1. For an object distance \(z = -150 \text{ mm} \), an object space index \(n = 1.5 \), and a front focal length \(f_F = -100 \text{ mm} \), what is the effective focal length \(f \) and the magnification \(m \)? Is the image upright or inverted?

2. For an image distance \(z' = -75 \text{ mm} \), an image space index \(n' = 1.5 \), and a rear focal length \(f_R' = -75 \text{ mm} \), find the effective focal length \(f \) and the magnification \(m \)? The image is at what cardinal point?

3. Given the object distance \(z = -200 \text{ mm} \), an object space index \(n = 1.0 \), and a lens of effective focal length \(f = 60\text{ mm} \), what is the front focal length \(f_F \) and the magnification \(m \)? Draw the system.

4. Given the image distance \(z'_F = 80 \text{ mm} \), an image space index \(n' = 1.0 \), and a lens of effective focal length \(f = 80\text{ mm} \), what is the rear focal length \(f_R' \) and the magnification \(m \)? Draw the system.

5. For an object distance \(z_F = -150 \text{ mm} \), an object space index \(n = 1.33 \), and an effective focal length \(f = -70 \text{ mm} \), what is the front focal length \(f_F \) and magnification \(m \)? Is the front focal point \(F \) to the left or right of the front principal point \(P \)?

6. Given the image distance \(z'_F = 80 \text{ mm} \), the front focal length \(f_F = 20 \text{ mm} \) and the rear focal length \(f_R' = -30 \text{ mm} \), if we want to shift the image plane by \(\Delta z' = 5 \text{ mm} \), what shift in the object \(\Delta z \) is needed?

7. The figure to the right shows two incident and emerging rays from a black box system. Draw the locations of the front and rear focal point, \(F \) and \(F' \), as well as the front and rear principal planes \(P \) and \(P' \).

8. The figure to the right shows shows a ray incident onto a black box system, and three possible emerging rays. Which emerging ray (1, 2 or 3) corresponds to the incident ray? Where is the rear principal plane?