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ABSTRACT  

Understanding the Earth spectral bio-signatures provides an important reference datum for accurate de-convolution of 
collapsed spectral signals from potential earth-like planets of other star systems. This study presents a new ray tracing 
computation method including an improved 3D optical earth model constructed with the coastal line and vegetation 
distribution data from the Global Ecological Zone (GEZ) map. Using non-Lambertian bidirectional scattering 
distribution function (BSDF) models, the input earth surface model is characterized with three different scattering 
properties and their annual variations depending on monthly changes in vegetation distribution, sea ice coverage and 
illumination angle. The input atmosphere model consists of one layer with Rayleigh scattering model from the sea level 
to 100 km in altitude and its radiative transfer characteristics is computed for four seasons using the SMART codes. The 
ocean scattering model is a combination of sun-glint scattering and Lambertian scattering models. The land surface 
scattering is defined with the semi empirical parametric kernel method used for MODIS and POLDER missions. These 
three component models were integrated into the final Earth model that was then incorporated into the in-house built 
integrated ray tracing (IRT) model capable of computing both spectral imaging and radiative transfer performance of a 
hypothetical space instrument as it observes the Earth from its designated orbit. The IRT model simulation inputs include 
variation in earth orientation, illuminated phases, and seasonal sea ice and vegetation distribution. The trial simulation 
runs result in the annual variations in phase dependent disk averaged spectra (DAS) and its associated bio-signatures 
such as NDVI. The full computational details are presented together with the resulting annual variation in DAS and its 
associated bio-signatures. 

Keywords: Disk Averaged Spectrum(Spectra), Full 3D Earth Model, Extra-solar Planet, Terrestrial Planet Finding, 
Integrated Ray Tracing, Spectral Bio-signature of the Earth, Earth Observing Simulation, Astrobiology 
 

1. INTRODUCTION  
Studying spectral bio-signatures from potential earth-like planets in other star systems has attracted great attention from 
the astrobiology community recently. One of the technical challenges facing the researchers in this field would be 
accurate de-convolution of measured spectrum collapsed (spatially and temporally) into a single detector pixel of the 
instruments even for TPF and Darwin missions. Therefore, understanding the Earth disk averaged spectral signatures, as 
the unique life bearing planet we know as of today, offers an important reference datum for accurate spectral de-
convolution. 

 There have been two approaches to the study of disk averaged spectrum (DAS) of the Earth. First, as for the simulation 
studies, Ford et al.1(2001) simulated the diurnal variation of earth light curve by Monte Carlo integrations. The work was 
followed by Tinetti et al.2,3(2006a, 2006b)’s computation of synthetic DAS, using Spectral Mapping Atmospheric 
Radiative Transfer (SMART) model. The DAS was computed for variation of cloud coverage, illumination phase and 
geometric configurations. Their simulated spectrum averaged over the daily time scale with various cloud coverage 
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showed well known ‘red-edge’ signals indicative of surface vegetation from the Earth. In the meantime, Fujii et al.4(2010) 
constructed simulated light curves of the Earth model while considering ocean scattering, parameterized land 
bidirectional reflectance distribution function(BRDF), and cloud-free atmosphere with Rayleigh scattering characteristics. 
The second approach is spectral measurements. Examples may include, but not limited to, measured spectrum of the 
earthshine and moon light by Woolf et al.5(2002). The resulting observation data show clear Rayleigh scattering effects 
of atmosphere and the ‘red-edge’ signals for vegetation surface, while atmospheric aerosol and ocean scattering effects 
were less visible. Furthering this line of study, Montañés-Rodríguez et al.6(2006) observed earthshine spectra and 
determined a correlation between the ‘red-edge’ signal variation and changes in cloud-free vegetation area. 

In our earlier work, Ryu et. al.7,8(2009a, 2009b) introduced a new DAS computation method with a 3D optical Earth 
model, contributing to technology evolution along the first approach. The core computation is Integrated Ray Tracing 
(IRT) capable of simultaneous computation of both imaging and radiometric transfer using Monte-Carlo ray tracing. 
Whilst the earlier model used Lambertian surface (land and ocean) scattering, the work showed computational validity 
that the IRT model resulted in comparable Earth DAS with other studies for seasonal changes, daily rotation and orbital 
orientations. Evolving further from the earlier works, this study is aimed at seasonal variations in phase dependent DAS 
and its vegetation signatures. Especially the computation technique uses, for the first time, the integration of semi-
empirical and non-isotropic (i.e. non Lambertian) scattering models for the Earth elements such as atmosphere, land and 
ocean. This paper describes the concept of the improved IRT computation in Section 2. This is followed by construction 
of the improved 3D earth mode with non-Lambertian scattering models in Section 3. Section 4 shows the model 
performances in imaging and radiative transfer computation. The trial simulation runs for DAS and associated bio-
signatures are reported in Section 5, before their implications summarized in Section 6. 

2. METHODOLOGY – INTEGRATED RAY TRACING MODEL 
2.1 Concept of Integrated Ray Tracing computation 

The initial version of Integrated Ray Tracing (IRT) model was originally developed as an end-to-end performance 
simulation tool for satellite instruments.9 The current model incorporates improvements in the Earth components (listed in 
Table 1) including non-Lambertian scattering surfaces. In the model, the three elements (i.e. source, target and instrument) 
are integrated into single Monte-Carlo ray tracing computation flow as listed in Table 2 and shown in Figure 1. The IRT 
computation flow starts from the sequence 1 and progresses in step by step manner to the sequence 7 in Table 2.  

Table 1. Summary of IRT Model Elements 

Model 
Sun Model 

Earth System Model Instrument 
Model Sub-Model Atmosphere Land Ocean 

Radius 695500 km 6499.000 km 6400.767 km 6400.000 km 29 mm 

Primary 
Position (0,0,1.496E8) km (0,0,0) km (0,0,0) km (0,0,0) km (0,0,1.5E6) km 

Movement Distance Variation 
4 Seasons Spherical Rotation Spherical Rotation Spherical Rotation Rotation around 

Earth 

Surface Shape Hemisphere 
Spherical Surface with 

Latitudinal 
Distribution 

Spherical Surface with 
Bounded Coastline and 

Vegetation 

Sphere 
Sea Ice Cap 

Cassegrain 
Telescope with 

Catadioptric system

Surface Optical 
Characteristic 

Lambertian 
Scattering 

 Atmospheric 
Transmittance + 

Rayleigh Scattering 

Non-Lambertian 
Scattering with 

Directional Parameter 
( ) 

Lambertian Scattering 
+ Sun-glint Scattering 

Reflectance + 
Transmittance 

Surface 
Composition 1 Layer 18 Latitudinal Layers 6 kinds of Surfaces 1 Layer Mirrors and Lenses

Surface 
Variation None 

5 Reference 
Atmospheric 

Conditions with 4 
Seasons + 

Continental/Desert/Ma
ritime Aerosols 

Seasonal Spectral 
Directional Parameter 

from 
POLDER3/PARASOL 

Observations 

Sea Ice Area Variation 
(Monthly) None 
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In the ray tracing computation, a set of ray is defined as in Equation 2.1.11 

 (2.1)

where i is the th ray,  wavelength, ( ) global coordinate position, ( ) direction cosine,  radiant power of a ray 
and  ray status (i.e. current object surface, history of object, ray condition – parent, scatter, split ray). In this ray 
expression, the ray before it encounters an object has subscript “ ” and the ray after it experiences with an object has the 
subscript “ ”. Following this convention, a set of ray passing an object can be defined as in Equation 2.2 below. 

 (2.2)

 (2.3)

 (2.4)

 (2.5)

where  is the number of split rays (for Equation 2.3 and 2.4) per each parent ray and  is the number of scattered rays 
(for Equation 2.5) per each parent ray. The object surface has reflectance (Equation 2.3), transmittance (Equation 2.4) 
and bidirectional scattering distribution function (BSDF in Equation 2.5). For each and every ray encounter with an 
object, the total energy conservation is applied as expressed in Equation 2.6, 

 (2.6)

where A is absorption and TIS means total integrated scatter (TIS) defined as in Equation 2.7. 12 

 (2.7)

In the meantime, radiant power  when experiencing scattering can be defined as in Equation 2.8.12 

 (2.8)

where  is incident zenith angle,  scattering zenith angle,  incident azimuth angle and scattering azimuth angle. 

3. EARTH MODEL CONSTRUCTION 
3.1 Atmospheric Sub-Model and Seasonal Variation 

The Earth atmosphere is defined with 18 sub components as drawn in Figure 2 and each component is defined with 
Spectral Mapping Atmospheric Radiative Transfer (SMART) model13,14 and with continental, maritime15 and desert16 
aerosol models. In addition, NASA Earth Observation (NEO) database17 was used to obtain disk averaged CO2 
concentration and aerosol optical depth at 550nm for the period of Nov. 2005 – Oct 2006. For characterizing the 
atmospheric transmittance, spectral atmospheric transmittance (except for Rayleigh transmittance) was used. For 
reflectance, Rayleigh scattering was considered as its BSDF is expressed in Equation 3.1 from Fujii et al.4(2010). 

 (3.1)

 is Rayleigh scattering phase function,  phase angle (angle between the incident and scattered direction) 

and  optical depth for Rayleigh scattering defined as in Equation 3.24 
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