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INTRODUCTION 
A hologram is an interference recording of a 3D surface. Upon the proper recording, 

reconstruction, and viewing conditions, unlike the traditional 2D photography, the image 

appears to be 3D again.  A computer generated hologram or a CGH is a computed 

interference pattern of such 3D scene. A CGH can be imprinted on a storage media, and 

the “volumetric” data can later be retrieved and processed. It offers the advantage of an 

extremely high data density and parallel processing (it displays a volume of data instead 

of bits of data in series).  

 

This report surveys three components concerning the making of a computer generated 

hologram – the hardware developments, algorithms, and a few interesting and specific 

applications utilizing CGH’s. See Figure 1. All three areas are intertwined, and it is 

impossible to discuss one without examining the others. The resulting CGH systems are 

very application specific. The goal of this report is to bring up a few “odd” things that 

people have investigated in the past, so the readers can be aware of their existence.  

 
Figure 1: CGH and its relevant components. 

 

The last section of the report is a Matlab code/simulation of a particular type of CGH 

(quaternary phase CGH) that the author and Professor Dallas worked on in Spring 2007. 

The simulation shows two images at two different depths of focus, but they are recorded 

on one common CGH. One of the images is scrambled and hidden in the host image. The 

hidden image can be reconstructed if a “key” is given; otherwise, it looks like noises. 

Application 

Computation 

Hardware 

CGH 
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HARDWARE DEVELOPMENTS 

CGH fabrication is primarily based on the micro electronic lithography process. Readers 

are assumed to be familiar with the lithography process. Following is a list of 

lithographic tools employed in today’s manufacturing processes:  

 

1. Mask vs maskless 

2. Projection (contact or imaging) vs e-beam  

3. Photo resist (sacrificial material) vs direct printing (laser ablation)  

4. Wet vs dry etching (plasma and reactive ion etching, transport or reaction limited) 

5. Coherent vs incoherent illumination (compensation methods for smaller and 

smaller feature size and phase shift technique) 

6. Gray tone vs binary 

7. Calibration process 

 

The performance of an optical imaging system can be characterized by the resolvable 

angular resolution Δθ ≈ λ/d; Δθ is the angular resolution, λ is the wavelength, and d is 

some critical dimension or the pupil size. Bigger d means better angular resolution Δθ. 

Contrary to traditional imaging systems, an “efficient” CGH needs to diffract light into 

large diffraction angles. This means a smaller feature size d on a CGH yields a larger 

diffraction angle Δθ; there is an analogy one can make between the finesse of a 

diffraction grating to the diffraction efficiency of a CGH. With the advances in the micro 

electronic processes, small feature size required by a CGH can indeed be achieved. 

Researchers are constantly looking for ways to make smaller features more accurately. 

 

Proximity Correction 

Diffraction from otherwise a perfect edge is especially a problem for making small 

features using projection lithography. The edge diffraction and side-lope intensity 

“ripples” overlap and blur the neighboring geometries, thus limit the smallest feature one 

can possibly project and record on a substrate.  

 

Proximity correction is a compensation technique developed for writing a photo resist 

with an electron beam having a Gaussian intensity profile.1-3 The technique accounts for 

the 3D dose absorption of the photo resist, and use an iterative process to solve for the 
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compensated dose that would develop into the desirable structure. T(x,y) represents the 

desirable dose distribution, and I(x,y) is the proximity function consisting of two 

Gaussian intensity profiles with parameters α, β, and η (Eq 1). For the simple 

compensation dose, D(x,y) = D0 = 100% inside the exposure area and exactly 0 outside 

the area. The T(x,y) expression for such simple compensation scheme is described by Eq 

2. For the more accurate 3D compensated dose distribution, the goal is to obtain a dose 

distribution function D(x,y) for the structures described by T(x,y). Both Eq 2 and 3 are 

convolution integrals, and Proxy is the software used to do this iterative calculations.  

 

    Eq 11-3 

 

    Eq 21-3 

 

 

 

   Eq 31-3 

 

Figure 2 is an illustration of the 3D corrected dose exposure for making a Ronchi ruling. 

It can be seen that the edges of the structure receive more/less dosage then the center 

portion of the structure, according to the description from Eq 3, to account for the 

“spillage” from the neighboring geometries. The discrete steps are approximation of the 

continuous T(x,y) function. After etching, the corrected profile should looks like the ideal 

square wave profile.  
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Figure 2: Uncorrected vs corrected Ronchi ruling and patterning the photo resist 1-3 

 

 (a) (b) 

(c) 

Figure 3: (a) Fresnel “half” zone plate patterned by 3D proximity method, (b) the 

predicted dosage profile, and (c) calibration geometry patterned on PMMA. 1-3 
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Figure 3a is an SEM image of a “half” Fresnel zone plate patterned on PMMA. This 

“half” plate is not a cut-away of a circular Fresnel zone plate, but rather a geometry 

directly patterned on the PMMA using the 3D proximity calculation. Figure 3b is the 

predicted dose profile that makes up the “half” plate shown in 3a. And from Figure 3c, 

one can see the impressive corner sharpness between the wedges patterned by the 3D 

proximity correction. 

 

There is a group from MIT – Research Laboratory of Electronics that was developing a 

similar technique for compensating the edge/corner diffraction effects due to the coherent 

laser illumination and projection (about five years ago). The calculation takes account of 

the diffraction pattern about the edges and corners of a specific mask pattern; it iteratively 

calculates the “deformed” pattern that best represents the desirable net shape, and it takes 

into account of the contrast of the photo resist. The detail of the calculation model 

employed is not known, but it probably involves physical wave propagation codes, which 

always complicates the problem when dealing with coherent illumination.  

 

Ablation by Excimer Laser (and calibration of source intensity) 

Eximer laser is a UV chemical laser. Typically, it has two components – an inert gas 

(such as Argon, Krypton, or Xenon) and a reactive gas (such as Fluorine or Chlorine). 

Lasing occurs under the right excitation condition, which produces an “excited dimmer 

particle”. Most organic and plastic materials exhibit excellent UV absorption, and an 

eximer laser can be used to remove these materials by ablation (not by burning the 

materials). During ablation process, a pulse of energy is “injected” into a material. The 

duration of the pulse is much shorter than the thermal time constant of the material; the 

amount of thermal energy “injected” or absorbed is so large, that the localized thermal 

expansion of the material exceeds the rupture strength of the material. Therefore, the 

localized material is “ejected” or ablated from the surface.  

 

Excimer laser ablation process is inherently a mask patterning process; the poor beam 

quality from the excimer laser prohibits the direct printing of small features. Energy 

throughput is a challenge with this mask and ablation process. The discussion here 

centers on half tone printing. In the half tone mask, the binary feature size is much 
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smaller than the resolution of the imaging system. The mask can have equally spaced 

lines/dots at varying width to achieve some gray levels, or it can have equal width of 

lines/dots at varying spacing. However, these critical dimensions must be carefully 

design, so only the 0th order diffraction is printed onto the photo resist and the other 

orders have diffraction angles large enough to miss the printing area.  

 

 (a) (b) 

(c) 

Figure 4: (a) a calibration layout having 64 levels of “grayness”, (b) a calibration sample 

using half tone mask with 400mJ/cm2 laser fluence and 32 pulses, and (c) a calibration 

plot showing the ablation depth as a function of the fluence level and number of pulses. 4 

 

Half tone printing has the advantage of using only one mask, so no precision motion 

stage or mask aligner is needed. However, it is crucial to well calibrate the pulse energy, 
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pulse duration, and the numbers of pulses in order to fabricate a set of desirable gray 

levels. A look-up table is often required. In addition, the material re-deposition can also 

cause non-linearity; there is some probability that the ablated material will settle back on 

the substrate surface. An Exitech 8000 KrF excimer laser4 was used for the following 

results. It has a wavelength of 248nm, typical pulse energy of 0.5J per pulse, a pulse 

duration of 20nsec, and max repetition rate of 100Hz. Beam forming optics and 

homogenizer were implemented to overcome the inherent poor beam quality. Figure 4 

shows the calibration methodology and results. 

 

From Figure 4c, it is evident that the ablation depth is non-linear as a function of the 

desirable gray levels. This is especially true for the high fluence + pulse # combination. It 

was shown that this non-linearity is at least partially caused by the debris re-depositing 

back onto the surface; when dragging a contact profilometer across the pockets to 

measure the ablation height, it was observed that the tip of the profilometer left a track of 

plowing mark through the debris deposited on the surface. See Figure 5. However, low 

fluence + pulse # scenarios do appear to be linear. To make a quaternary CGH, one needs 

at least (nrefraction-1)λ of ablation depth in transmission, and the low fluence + pulse # 

combination seems to be suitable.  

 

Figure 5 shows the SEM images of a polycarbonate (PC) vs benzocyclobutene (BCB) 

surfaces.  Side wall angle and micro surface roughness are compared. It is evident that 

the PC surface is much smoother than the BCB surface. However, the side wall steepness 

is better on BCB. Both the side wall angle and the micro surface roughness will impact 

the diffraction efficiency of the CGH. The micro surface roughness is measured to be 

about 30nm Ra (interpreted as PV not RMS), and the side wall angle is about 10º.  

 

The research group4 produced a 4-level phase CGH using this fabrication technique, by 

using the Gerchberg-Saxton algorithm to calculate the phase function, and the 

reconstructions are shown in Figure 6. It is not clear why the contrast of the experimental 

result of the reconstructed image 6(c) is so different from the simulated reconstruction 

6(b); it is possible that the simulation was adjusted on a log-scale to enhance the result, or 

the environment for recording the reconstruction was not ideal or was too bright.  

 



 10

  
Figure 5: SEM images of PC (left) and BCB (right) patterned surfaces 4 

 

(a) (b) 

(c) 

Figure 6: (a) the phase of the Gerchberg-Saxton CGH, (b) simulated reconstruction of the 

image, and (c) experimental result of the reconstructed image. 4 

 

Spin-on-glass (and calibration of source intensity) 

Gray scale is similar to half tone, in which they are both capable of producing continuous 

gray levels but need “dosage” calibration. Generally, a gray scale photo mask employs a 

Profilometer track 
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thin layer of silver ion coating, and the transmission of the mask is controlled by the local 

variations of the silver ion concentration. However, in this research5, a very economic 

spin-on-glass coating is used to modulate the transmission. The spin-on-glass (SOG) 

changes its transmission characteristics upon exposure to UV light. The exposed SOG 

film is then permanently fixed by a thermal treatment. The mask then has a continuous 

gray level without the need of etching steps. This technique was borrowed from the 

phase-shifting mask technology, where a π shift is used to reduce the side-lobe intensity 

(by destructive interference principle) during the projection lithography process.  

 

 (a) 

 (b) (c) 

Figure 7: (a) the transmission curve of SOG vs fused silica, (b) the transmission curve of 

SOG at different UV exposure level, and (c) the transmission curve of SOG at λ1 and λ2.5 

 

The unexposed SOG is transparent between UV-Vis. However, the material changes its 

absorption coefficient between λ(200-600nm) after exposure to UV light. See Figure 7a. 

The steps in making such mask are 1). mix the chemical reagents to produce the SOG 

photo sensitive solution, 2). spin-coat 0.5-10μm thick film, 3). soft bake, 4). pattern the 
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SOG film with UV, and 5). hard bake the mask between 1000-1200ºC. After hard bake, 

the SOG film has properties similar to those of fused silica and behaves very much like a 

bulk material. In addition, the hard bake has no adverse effect on the gray pattern.  

 

Figure 7b shows the transmission of the SOG as a function of the wavelength for 

different UV exposure dosage. Figure 7c shows the transmission curve of the SOG as a 

function of the exposure dosage at two particular wavelengths. It is not clear from 7c that 

whether there is a region where the transmission and the exposure dosage is linear, is 

otherwise a piece-wise step-function, or that requires a look-up table. And in practice, 

one wants to select a wavelength from 7b where the transmission of the SOG spans from 

0 to 1, which further limits the usable wavelengths.  

 

An off shoot of this SOG technology is the possibility of making an amplitude + phase 

(perfect) CGH. I claim that it is possible to make an amplitude CGH using the above 

process first, then coat and soft bake a second layer of SOG, pattern and etch the second 

layer into a phase CGH without changing the global/local transmission property of the 

second layer, and thermally fix the second layer as the final step. Alternatively, a light 

sensitive polymer can be used to transmit and modulate the phase. 

 

Yet another (very distant) off shoot of this SOG technology is the ability to improve the 

micro surface roughness of the glass and metal mirrors. Improving the micro surface 

roughness reduces the scattered light, but this is especially difficult to achieve for metal 

mirrors (to Ra<10Å rms level) due to the inherently large metal grain size. We might 

choose to use SOG as a filler, and to smooth out the micro peaks and valleys (in the order 

of Ra~50Å rms). By using the spin-on method and employing the surface tension 

property of the SOG solution, I believe it is possible to improve the micro surface 

roughness of a mirror without introducing low order aberration from the coating 

uniformity. In this proposed process, it is important to anneal the metal, so the mirror 

surface does not distort after the semi hard bake (apparently, one can not hard bake the 

metal at 1000ºC, so ~300ºC is chosen for the semi hard bake).  

 

Calibration of mask alignment 



 13

Moire pattern can be employed to measure large scale misalignment6. Figure 8 shows two 

Moire patterns of two different underlying geometries. The underlying geometry in 8a is 

a straight grating with grating spacing of 3μm, and 8b is a 10x10 array of different 

Fresnel zone plates. By themselves alone, it is difficult to map out the large scale 

distortions. However, when one superimposes two gratings on top of each other and 

rotate by a small angle with respect to each other (or two Fresnel zone plate arrays), a 

Moire pattern is formed. The ideal Moire pattern should produce straight fringes. From 

the deviation of the fringe pattern, one can infer the large scale distortion in the part. This 

distortion may be resulting from the alignment error between successive masks and 

patterning. One can then use this information to compensate the reproducible offsets.  

 

(a) (b) 

Figure 8: Moire pattern of two (a) gratings and (b) array of Fresnel zone plates 6 

 

A circular CGH writer 

A Russian research group7 built a circular CGH writer specifically for making the CGH’s 

for testing aspheric optics. These CGH’s typically exhibits circular symmetry, but the 

laser intensity is modulated by an acousto optic modulator (AOM) to allow some 

deviation from printing only the circular patterns. A chromium film is used as the 

sacrificial material, and it is oxidized by heating from a focused Argon laser. However, 

the oxidation reaction depends strongly on the laser power and duration. Therefore, a 

power meter is inserted to close the loop with the AOM. See Figure 9. A chemical 

etchant then preferentially etches away the chromium and the chromium oxide patterns. 

The result is an amplitude CGH (chromium on glass). The researchers7 also pointed out 

the use of an amorphous silicon film, deposited by RF or magnetron sputtering methods, 
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as the sacrificial material. The underlying mechanism is the differential chemical 

solubility of the α-silicon film in the echant after UV exposure. However, α-silicon is 

susceptible to oxidation even at the room temperature and pressure. Therefore, it has a 

life time or shelf life of only 3-6 months.  

 

Two very interesting patterns were made with this circular CGH writer. See Figure 10. In 

fact, neither pattern looked circular, and the AO modulator clearly demonstrated the 

capability of the setup. Figure 10a is an amplitude CGH that produce an optical vortex, 

and 10b is a Fresnel zone plate for a focusing a collimated beam at 45º angle of 

incidence. These two patterns are best understood by thinking about modulations in both 

the radial r and rotational θ directions at the same time.  

 

 
Figure 9: the circular CGH writer, with a power meter feedback loop to control the AOM 

and a distance measuring interferometer that controls the radial position of the beam. 7 
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(a) (b) 

Figure 10: (a) an optical vortex mask and (b) an elliptical Fresnel zone plate printed on 

the circular CGH writer 7 

 

Two-photon four-level material: 

First, let’s clarify the terminology. The four-levels in this context8 are the four electronic 

energy levels exhibited by the molecule, not a 4-level phase CGH. See Figure 11. This 

molecule, poly-(alkyl-α-cyanoacrylates), is a common material for adhesives (super 

glue). Because of the shift in the energy levels, the population of electrons in the C level 

is allowed only by the depopulation of electrons in the B level through phonon relaxation. 

Therefore, the direct electronic transition from A to C is forbidden. To use this as a 

holographic recording material, the molecules must first be “pumped” with a UV photon 

(λ1~300nm), and then “written/read” with an IR photon (λ2~750nm). The modulation is 

recorded in the local refractive index differential due to the concentrations of monomers 

and polymers, and a change of local density Δρ. It should be pointed out that the cross 

linking of the monomers does not stop immediately after the removal of either photon; 

there is a self-development chemical process that takes place after the removal of 

photons. However, contrary to our instinct, this process actually improves density of the 

polymer matrix and the diffraction efficiency of the hologram. 
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 (a) (b) 

Figure 11: (a) a molecule having four electronic energy levels, λ1 is the “pump”, λ2 is 

the “write/read” photon, and the material is an “inactive” hologram with the absence of 

either photon, (b) the recording setup. 8 

 

 

ALGORITHM DEVELOPEMENTS 

Fourier Transform and the 4-F System 

Readers are assumed to have some understandings of Fourier transform (FT) operator and 

the 4F optical system; the mid plane of the 4F system is the FT plane. In a CGH, the 

object to be encoded is transformed from the direct space u(x,y) into the spatial frequency 

space U(ξ,η) by the first ideal positive lens and the paraxial free space propagation. The 

complete or partial complex amplitude of U(ξ,η) is then encoded on the CGH. The 

reconstruction of the object is performed by the second ideal positive lens and the 

paraxial free space propagation again. See Figure 12. These ideal lenses and the free 

space propagation behave like a FT operator on the object. And for the moment, let’s 

consider only coherent illumination.  

 

Before starting to discuss the specific encoding methods, let’s classify the types of the 

objects to be FT’ed and the types of CGH one can choose to encode the transform. A 

general object may be described by u(x,y) = a(x,y)·eiφ(x,y). Most visual images can be 

described by its spatial amplitude u(x,y) = a(x,y). However, some biological cells are 

phase objects and have very little or no amplitude modulation. They can be described by 

u(x,y) = eiφ(x,y). In optical metrology, the aberrated wavefront can be considered as a 
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phase object too. Generally, the FT of the object u(x,y) can be written as U(ξ,η) = 

A(ξ,η)·eiΦ(ξ,η), and U(ξ,η) can be recorded onto a CGH. One may choose to implement 

only the A(ξ,η) part of the complex amplitude U(ξ,η) to form an amplitude CGH, or one 

may choose to implement only the Φ(ξ,η) part to form a phase CGH.A perfect CGH is a 

CGH that implements both the amplitude and phase. 

 

 
Figure 12: a 4F system (illustration taken from OPTI 512R class notes) 

 

CGH images are often encoded on a carrier. Cosine and Square wave can be written as: 

Tcos(ξ,η) = ½·[1 + cos(2πx0ξ)]      Eq 4 

Tsq(a;x0ξ) = Σm a·sinc(ma)·e2πimξ
°
x      Eq 5 

 a is the duty cycle of the square wave 

 

To encode an image onto the cosine CGH, one would replace the amplitude and phase of 

Eq 4 with the computed A(ξ,η) and Φ(ξ,η) of the object (Eq 6-7). Writing Tcos in Euler 

formula, it is clear that there are three diffractive orders from this carrier (-1, 0, and +1 of 

the Fourier series of the object). Again, one might choose to make an amplitude-only 

CGH by dropping out the Φ(ξ,η) term, or one might choose to make a phase-only CGH 

by dropping out the A(ξ,η) term. The author learned that about 25% of the information is 

encoded in the amplitude term A(ξ,η), and 75% in the phase term Φ(ξ,η).  

 

Tcos(ξ,η)  = ½·{1 + A(ξ,η)·cos[2πx0ξ + Φ(ξ,η)]}     

      = ½·[1 + A(ξ,η)·e2πιx
°
ξ·eiΦ(ξ,η) + A(ξ,η)·e-2πιx

°
ξ·e-iΦ(ξ,η)] Eq 6  

t(x,y)  = ½·[δ + u(x+x0,y) + u(-x+x0,y)]     

  = DC spike + displaced true image + displaced twin image  Eq 7 
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There are infinite numbers of diffractive orders for a square wave grating. The strength at 

each order is determined by the Fourier series coefficient a·sinc(ma). The 0th order has 

the strongest diffraction amplitude. However, an image can not be encoded at the 0th 

order, because it is a constant and has no amplitude or phase modulation. The ±1 order 

has the next highest strength. If the image were to be encoded on the +1 order, one may 

simply replace the phase Φ(ξ,η) of the object into the exponential term in Eq 5 again. 

However, the Fourier series coefficient a·sinc(ma) must be equated to A(ξ,η); a becomes 

the local amplitude/duty cycle modulation. To solve for a(ξ,η): 

 

A(ξ,η)   = a(ξ,η)·sinc[ma(ξ,η)], m = 1 

  = sin[πa(ξ,η)] / π 

a(ξ,η)   = arcsin[πA(ξ,η)] / π, normalize the argument of arcsine to (0,1) 

  = arcsine[A(ξ,η)] / π,  range of a is (0,½)      

substitute for A(ξ,η) and Φ(ξ,η), 

Tsq(a;x0ξ)  = Tsq{arcsine[A(ξ,η)] / π ; x0ξ + Φ(ξ,η)/2π}   Eq 8 

 

Again, Eq 8 will form a true image (at m = +1), a twin image (at m = -1), a DC spike (at 

m = 0), but also many other noisy diffractive orders. One may choose to drop out the 

amplitude term A(ξ,η) or the phase term Φ(ξ,η) for ease of CGH implementation. 

 

To extend this encoding methodology, one can choose any arbitrary periodic structure to 

encode the image, by the Fourier series decomposition of the periodic structure and 

choosing a particular order to encode the image (m≠0). The presence of the twin image is 

undesirable, because it reduces the field of view. There is a method for suppressing the 

twin image by using a particular form of quaternary CGH. This will be discussed later. In 

addition, one may choose to quantize the amplitude A(ξ,η) or the phase Φ(ξ,η) into N 

discrete levels directly, after performing the operation u(x,y) → U(ξ,η), without encoding 

it on a carrier. Last, there are a few very interesting multiplexing techniques for encoding 

multiple images on the same CGH. However, one needs to incorporate an additional 

orthogonal degree of freedom for each additional image to be encoded. See OPTI 627 

lecture notes. 
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Hough Transform 

A Hough transform (HT) CGH is proposed as an image filter10. It is important to identify 

lines and edges in image processing and machine vision. HT is often used to extract this 

information, and it is very robust against missing pixels. HT can be extended to extract 

circular and elliptical edges, and it is similar to Radon transform. .  

 

Aline in 2D space can be written as y = mx + b. Alternatively, the line can be 

parameterized into an angle θ and a radial distance r from some reference (same as 

defining the slope and y intersection of the line). Therefore, if a line can be transformed 

from the (x,y) coordinate into this (r,θ) coordinate, the line appears as a point in this new 

coordinate. Figure 13 illustrates such transformation, and it can be written as: 

 

   Eq 9 

 

which looks like the projection slice theorem and the Radon transform.  

  
Figure 13: Hough transform of 3 collinear points that defines a line, and how the line is 

mapped onto the (r,θ) space as an unambiguous point (r0,θ0) (illustrations taken from 

Wikipedia.org)  

 

To implement this transformation with an optical setup, two cylindrical lenses are used10. 

Figure 14 illustrates this optical transformation. L1 is a cylindrical lens with a focal 

length FL1 = d. L1 performs the Fourier transformation of the line in 1D along the “x” 

direction, and a line transforms into a point in 1D FT. L2 is a cylindrical lens with a focal 
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length FL2 = d/2, but placed at the orthogonal direction relative to L1. L2 performs the 

1:1 imaging of the line onto the Hough transform space. By rotating the cylindrical lens 

pair, lines with different slopes can be transformed to the θ direction on the Hough 

transform plane. To do this HT transformation using CGH, one needs to encode N sets of 

cylindrical lens pair in order to detect lines at N discrete slopes. See Eq 10.  

 

 
Figure 14: Hough transform optics, L1 has FL1 = d as a 1D FT optics and L2 is a 1:1 

imaging lens in the orthogonal direction. 10 

 

ideal lens: t(x,y) = exp[jk(x2+y2)/fL)], k = 2π/λ 

ideal cylindrical lens: t(x,y) = exp[jkx2/fL)] 

 Eq 1010 

 

From Eq 10, it is clear that there are N sets of cylindrical pair oriented at θ1-N directions. 

The first term is a cylindrical lens with focal length fL (the 1D Fourier transform lens), 

and the second term is a cylindrical lens with focal length fL/2 (the 1:1 imaging lens). 

However, in order to reduce the speckle pattern, each cylindrical lens pair is added a 

phase tilt. In addition, a global phase tilt is added to the CGH to recenter the pattern. See 

Figure 15 and Eq 11. This HT CGH can be very useful for simultaneous tracking of 

multiple targets (view HT CGH as a match filter). And as mentioned earlier, the method 

can be modified to identify circular and elliptical curves in the (x,y) space.  
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          Eq 1110 

 

d 
Figure 15: the above illustration is in the HT plane, and each line represents a set of 

parallel lines in the orthogonal (x,y) space; (a) Eq 10 with N = 4, (b) tilts are added to the 

1:1 imaging lenses to reduce the speckle patterns from the interference of the 4 slices, (c) 

a global tilt is added to the CGH to recenter the field of view, and (d) a simulation 10 

 

Errors and noise 

Errors in the CGH can show up as noise in the reconstructed images. Quantization errors 

are a source of noise. Analytical treatments of noise arise from different quantization 

errors can be found in OPTI 627 class notes.  

 

One method of minimizing the quantization error is called error diffusion (ED). Using 

binary CGH as an example, ED first assigns a binary value to a gray scale pattern 

Σijf(xi,yj), fij = [0,1], into fb,ij = {0,1}. The error at each pixel is εij = fij - fb,ij. The error εij 

is then distributed to the neighboring unprocessed pixels of (i,j). ED can be 1D or 2D, 

and it can be binary or multi levels. The Floyd and Steinber’s error diffusion algorithm 

spread the error to four unprocessed neighboring pixels, (i,j+1), (i+1,j-1), (i+1,j), and 

(i+1,j+1). The ED processed images can have a few distinct artifacts, and they are called 

“worm”, “tear”, and “checker board”.  

 

Historically, optical data processing was a very active research topic. It is a very math- 

and statistics-heavy subject. An example of such research is Ref 11; it discusses different 

error diffusion methods and how to do signal processing using the quantized amplitude 

and phase CGH’s. SNR is a merit function for characterizing different encoding methods.  
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APPLICATIONS 

Digital image hiding 

A scrambled secrete image is imbedded into a host image in the FT domain12, and the 

secrete image always has an array size smaller than the host image. 

 

A secrete image is first Arnold transformed (AT) in the direct spatial domain. Figure 16 

shows the process of Arnold transform. The resulting image becomes unrecognizable 

after a few AT iterations. However, AT eventually restores the original image after N 

iterations, and the process is periodic with a period N. Eq 12 describes a simple AT 

operation, and it has some unique Eigen function properties. See 

http://mathworld.wolfram.com/ArnoldsCatMap.html.   

 

 
Figure 16: process of Arnold transform; after a few iterations, the cat is no longer 

recognizable and the image looks like noises; however, the original image is eventually 

restored. See http://hypatia.math.uri.edu/~kulenm/diffeqaturi/victor442/index.html.  
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mod n       Eq 12  

 

Discrete cosine transform (DCT) is applied to both the host image and the scrambled 

secrete image. Eq 13 shows the 2D forward discrete Fourier analysis of an image A(i,j) 

into the coefficients B(k1,k2). 

 

 Eq 13 

 

The coefficients of the scrambled secrete image Bsecrete(k1, k2) are scaled and added to the 

coefficients of the host image Bhost(k1, k2), or BCGH(k1, k2) = Bhost(k1, k2) + c·Bsecrete(k1, 

k2). The constant c should be small, so the reconstructed host image from CGH 

coefficients BCGH(k1, k2) can still closely resemble the original host image.  

 

In order to extract the secrete image, a few “keys” must be known; the host image, the 

scale constant c, and the parameters of the Arnold transform. 

  

Another method of scrambling an image is by applying a coding and decoding mask in 

the FT domain13. Figure 17 shows the hardware implementation of such method, but the 

concept can be applied to the digital images as well. First, a conjugate pair of coding and 

decoding mask is generated. The hologram h(x,y) contains the FT of the image a(x,y) 

scrambled by the coding mask c(x,y). The image reconstruction is only possible if the 

decoding mask and its “location” are given.  
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Figure 17: scrambling an image by coding and decoding mask. 

 

Security devices 

It is possible to use a CGH as an 

authentication device. This device does not 

need to form an image, but rather served 

like a seal or stamp14. Figure 18 shows 

such a device. There are three distinct 

surface characteristics on this device; a like 

structures on top of the grating, and a 

specific micro surface texture pattern. Such 

a “diagonal” grating, many point- device is 

manufactured in steps; CGH pattern is 

etched (such as the grating structure), 

intereference holographic pattern is 

projected (such as the point-like structures 

 
Figure 18: a multi level multi pattern 

security device. 

on top of the grating), and the flat area is embossed with some specific micro surface 

texture. It is not clear from the article as to what kind of inspection machine is needed to 

authenticate this security device. 

 

Viewing angle enhancement with a superresolution phase mask 

The bandwidth required to display an active CGH motion picture is very large. Consider 

the following problem: a display of 10mm x 10mm with a viewing angle of 14°, having 
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4096 x 4096 pixels of 2.5μm size. This amounts to more than 16Mbits/frame15. An RGB 

display updates at 33Hz will increase the bandwidth by another 100x. The computational 

demand is just too great. Therefore, the goal is to reduce the number of pixels (increase 

the pixel size) while maintaining the viewing angle (related to the large diffraction angle 

and small pixel size), but achieving a similar perceived image quality (not necessarily 

equal to the SNR of the displayed images) with the larger pixel size. One-step phase 

retrieval algorithm, FPGA, and binary CGH using a spatial light modulator (SLM) are 

designed to bring such display within reach.  

 

The first challenge is to increase the replay field by eliminating the twin image from the 

CGH. A particular type of quaternary phase CGH will do just that. Since about 75% of 

the information is carried in the phase term Φ(ξ,η) of the complex amplitude, the 

amplitude term is simply “thrown away”. Experiences show that the reconstructed image 

from such phase CGH is almost always of reasonable quality. To eliminate the twin 

image from such CGH, the phase term Φ(ξ,η) will be encoded twice; once in a cosine 

CGH and a second time in a sine CGH. The cosine and the sine CGH are then shifted by 

a phase π/2 (or i) apart. The twin image from the cosine CGH then cancels out the twin 

image from the sine CGH exactly. See Eq 14.  

 

Tcos  = cos[2πx0ξ + Φ(ξ,η)] = ½·(e2πιx
°
ξ·eiΦ + e-2πιx

°
ξ·e-iΦ) 

Tsin  = sin[2πx0ξ + Φ(ξ,η)] = ½i·(e2πιx
°
ξ·eiΦ - e-2πιx

°
ξ·e-iΦ) 

Tquad  = Tcos + i·Tsin 

= e2πιx
°
ξ·eiΦ  

= e2πιx
°
ξ·phase[U(ξ,η)]      Eq 14 

recall that u(x,y)→U(ξ,η) = A(ξ,η)eiΦ(ξ,η). And with this quaternary CGH, Eq 14 shows 

that only the true image is reconstructed. However, the original image u(x,y) is now 

shifted by an amount u(x0+x,y). There is no DC spike in a sine/cosine quaternary phase 

CGH. This method can also be applied to a square wave quaternary phase CGH. The twin 

images will be cancelled out in the same way. A simulation of such binary vs quaternary 

CGH is shown in Figure 19. The removal of the twin image effectively increases the 

replay field.  

 



 26

 (a) (b) 

Figure 19: simulated reconstruction of a (a) binary CGH with true and twin images and 

(b) quaternary CGH with a displaced true image and no twin image. 

 

To implement this quaternary CGH, one’s natural instinct is to make the SLM a four 

phase modulation instead of the original binary modulation. However, this would require 

smaller pixel sizes in order to maintain the same spatial sampling rate, which is just the 

opposite of the initial intent of resolving the bandwidth issue. A very clever technique of 

achieving a quaternary phase is as followed: let the SLM remains a binary phase of {0,π} 

for its PxP pixels, etch a binary phase mask having randomly distributed {0,π/2} MxM 

pixels. Let M be an integer multiple of P, and place the binary phase mask in front of the 

SLM. The result is a quaternary CGH having {0,π/2,π,3π/2} phases. See Figure 20. 

 

There is a penalty associated with this method – noise. The ratio M/P introduces 

additional noises in the reconstructed image. For M/P = 2, the SNR is decreased by 3dB. 

However, this degradation asymptotically slows donw. In fact, for M/P = 12, the SNR 

only decreases by a total of 4.6dB. This is a wonderful realization, because one may use a 

larger SLM pixel dimension to reduce the P2 numbers of DFT calculations, but at the 

same time maintain the viewing angle using a randomly distributed binary phase mask 

having M2 pixels (again, M is an integer multiple of P).  
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Figure 20: (a) binary phase CGH {0,π} from SLM, (b) randomly distributed binary phase 

CGH {0,π/2}, and (c) combination of (a) and (b) forming a quaternary CGH.  

 

The last piece of this technology utilizes of the integration process performed by the 

human eyes. It has been shown how the noise in each frame of the CGH image is 

independent and identically distributed (i.d.d.). Even though each image frame has the 

same SNR, but the human eyes can perceive and integrate over multiple frames at a 

frame rate >30Hz. Therefore, the noise in each frame averages out. It has been shown that 

the average of 4 subframes is perceived much less noisy than the four single frames 

along. See Figure 21. 

 

(a) (b) (c) 

Figure 21: (a) N = 1, (b) N= 4, and (c) N = 16 

 

Parallax 2D encoding CGH 

This research16 argues that forming a 3D motion picture through 2D parallax CGH 

projection is much more efficient than the direct 3D CGH reconstruction. DFT is again 

implemented in hardware by the basic multiply-and-accumulate operations. However, the 

math it uses to describe the parallax view rendering, how to calculate its CGH pattern, 

and some primitive shape used to reconstruct the image are not very easily understood.  

 

A light-light switch 
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Nonlinearity and frequency doubling of a BBO I (β-B2O4, beta Barium Borate) crystal is 

used as the “recording” media17. However, it should be clarified right away that no signal 

can be stored in this material, and the “hologram” is only “instantaneous”. This 

“hologram” behaves more like a switch for turning on/off the interconnections, or for 

encoding/ decoding signals. There is no “twin” image, and it has the advantage of zero 

response time. Figure 22 shows such frequency doubling “hologram”.  

 
Figure 22: a second-harmonic generation crystal BBO is used as a hologram; Eo and ER 

have frequencies ω, and the “reconstructed image” E” has a frequency 2ω. 

 

In order to understand the “reconstruction”, the interference effect must be modified to 

account for the up-conversion process. Following the steps in Eq 15, we see that the 

“reconstructed image” (the second term in Eq 15, denoted as E”
2ω in Figure 22) is not the 

same as the original object E0. It is the average of the original reference + object waves, 

and at frequencies 2ω and k2. A pictorial representation of Eq 15 is shown in Figure 23. 

In addition, the “reconstructed image” is modified in both the axial position and the 

transverse size. Consider a typical one-photon process reconstructed image O1,ω, an 

intermediate image O2,2ω, and the two-photon reconstructed image O3. The transverse 

size of the images O1,ω and O2,2ω are identical. However, because of the up-conversion 

process, the longitudinal size is doubled. The size and location of the intermediate image 

O2,2ω is further modified by the spherical reference wave to produce the final image O3; 

this can be understood as a focusing effect. One interesting by-product of this two-photon 

process is the auto-correlation of the image from E’
2ω or the first term of Eq 15.  
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          Eq 15 

 

   
Figure 23: the “reconstructed image” is the average of the original reference + object 

wave, and the location of the “image” is modified too.  

 

 

Active CGH for aspheric testing 

An LCD SLM is incorporated into an interferometer for testing aspheric surfaces. The 

SLM forms the CGH pattern for performing such null test18.  Figure 24 illustrates such 

interferometer setup. In this context, the object u(x,y) is a phase-only object. The function 
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of the null corrector is to form an ideal reference wavefront, so the deviation from the test 

optics can be compared and measured by their interferogram. Eq16-20 shows how the 

two beams interfere with each other and their resulting (intensity) interferogram. Using 

the LCD to as an active programmable hologram, it becomes unnecessary to manufacture 

individual CGH’s to match particular test surfaces. 

  
Figure 24: an interferometer setup utilizing an LCD to modulate the phase of the 

reference beam.  

        Eq 16 

      Eq 17 

      Eq 18 

      Eq 19 

 

   Eq 20 

 

Eq 15 
Eq 16 

Eq 17 

Eq 18 

Eq 19 

Eq 15 
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It must be pointed out that the intensity and phase of a LCD can not be controlled 

independently. However, with the help of the polarizer and analyzer oreinted at some 

particular angle relative to the nematic angle of the LCD, there can be a range of phase 

modulation where the intensity variation is negligible. See Figure 25.  

 

(a) (b) 

Figure 25: (a) intensity and (b) phase as a function of β (β is proportional to the 

difference between the ordinary and extraordinary refractive indices of the liquid crystal 

Δn = no – ne, and it is controlled by the capacitance across the individual LCD pixel) 

 

However, the LCD has the added functionality of performing phase-shifting. The 

reference wave is phase shifted by 0, π/2, π, and 3π/2, and the resulting four 

interferograms are to reconstruct the surface deviation of test optics. The LCD used is a 

Sony LCX023 1.3” display. It has 1024x768 pixels, with a pixel spacing of 26μm. The 

thickness of the liquid crystal layer is d = 5μm, β = πd(no – ne)/λ, and λ = 0.6328μm. 

 

 

ENCODING IMAGES ON THE 0th ORDER OF A QUATERNRY CGH 

There are two main goals in this section: to develop a mathematical description of the 

Quaternary Phase-only CGH, and to simulate/encode/decode digital image hiding using 

CGH in Matlab. The algorithms are shown, and two variations of the CGH are derived. 

Figure 26 and 27 are the flow chart and the images applied. 
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Figure 26: a flow chart of the coding and decoding a secrete message inside a host image 

Host 
Image 

Secrete 
Message 

GS 
Diffuser 

Arnold 
Transform 

Host 
CGH 

Scale 

Send 
CGH 

Mod(N) 

Scrambled 
n times 

Inverse 
FT 

Given GS 
Host Image 

Given  
Scale 

Given AT 
Parameters 

Given GS 
Defocus 

Decoded 
Message 

Decoding process 
must be in sequence 

Remove  
Host Image 

1 

2 

4 

Encode 
Quad CGH 

Defocus 3 



 33

 

 

Host image

10 20 30 40 50 60

10

20

30

40

50

60

 
Figure 27: a host image of 64x64 pixel, and a secrete message of equal or smaller in size. 

 

The following sections discuss the algorithms developed for the labeled boxes and their 

simulation results. Subroutines are put into functions. 

 

BOX 1: Gerchberg-Saxton (GS) Diffuser 

GS diffuser is used to more-uniformly redistribute the object in the Fourier domain, by 

attaching an “optimal random” phase to the object in the direct space. The iterative 

algorithm is shown below; the algorithm goes back-and-forth between the direct and the 

FT space, and each time keeping the phase and destroying the amplitude information. 

Typically, the “optimal random” phase is achieved after 5-10 iterations. Figure 28 

compares two images with and without the GS diffuser. It is clear that the GS diffuser 

effectively spreads out the information in the FT domain, and “structures” are eliminated.  
 
function [phase] = GSDiffuser(object) 
phase = rand(size(object)); 
for n = 1:10; 
  diffuser = exp(2*pi*i*phase); 
  u = object .* diffuser; 
  U = fftshift(fft2(fftshift(u))); 
  U_PhaseOnly = U./abs(U); 
  u = fftshift(ifft2(fftshift(U_PhaseOnly))); 
  phase = angle(u); 
end; 

 
No.

No.

No.

No.

No. 

No. 

No. No. No.

Secrete Message 

reorder into a vector 
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Figure 28: left column shows the FT(original image), and right column shows the 
FT(after applying a GS diffuser); “structures” are obvious on the two bottom left plots.  



 35

BOX 2: Quaternary Phase-Only CGH 

Early in the Algorithm Developments section, the general approach to encoding an image 

on a carrier frequency was discussed. Brief discussion shows how to encode the FT of an 

object on a cosine wave, a square wave, and a particular type of Quaternary CGH (that 

eliminates the twin image). Here, a new type of Quaternary Phase-Only CGH is 

developed. Images can be encoded on the 0th order of this “four-step staircase” carrier. 

First, the staircase is decomposed into their Fourier Series coefficients, consisting of four 

square waves at four different heights. Two variations of the staircase geometry are 

explored, and their diffraction orders/strengths are compared.  

 

Recall a simple square wave having a duty cycle “a”, in the coordinate “p”, and has a 

displacement measured from the origin “pο". See Eq 21. Quad_Type1 can be written as a 

summation of four square waves at different displacements  “pο’s” and heights “A’s”. See 

Eq 22 and Figure 29.  

 

Tsq(a;xοp;pο;A) = A·Σm a·sinc(ma)·e2πimξ
°
(p-p

°
)     Eq 21 

for the moment, let 

TQuad_Type1 =  Tsq_1(a1;xοp;p1;A1)  a1 = 1/4, p1 = 1/8, A1 = 1/4,  

+ Tsq_2(a2;xοp;p2;A2)  a2 = 1/4, p2 = 3/8, A2 = 2/4, 

+ Tsq_3(a3;xοp;p3;A3)  a3 = 1/4, p3 = 5/8, A3 = 3/4, 

+ Tsq_4(a4;xοp;p4;A4)  a4 = 1/4, p4 = 7/8, A4 = 4/4,  Eq 22 

       

  
Figure 29: Quad_Type1 carrier 
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With a slight variation, Quad_Type2 can be written as a summation of four square waves 

with different duty cycles “a’s”. See Eq 23 and Figure 30. Since all the parameters of the 

square waves are defined, these staircases can be reconstructed using “for-loops” to first 

construct the individual square waves from their Fourier Series coefficients, and then 

adding up four different square waves to yield the final shapes. 

 

for the moment, let 

TQuad_Type1 =  Tsq_1(a1;xοp;p1;A1)  a1 = 1/4, p1 = 1/2, A1 = 1/4, 

+ Tsq_2(a2;xοp;p2;A2)  a2 = 2/4, p2 = 1/2, A2 = 1/4, 

+ Tsq_3(a3;xοp;p3;A3)  a3 = 3/4, p3 = 1/2, A3 = 1/4, 

+ Tsq_4(a4;xοp;p4;A4)  a4 = 4/4, p4 = 1/2, A4 = 1/4,  Eq 23 

 

 
Figure 30: Quad_Type2 carrier 

 

Figure 31a shows the synthesis of these two types of the quaternary CGH from their 

Fourier Series coefficients. 256 terms were used (see the function sq_wave below), and 

the Gibbs phenomenon is not too significant. Figure 31b shows the phase shifts, and 31c 

and 31d are plots of the Fourier Series coefficients for the Quad_Type1 and Quad_Type2. 

It can be seen that the Quad_Type1 has every 4mth order equal to zero, and Quad_Type2 

had every 2mth order equal to zero. These two plots are not properly scaled relative to 

each other (because the strength of the 0th order for Quad_Type2 is expected to be higher 

than Quad_Type1). Symmetry can be used to explain the “missing orders” in the 

Quad_Type2 in comparison to the Quad_Type1.  

 
function [y] = sq_wave(a,del_p,m,p) 
y = zeros(size(p)); 
for n = 1 : 2*m + 1; 

A0 

a1 

a2 

a3 

a4 

p0 
p 
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    y_n = a * sinc((n-m-1)*a) * exp(2*pi*i*(n-m-1)*(p-del_p)); 
    y = y + y_n; 
end; 
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(d) 
Figure 31: Matlab simulation of the “staircase waves”, constructed from the Fourier 

Series coefficients 

 

Now that the type of the carrier wave is chosen, the encoding method can be determined. 

Upon examining the function “sq_wave”, it is realized that no modulation can be encoded 

in the 0th order of the square wave; both the sinc and the exponential functions become 

ones for m = 0. However, if A1-4 represents the steps in an exponential function e2πiA, 

then one may encode an image in the 0th order of the “staircase wave” by varying the 

combined width/strength of the e2πiA in a period. Specifically, reassign:   

 

A1 = e2πi(0/4) = + 1 
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    A2 = e2πi(1/4) = + i 

    A3 = e2πi(2/4) = -  1 

    A4 = e2πi(3/4) = -  i 

 

Therefore, at the 0th order, the “staircase waves” become: 

TQuad_Type1 =  [ + 1 · rect(a1,p-p1)  a1 = a2 = a3 = a4 = 1/4 

+ i · rect(a2,p-p2)  p1-4 varying 

- 1 · rect(a3,p-p3)   

- i · rect(a4,p-p4)  ]  convolve with comb(p)   Eq 24 

 

TQuad_Type2 =  [ + 1 · rect(a1,p-p1)  p1 = p2 = p3 = p4 = 1/2 

+ i · rect(a2,p-p2)  a1-4 varying 

- 1 · rect(a3,p-p3)   

- i · rect(a4,p-p4)  ]  convolve with comb(p)   Eq 25 

 

In order to assign a complex value to each period, one may locally vary both a1-4 and p1-4 

in Eq 24, or just a1-4 in Eq 25. A complex value may be represented by its real and 

imaginary parts (see Figure 32 for the physical interpretation of duty cycle “a”): 

 

     Re = a1 – a3    Eq 26 

     Im = a2 – a4    Eq 27 

  
Figure 32: four square rect’s inside a unit cell, each discrete step represents a phase {0, 

π/2, π, 3π/2}, each duty cycle “a” assigns a strength to the phase, and Eq 26 and 27 

represent the complex amplitude of the unit cell.  
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One of the conditions placed on a1-4 is that the duty cycle is always non negative: 

 

     a1-4 ≥ 0     Eq 28 

 

Last, we place a constraint on the length of the period: 

 

     Σai = 1     Eq 29 

 

One must realize that Eq 29 is slightly over constraining a particular degree of freedom; 

we may allow Σai = 1±ε, providing that there is no gap between any two adjacent periods 

anywhere on the CGH plane. Since there are four unknowns and four statements, there is 

at least one possible solution; Eq 28 is an inequality, so it gives rise to more than one 

possible set of solutions. The complex amplitude can also be expressed as: 

 

    Amp = (Re2 + Im2)1/2    Eq 30 

    Phase = tan-1(Im/Re)    Eq 31 

 

All of the derivations and modeling so far is leading up to answering this one question: 

how can one encode both amplitude and phase information on the m = 0 order of this 

Quaternary Phase-Only CGH. The recipe is: 

 

1. Take an object u; 

2. U = FT(u); 

3. Assign the real part of U, real(U), to Re = a1 – a3; 

4. Assign the imaginary part of U, imag(U), to Im = a2 – a4; 

5. Adjust the length a1-4 to fill each period.  

 

Line 5 is still ambiguous at this point; how are the length a1-4 adjusted to fill exactly one 

period, and what is the maximum Re/Im or Amp/Phase “encode-able”? To answer this 

question, we need to start with a unit circle on the complex plane. See Figure 33. If we 

assign the entire period to a1, then a2 = a3 = a4 = 0, the maximum amplitude can be 

encoded is 1 (on the unit circle). However, everywhere other than {0, π/2, π, 3π/2}, the 

length(Re) + length(Im) > 1; sum of two sides of a triangle is always greater than the 
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third side. This violates Eq 29, because each period has exactly a length of 1. It can be 

shown that a reduced circle having a radius equal to 1/ √2 never violates Eq 29 (at 45°, 

length(Re) + length(Im) = 1; everywhere else, length(Re) + length(Im) < 1). Therefore, in 

order to satisfy Line 5, Amp(U) must first be scaled to (0,1/√2). 

 

 
Figure 33: the maximum amplitude that can be encoded in a Quad_Type1 or 

Quad_Type2 CGH having a period length of 1 is 1/√2. 

 

What happens if a vector is inside the r = 1/√2 circle (having a radius r < 1/√2), or on the 

r = 1/√2 circle but is not at {π/4, 3π/4, 5π/4, 7π/4}? At these points, length(Re) + 

length(Im) < 1 and it means the period of the “staircase” is only partially filled. As 

mentioned before, we require continuity between any two adjacent periods (no gap 

allowed). Therefore, at these points, we must add a filler to fill in the “gap”. For 

simplicity, we define a Filler = [1 - length(Re) - length(Im)]/4, and add the filler to each 

of the a1-4 for a given period.  

 

The Matlab code for assembling such Quaternary CGH is shown below in the next two 

pages. For each pixel of the original U, it is further divided into 32x32 resolution cells. 

On average, each a1-4 occupies 32x8 resolution cells. 

eiπ·0 = 1 + 0 · i

eiπ·1/2 = 0 + 1 · i

Real 

Imaginary 

θ 

Im = a2 – a4 

Re = a1 – a3 

r = 1 

r = 1/√2 
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function [CGH_quad1 Check Error]=Quad1(U); 
  
%scale U to the max amplitude of 0.707 
Max = max(max(abs(U))); 
Scale = 1/sqrt(2); 
U = U / Max; %normalize U to (0,1) 
U = U * Scale; %scale U to (0,0.707) 
  
%find the "empty space" in each pixel 
Re = real(U); 
Im = imag(U); 
Empty = 1 - (abs(Re) + abs(Im)); 
Filler = Empty/4; %always >= 0 
Check = Filler < 0; %pixels having round off errors 
Error = sum(sum(Check.*Filler)); %always a negative number, ideally = 0 
  
%define some CGH parameters 
[m n] = size(U); 
ResCell = 32; %divide each U pixel into 32x32 resolution cells -> quantization error 
p = linspace(0,1,ResCell); 
CGH = ones(ResCell*m,ResCell*n); 
  
a1 = Filler + (Re .* (Re>0)) + 1/ResCell; %add 1/Rescell, 
a2 = Filler + (Im .* (Im>0)) + 1/ResCell; %so rect is 1 at both +1/2 and at -1/2 
a3 = Filler - (Re .* (Re<0)) + 1/ResCell; %Re .* (Re<0) always -, but a3 always + 
a4 = Filler - (Im .* (Im<0)) + 1/ResCell; %Im .* (Im<0) always -, but a4 always + 
  
del_a1 = a1/2; 
del_a2 = a1 + a2/2; 
del_a3 = a1 + a2 + a3/2; 
del_a4 = a1 + a2 + a3 + a4/2; 
  
for i = 1 : m; %row index 
    for j = 1 : n; %column index 
        rect_a1 = rect(p,del_a1(i,j),a1(i,j),1/4); 
        rect_a2 = rect(p,del_a2(i,j),a2(i,j),2/4); 
        rect_a3 = rect(p,del_a3(i,j),a3(i,j),3/4); 
        rect_a4 = rect(p,del_a4(i,j),a4(i,j),4/4); 
        %everthing that is not a1, a2, or a3 is a4 
         
        u = ResCell * (i-1) + 1; 
        v = ResCell * i; 
        x = ResCell * (j-1) + 1; 
        y = ResCell * j; 
        CGH(u:v,x:y) = ones(ResCell,1) * (rect_a1 + rect_a2 + rect_a3 + 
rect_a4 - 1/4); 
    end; 
end; 
  
CGH_quad1 = CGH; 
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function [CGH_quad2 Check Error]=Quad2(U); 
  
%scale U to the max amplitude of 0.707 
Max = max(max(abs(U))); 
Scale = 1/sqrt(2); 
U = U / Max; %normalize U to (0,1) 
U = U * Scale; %scale U to (0,0.707) 
  
%find the "empty space" in each pixel 
Re = real(U); 
Im = imag(U); 
Empty = 1 - (abs(Re) + abs(Im)); 
Filler = Empty/4; %always >= 0 
Check = Filler < 0; %pixels having round off errors 
Error = sum(sum(Check.*Filler)); %always a negative number, ideally = 0 
  
%define some CGH parameters 
[m n] = size(U); 
ResCell = 32; %divide each U pixel into 32x32 resolution cells -> quantization error 
p = linspace(0,1,ResCell); 
CGH = ones(ResCell*m,ResCell*n); 
  
a1 = Filler + (Re .* (Re>0)) + 1/ResCell; %add 1/Rescell, 
a2 = Filler + (Im .* (Im>0)) + a1; %so rect is 1 at both +1/2 and at -1/2 
a3 = Filler - (Re .* (Re<0)) + a2; %Re .* (Re<0) is always -, but a3 is always + 
a4 = Filler - (Im .* (Im<0)) + a3; %Im .* (Im<0) is always -, but a4 is always + 
  
for i = 1 : m; %row index 
    for j = 1 : n; %column index 
        rect_a1 = rect(p,1/2,a1(i,j),1/4); 
        rect_a2 = rect(p,1/2,a2(i,j),1/4); 
        rect_a3 = rect(p,1/2,a3(i,j),1/4); 
        rect_a4 = rect(p,1/2,a4(i,j),1/4); 
        %everthing that is not a1, a2, or a3 is a4 
         
        u = ResCell * (i-1) + 1; 
        v = ResCell * i; 
        x = ResCell * (j-1) + 1; 
        y = ResCell * j; 
        CGH(u:v,x:y) = ones(ResCell,1) * (rect_a1 + rect_a2 + rect_a3 + 
rect_a4 - 1/4); 
    end; 
end; 
  
CGH_quad2 = CGH; 
              

 

Figure 34 shows the results and comparisons of the above two CGH coding methods. In 

Quad_Type1 CGH, the boundaries between the periods are very easily identified (by the 

black and white strips). The images from the non-zero orders seem to be “accumulating” 

only on one side, but this is not the case with the Quad_Type2 CGH. In addition, the 

reconstructed image from the Quad_Type 2 CGH was originally 180° out of rotation; the 

reconstruction was reoriented for the purpose of comparisons.
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Figure 34: simulation of the Quad_Type1 and Quad_Type2 CGH and their reconstructed 
images; a few “sinc” diffractive orders can be seem in the background. 
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Figure 35: diffractive order from the “sinc” function can be seen in the background of the 

reconstructed image; bottom picture is from the Quad_Type2 CGH, which exhibits fewer 

visible orders than the Quad_Type1 CGH. 

 

Several questions remain to be answered: 

1. Are there logical statements one can write to replace this look-up table method, 

like the square wave type statement, and make the code more efficient? 

2. How does the relaxation of Eq 29 help with 1).  

3. Does the relaxation of Eq 29 help with any new type of encoding schemes? 

4. Can we write the CGH as the summation of a cosine transform + a sine transform 

instead of the Fourier transform? Does this help with canceling out the twin image 

as in the U = cos(Φ) + i · sin(Φ) type CGH? 

5. Can we place some symmetry condition on the filler to reduce/eliminate the 

strength of the images at the non-zero orders? 

 

BOX 3: Defocus 

Defocus is applied to the CGH to make the reconstruction unrecognizable, if one assumes 

a 4F system. In order to avoid aliasing, a “slow” quadratic phase factor is used. See 

Figure 37. Its effect on the reconstructed image is animated at different depth of focus. 
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Add about 2 waves of power to the host image
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Figure 37: adding power = exp[iπ(x2+y2)/(FL*λ)] to the CGH, and the reconstructed 

images at different depth of focus away from the original 4F system 
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BOX 4: Arnold Transform 

The basic concept of Arnold Transform is mentioned previously. Here, the 

implementation is shown in more details. There are two important constructs in this 

image processing tool - the Arnold Transform matrix and the operation mod(N). The 

Arnold Transform matrix T is defined as:  

 
for i = 2:t; 
    for j = 2:t; 
        AT(:,1) = 1; 
        AT(1,:) = 1; 
        AT(i,j) = AT(i-1,j-1) + AT(i-1,j); 
    end; 
end; 

or  

 
 

Given a column vector [xi], Arnold Transform performs this operation indefinitely, 

 

   [xi,m+1] = {Tnxn·[xi,m]}mod(N) 

 

After a certain number of operations, there will be a period P where [xp] = [x1]. P depends 

on the initial values of [xi] as well as N. This period is usually very big, hence it is 

impractical to try all possible P to decode a message. The inverse process does not work 

on decoding the message either, because there is no such thing as “inverse mod”. The 

“keys” for restoring the column vector [xi,m] to the initial values [xi,1] is if both P and N 

are given. 

 

DECODING THE MESSAGE 

Now we have all of the necessary tools to perform Figure 26 (GS diffuser, Quaternary 

Phase-Only CGH, Defocus, and Arnold Transform), we may begin encoding and 

decoding the secrete image.  

 



 47

A host image “UA” having 64x64 pixels is used. See Figure 27(left). GS diffuser is 

applied to the host image, and this host image attached with an “optimized” random 

phase is Fourier transformed. The amplitude and phase of the image in the FT domain are 

encoded using the Quaternary Phase-Only CGH technique. A small amount of defocus is 

added. This finishes the preparation of the host image. 

 

A 3x3 secrete message such as one’s social security number is used as an example here. 

See Figure 27(right). This 3x3 matrix is Arnold Transformed and re-ordered to fill in the 

first column of an initially Zero(64,64) matrix. The scale factor is chosen and applied 

such that the “strength” of the secrete message is much smaller than the host message. 

This finishes the preparation of the secrete image; note that this secrete message is not FT 

and remains in the direct space. 

 

The two matrixes are added together. The new product can be sent electronically or made 

into hardware and delivered.  

 

In order to extract the secrete message, the end user must have five “keys”: 

1). phase of the host message,  

2). amount of the defocus,  

in order to remove the host image, 

3). scale of the secrete image,  

4-5). Mod(N) and n scrambles, 

 in order ot unscramble the secrete image. 

 

To decode the message, follow bottom half of Figure 26. Here is an example if any one 

of the “keys” is missing. See Table 1. In this example, the defocus is vs is-not removed 

from the CGH, and the perceived message (before decoding by Arnold Transform) look 

completely uncorrelated. 
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Defocus removed  
from the host image 
 
0.16  0  0 
0.23  0  0 
0.08  0  0 
0.17  0  0 
0.20  0  0 
0.24  0  0 
0.16  0  0 
0.09  0  0 
0.04  0  0 
0  0  0 
0  0  0 
0  0  0 
0  0  0 
0  0  0 
 

Defocus not removed 
from the host image 
 
0.8331  2.9209  6.9048 
0.8201  4.3899  8.3462 
2.2457  6.3837  11.0386 
5.5014  9.9813  14.7945 
10.4138 15.1453 20.366 
18.5343 22.3049 27.2953 
27.8424 30.3077 34.1499 
35.7816 35.5247 38.8826 
34.4049 33.7792 39.7025 
17.1673 24.9891 37.861 
11.1289 16.9649 24.5205 
20.0804 10.7161 25.6233 
36.7678 69.2997 102.1498 
91.4672 110.7673 131.025 

Table 1: The first 3 columns and 14 rows of the 64x64 matrix. Both sides show the 

sought-after-secrete-message matrix, with and without a particular “key” missing, after 

an attempt to remove the host image (but prior to the de-scaling and completing one 

period of Arnold Transform). Right side shows a message with a “key” missing, and the 

message looks random. Left side shows a message with all the right “keys” so far, but it 

still needs to be further decoded by de-scaling and completing the Arnold Transform.  

 

 

CONCLUSION 

CGH is a subject that reaches different application areas. 3D optical display, volumetric 

data storage, optical metrology, and optical information/signal processing are just a few. 

A brief survey here examined the fundamentals of different “odd” CGH hardware, 

software, and applications.  

 

The last part of the report proposed a method of encoding a message using a Quaternary 

Phase-Only CGH and Fourier Transform. Because of the vast number of degrees of 

freedom in this encoding/decoding process, this message can be safe-guard during 

transmission; and without the “keys”, the message appears to be random. 
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