
DG =

∑︁
jˆ︁cjQj, after which the initial dwell time t0DG

is calculated using RIFTA [10]. It can be expected from Eq. (14) that the shortest total dwell
time is obtained at k = 0 while the minimum eCA |est(x, y) is achieved at k = 1. In practice, k
can be adjusted based on the desired eCA |est(x, y). One simple way is to initialize k as k = 0 and
progressively increase it until the desired eCA |est(x, y) is achieved.

3.2. Determination of the polynomial orders

The chosen polynomials in Eq. (11) are separable in the Cartesian coordinates x and y of a point
in the unit square. Therefore, the polynomial orders in the x and y directions can be determined
individually. This is especially useful when the figure errors in a CA have different shapes in its
tangential and sagittal dimensions.

Ideally, the polynomial order that can perfectly describe a certain figure error map is equal to
the number of pixels in the map. However, due to the low-pass convolutional polishing model in
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Eq. (1), the over-fit high-frequency errors will affect the reliability of the calculated dwell time.
Therefore, it is always necessary to only fit and extend the lower-frequency errors. The residuals
between zCA and

[︁
z0
DG

]︁
CA can be used to guide the selection of the appropriate polynomial orders.

The polynomial orders in x and y directions are increased from zero until the RMS of the residual
is less than or equal to a threshold γ. A good candidate value for γ is the random error of a
particular metrology instrument. In this study, γ = 0.3 nm is employed, which is equal to the
RMS of the random errors of the SI platform.

3.3. Iterative refinement of dwell time

Even with the proposed polynomial-based extension, the initial t0DG may still be sub-optimal
due to the errors introduced during the extension and the unreliable, ill-posed deconvolution.
Therefore, an iterative refinement scheme is employed to allow the dwell time tiDG to progressively
approach a better solution.

The basic idea of the iterative refinement is that, in the ith (i ≥ 1) iteration, the polynomial-
based extension is applied to the residual eCA |est to obtain zi

DG. The resulted ∆tDG is then added
to the final dwell time solution tiDG as

tiDG = ti−1
DG + h · ∆tDG, h ∈ (0, 1], (15)

where h is added to control the convergence rate of tiDG. The fastest rate is achieved at h = 1,
however, overshoot may occur and convergence would not be reached. On the contrary, if h is too
small, the convergence can always be reached but the convergence rate will be slow. In this study,
h = 0.5 ∼ 0.8 is found to be a proper range that allows RISE to reach the convergence in less
than ten iterations.

It is worth noting that, the extended zi
DG is not directly used to calculate ∆tDG. Instead, a piston

adjustment is performed on zi
DG and only the resulted ∆zDG is used in RIFTA to calculate ∆tDG

and update tiDG as
tiDG = ti−1

DG + h · RIFTA (∆zDG, b) , (16)
where

∆zDG = zi
DG − min

(︂
zi
DG +ˆ︁zi−1

DG

)︂
, (17)

in which min(·) represents the minimum value in "·", andˆ︁zi−1
DG = ti−1 ∗ b is the estimated material

removed in the DG for the (i − 1)th iteration. This piston adjustment eliminates the extra removal
added in each iteration. It relaxes the non-negativity requirement of ∆tDG but only guarantees tiDG
to be non-negative. To our best knowledge, such an algorithmic level iterative solution has not
been attempted in the literature of precision optical fabrication. As will be shown in Section 4.1,
it help us achieve the desired sub-nanometer level estimation before IBF, which has the potential
to reduce the number of iterations required in the real fabrication process and thus increase the
overall efficiency.

3.4. Flow of the RISE method

The flow chart of the RISE method is schematically illustrated in Fig. 5. The initial extension
phase includes Steps 1 ∼ 4. In Steps 1 ∼ 3, the polynomial-based extension described in Section
3.1 is performed to extend zCA and obtain the initial z0

DG, from which the initial dwell time t0DG is
calculated by RIFTA in Step 4.

Afterwards, an iterative refinement of t0DG is performed in Steps 5 ∼ 15 as follows.
• Step 5: Initialize ∆tDG = 0 and the iteration number i = 1.

• Steps 6 and 7: In Step 6, the estimated material removal in the DG,ˆ︁zi−1
DG, which will be

used in Step 12 for piston adjustment, is calculated from the convolution between tiDG and
b. Based onˆ︁zi−1

DG, the residual eCA |est is updated using Eq. (3) in Step 7.
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• Step 8: If eCA |est satisfies the convergence criterion RMS
(︁
eCA |est

)︁
≤ ϵ , the iteration ends.

Otherwise, it goes to Step 9. The convergence threshold is set as ϵ = γ = 0.3 nm.

• Steps 9 ∼ 12: The iteration number i increases by 1 and the polynomial-based extension
is used to extend eCA |est. Different from the initial extension, in Step 9, an additional
polynomial fitting is performed on eCA |est to obtain eCA |est_fit. The boundary condition is
then generated by the smooth extension on eCA |est_fit instead of eCA |est in Step 10. The reason
for adding this additional fitting is that eCA |est is already dominated by high-frequency
errors. If the boundary condition is obtained by directly extending eCA |est using the smooth
extension, it will be affected by the high-frequency components. Therefore, to only extend
the remaining lower-frequency errors, eCA |est is fit with polynomials first and the boundary
condition is obtained from the extension of eCA |est_fit. Afterwards, in Step 11, eCA |est_fit
is replaced by eCA |est and the polynomial-based extension is performed to obtain zi

DG in
Step 12. It is worth mentioning that, the same polynomial orders obtained from the initial
extension can be applied to both of the polynomial fittings if the same metrology instrument
is used, since the error level remains invariant.

• Steps 13 ∼ 15: The piston adjustment and dwell time update processes described in Section
3.3 are performed.

A key factor to consider while using an iterative scheme is the computational efficiency per
iteration. The most computationally expensive operation in RISE is the dwell time calculation.
This bottleneck is eliminated by RIFTA [10], which employs the efficient fast Fourier transform
algorithm for fast dwell time calculation.

4. Experiment

To verify the effectiveness of the RISE concept, as shown in Fig. 6, an experiment was performed
where the main goal is the fabrication of two 10 mm × 80 mm elliptic cylinders (i.e CA1 and
CA2) starting from a pitch-polished silicon spherical mirror with ROC around 173 m using our
2D-IBF system [9,10]. The ion source parameters are beam voltage = 600 V, beam current = 10
mA, accelerator voltage = -90 V, and accelerator current = 2 mA. The target ellipse parameters
for both the CAs, as shown in Fig. 7(a), are p = 30 m, q = 0.3 m, and θ = 3 mrad. The metrology
data are provided by the SI platform [26,27]. The lateral resolution of SI is set as 0.09 mm/pixel
and the IBF machining interval is 0.3 mm. The figure errors from the initial sphere to the target
elliptic cylinders in CA1 and CA2 are 204.96 nm RMS and 190.28 nm RMS, respectively.

For CA1, the dwell time is initially calculated using the metrology data of the corresponding
DG without using RISE. However, the figure errors in CA1 cannot be improved to sub-nanometer
level after two IBF runs. Therefore, RISE is then applied to correct the figure error residuals in
CA1. For CA2, only the CA data is used and the RISE method is applied in all the IBF runs.
Chebyshev polynomials are used in RISE for the experiment, since they are computationally
more efficient than Legendre polynomials. The same BRF shown in Fig. 7(b) is used in each IBF
run. The peak removal rate of the BRF is 7.5 nm/s and its full width at half maximum is 4.2 mm.

The rest of this section is organized as follows. Section 4.1 studies and compares the
performances of the existing surface extension methods by applying them to calculate the dwell
time and the estimated residual for CA2. The experimental results in CA1 and CA2 are explained
in Sections 4.2 to 4.4. Lastly, to quantify the performance of the fabricated mirrors, we have
simulated their diffraction limited capabilities in Section 4.6 using the Synchrotron Radiation
Workshop (SRW) [40,41].
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Fig. 6. Schematic of the experimental specification, where the figure errors from the initial
spheres to the target ellipse in CA1 and CA2 are similar.

Fig. 7. Schematics of (a) the target ellipse parameters for CA1 and CA2 and (b) the BRF
used in the IBF processes.

4.1. Existing surface extension methods vs. RISE

To compare the performances of the existing surface extension with the proposed RISE method,
they are applied to calculate the dwell time and estimated figure error residuals for CA2. Figure 8
demonstrates the extended figure error maps, zDG2, the dwell time maps, tDG2, and the estimated
figure error residual maps in CA2, eCA2 |est, calculated with the Papoulis-Gerchberg extension
(Fig. 8(a), the nearest-neighbors extension (Fig. 8(b)), the Gaussian extension (Fig. 8(c)), the
smooth extension (Fig. 8(d)), the smooth extension multiplied by descending multiplier (Fig. 8(e)),
and RISE (Fig. 8(f)).

It is obvious that the boundary of CA2 is not smoothly extended with the Papoulis-Gerchberg
extension, the nearest-neighbors extension, and the Gaussian extension. The Papoulis-Gerchberg
extension is performed for 500 iterations. However, as shown in Fig. 8(a), the boundary of CA2
is still not well handled, since the errors along the boundary have higher frequencies than those
inside and the band-limited expansion is more effective on lower frequencies. As shown in
Fig. 8(b), the nearest-neighbors extension smooths the boundary by the local averaging operations,
thus it arrives at a lower eCA2 |est. The Gaussian extension shown in Fig. 8(c) achieves the shortest
dwell time due to the descending profile multiplied to the extension region of CA2. Nonetheless,
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Fig. 8. Extended figure errors, dwell time maps, and estimated figure error residuals for
CA2 after (a) the Papoulis-Gerchberg extension, (b) the nearest-neighbors extension, (c)
the Gaussian extension (d) the smooth extension, (e) the smooth extension multiplied by
descending multiplier, and (f) RISE.

the Gaussian function descends so fast that the error frequencies along the boundary of CA2 is
high and thus cannot be corrected.

The smooth extension shown in Fig. 8(d) guarantees the piece-wise C1 continuity so that
the boundary of CA2 is more appropriately handled. The RMS of eCA2 |est reaches 1.5 nm
with a slightly longer total dwell time (i.e 9.3 mins) than the nearest-neighbors extension. The
descending multiplier m(l) given in Eq. (10) is then multiplied to zDG2 extended by the smooth
extension. As shown in Fig. 8(e), the errors along the boundary of CA2 is dragged down and the
total dwell time becomes smaller, while the RMS of eCA2 |est increases.

Therefore, it is found that the smoothness at the boundary of CA2 is the most important factor
of achieving a lower eCA2 |est. On the other hand, a descending profile along the boundary, such as
the Gaussian extension or the descending multiplier approaches, helps reduce the dwell time but
the RMS of eCA2 |est will increase in return, since the high-frequency errors along the boundary
may not be correctable.

The proposed RISE method is then applied to CA2. Figure 8(f) demonstrates the results of the
initial extension followed by the iterative refinement. The factor k = 1 (see Steps 2 and 10 in
Fig. 5) is used for RISE, since we focus more on a small eCA2 |est. The iteration criterion is set as
ϵ = 0.3 nm, which is equal to the random error of the SI platform. The polynomial orders in x and
y directions obtained with the method explained in Section 3.2 are 6 and 10, respectively. After
the initial extension, the RMS of eCA2 |est is 0.88 nm, which is further reduced to 0.26 nm after the
iterative refinement. Also, thanks to the piston adjustment in Step 12 (see Fig. 5), only 1.5 mins
additional dwell time is added to the initial dwell time solution. It is also worth mentioning that,
as shown by the magnified parts of the dwell time maps in Figs. 8(a) to 8(e), the high-frequency
errors and noise are left in the dwell time maps, since they are also extended with the existing
surface extension methods. These errors are eliminated by RISE as shown in Fig. 8(f).
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4.2. Experimental results in CA1

For comparison purpose, in CA1, RISE is not applied at first. Instead, the metrology data in
the DG is used directly to calculate the dwell time. Figure 9(a) shows the estimated figure error
residuals eCA1 |est and the real figure error residuals eCA1 |real in CA1 for the first two IBF runs.

Fig. 9. Estimated and real figure error residuals of (a) the first two IBF runs in CA1 without
using RISE and (b) the third IBF run in CA1 using RISE.

The estimated figure error residuals eCA1 |est for the 1st IBF run are estimated as 0.64 nm RMS.
It achieves the sub-nanometer level since the boundary has not been affected by the IBF process.
After the 1st IBF run, the real figure errors in CA1 are reduced from 204.96 nm RMS to 3.66 nm
RMS. The convergence rate is 98.2%. The same dwell time calculation is performed again for
the 2nd IBF run, however, due to the unreliable measurement and the large errors at the boundary
of the DG (see Section 1 and Fig. 3) after the 1st IBF run, the RMS of eCA1 |est is estimated as
2.88 nm, and eCA1 |real is barely reduced from 3.66 nm RMS to 3.42 nm RMS.

To further reduce the figure errors in CA1, the proposed RISE method is then applied to
calculate the dwell time for the 3rd IBF run. As shown in Fig. 9(b), eCA1 |est estimated by RISE is
0.59 nm RMS, and the final eCA1 |real after the 3rd IBF run achieves 0.62 nm RMS, which closely
duplicates the RISE estimation.

4.3. Experimental results in CA2

In CA2, RISE is applied to calculate the dwell time for all the three IBF runs shown in Fig. 10.
The final eCA2 |real reaches 0.71 nm RMS after three IBF runs, which is similar to the result
obtained in CA1. It can be found that eCA2 |est is getting bigger after each IBF run due to the
footprints of the BRF left on CA2. These footprints cannot be corrected unless a BRF with
smaller size is used or a smoothing process is followed.

It is also worth mentioning that, the main contribution to the figure errors in the final eCA2 |real
after the 3rd IBF run is the region of higher error residuals at its bottom-right corner, which
also causes that eCA2 |real is slightly higher than eCA1 |real. These errors are a result of the fault of
the horizontal translation stage during the 1st IBF run. If this region is excluded, eCA2 |real can
be improved to 0.67 nm RMS, which is higher than eCA1 |real by only 0.05 nm RMS. This small
difference is negligible, since it is below the measurement repeatability of SI.
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Fig. 10. Estimated and real figure error residuals of the three IBF runs in CA2 using the
RISE method.

4.4. Estimation vs. real experimental results

Achieving the desired ultra-low figure errors indeed relies on two important factors: accurate
dwell time solutions and precise dwell time implementations. The RISE method is proposed
to produce robust dwell time solutions, from which the figure error residuals can be reliably
estimated. In practice, the estimated residuals should be as small as possible to minimize the
errors produced during the calculation stage. The precise implementation of dwell time, however,
is attributed to the determinism of the hardware configuration of a polishing system. The higher
determinism a system achieves, the real polishing result will be closer to the estimation. In our
2D-IBF system, the determinism is affected by the heating from the ion beam, the motion limits
of the translation stage, and the footprint of the BRF.

As shown in Figs. 9(a) and 10, the real figure errors does not converge to the estimation after
the 1st IBF runs, due to the heating time of around 74 mins (see Fig. 8(f)). As the figure errors
became smaller and thus the required total dwell time decreases, the determinism improves. As
shown in Fig. 9(b), the figure error residuals for the 3rd IBF run in CA1 closely duplicate the
estimation. The influence of the determinism caused by the translation stage is demonstrated in
Fig. 10, where a small positioning error during the 1st IBF run in CA2 brings the artifacts to
the final figure error residual map. Also, the BRF footprints are obviously left in the vertical
direction on the polished surfaces, which further degrades the level of surface figure accuracy.
The reason for the generation of these vertical footprints is that we applied the velocity-based
feeding mode only in the horizontal direction. For the vertical direction, a constant step size was
fed with the position-based mode.

4.5. Surface roughness

Figures 11(a) and 11(b) shows the Power Spectral Density (PSD) curves and their corresponding
integrated PSD RMS curves along the tangential direction in CA2 measured in different spatial
frequencies using different metrology instruments. The SI measurement results demonstrates
that the IBF process using the proposed RISE method is effective for sub-nanometer level figure
error correction.

In addition, the middle-frequency surface roughness before and after the IBF process was
measured by a Zygo New View white-light microscope interferometer with 20× magnification.
The spatial resolution of the measurements is 0.55 µm and the FOV is 0.35 mm × 0.26 mm. For
the high-frequency surface roughness, since our Atomic Force Microscopy (AFM) instrument
was not available until the IBF process was completed, a region near CA2 that had not been
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Fig. 11. (a) PSD curves and (b) the corresponding integrated RMS curves measured in
different spatial frequencies.

processed by the ion beam was selected as a reference. The spatial resolution of the AFM
measurements is 31.3 nm and the FOV is 7.98 µm × 7.98 µm. We can see that the surface
roughness, at the explored resolution levels, is not affected by the IBF process and still remain at
a very acceptable level for X-ray mirrors.

4.6. Simulation using SRW

To demonstrate the focusing capability of these two IBF-processed elliptical cylinders, we use
the SRW simulation engine [40,41] to perform a virtual X-ray focusing experiment. The layout
of the simulation is shown in Fig. 12. The X-ray source is simulated as a coherent Gaussian
beam with a 0.1 µm RMS × 0.1 µm RMS beam waist. The fabricated elliptic cylindrical mirror
(p = 30 m, q = 0.3 m, and θ = 3 mrad) is used as a horizontal focusing mirror placed at 30 m.
Slit apertures are used to illuminate only the mirror’s CA, and a watch point (detector) is placed
at 30.3 m where the nominal focal spot is located.

Fig. 12. Simulation layout of the X-ray beam focusing by using a horizontal focusing mirror.

Three 2D figure error maps of the polished CAs from the fabrication process are individually
used as the figure errors of the horizontal focusing mirror in the SRW simulation. The first map
is the figure errors after the first two IBF runs in CA1 without using RISE (Fig. 9(a)). The second
one is the figure error map after the third run CA1 obtained with RISE (Fig. 9(b)). The third one
is the figure error map after the third run in CA2 using RISE (Fig. 10).

The focusing ability of these three mirror surfaces are studied with the X-ray wavelength λ
varying from 0.02 nm to 0.2 nm. We calculated the Strehl ratio of the focal spots and our results
are shown in Fig. 13.
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Fig. 13. For these three CAs, the Strehl ratios get higher at the longer wavelength. CA1
with RISE and CA2 with RISE outperform CA1 w/o RISE.

As expected, the Strehl ratios [42] of these three mirror surfaces increase with the X-ray
wavelength. For λ = 0.02 nm, all the Strehl ratios are smaller than 0.8 in Fig. 13(a). Based on
Maréchal’s criterion, the Strehl ratios should be close to 0.8 with the two 0.6 ∼ 0.7 nm RMS
figure errors around λ = 0.05 nm, which shows good agreement with our simulation in Fig. 13(b).
Figure 13(c) shows that the Strehl ratio of CA1 without using RISE method is higher than 0.8 for
λ = 0.2 nm. These simulations clearly indicate that using the RISE method, we can successfully
allow fabricating diffraction limited X-ray mirrors for λ as short as 0.05 nm.

5. Discussion

Limitation of the 2D-IBF system. More IBF runs can be potentially performed to further
improve the figure accuracy in both the CAs shown in Figs. 9 and 10, however, the BRF used
in the experiment is so powerful (7 nm/s peak removal rate) that the total dwell time at each
individual dwell point is less than 0.05 s. The acceleration of our translation stage can hardly
match this rapid motion requirement. Also, to correct the BRF footprints, a smaller BRF is
required. We are designing and fabricating 1 mm and 2.5 mm pinholes to constrain the size and
power of the BRF, with which we are going to push the figure errors to less than 0.5 nm RMS
level in future work.

Generalization of the RISE concept. It is also worth mentioning that, although RISE is
explained and tested on polishing rectangular surfaces using IBF, it is generally applicable to any
CCOS techniques and arbitrary surface shapes. For example, Zernike polynomials can be used in
the polynomial fitting steps in RISE for circular surfaces. For any other special shaped surfaces,
RISE can be applied based on the known measurement data and either a rectangular or a circular
polynomial basis can be employed.
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6. Conclusion

In this study, a Robust Iterative Surface Extension (RISE) method was proposed to obtain
reliable dwell time solutions in sub-nanometer X-ray mirror fabrication. RISE employs a
polynomial-based extension strategy to guarantee the continuity at the extension boundary as
well as ensure that only the correctable figure errors are extended. An iterative scheme is then
applied to progressively refine the dwell time solution so that the desired figure errors can be
achieved. The RISE concept has been applied to the fabrication of two X-ray diffraction limited
elliptic cylindrical surfaces on the same spherical mirror using ion beam figuring. Both clear
apertures reached sub-nanometer figure errors, which proves the effectiveness of the proposed
RISE method.
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