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This paper presents the design of a synthetic extended source (SES) that reduces coherent noise in in-
terferometric measurements. The SES uses a fully coherent source for data acquisition to preserve high-
contrast interferograms. Multiple measurements are made while the point source is translated according
to a prescribed trajectory. The average of the measurements has the effect of using a source with a dis-
tribution defined by the trajectory. Thus, the optical system uses a coherent point source, but the data
combination synthesizes the behavior of an extended source. A parametric model to quantify measure-
ment noise due to diffraction from small particles is developed and used to evaluate SES designs.
Experimental results are shown that validate the modeling. An example of a practical working SES
implemented in a custom SPSI interferometer is provided. © 2014 Optical Society of America
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1. Introduction

Development of optical surface fabrication tools have
led to the manufacturing of more complex optical
surfaces that require higher precision. Thus, testing
methods specific to these high-quality complex
surfaces are needed. Interferometry is a common
metrology tool that has long been used to test classic
spherical surfaces. It has been adapted to large
aspheric surfaces metrology. An example of such
an instrument developed by the Large Optics
Fabrication and Testing group is a Fizeau type,
computer-generated hologram (CGH) based simulta-
neous phase-shifting interferometer (SPSI) [1].
Modern interferometers are usually illuminated
with a highly coherent laser point source. Although
it has the advantage of providing high-contrast
fringes, such a source is responsible for coherent
noise that comes from ghost reflections, surface de-
fects, or dust particles diffraction. The stray light
from these artifacts adds coherently with the test
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and reference waves, creates spurious fringes on
the interferogram, and introduces phase error in
the measurement.

Several solutions have been developed to reduce
this coherent noise. For example, low-pass filtering
the data removes the mid- to high-spatial frequency
noise. However, it also removes data from the test
surface. Coherent noise can be reduced by decreasing
the source coherence. The source temporal coherence
can be decreased by using a polychromatic source.
However, this solution requires a specific type of
interferometer that must match the pathlength for
the two beams that interfere. The source spatial co-
herence can be reduced by using an extended source.
A classic way to create an extended source consists in
sending the laser beam on a spinning ground-glass
diffuser [2,3] such that the speckles from the ground
glass change fast enough to be averaged out during
single camera exposure. However, the use of the ex-
tended source also reduces fringe contrast for inter-
ferometers that do not match pathlengths for the two
interferometer beams. A ring source approach, like
the Ring of Fire developed by Zygo [4,5], maintains
the fringe contrast for their particular geometry.
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We note that interferometers with a real-time
extended source, such as the ring used by Zygo,
can achieve reduction of speckle by averaging multi-
ple measurements while the diffuser is moving.
However, the general use of this technique is not
practical for other types of interferometers.

We present the technique of reducing coherent
measurement noise in interferometers with a syn-
thetic extended source (SES). Each measurement
is taken with a coherent point source illumination,
and the source moves between each frame acquisi-
tion. The unit under test (UUT) is in focus on the de-
tector. As the source moves, the phase measurement
from the UUT remains stationary, whereas the phase
data from any out of focus artifact is moved on the
sensor between each measurement. The phase error
from coherent noise is reduced after averaging
multiple measurements. A point source is used, and
indeed the source is considered as extended, but only
when the measurements are averaged. The advan-
tage of the SES is that it provides high-contrast data
because each measurement is taken with a point
source, and it can be easily implemented in most
interferometers. Indeed, the SES can be made with
no additional optics, or with optical elements whose
error would be reduced after averaging.

This paper presents a method to design an SES
that reduces fixed coherent noise in interferometric
measurements. Previous papers [6,7] explained the
virtual extended source concept. This paper ad-
dresses the analytical approach for the design of
an SES and analytical quantification of its perfor-
mance for reducing coherent artifacts from surface
contamination. This paper provides a method for es-
timating the phase error from scattering in all spaces
in an interferometer. This estimation is used to
choose the optimal SES shape and size that can re-
duce this error. The method consists of two steps. In
Section 2, an analytical description of the phase error
from dust particle diffraction is provided. Section 3
quantifies the effect of averaging the measurements
as a function of the point source motion. Section 4
provides experimental validation of the particle
phase error model and the performance of an SES
as well as an example of a working SES implemented
in an operational Fizeau interferometer.

This paper is a summary of the author master’s
thesis [8], which provides a more detailed explana-
tion of the SES design method.

2. Phase Error from Dust Particle Diffraction

A simple model for predicting the dust particle phase
error was developed using Fraunhofer diffraction by
a circular obscuration. The diffracted wave propa-
gates to the interferometer sensor and interferes
with the test and reference waves, introducing phase
error. The phase error from a single dust particle is
then generalized to multiple particles located on any
surface of an interferometer. This model can be ap-
plied to any type of interferometer. In the following,
a Twyman-Green interferometer in the flat test
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configuration is used as an example to illustrate
the method.

Several models accurately describe the complex
field diffracted by dust particles. Mie scattering
gives the general description of light scattering by
a spherical particle. Scalar wave approximation is
used in the Rayleigh—-Sommerfeld diffraction theory,
which predicts the Huygens-Fresnel principle.
Fresnel diffraction approximates the Huygens
spherical secondary sources as sources with a para-
bolic wavefront. Further simplification is reached
with Fraunhofer diffraction, which approximates
the Huygens secondary sources as plane waves [9].
Our treatment uses some simplifications to provide
a meaningful approximation of the effect to develop
parametric relationships related to performance
of the SES, rather than focus on the details. The
following assumptions were made to simplify the
calculations.

e The particles are approximated as circular or
linear 2D obscurations [10].

¢ The dust particle and detector are imaged in the
same space using geometric optics. In the following,
the image of the particle is considered in detector
space. The particle image diameter d takes the
magnification ratio m into account d = mdayicle-

e The particle image diameter d, distance z from
the image of the detector, and wavelength 1 allow
the Fraunhofer approximation. In other words:

d2
Ny=—<1 (1)

¢ Optical surfaces from the interferometer are far
enough away from each other, so that the phase
errors from particles on two consecutive surfaces
are uncorrelated. In particular, lenses are approxi-
mated as single surfaces.

¢ Aberrations are neglected.

¢ Diffraction from other optical elements is
negligible.

¢ The analysis assumed collimated light. A gener-
alized treatment for focusing light using equivalent
propagation is explained in [11]. For the case of
spherical converging or diverging illumination, the
same diffraction effect as with collimated illumina-
tion applies, except that the propagation distance z
is replaced by an equivalent propagation distance
Z,, defined as

7, _ R®iRy)

R,
where R; is the radius of curvature of a spherical
wavefront at position 1, Ry is the wavefront radius
of curvature after it propagates to position 2. In ad-
dition, some scaling effect applies to the transverse
dimension of the diffraction pattern, such that

d _

a; Qg

a a
and L= —2,
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where d; and a; are, respectively, the particle image
diameter and the beam diameter at position 1; dy
and a, are the particle image diameter and beam
diameter at position 2.

In the following, a collimated illumination in detec-
tor space is assumed, and the Fraunhofer theory is
used for propagation.

A. Phase Error from a Single Dust Particle

The phase error from a dust particle depends on the
particle location in the interferometer. At least four
cases need to be treated differently. The particles can
be located on the test or reference surface (case a in
Fig. 1), or double pass in one arm of the interferom-
eter (case b), or common path in the illumination
subsystem (case ¢) or common path in the imaging
sub-system (case d).

1. Particle on One Mirror Surface

This is the simplest case because only one beam of
the interferometer interacts with the dust particle,
and it only does so once. Babinet’s principle can be
used to estimate the complex field at the detector
plane when a small region is obscured in the test
beam. The complex field results from the coherent
sum of three fields: the reference plane wave Ep,
and the test wave that is altered by the particle pres-
ence Er iereq- This last component is made of two
terms Er gierea = E7 — Ep. E7 is the test plane wave
that would arrive on the detector if there were no
particle. Ep corresponds to the diffracted portion of
the test beam. It can be estimated by considering
the image of the particle in detector space. The com-
plex diffracted amplitude is expressed as

—ird? 2
Ep(r,z) = %exp(ikz) X exp (i %) somb (ﬁ)
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Fig. 1. Twyman-Green interferometer shows four different
spaces (a, b, ¢, and d) where particles can create spurious effects
in coherent measurements.

where &£ = 27/4 is the wavenumber, r is the particle
image radial coordinates, d is the particle image
diameter, and z is the distance between the particle
image in detector space and the detector itself. The
sombrero function is defined with the Bessel function
of the first kind: somb(r) = 2J1(zr)/ar.

The total irradiance at the detector is expressed as

I(r,z) = E(r, Z)E* (r,z)E’(r,z)
=ET(r,z)—E'p(r,z) +ER(r,z). 3)

To simplify the notations, it is assumed that all
fields are stationary, have the same orientation, test
and reference waves have unit amplitude, and the
diffracted pattern is centered at r = 0 on the detector
plane. Thus,

2\ 2
I(r,z) =2+ 2 cos(0p — 0g) + (i) somb? (ﬂ)

4)z Az
nd? rd\ . ar?
-2 E somb (/12) Sin (HT - ﬂz)
nd? rd\ . ar?
-2 E Somb (E) sin (QR - E) s (4)

where 7 and 05, respectively, denote the phase error
from the test and reference waves.

The phase measurement is obtained after applying
a phase-shift algorithm. The four-step phase-shift al-
gorithm was used for its simplicity. For example, if
the particle is on the test mirror, and the reference
surface is phase-shifted with z/2 steps, the phase
measurement is expressed as

B I4(r.z) = I5(r.2)
®(r,z) = arctan|:11(r,z)_l3(r,z)]

= arctan (2) with

2 2
A = sin(@p - 0g) — ﬂsomb(ﬁ) cos (ﬂ - 6’3),

4)z Az Az
nd? rd\ . (#r?
B = cos(07 — 0g) - Esomb(E) sin (E - QR).

The phase error from the dust particle is deduced
from Eq. (5) by assuming that the test and reference
waves introduce no error; that is to say when 67 =
HR =0:

A
q)Particle (r,z) = arctan (E) ,  with

nd? rd ar?
A=- i somb (/12) cos (/12)

wd? rd\ . [zr?
B=1- Esomb(g) sin (E) (6)

Equation (6) can be simplified under the
Fraunhofer approximation. From Eq. (1), the phase
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error from a dust particle is equivalent to the argu-
ment of the arctangent function, using the small
angle approximation:

zd? rd 7r?
Dparticle (1, 2) & — i somb (E) cos (E) .

The phase error would be simply the opposite from
Eq. (7) if the particle was on the reference surface.
The phase error peak amplitude is proportional to
the square of the particle image diameter and
inversely proportional to the distance between the
image of the particle and the detector plane. The
phase error pattern is delimited by a sombrero
envelope, whose first zero position is inversely pro-
portional to the particle image diameter and propor-
tional to the observation distance. The phase error
is modulated by a cosine function with a square
argument.

The case with the particle on the test surface is
special when the test surface is imaged onto the
detector, so z = 0. In this case, the particle on the test
mirror causes no measurement error, but may cause
a small obscuration in the test.

Figure 2 shows the phase error pattern from a
100 pm diameter particle at equivalent propagation
distance of 150 mm.

2. Particle Double-Pass on One Arm of the
Interferometer

For example, assume that the dust particle is located
at distance Az/2 from the test surface and the image
of the dust particle is at equivalent propagation dis-
tance z from the detector. This is a five beam inter-
ference problem. The reference plane wave adds
coherently with the altered test wave. That term
results from the difference between the ideal plane
test wave if the particle was not present and three
diffracted fields. One corresponds to the wave that
is first diffracted by the particle, then reflects off
the test surface, and propagates to the detector. The
second term corresponds to the test beam that first
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Fig. 2. Phase error from a dust particle located on one mirror
surface (in radians). Particle image diameter is d = 100 pm and
observation distance is z = 150 mm.
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reflects off the test surface and then is diffracted by
the particle. Finally, the last term corresponds to the
beam that is first diffracted by the particle on its
way to the test mirror, then reflects off the test sur-
face, and is diffracted again by the particle. The
amplitude of this double diffracted beam is assumed
to be negligible with respect to the other fields.

The same process is repeated to calculate the par-
ticle phase error. Under the Fraunhofer approxima-
tion, it results in the sum of two phase terms:

nd? rd ar?
q)Particle (l‘, Z) == m somb (ﬂz) (o) (Az)

_ nd? mb[ rd i|
4Gz + 22 P ae 1 A2
77,'7"2
X COS [Ai(z n Az)i|’ (8

One phase term shows that the diffracted field propa-
gated over a larger distance. The additional defocus
depends on the particle location with respect to the
test surface.

3. Particle Common-Path in the Illumination
Subsystem

Again, the reference beam adds coherently to the test
beam. In this configuration, both test and reference
waves are altered by the particle presence because
the particle diffracts the incident beam before it is
divided by the beam splitter. If the test and reference
surfaces are ideally flat and path-matched, there is
no phase error introduced by the particle. If the
two surfaces are not path-matched, there are two im-
ages of the dust particle. Referring to our second
assumption, the images of the particle and of the de-
tector are considered in the same space. For example,
in detector space, we call OPD the equivalent sepa-
ration distance between the image of the particle
through the test surface and the image of the particle
through the reference surface.

The phase error from the dust particle results from
the difference of two phase terms:

2

2
q)particle (r.z) =- i somb (ﬂ) cos (ﬂ)

47z Az Az
+ nd? somb rd
4z + OPD) Az + OPD)
ar?
X COS [ i+ OPD) OPD)}' 9

Equation (9) was derived for the case where test
and reference arms introduce the same magnifica-
tion ratio, with d being the diameter for both particle
images. If the test arm introduces magnification my,
and the reference arm introduces magnification mp,
the image diameter d would be replaced by dy =
mpd in the first line of Eq. (9) and by dgr = mgd in



the second line. One term shows that the diffracted
field propagates over a larger distance in one arm
than in the other arm because test and reference sur-
faces are not path-matched.

4. Particle Common-Path in the Imaging
Subsystem

The particle is illuminated by the reference and test
waves after they have been recombined by the beam
splitter. In the ideal case, where test and reference
mirrors are perfectly aligned to each other, and there
are no aberrations, the particle is perfectly common
path. Therefore, its phase error cancels out. In real-
ity, the test and reference waves have some misalign-
ment. It is easy to estimate the error from the dust
particle when one of the surfaces is tilted. For exam-
ple, assume that the reference wave is an ideal plane
wave, and the test mirror is tilted with angle a about
the y axis. In detector space, the image of the test
surface is tilted with angle 2a/m, where m is the
magnification ratio between the test mirror space
and the detector space. The particle shadow pro-
jected through the reference mirror has a different
location on the detector plane than the projected
shadow through the test mirror, as shown in Fig. 3.
The corresponding shear distance Ax on the detector
plane is related to the mirror tilt angle a and the
defocus distance z of the particle image from the
detector:

2a
Ax ~ —2z.
m

The phase error results from the difference of two
terms, with one phase error that is laterally shifted
on the detector plane:
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Fig. 3. Particle in the imaging space.

nd? rd ar?
q)Particle (r7 Z) = m Somb (j’z) COs (AZ)

_=d® mb rid ars
i ) eos( =)

= /22 +y%r, = \/(x - Ax)?2 +y%. (10)

Note that this treatment is valid for the case where
angle o is created with aberrations as well as
misalignment.

B. Multiple Particles Phase Error

The phase error from a single dust particle has been
derived for different particle location in an interfer-
ometer. In practice, dust particles may be located on
all optical surfaces of an instrument. The complex
field diffracted by multiple particles that are on
the same surface S; results from the Fourier trans-
form of all the obscuration functions that model
the particles. Since the Fourier transform is a linear
process, the total diffracted field from surface S; is
simply the coherent sum of each particle  diffracted
amplitudes.

Ey(z) = ) _E(r;.d;.2). (11)

Irradiance and phase are calculated using the
same process as before. Under the Fraunhofer and
small angle approximations, the phase error is equiv-
alent to the numerator of the arctangent argument
[Eq. (7)]. Thus, it is proportional to the Fourier trans-
form of the particle function. Therefore, in the
Fraunhofer region, the phase error calculation is a
linear process, and the total phase error from multi-
ple dust particles located on the same surface is
simply the sum of individual particle phase error:

D (z) = Z‘Di(’"i,di,zj)« (12)

Equation (4) is used to neglect any interactions be-
tween particles that are on different optical surfaces.
The same process is repeated for all surfaces. All
complex fields interfere with each other, and the
phase is derived from the phase-shift algorithm.
Again, the phase error is an arctangent function with
a rational argument. Its numerator is made of the
sum of multiple terms, and each term corresponds
to a particle diffraction. Under the Fraunhofer and
small angle approximations, the phase error is equiv-
alent to the numerator of the arctangent argument.
Therefore, the total phase error results from the sum
of each particle’s approximated phase error:

Dpoal = Y _P;(r;. d;.2)). (13)

Each individual particle phase error ®; depends on
the particle location in the interferometer, as previ-
ously explained.

20 November 2014 / Vol. 53, No. 33 / APPLIED OPTICS 7907



A model for estimating the phase error from dust
particles in an interferometer was developed. This
estimation will be used to design the SES.

3. Coherent Noise Reduction with SES

A common way to decrease the phase error is to use
an extended source. However, it can reduce the fringe
contrast. Another solution consists in using an SES:
phase measurements are taken with a coherent point
source illumination, providing high-visibility fringes
from the test and reference surfaces. An optomechan-
ical system moves the point source between each
phase measurement. Using appropriate interferom-
eter geometry, the coherent noise from artifacts or
dust particles is reduced after averaging multiple
measurements, while the test surface phase data
remains stationary [6,7].

It is useful to consider again the image of the
source, particle, and detector in the same space in
order to predict the particle shadow motion. In the
following, everything is imaged in detector space.

The interferometer is illuminated with a laser
point source. The wavefront is collimated in detector
space. In between, the complex optical system that
makes up the interferometer can be modeled with
its principal planes, as shown in Fig. 4.

As the point source moves with distance ¢, the out-
of-focus diffraction patterns from the dust move on
the detector plane. For this simplified analysis, we
treat the image of the dust particle in detector space
where the wavefront is collimated. According to [12],
the source motion ¢ is directly related to an angular
change in angle A6 in detector space:

2NASOUI‘CE€

—Dp
where NA e 18 the numerical aperture (NA) of the
source, and D is the beam diameter in detector space.
The distance between the particle image in detector
space and the detector plane is z. Assuming that the
source motion is such that the small angle approxi-
mation can be used in detector space, the diffraction
pattern is shifted by distance s on the detector plane:

s = (x;,y;) = 2(A0,, AD)). (15)

Multiple phase measurements are taken for differ-
ent source positions. The phase error from any out of
focus artifact is decreased after averaging all phase

A = (14)

z
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Fig. 4. Effect of the source motion on the particle diffraction
pattern.
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measurements. The UUT is in focus with the detec-
tor. Reference [13] provides an example of an SES
interferometer with a system of focusing mirrors
as a means to sharply image the UUT on the detector
plane. Therefore, the UUT phase measurement re-
mains stationary for any point source position and
remains unchanged after averaging all phase maps.
This process is called synthetic extended source be-
cause the extended source only exists after averaging
all data. It is not a physical extended source because
each measurement is taken with a point source
illumination, which provides high-contrast fringes.

Mathematical analysis is derived to describe the
residual phase error from one particle, after applying
the SES. Again, the image of the particle is consid-
ered in detector space, with image diameter d and
distance z between the image and the detector plane.
The SES can be described as an array of point
sources, modeled with the Dirac delta function. Each
Dirac is located at the projection of the point source
image through the particle image for each source
position. The particle phase error pattern is centered
about a Dirac position for each measurement.

The averaged phase is expressed as

q)avg = DOpegt + DresPres

N

1
-5 ZI: AD(x,y)*5(x — x;,y — ;)

N

1
:NAtb(x,y)* E o(x = x;,5 = ¥;)»
i=1

(16)

where ®.. is the UUT phase data, @, is the
residual phase error from the dust particle after
averaging, A® is the particle phase error for one
point source illumination, N is the total number of
measurements, (x;,y;) is the projected location of
the source for the it measurement, and * represents
the convolution product. For example, a N x M grid
SES is applied to illustrate this concept. Equation
(16) becomes

q)res(xvy) = A(I)(x,y)

1
NM AxAy

Xy x Yy
* [ rect| —, = comb(—,—)i|, (17)

reci( . Jeomv (5 2
where Ax and Ay are the spacing between each Dirac
in the x and y directions, and /, and /, are the dimen-
sions of the grid SES. Figure 5 shows that the
residual phase error decreases as the SES dimension

increases.

Although a grid SES is a convenient example to
simulate the SES effects, most optical systems are
rotationally symmetric, and a source with the same
geometrical properties is often easier to implement
in practice, in terms of vibration control. In the
following, the cylinder function is used to describe
a disk SES pattern, and Eq. (17) becomes
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Since the phase errors for each source position add

linearly in the averaging process, and the particle

phase error shape does not change with position, this

is a linear shift invariant process. From Eq. (16), the

SES distribution can be thought of as an impulse re-

sponse function. Thus, it acts as a transfer function

in frequency space. Therefore, some insight can be

gained by analyzing the effects of the SES on the
phase error frequency content:

FTzD{CDres (x’y)} |§JI

al?
= AN FTop{AD(x,y)} |éf,i1

x [somb(l\/éz + 172) * comb(fo,nAy)], (19)

with (&,7) being the Fourier variables of (x,y). The
residual phase error frequency content is made of
two terms. The first term is the Fourier transform
of the dust particle phase error. It is multiplied by
the transfer function, which is the Fourier transform
of the source distribution.

The Fourier transform of the dust particle phase
error is evaluated for the case of a particle located
on one mirror surface, as it is the simplest phase
error analytic formula. The particle phase error
frequency content is expressed as

FTop{Ad(x,y)};, = (ﬂz)3disk(%z Ve + n2)

* sin[zAz(&2 + 1?)].

(20)

The frequency content of the particle phase error is
proportional to a disk function, in which size is linear
with the particle diameter but inversely proportional
to the wavelength and observation distance. This
disk function is convolved with a sinusoidal function
that has a quadratic argument.
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Fig. 6. Phase error (top) and its Fourier transform (bottom) from
a 100 pm dust particle at 100 mm image observation distance.

Figure 6 displays the phase error (top) and the
phase error frequency content (bottom) from a
dust particle with 100 pm image diameter in detector
space, at z =100 mm image distance from the
detector.

When the SES is applied, the phase error fre-
quency content is multiplied by the SES transfer
function. The last term in Eq. (19) can be simplified
by considering that the spacing between each Dirac
tends to zero, and the transfer function is simply a
sombrero function. Figure 7 shows the effect of the
sombrero transfer function on the particle phase er-
ror frequency content.

The disk source transfer function attenuates the
high spatial frequencies. It does not significantly af-
fect the very low spatial frequencies, but some
middle frequencies are cut when the red sombrero
curve crosses the zero axis. The negative amplitude
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Fig. 7. Normalized particle phase error frequency content and
transfer function from a disk SES. Particle image diameter is d =
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of the transfer function indicates that a = phase shift
applies to the frequency content. This phase shift is
not important for this analysis; therefore, the magni-
tude of the transfer function will be displayed in the
following plots. In addition, amplitudes do not need
to be exact for this analysis, and normalized plots are
displayed for better visualization.

Figures 8-11 show the effects of different shapes of
SES. Figure 8 shows the phase error and its fre-
quency content from a 100 pm image diameter par-
ticle at 100 mm image distance from the detector.
Figure 9 shows the transfer function and the residual
phase error from a ring SES. Figure 10 shows the
transfer function and residual phase error from a
disk SES. Figure 11 shows the transfer function
and residual phase error from a ring convolved with
a ring SES.
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Fig. 9. Normalized phase error frequency content superimposed
with the ring SES transfer function (left). Residual phase error
(right). The ring SES diameter is / = 0.1 mm.
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The ring SES is probably the simplest solution
presented here. However, the ring transfer function
has higher-amplitude lobes than the other SES
transfer functions. Therefore, it is the least efficient
in removing high spatial frequencies. The transfer
functions from a disk and from a ring convolved with
a ring SES have lower-amplitude lobes and are more
efficient in cutting out high spatial frequencies. How-
ever, a disk SES is probably more difficult to imple-
ment. A ring convolved with a ring is a good solution
for efficiently reducing coherent noise, with a simple
system, as will be shown in Section 4.C. In addition,
the transfer function is narrower for larger SES.
Therefore, a large radius SES removes more spatial
frequencies.

This analysis was performed for a single particle
phase error pattern. Since the phase errors from
multiple dust particles add linearly, and because
the residual phase error results from a convolution
product, which is a linear operation, Eq. (19) general-
izes to multiple particles. The total residual phase
error is expressed as

1l
FTZD{q)res(x7y)} |§.;1 = ]Vi]‘yl FT2D{Aq)tot(xs y)}|§.i1

x [FTop{SES}|;,

% comb(£A,, nA,)], (21)
where A®; is the total phase error from all dust
particles in the interferometer.

This analysis explained the SES principle and
how it can be designed based on the phase error
estimation.

4. Experimental Results

An experimental setup was built in order to verify
the model of the phase error due to diffraction from
a small obscuration and to validate the SES

1

— Phase emor frequency content ‘

=== Disk transfer function

50

0
Spatial frequency (in mm'1)

50

x axis (in mm)

principle.

Fig. 10. Normalized phase error frequency content superimposed
with the disk SES transfer function (left). Residual phase error
(right). The disk SES diameter is / = 0.1 mm.
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A. Linear Particle Phase Error

A 125 pm width wire was used to simulate a dust par-
ticle in the experimental setup. Such a linear particle



is easier to manipulate than a circular particle.
Moreover, the phase pattern from the linear particle
is easier to measure because it is modulated by a sinc
function that has higher amplitude lobes than the
sombrero function. Indeed, the linear particle was
modeled with a rect function that is infinite in the
y direction. The same process, as with a circular par-
ticle, was used to calculate the phase error from a
linear particle. For example, the phase error from
a linear particle located on one mirror surface is
expressed as

A .
(Dwire(x.z) = arctan (E), with

2
A = sin(0r - Op) - \/L/I—ZSinC(dEx) cos (K - HR)

2
B = cos(07 — 0g) - isinc(d—x) sin (K - HR).

N/ O

The particle image width d in detector space was
measured by bringing the detector to focus with the
wire image and counting the number of pixels it
covers. The measured image diameter d was
123 pm. The camera was moved away from the wire
image to a controlled distance z. The interferometer
was illuminated with a 632.8 nm laser point source.
The wire was fixed on a kinematic mount that can be
moved to any location in the interferometer. Each
measurement consists of two steps. First, a measure-
ment is taken with the wire in the setup. Then
another measurement is taken after removing the
wire. The difference of these two measurements
gives the wire phase error with reduced static noise.
The kinematic mount allowed putting back the wire
in the same position within +£1 pm. The phase data
was post-processed to remove any noise that was not
along the wire direction.

Although the wire phase error was predicted by
the theoretical model, slight improvement can be
gained by fitting some parameters. The phase pat-
tern lateral position was adjusted to compensate
for the arbitrary zero position on the detector. The
fitting parameters were the phase error from the test
and reference surfaces 67 and 6z, and the defocus
distance z. An example of nominal and fitted values
for the case where the linear particle is on one mirror
surface is shown in Table 1.

Experimental results are shown in Fig. 12.

Table 1. Nominal and Fitted Parameters

Parameters Nominal Fitted
Distance z (mm) 150 151.7

Phase error from test mirror

Or (radians) 0 0.81
Phase error from reference mirror

Or (radians) 0 -0.61

For the case where the wire is in the imaging
optics, the phase error was not fitted. The measure-
ment was taken with aligned mirrors, and if there
were no aberrations, the phase error would have
been zero. However, the plot axis shows that the
phase error is negligible when the particle is located
in the imaging subsystem, compared with the
other cases.

The phase error spatial frequency is predicted by
the analytical model. Some mismatch appears at the
edges of the pattern, especially when the particle is a
double-pass in one arm. In that case, the particle is
not common path and the measurement is more
sensitive to vibrations.

The amplitude mismatch could be explained with
the presence of aberrations in the system that were
not taken into account in the theoretical model. The
impact of aberrations was evaluated by simulating
the Twyman-Green interferometer in Zemax. This
allowed us to easily estimate the system point spread
function (PSF). The wire image in detector space is
affected by the system aberrations and results from
the convolution product between the system PSF and
the ideal wire modeled with a rect function (Fig. 13).

The result of this convolution product is normal-
ized and put into the Fraunhofer integral to calculate
the diffracted phase error, modified by the system
aberrations. The measured and fitted results are dis-
played in Fig. 14 for the case of a dust particle located
in the illumination optics.

Although including the aberrated wire image as
the input field in the Fraunhofer calculation better
fits the experimental results, the model still overes-
timates the measured phase. This simulation only
took into account the on-axis PSF and did not include
field aberrations, which could explain the remaining
amplitude mismatch at the edges of the phase error
pattern.

However, even if the amplitude prediction does not
perfectly match the experimental phase data, the
spatial frequencies are predicted by our model. In
addition, the model tends to overestimate the actual
phase error. Since the purpose of this research is to
design an SES that reduces the predicted phase er-
ror, it should be acceptable to have a model that mod-
erately overestimates the phase error for most
systems. As a result, more actual phase error than
what is predicted would be removed.

B. SES Validation

Simple SESs were created to verify the SES princi-
ple. First, a two-point SES was simulated by taking
phase measurements with the laser point source at
two different locations separated 200 pm apart. In
collimated detector space, it corresponds to a change
in angle of 0.8 mrad and results in the phase error
pattern shifting by 120 uym on the detector. A
200 pm line source was simulated by moving the la-
ser point source 10 pm steps between each measure-
ment, which corresponds to the particle phase error
pattern shifting over 120 um on the detector plane.

20 November 2014 / Vol. 53, No. 33 / APPLIED OPTICS 7911



Wire on the Mirror Surface
d=123um, z=151mm

0.5
measured
— — — simulated
o
g
£
s o -
[0}
[0}
(2]
©
<
o
-0.5 . . . . .
-3 -2 -1 0 1 2 3
x axis (in mm)
Wire in the lllumination Optics
d =123um, z = 222mm, OPD = 20mm
0.5 T T T - r
measured
— — — simulated
o
g
£
S o :
[}
[0}
[2]
©
<
o
-0.5 - - : - -
-3 -2 -1 0 1 2

x axis (in mm)

Wire Double—-Pass in Test Arm
d =123um, z = 148mm, Az = 30mm

0.5
| measured
ll — — — simulated
o
g
E
2 of -
o
[0]
[2]
©
<
o
-0.5 - - - * :
-3 -2 -1 0 1 2 3
x axis (in mm)
Wire in the Imaging Optics
d =123um, z = 180mm
0.5 T T T T -
measured
o
o
£
S of WA\ N Vi
o
[0]
(2]
©
<
o
-0.5 - - - - -

-3 -2 -1 0 1 2 3
X axis (in mm)

Fig. 12. Measured and simulated (fitted) phase error for different particle locations.

The transfer function from a two-point SES is a
cosine function. Therefore, the residual phase error
frequency content has periodic zero crossings. Since
the spatial frequencies are spatially distributed in
the phase error pattern, periodic zero crossings from
the cosine transfer function are visible on the
residual phase error (Fig. 15).

The transfer function from a line source is a sinc
function that attenuates the high spatial frequencies
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Fig. 13. Normalized field magnitude at the wire image plane, re-
sulting from the convolution of the ideal wire (modeled with a rect
function) with the system PSF.
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from the particle phase error frequency content.
Since the high-order lobes in the particle phase error
contain the high spatial frequency undulations, the
sinc transfer function attenuates these side lobes
in the residual phase error pattern (Fig. 16).
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Fig. 14. Measured and simulated (fitted) phase error that takes
the system aberrations into account, for the case of a dust particle
located in the illumination optics. The phase error amplitude
better fits at the edges of the phase error pattern.
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These experimental results validate the SES
theory and show that the SES can reduce phase error
from dust particles.

C. Practical Implementation

This section shows an example of practical imple-
mentation of an SES. Many solutions can be used
to add tilt to the beam, or move the point source,
to create an SES. For example, the laser point source

Fig. 17. SES made of two tilted spinning windows.

could be put on linear stages. However, a spinning
system that rotates about the center of gravity of
the optics introduces little vibration.

We present an example of a ring convolved with a
ring SES that was implemented in a CGH Fizeau
polarization-based SPSI interferometer. Because
simultaneous phase-shifted frames are measured,
the acquisition time is very short, and the source
can have continuous motion. The laser point source
is divided into two orthogonally polarized point
sources that are sent to two spinning windows, as
shown in Fig. 17. Since the SES is created after
the polarization splitting optics, these elements do
not need to be very high quality.

Each window rotates about an axis that is tilted
with respect to the window surface normal. There-
fore, the window surface is tilted with the beam
propagation direction, and the tilt orientation varies
as the window is rotating. This causes apparent mo-
tion of the source to move in a spiral pattern. The
combination of two overlapping spinning tilted win-
dows creates an SES that is a ring convolved with a
ring. Figure 18 shows the SES irradiance distribu-
tion after averaging the point source motion over
multiple window cycles.

Figures 19 and 20 show two phase measurements
from a 1 m diameter smooth surface test sphere.
Measurements were taken without and with the
SES. Figure 21 shows the difference between the two
measurements. It displays the coherent noise re-
moved by the SES.

Single point source measurement shows high spa-
tial frequency features that do not appear on the SES
measurement. The SES averages out the high spatial
frequency noise that comes from speckle, dust par-
ticle, or scattering on optical surfaces, revealing
the smooth test surface. These experimental data
show that a simple SES can be implemented in an
interferometer and that it efficiently removes
coherent noise.

However, the SES efficiency depends on the aver-
aged number of phase measurements. As the point

Fig. 18. SESirradiance distribution. The SES is a ring convolved
with a ring.
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Fig. 19. Fizeau measurement taken with single point source
illumination. Peak-to-valley error is PV = 0.621.

Fig. 20. Fizeau measurement taken with the SES. PV = 0.494.
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Fig. 21. Fizeau measurement taken with the SES. PV = 0.204.
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Fig. 22. RMS residual phase error as a function of the number of

averaged phase maps for different image particle diameters. Ob-
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marks show the simulated residual phase error. The continuous
lines correspond to the 1/+/N fits.

source moves between each measurement, it only re-
sults in the shift of the diffraction phase pattern.
Therefore, the phase measurements can be consid-
ered as uncorrelated, as long as the source motion
makes the phase error pattern shift with a distance
that is larger than the diffraction pattern itself. In
that case, the residual phase error from the SES
process is expected to decrease by following the
1/+/N law, N being the number of phase mea-
surements.

Simulation was performed to illustrate this discus-
sion with a ring SES and a dust particle located on
one mirror surface. The particle image diameter in
detector space is 100 pm, and the distance between
the particle image and detector plane is 100 mm. The
ring SES is such that the particle diffraction pattern
is shifted about a circle that is 1 mm diameter on the
detector plane. Figure 22 shows the residual phase
error for an increasing number of phase measure-
ments in log scale for different particle image
diameters.

Measurements are fitted to the log plot of the 1/./x
function, and the fit equation is displayed on the plot.
As expected, phase measurements are uncorrelated,
and the residual phase error decreases with the
number of averaged measurements, according to

the 1/+/N law.

5. Conclusion

We proposed a method for designing an SES based on
coherent noise estimation. The SES maintains high
visibility fringes because each measurement is taken
with a point source illumination. Multiple measure-
ments are taken for different point source positions.
The SES reduces coherent noise after all phase mea-
surements are averaged, while the phase data from
the UUT remains stationary. In order to evaluate the
SES performance, a model for estimating the phase
error from dust particles located in all spaces of an



interferometer was developed. The phase error pre-
diction can be applied to design the SES shape and
size. It is used to quantify the SES performance for
reducing coherent artifacts from surface contamina-
tion. Experimental results validated the phase error
estimation model and the SES performance. Qualita-
tive data showed that the SES can be easily imple-
mented in a SPSI interferometer and does remove
coherent noise.
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