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Deflectometry is widely used to accurately calculate the slopes of any specular reflective surface,
ranging from car bodies to nanometer-level mirrors. This paper presents a new deflectometry technique
using binary patterns of increasing frequency to retrieve the surface slopes. Binary Pattern Deflectom-
etry allows almost instant, simple, and accurate slope retrieval, which is required for applications using
mobile devices. The paper details the theory of this deflectometry method and the challenges of its
implementation. Furthermore, the binary pattern method can also be combined with a classic phase-
shifting method to eliminate the need of a complex unwrapping algorithm and retrieve the absolute
phase, especially in cases like segmented optics, where spatial algorithms have difficulties. Finally,
whether it is used as a stand-alone or combined with phase-shifting, the binary patterns can, within
seconds, calculate the slopes of any specular reflective surface. © 2014 Optical Society of America
OCIS codes: (120.3940) Metrology; (120.5050) Phase measurement; (120.3930) Metrological

instrumentation; (120.6650) Surface measurements, figure.
http://dx.doi.org/10.1364/AO.53.000923

1. Introduction

Deflectometry is used in a wide range of metrology
applications, such as: plastic lens and car body in-
spection with sub-micrometer level accuracy [1],
aspheric optic metrology to nanometer-level accuracy
[2,3], and evenmeasurements accurate to fractions of
a nanometer for x-ray mirrors [4]. A deflectometry
apparatus consists of digital display and camera,
which are used to measure the slopes of a specular
reflective surface by triangulation [1–9]. Phase-
shifting the displayed pattern is commonly used
to reach sub-pixel level accuracy and fast data
acquisition [5]. To unwrap the phase, it is common
practice to use spatial phase unwrapping techniques
[10]. Spatial phase unwrapping uses neighboring
pixels to reconstruct the true phase from the
wrapped phase [11–15]; however, computational
power (desktop or laptop) is needed because the
algorithms are complex. Furthermore, noise sensitiv-
ity [10] and phase discontinuities make spatial phase

unwrapping even more difficult. However, temporal
phase unwrapping techniques can also be used in de-
flectometry. Temporal phase unwrapping algorithms
use a series of pictures spaced in time to locate the
�−π; π� zones and apply the correct offset [16–25].
Various patterns are used, such as: binary patterns
(or gray-code) [20–25] (common in 3D shape
measurement [16–25]), color codes [18], or phase
markers [17].

In this paper, we show that temporal phase
unwrapping in deflectometry using binary patterns
is advantageous for portable devices because it allows
us to work around aspects out of our control such as:
low computational power, automatic gain control,
boundary errors, and matrix multiplication. As a
stand-alone method, binary pattern deflectometry
works very well on portable devices. However, we
expand the binary technique and show that we
can improve the measurement’s accuracy by combin-
ing binary patterns with sinusoidal patterns and
still retrieve the phase and surface slopes within sec-
onds. An overview of this hybrid phase-shifting
method and experimental results are presented in
Section 3.
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2. Binary Patterns Theory and Implementation for
Deflectometry

The binary pattern deflectometry technique displays
on the screen a sequence of increasing frequency
binary patterns, allowing us to find which pixel on
the screen illuminates a given pixel on the mirror.
A simple, yet powerful idea is to illuminate the
screen pixel by pixel, then determine which mirror
pixel is associated with the screen pixel being lit.
This is, in essence, the original idea of a fast and
low-cost deflectometry measurement proposed by
Su et al. in [5]. However, this process is very slow be-
cause of the large number of pictures required. A
much faster solution uses binary code.

The principle of this method is to create a unique
binary code for each individual pixel on the mirror
that uniquely registers it to a screen pixel location.
The idea of uniquely encoding an object using phase
iswidely described inmany domains and applications
like security encryption [26]. If we were lighting
several pixels on the display screen at the same time,
several mirror pixels would have the same code or
signature. We call this ambiguity. The goal of this
method is to avoid any ambiguous pixels so that we
do not need to unwrap the phase. This method
achieves a registration between the location of a
given mirror pixel and a location on the screen, by
associating a sequence of binary patterns, that
isolates a unique screen region. As the frequency
increases, the size of the screen region decreases to
reach, at the highest frequency, a unique pixel-to-
pixel correspondence.

The patterns used can be affiliated to the
Posdamer and Altschuler [27] nomenclature, as ex-
pressed in [28] and seen in Fig. 1. Two methods
for creating the binary pattern are presented as one-
dimensional and two-dimensional arrays, as seen in
Fig. 1. The one-dimensional method is based on in-
creasing frequency lines in both x and y directions.
The two-dimensional method is based on increasing
frequency squares; the frequency increase alternates
between the x and y direction. Both methods require
an equal number of screens to solve for the phase
ambiguity. The main difference resides in how to
combine the various patterns once reflected off the
object surface.

This method is faster than the initial idea of illu-
minated pixels one by one. In the general case, the
area used on the monitor has N2 pixels. The initial
idea requires the illumination of those pixels one
by one and thus having to capture N2 pictures.
The binary code method only requires a total of
m � 2 ceil�log2�N�� pictures (the ceil function rounds
the number up, to the nearest integer). As an exam-
ple, using N � 100, we need 10,000 pictures if taken
one by one, but only 14 using the binary code.

A. One-Dimensional Binary Code

The one-dimensional binary code has the easiest
reconstruction process of both cases, as the x and y
directions are calculated separately. In the following,
the nomenclature ��2 and ��10 designates an integer
in base 2 (binary) and base 10 (decimal), respectively.
If we only consider the x direction (Nos. 1–3 in Fig. 1),
then we have pixels with binary codes from �000�2 to
�111�2, which gives 8 possibilities for the screen pixel
location in x and y. The screen location is obtained by
converting the binary code into a decimal number,
giving numbers from �0�10 to �7�10. The same process
applies to the y direction. In the example of Fig. 2, we
obtain that the point �x1; y1� on the mirror is associ-
ated with xscreen�x1; y1� � P1 � pixel No. 5. Similarly,
�x2; y2� is associated to xscreen�x1; y1� � P2 � pixel
No. 3. This is true for any given mirror pixel �xj; yj�.

A given mirror pixel has a unique binary number,
made with n digits, each digit associated with the

Fig. 2. Retrieving the pixel screen location using the 1D binary
code patterns. Any point on the mirror has a binary code that gives
its location in the screen space. The nomenclature ��2 and ��10
designates an integer in base 2 (binary) and base 10 (decimal),
respectively.

Fig. 1. Binary code pattern examples. The patterns Nos. 1–6
above represent the 1D binary code; the patterns Nos. 7–12 re-
present the 2D binary code. The 1D patterns are independent in
x and y. The 2D patterns start with splitting the screen in two
(No. 7) and then alternates between x and y frequency in increasing
steps. The total number of patterns depends on the number of pix-
els used.
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value obtained in the picture (0 or 1). The conversion
of this binary number into a decimal number will
give the screen location xscreen�xj; yj� in unit of pixels.
To get the real distance xscreen�xj; yj� in meters, the
screen has to be located in the coordinate system
of the mirror and the camera, and the pixels con-
verted to meters using the pixel pitch. Equation (1)
shows the calculation:

xscreen�xj; yj� � ��Pj�10 �Rj�pitch;
∀ �xj; yj� ∈ Mirror; (1)

where Rj is the offset in pixels from the y axis to
the edge of the area of patterns display (Fig. 3)
and “pitch” the pixel pitch. A similar formula
exists for yscreen�xj; yj�, using Tj for the offset from
the x axis.

B. Two-Dimensional Binary Code

For the 2D pattern, we do not treat each direction
independently. The sequence of patterns shown in
Fig. 1 (Nos. 7–12) could be arranged differently,
yet we would still follow the same path as the one
we will present now. There are N2 pixels used on
our monitor and m � 2n � 2 ceil�log2�N�� pictures
to be taken. To design the patterns, the number of
lighted squares (or rectangles) has to be calculated.
The numbers of squares in x�Nx� and y�Ny� vary

whether the pattern index i is odd or even, as shown
in Eq. (2):

if i odd
�
Nx � 2floor�i∕2�

Ny � 2floor�i∕2��1

if i even
�
Nx � 2floor�i∕2�

Ny � Nx
; (2)

where the floor function rounds a number down to
the nearest integer. We only have squares when i
is even, because Ny � Nx. For an odd i, the x fre-
quency is double the y frequency because Ny � 2Nx.

When we display those patterns onto the monitor,
the camera will see their reflection from the mirror
and, thus, each mirror pixel will have a sequence of 0
and 1 that registers it to a unique screen pixel. Using
matrix multiplication, we can isolate the screen pixel
for each mirror pixel and have a map of the screen
locations, as shown in Eq. (3).

Sx0;y0 �
Ym
i�1

�U −Mi�1−αi �Mi�αi ; (3)

where Sx0;y0 is the final matrix we obtained after m
iterations for the mirror pixel �x0; y0�, Mi the N2 ma-
trix representing the pattern displayed on the screen
at the ith step of the iteration, αi the value of the mir-
ror pixel in the ith picture (0 or 1), andU the unityN2

matrix filled with 1. If αi is 1, then thematrixMi used
is the same as the one displayed on the screen; how-
ever, if αi is 0, we mirror the matrix using the unity
matrixU to turn 0 into 1 and vice-versa. We multiply
successively the screen patterns that were displayed
when the pictures were taken to be able to associate a
mirror pixel �x0; y0� to a screen location. The result
we obtain for Sx0;y0 is a matrix with a single white
(value 1) pixel. This final matrix represents the
unique screen pixel that illuminated the mirror pixel
when the data was acquired. Therefore, we have a
mirror pixel �x0; y0� associated with one screen pixel,
whose coordinates can be retrieved by reading the
coordinates of the white pixel in Sx0;y0 .

The single white pixel in Figs. 4 and 5 has the
xscreen and yscreen information in unit of display pixels

Fig. 3. Screen coordinates calculation in the 1D case. The points
Pj are located on the area of patterns display thanks to their binary
code and we calculate xscreen using Rj and the pixel pitch.

Fig. 4. Example of pixel-to-pixel multiplication used to sequentially isolate a screen pixel (a white pixel means 1 and a black pixel 0). The
top row represents the pictures taken by the camera, the bottom row the matrix multiplication process. In this example, we consider a
mirror pixel �x0; y0�. Based on the first picture, the value at �x0; y0� is 1, so the matrix used in the product defined in Eq. (3) isM1. Using the
second picture (i � 2), α2 � 0 so the matrix used is (U −M2). The intermediate product is, thus, M1�U −M2�. The same process goes until
we reach i � m (m � 6 here).
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for a single mirror pixel �x0; y0�. This process has to
be repeated for every mirror pixel in the pictures
taken by the camera. Similar to the 1D case, a change
of coordinate system and unit conversion have to be
performed to be able to obtain the xscreen�xj; yj� and
yscreen�xj; yj� in meters for any mirror pixel �xj; yj�,
using Eq. (1).

The calculation process is found to be a bit slower
with the 2D algorithm (from 20 s to a minute), and
the matrix multiplication is more computationally
intensive. The 1D algorithm is almost instantaneous,
usually less than a second.

C. Implementation of the Binary Patterns Method

When used in a real system, the binary patterns are
strongly affected by the camera’s modulation trans-
fer function (MTF). The MTF alters the high fre-
quency in a signal; however, turning the perfect
binary shapes into round-edged shapes (Fig. 6) and
setting up an efficient threshold is more difficult.
With the wide variety of cameras and monitors avail-
able to acquire the data, other problems can occur,
like nonlinearity and saturation. The threshold thus
needs to be adjusted very carefully. This is a rather
difficult process, especially if the algorithm has to

be automated without the user’s intervention. To
prevent this pitfall, a better algorithm, called
“shifted binary patterns,” is introduced. It requires
more pictures to be taken, but it is more robust
against the errors at the binary boundaries.

The algorithm creates an undetermined, or inter-
mediate region, separated by two threshold values,
as shown in Fig. 7. The pictures then become
separated into three regions, with the pixels in the
intermediate region to be determined. The minimum
“Min” is obtained by averaging a picture illuminated
by a “black” display and the maximum “Max” by
averaging a picture illuminated by a “white” display.

To achieve this goal, we use a different set of im-
ages that depict the same binary patterns shifted by
half a period: the period being the size of a binary
structure in the highest frequency binary pattern.
Figure 8 shows the shifted binary pattern, as well
as a profile along the y axis. A similar idea has been
presented by Zhang et al. [24], but they used a higher
frequency complementary binary pattern. Here, we
are using the same frequency pattern, but shifted
in space. Their technique is developed for profilome-
try and seems to work well in that case. However,
when applying their algorithm for our deflectometry
purposes, some phase errors were found at the boun-
daries of the binary patterns.

The pixels that belong to the intermediate region
for the first set of images will not be undetermined
for the shifted set of images and can, thus, be used
as data in the slopes maps. Two slopes maps, one
per binary patterns set, have to be computed. The
secondmap, generated from the shifted patterns, will
be used to fill the gaps of the main one. The shift off-
set has to be taken into account when calculating the
second map to obtain the real values. As shown in
Fig. 9, any white pixels in the left map will be using
the value of the corresponding pixel in the middle
map. The result is the map on the right of Fig. 4,
where all the white pixels have disappeared but
one, certainly due to noise. This map represents
the xscreen�x; y� values for any mirror pixel �x; y�.
The slopes of the mirror can then be calculated using
the approximation

Fig. 5. Screen coordinates calculation in the 2D case. The matrix
multiplication isolates a single pixel that gives the coordinates x
and y for the mirror pixel �x0; y0�. xscreen�xj; yj� and yscreen�xj; yj� are
obtained using Eq. (1) that changes the coordinates of the pixel
location from the original matrix Sx0 ;y0 to a real space coordinate
system.

Fig. 6. Real data from a spherical mirror. The picture (left) clearly shows the different zones. The y-profile (right) displays a cross section
of the picture.
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XSlopes�x;y� � 1
2zs

�xmirror�x;y�− xscreen�x; y��

� 1
2zc

�xmirror�x; y�− xcamera�x;y��; (4)

where zs and zc are the distances from the mirror to
the display screen and to the camera, respectively
(similar for YSlopes�x; y�). Equation (4) assumes
the sag is much smaller than the distance between
the mirror and the screen, and that the viewing an-
gles between camera, mirror, and screen are small.

If the intermediate region is bigger than the size of
the shift, then the process breaks down. This hap-
pens when using patterns with frequencies not far
from the cutoff frequency and for noisy environ-
ments. In most cases, the histogram of a picture will
show that only a few numbers of pixels will belong to
the intermediate region and, thus, this region, even
though wide in intensity counts (Fig. 7), is narrow in
actual pixels, and much smaller than the size of a
white/black stripe.

This method is extremely fast (less than a second)
because the slopes are directly obtained from the pic-
tures. Their accuracy is built up bit-by-bit, by adding
higher frequency binary patterns. The total time
needed to obtain the slopes maps is the time needed
to take the pictures; processing the data is instanta-
neous. Furthermore, there are no ambiguities in the
maps, because of the unique mapping performed by
the binary patterns.

D. Limitations of a Binary Code Method

As demonstrated above, it is possible to obtain slopes
maps using purely binary patterns. However, two
main limitations to this method remain. The first
one is the mapping accuracy. The algorithm cannot
map a mirror pixel to an area on the display smaller

than a screen pixel, as the calculated location cannot
be smaller than a pixel. At the theoretical limit, we
have a one-to-one mapping, but we cannot do better
than 1 pixel in the screen space.

The falling contrast that is experienced in the
pictures taken by the camera represents the second
limitation. As seen in Fig. 10, the theoretical limit
based on screen resolution, is for pattern No. 14; how-
ever, the contrast has already fallen to 0 since pat-
tern number 11. The first limitation thus becomes
irrelevant due to the MTF of the system, and the
method is therefore limited by the MTF of the
camera.

To improve accuracy to about 1∕100th pixel, we can
use the binary code together with phase-shifting, as
phase-shifting can reach sub-pixel accuracy [29].
This process of combining binary code and phase-
shifting is presented in the following section.

3. Direct Application: Phase Unwrapping Elimination

A. Implementation of the Hybrid Method

Combining binary patterns and phase-shifting is
commonly used in profilometry [20–25], and was
originally introduced by Bergmann [23]. In deflec-
tometry, this combining technique has not been used
as an unwrapping technique because the fringes and
the binary patterns are not in focus. The critical as-
pect of such a technique is matching the boundaries
of the binary patterns to end points of a sine wave
period.

In Fig. 10, each pattern index (on the x axis) is
related to a frequency in x and y directions that
can be calculated at every step. The binary code al-
lows us to locate small areas on the screen, rather
than individual pixels. The phase-shifting can deter-
mine a wrapped (and incomplete) phase value for
every pixel. In the following, we show that the un-
wrapping ambiguity can be overcome using the
binary method. The binary code provides an offset
map K at a given frequency. K is calculated by binary
code conversion or matrix multiplication depending
on the binary code patterns. K only contains integer
values ranging between 0 and p-1, where p being
the total number of sine wave periods. It can be
summarized with the formula

Fig. 7. Two thresholds now create an undetermined region
between the 0 and 1 regions, with Δ � ��Max −Min�∕5�.

Fig. 8. Shifted binary patterns. The shifted mirror picture (middle) depicts a shift of half the size of a white stripe compared with mirror
picture from Fig. 6 (left, for reference). The profile (right) shows a cross section of the shifted patterns picture.
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Φtrue�x; y� � Φwrapped�x; y� � 2K�x; y�π
∀ �x; y� ∈ Mirror:

(5)

To correctly use the binary code information, the
binary patterns are aligned in space with the sine
waves, as shown below in Fig. 11. The frequency of
the sine wave is determined by the desired contrast.

As stated in Section 2, two methods can be used
to obtain K , one-dimensional or two-dimensional.
Figure 4 shows the one-dimensional procedure. The
only difference from Section 2 is that we stop the
binary process retrieval at the frequency/contrast
value chosen from Fig. 10 to give nonzero contrast.
Since the sine wave locations match the offset zones
in space (Fig. 11), the obtained phase offsets will be
correct. Once we know K, we can recover the true
phase Φtrue, for any point on the mirror using
Eq. (5). The screen location can be calculated as a
scaled version of the phase, as shown in Eq. (6):

xscreen�x; y� �
Φx

true�x; y�
2pπ

N; (6)

where Φx
true is the phase for the x direction, N is the

total number of screen pixels, and p the total number
of sine periods used (similar equation for yscreen�x; y�).
Equation (2) is then used to calculate the slopes of
the mirror.

B. Experimental Results

We tested a spherical mirror using binary code
combined with phase-shifting and compared the re-
sults with using phase-shifting alone. The mirror
was masked to show how algorithms can unwrap
the phase in the case of segmented optics, where
the mirror is only composed of “islands” of data.
The results show the phase maps in x and y direc-
tions. The raw data used in both cases is the same,
but the unwrapping algorithm is different: temporal
(binary) or spatial [15]. The 2D binary algorithm has
been used for the mirror under test.

The mirror is spherical, has a radius of curvature
of 203.2 mm, and its f number is 2. The experiment
was performed with a laptop camera and a laptop
monitor (Fig. 12), placed at a distance of 220 mm.
8-period sine waves were used for the phase-shifting
patterns. The displayed phase, therefore, goes from 0
to 16π rad. The true phase seen on the mirror can go
from 0 to 16π rad but its range is usually smaller, as
the mirror magnifies the object.

Figure 13 shows the phase maps obtained from the
experiment. Map (a) shows the difference between
the full and segmented mirrors, both spatially

Fig. 9. Mirror maps representing the screen coordinates for
standard (left), shifted (middle) patterns, and final map (right).
The white lines show the intermediate regions.

Fig. 10. Contrast obtained in the pictures taken by the camera.

Fig. 11. Matching the square wave to the sine wave gives the
correct offsets in decimal. Multiplying the offset values by 2π and
adding them to the wrapped phase will give the true phase. In this
example, K has 4 different values, �0�10, �1�10, �2�10, and �3�10.

Fig. 12. Experimental setup. The patterns are displayed on the
screen (left) and reflected off the mirror (right). Part of the mirror
was masked to simulate a segmented mirror (close-up). The
camera (left) takes pictures.
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unwrapped. The difference is not small and we can
clearly see 2 zones fairly constant, one at −2 rad
(gray region) and the other at �0.2 rad (white re-
gion). Map (b) shows the difference between the
two unwrapping algorithms for the full mirror. The
result is on the order of MATLAB’s noise, and we
can, therefore, conclude that the two algorithms
are equivalent for a full mirror. Using (a) and (b),
we deduce that the particular spatial algorithm does
not perform well in case of a segmented mirror, be-
cause this spatial algorithm cannot find any phase
relationship between the two zones using neighbor-
ing pixels to correctly unwrap the phase. Map (c)
shows the same difference as Map (a), but using tem-
poral unwrapping this time. The difference standard
deviation of 0.041 rad validates the binary pattern
unwrapping. To further validate this result, Map
(d) shows the difference of two measurements, using
the temporal unwrapping on a full mirror. The
obtained standard deviation is 0.038 rad. The stan-
dard deviations obtained in Maps (c) and (d) are on
the same order of magnitude, therefore, the seg-
mented mirror does not affect the result. In closing,
the binary pattern algorithm works as well as the
spatial unwrapping algorithm [15] for a full mirror,
and can correctly unwrap the phase of a segmented
mirror.

4. Conclusion

We present in this paper a new deflectometry method
that can determine the slopes of an optic without any
ambiguities, and much faster than the initial concept
of pixels being illuminated one by one. This method
uses a sequence of binary patterns, increasing in
spatial frequency, to create as many unique binary
codes as needed to solve for the screen pixel locations.
Calculated screen locations are used in triangulation

to calculate surface slopes. Two different cases can be
derived from this method: a one-dimensional case
and a two-dimensional case. This method is fast, al-
most instantaneous, but its accuracy is limited by the
MTF of the system.

We showed it is possible use the binary method
combined with the phase shifting algorithms with
high accuracy. We performed an experiment proving
the phase can be reconstructed without traditional
spatial phase unwrapping algorithms. The binary
method does not affect the resolution of the phase-
shifting; Map (b) has an average of 10−15 rad. In
the case of segmented optics, the temporal algorithm
using binary patterns correctly unwraps the phase,
which a spatial algorithm fails to accomplish. In
our experiment, we found a difference standard
deviation of 0.041 rad for the segmented optic, very
close to our noise level, 0.038 rad. The spatial un-
wrapping could not unwrap the phase and left two
distinct zones in the unwrapped phase map. The
binary temporal unwrapping can be used instead
of spatial unwrapping in all cases.
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