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ABSTRACT  

The LSST M1/M3 combines an 8.4 m primary mirror and a 5.1 m tertiary mirror on one glass substrate. The combined 
mirror was completed at the Richard F. Caris Mirror Lab at the University of Arizona in October 2014. Interferometric 
measurements show that both mirrors have surface accuracy better than 20 nm rms over their clear apertures, in near-
simultaneous tests, and that both mirrors meet their stringent structure function specifications. Acceptance tests showed 
that the radii of curvature, conic constants, and alignment of the 2 optical axes are within the specified tolerances. The 
mirror figures are obtained by combining the lab measurements with a model of the telescope’s active optics system that 
uses the 156 support actuators to bend the glass substrate. This correction affects both mirror surfaces simultaneously. 
We showed that both mirrors have excellent figures and meet their specifications with a single bending of the substrate 
and correction forces that are well within the allowed magnitude. The interferometers do not resolve some small surface 
features with high slope errors. We used a new instrument based on deflectometry to measure many of these features 
with sub-millimeter spatial resolution, and nanometer accuracy for small features, over 12.5 cm apertures. Mirror Lab 
and LSST staff created synthetic models of both mirrors by combining the interferometric maps and the small high-
resolution maps, and used these to show the impact of the small features on images is acceptably small. 
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1. INTRODUCTION 
The LSST has a unique 3-mirror design with the 8.4 m annular primary (M1) and the 5.1 m tertiary mirror (M3) on the 
same glass substrate.[1] The combined mirror, shown in Figure 1, is a borosilicate honeycomb mirror that was cast and 
polished at the Richard F. Caris Mirror Lab.[2] The combined mirror design eliminates the need for active control of 
several alignment degrees of freedom in the telescope, and increases the stiffness of the annular primary mirror. 

The design also adds requirements to the manufacturing process. Co-alignment of the two mirrors on the substrate is 
critical. Use of active optics to control the shapes of the mirrors in the telescope is a more complex issue when two 
mirrors share the same substrate. Section 2 of this paper explains the use of active optics in the manufacturing process, 
and the ways we dealt with the additional constraints imposed by two surfaces that bend together. Section 3 describes the 
methods we used to polish and measure the mirrors. Section 4 presents the results of the final measurements. Section 5 
describes surface features that contribute to small-scale wavefront error, and the analysis that showed their impact on the 
images is acceptable. 

2. ACTIVE OPTICS IN THE MANUFACTURING PROCESS FOR LSST 
2.1 Low-order shape errors 

For LSST, bending of M1 and M3 are tightly coupled. The optimization of support forces must take into account the 
effect on both mirrors. Active optics is important to the manufacturing process as well as operation at the telescope. 
Even in the controlled lab environment, the substrate changes its shape by hundreds of nanometers due to force changes 
of several newtons and temperature gradients of tenths of a kelvin across the mirror. We can remove most of the effects 
by measuring the forces and temperature distribution, and compensating for them based on a finite element model. The 
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compensation reduces the effects of forces and temperature gradients, but it is not perfect and we sometimes see 
significant variations in the mirrors’ shapes. The variations are almost entirely low-order aberrations that can be 
eliminated with active optics.  

 

     
Figure 1.  Two views of the combined LSST M1 and M3 being polished. Left: 1.2 m stressed lap on M3 and 25 cm orbital 
lap on M1, with zirconium oxide polishing compound.  Right: stressed lap polishing M1 with rouge (iron oxide). 

2.2 Simulating the active-optics correction 

For optical testing in the lab, the mirror is on passive hydraulic supports with the same locations and the same nominal 
forces as the telescope’s active support system at zenith pointing. We cannot apply controlled bending with the passive 
supports, so we simulate the active correction that will be made at the telescope. We have previously demonstrated good 
agreement between the simulation and physical bending of the mirror for the MMT, Magellan and LBT primary 
mirrors.[3]-[7] The figure specification for the mirrors applies to the residual error after this simulated correction. In order 
to limit the range of force used to correct for manufacturing errors, the magnitude of forces in the simulated correction is 
limited to 20 N rms over the 156 actuators.  

The simulated active correction uses the 156 actuator influence functions computed from a finite element model. An 
influence function is defined as the change in the optical surface measurements of both mirrors, due to a unit change in 
force at an actuator. (The other actuators’ forces also change in order to balance the net force and moments.) The model 
gives the vector displacement of each point on the surface of both mirrors. The quantity we measure optically is the 
displacement normal to each surface, so we project the vector displacements onto the normal for each surface. This 
causes the influence functions to be discontinuous at the M1-M3 boundary. The optical measurements are insensitive to 
piston and tilt of each surface, so we ignore those components of the surface normal displacements. This adds to the 
discontinuities. Figure 2 shows influence functions for three actuators. 

The active-optics correction is a best fit of the influence functions to the measured surface errors on both mirrors. The 
coefficients of the influence functions give the actuator forces, and the residual error after the fit is the resulting error in 
the optical surfaces. We limit the magnitude of correction forces, and make the correction more stable, by using a limited 
number of substrate bending modes as opposed to letting all 156 actuator forces vary freely. Each bending mode is a 
combination of the 156 influence functions defined so the set of bending modes is orthogonal and ordered from most 
flexible (maximum ratio of rms surface normal displacement to rms force) to stiffest. For the final figure analysis we 
used 22 bending modes. Figure 3 shows three bending modes of the combined M1-M3. 
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2. Rigid-conformal (RC) laps[9],[10] containing a layer of non-Newtonian fluid between a stiff metal disk and (on the 
polishing side) a thin rubber diaphragm covered with synthetic polishing pads. We used RC laps with diameters of 
35 cm, 25 cm and 12 cm. All were used with an orbital polisher. 

3. Small pitch laps covered with synthetic polishing pads, also used with the orbital polisher. We used pitch laps with 
diameters of 10 cm, 7 cm and 5 cm. 

We used different polishing modes for the stressed lap and the smaller passive laps. The stressed lap travels over the full 
mirror surface many times in a polishing run, with dwell and lap rotation varying to remove selectively based on the 
current figure error. We sometimes varied the polishing pressure (lap force) and pressure gradients (moments applied to 
the lap) in proportion to surface error. The stressed lap is most valuable for large-scale figuring and smoothing on small 
scales. The orbital laps are used in a traditional computer-controlled polishing mode with dwell varying over a large 
dynamic range to give selective removal. This method is very deterministic and effective at controlling mid-scale 
structure.[10] 

For M1, most of the final figuring was done using the 80 cm stressed lap with pitch, and the 25 cm RC lap. For M3, 
when the mirror was nearly finished we noticed that a layer of nylon in the stressed lap was failing at multiple bond 
joints. (The nylon takes up the sag difference between the flat plate and the curved mirror. It was thicker for M3 with R = 
8.3 m, and therefore under greater stress due to plate bending, than for any mirror we had previously polished.) We did 
not use the stressed lap after that time. The final figuring was done with the 25 cm and 12 cm RC laps and the 10 cm and 
5 cm pitch laps, all with polishing pads. Losing the stressed lap near the end of processing M3 had an effect on the final 
surface quality, discussed in Section 5. The stressed lap was the most efficient tool for smoothing out small-scale 
features. With the more flexible RC laps and the small pitch laps, we were able to improve the mid-scale figure but did 
not achieve as much removal or smoothing as we would have with the stressed lap. 

3.2 Testing 

Ref. [11] describes the measurements in detail. We used an 
interferometer and null corrector for center-of-curvature tests 
of each mirror. The test systems were at different stations 
because of the different radii of curvature, R = 19.8 m for M1 
and 8.3 m for M3. The M3 test system was between M1 and 
the M1 test system, so its bridge caused a partial obscuration of 
M1 if the mirrors were measured at the same time. The M3 
bridge was deployable so it could be removed to allow an 
unobscured test of M1. Figure 4 shows the two test systems in 
position for measurements in the test tower. 

We used both simultaneous and sequential tests to show that 
M1 and M3 meet their figure specifications with the glass 
substrate in the same state, i. e. after a single active-optics 
correction for the mirror substrate, taking account of shape 
changes for both mirrors. Before simulating the active-optics 
correction, we corrected the measured shape of each mirror for 
support force errors and temperature gradients at the time of 
each measurement, as described in Section 2.1.  

We used a nearly simultaneous sequential test to demonstrate 
that both mirrors fully meet their figure specifications after a 
single active-optics correction. We measured M1, then inserted 
the M3 test optics to measure M3, then removed the M3 test 
optics to measure M1 again (the 1-3-1 test). We averaged the 
two measurements of M1, combined the result with the single 
measurement of M3, and used these maps as input to the 
active-optics correction of the substrate. The three 
measurements were done in a period of about 90 minutes, so 
the substrate experienced little change due to varying support 
forces and temperature gradients. Averaging the initial and 

 
Figure 4. View of LSST test optics looking up 
into test tower from edge of mirror. Lower 
(closer) bridge contains M3 null test and upper 
bridge contains M1 test. 
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final measurements of M1 nearly eliminates the linear component of any temporal drifts.  

To confirm that the 1-3-1 test accurately represents the shape of both mirrors with the substrate in the same state (same 
support forces and temperature gradients), we made several simultaneous measurements. The partial obscuration of M1 
in the simultaneous test compromised the small-scale accuracy in some parts of the mirror. Changes in the state of the 
substrate affect the large-scale shape of both mirrors but have essentially no effect on small-scale structure. The 
simultaneous tests agreed with the 1-3-1 test in the large-scale shape of both mirrors after the active-optics correction, 
within the tolerance on figure error. They confirmed that both mirrors meet their figure specifications with a single 
active-optics correction. 

The null corrector for M1 is a 2-element Offner null lens. The corrector for M3 is a computer-generated hologram 
(CGH). We confirmed the accuracy of each null corrector by measuring a validation CGH that mimics a perfect mirror. 
The validation holograms are designed and manufactured independently of the null correctors; they depend only on the 
mirror prescriptions. We estimate that the validation holograms are slightly more accurate than the null correctors, so we 
used them to calibrate the null correctors and applied a small correction to the measurement of each mirror surface. 

We used two, largely independent, methods of measuring each mirror’s radius of curvature. The primary measurement 
(the more accurate measurement) used a laser tracker to measure the distance between the mirror and the validation 
hologram. The secondary measurement used a steel tape to measure the distance. We also had two independent 
measurements of each mirror’s conic constant. Both were based on the measured wavefront error; spherical aberration in 
the wavefront indicates an error in conic constant. The primary measurement used the measured wavefront after 
correction based on the validation hologram. The validation hologram is therefore the primary standard for conic 
constant. The secondary measurement used the measured wavefront determined by the null corrector without the 
correction. The null corrector is the secondary standard for conic constant. 

We measured the positions of the two mirrors’ optical axes by rotating the mirror around its mechanical axis defined by 
the outer diameter. For each mirror, the change in coma between a measurement with the mirror at its standard 
orientation and a measurement with the mirror rotated 180° is proportional to the displacement of the optical axis from 
the mechanical axis.  

The two remaining alignment parameters are the axial displacement between the vertices of the two mirrors and the 
relative tilt of the two surfaces. They were measured by scanning the combined surface with a laser tracker. 

4. RESULTS OF FINAL TESTS 
We made the final interferometric measurements on October 19-22, 2014. Figure 5 shows the surface errors on M1 and 
M3, before and after the simulated active-optics correction. In order to illustrate the active-optics correction we combine 
the two data sets (M1 and M3) into a single plot. Three pairs of before and after maps are shown, obtained on different 
days. The maps before correction show how the figure can change from day to day due to variations in support forces 
and temperature gradients. But the maps after correction are identical within the tolerance on figure error. In all cases the 
active-optics correction uses forces are well below the 20 N rms allowance. 

Figure 6 shows the averages of the final maps of M1 and M3 after the active-optics correction. The rms surface errors 
over the specified apertures are 19 nm for M1 and 18 nm for M3. The figure specifications are structure functions, 
giving the allowed error as a function of spatial scale. We plot the square root of the structure function, defined as the 
rms wavefront different between pairs of points in the aperture as a function of their separation. Figure 7 shows the 
structure functions computed from the average maps. In addition to the measured structure function, we show the 
specification for the mirror figure and a slightly tighter tolerance (not a contractual specification) for the measured 
figure. The tolerance for measured figure includes a conservative estimate of repeating errors in the test, which would 
cause us to figure the mirror to an incorrect shape, i. e. the measured figure would be better than the actual figure. The 
structure function plots show that the surface errors meet the requirements, including the conservative estimate of 
repeating errors in the test.  
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Figure 5.  Final set of maps of M1 and M3. Left column is before active-optics correction; right column is after. Each row is 
measured on a different day. Color bars show surface error in nm. 
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Figure 12.  SPOTS maps of a crow’s foot in M1 (left) and one in M3 (right), both classified as 9 mm long in the visual 
survey. Color bars show surface error in nm. The SPOTS aperture is 12.5 cm diameter. 

5.5 Synthetic maps including crows’ feet 

The structure function specification is based on the wavefront distorted by the atmosphere, and it is appropriate for 
mirror figure errors whose distribution (area covered vs. magnitude of error) is similar to that of the atmospherically 
distorted wavefront. A distribution with a small fraction of the area having extreme values of surface error may have a 
large effect on the structure function even if the effect on the image is small. To assess the impact of crows’ feet on 
telescope performance, we evaluated the point-spread function (PSF) for a model of the mirror surfaces including a high-
resolution representation of the crows’ feet. We used diffraction analysis to compute the PSF and encircled energy for 
this model. 

We used SPOTS to measure a representative sample of 19 crows’ feet on M1 and 22 crows’ feet on M3. The sample 
includes crows’ feet whose lengths l, based on the visual survey, cover the range from 6 mm to 30 mm. The sample 
includes all crows’ feet with l ≥ 20 mm. For each mirror we made a library of SPOTS maps of crows’ feet, covering the 
full range of lengths.  

We created synthetic maps of M1 and M3 by adding SPOTS maps to the interferometer maps. At the location of each 
crow’s foot with l ≥ 5 mm, we added a SPOTS map. If there was a SPOTS map of that particular crow’s foot, we used it. 
If not, we used a SPOTS map from the library for a crow’s foot of the same length within 1 mm. Several SPOTS maps 
contain two crows’ feet—these were used only at the actual location of those crows’ feet—so the number of SPOTS 
maps added is less than the number of crows’ feet. The synthetic map of M1 has 106 SPOTS maps added to the 
interferometer map, and the synthetic map of M3 has 163 SPOTS maps added. 

We rotated each SPOTS map to the correct orientation before adding it to the interferometer map. To eliminate 
discontinuities at the edge of the aperture, which would put spurious structure into the PSF, we apodized each SPOTS 
map by multiplying by 1 – [r / (d/2)]2, with d = 12.5 cm. This reduced the structure in the crow’s foot (slightly, because 
most crows’ feet are near the center of the map), so we rescaled the apodized map to recover the original rms surface 
error. 

Figure 13 shows the M1 interferometer map and the synthetic map of M1. The added SPOTS maps can barely be made 
out in the synthetic map, and they do not change the rms surface error (22 nm). Figure 14 shows the M3 interferometer 
map and the synthetic map of M3. One can easily see the added SPOTS maps, and they change the rms surface error 
from 19 nm to 25 nm. 
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Figure 13. Interferometer map of M1 (left) and synthetic map with 106 SPOTS maps added to the interferometer map 
(right). Both maps are sampled at 2.67 mm spacing, but the display resolution is not adequate to show the structure in the 
SPOTS maps. The maps cover the full aperture, 2.533 m < r < 4.202 m. The color bars show surface error in nm. 

 
Figure 14. Interferometer map of M3 (left) and synthetic map with 163 SPOTS maps added to the interferometer map 
(right). Both maps are sampled at 1.25 mm spacing, equivalent to 2.67 mm in the pupil, but the display resolution is not 
adequate to show the structure in the SPOTS maps. The maps cover the full aperture, 0.534 m < r < 2.533 m.  

5.6 Impact of the crows’ feet 

We evaluated the effect of the crows’ feet on the image over a 39 arcsecond field, at a wavelength λ = 500 nm. We 
sampled the wavefront error in the pupil at 2.67 mm spacing, giving a field of λ / (2.67 mm) = 39 arcsecond. The SPOTS 
maps have 0.18 mm sampling, while both interferometers have about 10 mm sampling on the mirror surface. For M3 
this is equivalent to 21 mm sampling in the pupil. The field of the PSF calculation therefore extends beyond any 
structure that can come from the interferometer maps, but the SPOTS maps have more than adequate sampling for the 
PSF calculation. 

To compute the PSF at a particular field angle, we added the synthetic maps of M1 and M3, taking account of the 
mapping of the pupil onto M3, which varies with field angle. We did not include the wavefront error inherent in the 
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optical design, which is insignificant in 0.6 arcsecond seeing. We used field angles of 0, 1.225° and 1.75° based on 
LSST system requirements. For a field angle of 0, the pupil covers only a 3.6 m diameter on M3, missing the outer part 
where the density of crows’ feet is highest. This can be seen in Figure 15. The 1.75° field angle includes the most area 
near the edge of M3, so it is most affected by the crows’ feet. All the results we present are for a field angle of 1.75°. 

 

  
Figure 15.  Synthetic map of M3 including 163 SPOTS maps, mapped onto the pupil for field angle = 0 (left) and field angle 
= 1.75° (right). The black circles indicate the inner and outer boundaries of the pupil. Vignetting by M2 is ignored. 

All PSFs shown here include 0.6 arcsecond seeing, using the standard Kolmogorov model. We computed the PSF for 
seeing as the Fourier transform of the autocorrelation function a of the complex field, a function of the separation vector 
s in the pupil. The autocorrelation function is related to the phase structure function δ2 as ܽ(ݏ) = exp	(−ߜଶ(ݏ)/2), 
where s is the separation vector in the pupil. We convolved this PSF with that of the mirror by multiplying their Fourier 
transforms. 

PSFs are displayed with units of fraction of total energy per square arcsecond, so ∬PSF	݀θ݀φ = 1 when the angles θ 
and φ are in arcseconds. 

Where noted, the PSFs include the wide-angle scattering known as the aureole[13],[14] as well as the 0.6 arcsecond 
Kolmogorov seeing. We modeled the aureole as a constant 4×10-5 of the energy per square arcsecond out to a radius r = 
5 arcsecond, and decreasing as r-2 for r > 5 arcsecond.  

We first give results for PSFs that include 0.6 arcsecond Kolmogorov seeing plus the aureole. In order to isolate the 
impact of the crows’ feet, we computed the PSF for three cases: perfect mirrors, M1 and M3 surface errors given by the 
interferometer maps only, and M1 and M3 given by the synthetic maps including SPOTS maps. M2 was ignored. Figure 
16 shows the average radial profiles for the three cases, and Figure 17 shows the encircled energy. The surface errors 
present in the interferometer maps have a small effect on the PSF that extends to about r = 4 arcsecond, limited by the 
sampling and resolution of the interferometers. Including the SPOTS maps transfers more energy from the core to the 
wings of the PSF. The fractional effect is small in the core but more significant in the wings. Compared with the PSF for 
perfect mirrors, the surface errors given by the interferometer maps decrease the central intensity by 6.3%. The surface 
errors given by the synthetic maps decrease the central intensity by 7.8% relative to perfect mirrors.  
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Table 3 lists the change in width and the change in brightness due to the addition of SPOTS maps. Results are very 
similar to those including the aureole. The SPOTS maps have no effect on the full width at half max. Adding the SPOTS 
maps increases the width by 1.5% at the 10-2 point and by 8% at the 10-4 point. Adding the SPOTS maps reduces the 
brightness in the core of the PSF by 1.4% at the center and by 1.5% at the half-max point, and increases the brightness in 
the wings by 4% at the 10-2 point (r = 1.05 arcsecond) and by 29% at the 10-4 point (r = 3.24 arcsecond). 

Table 3.  Width of the PSF at given fractions of the maximum, for the interferometer maps only and for the synthetic maps 
with SPOTS maps added; and change in brightness due to the addition of SPOTS maps, for the same fractions of the 
maximum. The PSFs include 0.6 arcsecond seeing, with no aureole. The fractions of maximum refer to the PSF based on the 
interferometer maps. 

amplitude 

full width to given amplitude 
change in 

brightness due to 
crows’ feet 

M1 and M3 
interferometers only 

M1 and M3 
interferometers + 

SPOTS 

half max 0.616” 0.616” -1.5% 

0.1 max 1.212” 1.216” -0.7% 

0.01 max 2.104” 2.134” 4.0% 

0.001 max 3.624” 3.772” 15.1% 

0.0001 max 6.488” 7.014” 28.9% 

 
These results show that including the high-resolution maps of crows’ feet has little impact on the images. In parallel with 
the analysis described here, LSST staff performed independent PSF computations based on the same model of crows’ 
feet that we presented.[15] Their analysis included computing the normalized point source sensitivity (PSSN). The 
conclusion of this analysis is that the impact of crows’ feet on the PSSN is well within the LSST system performance 
margins and will have negligible scientific impact. 

6. CONCLUSION 
The LSST primary-tertiary mirror has been completed and has been shown to give excellent performance and meet all 
specifications and requirements. Mirror Lab and LSST Project staff jointly validated the quality and performance of the 
mirror through measurements and analysis. This validation included a demonstration that both mirrors meet stringent 
figure accuracy specifications simultaneously. A simulated active-optics correction that takes account of the coordinated 
bending of both surfaces was used to guide the figuring of both mirrors and to demonstrate the simultaneous accuracy of 
both mirrors. Acceptance tests included interferometric measurements of the mirror surfaces, measurements of each 
mirror’s radius of curvature and conic constant, measurements of the relative alignment of the two surfaces, and analysis 
of the impact on performance of small surface features that were not well resolved by the interferometers. Following 
these tests and analysis, the LSST Project accepted the mirror and it was delivered to the Project. Figure 20 shows the 
mirror prepared for shipment, and the mirror being transferred from the polishing cell to the transport frame. 
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Figure 20. Left: LSST mirror covered with a protective film in preparation for delivery and shipment to its storage facility. 
Right: Mirror being lifted from its polishing cell prior to installation in the transport frame. The mirror is lifted with 36 
vacuum pads acting through the porous film. 
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