

Mueller Characterization for Partial Polarimetry

Quinn Jarecki, Doctoral Defense 5/3/24 Advisor: Meredith Kupinski, Polarization Lab

Introduction

– Geometry, texture, material, etc.

• With polarization measurements, we can capture information about the many dependencies

• Interpreting polarization measurements to extract desired information can be complex

2/43

Mueller Calculus

- Everyday environments feature polychromatic, incoherent, and/or partially polarized light is described by Stokes vectors
- Transformation of polarization by lightmatter interaction is described by Mueller matrix (MM)
- MM transforms polarization via diattenuation, retardance, and/or depolarization
	- MM properties relate measurements to properties of objects such as texture, albedo, and geometry

 $\mathbf M$

Mueller Characterization

4/43

1

 Ω

Polarimeter architecture

Mueller matrix properties:

- Average reflectance: unpolarized-reflectance
- Diattenuation: polarization-dependent reflectance Diattenuation:
- Retardance: polarization-dependent phase
- Depolarization: randomization of polarization

Mueller matrix image

Simplifying Polarization Imaging

- *A priori* knowledge about polarization phenomena in an application enables simplification
	- Simplified interpretation of data
	- Simplified measurement requirements

- Contributions of this doctoral work represent different efforts to reduce some of the complexities of polarimetric imaging
	- Simplifications make insights from polarimetric information may more easily accessible in variety of applications

RGB950: Mueller polarimeter

Complex, complete polarimetry

HE UNIVERSITY OF ARIZONA **Wyant College** of Optical Sciences

Major Research Contributions

Optimizing Polariscopic Imaging for the Human Eye

• Optimization of polarization generator and analyzer states for maximizing contrast in polariscopic images of birefringent targets

Jarecki, Q., & Kupinski, M. (2024) Optimizing near-infrared polariscopic imaging for the living human eye. *Optics Express*, *32(10)*.<https://doi.org/10.1364/OE.520657>

Efficient pBRDF Acquisition and Representation

- A method for efficiently acquiring and representing empirical MM data
- Requires 37% fewer goniometric measurements and stores 3 times fewer MMs per wavelength than the state-of-the-art

inski, M. Sampling Optimization and Compact Tabulation of Isotropic Polarized Scattering. *(in preparation)*

Mixed Polarization Scattering Models

- An original polarized scattering model which both decouples depolarization and mixes firstsurface with diffuse polarized reflection as a function of scattering geometry,
- Average diattenuation orientation error of 10.9° and magnitude error of 8.3% when compared to measured data

Jarecki, Q., & Kupinski, M. (2024). Polarized representation for depolarization-dominant materials. *Optics Express*, *32*(5) . <https://doi.org/10.1364/OE.512146>

Depolarization Measurement and Mueller Extrapolation

- Partial polarimetric method for estimating depolarization magnitude and extrapolating MM
- Average error in depolarization magnitude of 7.6% and simulated polarimetric measurement error of 6.0% despite a $10\times$ reduction in number of measurements

Jarecki, Q., & Kupinski, M. (2022). Underdetermined polarimetric measurements for Mueller extrapolations. *Optical Engineering*, 61(12). <https://doi.org/10.1117/1.OE.61.12.123104>

Optimizing Polariscopic Imaging for the Human Eye Chapter 3

Why the Eye?

- Corneal birefringence
	- Anisotropic collagen fibril structure in stroma
	- Spatially-varying retardance pattern
- Potential applications
	- Diagnostic tool for structural corneal diseases (dystrophies)
	- Image segmentation for eye tracking
- **Challenges**
	- Mueller polarimetry requires >16 images, duration on the order of 10s of seconds
	- Random, unconscious eye movements results in motion artifacts

Germann, James A., et al. "Quantization of Collagen Organization in the Stroma with a New Order Coefficient." *Biomedical Optics Express*, [https://doi.org/10.1364/BOE.9.000173.](https://doi.org/10.1364/BOE.9.000173)

Stanworth, A., and E. J. Naylor. "The Polarization Optics of the Isolated Cornea." *British Journal of Ophthalmology*, [https://doi.org/10.1136/bjo.34.4.201.](https://doi.org/10.1136/bjo.34.4.201)

9/43

- Modifications to full MM polarimeter for eye measurements
	- NIR wavelength operation
	- Bandpass filter + overhead lights to contract pupil
	- Reduced number of measurements (40->25)
	- Exposure time (total time of 15 seconds)
	- Image registration post processing
	- Repeated attempts for blinking

López-Téllez, Juan Manuel, et al. "Broadband Extended Source Imaging Mueller-Matrix Polarimeter." *Optics Letters* <https://doi.org/10.1364/OL.44.001544>.

Di Cecilia, Luca, et al. "Spectral Repeatability of a Hyperspectral System for Human Iris Imaging." *2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI)*, [https://doi.org/10.1109/RTSI.2018.8548513.](https://doi.org/10.1109/RTSI.2018.8548513)

Eye measurement in RGB950

MM Eye Images

- Dataset of 20 eye MM images is publicly available
- Apparent upon visual inspection:
	- Diattenuation magnitude is small
	- Depolarization is present
	- Retardance varies spatially

Tai, Adeline, et al. "Near-infrared human eye Mueller matrix images," <https://doi.org/10.25422/azu.data.24722358>

Elliptical Retardance of Cornea

Partial Polarimetry Optimization with Poincaré Sphere

 $argmax\{|\vec{a}M_j\vec{g}-\vec{a}M_i\vec{g}|\}$ \overrightarrow{a} , \overrightarrow{g}

Geometric construction to find optimal analyzer

• There is a family of optimal solutions

- Different polariscopic pairs produce different brightness patterns
	- Expected pattern predicted based on MM
- We need to find nearly-optimal pairs available in existing hardware

Expected Pattern in Polariscopic Image p

 $p = \mathbf{a}^{\mathrm{T}}$ M g

Choosing Available Pairs

- Need to select optimal \boldsymbol{g} and \boldsymbol{a} pair which has nearby available states
- Numerically determine minimum distance metric for various pairs
- Selected three pairs, expect three slightly different modulation patterns

Position on Great Circle

Partial Polarimetric Results

- For polariscopic pairs I, II, and III, spatial pattern is predicted using original MM characterization
- Patterns show up in partial polarimetric data as expected
- Video rate captures enabled by fixed analyzer and generator

Expected patterns in polariscopic images

Jarecki, Q., & Kupinski, M. (2024) Optimizing near-infrared polariscopic imaging for the living human eye. *Optics Express*, *32(10)*.<https://doi.org/10.1364/OE.520657>

Real-time polariscopic movies!

12/43

Efficient pBRDF Acquisition and Representation Chapter 4

pBRDF Representation and Acquisition

What is a pBRDF?

- Polarized bidirectional reflectance distribution function
	- MM-valued function of input and output ray geometry
- Utilized in many computer vision and physicsbased rendering applications as well as remote sensing
- Empirical models are more realistic and can aid the development and validation of analytic models

Walt Disney Animation Studios. (2016, Aug 9). Disney's Practical Guide to Path Tracing. *YouTube*.

- Scalar and polarized BRDFs commonly parameterized with Rusinkiewicz angles
	- Better separability for analytic models
	- Reduces dimensionality for isotropic surfaces
- θ_h determines "specularity"
- θ_d similar to angle of incidence
- ϕ_d determines "out-of-planeness"

• Empirical pBRDF consists of measured MM data at discrete set of $(\theta_h, \theta_d, \phi_d)$

 $(\theta_d, \phi_d, \theta_h)$ as (x, y, z) Cartesian coordinates $(\theta_d, \phi_d, \theta_h)$ as (ρ, ϕ, z) cylindrical coordinates

	Cartesian	Cylindrical
Volume of reflection region	9.567	5.686
Volume of convex hull	14.217	6.633
Discrete data points	2,989,441	1,086,904

- pBRDF acquisition = MM measurement at many, many, many scattering geometries
- What target shape to measure?
- What set of camera angles Ω should be used to most efficiently sample scattering geometries?

Geometries sampled using a sphere Geometries sampled using a plane

Angle between camera and source: 20.º

pBRDF Acquisition Protocol

- For our setup, diminishing returns at around 92 positions
	- State-of-the-art pBRDF database used 147 positions
- Corresponds to 82% of scattering geometries measured
	- 3.5% geometries inaccessible due to camera/source collision

Number of evenly-spaced goniometric positions

Empirical pBRDF Cross-sections

25/43

Mixed Polarization Scattering Models Chapter 5

Analytic pBRDF Models

- Analytic pBRDF models are generally much more convenient for practical applications
- Analytic models frequently contain:
	- "Specular" component that describes light scattered from first surface of material
	- Diffuse component attributed to light scattered into then out of material
	- Depolarizer term
- Realistic models need to combine these as a function of scattering geometry
	- Tricky because summation of MMs can introduce depolarization in complicated ways

First-surface vs diffuse scattering

Triple-degenerate MM Model

Triple-degenerate MM:

Non-depolarizing term Ideal depolarizer

30/43

- Strongly depolarizing MMs are wellapproximated by first-order depolarization model
- Degrees of freedom reduced from sixteen to eight:
	- one for throughput, M_{00}
	- one for depolarization, ξ_0
	- six for dominant non-depolarizing process \widehat{M}_{0} which describes diattenuation and retardance

- First-surface modeled as Fresnel reflection from subresolution microfacet
	- Diattenuation magnitude depends only on θ_d

$$
\mathbf{F}_{n_{\lambda}}(\widehat{\boldsymbol{\omega}}_{i},\widehat{\boldsymbol{\omega}}_{o}) = \begin{bmatrix} \widehat{\mathbf{x}}_{PSA} \\ \widehat{\mathbf{y}}_{SA} \end{bmatrix} \begin{bmatrix} \widehat{\mathbf{s}}_{o} \\ \widehat{\mathbf{p}}_{o} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} r_{s}(n_{\lambda},\theta_{d}) & 0 \\ 0 & r_{p}(n_{\lambda},\theta_{d}) \end{bmatrix} \begin{bmatrix} \widehat{\mathbf{s}}_{i} \\ \widehat{\mathbf{p}}_{i} \end{bmatrix} \begin{bmatrix} \widehat{\mathbf{x}}_{PSG} \\ \widehat{\mathbf{y}}_{PSG} \end{bmatrix}^{\mathsf{T}}.
$$

• Diffuse modeled as polarizer with transmission axis oriented at ϕ_d

$$
\mathbf{S}(\widehat{\boldsymbol{\omega}}_i, \widehat{\boldsymbol{\omega}}_o, \widehat{\mathbf{n}}) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \mathbf{R}(\phi_d) \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \mathbf{R}(-\phi_d),
$$

First-surface term for sphere

Mixed Polarization Model

• Combine terms as Jones matrices – Keeps depolarization decoupled from dominant process

• Relative contribution to normalized MJM is a function of scattering geometry:

$$
\mathbf{J}(\widehat{\boldsymbol{\omega}}_i, \widehat{\boldsymbol{\omega}}_o, \widehat{\mathbf{n}} | n_{\lambda}, a_{\lambda}, b_{\lambda}) = \mathbf{F}_{n_{\lambda}} + a_{\lambda} \sin^{b_{\lambda}}(\theta_h) \mathbf{S}(\widehat{\mathbf{n}}).
$$

32/43

Average diattenuation magnitude

- Diattenuation orientation images show match in spatial trend
- Pixel-wise errors low for 451 nm which has less spatial variation, higher errors for 662 nm
- Over wavelength and geometry, average diattenuation orientation error of 10.9° and magnitude error of 8.3%

Depolarization Measurement and Mueller Extrapolation Chapter 6

HE UNIVERSITY OF ARIZONA **Wyant College**

of Optical Sciences

• If $\widehat{\mathbf{m}}_0$ is known, TD model has two remaining degrees of freedom

- pBRDF model from previous section enables estimation of depolarization magnitude from as few as two measurements
- With ξ_0 estimate, simply plug back into TD model to extrapolate MM

Calculation Unit 4 different wire-grid directions

Two Depolarizing Samples

- Roughened LEGO bricks
	- Ensemble of samples with same material, different textures
	- Depolarization magnitude expected to trend with roughness

- 3D printed sphere and Stanford bunny
	- Pair of samples with same material, different shapes
	- Same pBRDF should apply but different levels of complexity in geometry

THE UNIVERSITY OF ARIZONA **Wyant College** of Optical Sciences

Roughened LEGOS with First-Surface Model

- MM image extrapolated from 10x fewer measurements
- Extrapolated MMs predict subsequent polarimetric measurements with average of 6% error

• Average ξ_0 error of 7.6% for spheres with 4 measurements versus 40 measurements

• Extrapolated MM images for bunnies used to predict polariscopic images

Predicted polariscopic images

Summary and Conclusion Chapter 7

- Contributions of this doctoral research are:
	- 1. Optimization of polarization generator and analyzer states for maximizing contrast in polariscopic images of birefringent targets which is demonstrated on *in vivo* human eyes,
	- 2. A method for efficiently acquiring and representing empirical MM data as a function of scattering geometry which requires 37% fewer goniometric measurements and stores 3 times fewer MMs per wavelength than the state-of-the-art,
	- 3. An original polarized scattering model which both decouples depolarization and mixes first-surface with diffuse polarized reflection as a function of scattering geometry, with an average diattenuation orientation error of 10.9° and magnitude error of 8.3% when compared to measured data, and
	- 4. A partial polarimetric method for estimating depolarization magnitude and extrapolating MM, which resulted in an average error in depolarization magnitude of 7.6% and simulated polarimetric measurement error of 6.0% despite a 10× reduction in number of measurements.

- As polarimetric sensing technologies become more mature and widely accessible, there will be an abundance of new potential applications for polarization imaging
- Full MM polarimetry may be required to realize some applications, others may only require partial polarimetric information
- Assessment of which partial polarimetric technologies and strategies are most useful for particular applications depend on understanding of the polarization phenomena
- Contributions of this dissertation represent different efforts to reduce some complexities of polarimetric imaging
	- Through these simplifications, insights from polarimetric information may be more easily accessed in variety of applications

Thanks!!

Analyzing Mueller Image Data

Levels of Approximation

1. Full Mueller matrix

Assumptions of Uniform Properties

- $\Delta \xi_{TD}$ indicates appropriateness of 1st order depolarization approximation
- ξ_0 depolarization magnitude parameter
- M_{00} average reflectance

Elliptical Retardance of Cornea

Expected patterns for 20 individuals

Eye Database

- Special thanks to Adeline Tai for performing the MM measurements
- Dataset of eye MM images is publicly available:

<https://doi.org/10.25422/azu.data.24722358>

- Stroma layer of cornea consists of collagen fibrils
- Fibrils give cornea anisotropic structure which produces birefringence
- Cascade of linear retarders with varying fast axes can produce elliptical retardance
	- One potential explanation for observed circular retardance

Newton, & Meek, K. M. (1998). The Integration of the Corneal and Limbal Fibrils in the Human Eye. *Biophysical Journal*, *75*(5), 2508–2512. https://doi.org/10.1016/S0006-3495(98)77695-7

Rusinkiewicz Angles

• Images of Rusinkiewicz angles captured for different shapes

• Sphere captures most unique geometries, plane captures least

• Precompute captured Rusinkiewicz angles for a particular goniometer sequence, compare sequences

• KAIST:

- 147 goniometer positions per wavelength
- 912 MB for 5 wavelengths
- 2,989,441 MMs per wavelength
- Saved as multidimensional table where table index corresponds to $(\theta_h, \theta_d, \phi_d, \lambda)$
- Includes non-reflection geometries
- Includes redundant geometries
- Can be used directly in rendering engine

• UA:

- 92 goniometer positions per wavelength
- 331 MB for 5 wavelengths (we will only have 3)
- 1,086,904 MMs per wavelength
- Saved as single list of MMs, related to Rusinkiewicz angles by angle key
- Includes only reflection geometries
- Includes only unique geometries
- Cannot be used directly in rendering engine (yet)

- Useful special case of Cloude spectral decomposition has "triple-degenerate" (TD) eigenspectrum
- Convex sum of non-depolarizing matrix and ideal depolarizer matrix

Mixed Polarization Model

• pBRDF can be applied to more complex geometries

• Shadow and masking (adjacency effects) of microfacet distribution are absorbed into other model terms

• Model only describes polarimetry, not radiometry (MM is normalized)

(c) Measured 662 nm

53

(d) Modeled 662 nm

Diattenuation Comparison

- Pixel-wise errors low for 451 nm which has less spatial variation, higher errors for 662 nm
- Over wavelength and geometry, average diattenuation orientation error of 10.9° and magnitude error of 8.3%

 \mathbf{a}

98

(d) Measured ψ 662 nm

 -90

(e) Modeled $\widetilde{\psi}$ 662 nm

3D Printed Objects with Mixed Model

