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Abstract: A parametric smoothing model is developed to quantitatively 
describe the smoothing action of polishing tools that use visco-elastic 
materials. These materials flow to conform to the aspheric shape of the 
workpieces, yet behave as a rigid solid for short duration caused by tool 
motion over surface irregularities. The smoothing effect naturally corrects 
the mid-to-high frequency errors on the workpiece while a large polishing 
lap still removes large scale errors effectively in a short time. Quantifying 
the smoothing effect allows improvements in efficiency for finishing large 
precision optics. We define normalized smoothing factor SF which can be 
described with two parameters. A series of experiments using a 
conventional pitch tool and the rigid conformal (RC) lap was performed and 
compared to verify the parametric smoothing model. The linear trend of the 
SF function was clearly verified. Also, the limiting minimum ripple 
magnitude PVmin from the smoothing actions and SF function slope change 
due to the total compressive stiffness of the whole tool were measured. 
These data were successfully fit using the parametric smoothing model. 
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1. Introduction 

Various computer controlled optical surfacing (CCOS) processes have been developed since 
the 1960s [1–5]. These CCOS processes provide attractive solutions for fabrication of 
precision optics including large aspheric optical surfaces and off-axis segments by exhibiting 
high convergence rates based on deterministic material removal processes [3–5]. 

One of the key components for a CCOS process is the polishing tools, which make the 
physical contact with the workpiece and removes material from it. A tool influence function 
(TIF) is the shape of the wear function created by the polishing tool motion (e.g. spin or 
orbital motion) on the workpiece. In general, a dwell time map optimization approach is used 
to achieve a given target removal map [3–6]. Optimization intelligence (i.e. software) uses 
TIFs as building blocks to achieve the target removal map by spatially distributing and 
accumulating them [6]. Thus, having stable and deterministic TIFs is a critical part to 
achieving successful CCOS processes. 

The TIF is a strong function of tool properties, such as pressure distribution under the tool, 
polishing material at the contacting interface, contact area shape, tool motion, and so forth. 
For instance, developing a tool with a deterministic TIF for aspheric (or freeform) optics 
fabrication becomes a complex problem. Because local surface shape (e.g. curvature) of an 
aspheric surface varies as a function of position on a workpiece [7], a tool with a fixed surface 
shape cannot be used. Some flexibility in the tool is required to maintain intimate contact with 
the workpiece surface. However, rigidity of the tool is also desired to get natural smoothing 
effects, which removes mid-to-high spatial frequency errors on the workpiece [8–11]. Thus, a 
well-behaved tool development is a balancing problem between flexibility and rigidity. 

The smoothing effect becomes more important for large workpiece fabrications, because it 
is almost the only way to correct mid-to-high spatial frequency errors smaller than the tool 
size. Based on the deterministic TIFs of CCOS processes, large errors (i.e. low spatial 
frequency surface errors compared to the tool size) can be corrected by increasing the dwell 
time on the high error areas. However, this method cannot be used for regions smaller than the 
tool size unless smaller and smaller tools are utilized. Smaller tools require higher tool 
positioning accuracy to avoid residual tool marks, which is another source of mid-spatial 
frequency errors. Also, the use of small tools increases the total fabrication time. 
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Correcting these mid-to-high spatial frequency errors on optical surfaces is very important 
for the next generation of extremely large telescopes such as the Giant Magellan Telescope 
[12–14] and for nuclear fusion energy plants using high power lasers (e.g. Laser Inertial 
Fusion Engine [15]). Because the mid-to-high-spatial frequency errors are directly related to 
the sharpness of the point spread function (e.g. Airy disk radius) or the scattering 
characteristic of high power laser application optics, the overall performance of those systems 
may be degraded due to those errors. In fact, most recent large optical surfaces have been 
polished to a target structure function or power spectrum density, which quantify the target 
form accuracy as a function of spatial frequencies [16,17]. 

There have been some quantitative investigations for the smoothing effects by semi-
flexible tools. Brown and Parks quantitatively explained the smoothing effects by elastic 
backed flexible lapping belts in 1981 [8]. The smoothing effect using a large flexible 
polishing lap was introduced and mathematically studied by Mehta and Reid using the 
Bridging model [9]. The Bridging model was further developed using Fourier series 
decomposition approach by Tuell [10,11]. These models were successfully demonstrated with 
experimental data. More detailed explanation about the Bridging model will be given in 
Section 2.3. 

A rigid conformal (RC) lap using a visco-elastic non-Newtonian fluid was developed and 
introduced in a previous study [18–20]. (Note: A US provisional patent was filed for the RC 
lap.) A schematic structure of the RC lap is compared with other tool types in Fig. 1 [18]. 
Because the storage modulus of the visco-elastic material is a function of the applied stress 
frequency, the smoothing effect by the RC lap has to be described by a new smoothing model 
[18]. Also, the new model needs to include other effects such as the fluid dynamics of the 
polishing compound and the total effective stiffness of the whole tool structure. 

 

Fig. 1. Schematic tool structures of three different tool types [18]. 

A parametric smoothing model was developed to quantitatively describe the smoothing 
efficiency of visco-elastic polishing tools such as pitch tools and RC laps. Some theoretical 
backgrounds about the RC lap and Bridging model for semi-flexible tools are provided in 
Section 2. The parametric smoothing model developed based on the Bridging model is 
introduced in Section 3. Experimental results for the smoothing effects by a conventional 
pitch tool and a RC lap are provided and compared in Section 4. 

2. Theoretical background 

2.1 Rigid conformal lap 

The RC lap, which takes advantages from both rigid and compliant tools in two different time 
scales using a visco-elastic non-Newtonian fluid, has been introduced and used on highly 
aspheric optical surfaces [18–20]. The overall structure of the lap is shown in Fig. 2. 

The flow characteristic of the RC lap depends on the frequency of applied stress [21]. 
Because the tool motion (e.g. orbital motion [22]) is usually fast (e.g. 60 RPM) relative to the 
local features (e.g. bumps or ripples) under the motion, the RC lap acts like a rigid tool with 
respect to that time scale. If the tool is orbiting at 60 RPM on a bumpy area, the tool quickly 
smoothes out the bumps with high local pressures on the bump peaks. 

#133659 - $15.00 USD Received 20 Aug 2010; revised 1 Oct 2010; accepted 7 Oct 2010; published 8 Oct 2010
(C) 2010 OSA 11 October 2010 / Vol. 18, No. 21 / OPTICS EXPRESS  22517



 

Fig. 2. 3D RC lap structure (exploded and cut in half) [18]. 

However, the tool will fit the overall local curvature changes on the workpiece since the 
RC lap moves slowly on the workpiece (e.g. ~1 rpm workpiece rotation) along the tool path. 
For instance, a 330mm diameter RC lap has been successfully used on the 8.4m off-axis 
segment for the Giant Magellan Telescope, which requires the tool to fit the slowly varying 
local curvature as it travels on the highly aspheric workpiece [19]. 

2.2 Smoothing by a rigid tool 

The smoothing effects by a rigid tool in Fig. 1 (left) can be understood in a simple way. If we 
assume the tool does not fit to the surface irregularity under the tool (i.e. infinite rigidity), and 
maintains its shape, the tool only rubs the highs on the surface as shown in Fig. 3 (left). As the 
tool runs on the workpiece, it will wear down the highs, and eventually the surface will be 
smoothed out. The spatial frequency of the final surface will be directly related to the tool size 
of the rigid tool as shown in Fig. 3 (right). This process is clearly shown in the accompanying 
movie clip (Media 1). 

 

Fig. 3. Smoothing effect simulation using an infinitely rigid tool (Media 1). 

Actual polishing tools, however, always require a certain amount of flexibility to fit the 
overall surface as briefly mention in Section 1. Also, no tool is infinitely rigid. These facts 
lead us to a more comprehensive smoothing model for the flexible tools in Section 2.3. 

2.3 Bridging model for smoothing effects by flexible tools 

One of the most common approaches to achieving a balance between flexibility and rigidity is 
using semi-flexible tools as shown in Fig. 1 (middle). It usually uses a relatively thin metal 
plate as a tool base, so that the plate‟s low order bending modes are used to fit the workpiece 
local curvatures. A foam layer is often placed between the thin plate and another base 
structure (e.g. thick plate). A polishing pad (e.g. polyurethane pad) or pitch is used under the 
semi-flexible thin plate as a polishing interface material. 
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In order to describe the smoothing effects by semi-flexible tools, the Bridging model was 
introduced [9]. As the tool moves on the workpiece, it continuously bends by different 
amounts to fit the local curvature, resulting in continuous changes in the pressure distribution 
under the tool. If a semi-flexible tool meets mid-spatial frequency ripples, the tool contacts the 
ridges of highs in the surface with higher pressure, and begins to smooth them out. The lap 
may be imagined to form a bridge across the ridges known as the bridging effect [9]. 

For a semi-flexible tool, the strains induced from the thin plate bending influence the 
polishing pressure distribution. Kirchhoff‟s thin plate equations were modified to include the 
effect of transverse shear strain. For the one-dimensional case, the polishing pressure 
distribution p(x) due to the sinusoidal error error(x) on the surface can be derived based on the 
theory of elasticity as 

 ( ) (1 sin(2 )),error x PV x      (1) 

 

4 2

_

( )
( ) ,

1 1 1

(2 ) (2 )

nominal

totalplate s plate

error x
P x P

D D  

 

 
 

 (2) 

where PV is the peak-to-valley magnitude of the sinusoidal error, ξ is the spatial frequency of 
the surface error, Pnominal is the nominal pressure under the tool, Dplate is the flexural rigidity of 
the plate, Ds_plate is the transverse shear stiffness of the plate, and κtotal is the compressive 
stiffness of the whole tool including elastic material (e.g. pitch) and polishing interface 
material (e.g. polyurethane pad) [9]. The flexural rigidity and transverse shear stiffness of the 
flexible thin plate are defined as 

 3 2/12(1 ),plate plate plate plateD E t     (3) 

 _ / 2(1 ),s plate plate plate plateD E t     (4) 

where Eplate is the Young‟s modulus of the plate material, tplate is the plate thickness, and νplate 
is the Poisson‟s ratio of the plate. 

The Bridging model in Eq. (2) describing the smoothing effects by a semi-flexible tool 
was successfully demonstrated by comparison with experimental results [9]. 

3. Parametric smoothing model 

3.1 Dynamic modulus 

The dynamic modulus values were used in the parametric smoothing model for the visco-
elastic tools such as pitch or RC laps. Pitch can be regarded as an extreme of visco-elastic 
materials. It almost acts like a solid during the tool motion time period (e.g. ~seconds). 
However, for very long time periods (e.g. ~hours), it flows to fit the surface. The dynamic 
modulus quantitatively describes these time-dependent characteristics. It is defined as the ratio 
of the stress to strain under an oscillating stress condition 

Two dynamic modulus values, tensile storage modulus and loss modulus, are defined as 
Eq. (5) and (6). The storage modulus is related to the elastic deformation, and the loss 
modulus is related to the time-dependent viscous behavior of a non-Newtonian fluid. 

 0

0

: ' cos ,Storage modulus E





  (5) 

 0

0

: " sin ,Loss modulus E





  (6) 

where the oscillating stress and strain are expressed as 
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0 sin( ),t    (7) 

 
0 sin( ) .t      (8) 

The ε is the time dependent strain, ε0 is magnitude of the strain, t is time, ω is angular 
frequency of the oscillation, ζ is the time dependent stress, ζ0 is magnitude of the stress, and δ 
is phase lag between the stress and strain [23]. 

The phase lag δ is a function of the angular frequency ω for the non-Newtonian fluid. For 
an ideal solid, the strain and stress are oscillating in phase (i.e. δ = 0°). If the material is an 
ideal viscous fluid, the stress is 90° out of phase (i.e. δ = 90°) with the strain. A loss tangent, 
which is the ratio between the storage and loss modulus, is a convenient measure of the 
relative contribution of the solid-like and fluid-like mechanical responses [24]. The loss factor 
tanδ is defined as 

 
"

tan .
'

E

E
   (9) 

For instance, tanδ >1 indicates a fluid-like behavior of the non-Newtonian material. If tanδ 
<1, it means that the solid-like response is dominant over the fluid-like response. Thus, for 
efficient smoothing actions, the RC lap needs to be run under conditions where tanδ <<1. 

Some measured storage modulus and loss tangent values for fused silica and Silly-PuttyTM 
(SP) by Crayola LLC were obtained from the literature [24], and are presented in Fig. 4. 

 

Fig. 4. Storage modulus E´ and loss factor tanδ for fused silica (left) and Silly-PuttyTM (right) 
as a function of applied stress frequency from the literature [24]. 

Because Fused silica can be regarded as an elastic solid, the loss tangent is almost zero. 
Also, the storage modulus is almost a constant ~70GPa over the 0-10Hz oscillating stress 
frequencies. In contrast, for the visco-elastic non-Newtonian fluid SP, the frequency 
dependence of the storage modulus is clearly shown in Fig. 4 (right). The SP begins to act like 
a solid (i.e. tanδ <1) when the applied stress frequency is larger than ~1Hz [24]. 

3.2 Polishing pressure distribution 

The polishing pressure distribution under the visco-elastic tools were derived based on the 
Bridging model. Because there is no flexible thin plate in the tool, the Bridging model in Eq. 
(2) can be simplified as 

 ( ) ( ).nominal totalP x P error x    (10) 

Because the elastic material (i.e. visco-elastic material under the tanδ <<1 condition) is a 
part of the total compressive stiffness of the tool, the κtotal can be approximated by two springs 
connected in series as 
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,
total elastic others  

   (11) 

where κelastic is the stiffness of the elastic material and κothers is the combined stiffness of all 
other structures including polishing pad, polishing compound fluid, wrapping material, and so 
forth. 

By combining Eq. (10) and (11) the pressure distribution under the RC lap is expressed as 

 
1

( ) ( ) ( ) .
1 1nominal total nominal

elastic others

P x P error x P error x

 

     



 (12) 

The stiffness of the elastic material κelastic can be expressed in terms of the storage modulus 
from Section 3.1, which defines the local pressure caused by the deformation from a bump on 
the workpiece. If an elastic material with storage modulus E´ has a thickness L and is 
compressed by a ΔL tall bump, the compressive stiffness κelastic is 

 0 0 '/ cos { / } '/ cos '
,

cos
elastic

E L L E E

L L L L

   




  
   
   

 (13) 

based on Eq. (5). 
The applied stress angular frequency ω is determined by the spatial frequency of the 

surface error ξ and the speed of the tool motion Vtool_motion as 

 _

_

2 2
2 ,

(1/ )
tool motion

tool motion

V
T V

 
  


    


 (14) 

where T is the time interval between a position under the tool sees two adjacent peaks in the 
sinusoidal ripple and Vtool_motion is the speed of the tool motion. 

For example, a RC lap with L = 8mm thick SP may rub on a sinusoidal ripple with spatial 

frequency ξ = 0.085mm1 and ripple magnitude PV = 1μm. A typical 2500Pascal (i.e. 
~0.36PSI) nominal pressure is assumed, and κothers is ignored in this example. If the tool 
motion was a 20RPM orbital motion with 30mm orbital radius, the speed Vtool_motion is 

 
_

2 30 20
62.8 [ / sec] .

60
tool motionV mm

  
   (15) 

Then, the applied stress frequency ω in Eq. (14) becomes 

 _2 2 0.083 62.8 32.77 [ / ] .tool motionV radians sec           (16) 

From the measured storage modulus values in Fig. 4 (right), SP has E´ = ~0.003GPa 
storage modulus at f = ω/2π = 32.77/2π = ~5Hz. The phase lag δ is almost zero, because the 
loss tangent tanδ is ~0 at 5Hz. Thus, using Eq. (12) and (13), the polishing pressure under the 
RC lap is 

 

9
6

3

' 0.003 10
( ) ( ) 2500 1 10 (1 sin(2 0.085 ))

cos 8 10 1

2500 375 (1 sin(2 0.085 )) [ ],
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E
P x P error x x
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









          

  

     

 (17) 

where cosδ was approximated as 1 for δ = ~0. 
Thus, the high peaks on the sinusoidal surface feel an additional 375Pascal polishing 

pressure, which results in smoothing on the peaks. 

3.3 Parametric smoothing model 

In most smoothing cases, the practical interest is not in the polishing pressure distribution 
itself, but in the speed of the smoothing action using the pressure distribution on a given ripple 
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as shown in Fig. 5. This can be modeled by using the pressure distribution in the well-known 
Preston‟s equation 

 _( ) ( ) ( ) ( ),Preston tool workpiecez x R P x V x t x      (18) 

where ∆z is the integrated material removal from the workpiece surface, RPreston is the Preston 
coefficient (i.e. removal rate), P is the polishing pressure, Vtool_workpiece is the relative speed 
between the tool and workpiece and ∆t is the dwell time. 

 

Fig. 5. The sinusoidal ripple profiles (before and after smoothing), which shows the values to 
determine the smoothing factor SF in Eq. (22). 

For a given initial sinusoidal ripple magnitude PVini, the additional polishing pressure Padd 
on the peak is 

 
1

,
1 1add nominal ini

elastic others

P P P PV

 

   



 (19) 

from Eq. (12). Then, for a dwell time ∆t, the decrease in the ripple magnitude ΔPV is 
calculated using Eq. (18) as 

 _ .ini after Preston add tool workpiecePV PV PV R P V t        (20) 

In order to normalize ΔPV, the nominal removal depth (i.e. removal depth from the 
nominal pressure) is used as 

 __ _ .Preston nominal tool workpiecenominal removal depth R P V t     (21) 

Using Eq. (19), (20) and (21), the smoothing factor SF is defined as 

 
1

.
1 1_ _

( )
ini

nominal

elastic others

PV
SF PV

nominal removal depth
P

 


  

 

 (22) 

This definition for the smoothing factor in Eq. (22) turns out to be very useful, because it 
can be expressed as a linear function in SF vs. PVini space. For instance, the smoothing 
efficiency (i.e. the ripple magnitude decrease per unit nominal removal depth) can be easily 
calculated for a given initial ripple magnitude. 

Because the real smoothing effect may be affected by other complex factors such as 
polishing pads, wrapping materials (e.g. the diaphragm in Fig. 2) and the fluid dynamics of 
polishing compounds, the theoretical smoothing model in Eq. (22) was parameterized using 
two parameters, C1 and C2, to fit the measured data. The first parameter C1 represents κothers 
and other unknown effects which may change the slope of the linear SF function. As the PVini 
becomes smaller and smaller the fluid dynamics of the polishing compound may begin to 
limit the smoothing action. This can give a limiting minimum ripple magnitude PVmin of the 
ripple, which means no more smoothing occurs below PVmin. This can be represented as an x-
intercept C2 in SF vs. PVini space. 

The resulting parametric smoothing model is 
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where C1 is the slope correction parameter and C2 is the x-intercept parameter. Because this is 
a linear function, these two parameters can be easily determined in practice by performing a 
few smoothing runs using a given polishing tool. 

We acknowledge that, at the other extreme range where the PV becomes large, the 
polishing tool may not fully deform to the ripple (i.e. partial contact [9]) and only touch some 
high portions of the ripple. Thus, beyond a certain PVmax, SF function is not a function of PVini 
anymore, but will be a constant. 

In summary, the smoothing factor SF was defined to describe the smoothing effect. For a 
given polishing tool the smoothing efficiency is conveniently represented by a linear function 
in SF vs. PVini space. In order to include some unknown factors, which affect the smoothing 
action, the smoothing model was parameterized with two parameters. 

4. Experimental verification of the parametric smoothing model 

4.1 Experimental set-up 

Sets of smoothing experiments comparing smoothing efficiencies for various polishing cases 
(e.g. Gugolz 64 vs. 73 pitch tool) were performed. A part of the experimental results 
confirming the validity of the linear parametric smoothing model is presented in this 
manuscript. The whole experimental results will be provided in a separate paper with detailed 
comparisons and discussions [25]. 

Two sets of experiments using a conventional pitch tool and a RC lap were performed. 
Because a pitch tool is known for its superb smoothing effect, it is a good reference for the 
smoothing efficiency comparison [26]. Details of the experimental set-up are provided in 
Table. 1. 

Table 1. Experimental set-up for the smoothing experiment 

 Pitch tool RC lap 

Tool diameter 100mm 100mm 
Aluminum back plate thickness 20mm 20mm 
Elastic material Gugolz 73 pitch Pink Silly-PuttyTM 
Elastic material thickness, L 8mm 8mm 
Polishing interface Pitch itself 1.3mm thick LP-66 (polyurethane) 

A sinusoidal ripple with spatial frequency ξ = 1/12 = 0.085mm1 and PV = ~0.4μm was 
generated on 250mm diameter Pyrex workpieces as shown in Fig. 6 (right). A specially 
designed pitch tool was used to generate the ripples as shown in Fig. 6 (left). This ripple 
generating pitch tool was made by pressing the warm pitch tool on a plastic mandrel board 
with many grid holes. By gently stroking the ripple generating pitch tool on the workpieces, 
sinusoidal ripples were generated without sharp cliff-like features in the ripple, which could 
have limited the measurement accuracy (e.g. the unwrapping problem of a phase shifting 
interferometric test). 
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Fig. 6. The ripple generating pitch tool with a grid of circles (left) and a grey scale surface map 
of the Pyrex substrate with sinusoidal ripples and reference area to measure the nominal 
removal depth in a rectangular box (right). 

The pitch tool and RC lap were run with an orbital tool motion on the workpieces. The 
change of the ripple magnitude, ΔPV, and the nominal removal depth in the rectangular 
reference area in Fig. 6 (right) were measured. These experiments were repeated until the 
magnitude of the ripples did not decrease anymore (i.e. the end of the smoothing effect). More 
detail of the tool operating condition is presented in Table. 2. 

Table 2. Operating condition for the pitch tool and RC lap 

Workpiece 250mm diameter Pyrex 
Tool motion Orbital tool motion (w/ 30mm orbital radius) 
Tool motion RPM 20-30RPM 
Nominal tool pressure 2500 Pascal (i.e. 0.36PSI) 
Polishing compound Rhodite 906 (Cerium based) 
Polishing compound particle size ~2μm 

Based on the pitch tool and RC lap information in Table 1 and 2, the compressive stiffness 
κelastic for the parametric smoothing model was calculated using Eq. (13) as 
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and used in the parametric smoothing model, Eq. (23). For the storage modulus (i.e. Young‟s 
modulus) of the pitch tool, a typical value 2.5 GPa was assumed [27]. The actual storage 
modulus of the pitch is a function of many factors such as the temperature of pitch. This 
uncertainty becomes a part of the first parameter C1 in the parametric smoothing model. Also, 
pitch is practically a solid within the orbital tool motion time scale. Thus, the phase lag δ was 
assumed as 0. The RC lap was stroked at 20 RPM in the experiments in order to evaluate the 
smoothing efficiency while the tool is used in the solid-like state. As shown in Section 3.2, for 
the 20RPM orbital motion, storage modulus E´ is 0.003GPa and the phase lag δ is ~0. 

4.2 Measured smoothing factor for pitch tool and RC lap 

The ripples on the workpiece were measured using a Fizeau interferometer. Because the 
actual ripples were not ideal sinusoidal curves, an averaged peak-to-valley value using >90% 
and <90% height values was used to calculate the PV. Some measured profiles are presented 
in Fig. 7 as an example. The decrease in ripple magnitude as the smoothing time gets longer is 
clearly shown. The pitch tool (left) smoothes out the ripples much quicker than the RC lap 
(right). 
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Fig. 7. Measured ripple profiles as tool smoothes out the ripples: pitch tool (left) and RC lap 
(right) [18]. (Note: The initial ripple magnitude PV was about 0.4μm for both cases.) 

The measured ΔPV values were normalized by the measured nominal removal depth to 
calculate the smoothing factor SF as explained in Section 3.3. The experiments were 
performed until no more reduction in the ripple magnitude (i.e. smoothing factor SF = ~0) was 
observed. The experimental results are plotted in Fig. 8. 

Two parameters C1 and C2 in the parametric smoothing model were used to fit the 
measured data as shown in Fig. 8. The first parameter C1 was used to match the slope of the 
data. The second parameter C2 was used to match the x-intercept of the data, which is the 
parametric representation of the smoothing limit PVmin mentioned in Section 3.3. 

 

Fig. 8. Measured smoothing factor SF vs. initial ripple magnitude Pini for pitch tool and RC lap. 
(Note: The solid line represents the linear fit using the parametric smoothing model. Two 
parameters C1 and C2 were used to fit the measured data as shown in Table 3.) 

The fitted parameter values are presented in Table 3 with the calculated compressive 
stiffness κelastic values from Eq. (24) and (25). The linear trend predicted by the parametric 
smoothing model in Eq. (23) was successfully verified. The C1 for the pitch tool case was 
much smaller (~0.04 times) than the compressive stiffness κelastic of the pitch, so that the slope 
of the parametric SF function was smaller than the slope solely based on the pitch stiffness 
itself. One possible explanation for this result may be the polishing compound liquid layer 
between the pitch surface and the workpiece, which may change the total compressive 
stiffness. However, the pitch tool still shows ~7 times more efficient (i.e. ~7 times steeper SF 
slope) smoothing action than the RC lap. The limiting magnitude of the ripple PVmin was 
measured experimentally and fitted using the second parameter C2. The pitch tool was able to 
smooth out the ripples down to PVmin = ~0.03μm. 
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Table 3. Compressive stiffness κelastic and two parameter values for parametric smoothing 
model 

 κelastic (Pa/μm) C1 (Pa/μm) C2 (μm) 

Pitch tool 312500 12994 0.03 

RC lap 375 474 0.09 

In contrast, the C1 for the RC lap was a negative number. This may result from the under-
estimated κelastic of the RC lap. The actual κelastic of the pink SP may be different from the 
value based on the literature [24]. Also, the polyurethane pad and wrapping material in the RC 
lap may change the total compressive stiffness of the tool. These unknowns were absorbed in 
the parameter C1 to evaluate the smoothing efficiency of the RC lap. The PVmin was measured 
and fitted using C2. The RC lap smoothed out the ripples down to PVmin = ~0.09μm. Changing 
the thickness L of the elastic material is expected to result in a steeper SF function, because 
κelastic is a function of L as shown in Eq. (13). These additional modalities including different 
orbital motion RPM, which changes the applied stress frequency, will be reported in a 
separate study [25] as mentioned above. 

5. Concluding remarks 

A parametric smoothing model was developed to quantitatively describe the smoothing 
efficiency. A convenient normalized smoothing factor SF was defined using two parameters 
for the parametric smoothing model. A series of experiments were performed to verify the 
parametric smoothing model. The linear trend of the SF function was clearly verified by the 
experimental results. The limiting ripple magnitude PVmin from the smoothing actions and 
change of slope due to the total compressive stiffness of the whole tool structure were also 
measured and successfully fitted using those two parameters. 

The RC lap, which showed a highly deterministic removal rate (i.e. <10% stability) and 
superb surface finish (e.g. <1nm RMS surface roughness) [18], can be used more efficiently 
with the known smoothing factor for large precision optics fabrications [19,20]. It will 
contribute to the realization of some next generation optical systems which usually have 
hundreds of meter-class aspheric mirrors (e.g. Thirty Meter Telescope [13] and Laser Inertial 
Fusion Engine [15]) or large off axis mirrors (e.g. 8.4meter Giant Magellan Telescope mirrors 
[12,19]). 
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