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Abstract: Computer controlled polishing requires accurate knowledge of 
the tool influence function (TIF) for the polishing tool (i.e. lap). While a 
linear Preston’s model for material removal allows the TIF to be determined 
for most cases, nonlinear removal behavior as the tool runs over the edge of 
the part introduces a difficulty in modeling the edge TIF. We provide a new 
parametric model that fits 5 parameters to measured data to accurately 
predict the edge TIF for cases of a polishing tool that is either spinning or 
orbiting over the edge of the workpiece.  
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1. Introduction  

The demand for an efficient workpiece edge figuring process have been increased due to the 
popularity of segmented optics in many next generation optical systems, such as the Giant 
Magellan Telescope (GMT) [1] and James Webb Space Telescope (JWST) [2]. Because those 
systems have multiple mirror segments as their primary or secondary mirrors, i) the total 
length of edges is much larger than the conventional system with one mirror; ii) the edges are 
distributed across the whole pupil. Thus, a precise and efficient edge fabrication method is 
important to ensure the final performance of the optical system (e.g. light collecting power 
and spatial resolution based on the point spread function) and reasonable delivery time. 

Many Computer Controlled Optical Surfacing (CCOS) techniques have been presented 
and developed since 1972 [3-10]. The CCOS with its superb ability to control material 
removal is known as an ideal method to fabricate state-of-the-art optical surfaces, such as 
meter-class optics, segmented mirrors, off-axis mirrors, and so forth [7-9, 11].  

The dwell time map of a tool on the workpiece is usually the primary control parameter to 
achieve a target removal (i.e. form error on the workpiece) as it can be modulated via altering 
the transverse speed of the tool on the workpiece [3-10, 12]. In order to calculate an optimized 
dwell time map, the CCOS mainly relies on a de-convolution process of the target removal 
using a Tool Influence Function (TIF) (i.e. the material removal map for a given tool and 
workpiece motion). Thus, one of the most important elements for a successful CCOS is to 
obtain an accurate TIF.  

The TIF can be calculated based on the equation of material removal, ∆z, which is known 
as the Preston’s equation [11], 

                                           ),(),(),(),( yxtyxVyxPyxz T ∆⋅⋅⋅=∆ κ                                  (1) 

where ∆z is the integrated material removal from the workpiece surface, κ the Preston 
coefficient (i.e. removal rate), P pressure on the tool-workpiece contact position, VT 
magnitude of relative speed between the tool and workpiece surface and ∆t dwell time. It 
assumes that the integrated material removal, ∆z, depends on P, VT and ∆t linearly. 

It is well known that a nominal TIF calculated by integrating Eq. (1) under a moving tool 
fits well to experimental (i.e. measured) TIF as long as the tool stays inside the workpiece 
[11]. However, once the tool overhangs the edge of workpiece, the measured TIF tends to 
deviate from the nominal behavior due to dramatically varying pressure range, tool bending, 
and non-linear effects due to tool material (e.g. pitch) flow [15].  

Assuming the linearity of Preston’s equation the edge effects can be associated with the 
pressure distribution on the tool-workpiece contact area. R. A. Jones suggested a linear 
pressure distribution model in 1986 [8]. Luna-Aguilar, et al.(2003) and Cordero-Davila, et 
al.(2004) developed this approach further using a non-linear high pressure distribution near 
the edge-side of the workpiece, however they did not report the model’s validity by 
demonstrating it using experimental evidence [13, 14]. These analytical pressure distributions 
were fed into the Preston’s equation, Eq. (1), to calculate edge TIFs. 

For any real polishing tool, the actual removal distribution is a complex function of many 
factors such as tool-workpiece configuration, tool stiffness, polishing compounds, polishing 
pad, and so forth. The analytical pressure distribution, p(x,y), approaches [8, 13, 14] tend to 
ignore some of these effects. Also, in the edge TIF cases, the linearity for Preston’s equation 
may need to be re-considered since the pressure distribution changes in wide pressure value 
range. The linearity is usually valid for a moderate range of pressure, P, values for a given 
polishing configuration [15]. 
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Rather than assigning the edge effects to a certain type of analytical pressure distribution 
model, we define a parametric model based on measured data that allows us to create an 
accurate TIF without the need of identifying the actual cause of the abnormal behavior in edge 
removal. We then re-defined the Preston coefficient, κ, which has been regarded as a universal 
constant in the spatial domain as a function of position in the TIF via the parametric approach. 
By doing so, we can simulate the combined net effect of many complex factors without 
adding more terms to the original Preston’s equation, Eq. (1). 

This paper describes the parametric model and provides examples of its application. 
Section 2 deals with the theoretical background supporting the parametric edge TIF model. 
We introduce a functional form of the κ map, and show simulated parametric edge TIFs from 
the model in Section 3. The experimental demonstration and value of the parametric edge TIF 
model are summarized in Sections 4 and 5, respectively. 

2. Theoretical background for the parametric edge TIF model 

2.1 Linear pressure distribution model 

Assuming the linear pressure distribution and Preston’s relation, we determine the resulting 
TIF analytically. Assume local coordinate system, (x, y), centered at the workpiece edge with 
the x axis in the overhang direction (i.e. the radial direction from the workpiece center). The 
pressure distribution under the tool-workpiece contact area should satisfy two conditions [14]. 
i) The total force, f0, applied on the tool should be the same as the integral of the pressure 
distribution, p(x,y), over the tool-workpiece contact area, A. ii) The total sum of the moment 
on the tool should be zero. It is assumed that the pressure distribution in y direction is constant, 
and it is symmetric with respect to the x axis. The moment needs to be calculated about the 
center of mass of the tool, (x’, y’) [14]. These two conditions are expressed in Eqs. (2) and (3), 
respectively. 

                                                      ∫∫ =
A

fdxdyyxp 0),(                                                      (2) 

 

                       ∫∫ =−⋅−
A

dxdyyxxpxx 0),'()'(                                  (3) 

where x’ is the x coordinate of the center of mass of the tool. 
While we acknowledge the freedom of choosing virtually any form of mathematical 

function for the analytical expression of pressure distribution, R.A. Jones introduced the linear 
pressure distribution model, Eq. (4), in 1986 [8] on the tool-workpiece contact area without 
detailed study of many higher order factors such as tool bending.  

 

21),( cxcyxp +⋅=                                                       (4) 

 
The pressure distribution, p(x,y), is determined by solving two equations, Eqs. (2) and (3), 

for two unknown coefficients, c1 and c2. Even though this analytical solution yields negative 
pressures for large overhang cases [14], we can replace it with zero pressure in practice and 
solve for c1 and c2 by iteration. Some examples of the linear pressure distribution, p(x), are 
plotted in Fig. 1 (left) when a circular tool overhang ratio, Stool, changes from 0 to 0.3. Stool is 
defined as the ratio of the overhang distance, H, to the tool width in the overhang direction, 
Wtool, in Fig. 1 (left). 

This linear pressure model was fed into the Preston’s equation, Eq. (1), to generate the 
basic edge TIF in Section 3.1.  
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Fig. 1. x-profiles of the pressure distribution, p(x,y), under the tool-workpiece contact area: 
linear pressure distribution model. (left), static FEA results. (right).  

2.2 The first (edge-side) correction 

One of the well-known edge removal anomalies is the ‘turned-down edge’, excessively high 
removal relative to the target removal near the edge-side [15]. This effect, as shown in the 
top-right quadrant of Fig. 7 later, cannot be explained by the linear pressure distribution 
model (i.e. basic edge TIF model). It may result from the non-linear high pressure distribution 
near the edge-side.  

Static Finite Element Analysis (FEA) was performed to characterize a general trend of the 
edge pressure distribution when tools with different stiffnesses overhang a workpiece. A 
circular tool and a workpiece were created in a solid model as shown in Fig. 1 (right). For 
simplicity of the solid model, the effects of the polishing compound between the tool and 
workpiece were ignored in this study. The polishing compound was assumed as an ideal 
adhesive, so that the boundary condition at the tool-workpiece interface was set as a ‘bonded’ 
case. A next generation edge TIF model based on more comprehensive FEA, that considers 
the realistic effects of the polishing compound and detailed tool characteristics, will be 
reported [16]. The Young’s modulus of the tool was changed to simulate the effects of the tool 

stiffness (e.g. 10
15

 Pa: extremely rigid tool and 0.7×10
11

 Pa: typical Aluminum). The tool was 

deformed by gravity, and the pressure distribution in the gravity direction was calculated 
under the tool-workpiece contact area.  

Two of the FEA results are shown in Fig. 1 (right). There are two major trends in common 
for most of the FEA results. i) There is a non-linear high pressure distribution in the edge-side, 
shaded region in Fig. 1 (right). ii) The range of this non-linear distribution remains about same 
although the overhang ratio, Stool, varies. 

The first correction term, f1, described in detail later in Section 3.2 is formed to correct this 
edge-side phenomenon. 

2.3 The second (workpiece-center-side) correction 

Experimentally it was found that the high pressure distribution model used on the edge-side of 
the tool did not predict the measured behavior at the other side (i.e. workpiece-center-side) of 
the tool. For an example, more removal than the predicted removal based on the basic edge 
TIF was observed in the workpiece-center-side of the experimental edge removal profile as 
shown in the top-right quadrant of Fig. 7. This phenomenon cannot be explained using models 
which focus only on the edge-side effects. Therefore, we define a second correction term, f2, 
to address this discrepancy in Section 3.2. It allows us to increase or decrease the workpiece-
center-side removal without considering many factors, such as tool bending effect, non-
linearity of the Preston’s equation, fluid dynamics of the polishing compound, etc.  
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3. Parametric edge TIF model 

3.1 Generation of the basic edge TIF 

For a given tool motion and pressure distribution under the tool-workpiece contact area, a TIF 
can be calculated using Eq. (1) [11]. The basic edge TIF uses the linear pressure model. Two 
types of tool motion, orbital and spin, were used in this paper. i) Orbital: The tool orbits 
around the TIF center with orbital radius, Rorbital, and does not rotate. ii) Spin: The tool rotates 
about the center of the tool. These tool motions are depicted in Fig. 2.  

The tool overhang ratio, Stool, is fixed for the spin tool motion case, but varies as a function 
of tool position (A~F in Fig. 2 (left)) for the orbital case while the basic edge TIF calculation 
is being made.  

     

Fig. 2. Orbital (left) and spin (right) tool motion with the basic edge TIF. 

3.2 Spatially varying Preston coefficient (κ) map 

A new concept using the κ map for the parametric edge TIF model is introduced. The κ map 
represents the spatial distribution of the Preston coefficient, κ(x,y), on the basic edge TIF that 
already includes the linear pressure gradient. It changes as a function of TIF overhang ratio, 
STIF, and five function control parameters (α, β, γ, δ and ε). STIF is defined as the ratio of the 
overhang distance, H, to the TIF width in the overhang direction, WTIF, in Fig. 3. The 
parametric edge TIF can be calculated by multiplying the basic edge TIF by the κ map. 

 

Fig. 3. Degrees of freedom of the κ map (in x-profile) using five parameters.   

The TIF width may not be equal to the tool width since it includes the tool motion. For 
instance, the TIF width is equal to the tool width for the spin motion case. However, for the 
orbital motion case, the TIF width becomes the sum of the tool width and orbital motion 

diameter (i.e. 2·Rorbital). 

The virtue of this parametric κ map approach is that it does not require independent 
understanding of each and every factor affecting the material removal process. Instead, only 
the combined net effect of them is represented by the κ map. The κ map is defined by a local 
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coordinate centered at the edge of the workpiece. x represents the radial position from the 
workpiece edge. 

The edge-side high removal, based on the non-linear high pressure distributions near the 
workpiece edge (mentioned earlier in Section 2.2), is approximated by the first quadratic 
correction term, f1, with two parameters, α and β. The first parameter, α, determines the range 
of the quadratic correction from the edge of the workpiece. The second parameter, β, controls 
the magnitude of the correction. This degree of freedom using α and β is shown in Fig. 3. This 
correction is shown graphically in Fig. 3 and defined analytically as  

                                  )()(
)(

),,( 2

21 αα
α

β
βα ⋅+Θ⋅⋅+⋅

⋅
= TIFTIF

TIF

WxWx
W

xf                        (5) 

where Θ(z) is the step function; 1 for z≥ 0 and 0 for z<0. 

The second correction term, f2, to address the discrepancy between the simulated (i.e. 
predicted) edge removal using basic edge TIF and measured edge removal in the workpiece-
center-side region (mentioned in Section 2.3) is defined by Eq. (6). Similar to f1, it has two 
parameters, γ and δ. The third parameter, γ, determines the range of the second correction, and 
the fourth parameter, δ, controls the magnitude of the correction as shown in Fig. 3. 

)()(
)(

),,( 2

22 γγ
γ

δ
δγ ⋅+⋅+−−Θ⋅⋅+⋅+−−⋅

⋅
= TIFTIFTIFTIFTIFTIFTIFTIF

TIF

WSWWxWSWWx
W

xf    (6) 

The κ map is defined in Eq. (7). It is a sum of the first and second correction terms, and 
includes a fifth parameter, ε. The fifth parameter, ε, was introduced to change the magnitude 
of the κ map as a function of TIF overhang ratio, STIF. Larger ε means that required correction 
magnitude increases faster as overhang ratio increases. 

                                              )}(1{),,,,,( 210 ffSx TIFmap +⋅+⋅= εκεδγβακ                                                    (7) 

where the κ0 is the Preston coefficient when there is no overhang. 
The x-profiles of example κ maps are plotted in Fig. 4. An arbitrary parameter set (α=0.2, 

β=2, γ=0.2, δ=1 and ε=0.2) was used in the example. 

 

Fig. 4. x-Profiles of κ maps for various overhang ratio, STIF. (α=0.2, β=2, γ=0.2, δ=1 and ε=0.2). 

3.3 Generation of the parametric edge TIF 

The parametric edge TIFs for orbital and spin tool motion cases were generated by 
multiplying the κ map (i.e. the spatial distribution of the Preston’s coefficient) by the basic 
edge TIF (with κ =1) introduced in Section 3.1. The overhang ratio, STIF, was varied from 0 to 
0.3. Five parameter values (α, β, γ, δ, and ε) were used to fit the experimental data in Section 
4.1 and 4.2. The parametric edge TIFs are shown in Table 1. As we increase the overhang 
ratio, STIF, non-linearly increasing removal near the workpiece edge is clearly shown as a 
result of the first correctional term for both the orbital and spin cases. The effects of the 
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second correction are also observed. Due to the opposite signs of δ for the orbital (δ = 20) and 
spin (δ = -3) cases, in the workpiece-center-side region, there is more and less removal than 
the basic edge TIF’s. 

Table 1. Normalized parametric edge TIFsa 

Tool 
motion 

Overhang ratio, STIF 
Scale 

0 0.1 0.2 0.3 

Orbital 

(Media 1) 

    

 

Spin 

(Media 2) 

    
a
(Orbital: α=0.2, β=4, γ=0.4, δ=20, ε=1.5 / Spin: α=0.4, β=6, γ=0.3, δ=-3, ε=0.9) 

4. Experimental demonstration of the parametric edge TIF model 

Two sets of experiments were used to demonstrate the performance of the parametric edge 
TIF model. Because the workpiece was rotated in the experiments, integration of parametric 
edge TIF along the workpiece rotation direction was computed to get the integrated removal 
profile while considering the workpiece rotation velocity. These model based removal profiles 
are plotted in Figs. 5 and 6. The conditions for the two edge TIF experiments are provided in 
Table 2. 

Table 2. Edge TIF experiment conditions 

Experiment Set No. 1 2 

General Run time 6 hours 1 hour 

Polishing compound Hastlite ZD Rhodite 

Workpiece Diameter 660mm 250mm 

Material ULE Pyrex 

Surface figure Convex Concave 

RPM 6 24 

Tool
 b
 Polishing Material Poly-Urethane pad Poly-Urethane pad 

Diameter 172mm 100mm 

RPM 60 (orbital motion) 30 (spin motion) 

Tool motion Orbital Spin 

Orbital radius, Rorbital 20mm N/A 
b
More detailed information about the tool will be reported [17]. 

4.1 Experimental set 1: Orbital tool motion 

The first experimental set was performed using orbital tool motion on a ULE workpiece. The 
overhang ratio was changed for STIF = 0.05, 0.14, 0.24 and 0.28. The measured removal 
profiles with RMS error bars are plotted in Fig. 5. The simulated removal profiles based on 
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the parametric edge TIF model (α=0.2, β=4, γ=0.4, δ=20 and ε=1.5) are also plotted. The five 
parameters were optimized to fit the experimental data. With one set of parameters, most of 
the simulated removal profiles for all overhang ratio cases are well fit to the measured 
removals within the RMS error bars. It means that we can predict all series of removal profiles 
with any overhang ratio for a given tool and tool motion as long as we perform a few edge 
runs to determine the tool’s characteristic parameter set initially.  

 

 

Fig. 5. Measured vs simulated removal profiles: orbital tool motion (α=0.2, β=4, γ=0.4, δ=20, and ε=1.5). 

4.2 Experimental set 2: Spin tool motion 

The second experimental set was performed using spin tool motion on a Pyrex workpiece. 
 

 

Fig. 6. Measured vs simulated removal profiles: spin tool motion case (α=0.4, β=6 γ=0.3, δ=-3, and ε=0.9). 

 
The overhang ratio, STIF, was changed to 0.02, 0.17, 0.22 and 0.4. The measured removal 

profiles with RMS error bars are plotted in Fig. 6. The simulated removal profiles based on 
the parametric edge TIF model are plotted also. They are reasonably well matched with the 
measured removal profiles for all overhang ratio cases including very high overhang ratio case, 
STIF = 0.4. 
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4.3 Performance of the parametric edge TIF model 

The comparison between the four different edge TIF models is shown in Fig. 7. The simulated 
removal profile based on nominal (i.e. no edge model) TIF model does not follow the overall 
slope of the measured removal profile. Especially, it shows a large difference in the edge-side 
removal (x = 0 ~ -60mm). The computed removal profile using basic edge TIF model seems 
to have a closer overall slope to the measured removal. However, two mismatches between 
the measured and simulated removal are clearly observed in the edge-side and workpiece-
center-side regions. The parametric edge TIF model using only the first correction allows us 
to correct the discrepancy in the edge-side removal. The removal profile based on the 
parametric edge TIF model using both the first and second correction is well matched with the 
experimental removal profile over the whole range of the removal profile. 

 

 

Fig. 7. Measured (with RMS error bars) vs simulated (using different edge TIF models) edge 
removal profiles for the orbital tool motion case. 

 

The comparison between the four TIF models is presented in Fig. 8. We define normalized 
fit residual, ∆, as a figure of merit to quantify the performance of the parametric model 
compared to the data. This is normalized as  

 

                                     (%)100
)(
⋅

−
==∆

dataofRMS

delmodataofRMS
residualfitnormalized                         (8) 

 
It is clear that the normalized fit residual, ∆, is relatively low (about 10~20%) for all TIF 

model cases when the overhang ratio is small (STIF <0.14 for orbital case and STIF <0.02 for 
spin case). It basically means that there is no difference between nominal and edge TIF 
models when the overhang effects are negligible.  

The improvements become significant as the overhang ratio increases. For the orbital tool 
motion case with STIF =0.28, the normalized fit residual, ∆, falls to 10% (parametric edge TIF 
using both corrections) from 52% (nominal TIF), or from 30% (basic edge TIF). For the spin 
tool motion case with STIF =0.4, the normalized fit residual, ∆, is dramatically improved to 
12% (parametric edge TIF using both corrections) from 87% (nominal TIF), or from 66% 
(basic edge TIF). The second correction is not really required for the spin tool motion case, in 
contrast to the orbital tool motion case, where the second correction brought significant 
improvement. 
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Fig. 8. Normalized fit residual, ∆, of the simulated removal profiles using different TIF models 
for orbital and spin tool motion cases. 

5. Concluding remarks  

We presented a parametric edge TIF model that allows accurate simulation of edge effects 
when a tool overhangs the workpiece edge. Unlike other approaches using analytical pressure 
distributions to develop edge TIF models, we introduced a parametric approach using a κ map, 
which represents the spatial distribution of the Preston coefficient. In this way, we were able 
to express the net effects of many entangled factors affecting the edge removal process in 
terms of a parametric κ map. Then the parametric edge TIF was derived from a multiplication 
of the κ map and the basic edge TIF.  

Experimental verification for the parametric edge TIF model was successfully performed. 
The normalized fit residual, ∆, for the simulated removal using the parametric edge TIF model 
stayed in the 5~20% range for all overhang cases, which allows us to correct about 80% of the 
surface errors (with an assumption that everything else is ideal) in a single CCOS process. It 
means that more than 99% of the initial surface errors can be corrected in 3 CCOS runs. 
Improvement in convergence rate for the residual surface form error is directly related to more 
efficient time management and lower cost for large optics fabrication projects. Its significance 
would be even greater for segmented optical system projects, such as GMT [1] and JWST [2], 
which have more edges across the whole pupil. 
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