Dispersion of the birefringence of quartz, magnesium fluoride, and sapphire

MASTER'S THESIS DEFENSE 6-28-24 MICHAEL GARTMAN

- Refractive index (and therefore birefringence) data on all three materials is extant in the literature
 - Birefringence data needs to be an order of magnitude or more accurate than index data
 - Snell's Law an error in index of 0.001 for an air-glass interface, when the glass is N-BK7, and the initial AOI is 25 degrees, induces an error in refraction of ~40 arcsec (0.194 mrad)

Rotating HWP between parallel polarizers		
Error in birefringence	dBm	
0.001	0.4	
1E-5	27.5	
5E-6	32	
2E-6	40	

Ellipticity of QWP output	
Error in birefringence	Ellipticity
0.001	0.64
1E-5	0.96
5E-6	0.98
2E-6	0.99

- Waveplates have variety of uses/applications
 - -Tolerancing application dependent
 - Optical isolator v. atomic clock
- Quartz
 - -Durable, broadly transparent, widely available
- Magnesium fluoride
 - -More broadly transparent than quartz in the UV and the MIR
- Sapphire
 - -More durable than quartz and more broadly transparent
 - Less broadly transparent than MgF₂

- Measure polished parts in spectrophotometer between parallel polarizers
 - -Calculate birefringence from peaks/troughs
 - -Fit dispersion formula to birefringence
- Test AR-coated parts with laser sources, optical spectrum analyzer, using Mueller matrix polarimeter/Stokes polarimeter
 - Compare measured birefringence with this technique against first technique
 - -Temperature adjust both results to same baseline
 - -AR coating avoids Fabry-Perot effects

Instrumentation

AxoScan polarimeter

PAX polarimeter

PerkinElmer Lambda 950 spectrophotometer optical system

- Spectrophotometer scans of quartz, MgF₂, and sapphire between parallel polarizers
- Dispersion of birefringence calculated from above
- All three materials tested on AxoScan/PAX polarimeter at laser wavelengths
- Tested dispersion of birefringence models against polarimeter data
 - Best agreement for quartz (<3E-6)
 - Agreement for sapphire (<4E-6)
 - Agreement for MgF_2 (<6E-6 over AxoScan range, <4E-5 over entire range)
- Comparison of dispersion of birefringence for both methods with existing literature
 - Ghosh for quartz
 - Malitson for sapphire
 - Dodge for MgF_2
 - See reference slide
- Change in retardance with temperature at 632.8nm
 - For each material

Birefringence comparison (quartz)

1 see reference slide

Birefringence measurement comparison

(quartz)

Birefringence comparison (magnesium

fluoride)

Birefringence measurement comparison

(magnesium fluoride)

Birefringence comparison (sapphire)

Birefringence comparison (sapphire)

Temperature

- Value of birefringence changes with temperature
 - dn_o/dT and dn_e/dT change at different rates
 - True for all three materials in this work
 - Measured retardance of single plate of each material at 632.8nm from room temperature (22-25 degrees C) to 45 degrees C
 - Results correspond with previously reported data
 - Values used to adjust measured retardance to 20 degrees C

- For spectrophotometer:
 - -1E-5 to 3E-6
 - \bullet Varies with λ and material
- For polarimeter/laser setup:
 - -3E-6 for AxoScan, 6.5E-6 for PAX
 - Majority of error budget for AxoScan potential thickness error of plates measured
 - Majority of error budget for PAX potential measurement error of polarimeter
 - Majority (2/3) of remainder from tolerance of thermometer

- Orientation of optic axis with respect to crystal face
 - Nominally <6 arcmin for quartz, MgF_2 , <12 arcmin for sapphire
 - On the order of 3E-8 if within nominal value
- Collimation of laser beam in AxoScan
 - Multi-mode fiber, simple collimator
- Alignment of PAX Polarimeter from 850-1630nm
 - Aligned with visible light through collimator for those wavelengths
- Alignment of plates in spectrophotometer
 - -Aligned with white light
- Determination of peaks/troughs
 - Curve fitting, or distance between points of equal %T

- Although birefringence is the difference of the extraordinary and the ordinary index (n_e-n_o), birefringence data needs to be at least two orders of magnitude more accurate than typical index data
 - -1E-5 or better, as opposed to 0.001 for refractive index
- Quartz, magnesium fluoride, and sapphire are commonly used materials for waveplates
 - Data measured here (using two different methods) corresponds with each other within tolerances, as well as with the literature for quartz and magnesium fluoride
 - Sapphire data has correspondence between both methods here, but not existing literature
 - Conjecture: different growth methods

References

- 1 Ghosh: DOI: <u>10.1016/S0030-4018(99)00091-7</u>
- 2 Dodge: DOI: <u>10.1364/AO.23.001980</u>
- 3 Malitson: DOI: <u>10.1364/JOSA.62.001336</u>

Acknowledgments

- Thanks to the committee members for their time and feedback!
 - Dr. Meredith Kupinski
 - University of Arizona
 - Dr. Tom Milster
 - University of Arizona
 - Dave Manzi
 - Thorlabs

