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Abstract. Rectangular pupils are employed in many optical applications such as lasers and anamorphic optics,
as well as for detection and metrology systems such as some Shack−Hartmann wavefront sensors and deflec-
tometry systems. For optical fabrication, testing, and analysis in the rectangular domain, it is important to have a
well-defined set of polynomials that are orthonormal over a rectangular pupil. Since we often measure the gra-
dient of a wavefront or surface, it is necessary to have a polynomial set that is orthogonal over a rectangular pupil
in the vector domain as well. We derive curl (called C) polynomials based on two-dimensional (2-D) versions of
Chebyshev polynomials of the first kind. Previous work derived a set of polynomials (called G polynomials)
that are obtained from the gradients of the 2-D Chebyshev polynomials. We show how the two sets together
can be used as a complete representation of any vector data in the rectangular domain. The curl polynomials
themselves or the complete set of G and C polynomials has many interesting applications. Two of those appli-
cations shown are systematic error analysis and correction in deflectometry systems and mapping imaging
distortion. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.58.9.095105]
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1 Introduction
Previous works highlight the importance of fitting vector
slope data in the domain of measurement as well as using
orthonormal polynomials for the fitting.1–3 To summarize,
the fit to a nonorthogonal basis set can require many more
terms than are necessary, and expansion coefficients them-
selves are not meaningful, because the value for any particu-
lar coefficient changes as the number of expansion terms
changes. Also, when fitting to real data, the noise propaga-
tion is increased with the use of nonorthogonal basis func-
tions. It is generally simpler and more convenient to use
orthogonal polynomials, as they can easily be calculated
using the inner product.

In Ref. 3, Chebyshev polynomials are chosen for the basis
set from which we will derive the gradient and curl polyno-
mials. This reference also defines gradient polynomials,
denoted as the G set, which are generated from the gradients
of the Chebyshev polynomials of the first kind and are
orthogonal over a rectangle. As described in Refs. 3–6, these
polynomials can be used for reconstructing high-resolution
and free-form surfaces or fitting data from a Shack–
Hartmann sensor etc.

In this paper, we will define an additional set of vector
polynomials, defined locally as a rotation or a curl, that only
consist of terms with zero divergence. We explore the use of
these curl polynomials and describe how we can combine
them with the gradient polynomials to get a complete set of
orthogonal vector polynomials.

Consideration of the curl calculation is used in many areas
of optics ranging from vortex beams7,8 and lithography
photomasks9 to gravitational lensing.10 In each of these

cases, electromagnetic fields with nonzero curl components
are used to create or detect significant effects. In other cases,
expectation of zero curl in a vector field can improve signal
estimation in the presence of noise.11

The paper starts with background knowledge in Sec. 2,
such as the gradient polynomials and an introduction to the
two major applications covered in this work—deflectometry
and imaging distortion. Section 3 is dedicated to details of
the curl (C) polynomials, including their derivation and other
details. Section 4 talks about the practical applications and
uses of the G and C polynomials, and concluding remarks
are presented in Sec. 5.

2 Background

2.1 Chebyshev Polynomial and Gradient Polynomial
Basis

As described in Ref. 3, one can use two-dimensional (2-D)
Chebyshev polynomials of the first kind, as well as their
derivatives to easily generate orthogonal polynomial sets.

The polynomial basis function is defined as

EQ-TARGET;temp:intralink-;e001;326;213Fm
n ðx; yÞ ¼ TmðxÞTnðyÞ; (1)

where the one-dimensional (1-D) Chebyshev polynomials are
EQ-TARGET;temp:intralink-;e002;326;171

Tmþ1ðxÞ ¼ 2xTmðxÞ − Tm−1ðxÞ;
T0ðxÞ ¼ 1; T1ðxÞ ¼ x: (2)

The 2-D set is defined in both x and y on the interval −1 to
þ1, i.e., −1 ≤ × ≤ 1 and the same for y.12
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Another way to describe the Chebyshev polynomials is
using their definitions in terms of sines and cosines. This
definition, shown in Eq. (3), is useful if we want to prove
the orthogonality of the polynomials and to determine their
normalization factor.3

EQ-TARGET;temp:intralink-;e003;63;697TmðxÞ ¼ cos½m cos−1ðxÞ�: (3)

The details of these polynomial, their orthonormality, and
plots can be found in Ref. 3.

The derivatives of the 1-D Chebyshev polynomials are as
follows:
EQ-TARGET;temp:intralink-;e004;63;620

T 0
mðxÞ ¼

m½Tm−1ðxÞ − xTmðxÞ�
ð1 − x2Þ ;

T 0
nðyÞ ¼

n½Tn−1ðyÞ − yTnðyÞ�
ð1 − y2Þ : (4)

The gradient polynomial set is defined as

EQ-TARGET;temp:intralink-;e005;63;533

~Gjðx; yÞ ¼ ~Gm
n ¼ ∇Fm

n ðx; yÞ

¼ ∂
∂x

Fm
n ðx; yÞîþ

∂
∂y

Fm
n ðx; yÞĵ: (5)

In terms of the 1-D Chebyshev polynomials and their
derivatives, the gradient polynomials can be written as

EQ-TARGET;temp:intralink-;e006;63;448

~Gm
n ðx; yÞ ¼ TnðyÞT 0

mðxÞîþ TmðxÞT 0
nðyÞĵ; (6)

where the conversion between the single index (j) and the
double indices ðn;mÞ can be found in Ref. 3. The notation
T 0 refers to the derivative of the T polynomial [as described
in Eq. (4)].

In terms of the recursive Chebyshev polynomials, the
gradient polynomials can be written as
EQ-TARGET;temp:intralink-;e007;63;349

~Gm
n ðx; yÞ ¼

m
2yð1 − x2Þ ½Tnþ1ðyÞ − Tn−1ðyÞ�

× ½Tm−1ðxÞ − xTmðxÞ�î
þ n

2xð1 − y2Þ ½Tmþ1ðxÞ − Tm−1ðxÞ�

× ½Tn−1ðyÞ − yTnðyÞ�ĵ: (7)

The orthogonality and normalization factors are given as

EQ-TARGET;temp:intralink-;e008;63;232

Z
1

−1

Z
1

−1
½ ~Gjðx; yÞ: ~Gj 0 ðx; yÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q
dx dy

¼
�

0; j ≠ j 0

NG; j ¼ j 0 ; (8)

EQ-TARGET;temp:intralink-;e009;63;147

1

NG

Z
1

−1

Z
1

−1
½TnðyÞT 0

mðxÞîþ TmðxÞT 0
nðyÞĵ�

:½Tn 0 ðyÞT 00
m 0 ðxÞîþ Tm 00 ðxÞT 0

n 0 ðyÞĵ�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q
dx dy

¼ δmm 0δnn 0 ; (9)

where m, m 0, n, and n 0 are integers and NG is the normali-
zation factor, which is given by

EQ-TARGET;temp:intralink-;e010;326;741NG

8>><
>>:

π2n2
4

; m ¼ 0

π2m2

4
; n ¼ 0

π2

8
ðm2 þ n2Þ ; otherwise

: (10)

2.2 Deflectometry

Section 4 describes experimental verifications of the calcu-
lations using a method known as deflectometry. This section
provides a brief overview of that process.

Deflectometry is a non-null optical metrology method
that measures the local slopes on a test surface. The method
has been used extensively for precision metrology of sym-
metric and free-form optical surfaces.13–17 Because it is a
non-null test method, it is a desirable metrology tool for
free-form and nonaxisymmetric optics, as well as for metrol-
ogy during a fabrication process. In both cases, a single
deflectometry configuration can maintain testing of the unit
under test (UUT) without extensive changes. The measurable
surface area of the test optic and slope range, known as the
dynamic range, directly depend on the hardware configura-
tion. A deflectometry system utilizes an illuminating source
that emits light, sending some rays to the test optic, which are
then reflected and recorded by a camera. If a clear line of
sight can be made from a camera pixel to the test optic, then
the deflectometry system will be able to measure the local
slope distribution of the test optic.

In a deflectometry test, the positions of all components in
the system must be measured to high accuracy. For testing a
concave optic, the camera and source will typically be placed
close to the center of curvature (CC) of the optic to achieve
closer to a conjugate imaging condition to minimize the
required source area. The camera is focused on the test optic
surface, such that the camera pixels are mapped to the test
optic surface, with each pixel representing a “mirror pixel,”
or a finite local area over which the local slope will be mea-
sured. The source is then precisely modulated such that, for
every camera pixel, the precise location on the source that
satisfied peak illumination is known.

In visible deflectometry (∼400 to 700 nm), a common
source is a digital screen, which can display a phase-stepped
sinusoidal pattern in the horizontal and vertical directions.
This method, known as phase-stepping deflectometry, has
been explored extensively.18,19 Another option, which has
been used for infrared (IR) deflectometry in the ∼7 to
12 μm range as well as the visible range, is a scanning line
source, which is scanned in the horizontal and vertical
directions.20,21 In either case, by precisely knowing the start
location of a ray at the source, the local point of incidence on
the test optic surface, and the final detection point at the cam-
era, the local slope of the test optic can easily be calculated
using the law of reflection. The standard setup for a deflec-
tometry test of a concave test optic is shown in Fig. 1.

After measuring the local slopes of the test optic using a
deflectometry test, further processing is required to recon-
struct the optical surface shape. Typically, this includes fur-
ther processing to reduce systematic errors and an integration
of the local slopes to generate a final reconstructed surface.
The integration method can be a zonal22 or modal3 approach.
It is important to note that any uncertainty in the location of
all objects in a deflectometry test will reduce the slope esti-
mation accuracy.
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2.3 Imaging Distortion

Imaging distortion23 is a very common problem in optics. It
is a deviation from rectilinear projection. As a consequence
of distortion, the image magnification does not remain con-
stant. It either increases or decreases with distance from
the optical axis. Although most imaging systems suffer
from some amount of distortion, one case where it is very
significant is interferometric null testing of steep aspheric
surfaces.24,25 In most cases of imaging distortion, it is rela-
tively easy to quantify and find a mapping correction for
the distortion. The most common approach is to place a set
of fiducial markers on the optic being tested, which have
known, measured locations. The measured image will con-
tain the distorted positions of the fiducials. By constructing a
mapping model between the real and the measured fiducial
locations, distortion can be calibrated out of the system. One
of the ways to construct the mapping distortion model is to
use a polynomial fit. Reference 24 gives an example of im-
aging distortion and introduces a modal fitting method for it,
based on the S and T polynomials,1,2 which are a complete
vector domain set, based on the gradient and curl of Zernike
polynomials, respectively, and orthogonalized across a circu-
lar aperture. They can be used to represent any vector data in
the circular domain. In Sec. 4.2, we provide an example of
system distortion for a telescope and propose its fitting with
two vector polynomial-based methods—one using the S and
T and another, the G and C polynomials.

3 Curl Polynomial Set
It is known that vector fields can be uniquely specified by
giving their divergence and curl within a region and the nor-
mal component over the boundary. This leads to Helmholtz’s
theorem, which allows us to express the vector field (V) as
the sum of an irrotational (∅) and a solenoidal part (P), as
follows:

EQ-TARGET;temp:intralink-;e011;63;94

~V ¼ ∇∅þ ∇ × ~P: (11)

The divergence of the vector field is given as

EQ-TARGET;temp:intralink-;e012;326;741∇ · ~V ¼ ∇2∅: (12)

Its curl is given as

EQ-TARGET;temp:intralink-;e013;326;695∇ × ~V ¼ ∇ × ð∇ × ~PÞ: (13)

Since the G polynomials are defined as the gradients of
scalar functions, they have no curl component.

We want to derive another vector set (C polynomials) that
have zero divergence. So, C polynomial set has zero ∅, but
nonzero P. Hence it is defined as
EQ-TARGET;temp:intralink-;e014;326;604

~C ¼ ∇ × ~P ¼

�������
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

Px Py Pz

�������
: (14)

Like the G polynomials, the C polynomials are defined
in the x–y plane only. One way to do this is to use a
scalar φ, which is a function of x and y, to represent P as
follows:

EQ-TARGET;temp:intralink-;e015;326;492

~P ¼ φk̂: (15)

Then, the curl polynomials are given as

EQ-TARGET;temp:intralink-;e016;326;445

~Cn ¼ ∇ × φnk̂ ¼ î
∂φn

∂y
− ĵ

∂φn

∂x
: (16)

For the C polynomials, we can use the same basis func-
tions (F) that were used for generating the G polynomials.
Then, by Eq. (8), we know that the C polynomials will
be mutually orthogonal. Hence, we can also define them
as
EQ-TARGET;temp:intralink-;e017;326;345

~Cjðx; yÞ ¼ ~Cm
n ðx; yÞ ¼

∂
∂y

Fm
n ðx; yÞî −

∂
∂x

Fm
n ðx; yÞĵ;

~Cm
n ðx; yÞ ¼ TmðxÞT 0

nðyÞî − TnðyÞT 0
mðxÞĵ: (17)

The conversion between the double indices ðn;mÞ and
single index (j) is the same as for G polynomials.3

Here, ~Giðx; yÞ and ~Ciðx; yÞ are orthogonal to each other at
any point in a unity normalized rectangle for terms where the
Laplacian is nonzero.

Using Eqs. (2) and (4), we can define the C polynomials
in terms of the recursive Chebyshev polynomials of the first
kind as
EQ-TARGET;temp:intralink-;e018;326;187

~Cm
n ðx; yÞ ¼

n
2xð1 − y2Þ ½Tmþ1ðxÞ − Tm−1ðxÞ�

× ½Tn−1ðyÞ − yTnðyÞ�î
−

m
2yð1 − x2Þ ½Tnþ1ðyÞ − Tn−1ðyÞ�

× ½Tm−1ðxÞ − xTmðxÞ�ĵ: (18)

The orthonormality of the basis set is defined the same
way as with the gradient set:

Fig. 1 A deflectometry test utilizes a source, which emits rays that
strike a UUT and are reflected, after which some are detected by
a camera. For a concave test optic, the source and camera are placed
near the CC of the test optic. Then, by precisely measuring the loca-
tion of all components, the local slopes of the test optic can be output
by a deflectometry measurement.
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EQ-TARGET;temp:intralink-;e019;63;740

Z
1

−1

Z
1

−1
½~Cjðx; yÞ: ~Cj 0 ðx; yÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − y2

q
dx dy ¼

�
0; j ≠ j 0

NC; j ¼ j 0 : (19)

This can also be described as

EQ-TARGET;temp:intralink-;e020;63;701

1

NC

Z
1

−1

Z
1

−1

½−TnðyÞT 0
mðxÞĵþ TmðxÞT 0

nðyÞî�:
½−Tn 0 ðyÞT 0

m 0 ðxÞĵþ Tm 0 ðxÞT 0
n 0 ðyÞî�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
dx dy

¼ δmm 0δnn 0 : (20)

The normalization factor is the same as forG polynomials, as
given in Eq. (10).
EQ-TARGET;temp:intralink-;e021;63;618

NC

8>><
>>:

π2n2
4

; m ¼ 0

π2m2

4
; n ¼ 0

π2

8
ðm2 þ n2Þ; otherwise

: (21)

The derivation of orthonormality and how to get the nor-
malization factor is nearly identical to Ref. 3. Table 1 lists the
first 15 curl polynomials and Appendix 1 illustrates several
terms graphically.

Table 1 is simplified using the following relations:
EQ-TARGET;temp:intralink-;e022;63;496

T0ðxÞ ¼ 1; T0ðyÞ ¼ 1; T1ðxÞ ¼ x; T1ðyÞ ¼ y;

T 0
0ðxÞ ¼ 0; T 0

0ðyÞ ¼ 0; T 0
1ðxÞ ¼ 1; T 0

1ðyÞ ¼ 1: (22)

3.1 Two Sets to Completely Define a Vector Field

Similar to the circular case in reference 2, we can visualizeG
polynomials as irrotational vector fields, which have zero

curl everywhere, and C polynomials as solenoidal vector
fields, which have zero divergence everywhere. These two
fields have some overlap where both divergence and curl
are zero, which is known as the Laplacian vector field.
The overlapped area contains terms derived from the corre-
sponding scalar ∅ polynomials (in our case, the 2-D
Chebyshev polynomials) whose Laplacian is 0. If ∅ (in our
case, F) represents wavefront, these terms correspond to a
wavefront with zero net curvature at any point in the pupil.

To completely specify the orthogonal rectangular domain,
we can combine theG and C polynomials, and to ensure that
the Laplacian is not counted twice, the C polynomial set
should be modified to only include the independent terms
(i.e., all C terms except the ones that are common with the
Laplacians). The Laplacian operator is defined as the diver-
gence of the gradient of a function. It can be calculated
empirically using the sine- and cosine-based definition of the
G polynomials,3 and it can be programmed numerically
using the recursive definitions. A simple implementation
would be to take the divergence of the G polynomials and
for the terms that equal zero, remove them from the com-
plete set.

Table 1 Curl polynomials in terms of Chebyshev polynomials of the first kind and associated derivatives.

m n ~Cj Simplified form Expressed as Chebyshev polynomials of first kind

0 0 ~C0 0î − 0ĵ 0

1 0 ~C1 −ĵ −T 0ðyÞ½T 0ðxÞ−xT 1ðxÞ�
ð1−x2Þ ĵ

0 1 ~C2 î T 0ðxÞ½T 0ðyÞ−yT 1ðyÞ�
ð1−y2Þ î

2 0 ~C3 −T 0
2ðxÞĵ −2 T 0ðyÞ½T 1ðxÞ−xT 2ðxÞ�

ð1−x2Þ ĵ

1 1 ~C4 −y ĵ þ x î −T 1ðyÞ½T 0ðxÞ−xT 1ðxÞ�
ð1−x2Þ ĵ þ T 1ðxÞ½T 0ðyÞ−yT 1ðyÞ�

ð1−y2Þ î

0 2 ~C5 T 0
2ðyÞî 2 T 0ðxÞ½T 1ðyÞ−yT 2ðyÞ�

ð1−y2Þ î

3 0 ~C6 −T 0
3ðxÞĵ −3 T 0ðyÞ½T 2ðxÞ−xT 3ðxÞ�

ð1−x2Þ ĵ

2 1 ~C7 −yT 0
2ðxÞĵ þ T 2ðxÞî −2 T 1ðyÞ½T 1ðxÞ−xT 2ðxÞ�

ð1−x2Þ ĵ þ T 2ðxÞ½T 0ðyÞ−yT 1ðyÞ�
ð1−y2Þ î

1 2 ~C8 −T 2ðyÞĵ þ xT 0
2ðyÞî −T 2ðyÞ½T 0ðxÞ−xT 1ðxÞ�

ð1−x2Þ ĵ þ 2 T 1ðxÞ½T 1ðyÞ−yT 2ðyÞ�
ð1−y2Þ î

0 3 ~C9 T 0
3ðyÞî 3 T 0ðxÞ½T 2ðyÞ−yT 3ðyÞ�

ð1−x2Þ î

4 0 ~C10 −T 0
4ðxÞĵ −4 T 0ðyÞ½T 3ðxÞ−xT 4ðxÞ�

ð1−x2Þ ĵ

3 1 ~C11 −yT 0
3ðxÞĵ þ T 3ðxÞî −3 T 1ðyÞ½T 2ðxÞ−xT 3ðxÞ�

ð1−x2Þ ĵ þ T 3ðxÞ½T 0ðyÞ−yT 1ðyÞ�
ð1−y2Þ î

2 2 ~C12 −T 2ðyÞT 0
2ðxÞĵ þ T 2ðxÞT 0

2ðyÞî −2 T 2ðyÞ½T 1ðxÞ−xT 2ðxÞ�
ð1−x2Þ ĵ þ 2 T 2ðxÞ½T 1ðyÞ−yT 2ðyÞ�

ð1−y2Þ î

1 3 ~C13 −T 3ðyÞĵ þ xT 0
3ðyÞî −T 3ðyÞ½T 0ðxÞ−xT 1ðxÞ�

ð1−x2Þ ĵ þ 3 T 1ðxÞ½T 2ðyÞ−yT 3ðyÞ�
ð1−y2Þ î

0 4 ~C14 T 0
4ðyÞî 4 T 0ðxÞ½T 3ðyÞ−yT 4ðyÞ�

ð1−y2Þ î
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As with the gradient polynomials, each term is a combi-
nation of two terms, both containing one Chebyshev poly-
nomial and one Chebyshev polynomial derivative terms
each. Appendix 1 gives the quiver plots of the first few non-
trivial curl polynomials.

3.2 Data Fitting in the Rectangular Domain

Both G and C polynomials (like the 2-D Chebyshev poly-
nomials of the first kind, from which they are derived) are
orthogonal in the rectangular domain.3 If data are taken over
a nonsquare rectangular domain, the longer normalized
dimension will span the full range of −1 to 1, whereas the
shorter dimension will be scaled proportional to its relative
size to the longer dimension. The actual implementation of
this depends on the user. References 3 to 5 contain examples
of surface and wavefront reconstructions using the G poly-
nomials over nonsquare rectangular domains. It is expected
that data fitting over a nonsquare rectangular domain would
require more terms than the same data over a square domain
of the same total area.

As a demonstration, simulated curl data were generated
over a square domain, with 600 × 600 pixels. A square por-
tion of 200 × 200 pixels and a rectangular portion of 400 ×
100 pixels were cropped out to represent the same area but
different aspect ratio domain cases. Both data sets were fit
by the same number of C polynomials and fitting residual
results were compared in terms of percentage root mean
square (RMS) error, which is defined as

EQ-TARGET;temp:intralink-;e023;326;752Percentage RMS error ¼ ½RMS ðfitted data

− simulated dataÞ∕RMS ðsimulated dataÞ� × 100½%�:
(23)

It is observed that the percentage RMS error is higher for
nonsquared data, as compared to squared data case, for the
same number of fitted polynomials. For example, when the
first 50 C polynomials are used, the percentage RMS error
for square domain and nonsquare domain data are 0.8% and
1.4%, respectively. Figure 2 shows the downsampled quiver
plots (1.5× magnified for ease of viewing) of the square and
nonsquare domain simulated data and the reconstructions,
using the first 50 C polynomials in each case. Also, Table 2
presents the change in percentage RMS error as a function of
the fitted C polynomial numbers. However, it is worth noting
that the specific number of required terms also depends on
the frequency content of the given data to fit. The presented
result in Fig. 2 and Table 2 is only an example and not a
generalized conclusion.

4 Employing the Vector Polynomial Set in
Practical Applications

4.1 Deflectometry Data Analysis Using
C Polynomials

To demonstrate the vector polynomial’s fitting ability for a
misaligned optical testing case, a highly free-form Alvarez
lens, as shown in Fig. 3, is measured using a phase-shifting
deflectometry setup, as described in Sec. 2.2. The Alvarez

Fig. 2 Downsampled, 1.5× magnified quiver plots from (a) simulated nonsquare domain data, (c) fitted
nonsquare domain data (using the first 50C polynomials), (b) simulated square domain data, and (d) fitted
square domain data (using the first 50 C polynomials).
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lens, made from a 1-in.-diameter substrate, was created using
a diamond-turned computer-numeric control process. The
process was set to generate a 6-mm central aperture inside
of the disk, having 17 μm of horizontal coma and −17 μm
of 45-deg trefoil, described as Zernike polynomials. A liquid
crystal display was utilized as the source and was mounted
in place above the Alvarez lens. A camera manufactured
by Point Grey was additionally mounted in place above the
Alvarez lens. The Alvarez lens was placed on a precision
manual rotation stage, with rotation accuracy of �0.05 deg.
The clear aperture of the Alvarez lens for this measurement
setup was a square of length 5.6 mm, thus modeling the case
of a rectangular domain, as a rectangular aperture free-form
optic was not readily available for testing. This being said, it
must be noted that free-form rectangular optics are becoming
increasingly common, with cases such as augmented reality
lenses and telescopes utilizing such optics.26 The goal of
this example is to demonstrate the data-processing capability
using real data from an optical component in the rectangular
domain.

To test the optic, a deflectometry measurement was taken
at a 0-deg clocking position for the Alvarez lens. Next, the
Alvarez lens was rotated and measurements were taken at
every 0.5 deg clocking of the lens.

The goal is to be able to successfully check for nonortho-
gonality error of the deflectometry setup and be able to deter-
mine the amount of error (i.e., degree of misclocking) so it
can be corrected/accounted for.

First, we construct a “clocking error” model based on
known clocking errors from the setup. We first measure the
gradients when the Alvarez lens is set to 0 deg. Then, we start
to rotate the optic by known amounts and collect the slope

maps for all the rotations. Next, we only use the x-gradient
map from the rotated sets, and all the y-gradients are the
unrotated y-gradient, i.e., the y slope at 0 deg. This simulates
the situation when the system is set up in such a way that the
x and y slopes are not taken at a 90-deg angle but have some
misclocking between them. A practical example of this could
be the nonorthogonality between the position of the scanning
hot wire (line source) in the two scanning directions (x and y)
for the case of IR deflectometry.20

In this example, we are simulating a situation where the
system is set up such that there is nonorthogonality between
the x and y slope measurements. Since this nonorthogonality
is a system-based error alone and is not associated with the
scalar Alvarez lens surface itself, we use only C polynomials
to model the impact on the acquired slope data. The ideal
slope data from a scalar surface (e.g., Alvarez lens surface)
should have zero curl components; thus, the C polynomial
fit to an acquired data set affected by the measurement un-
certainty in the scanning axis can be used as a direct indi-
cator to diagnose, sense, and calibrate the measurement axis
uncertainty.

For this experiment, measurements were made every
0.5 deg from 0 deg to 2.5 deg. These data sets were fitted
with the first 50 C polynomials. The following equation sets
were used for fitting (which is very similar to data fitting for
G polynomials).

If the curl of the lens surface is represented by ∇ ×W,
then ak is the expansion coefficient of the C polynomial set
(whose terms are represented by Ck) and N is the number of
coefficients used in the fitting, which, in this example, is 50.

EQ-TARGET;temp:intralink-;e024;326;422∇ ×Wðx; yÞ ¼
XN
k¼1

ak ~Ck: (24)

Since we are dealing with discrete data, we can write
Eq. (24) as

EQ-TARGET;temp:intralink-;e025;326;353R ¼ ~Ca; (25)

where R is a column vector of P data values, a is a column
vector containing the N expansion coefficients, and C is a
P × N matrix representing the values of the C polynomials
at the locations of the data points.

The coefficients can then be found using a pseudoinverse

EQ-TARGET;temp:intralink-;e026;326;266a ¼ ð~CT ~CÞ−1 ~CTR: (26)

Table 2 Percentage RMS error comparison for nonsquare and
square domain cases, as a function of the number of C polynomials
used in the fitting.

No. of C polynomials

Percentage RMS error (%)

Nonsquare domain Square domain

10 60.0 24.0

15 35.5 3.0

25 2.9 1.4

50 1.4 0.8

Fig. 3 (a) The Alvarez lens (b) with a clear aperture of 5.6 × 5.6 mm2 was designed to have only hori-
zontal coma and 45-deg trefoil. Phase-shifting deflectometry was used to measure (c) the clear aperture
lens area at various clocking positions.
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Based on the polynomial terms, which stood out from all
the processed measurements and showed a steady change
(increase or decrease) as the misclocking between the two
slopes increased, we constructed a model that predicted the
slope clocking mismatch between the x and y slopes when an
“unknown” misclocking was introduced.

TheC polynomials used in the analysis were 1, 2, 4, 8, 11,
13, and 17. Figure 4 shows the change in polynomial values,
as misclocking is increased. The absolute value of the poly-
nomials at each misclocking angle is not important. What
matters is their relative values. These results were input to
a least-squares fit model, where a linear combination of each
of these polynomial terms was used to calculate an overall
transformation matrix. When an unknown deflectometry
measurement is taken, it can be decomposed into the first
50 (or fewer) C polynomial terms. Values for C polynomials
are used to calculate the coefficients of the transformation
matrix, which is the predicted clocking for the input meas-
urement. The following equation can be used to visualize this
fit mathematically:

EQ-TARGET;temp:intralink-;e027;63;301R¼a1C1þa2C2þa4C4þa8C8þa11C11þa13C13þa17C17;

(27)

where R is the rotation angle vector of the unknown clocking
error, ak are the expansion coefficients of the C polynomials
[as described in Eq. (24)], and Ck are the specific C poly-
nomials we have considered in this model.

To test the model, we used two measurements—one at
0.6 deg and the other at 2.3 deg. Table 3 shows the error
between the predicted and the actual misclocking. Both pre-
dictions showed good agreement with the actual values.
Figure 5 shows the value of select C polynomials for the data
used for constructing the model, as well as the two trial
clocked data sets (0.6 deg and 2.3 deg).

4.2 Imaging Distortion Modeling Using
G and C Polynomials

For this case study, as shown in Fig. 6(a), we use a retrace-
able distortion map, as shown in Fig. 6(b), from a standard
Zemax library model of a three-mirror anastigmat (TMA)

with rectangular aperture. The TMA camera system param-
eters are listed in Table 4, and its optical layout is shown
in Fig. 6(a).

The distortion map is fit in two ways and compared: one
using the G and C polynomials and the other using Zernike-
based S and T polynomials.1,2 Since Zernike polynomials, as
well as both S and T basis sets, are orthogonal over a unit
circle, and in this example we have rectangular data, the use
of Zernike-based polynomial set is not ideal to represent/
model the distortion vector distribution. This is not a problem
for the G and C polynomial sets because of their orthogon-
ality in the rectangular domain. For simple distortion, which
is simulated without noise, the corner points are not likely to
have a significant impact on fitting performance. However,
in practical systems with noise, the removal of points for
Zernike-based fitting can lead to inaccurate results.

For both polynomial sets, the first 12 (6 gradient and
6 curl) polynomials were chosen. It was ensured that the
common terms in both sets (i.e., for which the Laplacian
are zero) were only counted once. Reference 2 lists the first
12 nontrivial T polynomials, as well as the Laplacian = 0
terms for those 12 terms, so these were selected. For the
Zernike-based fit, we used terms 2 to 7 of the S polynomials
and terms 4, 7, 8, and 11 to 13 of the T polynomial set.
Terms 1–6 of the C polynomials and terms 3 and 5–9 of the
G polynomials were used for the Chebyshev-based fit.

The RMS error, and percent RMS error, in x and y
positions, defines the residual error (from both fits). It is
calculated as

Fig. 4 Histogram of C polynomial coefficients (e.g., “C13” is the 13th
C polynomial term value C13) used in the analytical Alvarez lens
model, as a function of misclocking angles.

Table 3 C polynomial-based misclocking estimation performance
for Alvarez lens deflectometry data analysis case

True (T)
(deg)

Computed (C)
(deg)

Error (T − C)
(deg)

% Error
(%)

0.6 0.6024 −0.0024 −0.4000

2.3 2.3917 −0.0917 −3.9870

Fig. 5 Selected C polynomial terms (C2, C4, and C8) used in Alvarez
lens deflectometry misclocking modeling, shown as plots with lines.
Overlaid are corresponding C polynomial values from trial data sets
(0.6 deg and 2.3 deg), shown as large cross-shaped markers. This is
written in the legend as (for example): “R 0.6, C4” meaning the C4
polynomial coefficient for the trial data at 0.6 deg.
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EQ-TARGET;temp:intralink-;e028;63;340%Error

¼ 100% × ½RMS ðreal errorÞ∕RMS ðreference positionÞ�;
ð28Þ

where reference position is the ideal (simulated) distortion,
i.e., predicted real position from the distortion map.

As can be seen from the results in Fig. 7 and Table 5,
the G and C fitting provides more accurate representation
of the ideal distortion map, with lower errors in both x and
y positions.

A current literature search did not show an easy way to
find the overlapping (Laplacian = 0) terms for the S and T
polynomials beyond the 12 terms used in this example. To
keep consistency in the comparison, only 12 terms for the G
and C polynomials were also used, although we can easily
use many more terms and easily obtain the overlap terms
(through numerical programming, for example), thus reduc-
ing the error even further than shown in Table 5. Part of this
ease is due to the fact that the G and C polynomials are
obtained from direct derivatives of the scalar function (F),
whereas the S and T polynomials require additional manipu-
lation of their scalar (Zernike) basis set. Table 6 shows the
improvement in distortion correction as more terms of the G
and C polynomials are used, as well as the time taken for the

fitting (including polynomial generation). Note that the num-
ber of terms in this table refers to the total number ofG andC
polynomial terms, i.e., 20 terms would mean 10 G and 10 C
polynomial terms. The error reduction begins to saturate
around 50 terms (25 G and 25 C terms), as we are possibly
reaching the limit of numerical accuracy.

As a comparison, the Zernike-based (S and T polynomial)
fitting took about 0.11 s when the first 12 polynomials were

Fig. 6 (a) Schematic representation of the simulated TMA camera system in the Zemax library.26

(b) Distortion map for this system using 20 × 20 grid sampling with 15× arrow size magnification.

Table 4 Parameters of the simulated TMA camera system retrace-
able by accessing the standard Zemax library model.27

Parameters Values

Effective focal length (in air at
system temperature and pressure)

216.22 mm

Back focal length −383.78 mm

Image space F/# 1.53

Working F/# 1.56

Stop radius 35.36 mm

Maximum radial field 1.41 deg

Primary wavelength 1.00 μm –1 –0.5 0 0.5 1

–1

–0.5

0

0.5

1

Fig. 7 (a) Quiver plots from the TMA camera’s distortion fitting. Red
arrows are the ideal (i.e., simulated values), green arrows are results
from S and T fitting, and blue arrows are the results from G and C
fitting. The quiver plot is downsampled and arrows are magnified
1.5×. The x and y axes are normalized image plane coordinates
[the domain from Fig. 6(b) is normalized from −1 to þ1].

Table 5 Fitting performance comparison of the two vector polynomial
set cases to represent/model the TMA camera’s distortion map.

S and T polynomial
fitting

G and C polynomial
fitting

x position y position x position y position

Real error (μm) 0.593 0.654 0.255 0.285

% Error (%) 12.44 8.30 5.35 3.62
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used (results from Table 5). We would like to acknowledge
that the processing time depends on the specific numerical
implementation of the fitting method and may improve with
better algorithms. Although our implementation of either the
G and C or the S and T polynomial sets was not targeted for
optimum processing time, this example serves as a baseline
comparison for the two fitting methods.

5 Concluding Remarks
We have extended the previously defined set of vector
polynomials that are the gradients of a scalar function and
included an orthonormal set that has zero divergence every-
where and can be considered the rotation or curl. The scalar
function to generate the curl is the 2-D Chebyshev polyno-
mial of the first kind.

The combined set of gradient and curl polynomials (con-
sidering only the independent terms, i.e., where the common
terms having Laplacian = 0 are only counted once) is useful
for fitting any continuously differentiable vector functions in

the rectangular domain. In particular, it is useful in modeling
or fitting mapping distortions. Numerical examples prove
that the combined set works well to define a measured vector
field and can be used to easily calibrate out the misalignment
state of a deflectometry test configuration.

The orthogonality in the chosen domain is critical because
it allows specific G and C polynomial terms to be associated
with physical parameters of the system. If a nonorthogonal
basis set was chosen, the polynomial terms would lose their
meaning and so the system/systematic error analysis, as pre-
sented in Sec. 4, would not be possible. Second, both G
and C polynomial sets are simple and efficient to generate.
Although conceptually G and C polynomial generation is
similar to S and T (Zernike-based) polynomials, the details
of obtaining the gradient and curl sets from the scalar basis
set is different. While S and T polynomials require the gra-
dient and curl of Zernike polynomials to be orthogonalized
across a circular aperture (using the Gram–Schmidt ortho-
gonalization), the G and C polynomials can be obtained
more directly from the scalar Chebyshev basis set. One
implication of this could be the feasibility to generate many
high order terms, with accuracy and numerical efficiency.
This has many practical implications, such as representing
mid-to-high spatial frequencies,3,4 fitting free-form surfa-
ces,3,6 or analyzing vector data from surfaces with missing
data (such as optics with fiducials or scratches).

6 Appendix A
To visualize the C polynomials, quiver plots (made in
MATLAB) are provided for a few of the low-order, nontrivial
polynomials (Fig. 8). These plots represent the vector C pol-
ynomials as arrows, with one axis on each figure represent-
ing the x axis and the other representing the y axis.

Table 6 Residual error and processing time comparison as a func-
tion of the total number of G and C polynomials used to represent/
model the TMA camera’s distortion map.

No. of terms

% Error (%)

Time (s)x position y position

12 5.35 3.62 0.02

20 0.82 3.12 0.03

50 0.09 0.05 0.08
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Fig. 8 Quiver plots of a few nontrivial C polynomials.
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