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Abstract
In this paper, we present a modal data processing methodology, for reconstructing high resolution surfaces from meas-
ured slope data, over rectangular apertures. One of the primary goals is the ability to effectively reconstruct deflectometry 
measurement data for high resolution and freeform surfaces, such as telescope mirrors. We start by developing a gradient 
polynomial basis set which can quickly generate a very high number of polynomial terms. This vector basis set, called the G 
polynomials set, is based on gradients of the Chebyshev polynomials of the first kind. The proposed polynomials represent 
vector fields that are defined as the gradients of scalar functions. This method yields reconstructions that fit the measured 
data more closely than those obtained using conventional methods, especially in the presence of defects in the mirror surface 
and physical blockers/markers such as fiducials used during deflectometry measurements. We demonstrate the strengths of 
our method using simulations and real metrology data from the Daniel K. Inouye Solar Telescope (DKIST) primary mirror.

Keywords Surface measurements, numerical approximation and analysis · Instrumentation, measurement, and metrology · 
Information processing · Deflectometry · Testing

1 Introduction

The Daniel K. Inouye Solar Telescope (DKIST) [2] will be 
to-date, the largest optical solar telescope ever built. It aims 
to provide vastly enhanced spatial, spectral and image reso-
lution. The telescope’s primary mirror is a 4.2 m aperture 
off-axis parabola. The surface quality specifications were 
quite challenging, particularly requirements for the sur-
face figure, irregularity and BRDF. In fact, this may be the 
smoothest large mirror ever made [19]. One big challenge 
with fabrication of such large, freeform mirrors is that the 
metrology method requires high dynamic range coupled with 
excellent resolution and accuracy.

One such metrology technique that has proven effective 
for measurement of such freeform surfaces is deflectometry 
[7, 12, 27, 28, 32]. Deflectometry measures the slope of the 
test optic surface in a very simple package, requiring only a 
light source and a camera.

To obtain a surface sag map from the slope data, integra-
tion must be performed either with a zonal approach such as 
Southwell integration [24] or a modal approach such as the 
one proposed in this paper.

We show how our particular modal reconstruction 
method, using our gradient polynomials can work well 
for large, freeform and especially high-resolution surfaces 
(e.g., DKIST) and also deal with some common metrology 
requirements for such projects. One of these requirements 
is a large dynamic range of slopes and local obscurations 
from small fiducials commonly placed on the surface of the 
mirror. These fiducials are used as reference markers and can 
significantly impact the reconstruction data.

Modal reconstruction methods have several advantages 
over zonal approaches in the sense that modal techniques 
are less sensitive to measurement noise, and the number 
of modes considered can be adapted to the problem [21]. 
Li et al. [13] have proposed a zonal integration method for 
deflectometry that shows better results than the traditional 
Southwell zonal integration method, especially for an une-
qually sampled grid and circular apertures. However, even 
their improved zonal method does not reach the accuracy 
achieved by modal fitting. In their experiment [13], the 
modal reconstruction result is closer to the interferometric 
result in terms of surface figure and RMS value.
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Numerous reports have detailed the advantages of fitting 
data directly in the slope domain. For instance, Zhao et al. 
[33] claim measured vector data (slopes) should be fit using 
vector polynomials. They also assert that it is preferable to 
fit data using vector functions that are orthogonal over the 
measurement domain for several reasons, including the fact 
that when fitting real data, noise propagation increases with 
the use of non-orthogonal basis functions. Our proposed 
polynomial set (G polynomials) are orthogonal vector poly-
nomials and thus have many nice features.

It must be stressed that this methodology was not devel-
oped to be a representation of balanced aberrations over a 
rectangular aperture. The aim of this paper is not to provide 
a modal solution to optical fabrication problems where aber-
ration analysis, based on the coefficients of the polynomial 
set, is critical. We use the modal fitting as an alternative 
to zonal integration, for the reasons discussed throughout 
this paper. Furthermore, the optical systems under consid-
eration in this work are neither rotationally symmetric, nor 
anamorphic.

It is not uncommon to see optical systems utilizing rec-
tangular apertures, as is the case for the Gaia telescope 
system [4, 20] or X-ray mirrors [29]. The high resolution 
deflectometry could easily be extended to metrology of solar 
panels and collectors, which have rectangular or non-circular 
aperture shapes, also. Although the proposed reconstruction 
is designed for rectangular datasets, the method is general 
enough to reconstruct other non-symmetric or freeform 
shapes. Freeform surfaces are gaining widespread atten-
tion because of their utility despite their manufacturing and 
metrology challenges [3, 8, 31].

This paper begins with a description of 2D Chebyshev 
polynomials, which can be obtained by taking the product 
of two Chebyshev polynomial sets representing the two Car-
tesian coordinate directions used to define a rectangle. It is 
important to define this set fully since it serves as the scalar 
basis for the proposed gradient (G) polynomials, defined 
in Sect. 2. The application of these polynomials to surface 
reconstruction for deflectometry applications is then dis-
cussed in detail.

Section 3 describes the data processing methodology 
used in the modal fitting approach, which employs the G 
polynomials (especially for high-resolution data). Sec-
tion 4 talks about infrared (IR) deflectometry, specifically 
for the DKIST. Section 5 provides detailed analysis of the 
reconstructions performed using the G polynomial approach 
as well as comparisons with the reconstructions obtained 
using the conventional Southwell zonal method. Concluding 
remarks are presented in Sect. 6.

2  Polynomial Basis

2.1  Scalar Polynomials

The Chebyshev polynomials of the first kind [35], in one 
dimension (1D) are defined by the recursion relation,

or via analytical expressions:

2-D scalar polynomials (F) are then defined as [15]:

where j is the polynomial number and m and n are indices 
representing the two dimensions of the polynomials.

The values of m and n are chosen such that for each 
order, m starts from the order number and goes all the way 
down to zero, while n starts from zero and goes all the way 
up to the order number. The conversion from single index 
(j), to double indices (m, n) has been made by using the 
following method:

For variable ‘a’ going from t to 0:

A visual representation and the mathematical expres-
sions of the first 15 F polynomials are given in Fig. 1 and 
Table 1, respectively. The 2D polynomial set is defined in 

(1)
Tm+1(x) = 2xTm(x) − Tm−1(x)

where T0(x) = 1, T1(x) = x, for − 1 ≤ x ≤ 1,

(2)Tm(x) = cos(m �), x = cos �.

(3)Fj(x, y) = Fm
n
(x, y) = Tm(x)Tn(y),

No. of terms (t) = order + 1,

m = a−1, n = t−a.

Fig. 1  Plots of 2D Chebyshev polynomials
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both the x and y directions on the interval from −1 to +1. 
These definitions are similar to those in Ref. [15].

Chebyshev polynomials have several interesting prop-
erties that make them attractive for data fitting, especially 
for discrete data. In addition to their orthogonal properties 
as defined in Refs. [15, 35], there are many cases in which 
the discrete orthogonality of Chebyshev polynomials can be 
shown to hold exactly [18]. For example Chebyshev poly-
nomials of the first kind, Tm(x), m = 0, 1, 2,… ,N  are 
orthogonal over the discrete point set comprising the zeros 
xN+1,m = 1, 2,… ,N + 1, of Tm+1(x) [1].

Additionally, Chebyshev polynomials can be used as an 
approximation to the minimax polynomial, for which the 
maximum value of the error between the function and its pol-
ynomial approximation, is a minimum within some specified 
range [5]. Also, of all expansions in terms of ultra-spherical 
polynomials, the Chebyshev series generally has the fastest 
rate of convergence [5].

2.2  Gradient Polynomials

Among the most valuable properties of Chebyshev polynomi-
als are the facts that their derivatives are orthogonal and they 
can be generated recursively. In 1-D, the gradients are given 
by,

(4)

T �

m
(x) =

m
[

Tm−1(x) − xTm(x)
]

(

1 − x2
) ,

T �

n
(y) =

n
[

Tn−1(y) − yTn(y)
]

(

1 − y2
) .

It is also interesting to note that the derivatives of the 
Chebyshev polynomials of the first kind are closely related 
to Chebyshev polynomials of the second kind [22], via the 
relation:

As for Chebyshev polynomials of the first kind, discrete 
orthogonality relations can be defined for the weighted 
Chebyshev polynomials of the second kind (where the 
weighting function is 

√

1 − x2 ) [18].
By taking the derivatives of the F polynomial set, the 

G polynomials are obtained as follows:

The G polynomials can be written in terms of the recur-
sive T polynomials as follows,

or in terms of Chebyshev polynomials of the second kind:

Table 2 lists the first 15 G polynomials and quiver plots 
of the first few non-trivial G polynomials are provided in 
“Appendix 1”. Orthonormality of the G polynomials is 
provided in “Appendix 2”. Each gradient term is a com-
bination of two terms, each containing one scalar Cheby-
shev polynomial ( Tm or Tn ) and one Chebyshev polynomial 
derivative term ( T ′

m
 or T ′

n
 ). This table was simplified using 

the following relations:

Both T and U polynomials have simple, recursive rela-
tionships [35]. Since the G polynomials can be expressed 
as a closed form equation involving the T and U polynomi-
als, it is very straightforward and computationally efficient 
to generate them. This is a significant advantage for data 
processing since it enables large numbers of terms of the 
polynomials to be evaluated efficiently and reliably even 
if computing resources are limited. For T polynomials, the 
difference between recursive and direct calculation is only 

(5)Um−1(x) =
1

m
T �

m
(x) =

sin(m �)

sin(�)
, x = cos �.

(6)

G⃗j(x, y) = G⃗m
n
(x, y) = ∇Fm

n
(x, y)

=
𝜕

𝜕x
Fm
n
(x, y)î +

𝜕

𝜕y
Fm
n
(x, y)ĵ,

G⃗j(x, y) = Tn(y)T
�

m
(x)î + Tm(x)T

�

n
(y)ĵ.

(7)

G⃗j(x, y) =
m

2y
(

1 − x2
)

(

Tn+1(y) − Tn−1(y)
)(

Tm−1(x) − xTm(x)
)

î

+
n

2x
(

1 − y2
)

(

Tm+1(x) − Tm−1(x)
)(

Tn−1(y) − yTn(y)
)

ĵ,

(8)G⃗j(x, y) = m Tn(y)Um−1(x)î + n Tm(x)Un−1(y)ĵ.

(9)
T0(x) =1, T0(y) = 1; T1(x) = x, T1(y) = y;

T �

0
(x) =0, T �

0
(y) = 0; T �

1
(x) = 1, T �

1
(y) = 1.

Table 1  2D Chebyshev polynomials

j m n Fj(x, y) Explicit form of Fj(x, y)

0 0 0 T
0
(x)T

0
(y) 1

1 1 0 T
1
(x)T

0
(y) x

2 0 1 T
0
(x)T

1
(y) y

3 2 0 T
2
(x)T

0
(y) 2x2 − 1

4 1 1 T
1
(x)T

1
(y) xy

5 0 2 T
0
(x)T

2
(y) 2y2 − 1

6 3 0 T
3
(x)T

0
(y) 4x3 − 3x

7 2 1 T
2
(x)T

1
(y)

(

2x2 − 1
)

y

8 1 2 T
1
(x)T

2
(y)

(

2y2 − 1
)

x

9 0 3 T
0
(x)T

3
(y) 4y3 − 3y

10 4 0 T
4
(x)T

0
(y) 8x4 − 8x2 + 1

11 3 1 T
3
(x)T

1
(y)

(

4x3 − 3x
)

y

12 2 2 T
2
(x)T

2
(y) (2x2 − 1)(2y2 − 1)

13 1 3 T
1
(x)T

3
(y) (4y3 − 3y)x

14 0 4 T
0
(x)T

4
(y) 8y4 − 8y2 + 1
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 10−11, for a polynomial order of 20,000, generated over a 
grid of 50,000 points.

3  High‑Resolution Gradient Data Processing 
Using G Polynomials

Modal integration using the G polynomials is discussed in 
detail by describing the reconstruction process step by step.

3.1  Modal Fit of Gradient Data

Assume the surface (or wavefront) can be represented as,

where aj are the expansion coefficients, which need to be 
determined for a given data set.

Similarly, to represent the measured gradient, the following 
relation can be employed:

(10)W(x, y) =

N
∑

j=1

ajFj,

where bk are the vector expansion coefficients of the G 
polynomials.

For discrete data, we can represent the modal fitting as 
a matrix [17]

where D is a column vector of P data values, b is a column 
vector containing the N expansion coefficients, and G is a 
P × N matrix representing the values of the G polynomials 
at the locations of the data points.

The coefficients can then be found using a pseudo-inverse:

These b coefficients and the associated G polynomi-
als represent a best-fit estimate of the surface we wish to 
reconstruct.

(11)∇W(x, y) =

N
∑

k=1

bkG⃗k,

(12)D = G⃗b,

(13)b =

(

G⃗TG⃗
)−1

G⃗TD.

Table 2  Chebyshev gradient 
polynomials

j m n Explicit form of G⃗j(x, y) G⃗j(x, y) in terms of Fj(x, y)

0 0 0 0î + 0ĵ 0

1 1 0 î T
0(y)[T0(x)−xT1(x)]

(1−x2)
î

2 0 1 ĵ T
0(x)[T0(y)−yT1(y)]

(1−y2)
ĵ

3 2 0 T �
2
(x)î 2

T
0(y)[T1(x)−xT2(x)]

(1−x2)
î

4 1 1 yî + xĵ T
1(y)[T0(x)−xT1(x)]

(1−x2)
î +

T
1(x)[T0(y)−yT1(y)]

(1−y2)
ĵ

5 0 2 T �
2
(y)ĵ 2

T
0(x)[T1(y)−yT2(y)]

(1−y2)
ĵ

6 3 0 T �
3
(x)î 3

T
0(y)[T2(x)−xT3(x)]

(1−x2)
î

7 2 1 yT �
2
(x)î + T

2
(x)ĵ 2

T
1(y)[T1(x)−xT2(x)]

(1−x2)
î +

T
2(x)[T0(y)−yT1(y)]

(1−y2)
ĵ

8 1 2 T
2
(y)î + xT �

2
(y)ĵ T

2(y)[T0(x)−xT1(x)]

(1−x2)
î + 2

T
1(x)[T1(y)−yT2(y)]

(1−y2)
ĵ

9 0 3 T �
3
(y)ĵ 3

T
0(x)[T2(y)−yT3(y)]

(1−x2)
ĵ

10 4 0 T �
4
(x)î 4

T
0(y)[T3(x)−xT4(x)]

(1−x2)
î

11 3 1 yT �
3
(x)î + T

3
(x)ĵ 3

T
1(y)[T2(x)−xT3(x)]

(1−x2)
î +

T
3(x)[T0(y)−yT1(y)]

(1−y2)
ĵ

12 2 2 T
2
(y)T �

2
(x)î + T

2
(x)T �

2
(y)ĵ 2

T
2(y)[T1(x)−xT2(x)]

(1−x2)
î + 2

T
2(x)[T1(y)−yT2(y)]

(1−y2)
ĵ

13 1 3 T
3
(y)î + xT �

3
(y)ĵ T

3(y)[T0(x)−xT1(x)]

(1−x2)
î + 3

T
1(x)[T2(y)−yT3(y)]

(1−y2)
ĵ

14 0 4 T �
4
(y)ĵ 4

T
0(x)[T3(y)−yT4(y)]

(1−y2)
ĵ
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3.2  Obtaining Scalar Coefficients Directly 
from Gradient Data

Based on the method employed in the circular vector data 
papers by Zhao and Burge [33, 34], a simple conversion 
from G polynomial coefficients to F polynomial coefficients 
(see Eq. 3) is derived.

Denoting sets of vector and scalar data as V and S, respec-
tively, the data sets can be expanded in terms of vector and 
scalar polynomial sets as follows:

where

Following the above definitions, the vector data can be 
expressed as,

Then, the coefficients of the scalar and vector polynomi-
als can be related as,

Thus, there is a one-to-one correspondence between the 
coefficient sets, which makes the G polynomials unique and 
powerful in terms of reconstructing surface/wavefront maps. 
Once the slope data is fit to G polynomials, the surface uses 
the same coefficients applied to the F polynomials defined 
in Eq. 3.

4  Deflectometry for DKIST

A deflectometry system is a metrology tool which directly 
measures surface slope of a test optic. Surface reconstruction 
therefore requires an integration routine such as the method 
discussed above. As we show in Sect. 5, G polynomials are 
a particularly useful method for reconstructing surface shape 
from a deflectometry measurement.

Two in-house deflectometry systems have been developed 
and utilized for situations requiring high spatial resolution 
and large dynamic range freeform surface metrology [28, 
30]. These systems are essentially computerized reverse 
Hartmann tests operating in the visible and long infrared 
wavelengths, and have been used to analyze high dynamic 
range tests of freeform surfaces [26]. A schematic of the 
infrared measurement scheme is shown in Fig. 2. A rectan-
gular tungsten ribbon is heated to create a long wave infrared 
source, and is scanned in the x and y orthogonal directions. 
The camera focused on the mirror surface, records the reflec-
tions from the test mirror surface for both scans, and by 

(14)V⃗ =
∑

bk
���⃗Gk ; S =

∑

akFk,

(15)��⃗V = ∇S ; ��⃗G = ∇F.

(16)��⃗V =
∑

bk
��⃗Gk = ∇S =

∑

ak(∇Fk) =
∑

ak
��⃗Gk.

(17)ak = bk. knowing the system geometry, the local surface slopes in 
the x and y directions are calculated.

In these systems, the measured slopes are integrated to 
obtain the sag map of the surface under test. While histori-
cally the slopes were integrated using a zonal method [24], 
a polynomial fitting method has also been attempted. The 
older polynomial approach proved impractical at providing 
high spatial resolution due to the inability to compute suf-
ficient number of terms.

4.1  DKIST Primary Mirror Metrology

The Daniel K. Inouye Solar Telescope (DKIST) is designed 
to provide greatly improved optical performance in imaging, 
and spatial and spectral resolution when measuring dynamic 
solar phenomenon.

The SLOTS system was used to guide fabrication of the 
DKIST primary mirror during the grinding phase. Over this 
period a 25 µm down to 12 µm loose grit abrasive was used 
to grind the mirror, and the root-mean-square shape error 
was reduced from 15 µm to less than 1 µm [10]. The DKIST 
primary presented a unique freeform shape to measure, 
being a 4.2 m off-axis parabolic mirror constructed from 
 Zerodur®. The full mirror specifications are provided in 
Table 3.

The SLOTS system used for testing consisted of a 4 mm 
wide tungsten wire which, when current was applied, would 
emit as a black body radiator. This wire served as the source 
for the deflectometry system. A micro-bolometer camera 
was utilized with an aperture diameter of 14 mm, and a peak 

Fig. 2  Schematic diagram of the SLOTS deflectometry concept. 
LWIR stands for long-wave infrared [11]

Table 3  DKIST 4.2 m primary mirror optical  parameters29

Optical parameters Value Note

Radius of curvature 16 m
Conic constant − 1.00 Parabolic
Off-axis distance 4 m From parent vertex
Clear aperture diameter 4.2 m
Aspheric departure ~ 9 mm Peak-to-valley
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absorption band of 7–11 µm. The camera and source were 
placed near the center of curvature of the DKIST primary 
mirror, at 17.1 m from the surface in a test tower. The wire 
was scanned in orthogonal x and y directions, and as long-
wave IR light was emitted from the wire it would reflect 
from the mirror surface and be recorded by the camera sys-
tem. Figure 3 shows the camera used with the SLOTS sys-
tem. The schematic of the entire system was shown in Fig. 2.

In order to obtain slope data the local slopes in both x 
and y were calculated by ray tracing from the wire, to the 
mirror surface, to a camera detector pixel. This process was 
performed for all camera pixels, which were mapped to the 
mirror surface and served as discrete ‘pixel’ areas on the 
mirror over which the local slopes in x and y were calcu-
lated. To achieve this, the Cartesian coordinates of the wire, 
camera, and mirror had to be known, as well as the camera 
mapping function. The Cartesian coordinates of all com-
ponents were measured by using a laser tracker [6], which 
provided accuracy in position to within 0.1 µm. Additionally, 
the wire position during scans in both the x and y directions 
was recorded, again with the laser tracker. To determine the 
camera mapping function, reflective fiducials were placed 
on the mirror and the centroid position of the fiducials was 
calculated with the SLOTS system. This was a key step in 
the calibration process, and also was one of the most time 
consuming steps as the fiducials had to subsequently be 
removed, due to the integration method used at the time for 
surface reconstruction, which could not account for miss-
ing data regions that the fiducials represented for the mirror 
surface. The calculated coordinates were compared with a 
laser tracker measurement of the true centroids to determine 
the camera distortion. With this information, along with the 
full system parameters, listed in Table 4, a theoretical cer-
tainty of 8.5 µrad could be achieved for the calculated local 
slopes [25].

Fabrication of the DKIST primary mirror was per-
formed by the College of Optical Sciences at the Univer-
sity of Arizona. During the fine grinding stage deflectom-
etry systems provided sub-micron accuracy for the entire 
non-specular, ground, freeform surface metrology [9, 11]. 
Multiple measurements were performed over the course 
of the mirror fabrication with this SLOTS system, and 
the raw data was all preserved. This served as an ideal 
source for real world slope data, which previously had 
been reconstructed into surface sag via a traditional South-
well integration [24] method.

To evaluate the novel modal reconstruction method, this 
raw slope data was reconstructed using the new G polyno-
mials based method, and is presented along with the origi-
nal surface reconstruction results. The data fitting method-
ology follows the procedure outlined in Sect. 3. Gradient 
data obtained from deflectometry is fit with the desired 
number of G polynomials, using Eqs. 12 and 13. Vector 
polynomial coefficients (referred to as ‘b’ in Sect. 3) thus 
obtained are converted to coefficients of the scalar poly-
nomials (called ‘a’ in Sect. 3). In the case of our basis 
sets, the scalar and vector coefficients have a one-to-one 
correspondence (as seen from Sect. 3.2). Lastly, the ‘a’ 
coefficients and scalar basis set (F) are used to obtain the 
measured surface, using Eq. 10.

5  Performance Analysis

To evaluate the proposed modal method, we analyze its 
performance using several simulated and actual data sets. 
We discuss the results in terms of several figures of merit, 
such as the fit accuracy, performance in the presence of 
noise, processing time and the effectiveness of reconstruc-
tion obtained with local obscuration cases.

It should be noted that all simulated data had gradi-
ents generated by MATLAB’s ‘gradient’ function. This 
function uses correlations between pixels to determine 
the local slope, and therefore exact reconstruction is not 

Fig. 3  The infrared microbolometer camera used with the SLOTS 
set-up

Table 4  Parameters in the DKIST SLOTS test

The surface is ground with 12 um grits (700 nm RMS roughness)

Parameter Value Unit

Power total consumed 44 W
Source surface area 6280 mm2

Source width 4 mm
Camera aperture diameter 14 mm
Camera focal length 35 mm
Detector pixel area 6.25 × 10−4 mm2
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possible unless the slope integration assumes the same 
correlations. Neither the Southwell nor G polynomial 
method assumes these specific correlations and therefore 
we do not expect perfect reconstruction even though the 
data is simulated.

5.1  Fit Accuracy

We describe the modal method’s reconstruction accuracy 
and compare its results to ideal or Southwell reconstructed 
data.

5.1.1  Fitting Accuracy Evaluation Using Synthetic (Ideal) 
Data

We start by demonstrating how a simulated data set can be 
reconstructed accurately using G polynomials. A data set 
described by the following equation was generated in MAT-
LAB in a 250 × 250 point grid:

The gradient of the data set was then reconstructed in 
two ways: modally using G polynomials (with the first 100 
polynomials) and zonally using Southwell integration. The 
reconstruction results are compared with the ideal (MAT-
LAB-simulated) surface in Fig. 4. Both results are nearly 
identical in this ideal case. The modal fitting residual error 
is 4.9799 × 10−4 µm (0.0108% error relative to the surface 
RMS of the ideal map) versus 5.1335 × 10−4 µm (0.0112% 
error relative to the RMS of the ideal map) for Southwell 
integration.

For this reconstruction, Southwell integration was a little 
faster, taking 0.389 s while G polynomial processing took 
0.830 s.

5.1.2  Fitting Accuracy Evaluation Using Actual (Measured) 
Data

To test practical applicability, we applied G polynomials 
to actual deflectometry data (2.4 × 2.4 m sub-area) [11, 27] 
which includes noise, uncertainties, and other measurement 

(18)

z(x, y) = 3.57x + 6.53x2 + 4.29y2 − 4.75y3 + 2.99(x3 + xy2)

− 2.95(2x4 + y4 + 2x2y2) + 1.21(x5 + xy4) + 0.89y5. errors. The analyzed data had an area of 201 × 201 pixels. 
The surface reconstruction was performed using the G poly-
nomials as well as the standard Southwell integration pro-
cess. The results of the two methods are compared in Fig. 5.

Even when only the first 37 terms of the G polynomi-
als are used, an RMS difference between the two meth-
ods of only 0.0183 µm is obtained. This corresponds to 
about 0.2327% of the RMS of the reconstructed surface or 
0.0478% of the 38.3154 µm surface. It took 0.153 s for the 
G polynomial reconstruction versus 0.238 s with Southwell 
reconstruction, making the modal method a bit faster in this 
case.

Predictably, increasing the number of G polynomials 
terms, increases the reconstruction performance, as shown in 
Table 5, which lists the RMS values of the difference maps 
between the modal and Southwell surfaces. The Southwell 
surface was used as the reference surface.

Fig. 4  Surface plots of a simu-
lated ideal surface, b G-polyno-
mial-reconstructed surface, and 
c Southwell integrated surface

Fig. 5  Comparison of a G-polynomial-reconstructed and b Southwell 
integrated surfaces

Table 5  RMS Values of the differences between the Southwell (i.e., 
reference) and modal reconstructions; generated using different num-
bers of modal terms

Number of G polynomials 15 50 150 500

RMS of difference map (µm) 0.0782 0.0095 0.0039 0.0021
[RMS of difference map/RMS 

of reference map] × 100 (%)
0.9943 0.1208 0.0496 0.0267
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5.1.3  Fidelity Check of Mid‑to‑high Spatial Frequency 
Reconstruction

To examine mid-to-high spatial frequencies, an arbitrary 
1.2 × 1.2  m sub-section of the measured DKIST high-
resolution data set was used. A high-pass Gaussian filter 
was applied to both the modally and zonally reconstructed 
surfaces, using SAGUARO data processing software [23], 
in order to focus on the high spatial resolution features in 
this case study. For the modal fit, a series of data sets were 
reconstructed, each of which was generated using a different 
number of G polynomials. These different high-pass-filtered 
G-polynomial surfaces are compared with the reference 
high-pass-filtered Southwell surface in Fig. 6.

From left to right in Fig. 6b–e (i.e., as the number of 
modal terms increases), the maps become less blurry and 
more high-frequency features become sharp and can be 
resolved. The graphs towards the right closely resemble the 
Southwell surface in Fig. 6a.

As expected, the representations of high frequencies 
improved as more terms were used for fitting. This finding 
emphasizes one of the critical advantages of the G polyno-
mial set over others, namely, the ability to generate many 
thousands of terms. The simple recursion relations ensure 
that it is easy and practical to generate all of these high-order 
terms.

In principle, this data set could have been reconstructed 
with other basis sets, such as a Zernike-basis vector set, 
orthogonalized over a rectangular pupil [14]. However, that 
does not have a straightforward closed-form relationship 
which makes it difficult to generate such extreme orders. 
For high-resolution and freeform optics metrology and 
data processing applications, it is essential to use a suffi-
cient numbers of polynomials. Additionally, there are sev-
eral potential problems in converting Zernike polynomials 
to their gradients, orthogonalizing the Zernike gradients 
over a rectangular aperture, and generating the conversion 
matrices for obtaining the scalar coefficients from the vector 
fitting. This process is cumbersome, and has the possibil-
ity to generate numerical errors, due to the several steps of 
computation, approximations and numerical truncations. As 
mentioned earlier, the metrology systems under considera-
tion here are neither rotationally symmetric nor anamorphic, 

so the balanced aberration representations of Zernike-type 
[14] or Legendre polynomials [16] are not necessarily valid.

5.2  Robustness Against Noise

This subsection describes the reconstruction performance in 
the presence of noise. Varying amounts of Gaussian white 
noise were added to the simulated ideal data set defined by 
Eq. (18). This “noisy” data was reconstructed using both 
the Southwell and modal (using the first 100 polynomials) 
approaches. In Fig. 7, the error in each reconstructed data 
set (difference between the ideal and reconstructed maps) 
as a percentage of the RMS of the ideal (noiseless) surface 
is plotted against the standard deviation of the added noise.

The polynomial fit error is smaller than the Southwell 
integration error for all noise levels. Furthermore, the per-
formance of the Southwell method decreases faster as the 
amount of noise increases. For example, when the standard 
deviation of the noise is 0.2 µm, the polynomial fit exhibits 
an error of about 0.1% (relative to the RMS of the ideal 
surface), while the Southwell fit exhibits an error of about 
0.5% (relative to the RMS of the ideal surface). These errors 
increase to 0.4% for the polynomial fit and 2.5% for the 
Southwell fit when the standard deviation of the noise is 
0.5 µm.

Fig. 6  a Reference high-pass-
filtered Southwell map and 
high-pass-filtered modal recon-
structed maps generated using b 
37, c 750, d 3000, and e 20,000 
polynomial terms

Fig. 7  Residual errors from surface reconstruction in the presence of 
various amounts of noise
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5.3  Reconstruction with Local Obscurations

When gradient data is processed using Southwell zonal inte-
gration, issues such as mirror/lens surface defects, distortion 
correction fiducials, non-uniform data point distribution due 
to imaging distortion, and the presence of multiple local 
clear apertures can cause local obscurations in the data. Any 
areas with missing data that are encountered during the inte-
gration process affect their surrounding regions. Although 
some numerical methods can be employed to reduce this 
effect (like replacing the missing data with zeros), the nature 
of the zonal approach fundamentally limits the reconstruc-
tion accuracy when a sub-region is not well-defined. In con-
trast, modal reconstructions are not significantly impacted 
by obscurations since they are based on overall views of 
the data.

For this analysis, a 250 × 250 pixel grid of synthetic 
data was simulated, and Fig. 8 shows the reconstruction 
results obtained when a small defect (a 90 × 2 pixel line 
of NaN (non-number) values, corresponding to an area 
of 90 × 2  mm) was added to this simulated data. After 

reconstructing the data set using both the Southwell and 
modal approaches (with 2000 polynomial terms), the differ-
ences between the results and the ideal scalar data are com-
pared. Large differences are observed near the missing data.

The simulated ideal surface has an RMS of 95.1220 µm. 
The Southwell residual error map (difference between 
Southwell reconstructed and simulated surfaces) has an 
RMS of 0.8387 µm (or 0.8817% relative to the RMS of 
the simulated surface), whereas the modal error map has 
an RMS of 0.0627 µm (0.0659% error relative to the simu-
lated surface. Thus, the residual error of the Southwell 
method is about 13 times higher than that of the modal 
method in this case.

Table 6 lists the RMS errors of the difference maps 
for the modal fits (i.e., the differences of the modal fits 
from the ideal surface) that were obtained using different 
number of polynomial terms. As expected, the RMS error 
decreases as the number of terms used in the expansion 
increases.

If an optic has multiple obscurations, Southwell zonal 
integration becomes more limited. Fiducials are one exam-
ple, and are typically created by placing physical markers 
on the surface of the optic, essentially blocking parts of 
it. Ref. [19] provides an example of using fiducials for 
system calibration as a step in deflectometry. An actual 
picture of the DKIST mirror with fiducials placed on it 
during metrology is shown in Fig. 8d [2]. In this analysis, 
we added a few rectangular masks modelling fiducial areas 
to the same data that were used to generate Fig. 7. Each 
mask had dimensions of 24 × 30 pixels, corresponding to 

Fig. 8  a Simulated ideal data 
with a 90 × 2 mm obscuration. b 
Southwell and c modal residual 
error maps (differences from the 
simulated map)

Table 6  RMS residual errors of the differences between the simulated 
and modal reconstructions

Number of G polynomials 100 500 1000 2000 3000

RMS error (µm) 1.4374 0.5032 0.0739 0.0627 0.0568
[RMS of difference 

map/RMS of ideal 
map] × 100 (%)

1.5111 0.5290 0.0777 0.0659 0.0597

Fig. 9  a Simulated ideal data with 24 × 30 mm fiducial masks. b Southwell and c modal residual error maps (differences from the simulated 
map). d Picture of fiducials on the DKIST mirror during a metrology run
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24 × 30 mm. The simulated data and residual errors of the 
Southwell and modal (with 2000 polynomial terms) recon-
structions with these fiducials are presented in Fig. 9a–c.

The RMS of the ideal surface in Fig. 8 is 93.8532 µm. 
The residual RMS error for the Southwell map is 
5.9627 µm (or 6.3532% relative to the RMS of the ideal 
surface), whereas that for the modal fit is 0.7684 µm (or 
0.8187% error). In this case, the Southwell error is about 
eight times higher than the modal error.

5.4  Comparison of Reconstruction Accuracy 
and Processing Time

This section aims to compare reconstruction accuracy and 
processing time between three methods (a) Zernike gradi-
ent polynomial based modal method, from Refs. [33] and 
[34], (b) Southwell zonal method, and (c) G polynomial 
based modal method.

The simulated data is a freeform shaped wavefront, 
generated over a 200 × 200 point grid, representing a rec-
tangular pupil with a mask pattern. The wavefront is of 
the form:

Using 30 polynomials each for both modal methods, 
the RMS error between the ideal wavefront and its recon-
structions is given in Table 7. The G polynomial based 

(19)
W(x, y) = 0.14x2 − 0.33y5+1.89(3x2y − y3)

+ 0.57(x6 − 10x4y2 + 13x2y4 − y6).

reconstruction performs better than the other two meth-
ods. Figure 10 shows the wavefront and its reconstruc-
tions from the three aforementioned methods.

It is also worthwhile to consider the time it takes for 
the three methods to process data. Figure 11 shows the 
reconstruction time as the number of polynomials used 

Table 7  RMS Error between the 
simulated wavefront (0.6792 µm 
RMS) and its various 
reconstructions

Wavefront Zernike gradient 
(modal)

Southwell (zonal) G 
polynomial 
(modal)

RMS of difference map (µm) 0.0745 0.0775 0.0379
[RMS of difference map/RMS of ideal 

map] × 100 (%)
10.9625 11.4082 2.5698

Fig. 10  a Simulated ideal data. b Zernike gradient, c Southwell and d G Polynomial based modal residual error maps (differences from the 
simulated map)

Fig. 11  Plot of change in reconstruction time as the number of pol-
ynomials used for data fitting is increased, for both modal methods. 
We acknowledge that the actual processing time could depend on the 
specific numerical implementation. This data is provided only for a 
baseline comparison
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for the modal methods is increased. Data is shown only up 
to the 180th polynomial term because for higher polyno-
mial terms, the Zernike gradient polynomial based modal 
fit becomes numerically unstable.

6  Conclusion

A complete and computationally efficient vector polyno-
mial set, the G polynomial set, was derived. Chebyshev 
polynomials, which form the basis for the G polynomi-
als, have several properties which make them an attractive 
choice to base our modal fitting method on.

One major advantage of the G polynomial approach 
is that both the scalar and vector polynomials are easy to 
define and manipulate and have a very simple relationship 
that ensures that the coefficients of the polynomials in both 
sets are the same. Hence, conversion between the two sets is 
straightforward. In addition, the G polynomials can be eas-
ily computed, so even very high polynomial orders can be 
generated with high numerical efficiency. Since hundreds of 
thousands of polynomials can be generated, mid-to-high spa-
tial frequencies of surfaces can be reconstructed from high-
resolution-metrology data, such as was demonstrated for the 

Daniel K. Inouye Solar Telescope (DKIST) mirror. Other 
advantages of this modal approach include better accuracy 
of reconstruction in the presence of scratches and fiducials.
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Appendix 2

Orthonormality of the vector gradient polynomials

G polynomial orthogonality can be observed by noting that 
the dot product of two G polynomials is orthogonal:

(A.1)
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Next, we demonstrate the G polynomials’ orthonormality 
using the expanded form of the polynomials (from Eq. (7)):

where m, m′, n, and n′ are integers used for indexing and NG 
is the normalization factor, which is given by,
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Fig. 12  Quiver plots of a few gradient polynomials
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The proof of this derivation and details on how to obtain 
the normalization factor are as follows:

The first integral  I1 can be expressed as:

Then, the following substitutions and subsequent equa-
tions can be used:
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This integral goes to zero for all values of m and m’ 
(except for when m = m� ), since sin(�m) = 0 for all integer 
values of m. However, when m = m�,

Using the identity,
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Using the same substitutions as before,
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the sine function,
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This integral equals zero for all values of n and n’, except 
when n = n� , in which case the integral is,

All of the sine terms become zero since n is an integer, so,

Similarly for  I2,

Now the original integral becomes:

Next we address the cases in which either m = 0 or n = 0. 
When m = 0, I1 = 0 since, 

so

where we used the fact that

Following the same steps as before,

Similarly, for n = 0,

where m and n are in the original basis in the last two 
equations.

It can easily be seen that I = 0 when m = 0 and n = 0.
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