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Abstract

A profilometer is described that utilizes the swing-arm geometry to provide surface profile
measurements oflarge, highly aspheric surfaces. The profilometer measurement is shown to be robust
against stiffness and alignment induced errors in the probe motion.
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Introduction

The rapid and economical fabrication of highly aspheric surfaces having aspheric departures of more
than 1OO generally demands that the aspheric departure be ground into the surface and not polished in
as can be done with surfaces having lesser departure. Measurements of the ground asphere as the surface
is being worked can be a difficult task particularly when the surfaces are large, convex aspheres
conunonly found on large telescope secondary mirrors such as those being fabricated at the Mirror Lab.
The basic fabrication strategy for these secondary mirrors will be to generate and grind the surface to a
sphere, then lap in the aspheric correction with loose abrasives using the stressed-lap. When the asphere
is about 90% corrected polishing will begin and the correction completed. The surface will be tested
interferometrically with a holographic test plate for the final figuring.

To monitor the aspherization a swing-arm profilometer mounted directly on the polishing machine
will be used until the surface is within 1 micron p-v ofthe finished asphere. The ability to measure in situ
is a tremendous advantage ofthis type of profilometer. In addition, the profflometer will measure the
surface under complete computer control allowing for both rapid and repeated testing.

In a previous paper' the swing-arm profilometer was first described and an example of its use was
shown. In this paper we will elaborate on the design features ofthis somewhat odd geometry that make it
so useful in fabricating aspherics and estimate its accuracy. We will also point out some ofthe limitations
ofthis form of profilometer.

Swin!-arm Geometry

Figure 1 depicts the basic geometery ofthe swing-arm profflometer. An indicator (i) mounted at the
end ofan arm (a) that itselipivots on a rotary bearing (b) sweeps out a circle in space like a compass. if
the axis of rotation ofthe rotary bearing is tilted with respect to the symmetric axis of a spherical surface
such that the two axes intersect at the center of curvature of the sphere (cc), the circle that the indicator
traces will lie on the surface of the sphere when the indicator passes through the vertex (v) of the sphere.
As the indicator sweeps across the spherical surface it would show no run-out given a perfectly stiff arm
and perfect bearing. The angle of the required tilt is given by

sinO= hR
where 1 is the length of the arm (the perpendicular distance from the arm's axis of rotation to the tip of the
indicator), and R is the radius of curvature of the sphere.

The indicator is initially aligned at the vertex of the mirror to be normal to the surface. For a
spherical surface the indicator will always be directed normal to the surface since it is being pivoted about

Q-8194-18951/95/$6.OO SPIE Vol. 2536 / 169



the center of curvature. When measuring an aspherical surface the only distance the indicator measures is
the amount of asphericity in the direction of the probe along with any alignment or fiexure errors. (See
Reference 1 for an analysis of the measurement for a perfect profiler). This requires that the probe travel
only be as long as the amount of asphericity in the mirror. This allows the use of relatively inexpensive
LVDT probes.

/
N

/
Figure 1. The basic geometry ofthe swing-arm profilometer. The indicator (i) is mounted on arm (a)
pivoting about the bearing (b). The rotation axis of the swing-arm is aligned to intersect the center of
curvature of the surface.

The rotary motion of the swing-arm is the only mechanical motion of the profilometer during a
measurement (along with the motion of the indicator). Modern rotary bearings, especially air bearings,
are highly stiff with excellent smoothness that allow highly accurate measurements to be made. The
center of gravity of the arm assembly is adjusted with counterweights to lie on the bearing's axis resulting
in a decoupling of the measurement with the stiffness of the bearing.

Unlike linear profilometers, the path scanned by the swing-arm profilometer is not a straight line
across a diameter but is an arc. As an example, in Figure 2 is shown the path taken by a swing-arm
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profilometer having an arm length of 1.5 m over the surface of the £4 secondary mirror for the Large
Binocular Telescope (LBT). The mirror is 1236 mm in diameter and has an £11.5 surface with nearly
35Opdeparture from the best-fitting sphere. Although the path is curved the radial position varies nearly
linearly with the scan angle as shown in Figure 3. The departure from linear of this a vs r plot is only
0.4%.

800

Figure 2. The arc scanned on the
LBT £14 secondary by a
profilometer with a 1 Sm length
arm.
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General structure

Figure 4 depicts a schematic design of a practical swing-arm profilometer based on the geometry of
Figure 1. The main structural elements are the indicator assembly, the main arm, the swing-arm rotary
bearing, and the swing-arm alignment assembly. We will briefly discuss each.
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1. The indicator assembly

The indicator assembly consists of a sub-arm that pivots at the junction of the main arm to bring the
indicator roughly normal to the surface. The indicator is mounted on a 5-axis stage so that the indicator
can be accurately positioned at the center of the mirror, brought normal to the surface, and the indicator
brought within its range. As mentioned, the indicator travel need only be that of the amount of
asphericity. Because of that the cosine error resulting from a non-normal set-up is extremely small. Also,
since the probe is always normal to the surface (or very nearly so) there is very little error due to the
contact point moving during a scan. As discussed below, the mass of the assembly should be kept as low
as possible and the arm and stages should be as stiff as possible to minimize the deflection during a
measurement.
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2. The main arm.

Figure 4. A schematic diagram of the swing-arm profflometer.



The principal requirement of the main arm is that it be stiff enough to resist a large change in
deflection as it is scanned across the surface. It can be shown that the measurement is quite tolerant of
some flexure in the arm. The effects of the arm flexing and of the indicator's arm flexing under the force
of gravity were studied using a first order model. We calculate that the system does not require high
rigidity to achieve excellent performance because the flexure is generally in the form of power, which, as
in interferometry of curved surfaces, is coupled into an alignment error, here being the tilt of the bearing
axis. We used a simple model of the system that takes into account all the important masses and flexures.

The model breaks the system into two lumped masses. One is near the end of the arm and the other is
at the probe. We then model two three-dimensional stiffness elements. One corresponds to the arm and
the other corresponds to the attachment of the probe to the arm. lithe effective masses of these two
elements are determined and the stiffness is measured, then the system flexure can be calculated in a
straightforward manner. The geometry and the coordinates used are shown below in Fig. 5. The
unprimed coordinate system is fixed, while the xyz' is tilted 9 to vertical and the xyz" system which is
flxedtotheprobeandswingstheangleawiththeairbearing. This systemisalsotippedbacksothatthe
probe points along the z" axis.

Figure 5. Diagram showing model for structural analysis.

z',

x,,

The four modes were treated: the motion of masses 1 and 2 together in y and in z, and the differential y
and z motion. A matrix formalism was adopted for easy manipulation. The stiffness matrices K1 and K2
are defined as the ratio of force to probe displacement öy" and öf' when forces are applied to m1 and m2
in the y" and z" directions

These can be measured directly by pulling with a known force and measuring displacement at the probe
tip with an indicator. We do not treat flexure in the x direction because it does not affect the
measurement.
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The algebra reduces to two expressions relating the motion of the probe tip in y andz to the angles.

6yfl= mg+m2g +!!'1(sinOsina)
L K1 K2)

,, ( m1g + m2g m2g' i . 2 2& = —I + — I(S1fl 0 cosa + cos 0
".. K1 K2)

Since the resonant frequency in rad/sec is given by the square root ratio of the stiffness to the mass, the
deflections can be expressed purely as functions ofthese frequencies and the angles,

+4Jsinosina
2& = — + o cosa + cos 0

42f2 4ic2f22)

where fiand f are the natural frequencies in Hz of the arm in the " and z" directions

f2yand f2z are the natural frequencies ofthe end ofthe arm in the y" and z"directions

These relationships were simulated to determine the exact nature of the errors that come from system
flexure. The simulation shows that this effect can be quite severe, but that the method of detennining the
arm length using the outer edge ofthe optic as a reference eliminates the error. The two equations above
show the radial position varying with the sine of the scan angle, which is nearly linear with the radial
position itself This motion causes spherical aberration in the measurement corresponding to conic
constant change iK

AK = 4K

The other term involving zgoes as the cosine of the angle, which looks like nearly pure quadratic power
in the measurement. Assuming a 10 Hz resonance in both z and y, we predict 35.tmquadratic bending
and 3.4 tm spherical aberration. However, we use the mirror diameter and the scan angle to determine
the arm length. Unlike linear scanning profilometers the radial position of a data point is not measured
directly but is calculated from a knowledge ofthe angle from the center ofthe surface and the length of
the arm. The test requires the distance from the probe to the rotation axis, which we call the arm length,
be known to a fraction of a millimeter. This distance can be determined by scanning the probe across two
points separated by a known distanceD. The arm length i is calculated to be

/ D

2sin()2
where is the angle swept between the two points, as measured by the encoder on the bearing. The edges
of the mirror are used as the two points since the diameter of the mirror can be accurately measured and
the edges can be easily located. This calibration must be done after any adjustment of the probe since that
changes its distance from the rotation axis.

This bending will cause an error in the calculation of the arm length that offsets the scan error. The
reason for this is that by using the known edge locations, the error in the radial position Ar/r is corrected.
This is seen in Fig. 6 which shows the error in radial position from this flexure for the two cases
described: assuming the true arm length is known and used and assuming the arm length is determined
by referencing the edge of the part.
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Figure 6. Error in radial position due to flexure of system with 10 Hz resonance for two cases: scanning
with a known arm length, and using the outer diameter to determine the arm length.
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Figure 7. Effect of system flexure (10 Hz in z and y diections) on suface measurement. The solid cwve
which assumes the arm length is determined by scanning to the two edges ofthe part shows negligible
spherical aberration.

3. The rotary bearing.

The swing-arm rotary bearing is the crucial moving element in the profilometer. The high stiffness
and precision of modern air bearing spindles provide an excellent bearing for this task. Radial runouts of
less than a micron are typical and produce negligable error in the measurement.

Axial runout is of much greater concern, however, since this type of error couples directly into the
measurement and is magnified by the length ofthe arm. Smoothly varying axial runout such as a
sinusoidal variation can be largely eliminated by fitting the data to tilt and focus and removing them from
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the data. Higher frequency structure in the axial runout will couple in directly to the measurement. Air
bearings having axial nmouts on the order of .1 microradians produce less than .15 error in the
measurement over a 1.5m arm length. If these errors are repeatable they can be calibrated out by
measuring a known standard such as the spherical surface prior to aspherizing. If the errors are random,
averaging many measurements will reduce the error.

The rotary bearing must be precisely driven and encoded to provide positional information during a
measurement and also to determine the length ofthe arm. The accuracy required for the f/4 LBT
secondary is about 25microradians corresponding to about 38 microns at the end ofa 1.5 m ann. Tests
are currently underway on an encoder/drive system from Dover that are expected to easily meet this
specification with a fully computer controiled interface.

4. Thealignment axes.

There are two alignment axes that allow the swing-arm bearing axis to pass through the center of
curvature ofthe surface. The first is a tilt axis to tilt the bearing axis through the angle 0 in Figure 5. If
this angle were well known the profilometer could, in principal, measure the radius of curvature of the
surface. The knowledge of this angle alone, however, will not result in the right radius since the arm
deflections and indicator misalignments also couple into the power term of a polynomial fit to the data.
The exact radius of curvature ofthe surface must be determined by other means. We intend to use small
aperture test plates to monitor the radius within acceptable limits.

To align the profilometer the angle is set to the Calculated value for the particular desired radius and a
scan is made over the surface. The power term ofa polynomial fit to the data is used to adjust the angle
until the power term is sufficiently small, on the order of a few microns. Absolute knowledge ofthe angle
is not required only that it be adjustable to about an arcminute or so.

The second alignment axis is provided by a second rotary axis having its axis parallel to the optical
axis ofthe surface. This adjustment allows the tilted axis to intersect the optical axis ofthe mirror at its
center of curvature. This can be provided by a suitably sturdy rotary table. This, again, does not need to
be a particUlarly precise bearing, only that it be adjustable to a few arc minutes. During alignment, when
a scan is made, the data can be fit to a linear term that provides information on the required adjustment to
be made with this rotation.

Sensitivity to errors.

The sensitivity to alignment errors was determined by comiter simulation. A computer model was
constructed that simulates the rotation of the probe about a fixed axis. The probe reading as a function of
scan angle is calculated by projecting a line in the direction the probe points to intersect the optical
surface. This general model allows the complete system to be simulated and analyzed. The computer
model was used to determine the effects of misalignment, measurement errors, and system flexure. The
model was verified to give the same result as the above equations for the ideal case.

Simulation were performed for the measurement of the f/4 LBT secondary previously described. The
simulated indicator reading as a function of radial position is shown in Fig. 9. Two cases were simulated,
one with the tilt angle set to 23.99° from vertical so the paraxial power is removed from the scan. The
other curve assumes a tilt angle of 23.350 which minimizes the probe travel.
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Figure 9. Simulated probe readings for paraxial and best-focus alignment

The effect of a 100 tm error in defining the mirror vertex in the cross-scan direction is shown in Fig. 10.
This offset is labeled 8 in the drawing shown in Fig. 8. This curve shows mostly power, which is removed
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Figure 8. Side view of test configuration for measuring a convex optic showing the misalignment 6 of the
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Figure 10. Simulated error in measurement when the scan is offset 100 tm from the mirror vertex.

The effect of a 200 xm error in the arm length, which could come from 80 jim errors in locating the two
reference points, is shown in Fig. 11. This curve also shows mostly power. A polynomial fit to the curve
shows 0.61 jtm of fourth-order spherical aberration, which corresponds to a conic constant shift of
0.00045. The error in the arm length A/ is calculated from the error in determining the distance between
the two reference points AD as

Al = 1
D
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Figure 11. Simulated error in measurement when the arm length determination is in error by 200 jim.

by the tilt alignment. A polynomial fit to the curve shows 0.13 jim of fourth-order spherical aberration,
which corresponds to a conic constant shift of 96 ppm.
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Changing the tilt stage causes nearly pure power, or quadratic variation in the measurement. A plot of
the simulated change in surface measurement with a tilt change of 1 mrad is shown in Fig 12. This angle
corresponds to a change of the effective radius of curvature of 8.5nun.
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Figure 12. Simulated error in measurement when the table is tilted 1 mrad.

Conclusions

We have reviewed the basic structure of the swing-ann profilometer and have discussed why the
profilometer can measure aspherics as accurately as it has been demonstrated it can do. Most of the error
induced by the various mialignments and flexu.res couple into tilt and power and not into spherical
aberration, the quantity we wish to measure. The price for this robustness is the loss of information about
the radius of curvature of the surface. It must now be determined by other means.

The advantages of this type of profilometer include:

1. Capable of performing in-situ measurements on the polishing machine.

2. Relatively economical to construct. The measurement probe can be a short travel LVDT and the
only precision moving part is an air bearing spindle.

3. The stiffness requirements are modest since small deflections cause power error in the
measurement.

4. Accuracy is quite high, < 1.t P-V over large, severe aspheric surfaces. Chiefly limited by the
determination of the arm length.

The disadvantages of this type of profilometer:

1. The arm length must be recalibrated if any alignment adjustments are made.

2. The radius of curvature is indeterminent.
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