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Preface

Images are ubiquitous in the modern world. We depend on images for news, commu-
nication and entertainment as well as for progress in medicine, science and technol-
ogy. For better or worse, television images are virtually a sine qua non of modern
life. If we become ill, medical images are of primary importance in our care. Satel-
lite images provide us with weather and crop information, and they provide our
military commanders with timely and accurate information on troop movements.
Biomedical research and materials science could not proceed without microscopic
images of many kinds. The petroleum reserves so essential to our economy are usu-
ally found through seismic imaging, and enemy submarines are located with sonic
imaging. These examples, and many others that readily come to mind, are ample
proof of the importance of imaging systems.

While many of the systems listed above involve the latest in high technology,
it is not so obvious that there is an underlying intellectual foundation that ties
the technologies together and enables systematic design and optimization of diverse
imaging systems. A substantial literature exists for many of the subdisciplines of
image science, including quantum optics, ray optics, wave propagation, image pro-
cessing and image understanding, but these topics are typically treated in separate
texts without significant overlap. Moreover, the practitioner’s goal is to make bet-
ter images, in some sense, but little attention is paid to the precise meaning of the
word “better.” In such circumstances, can imaging be called a science?

There are three elements that must be present for a discipline to be called a
science. First, the field should have a common language, an agreed-upon set of def-
initions. Second, the field should have an accepted set of experimental procedures.
And finally, the field should have a theory with predictive value. It is the central
theme of this book that there is indeed a science of imaging, with a well-defined
theoretical and experimental basis. In particular, we believe that image quality
can be defined objectively, measured experimentally and predicted and optimized
theoretically.

Our goal in writing this book, therefore, is to present a coherent treatment
of the mathematical and physical foundations of image science and to bring image
evaluation to the forefront of the imaging community’s consciousness.

ORGANIZATION OF THE BOOK

There are a number of major themes that weave their way throughout this book,
as well as philosophical stances we have taken, so we recommend that the reader
begin with the prologue to get an introduction to these themes and our viewpoint.
Once this big picture is absorbed, the reader should be ready to choose where to
jump into the main text for more detailed reading.

Mathematical Foundations

The first six chapters of this book represent our estimation of the essential mathe-
matical underpinnings of image science. In our view, anyone wishing to do advanced
research in this field should be conversant with all of the main topics presented there.

vii
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The first four chapters are devoted to the important tools of linear algebra, general-
ized functions, Fourier analysis and other linear transformations. Chapter 5 treats
a class of mathematical descriptions called mixed representations, that is, descrip-
tions that mix seemingly incompatible variables such as spatial position and spatial
frequency. Chapter 6 presents the basic concepts of group theory, the mathematics
of symmetry, which will be applied to the description of imaging systems in later
chapters.

It was our objective in writing these introductory chapters to present the math-
ematical foundations of image science at a level that will be accessible to graduate
students and well-motivated undergraduates. At the same time, we have attempted
to include sufficient advanced material so that the material will be beneficial to
established workers in the field. This dual goal requires examining many concepts
at different levels of sophistication. We have attempted to do this by providing
both elementary explanations of the key points and more detailed mathematical
treatments. The reader will find that the level of mathematical rigor is not uniform
throughout these chapters or even within a particular chapter. We hope that this
approach allows each reader to extract from the book insights appropriate to his or
her individual interests and mathematical preparation.

Image Formation: Models and Mechanisms

A quick perusal of the of Contents will reveal that a significant portion of the book
is devoted to the subject of image formation. We have strived to present a com-
prehensive and unified treatment of the mathematical and statistical principles of
imaging. We hope this serves the image-science community by giving a common
language and framework to our many disciplines. Additionally, a thorough under-
standing of the image-formation process is a prerequisite for the image-evaluation
methodology we advocate.

The deterministic analysis of imaging systems begins in Chap. 7, where we
present a wide variety of mathematical descriptions of objects and images and map-
pings from object to image. We argue in Chap. 7 (and briefly also in the Prologue)
that digital imaging systems are best described as a mapping from a function to a
discrete set of numbers, so much of the emphasis in that chapter will be on such
mappings. More conventional mappings such as convolutions are, however, also
treated in a unified way. An important tool in Chap. 7 is singular-value decompo-
sition, which is introduced mathematically in Chap. 1.

The deterministic mappings are not a complete description of image formation.
Repeated images of a single object will not be identical because of electronic noise
in detectors and amplifiers, as well as photon noise, which arises from the discrete
nature of photoelectric interactions. In addition, the object itself can often be use-
fully regarded as random. Object statistics are important in pattern recognition,
image reconstruction and evaluation of image quality. Chapter 8 provides a general
mathematical framework for the description of random vectors and processes. Par-
ticular emphasis is given to Gaussian random vectors and processes, which often
arise as the result of the central-limit theorem.

The next two chapters go more deeply into specific mechanisms of image for-
mation. Chapter 9 develops the theory of wave propagation from first principles
and treats diffraction and imaging with waves within this framework. Though the
objective of the discussion is to develop deterministic models of wave-optical imag-
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ing systems, we cannot avoid discussing random processes when we consider the
coherence properties of wave fields, so an understanding of the basics of random
processes, as presented in Chap. 8, is needed for a full understanding of Chap. 9.
The reader with previous exposure to such topics as autocorrelation functions and
complex Gaussian random fields can, however, skip Chap. 8 and move directly to
Chap. 9.

Chapter 10 is ostensibly devoted to radiometry and radiative transport, but
actually it covers a wide variety of topics ranging from quantum electrodynamics
to tomographic imaging. A key mathematical tool developed in that chapter is
the Boltzmann equation, a general integro-differential equation that is capable of
describing virtually all imaging systems in which interference and diffraction play
no significant role. The Boltzmann equation describes a distribution function that
can loosely be interpreted as a density of photons in phase space, so it is necessary
to discuss in that chapter just what we mean by the ubiquitous word photon.

In Chap. 10 we discuss only the mean photon density or the mean rate of
photoelectric interactions, but in Chap. 11 we begin to discuss fluctuations about
these means. In particular, we present there an extensive discussion of the Poisson
probability law and its application to simple counting detectors and imaging arrays.
Included is a discussion of photon counting from a quantum-mechanical perspective.
Many of the basic principles of random vectors and processes enunciated in Chap.
8 are used in Chap. 11.

Chapter 12 goes into more detail on noise mechanisms in various detectors of
electromagnetic radiation. The implications of Poisson statistics are discussed in
practical terms, and a number of noise mechanisms that are not well described by
the Poisson distribution are introduced. A long section is devoted to x-ray and
gamma-ray detectors, not only because of their practical importance in medical
imaging, but also because they illustrate some important aspects of the theory
developed in Chap. 11.

Inferences from Images

With the background developed in Chaps. 1 – 12, we can discuss ways of drawing
inferences from image data. The central mathematical tool we need for this purpose
is statistical decision theory, introduced in Chap. 13. This theory allows a system-
atic approach to estimation of numerical parameters from image data as well as
classifying the object that produced a given image, and it will form the cornerstone
of our treatment of image quality. In accordance with this theory, we shall define
image quality in terms of how well an observer can extract some desired information
from an image.

Chapter 14 is a nuts-and-bolts guide to objective assessment of image quality
for both hardware and software. Particular attention is paid to evaluating the per-
formance of human observers, for whom most images are intended.

Chapter 15 provides a general treatment of inverse problems or image recon-
struction, defined as inferring properties of an object from data that do not initially
appear to be a faithful image of that object. Considerable attention is given to what
information one can hope to extract and what aspects of an object are intrinsically
inaccessible from data obtained with a specific imaging system. A wide variety of
image-reconstruction algorithms will be introduced, and special attention will be
given to the statistical properties of the resulting images.
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Applications

Chapters 16 – 19 are intended as detailed case studies of specific imaging systems,
with the goal of providing examples of how various mathematical tools developed
earlier in the book can be applied. Two of these chapters (16 and 18) cover direct
imaging systems in which the image is formed without the need for a processing
or reconstruction algorithm, and two of them (17 and 19) cover indirect systems
in which the initial data set is not a recognizable image. By a different dichotomy,
two of the chapters (16 and 17) relate to imaging with x rays and gamma rays,
and two of them (18 and 19) relate to imaging with light. The key physical and
pedagogical difference is that x rays and gamma rays have such short wavelengths
that interference and diffraction can be neglected, and the Boltzmann transport
equation of Chap. 10 is applicable. With light, the diffraction theory developed in
Chap. 9 takes a central role.

Appendices

Three appendices are provided: one on matrix algebra, a second on complex vari-
ables and a third on the fundamentals of probability theory. The material contained
there is expected to have been seen by most readers during their undergraduate
training. In writing the appendices, we tried to provide a self-contained treatment
of the prerequisite material necessary for the understanding of the material in the
main text.

SUGGESTIONS FOR COURSE OUTLINES

Drafts of this book have been used as text material for three different courses that
have been taught at the Optical Sciences Center of the University of Arizona. Each
course has been taught several times, and there has been some experimentation
with the course outlines as the book evolved.

The first six chapters of the book were developed for a one-semester course
called Mathematical Methods for Optics. This course was originally intended for
first-year graduate students but has proved to be more popular with advanced stu-
dents. It is basically an introductory course in applied mathematics with emphasis
on topics that are useful in image science. Expected preparation includes calculus
and differential equations and an elementary understanding of matrix algebra and
complex analysis. Appendices A and B were originally used as introductory units
in the course but are now considered to define the prerequisites for the course. The
current syllabus covers Chaps. 1 – 6 of the book. Earlier, however, a more optics-
oriented course was offered based on Chaps. 1 – 3, 9 and 10. For this course it was
necessary to assume that the students had some elementary understanding of ran-
dom processes.

For advanced graduate students, especially ones who will pursue dissertation
research in image science, there is a two-course sequence: Principles of Image Sci-
ence, taught in the Fall semester, and Noise in Imaging Systems, taught in the
Spring. The Principles course begins with Chap. 1; this is a review for those who
have previously taken the Mathematical Methods course, but there have been no
complaints about redundancy. Chapters 7, 9, 10 and 15 are then covered sequen-
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tially. Occasionally it is necessary to review material from Chaps. 2 – 5, but basically
these chapters are assumed as prerequisites. Appendices A and B are available for
reference.

Noise in Imaging Systems covers Chaps. 8 and 11 – 14. Appendix C defines
the prerequisite knowledge of probability and statistics, but a general acquaintance
with Chaps. 1 – 3 is also presumed. Neither Mathematical Methods nor Principles
of Image Science is a formal prerequisite for the Noise course.

Alternatively, a one-year advanced sequence could be taught by covering Chap.
1 and then 7 – 15 in sequence. Prerequisite material in this case would be defined
by Chaps. 2 and 3 and the three appendices. Necessary topics in Chaps. 4 – 6 could
be sketched briefly in class and then assigned for reading.

The applications chapters, 16 – 19, have not been used in teaching, although
they have been reviewed by graduate students working in image science. They could
form the basis for an advanced seminar course.
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Prologue

We shall attempt here to provide the reader with an overview of topics covered
in this book as well as some of the interrelationships among them. We begin by
surveying and categorizing the myriad imaging systems that might be discussed
and then suggest a unifying mathematical perspective based on linear algebra and
stochastic theory. Next we introduce a key theme of this book, objective or task-
based assessment of image quality. Since this approach is essentially statistical, we
are led to ruminate on Bayesian and frequentist interpretations of probability. In
discussing image quality, probability and statistics, our personal views, developed as
we have worked together on imaging issues for two decades, will be much in evidence.
The viewpoints presented here are, we hope, more firmly given mathematical form
and physical substance in the chapters to follow.

KINDS OF IMAGING SYSTEMS

There are many kinds of objects to be imaged and many mechanisms of image
formation. Consequently, there are many ways in which imaging systems can be
classified. One such taxonomy, represented by Table I, classifies systems by the kind
of radiation or field used to form an image. The most familiar kind of radiation
is electromagnetic, including visible light, infrared and ultraviolet radiation. Also
under this category we find long-wavelength radiation such as microwaves and ra-
dio waves and short-wavelength radiation in the extreme ultraviolet and soft x-ray
portions of the spectrum. Of course, the electromagnetic spectrum extends further
in both directions, but very long wavelengths, below radio frequencies, do not find
much use in imaging, while electromagnetic waves of very short wavelength, such
as hard x rays and gamma rays, behave for imaging purposes as particles. Other
particles used for imaging include neutrons, protons and heavy ions.

Other kinds of waves are also used in various imaging systems. Mechanical
waves are used in seismology, medical ultrasound and even focusing of ocean waves.
The DeBroglie principle tells us that matter has both wave-like and particle-like
characteristics. The wave character of things we usually call matter is exploited
for imaging in scanning tunneling microscopes and in recent work on diffraction of
atoms.

Not only radiation, in the usual sense, but also static or quasistatic fields may
be the medium of imaging. Magnetic fields are of interest in geophysics and in
biomagnetic imaging, while electric fields are imaged in some new medical imaging
modalities.

Table I. CLASSIFICATION BY KIND OF RADIATION OR FIELD

Electromagnetic waves Other waves Particles Quasistatic fields
Radio waves Seismic waves Neutrons Geomagnetic fields
Microwaves Water waves Protons Biomagnetic fields
Infrared Ultrasound Heavy ions Bioelectric fields

Visible light DeBroglie waves Hard x rays Electrical impedance
Ultraviolet Gamma rays
Soft x rays

xiii
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A second useful taxonomy of imaging systems groups them according to the
property of the object that is displayed in the image (see Table II). In other words,
what does the final image represent?

Table II. CLASSIFICATION BY PROPERTY BEING IMAGED

Optical reflectance Microwave reflectance Acoustic reflectance
Photography Radar Medical ultrasound

Remote sensing Sonar
LIDAR

Source strength Concentration Wave amplitude
Astronomical imaging Nuclear medicine Interferometry

Fluorescence microscopy MRI (spin density) Seismology

Attenuation Index of refraction Scattering properties
Film densitometry Phase-contrast microscope Medical ultrasound
Transmission x ray Weather radar

Field strength Electric, magnetic properties Surface height
Biomagnetic imaging Impedance tomography Optical profilometry
Geomagnetic imaging MRI (magnetization) Laser ranging

MRI (spin relaxation) Moiré topography

In an ordinary photographic camera, the snapshot usually represents the light
reflected from a scene. More precisely, the image reaching the film is related to the
product of the optical reflectance of the object and its illumination. Other imaging
techniques that essentially map object reflectance include radar imaging and med-
ical ultrasound.

In some instances, however, a photograph measures not reflectance but the
source strength of a self-luminous source; a snapshot of a campfire, an astronomi-
cal image and a fluorescence micrograph are all examples of emission images. The
source strength, in turn, is often related to some concentration or density of phys-
ical interest. For example, in nuclear medicine one is interested ultimately in the
concentration of some pharmaceutical; if the pharmaceutical is radioactive, its con-
centration is directly related to the strength of a gamma-ray-emitting source.

Other optical properties can also be exploited for imaging. The index of re-
fraction is used in phase-contrast microscopy, while attenuation or transmissivity
of radiation is used in film densitometry and ordinary x-ray imaging. The complex
amplitude of a wave is measured in many kinds of interferometry and some forms of
seismology, and scattering properties are used in medical ultrasound and weather
radar. Electrical and magnetic properties such as impedance and magnetization are
of increasing interest, especially in medicine.

We might also classify systems by the imaging mechanism. In other words,
how is the image or data set formed? Included in this list (see Table III) are simple
refraction and reflection, along with the important optical effects of interference
and diffraction. Some imaging systems, however, make use of less obvious physical
mechanisms, including scattering and shadow casting. Perhaps the least obvious
mechanism is what we shall designate as modulation imaging. In this technique,
the imaging system actively modulates the properties of the object being imaged in
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a space-dependent manner. Examples include the important medical modality of
magnetic resonance imaging (MRI) and the lesser-known method of photothermal
imaging, which originated with Alexander Graham Bell.

Table III. CLASSIFICATION BY IMAGING MECHANISM

Refraction Reflection Diffraction
Eyes Reflecting telescope Holographic elements

Microscopes Wolters x-ray telescope Kinoforms
Cameras Binary optics

Refracting telescopes Fresnel zone plates
Fresnel lenses

Interference Scattering Modulation
Holography Compton telescope MRI

Synthetic-aperture radar Photothermal imaging
Stellar interferometers
Hanbury Brown/Twiss

Shadow casting
X-ray computed tomography
Pinhole imaging of x rays
Collimator for gamma rays

Coded apertures

The next dichotomy to consider is direct vs. indirect imaging. By direct imag-
ing we mean any method where the initial data set is a recognizable image. In
indirect imaging, on the other hand, a data-processing or reconstruction step is
required to obtain the image. Examples of direct and indirect imaging systems are
provided in Table IV.

Direct imaging techniques may be divided into serial-acquisition systems or
scanners, in which one small region of the object is interrogated at a time, and
parallel-acquisition systems where detector arrays or continuous detectors are used
to capture many picture elements or pixels in the object simultaneously. Hybrid
serial/parallel systems are also possible.

Table IV. DIRECT VS. INDIRECT IMAGING

Direct – serial acquisition Direct – parallel acquisition
Scanning microdensitometer Human eye
Medical gamma-ray scanner Photographic camera
Confocal scanning microscope Electronic camera

Scanning-tip microscopes Optical microscope with CCD
Image dissector Scintillation camera

Indirect
X-ray CT

SPECT and PET
MRI

Holography
Synthetic-aperture radar
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Perhaps the most common type of indirect imaging is tomography in all its
varied forms, including the now-familiar x-ray computed tomography (CT), emis-
sion tomography such as single-photon emission computed tomography (SPECT)
and positron emission tomography (PET), as well as MRI and certain forms of ul-
trasonic and optical imaging. In all of these methods, the data consist of a set of
line integrals or plane integrals of the object, and a reconstruction step is necessary
to obtain the final image.

The indirect method of coded-aperture imaging is a shadow-casting method
used in x-ray astronomy and nuclear medicine. The shadows represent integrals of
the object but here the path of integration depends on the shape of the aperture.
As above, tomographic information can be retrieved from the data set following a
reconstruction step.

An earlier example of indirect imaging is holography, in which the initial data
include information, in coded form, about the amplitude and phase of a diffrac-
tion pattern. As is implicit in the name (holo = entire), the holographic data are
complete in some sense, but are virtually useless to the human observer; again a re-
construction step is required. The holographic principle finds use in nonoptical tech-
niques such as acoustic holography, microwave holography and synthetic-aperture
radar or SAR, all indirect imaging methods.

Another principle that leads to specific indirect imaging systems is embodied
in the van Cittert – Zernike theorem, relating the intensity distribution of an inco-
herent source to the coherence properties of the field it produces. Systems that
exploit this theorem include the Michelson stellar interferometer and the Hanbury
Brown –Twiss interferometer.

The final dichotomy we shall consider is passive vs. active imaging (see Table
V). In passive imaging, measurements are made without interacting with a source.
Familiar examples include ordinary photography of self-luminous sources or of a
reflecting source with natural illumination as well as astronomical imaging and
medical thermography. By contrast, an active imaging system supplies the radia-
tion being imaged. Systems in this category include flash photography, transmission
imaging (x rays, microscopy, etc.), radar, active SONAR and medical ultrasound.

Table V. PASSIVE VS. ACTIVE IMAGING

Passive systems Active systems
Fluorescent microscopy Conventional transmission microscopy

Nuclear medicine Diagnostic radiology
Lunar imaging with a telescope Radar ranging of the moon

IR thermography Photoacoustic imaging
Seismology Geophysical imaging with explosives

Natural-light photography Flash photography
Biomagnetic imaging Magnetic resonance imaging

OBJECTS AND IMAGES AS VECTORS

As we have just seen, many different physical entities can serve as objects to be im-
aged. In most cases, these objects are functions of one or more continuous variables.
In astronomy, for example, position in the sky can be specified by two angles, so the
astronomical object being imaged is a scalar-valued function of two variables, or a
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two-dimensional (2D) function for short. In nuclear medicine, on the other hand,
the object of interest is the three-dimensional (3D) distribution of some radiophar-
maceutical, so mathematically it is described as a 3D function. Moreover, if the
distribution varies with time—not an uncommon situation in nuclear medicine—
then a 4D function is required (three spatial dimensions plus time).

Even higher dimensionalities may be needed in some situations. For example,
multispectral imagers may be used on objects where wavelength is an important
variable. An accurate object description might then require five dimensions (three
spatial dimensions plus time and wavelength).

Sometimes the function is vector-valued. In magnetic resonance imaging, for
example, the object is characterized by the proton density and two relaxation times,
so a complete object description consists of a 3D vector function of space and time.

Images, too, are often functions. A good example occurs in an ordinary cam-
era, where the image is the irradiance pattern on a piece of film. Even if this pattern
is time varying, usually all we are interested in is its time integral over the exposure
time, so the most natural description of the image is as a continuous 2D spatial
function. Similar mathematics applies to the developed film. The image might
then be taken as the optical density or transmittance of the film, but again it is a
2D function. A color image is a vector-valued function; the image is represented by
the density of the three color emulsions on the film.

Sometimes images are not functions but discrete arrays of numbers. In the
camera example, suppose the detector is not film but an electronic detector such
as a charge-coupled device (CCD). A CCD is a set of, say, M discrete detector
elements, each of which performs a spatial and temporal integration of the image
irradiance. The spatial integral extends over the area of one detector element, while
the temporal integration extends over one frame period, typically 1/30 sec. As a
result of these two integrations, the image output from this detector is simply M
numbers per frame. In this example, the object is continuous, but the image is dis-
crete. In fact, any digital data set consists of a finite set of numbers, so a discrete
representation is virtually demanded.

Another example that requires a discrete representation of the image is indirect
imaging such as computed tomography (CT). This method involves reconstruction
of an image of one or more slices of an object from a set of x-ray projection data.
Even if the original projection data are recorded by an analog device such as film,
a digital computer is usually used to reconstruct the final image. Again, the use of
the computer necessitates a discrete representation of the image.

In this book and throughout the imaging literature, mathematical models or
representations are used for objects and images, and we need to pay particular at-
tention to the ramifications of our choice of model. Real objects are functions, but
the models we use for them are often discrete. Familiar examples are the digital
simulation of an imaging system and the digital reconstruction of a tomographic
image; in both cases it is necessary to represent the actual continuous object as a
discrete set of numbers. A common way to construct a discrete representation of a
continuous object is to divide the space into N small, contiguous regions called pix-
els (picture elements) or voxels (volume elements). The integral of the continuous
function over a single pixel or voxel is then one of N discrete numbers representing
the continuous object. As discussed in detail in Chap. 7, many other discrete object
representations are also possible, but the pixel representation is widespread.
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There are rare circumstances where the object to be imaged is more natu-
rally described by a discrete set of numbers rather than by a continuous function.
For example, in some kinds of optical computing systems, data are input by modu-
lating a set of point emitters such as light-emitting diodes. If we regard the optical
computer itself as a generalized imaging system, then this array of luminous points
is the object being imaged. If there are N emitters in the array, we can consider
the object to be defined by a set of N numbers. Even in this case, however, we
are free to adopt a continuous viewpoint, treating the point emitters as Dirac delta
functions. After all, the object is not a set of discrete numbers but the radiance
distribution at the diode array face. In our view, then, any finite, discrete object
representation is, at best, an approximation to the real world.

To summarize to this point, both objects and images can be represented as
either continuous functions in some number of dimensions or as sets of discrete num-
bers. Discrete representations for objects are not an accurate reflection of the real
world and should be used with caution, while discrete representations of images
may be almost mandatory if a computer is an integral part of the imaging system.

These diverse mathematical descriptions of objects and images can be unified
by regarding all of them as vectors in some vector space. A discrete object model
consisting of N pixels can be treated as a vector in an N -dimensional Euclidean
space, while a continuous object is a vector in an infinite-dimensional Hilbert space.
We shall refer to the space in which the object vector resides as object space, de-
noted U, and we shall consistently use the designation f to denote the object vector.
Similarly, the space in which the data vector is defined will be called data space
and denoted V. This space will also be referred to as image space when direct
imaging is being discussed.

IMAGING AS A MAPPING OPERATION

A unifying theme of this book is the treatment of the image formation process as
a mapping between object space U and image space V. If we ignore the statistical
nature of the imaging process, this mapping is unique in the sense that a particular
object f maps to a single image g, though it may well be true that many different
f can produce the same g. We shall refer to the mapping operator as H, so that
g = Hf.

The mapping operator H can be either linear or nonlinear. For many reasons,
linear systems are easier to analyze than nonlinear ones, and it is indeed fortu-
nate that we can often get away with the assumption of linearity. One common
exception to this statement is that many detectors are nonlinear, or at best only
approximately linear over a restricted range of inputs.

Chapter 1 provides the mathematical foundation necessary to describe objects
and images as vectors and imaging systems as linear operators. A particular kind of
operator will emerge as crucial to the subsequent discussions: Hermitian operators,
better known in quantum mechanics than in imaging. Study of the eigenvectors and
eigenvalues of Hermitian operators will lead to the powerful mathematical technique
known as singular-value decomposition (SVD). SVD provides a set of basis vec-
tors such that the mapping effect of an arbitrary (not necessarily Hermitian) linear
operator reduces to simple multiplication.

If the object and the image are both continuous functions, H is referred to as a
continuous-to-continuous, or CC, operator. If, in addition, H is linear, the relation
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between object and image is an integral. Similarly, if both object and image are
discrete vectors, H is referred to as a discrete-to-discrete, or DD, operator. If this
DD operator is linear, the relation between object and image is a matrix-vector
multiplication.

While both linear models, CC and DD, are familiar and mathematically
tractable, neither is really a good description of real imaging systems. As noted
above, real objects are continuous functions while digital images are discrete vectors.
The correct description of a digital imaging system is thus a continuous-to-discrete,
or CD, operator. While such operators may be unfamiliar, they can nevertheless
be analyzed by methods similar to those used for CC and DD operators provided
the assumption of linearity is valid.

Choice of basis When we describe objects and images as functions, which are vec-
tors in a Hilbert space, we have many options for the basis vectors in this space.
One very important basis set consists of plane waves or complex exponentials, and
the resulting theory is known broadly as Fourier analysis. When a discrete sum of
complex exponentials is used to represent a function, we call the representation a
Fourier series, while a continuous (integral) superposition is called a Fourier trans-
form.

A Fourier basis is a natural way to describe many imaging systems. If a spatial
shift of the object produces only a similar shift of the image and no other changes,
the system is said to be shift invariant or to have translational symmetry. The
mapping properties of these systems are described by an integral operator known
as convolution, but when object and image are described in the Fourier basis, this
mapping reduces to a simple multiplication. In fact, Fourier analysis is equivalent
to SVD for linear, shift-invariant systems.

When we use pixels or some other approximate representation of an object,
we shall refrain from calling the expansion functions a basis since they do not form
a basis for object space U. Of course, any set of functions is trivially a basis for
some space (the space of all linear combinations of functions in the set), but it is
too easy to lose sight of the distinction between true basis functions for objects and
the approximate models we construct.

DETECTORS AND MEASUREMENT NOISE

Every imaging system must include a detector, either an electronic or a biological
one. Most detectors exhibit some degree of nonlinearity in their response to incident
radiation. Some detectors, such as photographic film, are intrinsically very nonlin-
ear, while others, such as silicon photodiodes, are quite linear over several orders of
magnitude if operated properly. All detectors, however, eventually saturate at high
radiation levels or display other nonlinearities.

Nonlinearities may be either global or local. With respect to imaging detec-
tors, a global nonlinearity is one in which the response at one point in the image
depends nonlinearly on the incident radiation at another (perhaps distant) point.
An example would be the phenomenon known as blooming in various kinds of TV
camera tubes. In a blooming detector, a bright spot of light produces a saturated
image, the diameter of which increases as the intensity of the spot increases.

A simpler kind of nonlinearity is one in which the output of the detector for
one image point or detector element depends nonlinearly on the radiation level in-
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cident on that element but is independent of the level on other detector elements.
This kind of nonlinearity is referred to as a local or point nonlinearity. To a reason-
able approximation, film nonlinearities are local. A local nonlinearity may be either
invertible or noninvertible, depending on whether the nonlinear input-output char-
acteristic is monotonic. If the characteristic is monotonic and known, then it can
be corrected in a computer with a simple algorithm.

Randomness due to noise is an essential limitation in any measurement system.
We can include noise in our basic imaging equation by writing g = Hf+n, where n
is a random perturbation added to the noise-free image Hf. Perhaps surprisingly,
this additive form is completely general; we can think of Hf as the mean value of
the random data vector g, and n is then just defined by n = g − Hf. With this
definition, n has zero mean, but its other statistical properties can depend in a
complicated way on the object and the imaging system.

In imaging, the two main noise sources are photon noise, which arises from
the discrete nature of photoelectric interactions, and electronic noise in detectors or
amplifiers. Photon noise usually obeys the Poisson probability law and electronic
noise is almost always Gaussian.

IMAGE RECONSTRUCTION AND PROCESSING

The mapping from object to image is called the forward problem: given an object
and knowledge of the imaging system, find the image. We are often interested also
in the inverse problem: given an image (or some other data set), learn as much
as we can about the object that produced it. Note that we do not say: given the
image, find the object. Except in rare and usually highly artificial circumstances,
it will not be possible to determine the object exactly.

An inverse problem is fundamental to indirect imaging systems, where an
image-reconstruction step is needed in order to produce the final useful image.
Even in direct imaging, a post-detection processing step may be used for image
enhancement. For example, it may be desirable to smooth the image before display
or to manipulate its contrast. We shall refer to all such manipulations, whether for
purpose of image reconstruction or enhancement, as post-processing.

When we are explicitly discussing post-processing, it will often be necessary
to distinguish the detector output from the final, processed image. We shall re-
serve the notation g for the detector output. The vector g may be the final image
in a direct imaging system, but in indirect imaging it will refer to a data set to
be processed further by an operator which we can call O. In the latter case, we
shall use the notation θ̂ = Og to denote the final image, a vector of coefficients
in a finite-dimensional (hence approximate) object representation. Since we are
virtually never able to find these coefficients exactly, we use the caret to denote an
estimate.

With post-processing, we have three vectors to deal with: f, g and θ̂. These
vectors are defined in, respectively, object space, data space and image or recon-
struction space.

OBJECTIVE ASSESSMENT OF IMAGE QUALITY

In scientific or medical applications, the goal of imaging is to obtain information
about the object. Aesthetic considerations such as bright colors, high contrast or
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pleasing form play no obvious role in conveying this information, and subjective
impressions of the quality of an image without consideration of its ability to convey
information can be very misleading. We adopt the view, therefore, that any mean-
ingful definition of image quality must answer these key questions:

1. What information is desired from the image?

2. How will that information be extracted?

3. What objects will be imaged?

4. What measure of performance will be used?

We refer to the desired information as the task and the means by which it is ex-
tracted as the observer. For a given task and observer and a given set of objects,
it is possible to define quantitative figures of merit for image quality. We call this
approach objective or task-based assessment of image quality.

Tasks Two kinds of information might be desired from an image: labels and num-
bers. There are many circumstances in which we want merely to label or identify
the object. For example, a Landsat image is used to identify crops and a screening
mammogram is used to identify a patient’s breast as normal or abnormal.

More and more commonly in modern imaging, however, the goal is to extract
quantitative information from images. A cardiologist might want to know the vol-
ume of blood ejected from a patient’s heart on each beat, for example, or a military
photointerpreter might want to know the number of planes on an airfield or the
area of an encampment.

Different literatures apply different names to these two kinds of task. In
medicine, labeling is diagnosis and extraction of numbers is quantitation. In
statistics, the former is hypothesis testing and the latter is parameter estimation.
In radar, detection of a target is equivalent to hypothesis testing (signal present vs.
signal absent), but determination of the range to the target is parameter estimation.

We shall use the term estimation to refer to any task that results in one or
more discrete numbers, while a task that assigns the object to one of two or more
categories will be called classification. Various parts of the imaging literature
discuss pattern recognition, character recognition, automated diagnosis, signal de-
tection and image segmentation, all of which fall under classification, while other
parts of the literature discuss metrology, image reconstruction and quantitation of
gray levels in regions of interest, all of which are estimation tasks.

This dichotomy is not absolute, however, since often the output of an estima-
tion procedure is used immediately in a classification, for example, when features
are extracted from an image and passed to a pattern-recognition algorithm. Also,
both aspects may be desired from a single image; radar, for example, is an acronym
for Radio Detection and Ranging, implying that we want both to detect a sig-
nal (classification) and to determine its range (estimation). Often the very same
image-analysis problem may be logically cast as either classification or estimation.
In functional magnetic resonance imaging (fMRI), for example, the task can be for-
mulated as detecting a change in signal as a result of some stimulus or estimating
the strength of the change.
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The conceptual division of tasks into classification and estimation will serve
us well when we discuss image quality in Chaps. 13 and 14, but we shall also ex-
plore there the interesting cases of hybrid estimation/classification tasks and the
implications of performing one kind of task before the other.

Observers We call the means by which the task gets done, or the strategy, the
observer. In spite of the anthropomorphic connotation of this term, the observer
need not be a human being. Often computer algorithms or mathematical formulas
serve as the observer.

In many cases the observer for a classification task is a human, a physician
viewing a radiograph or a photointerpreter studying an aerial photo, for example.
In these cases the label results from the judgment and experience of the human,
and the output is an oral or written classification.

It is, however, becoming increasingly common in radiology and other fields
of imaging to perform classification tasks by a computer. If not fully computer-
ized diagnosis, at least computer-aided diagnosis is poised to make an important
contribution to clinical radiology, and computer screening of specimen slides is a
great help to overworked pathologists. Satellite images generate such an enormous
volume of data that purely human classification is not practical. In these cases, the
computer that either supplements or supplants the human observer can be called a
machine observer.

A special observer known as the ideal observer will receive considerable at-
tention in this book. The ideal observer is defined as the observer that utilizes all
statistical information available regarding the task to maximize task performance
(see below for measures of performance). Thus the performance of the ideal ob-
server is a standard against which all other observers can be compared.

Estimation tasks using images as inputs are most often performed by computer
algorithms. These algorithms can run the gamut from very ad hoc procedures to
ones based on stated optimality criteria that have to do with the bias and/or vari-
ance of the resulting estimates.

Objects The observer’s strategy will depend on the source of the signal, that is,
the parameters of the objects that distinguish one class from another if the task is
classification, or the parameter to be estimated if the task is estimation. Table II
lists possible sources of signal for a variety of imaging mechanisms.

Given a particular object, there will be a fixed signal and fixed background,
or nonsignal component, at the input to the imaging system. Real imaging systems
collect data from multiple objects, though, and there will therefore be a distribu-
tion of the signal-carrying component and background component across the full
complement of objects in each class. The observer’s strategy will depend on these
distributions of signal and background in the object space.

The observer must also make use of all available knowledge regarding the
image-formation process, including the deterministic mapping from object space to
image space described above, and knowledge of any additional sources of variability
from measurement noise, to generate as complete a description of the data as pos-
sible. The more accurately the observer’s knowledge of the properties of the data,
the better the observer will be able to design a strategy for performing the task.
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Measures of task performance For a classification task such as medical diagnosis,
the performance is defined in terms of the average error rate, in some sense, but we
must recognize that there are different kinds of errors and different costs attached
to them. In a binary classification task such as signal detection, where there are
just two alternatives (signal present and signal absent), there are two kinds of error.
The observer can assert that the signal is present when it is not, which is a false
alarm or false-positive decision; or the assertion can be that the signal is not present
when in fact it is, which would be a missed detection or a false-negative decision.
The trade-off between these two kinds of error is depicted in the receiver operating
characteristic (ROC) curve, a useful concept developed in the radar literature but
now widely used in medicine. Various quantitative measures of performance on a
binary detection task can be derived from the ROC curve (see Chap. 13).

Another approach to defining a figure of merit for classification tasks is to define
costs associated with incorrect decisions and benefits (or negative costs) associated
with correct decisions. Then the value of an imaging system can be defined in terms
of the average cost associated with the classifications obtained by some observer on
the images.

For an estimation task where the output is only a single number, we can define
the performance in terms of an average error, but we must again recognize that
there are two types of error: random and systematic. In the literature on statistical
parameter estimation, the random error is defined by the variance of the estimate,
while systematic error is called bias. Usually in that literature, bias is computed
on the basis of a particular model of the data-generation process, but an engineer
will recognize that systematic error can also arise because the model is wrong or
the system is miscalibrated. Both kinds of bias will be discussed in this book.

Often more than one quantitative parameter is desired in an estimation task.
An extreme example is image reconstruction where an attempt is made to assign
one parameter to each pixel in the image. In this case some very subtle issues
arise in attempting even to define bias, much less to minimize it. These issues get
considerable attention in Chap. 15.

PROBABILITY AND STATISTICS

The figures of merit for image quality just mentioned are inherently statistical. They
involve the random noise in the images and the random collection of objects that
might have produced the images. In our view, any reasonable definition of image
quality must take into account both of these kinds of randomness, so probability
and statistics play a central role in this book.

The conventional distinction is that probability theory deals with the descrip-
tion of random data while statistics refers to drawing inferences from the data. From
a more theoretical viewpoint, probability theory is essentially deductive logic, where
a set of axioms is presented and conclusions are drawn, but these conclusions are,
in fact, already inherent in the axioms. Statistics, with this dichotomy, is inductive
logic, where the conclusions are drawn from the data, not just the axioms. Thus,
as we shall see, we use probability theory to describe the randomness in objects and
images. Statistical decision theory is the tool we use in the objective assessment of
images formed by an imaging system for some predefined task.
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Bayesians, frequentists and pragmatists We expect that our readers will have some
previous acquaintance with basic definitions of probability and the associated op-
erational calculus. There are, however, many subtleties and points of contention
in the philosophy of probability and statistical inference. The divisions between
different schools, classified broadly as frequentists and Bayesians, are profound and
often bitter. We do not propose to enter seriously into this fray, but we cannot
avoid adopting a point of view and an operational approach in this book. In this
section we give a short summary of what this point of view is and why we have
adopted it for various problems in image science.

Of the various definitions of probability given in App. C, perhaps the most
intuitively appealing is the one that defines the probability of an event as its rela-
tive frequency of occurrence in a large number of trials under identical conditions.
Because of the historical origins of probability theory, the concept of probability
as relative frequency is usually illustrated in terms of games of chance; e.g., the
probability of a coin showing heads is the relative number of times it does so in
a very large number of trials. In an optical context, it is easy to conceive of an
experiment where the number of photoelectric events in some detector, say a pho-
tomultiplier, is recorded for many successive one-second intervals. The limit of the
histogram of these counts as the number of trials gets very large can be regarded
as the probability law for the counts.

To a Bayesian, probability is a measure of degree of belief, an element of in-
ductive logic and not a physical property or an observable quantity. To illustrate
this concept and its relation to frequency, we let some well-known Bayesians speak
for themselves:

We ... regard probability as a mathematical expression of our degree of belief
in a certain proposition. In this context the concept of verification of proba-
bilities by repeated experimental trials is regarded as merely [emphasis added]
a means of calibrating a subjective attitude. (Box and Tiao, 1992)

... long-run frequency remains a useful notion for some applications, as long
as we remain prepared to recognize that the notion must be abandoned if it
contradicts our degree of belief .... (Press, 1989)

The essence of the present theory is that no probability, direct, prior, or
posterior, is simply a frequency. (Jeffreys, 1939)

The interpretation we shall intend in this book when we use the word prob-
ability will depend somewhat on context. We are pragmatists—many times a
relative-frequency interpretation will serve our needs well, but we shall not hesitate
to use Bayesian methods and a subjective interpretation of probability when it is
useful to do so. In particular, we can often present certain conditional probabilities
of the data that we can be “reasonably certain” (a measure of belief, to be sure)
would be verified by repeated experiments. Other times, as we shall argue below,
there is no conceivable way to experimentally verify a postulated probability law,
and in those cases we must be content to regard the probabilities in a Bayesian
manner.

Our way of resolving this ambivalence will be presented below after we have
seen in more detail how some probabilities of interest in imaging can be interpreted
as frequencies and others cannot.

Conditional probability of the image data A statistical entity that plays a major role
in the description of the randomness in an image is the conditional probability (or
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probability density) of an image data set obtained from a particular object. Since
we usually refer to a data set as g and an object as f, this conditional probability is
denoted pr(g|f ). Here each component of the image vector g refers to a particular
measurement; for example, the component gm could be the measured gray level in
the mth pixel on an image sensor. The object f, on the other hand, is best concep-
tualized as a vector (or function) in an infinite Hilbert space.

The conditional probability pr(g|f ) is the basic description of the randomness
in the data, and it is paramount to compute it if we want to give a full mathemat-
ical description of the imaging system. Moreover, all inferences we wish to draw
about the object f, whether obtained by frequentist or Bayesian methods, require
knowledge of pr(g|f ).

Fortunately, pr(g|f ) is usually quite simple mathematically. For example, with
so-called photon-counting imaging systems, it follows from a few simple axioms
(enumerated in Chap. 11) that each component of g is a Poisson random variable
and that different components are statistically independent. As a second exam-
ple, if there are many independent sources of noise in a problem, the central-limit
theorem (derived in Chap. 8) allows us to assert that each component of g is a
normal or Gaussian random variable, and often the statistical independence of the
different components (conditional on a fixed f ) can be justified as well. In these
circumstances, we see no difficulty in regarding pr(g|f ) as a relative frequency of
occurrence. We could easily repeat the image acquisition many times with the same
object and accumulate a histogram of data values gm for each sensor element m.
If we have chosen the correct model for the imaging system and all experimental
conditions (including the object) are held constant, each of these histograms should
approach the corresponding marginal probability pr(gm|f ) computed on the basis
of that model. If we can also experimentally verify the independence of the different
values of gm, we will have shown that the histogram, in the limit of a large number
of data sets, is well described by the probability law pr(g|f ), which in this case
is just the product of the individual pr(gm|f ). Of course, this limiting frequency
histogram will depend on the nature of the object and properties of the imaging
system, but the mathematical form should agree with our calculation.

The conditional probability pr(g|f ) is naturally interpreted as a relative fre-
quency since it describes the random variation of the image for repeated observations
on the same object. This conditional probability is as much a part of our mathe-
matical description of an imaging system as the system operator H. The distinction
is that H specifies the average or deterministic characteristics of the system, while
pr(g|f ) specifies the randomness in the image, in a relative-frequency sense. Both
are needed for a full description.

Priors When we go beyond the statistical description of the data to the task of
drawing inferences from the data, we quickly find that the relative-frequency inter-
pretation of probability is quite limiting. The frequentist approach is to disavow all
prior knowledge of the object and form inferences using only the data g. A little
experience with this approach, however, soon convinces one that prior knowledge
is essential. If we have only the data, a parameter estimate would logically have to
be chosen to be maximally consistent with the data. But the data are often very
noisy, so the resulting estimate must be noisy as well. Presented with an image re-
constructed by any method that enforces strict agreement with the data, and which
incorporates no prior object information, almost everyone would reject it as virtu-
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ally useless because of the enormous noise amplification that results. This subjective
judgment is really an assertion that we have not incorporated prior knowledge of
the objects being imaged.

Bayesian methodology allows us to use prior knowledge about the object being
imaged in a logically consistent manner in forming a reconstruction or drawing other
inferences. In the image-reconstruction problem, incorporation of prior information
results in a smoother image that most observers would assess as more in keeping
with prior beliefs about the object.

The difficulty is that the Bayesian method requires a specific functional form
for the prior object probability. For hypothesis testing, a conditional probability
pr(f |Hj) is required, where Hj is the jth hypothesis. For estimation of a parameter
θ(f ) related to the object, we need pr[θ(f )], which might be calculated from pr(f ).
But how do we get such prior object information and what does it mean?

The Bayesian would argue that it is illogical to even try to think of pr(f ) in
frequency terms. His contention would be that there is but a single object of interest
at any one time, so pr(f ) cannot represent a frequency. Rather, it a logical element
representing our state of knowledge about the (unvarying) object. But in fact this
knowledge, like all human knowledge, must have been acquired by experience and
observation. We can have no conception of what a liver image should look like
without seeing at least a few liver images. Different livers, belonging to different
patients, do vary, so there should be no objection to using this known variation as
an element of an inference. Often the crucial determinant in a diagnosis of liver
disease will be whether the observed shape represents a normal anatomical variant
or a pathological condition, and this question can be addressed only with frequency
information about normal livers.

Because of the sheer dimensionality of the problem, however, the full prior
pr(f ) cannot be defined ab initio in relative-frequency terms. Even for a relatively
coarse discrete model, the number of possible vectors f is astronomical. For exam-
ple, if we sample f on a 64×64 grid and allot 256 gray levels (8 bits) to each sample,
there are 2564096 or some 1010,000 possible vectors f. No amount of experimenta-
tion would give an estimate of the relative frequency of occurrence of these vectors.
Moreover, in contrast to the situation with pr(g|f ), there is no simple mathematical
model for pr(f ).

Thus, our view coincides with the Bayesian one at this point: the role of the
prior pr(f ) in imaging problems is to incorporate what knowledge we do have about
f, not to devise a density from which a sample would resemble the object. A prior
on f must be interpreted as a statement about our knowledge of f, not a relative fre-
quency. Our strongest argument for this conclusion is, however, one of complexity
and dimensionality; it does not stem from a belief that it is somehow inappropriate
to consider other objects when making inferences about a particular one.

On the other hand, many priors can be interpreted as frequencies. Suppose
we want to estimate a single scalar parameter such as a cardiac ejection fraction. It
is not at all unreasonable to collect data on the frequency of occurrence of different
values of this parameter in some population of interest, and it is quite appropriate
to regard these data as a prior probability when estimating the parameter for a
particular patient (Mr. Jones, say). If we are “confident” (again, a statement of
belief) that Mr. Jones has many characteristics in common with the population
used to construct the prior, then we can improve the estimate of ejection fraction
for Mr. Jones by considering the population data.
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Similarly, in hypothesis testing there may well be useful information available
about the frequency with which each hypothesis is true. In medical terms, this in-
formation is called disease prevalence, and it should certainly be incorporated into
any diagnosis. Of course, there may also be information about a particular patient,
say history or clinical indications, which would lead the Bayesian diagnostician to
alter the prior probability of disease for that particular patient. In this case, sub-
jective and objective (frequency) information can be combined in a single inference.

Our overall attitude to priors is that they should be justified as relative fre-
quencies when they can, but that Bayesian methods should not be avoided when
they cannot. The best priors are the most realistic ones, in the sense that they
best predict measurable sampling distributions, but less detailed prior information
requires a more broadly construed prior probability law.

Image quality revisited Let us now return to the subject of objective, task-based as-
sessment of image quality. Our basic premise is that image quality must be defined
in terms of the average performance of some observer on some task of practical
interest, but there is considerable room for discussion on the choice of task and
observer as well as on the meaning of the word “average.”

The fact that measures of image quality depend on task and observer is simply
a fact of life. We cannot expect one system to be better than another for all possible
applications. One system might be superior in terms of quantitative accuracy and
another in presenting subtle signals to a human for optimal detection. A diligent
reader of this book will learn how to compute figures of merit under a wide variety
of conditions for many different tasks and observers.

The meaning of the word average is more subtle. An average is always com-
puted with respect to some probability law, and in imaging every probability law
rests on statistical knowledge of the object. As we saw above, that knowledge can
be partially frequentist but will always have a significant subjective or Bayesian
component.

Even so, the philosophy we have espoused for many years, and adopted for
this book, is applicable. Image quality must be assessed on the basis of average
performance of some task of interest by some observer or decision maker. Whether
we are considering a classification or an estimation task, the performance measures
are long-run averages, taking into account both conditional randomness of the data,
as specified by pr(g|f ), and randomness, in the sampling sense, of the object. These
averages are unabashedly frequentist concepts, but they seem to us to be unavoid-
able. An image might be reconstructed or a diagnosis made by a Bayesian method,
but ultimately we must keep score. How well does the method perform in the long
run? We want to know not only our doctor’s personal certainty about our diagno-
sis, but also his batting average on similar cases. And if the batting averages for
some diagnostic task are higher with imaging system A than with system B, we feel
justified in claiming that system A is superior to system B for this task.

This is the point at which our approach differs from the strict Bayesian ap-
proach. We allow the use of prior information, and even subjective priors, in sit-
uations where sampling priors are unavailable or unreliable, but we compute the
final performance of the procedure by averaging in a frequentist sense. This prag-
matic approach, which will probably earn us the scorn of both camps, strikes us as
a sensible middle ground. To a Bayesian who challenges this approach, we pose a
question: How else would you compare two priors, two reconstruction algorithms
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or two imaging systems? The frequentist, on the other hand, can hardly object to
our allowance of subjective priors; they are, after all, justified in a frequentist sense
if they give improved long-run performance.

Accounting for the object randomness in performance assessment could be
done analytically if we had the full probability density function pr(f ), but we have
already seen that this is difficult, if not impossible, even for the Bayesian. In prac-
tice, we must estimate the performance rather than compute it analytically. This
estimate can be arrived at by using actual or simulated images, i.e., samples drawn
from pr(f ). The theoretical expressions for various diagnostic performance measures
will be expressed as integrals over an object space of huge dimensionality, but in
practice the integrals can be accurately estimated with an amazingly small number
of samples. Procedures for carrying out this performance estimate for hypothesis-
testing tasks will be detailed in Chap. 14.

Similarly, for an estimation task, we can compute the conditional estimation
performance, for example the bias and variance of the estimate for some assumed
object, then average the result over possible objects by sampling. In this procedure,
any prior whatsoever can be used to find the parameter estimate in the first place,
but the performance of that estimate is itself estimated with respect to a realistic
sampling prior.

To return to a point raised in the Preface, we believe (however subjectively)
that this approach is essential if imaging is to qualify as a science. One of the re-
quired elements of a science is that its theories have predictive value. For decades,
centuries even, imaging has had its predictive theories for the propagation of light
and the formation of images, but only much more recently has it been possible to
predict the usefulness of those images. There is now a science of image evaluation
that completes the picture by providing a formal, predictive theory of imaging and
image quality. We hope after reading this book that you will be able to apply this
theory toward the objective evaluation of the imaging systems that are of interest
to you.
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1
Vectors and Operators

As discussed in the Prologue, an imaging system is a transformation or mapping
from an object to an image. It facilitates the analysis of imaging systems to regard
the object as a vector in some space and the image as a vector in some other space,
so that the system is an operator mapping from one space to another. To do this, we
need a concept of a vector that is more general than the familiar one of conventional
3D vector analysis. For digital images, the extension is easy: we simply define a
vector with the number of components equal to the number of pixels in the image
and presume that the usual rules of conventional vector analysis still apply. It is
often necessary, however, to regard the object, image or both as a function of one
or more continuous1 variables. To preserve the notion of an imaging system as an
operator mapping between an object space and an image space in these cases, we
must have a more general notion of a vector and the space in which it is defined.

Several different branches of mathematics, including linear algebra, functional
analysis and integral transforms, relate to description of these general spaces and
mappings between them. Linear algebra, at least as taught at an elementary level,
deals with matrices, which can be viewed as mappings from one finite-dimensional
space to another: an M × N matrix maps or transforms an N -dimensional vector
to an M -dimensional one (Smith, 1984). A function is another kind of mapping. A
scalar-valued function of a real variable x maps one point on the real line to another,
thus transforming a scalar to another scalar. A functional, on the other hand, maps
a function to a scalar; a simple example is a definite integral of the function. An
integral transform is a functional that depends on a continuous parameter, so that

1The word continuous has many meanings in mathematics and engineering. The reader should be
careful to distinguish a continuous variable from a continuous function. A scalar that can assume
any value over some segment of the real line is called a continuous variable to distinguish it from
a discrete index. The elementary meaning of continuous for functions is presumed to be known to
reader, and the extension of this concept to other mappings is discussed in Sec. 1.3.2.

1



2 VECTORS AND OPERATORS

the result can be thought of as a function itself. In other words, integral transforms,
such as the Fourier transform, map a function to a function.

These different kinds of mappings are often treated separately in elementary
courses, but there is an essential unity among them. In all cases we are dealing
with vectors in some generalized sense and with operators that map one vector
to another. Our approach in this chapter is to build a generalized theory on the
foundation of ordinary 3D vector analysis with which the reader is presumably
familiar.

At a few places in this chapter, we anticipate some simple properties of Dirac
delta functions and Fourier transforms, discussed in more detail in Chaps. 2 and 3,
respectively. The reader who is unfamiliar with these topics may wish to read at
least Secs. 2.2.1, 2.2.4, 3.2.1 and 3.3.1 as background for this chapter.

1.1 LINEAR VECTOR SPACES

1.1.1 Vector addition and scalar multiplication

The simplest definition of vectors is that they are objects that can be added to each
other and multiplied by numbers (Gel’fand, 1961). The familiar vectors from 3D
vector analysis obviously satisfy this definition. We know that the multiplication
of a vector f, with Cartesian components (fx, fy, fz), by the scalar λ yields a new
vector λf, the components of which are (λfx,λfy,λfz). Similarly, addition of two
vectors f1 and f2 is defined as the operation that yields the new vector f1+ f2, with
components given by the sum of the corresponding components of f1 and f2.

These definitions extend easily to many other kinds of vectors. Any ordered
set of N numbers, called an N -tuple, can be thought of as an N -dimensional vector,
with rules for scalar multiplication and addition analogous to the ones above. The
individual numbers in the N -tuple are called the components of the vector, and the
collection of all such vectors is called a linear vector space. If each component is a
real number in the range (−∞,∞), the space is designated RN. Hence the usual 3D
space of vector analysis is R3, and each vector in that space is a 3-tuple or triplet of
real numbers. Similarly, if each vector is an N -tuple of complex numbers, and each
component can assume any value in the complex plane, the space is denoted CN.

As a less familiar example, consider a quadratic function f1(x) defined by

f1(x) = a1x
2 + b1x+ c1 . (1.1)

Multiplication of this function by the scalar λ gives a new quadratic λf1(x) =
λa1x2+λb1x+λc1. Addition of f1(x) to a similar quadratic f2(x) = a2x2+b2x+c2
yields a third quadratic f3(x) with coefficients a3 = a1 + a2, etc. The collection of
all quadratics of the form of (1.1) thus constitutes a vector space, and the functions
themselves are the vectors.

An easy extension of this argument shows that any polynomial qualifies as a
vector, and the collection of all polynomials is another vector space. The space
of polynomials of degree N or less is formally RN or CN, depending on whether
the coefficients are real or complex. Other vector spaces where the vectors are
functions will be defined below. Throughout this book, we shall designate vectors
by boldface type, even when they are also functions, so f(x) will also be written as f.
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A formal definition of a linear vector space is that it is a set of elements,
called vectors, in which the operations of addition and multiplication by a scalar
are defined and satisfy the following conditions (Gellert et al., 1977; Stakgold,
1979):

(a) Commutative property of scalar multiplication: µ(λf ) = λ(µf ), where λ and
µ are arbitrary real or complex numbers.

(b) Distributive property of scalar multiplication: (λ+ µ)f = λf+ µf.

(c) Existence of identity operator for scalar multiplication: 1f = f.

(d) Commutative property of addition: f1+ f2 = f2 + f1.

(e) Associative property of addition: (f1+ f2) + f 3 = f1+ (f2 + f 3).

(f ) Distributive property of scalar multiplication with respect to addition:
λ(f1+ f2) = λf1+ λf2.

(g) Existence of the zero vector, denoted 0 and defined such that 0f = 0 and
0+ f = f for all f, where 0 (without boldface) is the ordinary scalar zero.

(h) Continuity of addition: If lim
n→∞

fn = f and lim
n→∞

gn = g, then

lim
n→∞

(fn + gn) = f + g.

(i) Continuity of multiplication: If lim
n→∞

fn = f and lim
n→∞

λn = λ, then

lim
n→∞

λnfn = λf.

1.1.2 Metric spaces and norms

A familiar concept from 3D vector analysis is that of a distance or metric. The 3D
vector f1 defines a point with Cartesian coordinates2 (f1x, f1y, f1z) in the 3D space,
while f2 defines the point (f2x, f2y, f2z). One common way of defining the distance
d(f1, f2) between f1 and f2 is

d(f1, f2) =
[

(f1x − f2x)
2 + (f1y − f2y)

2 + (f1z − f2z)
2
]

1
2 . (1.2)

It is easy to show that this definition satisfies the following conditions:

(a) d(f1, f2) = d(f2, f1);

(b) d(f1, f2) ≥ 0;

(c) d(f1, f2) = 0 if and only if f1= f2;

(d) d(f1, f 3) ≤ d(f1, f2) + d(f2, f 3) (triangle inequality).

In more general settings, we accept as a possible distance or metric any quan-
tity that satisfies these four relations. A linear vector space for which the distance

2Do not confuse the notations fn and fn. The boldface fn denotes the nth vector in a set, while
fn denotes the nth component of the vector f. Thus, by this notation, the jth component of the
vector fn is denoted fnj .
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between any two vectors is defined, in a way consistent with these four conditions,
is called a metric space. Different metric spaces are distinguished by the definition
of distance employed.

Closely related to distance is the concept of a norm. In ordinary vector analy-
sis, the norm or length of a vector is the distance between the vector and the origin
(or the zero vector). In general, we denote the norm of f as ||f || and require that it
satisfy

(a) ||f || ≥ 0, with equality if and only if f = 0;

(b) ||λf || = |λ| · ||f ||, λ an arbitrary real or complex number;

(c) ||f1+ f2|| ≤ ||f1||+ ||f2|| (triangle inequality).

Again, it is easy to show that these requirements are met by the conventional
definition of length in vector analysis, but many other definitions are also consistent
with them.

If we have any definition of norm, it leads immediately to a corresponding
definition of distance. The distance d(f1, f2) between f1 and f2 can be taken as the
norm of f1− f2.

In an N -dimensional vector space RN or CN, where a vector f is an ordered
set of N numbers {fn}, some possible definitions of the norm are:

||f ||2 =

[

N
∑

n=1

|fn|2
]

1
2

(L2 norm) , (1.3)

||f ||1 =
N
∑

n=1

|fn| (L1 norm) , (1.4)

||f ||p =

[

N
∑

n=1

|fn|p
]

1
p

(Lp norm) , (1.5)

||f ||∞ = lim
p→∞

||f ||p = max
n=1,...,N

|fn| (L∞ norm) . (1.6)

In the Lp norm, p can be any positive, real number, not necessarily an integer.
The L∞ norm is also called the sup norm (for supremum).

If the L2 norm is adopted in a N -dimensional space, we refer to the space as
Euclidean and denote it as EN, regardless of whether the components are real or
complex.

1.1.3 Sequences of vectors and complete metric spaces

Another important concept in a vector space is the notion of the limit of a sequence
of vectors, written as

lim
j→∞

fj = a . (1.7)

Several interpretations of this limit can be given. As a simple example, consider
a sequence of ordinary 3D vectors fj with components (fjx, fjy, fjz). We can say
that fj → a as j → ∞, provided each of the three components fjn(n = x, y, z)
approaches the corresponding component an of a. Similarly, a sequence of vectors
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in either RN or CN approaches a limiting vector a if each component of the vectors
in the sequence limits to the corresponding component of a, i.e., if fjn → an as
j → ∞ for n = 1, ..., N.

There is another way to interpret (1.7) if we have a distance measure in our
space. A sequence of vectors fj in a metric space converges to the fixed vector a if
the distance from fj to a, i.e., ||fj − a||, tends to zero. The precise interpretation
of the limit then depends on the metric chosen.

If the distance from one vector in the sequence, fj , to another, fk, approaches
zero as j and k both go to infinity, the sequence is called a Cauchy sequence. Every
convergent sequence is a Cauchy sequence, but the converse is not true in general
because the limit vector may not be in the space (Stakgold, 1967).

If the limit vector a is an element of the same space in which the fj are defined,
for every Cauchy sequence, then the space is said to be complete. Several examples
of complete and incomplete metric spaces are given by Kreysig (1978). For example,
the real line and the complex plane are complete, but they become incomplete if
even a single isolated point is omitted, or if only rational numbers are considered.
The N -dimensional Euclidean space is complete for any finite N. The space of all
polynomials of degree M or less is complete when the L2 norm is used, but not
with L∞. The space of all continuous, absolutely integrable functions on [0, 1] is
not complete, but the space of all absolutely integrable functions on that interval
is complete.

A complete normed linear space is called a Banach space. The appellation
honors Stefan Banach (1892–1945), a founder of functional analysis and member
of the illustrious group of mathematicians who met at the Scottish Cafe in Lvov
(now Lviv, Ukraine) in the 1930s (Kaluza, 1996).

1.1.4 Scalar products and Hilbert space

The space of most use to us in this book is Hilbert space, after David Hilbert (1862–
1943). Hilbert launched the twentieth century (for mathematicians, at least) with
a talk entitled “Mathematical Problems,” delivered to the Second International
Congress of Mathematicians in Paris in 1900. In it, he listed 23 unsolved problems
that would occupy the best mathematical minds far into the future. Problem no. 6,
in which Hilbert himself took the lead, called for a rigorous mathematical treatment
of the axioms of physics. In the first decade of the century, Hilbert and his student
Erhard Schmidt developed a theory of integral equations and functions of infinitely
many variables. Hilbert showed that many obscure analytic relations in this field
become almost intuitively obvious when stated in geometric terms (Reed, 1996).
This work, which Hilbert called “spectral theory,” can be regarded as the birth
of modern linear algebra, while Hilbert space is the mathematical underpinning of
quantum mechanics and hence all of modern physics (Boyer and Merzbach, 1989).

A Hilbert space, an important special case of a normed linear space, is a
Banach space in which a scalar product is defined. Again we introduce the subject
by appeal to ordinary vector analysis, where the scalar or dot product of two 3D
vectors a and b is defined as

(a,b) = axbx + ayby + azbz = ||a|| · ||b|| cos[θ(a,b)] , (1.8)

where θ(a,b) is the angle between a and b. Thus, for ordinary 3D vectors, both
norm and scalar product are defined. The norm expresses the length of a vector,
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while the scalar product of two vectors depends not only on their lengths, but also
on the angle between them. Since we have already noted that the 3D Euclidean
space is complete, the existence of a scalar product as defined above makes it a
Hilbert space.

Scalar products In a general Hilbert space, the scalar or inner product (f1, f2) is a
complex-valued functional of the vectors f1 and f2 with the following properties:

(a) (f1, f2) = (f2, f1)∗;

(b) (f1,λf2) = λ(f1, f2);

(c) (λf1, f2) = λ∗(f1, f2);

(d) (f1+ f2, f 3) = (f1, f 3) + (f2, f 3);

(e) (f1, f1) ≥ 0, with equality if and only if f1 is the zero vector.

Property (c) follows from (a) and (b) but is listed separately since it is an
important operational rule. Slightly different versions of (b) and (c) are often used;
many authors, especially in the mathematics literature, require that (f1,λf2) =
λ∗(f1, f2). The convention given above, however, is common in the physics literature
and is the one used throughout this book.

A Hilbert space is always normed, with the norm ||f || defined as
√

(f , f ), so
all Hilbert spaces are Banach spaces. The converse, however, does not hold; not all
norms are compatible with the required properties of scalar products. For example,
the Lp norm with p '= 2, defined in (1.5), cannot be generated from a scalar product
(Stakgold, 1979). If we choose to work with L2, we can therefore take advantage of
many useful properties of Hilbert spaces, but the choice of Lp with p '= 2 confines
us to the more general Banach space. Since many of the results in the remainder
of this chapter are derived for Hilbert spaces, this is a powerful incentive to choose
the L2 norm.

Euclidean and L2 spaces An important example of a Hilbert space is the N -
dimensional Euclidean space EN, where each vector f is an ordered set of complex
numbers {fn, n = 1, ..., N}, and the scalar product is defined as

(f1, f2) =
N
∑

n=1

f∗
1n f2n . (1.9)

It is straightforward to show that this definition satisfies properties (a) – (e) above,
and the L2 norm of (1.3) follows at once by setting f1= f2 and using ||f || =

√

(f , f ).
Another important example of a Hilbert space, usually denoted L2(α,β), or

just L2 for short, is the space of complex-valued functions f(x) with a scalar product
defined by

(f1, f2) =

∫ β

α
dx f∗

1 (x) f2(x) . (1.10)

In this space, the norm is defined by

||f || =
√

(f , f ) =

[

∫ β

α
dx |f(x)|2

]
1
2

. (1.11)
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For this norm to exist, the integral of the squared modulus of the function over the
range (α,β) must exist, so L2(α,β) is frequently referred to as the space of square-
integrable functions. The integral may have to be interpreted in the Lebesgue
sense in some cases, but we do not need to go into that detail here. For a concise
introduction to Lebesgue integration, see Champeney (1987) or Friedman (1991).

Comparison of (1.9) and (1.10) shows the analogy between the discrete N -
dimensional Euclidean space and the space L2(α,β). In the latter, scalar products
and norms have the same structure as in the former, but the discrete sums are
replaced with continuous integrals. In a sense, each x specifies a component of
f. Thus we may loosely view L2(α,β) as a Euclidean space with infinitely many
dimensions.

Often we shall have occasion to consider functions of the form f(r), where
r is itself a vector. If r is defined in two spatial dimensions, it is a vector in R2.
The function f(r), on the other hand, if it is square-integrable, is a vector in a
Hilbert space in which norms and scalar products are defined by 2D integrals. If
the range of integration in each dimension is (−∞,∞), we denote the Hilbert space
of f(r) as L2[(−∞,∞) × (−∞,∞)] or L2(R2). In the same spirit, f(r) may be a
square-integrable function defined on the unit disc, i.e., the 2D region interior to
the unit circle, which we shall denote as D. In this case, the function f(r) is said to
be a vector in L2(D). Where no confusion is likely to result, we shall just use L2 to
denote the Hilbert space of square-integrable functions f(r), regardless of the space
in which r is defined.

Weighted scalar products Sometimes it is useful to define scalar products with a
weighting function in the integrand. For example, we might define

(f1, f2)w =

∫ β

α
dx w(x) f∗

1 (x) f2(x) , (1.12)

where we must require w(x) to be real and ≥ 0 to avoid negative or imaginary
norms. In this space, denoted L2(α,β;w(x)), the norm is defined by

||f ||w =

[

∫ β

α
dx w(x) |f(x)|2

]
1
2

. (1.13)

The advantage of this space is that we can deal with functions that are not, by
themselves, square-integrable. For example, cos x is not in L2(−∞,∞) but it is in
L2(−∞,∞; exp(−x2)).

Sobolev space Sobolev space is the general term for a function space (not neces-
sarily a Hilbert space) where the norm involves derivatives. The Sobolev-Hilbert
space of order N, denoted WN, consists of functions f(x) such that f(x) and all of
its derivatives up to order N−1 are absolutely continuous, while the N th derivative
lies in L2 (Wahba, 1990).

Schwarz inequality It follows from the definitions of scalar products and norms
that the Schwarz inequality holds in every Hilbert space. This important inequality
states that

|(f1, f2)|2 ≤ ||f1||2 · ||f2||2 , (1.14)
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where the equality holds if and only if f2 = γf1, with γ a constant. Once again,
this result is familiar from ordinary 3D vector analysis, where it merely states that
the cosine of the angle between two vectors is less than or equal to unity. For real
functions, it is reasonable to interpret (f1, f2)/(||f1|| · ||f2||) as the cosine of the angle
between f1 and f2 in spaces of any dimensionality.

1.1.5 Basis vectors

In conventional vector analysis, we are familiar with the concept of basis vectors or
unit vectors along the coordinate axes. Essentially the same concept is applicable
to the more general vectors we are discussing here.

If f is a vector in an N -dimensional space, it is possible to find a set of N
vectors {un, n = 1, ..., N} such that f can be represented as

f =
N
∑

n=1

αnun , (1.15)

where the {αn} are a set of scalar coefficients particular to the vector f being
represented. If all vectors in the space can be represented in terms of the set {un}
in this way, the set is said to be complete or to form a basis, and the space is said
to be spanned by {un}. (Do not confuse this meaning of the word complete with
its meaning in complete metric spaces; unfortunately, both usages are common.)
Conversely, if it is possible to find a set of N linearly independent vectors such that
any f in the space can be represented as in (1.15), then we say that the space is
N -dimensional.

The choice of a basis is not unique; infinitely many different sets {un} can be
found to represent f in the form of (1.15). When a particular set has been chosen,
however, the set of components {αn} is a representation of the vector in the given
basis. For finite-dimensional spaces, it is conventional to write these numbers in a
column and refer to them as a column vector. It must be remembered, however,
that this set of numbers will be different for different choices of the basis vectors,
while the vector f has a meaning and algebraic properties quite independent of the
basis.

The minimum requirement to impose on a set of basis vectors is that they
be linearly independent, so that it is not possible to write one of them as a linear
combination of the others. It is very convenient to require further that they be
orthonormal, which means that they are orthogonal and normalized. Two vectors
um and un (m '= n) are said to be orthogonal if their scalar product vanishes. If
every vector in the set is orthogonal to every other, the set is linearly independent.
A vector un is normalized if its norm ||un|| = 1. Since ||un||2 = (un,un), these two
requirements can be combined into a single orthonormality condition, written as

(um,un) = δmn . (1.16)

Here the symbol δmn, with value 1 when m = n and 0 if m '= n, is known as the
Kronecker delta, after Leopold Kronecker (1823–1891), a number theorist who
amassed a fortune in Bismarck’s Germany. It was Kronecker who said, “God made
the integers; all the rest is the work of man” (Bell, 1937).

If the basis vectors satisfy the orthonormality condition, we can easily deter-
mine the expansion coefficients {αn}. Taking the scalar product of both sides of
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(1.15) with um, we find

(um, f ) =
N
∑

n=1

αn(um,un) =
N
∑

n=1

αn δmn = αm . (1.17)

So the expansion coefficient αm is just the scalar product of the basis vector um with
the vector f being expanded, provided, of course, that a scalar product is defined
and the orthonormality condition holds.

For functions (vectors) in an infinite-dimensional Hilbert space, the situation
is more delicate. It is not possible to represent an arbitrary vector in such a space
by a finite sum such as (1.15), and it is not obvious that it is possible to salvage
the formalism by considering an infinite sum.

Fortunately, for a wide class of Hilbert spaces with infinite dimensionality, it
is possible to expand an arbitrary vector in terms of a countably infinite set of basis
vectors, so that the expansion of (1.15) is valid with the simple modification of
setting the upper summation limit to ∞. Hilbert spaces for which such a countable
basis exists are called separable. Almost all Hilbert spaces used in analysis are
separable, including L2(α,β) for α and β finite or infinite (Stakgold, 1979). For
basis functions on these spaces, orthonormality is still specified by (1.16), and the
expansion coefficients are still given by (1.17), though the indices run from 1 to ∞.

1.1.6 Continuous bases

While it is always possible to use a denumerable basis set for any of the Hilbert
spaces considered here, it may nevertheless be convenient or desirable to use a
nondenumerably infinite set, especially for L2(−∞,∞). In that case, the basis
function is designated uν(x), where ν is a continuous index, and we refer to the set
{uν(x)} for all ν in some range as a continuous basis.

To demonstrate the utility of continuous bases, we anticipate a few results
from Chap. 3 on Fourier analysis. A function f(x) defined on L2(−1

2a,
1
2a) can be

expanded in a Fourier series of the form

f(x) =
1√
a

∞
∑

n=−∞

Fn exp

(

2πinx

a

)

, (1.18)

where the expansion coefficient Fn is given by

Fn =
1√
a

∫ a/2

−a/2
dx f(x) exp

(

−2πinx

a

)

. (1.19)

These equations have the same structure as (1.15) and (1.17) if we take un(x) =
[1/

√
a ] exp(2πinx/a), so these functions comprise a countable orthonormal basis on

L2(−1
2a,

1
2a). But what happens if we let a → ∞? We cannot continue to define

un(x) with the factor of 1/
√
a since then un(x) would tend to zero for all x. From

the theory of Fourier transforms, however, we know that we can use as a basis the
functions uν(x) = exp(2πiνx), where the label ν ranges continuously from −∞ to
∞. The expansion of f(x) is then given by

f(x) =

∫ ∞

−∞

dν F (ν)uν(x) . (1.20)
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The function F (ν) is known as the Fourier transform of f(x), but in this
discussion it plays the role of a set of expansion coefficients, analogous to Fn except
that F (ν) depends on the continuous variable ν. To find the expansion coefficients,
we follow a prescription similar to (1.17) and take the scalar product of both sides
of (1.20) with uν′(x). The result is

F (ν) =

∫ ∞

−∞

dx u∗
ν(x) f(x) , (1.21)

provided

(uν ,uν′) =

∫ ∞

−∞

dx u∗
ν(x)uν′(x) = δ(ν − ν′) , (1.22)

where δ(ν− ν′) is the Dirac delta function defined in Chap. 2. Equation (1.22) is in
fact valid for uν(x) = exp(2πiνx), but it also holds for many other sets of functions.
It can be regarded as the generalization of the orthonormality relation, (1.16), when
the functions are indexed by a continuous variable ν rather than a discrete index n.

Though developed in the context of Fourier analysis, (1.20) – (1.22) have much
wider applicability. If all functions f(x) in our space can be expanded in terms
of some set of functions uν(x) satisfying (1.22), we say that the functions form a
complete, continuous, orthonormal basis for the space. The expansion coefficients
are found by (1.21), which looks very much like the scalar product (uν , f ) except
that uν is not a vector in the same space as f. In the Fourier example, exp(2πiνx)
is not square-integrable and hence not contained in L2(−∞,∞).

1.2 TYPES OF OPERATORS

1.2.1 Functions and functionals

A function f(x) is a transformation or mapping from one linear vector space to
another. For simplicity, we assume throughout this section that f(x) is a real,
scalar-valued function, defined on (−∞,∞). Therefore it associates each value x
on the real line with another value on the real line. It maps R1 to R1 since the
particular value f(x0) for some specific value x0 of the variable x is a single real
number. The complete function f(x) is a vector in L2 but the particular value f(x0)
is a vector or point in R1. A scalar-valued function can thus be thought of as an
algorithm in which one number, x0, is the input and another number, f(x0), is the
output. The space in which the input is defined is referred to as the domain of the
function, and the space of possible outputs is its range. For example, if f(x) = x2,
the domain is R1(−∞,∞) and the range is R1[0,∞).

By contrast, a functional is a mapping from a function space to a scalar (or
more generally, from a vector space to a scalar). Like a function, a functional can
be regarded as an algorithm; its input is the function f(x) and the output is the
functional, a scalar denoted Φ[f(x)]. The complete function f(x) is required for
the computation, even though the output is a single number. If f(x) is square-
integrable and Φ[f(x)] is real, the mapping is from L2 to R1. As with functions, we
can refer to the input space (here L2) as the domain of the functional. The range
of the functional is the output space R1 (or some subset of it if not all real numbers
can be generated by the functional).
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The functional Φ[f(x)] is said to be linear if it satisfies

Φ[f1(x) + cf2(x)] = Φ[f1(x)] + cΦ[f2(x)] , (1.23)

where c is an arbitrary scalar.
According to the Riesz Representation Theorem (Stakgold, 1979), the most

general form of a linear functional on a Hilbert space is a scalar product of the form3

Φ[f(x)] = (a, f ) =

∫ ∞

−∞

dx a∗(x) f(x) . (1.24)

In this case the domain of the functional is L2 but the range can be C1 or a subset
of it if a(x) is complex.

A simple example of a nonlinear functional is the norm, as defined, for example,
by (1.11). Any definite integral in which f(x) appears nonlinearly in the integrand
is a nonlinear functional.

1.2.2 Integral transforms

Just as a function maps a scalar to a scalar and a functional maps a function to a
scalar, an integral transform maps a function to a function. Once again we regard
the mapping as an algorithm, but now both input and output are functions. Exam-
ples important in image science include the convolution and the Fourier transform.

The general form of a linear integral transform connecting 1D functions is

g(x′) =

∫ β

α
dx h(x′, x) f(x) , (1.25)

where h(x′, x) is called the kernel of the transform. If both f(x) and g(x′) are square-
integrable over (α,β), this integral transform maps L2(α,β) to the same space,
L2(α,β). Note that the integral transform can be considered as a nondenumerably
infinite set of functionals, one for each value of x′.

An example of a nonlinear integral transform from L2(α,β) to itself is

g(x′) =

∫ β

α
dx h(x′, x) |f(x)|2 . (1.26)

Integral transforms may also involve functions of several variables. For exam-
ple, the 2D Fourier transform has the structure

F (ξ, η) =

∫ ∞

−∞

dx

∫ ∞

−∞

dy f(x, y) exp[−2πi(ξx+ ηy)] . (1.27)

It is thus a linear integral transform from L2(R2) to L2(R2) if both f(x, y) and
F (ξ, η) are square-integrable (a condition we frequently violate!).

As yet another example of a linear integral transform, consider the integral

g(x) =

∫ ∞

−∞

dy f(x, y) . (1.28)

3Strictly speaking, this equation gives the general form of a bounded, continuous linear functional,
where these terms are defined below.
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This transform maps from L2(R2) to L2(R1) if g(x) and f(x, y) are square-integrable
in their respective spaces.

We shall often use the term continuous-to-continuous mapping, (or CC
mapping) to describe integral transforms. The reason for this term is that an
integral transform maps a function of a continuous variable (as opposed to a discrete
index) to another function of a continuous variable. There is no implication that
either function is itself continuous or even that the mapping itself is continuous in
the technical sense discussed in Sec. 1.3.2.

1.2.3 Matrix operators

An M × N real matrix H has M rows and N columns. This matrix acting on
a real N -dimensional vector f yields a real M -dimensional vector g. It therefore
maps RN to RM. If we think of both vectors as elements of a Hilbert space with L2

norm, the mapping is from EN to EM. The mapping rule is the usual rule of matrix
multiplication,

gm =
N
∑

n=1

Hmnfn , (1.29)

or in matrix form, g = Hf. This mapping is linear since H(f1+αf2) = Hf1+αHf2.
In many applications of this equation, g represents a vector of physical mea-

surements (such as a digital image) and f is a vector of unknown parameters char-
acteristic of some physical object, and the objective is to find or estimate f. Success
in this endeavor depends critically on the number of independent measurements.
This number is not necessarily M since it may be possible to express some of the
measurements as linear combinations of the others. The number of linearly inde-
pendent measurements is the same as the number of linearly independent rows of
H. This number is called the rank of H and denoted R(H), or simply R if only one
matrix is under discussion. It is not an obvious point, but it can be shown that the
number of linearly independent columns is also R. An important rule is that the
rank is less than or equal to the smaller of M and N, i.e., R ≤ min(M,N).

1.2.4 Continuous-to-discrete mappings

In Sec. 1.2.1 we saw that functionals map a function, for example in L2(α,β), to a
scalar in R1 or C1. Many physical measurement systems yield not one but a finite
set of scalars. If the object being measured by such systems is a function in L2(α,β)
and M real measurements are obtained, the system is a mapping from L2(α,β) to
RM. If this mapping is linear, its most general form is

gm =

∫ β

α
dx f(x)hm(x) , (1.30)

where gm is the mth component of the measurement vector g. The kernel hm(x)
can be called a sensitivity function since it describes the sensitivity of the mth

measurement to the value of the function f(x) at point x. In an imaging context,
hm(x) is also called the point response function.

We refer to the mapping of (1.30) as a continuous-to-discrete mapping since
it maps a function of a continuous variable x to a discrete set of numbers. The func-
tion f(x) itself need not be continuous, however, so long as it is square-integrable.
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As noted in the Prologue, continuous-to-discrete mappings are the appropriate de-
scriptions of digital imaging systems viewing real-world objects.

1.2.5 Differential operators

For completeness we mention that differential operators also fit into the general
framework of this section. The operator d/dx, for example, is a linear operator
whose domain is the set of all differentiable functions. The range is not the same
as the domain since the derivative of a differentiable function may not be itself
differentiable.

In physical applications, it is often desirable to consider functions that are
square-integrable but not differentiable. For example, we might want to consider a
function with an abrupt discontinuity, perhaps representing the edge of an object
to be imaged. Such a function is in L2(−∞,∞) since the discontinuity does not
prohibit it from being square-integrable. The derivative across the discontinuity
does not exist in an elementary sense but can be defined in terms of a generalized
function, the delta function (see Chap. 2). By allowing generalized functions, we
can thus consider discontinuous, square-integrable functions to be in the domain of
d/dx. Note, however, that the derivative (a delta function) is not square-integrable,
so again the range is not the same as the domain.

The use of generalized functions may also allow us to treat differential operators
as integral operators. For example, the differential operator d/dx has the same effect
on functions in L2(−∞,∞) as the integral operator with kernel h(x′, x) = δ′(x′−x),
where δ′(x) denotes the derivative of a delta function as defined in Chap. 2.

Partial differential operators are of considerable importance in physics and im-
age science. Virtually all of modern physics is based on linear, second-order partial
differential operators. The Schrödinger equation, the Poisson equation, the time-
dependent wave equation and the time-independent wave equation all fit into this
category. An example of prime importance in optics and imaging is the Helmholtz
operator, ∇2 + k2, where ∇2 is the 3D Laplacian. This operator appears in the
time-independent wave equation, which describes the propagation of monochro-
matic light, so it is fundamental in the mathematical description of many kinds of
imaging systems (see Chap. 9)

1.3 HILBERT-SPACE OPERATORS

1.3.1 Range and domain

Consider a linear operator H that maps a vector f in the Hilbert space U to a vector
g in the Hilbert space V (see Fig. 1.1). In operator form we write

g = Hf . (1.31)

The space U is the set of vectors on which H can act, referred to as the domain
of H. The vector g will be referred to as the image of f, a term that is used in
both mathematics and image science. Though g is in V, not all vectors in V are
necessarily images through H. Thus the range of H might be a subspace of V.

Scalar products in U and V are denoted ( , )U and ( , )V, respectively. The
norms of f and g are, respectively, ||f || =

√

(f , f )U and ||g|| =
√

(g,g)V.
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Fig. 1.1 Illustration of the mapping by an operator from a Hilbert space

U to a Hilbert space V. For this illustration, U is E
3 and V is E

2. The basis

vectors {un} and {vn} in U and V, respectively, are also shown.

1.3.2 Linearity, boundedness and continuity

The operator H is linear if

H[f1+ cf2] = Hf1+ cHf2 (1.32)

for all scalars c and all vectors in the domain of H.
A linear operator H is bounded if there exists a positive number Q such that

||Hf || < Q||f || for all f in U. In other words, a bounded operator cannot produce
an image of infinite norm when operating on a vector of finite norm. The smallest
constant Q for which this inequality holds for all f in U, called the norm of H, is
sometimes denoted ||H||.

A simple example of an unbounded operator on L2(−∞,∞) is the differen-
tial operator d/dx. A discontinuous function f(x) might have finite norm, but its
derivative has infinite norm.

The operator H is continuous if infinitesimal perturbations in f lead to in-
finitesimal perturbations in g. More formally, for each ε > 0 there exists a δ > 0
such that ||Hf2 − Hf1|| < ε whenever ||f2 − f1|| < δ. Equivalently, if a sequence
{fn} converges to f as n → ∞, then {Hfn} converges to Hf if and only if H is
continuous. For linear operators, boundedness implies continuity and vice versa.
If the range and domain are both finite-dimensional Euclidean spaces, all linear
operators are bounded.

1.3.3 Compactness

Another concept related to continuity is compactness of an operator. The impor-
tance of compactness will become evident in Sec. 1.4 when we discuss eigenvalue
spectra, but in this section we discuss the meaning of compactness and conditions
under which an operator is compact.
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To define a compact operator, we return to the notion of an infinite sequence
of input vectors {fj}. We presume the sequence is bounded, so that ||fj|| < C for all
j and some finite number C. Note that this sequence need not have a limit. It may,
however, contain a subsequence that does have a limit. To illustrate, consider a se-
quence of vectors in the 2D plane (R2) where fj+1 is obtained from fj by a rotation
∆θ. For simplicity, assume that ||fj || = 1 for all j. As j → ∞, the vector continues
to rotate around the unit circle ad infinitum, and there is no limit to the sequence.
If 2π/∆θ is an integer k, then every kth vector forms a convergent subsequence;
since fj+k = fj , this subsequence has a limit. If 2π/∆θ is not an integer, one can
make any desired vector on the unit circle the limit point simply by choosing from
the sequence vectors that lie successively closer to the chosen limit vector. In both
cases, therefore, a convergent subsequence exists.

In a finite-dimensional space, such as the 2D space in the example above,
every bounded infinite sequence contains a convergent subsequence, but in infinite-
dimensional spaces that is not necessarily so, as a simple counterexample will show.
Consider a separable Hilbert space spanned by the countably infinite orthonormal
basis {un}. This basis set can be thought of as a sequence, which is bounded since
||un|| = 1 for all n. Since the un are distinct (in fact, orthogonal), no subset of
them will form a convergent subsequence.

We are now in a position to define compactness: A compact operator is one
that maps a bounded sequence into one having a convergent subsequence. More
precisely, whenever {fj} is a sequence in U with ||fj || < C, then {Hfj} contains a
convergent subsequence if H is compact. Compact operators are also called com-
pletely continuous. It is easy to show that all compact operators are bounded. It
is also true that all bounded operators with a finite-dimensional range are compact.
The interesting situation thus arises with operators such as integral transforms that
have a range of infinite dimensionality.

The Hilbert-Schmidt theorem (Stakgold, 1979) provides an important way of
determining if an integral transform is compact. A linear integral operator of the
form of (1.25) is compact if its kernel satisfies the condition

∫ β

α
dx

∫ β

α
dx′ |h(x′, x)|2 < ∞ . (1.33)

Integral operators for which this condition is satisfied are called Hilbert-Schmidt
operators. Though all Hilbert-Schmidt operators are compact, not all linear, com-
pact integral operators are Hilbert-Schmidt.

If β − α is finite, the Hilbert-Schmidt condition is satisfied whenever h(x′, x)
is bounded. If, on the other hand, (α,β) is (−∞,∞), it is not sufficient that the
kernel be bounded. Consider, for example, the convolution operator, where the
kernel h(x′, x) is a function only of the difference x′ −x and (α,β) is (−∞,∞). We
can rewrite h(x′, x) as h(x′ − x) and, through a change of variables, perform the
inner integral in (1.33) if h(x) is square-integrable. The result is some finite positive
number, but the outer integral still remains. Since the integral of a constant over
an infinite range is infinite, the Hilbert-Schmidt condition is not satisfied.

A class of integral operators for which we can establish compactness, even
when (α,β) is (−∞,∞), consists of operators with kernels that can be written as a
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finite sum of products of the form

h(x′, x) =
J
∑

j=1

pj(x
′) qj(x) , (1.34)

where J is finite and pj(x′) and qj(x) are square-integrable for all j (Stakgold,
1979). Such kernels are referred to as degenerate. With this form of the kernel,
the double integral in (1.33) becomes a sum of terms, each of which factors into
a product of two convergent single integrals, and the Hilbert-Schmidt condition is
satisfied. Thus all linear operators with kernels of the form of (1.34) are compact.
For example, the operator with kernel h(x′, x) = exp(−x2 − x′2) is compact, but
one with kernel h(x′, x) = exp[−(x− x′)2] is not.

1.3.4 Inverse operators

The operator H is said to be one-to-one (or injective, in the older literature) if
each vector g in the range ofH is the image of exactly one vector f in U. Conversely,
if H is not one-to-one, two or more vectors in U may produce the same image g.
Let f1 and f2 both have the same image, so that Hf1= g and Hf2 = g. It follows
that H{f2 − f1} = 0, where 0 is the zero vector. We say that f2 − f1 is a null
vector of H or a vector in the null space of H. Only one-to-one operators have no
(nontrivial) null space.4

If H is one-to-one, we can define an inverse operator H−1
L such that

H−1
L Hf = f (1.35)

for all f in U. That it is possible to define such an operator follows because Hf

is, by definition, in the range of H, and since H is one-to-one, only a single f can
have this image. The subscript L on H−1

L indicates that it appears to the left of
H in (1.35), and H−1

L is referred to as the left inverse of H. One-to-one operators
always possess a left inverse.

Equation (1.35) can also be written in pure operator form without a specific
operand as

H−1
L H= IU , (1.36)

where IU is the unit operator in U, mapping any vector f into itself. Equation
(1.35) follows from (1.36) by operating with both sides of the latter equation on an
arbitrary f in U.

If all vectors in V are in the range of H, the mapping of H is said to be onto
V, or simply onto. (The term surjective is also used.) We can, of course, simply
define V as the range of H, in which case H is automatically onto, but that is not
always convenient. We might, for example, want to use some general Hilbert space
such as L2 for the space V, but there is no guarantee that H can produce every
vector in this space as an image.

If H is onto (but not necessarily one-to-one), any g in V is the image of one
or more vectors in U. It is therefore possible to find an inverse operator that maps

4Do not confuse the terms zero vector and null vector. A zero vector has zero norm, while a null
vector for some operator has finite norm itself, but its image through that operator has zero norm.
The zero vector is, of course, a null vector of any linear operator, but it is a trivial one.
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an arbitrary g back to one of the vectors in U that could have produced it as an
image. If we operate on this f with H, we must get back to our original g. We can
thus define a right inverse H−1

R such that

HH−1
R g = g , (1.37)

or, in operator form,
HH−1

R = IV , (1.38)

where IV is the unit operator in V.
In summary, a one-to-one operator always possesses a left inverse satisfying

(1.36), while an operator that is onto always possesses a right inverse satisfying
(1.38). We shall use the term inverse, without further qualification, only when
(1.36) and (1.38) are both satisfied. If an inverse in this stricter sense exists, the
operator is both one-to-one and onto, or invertible for short. The more mathe-
matical literature uses the term bijective (injective plus surjective) for invertible.
An invertible operator has no null space (except the trivial one containing only
the zero vector). An operator that is not invertible is said to be singular. Thus,
nonsingular, invertible and bijective are synonymous.

In an imaging context, real-world imaging operators (as opposed to computer
simulations) are always singular.

1.3.5 Adjoint operators

Another operator that maps from V to U is the adjoint of H, denoted H†. The
adjoint of a bounded operator is defined in terms of scalar products. Consider a
particular vector in U and call it f1. The image of f1 is g1 = Hf1. The scalar product
between g1 and some other vector g2 in V, denoted (g2,Hf1)V, is easily expressed
as a sum or integral, as appropriate, over the space V. It is often useful, however,
to express the same scalar product as a sum or integral in the original space U. We
can do so by defining H† such that

(g2,Hf1)V = (H†g2, f1)U (1.39)

for all g2 and f1. We are thus free, by definition, to shift an operator H from the
right-hand side of a scalar product to the left so long as we replace the operator
by its adjoint. This definition can be used to find explicit forms for adjoints, as
demonstrated by several examples below.

The following properties of adjoints follow easily from the definition and prop-
erties of scalar products (Messiah, 1961):

(a) (cH)† = c∗H†;

(b) (H1 +H2)† = H
†
1 +H

†
2;

(c) (H1H2)† = H
†
2H

†
1;

(d) (H†)† = H,

where c is a scalar and H1 and H2 are two different operators mapping U to V.
If H = H†, which is possible only if U = V, the operator is said to be self-

adjoint or Hermitian. If H† = H−1, again possible only if U = V, the operator is
said to be unitary.
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Adjoint of a matrix operator To understand how to compute adjoints, we begin
with the simple case of a matrix operator. If H maps EN to EM, it is represented
by an M×N matrix H. Hence H† maps EM to EN and is represented by an N×M
matrix H†. To determine the explicit form of the matrix elements of H†, we use
the definition of scalar products in Euclidean space, (1.9), in the definition of the
adjoint, (1.39). From the left-hand side of (1.39), we obtain

(g2,Hf1)V =
M
∑

m=1

g∗2m

N
∑

n=1

Hmnf1n =
N
∑

n=1

M
∑

m=1

g∗2mHmnf1n . (1.40)

Similarly, the right-hand side of (1.39) yields

(H†g2, f1) U =
N
∑

n=1

[

M
∑

m=1

[

H†
]

nm
g2m

]∗

f1n =
N
∑

n=1

M
∑

m=1

[

H†
]∗

nm
g∗2mf1n . (1.41)

Comparison of the final forms of (1.40) and (1.41) shows that [H†]nm = H∗
mn, so

the adjoint of H is obtained by transposing it (interchanging rows and columns)
and taking the complex conjugate of each element. For real matrices, adjoint and
transpose are synonymous, and we can write H† = Ht, where the superscript t
denotes transpose.

Adjoint of an integral operator Similar results hold for integral operators. Let H
now represent a linear integral operator as in (1.25). Then a scalar product (g2,Hf1)
can be written as

(g2,Hf1) =

∫ β

α
dx f1(x)

∫ β

α
dx′ g∗2(x

′)h(x′, x) . (1.42)

By the definition of the adjoint, this expression must also equal

(H†g2, f1) =

∫ β

α
dx

[

∫ β

α
dx′ h(†)(x, x′) g2(x

′)

]∗

f1(x) , (1.43)

where h(†)(x, x′) is the kernel of the adjoint operator. Comparison of (1.42) and
(1.43) shows that

h(†)(x, x′) = h∗(x′, x) . (1.44)

Thus the kernel for H† is obtained from the kernel for H by interchanging x and
x′ and taking the complex conjugate. This result is the continuous generalization
of the adjoint of a matrix.

In using (1.44), it is important to pay attention to which of the two ar-
guments of the kernel is the variable of integration. By (1.25), we know that
g(x′) = [Hf ](x′) =

∫

dx h(x′, x) f(x), so the integral is over the second argument
of h(x′, x). Similarly, [H†g](x) would be written as

∫

dx′ h(†)(x, x′) g(x′); again, the
integral is over the second argument of the kernel, which here is h(†)(x, x′). With
(1.44), however, we can also write [H†g](x) =

∫

dx′ h∗(x′, x) g(x′). The integral is
now over the first argument of h∗(x′, x), which is just the conjugate of the kernel
needed to compute [Hf ](x′); no explicit interchange is needed in moving from H
to H† if we are careful to associate x with space U and x′ with V consistently. The
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situation is exactly the same as in the DD case, where we can write [H†g]n as either
∑

m[H†]nmgm or
∑

m[H]∗mngm.
The integral operator H is Hermitian or self-adjoint if h(x, x′) = h∗(x′, x).

Integral operators with real kernels are Hermitian if the kernel is symmetric in
interchange of the arguments.

Adjoint of a continuous-to-discrete mapping If the operator H is the continuous-
to-discrete mapping of (1.30), then its adjoint is a discrete-to-continuous mapping.
This mapping yields a function of x denoted [H†g](x), where g is the vector with
mth component given by (1.30). An argument similar to the ones given for matrix
and integral operators shows that

[

H†g
]

(x) =
M
∑

m=1

gmh∗
m(x) . (1.45)

Thus the adjoint operator in this case consists of a superposition of the complex
conjugates of the sensitivity functions hm(r) with weights gm.

1.3.6 Projection operators

An important class of operators is known in the linear-algebra literature as projec-
tion operators, though the reader is cautioned that this same term is used in other
arenas (even elsewhere in this book!) with different meanings.

Projection operators have a property known as idempotency. An operator P
is said to be idempotent if

P 2 = P . (1.46)

In other words, acting a second time with the same operator produces no further
effect.

An idempotent operator that is also Hermitian is called a projection opera-
tor or projector.5 To see the reason for this designation, we consider a simple
example in EN. Suppose that the vector f is expanded in the orthonormal basis
{un, n = 1, ..., N} as in (1.15). The projection operator Pn is defined so that

Pnf = αnun , (1.47)

for all f, where αn is the component of f along direction un. Thus the operator
P singles out one component of f and produces a vector in the direction of the
corresponding basis vector; all other components of f are set to zero by Pn. Once
the components are set to zero, a second application of the operator has no further
effect, so its idempotency is obvious. The resulting vector Pnf is said to be the
projection of f along un or onto the 1D subspace spanned by un.

As a second example, consider the operator Pnm defined so that

Pnmf = αnun + αmum , (1.48)

5Some books use the term projector for any idempotent operator. The more specific term or-
thogonal projector is then used for an idempotent Hermitian operator. Our usage implies that a
projector is both Hermitian and idempotent.
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where f is expressed by (1.15). In this case, the resulting vector lies in the 2D
subspace spanned by un and um, and the operator Pnm is said to project f onto
the nm-plane (see Fig. 1.2).

Fig. 1.2 Illustration of the meaning of the projection operators S and S⊥.

The Hilbert space U is E
3 as in Fig. 1.1, subspace S is the 1-2 plane, and

subspace S⊥ is the 3-axis.

More generally, if f is defined in a Hilbert space U, we can consider two sub-
spaces S and S⊥ that together comprise the entire space U. The subspaces are
said to be orthogonal if any vector in S is orthogonal to any vector in S⊥. The
subspace S⊥ is said to be the orthogonal complement of S if any vector f in U can
be written uniquely as a sum of two vectors, one in S and one in S⊥. The required
decomposition is

f = PS f +PS⊥
f , (1.49)

where PS is the projector onto S and PS⊥
is the projector onto S⊥. Since f = I f,

where I is the identity operator, it follows that

PS⊥
= I−PS , (1.50)

provided S⊥ is the orthogonal complement of S.
Explicit forms for these projectors can be given in terms of basis vectors

for the two subspaces. Assume that S is spanned by the orthonormal basis set
{φk, k = 1, ...,K} while S⊥ is spanned by the orthonormal set {ψm,m = 1, ...,M}.
If the original space is EN, we must have K +M = N, but in general K or M or
both can be infinite. One possible choice of bases would be for {φk} and {ψm} to
be disjoint subsets of {un}, but any other bases would suffice as well.

In terms of the subspace basis vectors, the projections of f are

PSf =
K
∑

k=1

(φk, f )φk , (1.51)

PS⊥
f =

M
∑

m=1

(ψm, f )ψm . (1.52)
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1.3.7 Outer products

A convenient way of writing the projection operators of the last section, without
reference to a particular vector f, is in terms of outer products (also known as
tensor products). Like the inner or scalar product, the outer product involves two
vectors. Unlike the scalar product, however, an outer product is not a scalar but
instead an operator. This concept will be explained first in terms of vectors in
finite-dimensional Euclidean spaces.

Consider an M -dimensional vector b and an N -dimensional vector a. The
outer product of these two vectors is the M ×N matrix ba† with components given
by

[

ba†
]

mn
= bma∗n . (1.53)

One way to view this definition is to regard b as an M×1 matrix (or column vector)
and a as an N×1 matrix. Then a† is the 1×N matrix (row vector) obtained from a
by the rule derived above for forming the adjoint of a matrix operator: interchange
rows and columns and take the complex conjugate. With this view, (1.53) follows
from the usual rule for matrix-matrix multiplication (see Fig. 1.3).

b =









b1
b2
b3
b4









a =





a1
a2
a3





4× 1 3× 1

ba† =









b1
b2
b3
b4









[

a∗1 a∗2 a∗3
]

=









b1a∗1 b1a∗2 b1a∗3
b2a∗1 b2a∗2 b2a∗3
b3a∗1 b3a∗2 b3a∗3
b4a∗1 b4a∗2 b4a∗3









4× 3

Fig. 1.3 Illustration of the outer product of two vectors b and a, where b has

4 elements and is represented as a 4×1 column vector, while a has 3 elements

and is represented as a 3× 1 column vector. The outer product ba† is a 4× 3

matrix or an operator that can map from E
3 to E

4.

Another view of ba† is to regard it as an operator mapping an N × 1 vector
to an M × 1 vector. Consider the action of this operator on some N × 1 vector c.
The result is an M × 1 vector, the mth element of which is

[

ba†c
]

m
=

N
∑

n=1

[

ba†
]

mn
cn =

N
∑

n=1

bma∗ncn = bm

N
∑

n=1

a∗ncn = (a, c) bm , (1.54)

or, in vector form,
ba†c = (a, c)b . (1.55)

Thus the result of this operator acting on c is the vector b times the scalar (a, c).
The notation makes this result evident6 when we realize that a†c is just another

6Readers familiar with quantum mechanics will recognize that ba† in Dirac notation is |b〉〈a| and
a†c is 〈a|c〉.
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way of writing the scalar product,

a†c = (a, c) =
N
∑

n=1

a∗ncn . (1.56)

Thus (1.55) can be viewed as (ba†)c = ba†c = b(a†c) = (a†c)b, where the last
step is valid since (a†c) is just a scalar, and there is no problem with rewriting it
on the other side of the vector b.

We can readily generalize the concept of outer product to include continuous
functions. We simply regard (1.55) as defining the operator ba†, with whatever
form of the scalar product is appropriate. Thus either a or b can be either discrete
or continuous, though of course a and c must be in the same space so that the
scalar product can be defined.

In this new notation, one specific form of projection operator is

P = pp† , (1.57)

where p is some vector with unit norm. The actions of this projector and its square
on an arbitrary f are

P f = pp†f = (p, f )p (1.58)

P 2f = pp†P f = (p, f )(p,p)p = (p, f )p = P f , (1.59)

where the last line follows since (p,p) = ||p||2 = 1.
If p = un, then pp† is the same as the simple projector defined in (1.47). The

general form of a projector is

P =
∑

n

pnp
†
n , (1.60)

where {pn} is any set of mutually orthogonal vectors with unit norm. The idem-
potency follows since

P 2f =
∑

n

pnp
†
nP f =

∑

n

∑

m

(pm, f )(pn,pm)pn =
∑

n

(pn, f )pn = P f , (1.61)

and we have used the orthonormality of the pn.
We can also use this notation to express the completeness of a set of orthonor-

mal basis vectors {un, n = 1, ..., N}. We have defined this set to be complete for
representation of the space U if any vector f in the space can be expanded in terms
of the un. In terms of outer products, this requires that

N
∑

n=1

unu
†
n = IU , (1.62)

where IU is the identity operator in U. This completeness condition, illustrated in
Fig. 1.4, is referred to as closure of the set {uk} or the decomposition of the unit
operator. If it is satisfied, the component expansion is

f =
N
∑

n=1

unu
†
nf =

N
∑

n=1

(

u†
nf

)

un , (1.63)

so that the expansion coefficients are given by αn = u†
nf, which is just another

notation for the scalar product (un, f ).
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A similar closure relation can also be given for a continuous basis. If the set
of functions {uν(x)}, where ν is a continuous index, forms a basis for some Hilbert
space U, then any function in U can be expanded as in (1.20). For this to be
possible, we must have

∫ ∞

−∞

dν u∗
ν(x

′)uν(x) = δ(x− x′) , (1.64)

which is the continuous closure relation analogous to (1.62). One way to interpret
this equation is that it represents the expansion of the function δ(x − x′) as a
continuous superposition of the basis functions uν(x). Since x′ is arbitrary, a delta
function at any location can be synthesized in this way. Since, as we shall see in
Chap. 2, any function in L2 can be expanded in terms of delta functions, (1.64)
guarantees that any function in L2 can be expanded in terms of the full set of
uν(x).

u1 =





1
0
0



 u2 =





0
1
0



 u3 =





0
0
1





u1u
†

1 =





1 0 0
0 0 0
0 0 0



 u2u
†

2 =





0 0 0
0 1 0
0 0 0



 u3u
†

3 =





0 0 0
0 0 0
0 0 1





3
∑

j=1

uju
†

j =





1 0 0
0 1 0
0 0 1



 = I

Fig. 1.4 Illustration of the completeness of the three basis vectors in E
3. The

sum of the 3 outer products is the identity operator.

1.4 EIGENANALYSIS

1.4.1 Eigenvectors and eigenvalue spectra

If the range and domain of a linear operatorA are the same space, it may be possible
to find vectors ψ such thatAψ is the same as ψ except for a multiplicative constant.
In other words, the length of the vector is changed but its angle is not. Since most
vectors are changed into another vector in a different direction by action of the
operator, these vectors are special ones characteristic of the operator. They are
called eigenvectors, from the German for characteristic vectors, and the constant λ
is an eigenvalue. A central theme running throughout this book is that eigenvectors
and eigenvalues are essential tools for analyzing imaging systems and solving inverse
problems.

The eigenvectors and eigenvalues satisfy an eigenvalue equation of the form

Aψ = λψ , (1.65)

or

[A− λI ]ψ = 0 , (1.66)
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where 0 is the zero vector and I is the unit operator.7

If the operator A− λI is invertible, (1.66) has only trivial solutions,
[A− λI ]−10 = 0. Nontrivial solutions exist only if A− λI is singular. This
conclusion leads to another interpretation of the eigenvalues: λI is a particular
shift of the operator A that makes it singular. If A itself is singular, λ = 0 is an
eigenvalue, and conversely.

Depending on the operator, the eigenvalues may form a discrete set, or there
might be some continuous range of possible values. In the former case we can use
a discrete index n to label different eigenvalues and their associated eigenvectors.
We say that A has a discrete spectrum of eigenvalues, and (1.65) becomes

Aψn = λnψn . (1.67)

If the eigenvalues fall in some continuous range, we need a continuous label ν
to distinguish them, so the eigenvalue equation is written

Aψν = λνψν . (1.68)

Such operators are said to have a continuous spectrum. Some operators have spec-
tra with both continuous and discrete components.

Compact operators have only discrete spectra. In a finite-dimensional space,
all linear operators are compact, so continuous spectra occur only for operators in
infinite-dimensional spaces such as L2. This class of operators includes both integral
and differential operators, but we shall be concerned mainly with the former in this
book.

In Sec. 1.3.3 we noted that a linear integral operator in L2(α,β) is compact if
the Hilbert-Schmidt condition, (1.33), is satisfied. If α and β are finite, this condi-
tion requires only that the kernel be bounded. If, however, (α,β) = (−∞,∞), the
only general rule we have is that the Hilbert-Schmidt condition is valid if the kernel
is degenerate in the sense expressed by (1.34). Since even so common an operator
as the convolution violates the Hilbert-Schmidt condition, we shall frequently have
to account for continuous spectra.

1.4.2 Similarity transformations

We can operate on the eigenvalue equation (1.67) with some invertible operator W
and obtain a new eigenvalue equation:

WAψn = λnWψn . (1.69)

Since W is invertible, we can insert the unit operator W−1W, obtaining

WAW−1Wψn = λnWψn . (1.70)

This equation shows that the new operator WAW−1 has the same eigenvalue
spectrum as the original operator A, but with the new eigenvectors Wψn. A

7A slightly different definition of eigenvalue is often used in treatises on integral equations. There
it is common to write the eigenvalue equation as λ ψ = ψ . This convention yields eigenvalues
that are the reciprocals of the ones used here.
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transformation of operators and eigenvectors in this way by means of an invertible
operator is called a similarity transformation, and A and WAW−1 are said to
be similar operators. Equation (1.70) shows that a discrete eigenvalue spectrum
is invariant under a similarity transformation, and the same result for a continuous
spectrum follows from an analogous derivation. In summary, similar operators have
the same eigenvalue spectrum.

A particular form of similarity transformation is the unitary transformation.
If W is a unitary operator, its inverse equals its adjoint. From the defining property
of the adjoint, (1.39), it is easy to show that the unitary transformation preserves
the norm of a vector, i.e., ||Wψ|| = ||ψ||. A unitary transformation is thus a
generalized rotation of a vector, changing its direction but not its length.

Similarity transformations, basis vectors and coordinate systems It is evident from
(1.70) that the transformed operator WAW−1 has the same effect when acting on
Wψn thatA does when acting on ψn. Since this is true for any vector in the domain
ofA, it means we can always replace any operator equation of the formAf = g with
an equivalent relation A′f ′ = g′, where A′ = WAW−1, f ′ = Wf, and g′ = Wg
(provided f and g are both in the domain of W). The two equations A′f ′ = g′ and
Af = g represent the same mathematical relation expressed in terms of different
basis vectors; the new basis vectors are related to the old ones by u′

n = Wun.
A similarity transformation can be regarded as a change of the coordinate axes
in terms of which a vector or operator is expressed. If A is a matrix, then the
specific matrix elements are changed, Amn '= A′

mn, but the effect of the matrix
as an operator is unchanged if the relevant vectors are also changed appropriately.
Thus a matrix is dependent on choice of basis, while the underlying operator is
not. Similarly, for integral operators like (1.25), a change of variables will change
the functional forms of the functions and the kernel, but not the meaning of the
underlying operator equation.

1.4.3 Eigenanalysis in finite-dimensional spaces

In this section we restrict attention to operators for which the range and domain
are both EN. Then, with respect to some basis, the operator A is the N×N matrix
A, and the eigenvector ψn is an N ×1 column vector. In that case, A is necessarily
bounded, continuous and compact, and we can make some general statements about
the eigenvalues and eigenvectors.

The eigenvectors are the solution of the set of N simultaneous, homogeneous
equations, one for each component of the following vector equation:

[A− λI ]ψ = 0 , (1.71)

where I is the N ×N unit matrix. This set of equations has no nontrivial solutions
unlessA−λI is singular, or equivalently, its determinant vanishes (see App. A). This
determinant, called the characteristic determinant forA, is anN th-order polynomial
of the form (Eves, 1966)

χ(λ) = det[A− λI ] = (−1)N
[

λN + a1λ
N−1 + a2λ

N−2 + ...+ (−1)NaN
]

, (1.72)

where det(·) denotes determinant. By the Fundamental Theorem of Algebra (Gellert
et al., 1977), this polynomial has N roots, at least one of which is nonzero if aN is
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nonzero. It is only when λ is equal to one of these roots that (1.71) has a nontrivial
solution. The roots of χ(λ) are thus the eigenvalues of A for which a solution of
the eigenvalue equation exists. The eigenvalues are not necessarily distinct, and if
a particular eigenvalue occurs k times, it is said to be an eigenvalue of multiplicity
k. In the physics literature, the term degeneracy is used for multiplicity.

One consequence of multiplicity of eigenvalues is that the eigenvectors are not
unique. Any linear combination of two eigenvectors with the same eigenvalue is
still an eigenvector associated with that same eigenvalue. Suppose Aψ1 = λψ1 and
Aψ2 = λψ2 (same λ). It follows that A(αψ1 + βψ2) = λ(αψ1 + βψ2), with α and
β arbitrary scalars, so (αψ1 + βψ2) is also an eigenvector with eigenvalue λ.

In principle (and in practice for very small matrices), one can find the eigen-
values by solving the characteristic equation χ(λ) = 0. These eigenvalues can then
be plugged back into (1.71) to find the corresponding eigenvectors. As a practical
matter, however, the characteristic polynomial is of no use in finding eigenvalues
of matrices with N > 4, since there are no formulas for factoring polynomials of
order 5 or higher. Actual calculation of the {λn} and the corresponding {ψn} is an
enterprise best left to the computer. Many computer packages exist for this pur-
pose. An invaluable resource for anyone wanting to write new code or understand
the packages is Numerical Recipes (Press et al., 1992).

Both the sum and the product of the eigenvalues can be related back to prop-
erties of the matrix (Strang, 1980). Let λn(n = 1, ..., N) denote the (not necessarily
distinct) eigenvalues of A. The sum of these eigenvalues is the trace (sum of the
diagonal elements) of A:

N
∑

n=1

λn =
N
∑

n=1

Ann ≡ tr(A) , (1.73)

where tr(·) stands for trace. The product of the eigenvalues is the determinant of
the matrix:

N
∏

n=1

λn = det(A) . (1.74)

This result shows that A is singular if any eigenvalue is zero, since then det(A) = 0.
Since the eigenvalues are unchanged by a similarity transformation, the trace and
determinant are also unchanged.

As we noted in Sec. 1.2.3, the rank of a general (not necessarily square) matrix
is defined as the number of linearly independent rows or columns. For a square
matrix, it can be shown that the rank is also the number of nonzero eigenvalues
(counting multiplicity). Thus the multiplicity of the zero eigenvalue is N−R, where
R is the rank and N is the dimension. If the matrix is nonsingular, no eigenvalues
are zero, so R = N. A nonsingular matrix is sometimes referred to as a full-rank
matrix.

There is one form of matrix for which it is possible to determine the eigenval-
ues without any computation at all. If the matrix is diagonal, then the diagonal
elements are just the eigenvalues. For matrices in this form, (1.73) and (1.74)
are easily verified. In fact, a somewhat broader statement can also be made. If
the matrix is in upper (or lower) triangular form, where all elements below (above)
the diagonal are zero, then the diagonal elements are the eigenvalues (Strang, 1980).
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In some cases it is possible to find a similarity transformation that will re-
duce a matrix to diagonal form. This process is known as diagonalization. We
noted above that a similarity transformation preserves the eigenvalue spectrum, so
diagonalization is one way of solving the eigenvalue problem. Unfortunately, not all
square matrices are diagonalizable (Strang, 1980; Smith, 1984).

1.4.4 Eigenanalysis of Hermitian operators

In this section we consider Hermitian operators in some Hilbert space U. This
space may have either finite or infinite dimensionality, and in the latter case the
spectrum may be either discrete or continuous. The goal of the section is to see what
additional properties of the eigenvalues and eigenvectors follow from the Hermiticity.
An excellent reference for this section is Messiah (1961).

One key point is that the eigenvalues of a Hermitian operator are real. To
show this, let A be a Hermitian operator satisfying the eigenvalue equation (1.65).
Taking the scalar product of this equation with ψ and making use of properties of
the scalar product (see Sec. 1.1.4), we find

(ψ,Aψ) = (ψ,λψ) = λ(ψ,ψ) = λ||ψ||2 . (1.75)

With the definition of the adjoint, we also have

(ψ,Aψ) = (A†ψ,ψ) = (λψ,ψ) = λ∗(ψ,ψ) = λ∗||ψ||2 . (1.76)

Since ||ψ|| is nonzero, comparison of (1.75) and (1.76) shows that λ∗ = λ if A is
Hermitian.

An interesting special case of this result holds for operators of the form B†B.
Any operator of this form is Hermitian since (u, B†Bv) = (Bu, Bv) = (B†Bu,v)
for arbitrary u and v. As we shall see in the next section, this result is very useful
since it allows us to construct a Hermitian operator B†B from any arbitrary operator
B. Moreover, for operators of this form, the eigenvalues are real and nonnegative.
To show this, let B†Bφ = µφ and again take the scalar product with φ. The
calculation proceeds as in (1.75) and (1.76):

(φ,B†Bφ) = µ||φ||2 = (Bφ,Bφ) = ||Bφ||2 , (1.77)

from which we find that µ = ||Bφ||2/||φ||2. The denominator in this expression
is always a positive, real number, while the numerator is either zero or positive
and real. Thus µ cannot be negative and is zero only if Bφ = 0. We say that an
operator of the form B†B is nonnegative-definite or positive-semidefinite. If it
has no null space, all eigenvalues are strictly greater than zero, and the operator is
positive-definite.

Next we show that eigenvectors corresponding to different eigenvalues are or-
thogonal. Suppose Aψ1 = λ1ψ1 and Aψ2 = λ2ψ2, where A is Hermitian and
λ1 '= λ2. Then

(ψ1,Aψ2) = λ2(ψ1,ψ2) = (Aψ1,ψ2) = λ1(ψ1,ψ2) , (1.78)

where we have used the facts that A is Hermitian and the eigenvalues are real.
Subtracting the second and fourth forms of (1.78) yields

(λ2 − λ1)(ψ1,ψ2) = 0 . (1.79)
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Hence,

(ψ1,ψ2) = 0 if λ2 '= λ1 . (1.80)

Since we can always normalize the eigenvectors to unit norm without changing the
eigenvalues, (1.80) says that ψ1 and ψ2 are orthonormal, just the property we desire
in a set of basis vectors.

If two or more eigenvectors share the same eigenvalue, we cannot be guaran-
teed that they are orthonormal, but we can always construct orthonormal linear
combinations of them. As noted in Sec. 1.4.3, any linear combination of eigen-
vectors with the same eigenvalue is still an eigenvector associated with that same
eigenvalue, and the coefficients in the linear combinations can be chosen to ensure
orthonormality. This procedure, known as Gram-Schmidt orthogonalization, is
detailed in App. A.

Consider a Hermitian operator in EN. It has exactly N eigenvectors (some of
which may be null vectors), and with Gram-Schmidt orthogonalization, they form
an orthonormal set. Since any set of N orthonormal vectors constitutes a complete
basis for the N -dimensional space, we can be assured that the full set of eigenvectors
forms a basis.

In infinite-dimensional spaces, as usual, we cannot make such broad state-
ments. If we restrict attention to separable Hilbert spaces and compact, Hermitian
operators, it can be shown that the denumerably infinite set of eigenvectors does
indeed form a basis (Stakgold, 1979). As far as the authors know, no general
statements are possible for noncompact operators or nonseparable Hilbert spaces.
Fortunately, nonseparable spaces are seldom encountered, but noncompact opera-
tors are common.

A noncompact Hermitian operator may have a continuous spectrum; if it does,
the eigenvectors will not be in the Hilbert space (Messiah, 1961). Nevertheless, the
eigenvectors may form a continuous basis for the space. An important example is
the Fourier basis discussed previously. It will be shown in Chap. 7 that the basis
functions exp(2πiνx) are eigenfunctions of convolution operators, which we know
to be noncompact. The main result of Fourier theory is that this continuous set of
eigenfunctions can be used to expand any function in the separable Hilbert space
L2(−∞, ∞).

Except for the Fourier example and one or two others, it is difficult to make
precise mathematical statements about completeness of the eigenvectors of a non-
compact Hermitian operator. This difficulty is apparent in the literature on quan-
tum mechanics, where it is essential to deal with noncompact Hermitian operators.
A central tenet of quantum mechanics is that all physically measurable quantities
are represented by Hermitian operators in a Hilbert space. Many of these opera-
tors, including the important position and momentum operators, are noncompact.
Messiah (1961) comments that it is a difficult mathematical problem to prove that
the eigenfunctions of any particular operator form a basis for the space, but he says
it has been done for the position and momentum operators.8 He goes on to say, “In
fact, the completeness property is so closely related to the physical interpretation
(of quantum mechanics) that the whole theory would have to be profoundly revised

8The eigenfunctions of the momentum operator are the Fourier basis functions, and the eigenfunc-
tions of the position operator are the delta functions, both of which can be used as a basis for
L2(−∞,∞).
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if it did not hold true.” Messiah and other books (e.g., Cohen-Tannoudji et al.,
1977) duck this problem by defining an observable as a Hermitian operator whose
eigenvectors form a basis in the Hilbert space and simply postulating that all phys-
ically measurable quantities are observables in this sense. Mathematical research
into this important question is actively continuing (Dubin and Hennings, 1990).

1.4.5 Diagonalization of a Hermitian operator

From Sec. 1.4.2, we know that the eigenvalue spectrum of an operator is unchanged
by a similarity transformation, a special case of which is a unitary transformation.
We noted also in Sec. 1.4.3 that one way of finding the eigenvalues is to diagonalize
the operator by means of a similarity transformation. In this section we pursue this
approach for Hermitian operators, beginning with Hermitian matrices.

Hermitian matrices An important property of any Hermitian matrix is that it can
be diagonalized by a suitable unitary transformation (Strang, 1980). This property
is a direct consequence of the fact that the eigenvectors {ψn} of an N×N Hermitian
matrix A can be chosen (using the Gram-Schmidt procedure if needed) to form an
orthonormal basis in EN. From these eigenvectors we can construct an N × N
matrix Ψ, the mnth element of which is defined to be the mth component of ψn, or

Ψmn = ψnm . (1.81)

The reversal of indices may look peculiar, but it has an easy interpretation. Since
Ψmn is the element in the mth row and nth column of Ψ, the entire nth column is
just the column vector ψn. In other words, we form the matrix Ψ by arraying the
column vectors ψn side by side.

It follows from the completeness and orthonormality of the eigenvectors that Ψ
is unitary. In particular, Ψ†Ψ = I is a statement of the orthonormality condition,
(1.16), since

[

Ψ†Ψ
]

nn′ =
N
∑

k=1

[

Ψ†
]

nk
Ψkn′ =

N
∑

k=1

Ψ∗
knΨkn′

=
N
∑

k=1

ψ∗
nkψn′k = (ψn,ψn′) = δnn′ . (1.82)

A similar analysis shows that ΨΨ† = I is a statement of the completeness or closure
condition, (1.62). Hence Ψ† = Ψ−1.

Since ψn is an eigenvector of A, Ψ is precisely the unitary matrix that diago-
nalizes A:

[

Ψ†AΨ
]

nn′ =
N
∑

j=1

N
∑

k=1

ψ∗
njAjkψn′k = λn′

N
∑

j=1

ψ∗
njψn′j = λn δnn′ . (1.83)

This result can be summarized succinctly as

Ψ†AΨ = Λ , (1.84)

where Λ is a diagonal matrix with the nth diagonal element equal to λn.
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Spectral decomposition Equation (1.84) leads to a useful representation of the Her-
mitian operator A. Since Ψ† = Ψ−1, we have

A = ΨΛΨ† . (1.85)

This representation can also be expressed in terms of outer products [see (1.55)] as

A =
N
∑

n=1

λnψnψ
†
n . (1.86)

This equation, called the spectral decomposition of A, shows that the Hermitian
matrix A can be expressed as a weighted sum of projection operators, with the
weighting coefficients just being the eigenvalues (Lorch, 1962). Moreover, any op-
erator that can be expressed in the form of the right-hand side of (1.86) with real
λn is necessarily Hermitian since each individual term ψnψ

†
n is Hermitian (see Sec.

1.3.5).
There is a similar spectral decomposition for the inverse of A, if it exists:

A−1 =
N
∑

n=1

1

λn
ψnψ

†
n . (1.87)

The validity of this representation can be demonstrated by forming the product
A−1A or AA−1 using the right-hand sides of (1.86) and (1.87), yielding

A−1A = AA−1 =
N
∑

n=1

N
∑

m=1

λn
λm

ψnψ
†
nψmψ

†
m =

N
∑

n=1

ψnψ
†
n = I , (1.88)

where we have used the representation of the unit operator I from (1.62) and the
orthonormality of the eigenvectors, expressed in the present notation as

ψ†
nψm = δmn . (1.89)

Other Hermitian operators Though derived for a Hermitian operator in EN, the
results given above apply, with some modification, to any Hermitian operator A.
If the operator is compact, it has a discrete spectrum, and (1.86) applies with the
simple modification of setting N to ∞. In that case Ψ and Λ are infinite square
matrices.

Even if A is a noncompact integral operator, a representation analogous to
(1.86) can be obtained. Let a(x, x′) be the kernel of A and assume that the
eigenfunctions form a complete continuous basis. The counterpart of (1.86) is

a(x, x′) =

∫ ∞

−∞

dν λν ψν(x)ψ
∗
ν(x

′) . (1.90)

To demonstrate that this representation is correct, note that it yields

[Aψν ](x) =

∫ ∞

−∞

dν′
∫ ∞

−∞

dx′ λν′ ψν′(x)ψ∗
ν′(x′)ψν(x

′) = λν ψν(x) , (1.91)

where the last step follows from the continuous orthonormality [cf. (1.22)]. Equation
(1.91) shows that representation (1.90) gives the right answer when A operates on
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one of its eigenfunctions. Since the eigenfunctions are assumed to be complete,
any function in U can be written as a (continuous) linear superposition of the
eigenfunctions, and the representation is correct in general.

In the discrete case, we constructed a unitary operator by arraying the column
eigenvectors side by side; we can do much the same in the continuous case as well.
We simply define the operator Ψ as an integral operator mapping a function of ν
to a function of x by means of the kernel ψν(x), so that

[ΨF](x) =

∫ ∞

−∞

dν ψν(x)F (ν) . (1.92)

(The analogy to Fourier transformation should be apparent.) The adjoint of Ψ is
given by

[

Ψ†f
]

(ν) =

∫ ∞

−∞

dx ψ∗
ν(x) f(x) ≡ F (ν) , (1.93)

and it follows from the orthonormality of the {ψν} that Ψ is unitary.
From the discussion above in the discrete case, we would expect Ψ to diago-

nalize A in some sense. To make this statement more precise, note that Ψ†AΨ is
an integral operator, the kernel of which we can denote (rather cumbersomely) as
[Ψ†AΨ](ν, ν′). From the orthonormality and completeness of the eigenfunctions,
we can show that

[

Ψ†AΨ
]

(ν, ν′) = λν δ(ν − ν ′) . (1.94)

By comparing (1.94) and (1.83), we see that in the continuous case the effect of the
unitary transformation is again to reduce A to diagonal form, which here means
that the kernel is proportional to the delta function δ(ν − ν′). One can think of
a matrix with continuous indices where the matrix elements are zero if the indices
are not equal and infinite if they are.

1.4.6 Simultaneous diagonalization of Hermitian matrices

Many problems in imaging involve two or more Hermitian operators. For example,
the deterministic properties of an imaging system are described by the Hermitian
operators H†H and HH† (for more on this point, see Sec. 1.5.1), and the stochastic
properties are described by the covariance matrix, a Hermitian matrix to be defined
in Chap. 8. In addition, various Hermitian symmetry and projection operators arise,
so it is of considerable value to be able to find a representation in which two or more
Hermitian operators are simultaneously diagonalized.

We address that problem in this section specifically for Hermitian matrices,
but essentially the same results hold for other Hermitian operators. As we shall
see, the nature of the transformation to the simultaneously diagonal representation
depends critically on whether the matrices commute.

Commuting matrices A well-known theorem from quantum mechanics is that two
Hermitian operators can be simultaneously diagonalized by a unitary transformation
if and only if they commute. We shall now learn how to find that transformation
for the special case of Hermitian matrices.

Let A and B be commuting Hermitian matrices. We seek a unitary matrix
Ψ such that Ψ†AΨ and Ψ†BΨ are both diagonal. We begin with the eigenvalue
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equation for A:
Aψn = λAnψn . (1.95)

For simplicity we assume that the eigenvalues are not degenerate; for a detailed
discussion of the degenerate case, see Secs. 6.7.3 – 6.7.6. Now apply B to both sides
of (1.95) and use the commutativity:

BAψn = λAnBψn = ABψn . (1.96)

Thus Bψn is also an eigenvector of A with eigenvalue λAn. We have assumed,
however, that the eigenvalues are nondegenerate, so there cannot be two linearly
independent eigenvectors with the same eigenvalue. Thus Bψn must be just a
constant times ψn; calling that constant λBn, we see that

Bψn = λBnψn . (1.97)

Thus A and B share the same eigenvectors, but not necessarily the same eigen-
values. Since any Hermitian matrix is diagonalized by the unitary matrix with its
normalized eigenvectors as columns, we can write

Ψ†AΨ = ΛA , Ψ†BΨ = ΛB , (1.98)

where ΛA and ΛB are diagonal, with the former having λAn as its diagonal elements
and the latter having λBn.

Prewhitening If a Hermitian matrix A is positive-definite (see Secs. 1.4.4 and A.8),
not only can we transform it to diagonal form, we can also transform it to the unit
matrix. The tool we need for this purpose is the square-root matrix defined in Sec.

A.8.3. Specifically, we need Λ
1
2

A, defined as the diagonal matrix with λ
1
2

An as the
diagonal elements. Since A is positive-definite, its eigenvalues are positive, and we
do not have to worry about taking square roots of negative numbers. Moreover,
since positive-definite matrices are nonsingular, the eigenvalues are not zero, and

we can define Λ
− 1

2

A as the diagonal matrix with λ
− 1

2

An as the diagonal elements.

Applying Λ
− 1

2

A to the diagonal representation of A, we obtain

Λ
− 1

2

A Ψ†AΨΛ
− 1

2

A = Λ
− 1

2

A ΛAΛ
− 1

2

A = I . (1.99)

Because of a connection with white noise, to be clarified in Chap. 8, this transfor-
mation is known as prewhitening. We shall have several opportunities to apply
this transformation later in the book, and immediately below we apply it to simul-
taneous diagonalization of noncommuting Hermitian matrices.

Noncommuting matrices Consider two Hermitian matrices A and B that do not
necessarily commute, and assume that A is positive-definite and hence nonsingular.
We seek a matrix W such that

W†AW = I and W†BW = D , (1.100)

where D is diagonal. We do not require that W† = W−1, so (1.100) is not a simi-
larity transformation. Many books use the term diagonalization only for similarity
transformations, but our usage is more general.
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Following Fukunaga (1990), we first diagonalize A by a unitary transforma-
tion, then apply a nonunitary prewhitening transformation to convert it to the unit
matrix, and finally apply another unitary transformation to diagonalize B. This
second unitary transformation leaves the unit matrix unchanged, so both matrices
have the desired form after this sequence of three transformations.

After the first step, we have

A′ ≡ Ψ†AΨ = ΛA , B′ ≡ Ψ†BΨ , (1.101)

where ΛA is diagonal but B′ is not.
After we apply the prewhitening transform, we obtain

A′′ ≡ Λ
− 1

2

A A′Λ
− 1

2

A = Λ
− 1

2

A Ψ†AΨΛ
− 1

2

A = I , (1.102)

B′′ ≡ Λ
− 1

2

A B′Λ
− 1

2

A = Λ
− 1

2

A Ψ†BΨΛ
− 1

2

A . (1.103)

The matrix B′′ is still Hermitian, so it can be diagonalized by a unitary transfor-
mation. As in Sec. 1.4.5, this transformation matrix can be found by solving an
eigenvalue problem:

B′′Φ = ΦD , (1.104)

where D is the diagonal matrix of the eigenvalues of B′′, and the eigenvectors form
the columns of Φ.

Now apply the final transformation to both matrices:

A′′′ ≡ Φ†A′′Φ = Φ†Φ = I , (1.105)

B′′′ ≡ Φ†B′′Φ = Φ†Λ
− 1

2

A Ψ†BΨΛ
− 1

2

A Φ = D . (1.106)

The desired overall transformation matrix W is thus

W = ΨΛ
− 1

2

A Φ . (1.107)

Because of the presence of Λ
− 1

2

A , the transformation matrix W cannot be unitary,
even if A and B do commute; two commuting Hermitian matrices can be simulta-
neously diagonalized by a unitary matrix, but converting one of them to the unit
matrix requires a nonunitary transformation (except for the trivial case A = I ),
and it also requires that at least one of the matrices be positive-definite.

Generalized eigenvalue problems Since W as given by (1.107) satisfies (1.100), we
can write

W†BW = D = ID = W†AWD . (1.108)

Since W† is nonsingular, we can multiply through by its inverse in (1.108) and
obtain

BW = AWD . (1.109)

This is the generalized eigenvalue equation for A and B.
Since A has been assumed to be nonsingular, we can apply its inverse to both

sides of (1.109) and get
A−1BW = WD . (1.110)

Thus the columns of W are eigenvectors of A−1B. Sometimes it will be easier to
find W by solving a single eigenvalue problem, (1.109) or (1.110), rather than the
two separate eigenvalue problems implied by (1.101) and (1.104).
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1.5 SINGULAR-VALUE DECOMPOSITION

The spectral decomposition of (1.86) is a powerful tool for working with Hermitian
operators, but it is not directly applicable to other kinds of linear operators. This
is a significant drawback since only rarely can imaging systems be described by
Hermitian operators. Fortunately, there is a closely related decomposition, known
as singular-value decomposition or SVD, that is much more widely applicable.

1.5.1 Definition and properties

Consider a general linear operator H that maps a vector f in the Hilbert space U

to a vector g in the Hilbert space V. From this operator we can form two new
operators, H†H and HH†. As discussed in Sec. 1.4.4, both of these operators are
Hermitian and nonnegative-definite, regardless of the nature ofH itself. In addition,
we assume that both H†H and HH† are compact and hence have discrete spectra.
The eigenvalue equation for H†H is then

H†Hun = µnun , (1.111)

where we know that µn is nonnegative and real.
Since H†H is Hermitian, and we assume it is compact, we know from Sec. 1.4.4

that the set {un} can be taken as a complete, orthonormal basis in U (invoking the
Gram-Schmidt procedure if needed). The orthonormality is expressed as

u†
num = δnm , (1.112)

where, in the notation of Sec. 1.3.7, u†
num denotes the scalar or inner product of

un and um. Completeness means that

N
∑

n=1

unu
†
n = IU , (1.113)

where unu
†
n denotes an outer product (see Sec. 1.3.7) and IU denotes the identity

operator in U.
It is conventional to order the eigenvalues by decreasing value, so that

µ1 ≥ µ2 ≥ .... ≥ µR > 0 , (1.114)

where R is the number of nonzero eigenvalues of H†H (counting multiplicity, as
discussed in Sec. 1.4.3). Equation (1.114) takes advantage of the fact that all of
the eigenvalues are nonnegative, which is true for the nonnegative-definite operator
H†H but not for an arbitrary Hermitian operator.

If U = EN, then H†H is an N ×N matrix and, as noted in Sec. 1.4.3, R is its
rank, which must be less than or equal to N. Though R was defined for a general
matrix as the number of linearly independent rows or columns, for a Hermitian
operator it is also equal to the number of nonzero eigenvalues.

If we have solved the eigenvalue problem for H†H, we can get some solutions
of the corresponding problem for HH† for free. Operating on both sides of (1.111)
with H yields

HH†Hun = µnHun , (1.115)
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which shows that Hun is an eigenvector of HH† with eigenvalue µn. It is straight-
forward to show that the vectors {Hun} are orthogonal if the {un} are, but it does
not follow that they are correctly normalized. In fact, ||Hun||2 = µn rather than
unity. We can, however, multiply an eigenvector by any constant and it will remain
an eigenvector with the same eigenvalue. Thus, if un is not a null vector, we can
define

vn =
1

√
µn

Hun , (µn '= 0) , (1.116)

where
√
µn is positive and real since µn is. With this definition, we have

HH†vn = µnvn . (1.117)

Thus vn is an eigenvector of HH† with eigenvalue µn, so H†H and HH† have the
same eigenvalue spectra.

The {vn} as defined by (1.116) are an orthonormal set in V, but they are not
necessarily complete. If some of the {µn} are zero, the corresponding {vn} cannot
be constructed by (1.116) but must be obtained by solving (1.117) directly.

If all of the eigenvectors of HH† have been found, including those correspond-
ing to zero eigenvalue, they form a complete orthonormal basis in V and satisfy

v†
nvm = δnm , (1.118)

N
∑

n=1

vnv
†
n = IV . (1.119)

The set {un,vn, µn} is called the singular system of H. Knowledge of this
singular system allows us to construct a representation of H analogous to the spec-
tral decomposition. We shall show that

H=
R
∑

n=1

√
µn vnu

†
n , (1.120)

where each term vnu
†
n is to be interpreted as an outer-product operator as discussed

in Sec. 1.3.7 [cf. (1.54)]. The sum in this equation runs over all n for which µn '= 0,
which means n ≤ R with the ordering of (1.114). We could, of course, also run
the sum in (1.120) from 1 to N, but the factor

√
µn would set to zero all terms for

n > R anyway.
To prove the validity of (1.120), all we have to do is show that both sides give

the same result when acting on an arbitrary vector f in the domain of H. Since
the {un} form a basis in U, we can write the arbitrary f as

f =
N
∑

n=1

αnun , (1.121)

where the coefficient αn is given by the scalar product,

αn = u†
nf . (1.122)

The sum in (1.121) must include all vectors in the basis, not just ones with nonzero
eigenvalue; it therefore runs up to N rather than R.
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Operating on this representation of f with H gives

Hf =
N
∑

n=1

αnHun =
R
∑

n=1

αn
√
µn vn , (1.123)

where we have used the linearity of H and (1.116). Applying the right-hand side
of (1.120) to the same representation of f yields

Hf =
R
∑

n=1

√
µn vnu

†
n

N
∑

m=1

αmum =
R
∑

n=1

N
∑

m=1

αm
√
µn vnu

†
num

=
R
∑

n=1

N
∑

m=1

αm
√
µn vn δnm =

R
∑

n=1

αn
√
µn vn , (1.124)

where we have used the orthonormality of the {un} to set u†
num = δnm. The agree-

ment of the final forms of (1.123) and (1.124) establishes the validity of (1.120).
Equation (1.120) is the singular-value decomposition of H. Like the spectral

decomposition of a Hermitian operator, it expresses the operator as a sum of outer-
product operators. This sum has R nonzero terms, where R is the rank of both
H†H and HH†. We shall refer to R as the rank of H as well, where the rank of a
general linear operator is the number of nonzero singular values. This definition is
consistent with our two earlier definitions of rank: the number of linearly indepen-
dent rows or columns of a general matrix or the number of nonzero eigenvalues of
a Hermitian operator.

In a similar fashion, H† can be represented as

H† =
R
∑

k=1

√
µk ukv

†
k . (1.125)

Again we have a sum of R outer products. If H is an M ×N matrix H, then H†

is an N ×M matrix, uk is an N × 1 vector, vk is an M × 1 vector, and each outer
product in the sum is an N ×M matrix, as it must be if the sum is to represent H†.

1.5.2 Subspaces

It is often true that R < N, where R is the rank of H and N is the (possibly
infinite) dimension of U. Under this condition, U can be divided into two orthogonal
subspaces9 (see Fig. 1.5).

9Recall from Sec. 1.3.6 that two subspaces are orthogonal if all vectors in one are orthogonal to
all vectors in the other.
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Fig. 1.5 Division of the domain of and the domain of † into orthogonal

subspaces. Several alternative designations are given for each subspace.

The null space of H is an (N − R)-dimensional Euclidean space formally de-
noted N{H}. We shall also use the notation Unull for N{H}, emphasizing that it
is a subspace of U. A vector fnull in this space satisfies

Hfnull = 0 . (1.126)

If R = N, N{H} is trivial, in the sense that it contains only the zero vector. In
that case H is one-to-one, which means that, in the absence of noise, every g is
produced by exactly one f.

The orthogonal complement of N{H} is an R-dimensional Euclidean space
formally denoted N⊥{H}. We shall also refer to this subspace as measurement
space since vectors in this space produce nonzero measurements if H describes a
measurement system. To emphasize this point, we denote the space by Umeas. An
arbitrary vector f in U can be decomposed into a sum of two orthogonal vectors,
one in Umeas and one in Unull:

f = fmeas + fnull . (1.127)

If R < M, the data space V can also be divided into two nontrivial orthogonal
subspaces. All possible data vectors g lie in V, but not all vectors in V can be
written as Hf for some f in U. In other words, if R < M, H is not onto and the
range of H is not the whole space V but some subspace of it.

Though the range of H is denoted formally as R{H}, we shall refer to it as
consistency space and denote it Vcon. Any vector g in Vcon is consistent in the
sense that there is some vector f in U such that g = Hf. In an imaging context, Hf

is a noise-free data vector, but a real, measured data vector, g = Hf+ ε, contains
noise which creates inconsistency in the data and requires the use of the entire space
V to describe an arbitrary data vector.

The orthogonal complement of Vcon will be called inconsistency space and
denoted Vincon. An arbitrary vector g in V can be decomposed into a sum of two
orthogonal vectors, one in Vcon and one in Vincon:

g = gcon + gincon . (1.128)

If R = M, Vincon is trivial and any g is automatically consistent.
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The division of U and V into orthogonal subspaces can also be viewed an-
other way. The entire space V is the domain of the adjoint operator H†, but that
operator can have a null space if R < M. The null space of H†, denoted N{H†}, is
a subspace of V. Moreover, if R < N, the range of H† is a subspace of U.

It can be shown (Campbell and Meyer, 1979) that the null space of H† is just
Vincon, while its orthogonal complement is Vcon. Also, the range of H† is Umeas

and its orthogonal complement is Unull. Furthermore, the range of H is the same
as the range of HH† and the range of H† is the same as the range of H†H. Also,
the null space of H is the same as the null space of H†H and the null space of H†

is the same as the null space of HH†. In summary,

R
{

H
}

= R
{

HH†
}

= Vcon ; (1.129a)

R
{

H†
}

= R
{

H†H
}

= Umeas ; (1.129b)

N
{

H
}

= N
{

H†H
}

= Unull ; (1.129c)

N
{

H†
}

= N
{

HH†
}

= Vincon . (1.129d)

These various designations of spaces and subspaces are illustrated in Fig. 1.5.

1.5.3 SVD representations of vectors and operators

The great advantage of the SVD approach is that it provides a consistent set of
representations for all of the vectors and operators that arise in connection with a
particular linear system. We have already encountered some of these representa-
tions, and the full set is summarized in Tables 1.1 and 1.2 for reference.

Table 1.1 lists the representations of vectors in either U or V, including f and
g as well as their components fmeas, fnull, gcon and gincon. Other vectors that
will be important in later discussion include the vector ε in V describing noise in
the data and an estimated or reconstructed version of the object, denoted f̂. For
completeness these representations are also given in Table 1.1.

Table 1.2 lists the singular-value decompositions for H and H† as well as
the spectral decompositions for H†H and HH†. This table also gives forms for
[H†H]−1, which exists if R = N, and [HH†]−1, which exists if R = M. The cor-
rectness of these expressions can easily be verified from the orthonormality and
completeness relations. Also listed in Table 1.2 are some additional operators to be
discussed in Sec. 1.6.

1.6 MOORE-PENROSE PSEUDOINVERSE

A powerful tool for dealing with linear systems is the Moore-Penrose pseudoinverse,
originally proposed by Moore (1920) and then apparently forgotten. Twenty years
later the same concept was independently rediscovered by Sir Roger Penrose, British
physicist and cosmologist and frequent collaborator of Stephen Hawking. Remark-
ably, Penrose published his classic paper on generalized inverses when he was in his
early 20s and working toward his doctorate at Cambridge.

The literature on pseudoinverses is vast; Nashed (1976) gives a total of 1,775
references. Excellent accounts are given by Albert (1972), Ben-Israel and Greville
(1974) and Campbell and Meyer (1979).
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1.6.1 Penrose equations

A linear operator H# is called a generalized inverse or pseudoinverse of H if
it satisfies HH#H= H. This equation, which is satisfied by H−1 if it exists, is
now commonly referred to as the first Penrose equation. The full set of Penrose
equations is:

Penrose Eq. 1: HH#H = H . (1.130a)

Penrose Eq. 2: H#HH# = H# . (1.130b)

Penrose Eq. 3: (HH#)† = HH# . (1.130c)

Penrose Eq. 4: (H#H)† = H#H . (1.130d)

If H has a true inverse, it satisfies all four of the Penrose equations. A matrix
that satisfies Penrose Eq. 1 but not the other three is called a 1-inverse of H, one
that satisfies Eqs. 1 and 2 is called a (1,2)-inverse, etc. For matrices, a 1-inverse
always exists and can be found by Gaussian elimination.

The Moore-Penrose pseudoinverse, denoted H+, is the generalized inverse that
satisfies all four Penrose equations. Thus the Moore-Penrose pseudoinverse is a
(1,2,3,4)-inverse and is equal to the true inverse if one exists. When we use the
term pseudoinverse without proper names or other qualifiers, the Moore-Penrose
pseudoinverse will be understood.

It can be shown that the Moore-Penrose pseudoinverse of a matrix always
exists and is always unique (Albert, 1972). If H is an M ×N matrix H, then H+

is an N ×M matrix, but the concept of pseudoinverse is not restricted to matrices.
Under broad conditions, it is applicable to any bounded, linear operatorH mapping
one separable Hilbert space to another.10

1.6.2 Pseudoinverses and SVD

We shall show that the Moore-Penrose pseudoinverse can be represented as

H+ =
R
∑

k=1

1
√
µk

ukv
†
k . (1.131)

Since µk '= 0 if k ≤ R, there is no worry about dividing by zero.
To show that (1.131) is a valid representation of H+, we need to prove that

the right-hand side satisfies the four Penrose equations. To prove the first one, we
use (1.120) and (1.131) to write

HH+H=
R
∑

k=1

√
µk vku

†
k

R
∑

m=1

1
√
µm

umv†
m

R
∑

n=1

√
µn vnu

†
n

=
R
∑

k=1

R
∑

m=1

R
∑

n=1

√
µk

√
µn√

µm
vku

†
kumv†

mvnu
†
n . (1.132)

10Technically, the condition is that the range of the operator be closed (Ogawa, 1988). This
condition is satisfied for matrices and other operators with finite-dimensional range, including
especially continuous-to-discrete operators. See also Caradus (1978) and Groetsch (1977).
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Note that no parentheses are needed in the last line; the following forms are all
equivalent:

(vku
†
k)(umv†

m)(vnu
†
n) = vku

†
kumv†

mvnu
†
n = vk(u

†
kum)(v†

mvn)u
†
n , (1.133)

as one can demonstrate by patiently writing out each expression in component form.
The advantage of the last expression in (1.133), however, is that we can recognize the
inner products (u†

kum) and (v†
mvn), allowing us to use the orthogonality relations

(1.112) and (1.118). The resulting Kronecker deltas allow us to perform two of the
three sums in (1.132), and we obtain

HH+H =
R
∑

k=1

R
∑

m=1

R
∑

n=1

√
µk

√
µn√

µm
δkm δmnvku

†
n =

R
∑

k=1

√
µk vku

†
k , (1.134)

which, by (1.120), is just H, verifying the first Penrose equation. A similar proce-
dure shows that the remaining Penrose equations are also valid when we represent
H+ by means of (1.131).

1.6.3 Properties of the pseudoinverse

The SVD representations of Sec. 1.5.3 enable us to derive many additional prop-
erties of the Moore-Penrose pseudoinverse. We begin by deriving two additional
representations for it.

Limiting representations An important limiting representation of the pseudoinverse,
which will prove useful in Sec. 1.7.6, is

H+ = lim
η→0+

[

H†H + η IU

]−1
H† . (1.135)

To prove that the right-hand side of (1.135) is indeed H+, we first represent H†H

and IU in terms of the SVD basis vectors (see Table 1.2) as

[

H†H + η IU

]

=
R
∑

n=1

µnunu
†
n + η

N
∑

n=1

unu
†
n =

N
∑

n=1

(µn + η)unu
†
n , (1.136)

where the first sum could be extended to N since µn = 0 for n > R. The inverse of
the operator in (1.136) is given by

[

H†H + η IU

]−1
=

N
∑

n=1

(µn + η)−1unu
†
n , (1.137)

where µn + η cannot vanish since µn ≥ 0 and η > 0. The correctness of (1.137)
can be checked by multiplying it by (1.136) and using the orthogonality relation
(1.112). The result will be the SVD representation for the identity operator as given
in Table 1.2.

Using (1.137), (1.125) and (1.112) again, we find

[

H†H + η IU

]−1
H† =

N
∑

n=1

√
µn

µn + η
unv

†
n . (1.138)
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We can pass to the limit η → 0 by noting that

lim
η→0+

√
µn

µn + η
=

{

1/
√
µn if µn '= 0

0 if µn = 0
. (1.139)

Hence,

lim
η→0+

[

H†H + η IU

]−1
H† =

R
∑

n=1

1
√
µn

unv
†
n , (1.140)

which, by (1.131), is just H+.
By a similar procedure, we can also show that

H+ = lim
η→0+

H†
[

HH† + η IV

]−1
. (1.141)

Special cases If H is an N ×N Hermitian matrix of rank R, it can be written in
terms of its spectral decomposition (see Sec. 1.4.5) as

H =
R
∑

j=1

λjuju
†
j . (1.142)

This expansion is a special case of SVD with µj = λ2j and vj = uj . Of course,
λj must be real since H is Hermitian. Moreover, all of the λj are ≥ 0 if H is
nonnegative-definite. In this case, the pseudoinverse of H is

H+ =
R
∑

j=1

1

λj
uju

†
j . (1.143)

As a further specialization, suppose that H is Hermitian and diagonal, so we can
write

H = diag(λ1,λ2, ...,λN ) . (1.144)

The notation indicates that H is diagonal with elements λ1,λ2,..., λN along the
diagonal, and we assume that all of the λj are real and nonnegative. In this notation,
the pseudoinverse is

H+ = diag(λ+1 ,λ
+
2 , ...,λ

+
N ) , (1.145)

where

λ+j =

{

1/λj if λj '= 0
0 if λj = 0

. (1.146)

Other useful identities The pseudoinverse obeys the following identities (Albert,
1972):

[

H+
]+

= H ; (1.147)

H+ =
(

H†H
)+

H† ; (1.148)

H+ = H†
[

HH†
]+

; (1.149)
[

H†
]+

=
[

H+
]†

; (1.150)
[

H†
]+

=
[

HH†
]+

H ; (1.151)
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[

H+H
]+

= H+H ; (1.152)

H+HH† = H† ; (1.153)

H†HH+ = H† ; (1.154)

H+H=
(

H†H
)+ (

H†H
)

=
(

H†H
) (

H†H
)+

; (1.155)

HH+ =
(

HH†
)+

HH† = HH†
(

HH†
)+

; (1.156)
[

H†H
]+

= H+
[

H†
]+

; (1.157)
[

H†H
]+

= H+
[

HH†
]+

H= H†
[

HH†
]+ [

H†
]+

; (1.158)
[

HH†
]+

=
[

H†
]+

H+ . (1.159)

All of these identities can be proved either directly from the Penrose equations or
from the SVD representations of H and H+.

Pseudoinverse of a product It is not true in general that (AB)+= B+A+, but there
is one special case in which this useful relation is valid (Harville, 1997). It holds for
any M × N matrix A of full column rank (i.e., rank N) and any N × K matrix
B of full row rank (rank N again). More generally, all that can be said is that
(AB)+ = (A+AB)+(ABB+)+ (Campbell and Meyer, 1979, theorem 1.4.1).

1.6.4 Pseudoinverses and projection operators

In this section we relate the pseudoinverse to projection operators for the subspaces
discussed in Sec. 1.5.2. Consider first the division of U into Umeas and Unull. An
arbitrary vector f in U can be expanded in terms of the basis {uk} as

f =
N
∑

k=1

αkuk , αk = u†
kf . (1.160)

The vector Hf can be computed from (1.120) and (1.160) as follows:

Hf =
R
∑

k=1

√
µk vku

†
k

N
∑

n=1

αnun =
R
∑

k=1

N
∑

n=1

√
µk αnvku

†
kun =

R
∑

n=1

√
µn αnvn ,

(1.161)
where the last step made use of the orthogonality relation (1.112). The key point to
notice here is that (in this particular basis) components fn for which n > R make
no contribution to Hf since they correspond to zero singular values µn. Thus these
components define fnull, and we can write

fnull =
N
∑

n=R+1

αnun . (1.162)

The measurement component is given by

fmeas = f− fnull =
R
∑

m=1

αmum . (1.163)
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Since un and um are orthogonal if n > R and m ≤ R, it follows that fmeas and
fnull are orthogonal.

Now we bring the pseudoinverse into the discussion. Consider the operator
H+H, given from (1.120) and (1.131) as

H+H=
R
∑

k=1

1
√
µk

ukv
†
k

R
∑

m=1

√
µm vmu†

m =
R
∑

k=1

uku
†
k . (1.164)

The last sum is in the form of a general projection operator as in (1.60), and in fact
it is just the projector onto the measurement space:

H+Hf =
R
∑

k=1

uku
†
kf =

R
∑

k=1

αkuk = fmeas , (1.165)

where we have used (1.160) and (1.163). We can thus define a projection operator
by

Pmeas = H+H , (1.166)

and it follows that
fmeas = Pmeasf . (1.167)

The null component of f is given by

fnull = f− fmeas = (IU −Pmeas)f = Pnullf . (1.168)

The projector Pnull is thus given by

Pnull = IU −Pmeas = IU −H+H . (1.169)

As a check on these formulas, note that

Pmeas +Pnull =
N
∑

k=1

uku
†
k = IU , (1.170)

where the sum is equal to the identity operator in U by (1.113).
A similar decomposition holds for any vector g in V. We can write

g =
M
∑

k=1

βkvk = gcon + gincon ; (1.171)

βk = v
†
kg ; (1.172)

gcon = Pcong =
R
∑

k=1

βkvk ; (1.173)

gincon = Pincong =
M
∑

k=R+1

βkvk . (1.174)

By a procedure analogous to the one used for Pmeas and Pnull, we can show that

Pcon = HH+ ; (1.175)
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Pincon = IV −HH+ . (1.176)

Though we have derived all of these projection operators from the SVD, they
also follow directly from the Penrose equations and the definitions of the subspaces.
For example, to show that (1.169) is correct, we operate on Pnullf with H, yielding

HPnullf = [H −HH+H]f . (1.177)

The right-hand side is identically zero, as expected, because of the first Penrose
equation, (1.130a). This proves that [IU −H+H]f is indeed a null vector of H and
hence that IU − H+H is a valid form for Pnull. We used only the first Penrose
equation in this argument, but any projector must be Hermitian so the fourth
equation must also be satisfied. Thus

Pnull = IU −H#H (1.178)

if H# is a (1,4)-inverse.
Similar arguments can be used to derive the other three projectors from the

Penrose equations. It is found that (1.166) and (1.169) hold if H+ is replaced by
a (1,4)-inverse, while (1.175) and (1.176) hold if H+ is replaced by a (1,3)-inverse.
Since the Moore-Penrose operator is a (1,2,3,4)-inverse, however, we are always safe
in using H+ itself.

It is also possible to go in the other direction. We can define H+ by the pro-
jector equations (1.166) and (1.175) and use this definition to derive all four Penrose
equations11 and other properties of the pseudoinverse. This was the approach taken
by Moore in 1935.

1.7 PSEUDOINVERSES AND LINEAR EQUATIONS

An important use of the pseudoinverse operator is to solve systems of linear equa-
tions. In imaging, such systems arise when we represent an object by a discrete
vector and then try to relate the elements of this vector to a discrete image data set.

The goal of this section is to discuss two particular kinds of solutions to sys-
tems of linear equations, so-called exact solutions and approximate least-squares
solutions (Lawson and Hanson, 1995), and to show how each is related to pseudoin-
verses. Many other kinds of solutions of linear equations will be discussed in Chap.
15, where we deal with inverse problems in general. That chapter will also discuss
in detail the problems that can arise with discrete object representations, but for
now we shall accept them uncritically.

1.7.1 Nature of solutions of linear equations

Noisy data So far, we have considered only ideal linear mappings from a vector f
to a vector g. In real life, however, there is always some randomness or noise in
any set of measurements, so g is a random vector. There can also be systematic

11It might be surprising that we can get all four equations this way, since we had to use only
Eqs. 1, 3 and 4 to go from the Penrose equations to the projectors, but it can be shown that a
(1,3,4)-inverse is also a 2-inverse.
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errors in g. To account for these errors, we must modify the basic matrix equation
g = Hf. If we assume that f is a finite vector with components {fn, n = 1, ..., N},
the mth component of g is given by

gm =
N
∑

n=1

Hmnfn + εm , m = 1, ...,M , (1.179)

where the random numbers {εm} represent noise or other errors in the measure-
ments. In matrix-vector form, we now have

g = Hf+ ε , (1.180)

where ε is an M× 1 column vector with elements {εm}. We shall refer to ε as a
noise vector, though it can have both random and systematic components. The
specific properties of ε are not needed here but will be discussed in detail in later
chapters.

Exact and approximate solutions One sense in which one might attempt to solve
(1.180) would be to try to find the unknown vectors f and ε, but there are two
difficulties with this approach. One is that determination of both vectors requires
solving the M equations for M + N unknowns, a clear impossibility. The other
difficulty is that we aren’t really interested in the components of ε since they are
not characteristic of the object.

A more sensible approach is to attempt to find solutions to

g = Hf̂ , (1.181)

where the caret indicates that f̂ is some approximation to f. In the language of
statistical decision theory, to be introduced Chap. 13, f̂ is called an estimate of f.
Since H is an M ×N matrix, f̂ must be an N ×1 vector like f itself. Thus, solution
of (1.181) requires finding the N unknown values {f̂n} from M equations (one for
each component of g). An exact solution of (1.181) amounts to finding a vector f̂

that would exactly reproduce g if it were mapped through H without noise, even
though g itself actually contains noise.

1.7.2 Existence and uniqueness of exact solutions

We now state several formal conditions for the existence and uniqueness of solutions
of (1.181) and then discuss them from various perspectives. All of the conditions
listed under each theorem below are mathematically equivalent. A good general
reference to this section is Strang (1980).

Existence theorems Equation (1.181) has at least one exact solution for a partic-
ular g if and only if

(a) g can be expressed as a linear combination of the columns of H;

(b) The data are consistent;

(c) g lies in Vcon;

(d) HH+g = g.
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Equation (1.181) has at least one exact solution for every g if and only if

(a) The columns of H span V = EM;

(b) R = M ;

(c) A right inverse of H exists;

(d) H is onto;

(e) Vincon is trivial;

(f ) HH† is nonsingular.

These conditions can be satisfied only if M ≤ N.

Uniqueness theorems Equation (1.181) has at most one solution for every g if and
only if

(a) The columns of H are linearly independent;

(b) R = N ;

(c) A left inverse of H exists;

(d) H is one-to-one;

(e) Unull is trivial;

(f ) H†H is nonsingular.

These conditions can be satisfied only if M ≥ N. Putting the existence and unique-
ness conditions together, we see that a unique, exact solution exists only if H is
square and full rank, M = N = R.

Discussion A system of linear equations is said to be underdetermined if the num-
ber of measurements is less than the number of unknowns, or M < N in our nota-
tion. There are not enough measurements to determine all of the unknown values
fn in this case. Conversely, the system is said to be overdetermined if M > N. The
implication of the word overdetermined is that the data are inconsistent so that no
exact solution exists.

In fact, it is possible to have an exact solution to (1.181) even if M > N. All
that is required is that the particular g lie entirely in Vcon as expressed by the first
set of existence conditions above. Suppose, for example, that we somehow gener-
ate noise-free measurements (as in computer simulations). Then the data vector is
given precisely by g = Hf, so (1.181) has an exact solution, namely f̂ = f. Thus the
first set of existence conditions can be satisfied if there is no noise in the data.

Of course, the assumption of noise-free measurements is highly artificial. Real,
noisy measurements are unlikely to be confined to any subspace of V. If there is a
nontrivial inconsistency space, chances are that noisy data will have a component
in it. Thus the only practical way to avoid inconsistent data is to have no inconsis-
tency space, which is a paraphrase of the second set of existence conditions above.
There is no inconsistency space if R = M. Since R ≤ min(M,N), the condition
M > N implies M > R. An overdetermined system of equations thus necessarily
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has an inconsistency space. Barring noise-free data or other bizarre circumstances,
there will be no exact solution to (1.181) in that case.

Next we discuss the uniqueness theorems. If a solution to (1.181) exists but
H has a null space, as it will if R < N, the solution is not unique. All we have
to do to construct another solution is to add any null vector to the original solu-
tion. If f̂ satisfies (1.181), then so does f̂+ fnull, where fnull is any vector such that
Hfnull = 0. All of the uniqueness conditions listed above thus amount to saying
that there is no nontrivial null space.

1.7.3 Explicit solutions for consistent data

Right inverse If R = M, at least one exact solution to (1.181) exists, which is the
same thing as saying that the right inverse of H exists. In the present problem, the
right inverse H−1

R is an N ×M matrix that satisfies (1.38), or

HH−1
R = IM , (1.182)

where IM is the M ×M unit matrix. In terms of H−1
R , an exact solution to (1.181)

is given by
f̂ = H−1

R g . (1.183)

With (1.182), it is easy to see that this f̂ satisfies (1.181).
To construct the right inverse explicitly, we note that the rank of the M ×M

matrix HH† is also R, a point which follows from (1.129d). Thus, if R = M, HH†

is invertible, and the right inverse of H is given by

H−1
R = H†

(

HH†
)−1

, (R = M) . (1.184)

Direct substitution shows that (1.184) satisfies (1.182).

Consistency and pseudoinverses An exact solution to (1.181) exists if the data are
consistent, or g lies entirely in Vcon. That will be the case either if we have some-
how generated noise-free data or if there is no nontrivial inconsistency space. A
mathematical statement that covers both contingencies is that g is consistent if

HH+g = g , (1.185)

where we recall from (1.175) that HH+ = Pcon (and we use P instead of P since
we are dealing explicitly with matrices).

If the data are consistent, one solution to (1.181) is

f̂ = H+g . (1.186)

To show that this is a solution, operate on it with H. The result is

Hf̂ = HH+g = g , (1.187)

where the last step follows from the consistency condition (1.185).
If the data are consistent because there is no nontrivial inconsistency space,

then R = M and the right inverse exists. In this case, right inverse and Moore-
Penrose pseudoinverse are identical, but (1.186) is more general than (1.183). The
pseudoinverse provides a solution to (1.181) even when there is an inconsistency
space but the particular g happens to have no inconsistent component.
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General exact solution While (1.187) provides a solution to (1.181), it is not the
most general solution if H has a nontrivial null space. The general solution to
(1.181) is

f̂ = H+g+
[

IN −H+H
]

y , (1.188)

where y is an arbitrary vector in U. Since IN −H+H is just Pnull, the second term
in (1.188) is a null vector of H. Thus the solution to (1.181) is unique if and only if
Pnull = 0 or H+H = IN .

To demonstrate that (1.188) is a solution to (1.181) for consistent data, we
again operate on it with H, yielding

Hf̂ = HH+g+
[

H−HH+H
]

y . (1.189)

The first term is g by the consistency condition (1.185), while the second term is
zero by the first Penrose equation, so (1.188) is indeed a solution to (1.181) if the
data are consistent. Furthermore, (1.188) must be the most general solution to
(1.181); we cannot add any vector in Umeas to this f̂ and still have it satisfy (1.181),
and [IN −H+H]y is the general form for a vector in Unull.

A way of selecting among the various solutions specified by (1.188) will be
given in Sec. 1.7.5.

Unique, exact solutions Since H has a null space unless R = N, and we have already
said that we must have R = M for any solution to exist in general, a unique, exact
solution to (1.181) exists for all g only if R = M = N. In this case H is a square,
nonsingular matrix, and the unique solution is given by

f̂ = H−1g , (R = M = N) . (1.190)

Only rarely will the conditions necessary for the applicability of (1.190) be satisfied
in real imaging problems.

1.7.4 Least-squares solutions

The method of least squares is a powerful and widely applicable method for drawing
inferences from incomplete or noisy data (Lawson and Hanson, 1995). As with so
much of the mathematics in this book, this method originated with Gauss. In 1801
an astronomer named G. Piazzi briefly observed and then lost the asteroid we now
know as Ceres. Thinking it was a new planet, Piazzi and other astronomers tried
in vain to locate this elusive heavenly body. Gauss assumed that it travelled in an
elliptical orbit, and he found the parameters of the ellipse by least-squares fitting
to Piazzi’s data. He astounded the astronomy community, not only by telling them
where to find the asteroid, but also by predicting its future path. He then waited
another eight years before he revealed how he had done it (Campbell and Meyer,
1979).

In this section we discuss least-squares solutions to (1.181) for the case R < M
where no exact solution exists. We shall refer to the difference g − Hf̂ as the
residual vector or simply the residual.12 It represents the amount by which a

12Do not confuse the residual with the measurement error ε . The latter is the difference between
the data g and the image of the unknown vector f while the former is the difference between the
data and the image of the estimate.
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particular estimate f̂ fails to reproduce the data when imaged through H. A least-
squares solution to (1.181) is one for which the L2 norm of the residual vector is
the smallest. Formally, we write

f̂LS = argmin
f̂

||g−Hf̂ ||2 . (1.191)

This notation means that f̂LS (where LS denotes least-squares) is the f̂ argument
for which the norm is minimum. Since we are using the L2 norm, this means that
the sum of the squares of the components of the residual is minimum. A statistical
justification for the least-squares solution will be given in Chap. 13, but for now we
merely investigate its mathematical properties.

Normal equation To find an explicit equation for f̂LS , we write the squared norm
in (1.191) as the scalar product of the residual with itself. Various equivalent forms
are:

||g−Hf̂ ||2 = (g−Hf̂ ,g−Hf̂ )

= (g,g)− (Hf̂ ,g)− (g,Hf̂ ) + (Hf̂ ,Hf̂ )

= ||g||2 − 2Re(g,Hf̂ ) + ||Hf̂ ||2

= ||g||2 − 2Re(H†g, f̂ ) + (H†Hf̂ , f̂ ) , (1.192)

where we have made use of several properties of scalar products and adjoints (see
Secs. 1.1.4 and 1.3.5), and Re denotes real part. If H and f̂ are real, the Re is
irrelevant.

In some problems there may be constraints on the possible values of f̂n; for
example, the values may have to be nonnegative if f represents an irradiance or
other intrinsically nonnegative quantity. Such constraints are discussed in detail in
Chap. 15, but for now we assume that each f̂n can take on any value in (−∞,∞).

With that assumption, the least-squares solution must occur at a point in U

where all derivatives of the residual norm vanish. If a component f̂n can be complex,
the residual norm is a function of 2N variables (the real and imaginary parts of f̂n
for n = 1, ..., N), so 2N derivatives must vanish. It is convenient, however, to
take f̂n and its complex conjugate f̂ ∗

n as the independent variables instead of the
real and imaginary parts. These quantities can be regarded as components of two
independent vectors f̂ and f̂ †. Rules for differentiating with respect to these vectors
are discussed in App. A, Sec. A.9.5. Applying these rules to (1.192), we find13

∂

∂f̂ †
||g−Hf̂ ||2 =

[

−H†g+H†Hf̂
]†

. (1.193)

For a least-squares solution, this vector derivative must vanish, which requires
that

H†Hf̂ = H†g . (1.194)

13If all quantities are real, we can forgo the subtleties of differentiating with respect to a complex
vector and use the conventions of Sec. A.9.2 rather than those of Sec. A.9.5. The result is that
adjoint is replaced by transpose and an additional factor of 2 appears in (1.193). The factor of 2
can be cancelled in (1.194) when the derivative is set to zero.
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This important result is called the normal equation. Solving the normal equation
is equivalent to finding a least-squares solution to the original equation, (1.181).
A least-squares solution to (1.181) must satisfy (1.194). The same conclusion is
reached by differentiating (1.192) with respect to f̂ rather than f̂ †.

Existence and uniqueness We can now pose two important questions: Does a least-
squares solution to (1.181) exist, and is it unique?

The answer to the first question is straightforward. If no f̂ drives the norm
of the residual to zero, then that norm must have some minimum value, and an
estimate f̂ for which it attains the minimum value is a least-squares solution. In
other words, there is always at least one exact solution to (1.194). One way to
think about this result is that the modified data H†g are always consistent. The
operator H† wipes out the inconsistent part of g since the inconsistency space is
precisely the null space of H†.

Next consider the second question. The least-squares solution is certainly not
unique if H has a null space (R < N). If it does, we can generate an infinite
set of least-squares solutions simply by adding arbitrary null vectors fnull. Since
Hfnull = 0, the norm of the residual in (1.191) is unaffected by the null vectors. If
the residual achieves its minimum norm for some f̂, it must have exactly the same
norm for f̂ + fnull.

Another way to make the same point is to note that H†H is singular if R < N.
The null space of H†H is the same as the null space of H, so if (1.194) holds for
some f̂, it holds also for f̂ + fnull. Thus the least-squares solution is unique if and
only if H†H is nonsingular or R = N, in which case the solution is given by

f̂LS =
(

H†H
)−1

H†g , (R = N) . (1.195)

General least-squares solutions We have seen that any f̂ that minimizes ||g−Hf̂ ||
also satisfies the normal equation (1.194). As we shall now show, the general solution
to (1.194) has exactly the same form as (1.188):

f̂LS = H+g+
[

IN −H+H
]

y , (1.196)

where again y is an arbitrary vector in U. Operating on f̂LS with H†H yields

H†Hf̂LS = H†HH+g+
[

H†H−H†HH+H
]

y . (1.197)

From (1.154),H†HH+= H†, and from the first Penrose equationH†HH+H= H†H,
so the right-hand side of (1.197) reduces toH†g, proving that (1.196) indeed satisfies
(1.194). Moreover, it must be the most general solution. We cannot add any vector
in Umeas and still have (1.194) satisfied, and we have already added the most general
vector in Unull.

1.7.5 Minimum-norm solutions

There is an interesting analogy between (1.188) or (1.196) and the general solution
to an inhomogeneous differential equation. The first term, H+g, is a particular
solution to (1.181) or (1.194), while the second term is the general solution to the
appropriate homogeneous equation, Hf̂ = 0 or H†Hf̂ = 0. What we are here calling
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a null vector would be called a solution to the homogeneous equation in the theory of
differential equations. That solution would usually be adjusted to satisfy boundary
conditions, and we must look for an analogous subsidiary condition in our problem.

Since the various solutions in (1.188) or (1.196) differ by null vectors of H†H,
one approach is to choose the solution that contains no such null vector, i.e., one
that lies entirely in measurement space. Since the measurement and null spaces are
orthogonal, the norm of the solution is given by

||f̂ ||2 = ||f̂meas||2 + ||f̂null||2 . (1.198)

The first term on the right has the same value for all solutions. Since the second
term is nonnegative, ||f̂ || is a minimum if ||f̂null|| = 0. An exact solution with
no null component is called a minimum-norm exact solution and denoted f̂MN .
Similarly, a least-squares solution with no null component is called a minimum-
norm least-squares (MNLS) solution and denoted f̂MNLS . The norm referred to
here should not be confused with the one given in (1.191), where a least-squares
solution is defined as the one with minimum norm of the residual. The norm implied
in the designation MN is the norm of f̂ itself, not the norm of g−Hf̂.

To apply the minimum-norm condition to (1.181), we note that H+g lies in
Umeas and [IN − H+H]y lies in Unull. The choice of y that minimizes the norm
of f̂ is the one that makes the null component vanish, namely, y = 0. Thus the
minimum-norm solution to (1.181) for consistent data is

f̂MN = H+g . (1.199)

Since the general least-squares solution has the same structure as the general
exact solution, the MNLS solution is also the pseudoinverse solution:

f̂MNLS = H+g . (1.200)

Since (1.199) and (1.200) have the same form, we can simply forget about the
distinction between consistent and inconsistent data. In either case we can seek the
unique, minimum-norm solution H+g.

Explicit solutions in the SVD domain Since the eigenvectors of HH† form a basis in
V, we can represent an arbitrary data vector g as (see Table 1.1)

g =
M
∑

k=1

βkvk , (1.201)

where
βk = v

†
kg . (1.202)

Similarly, an arbitrary estimate of the object can be represented as

f̂ =
N
∑

k=1

α̂kuk , (1.203)

where
α̂k = u

†
k f̂ . (1.204)
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With the SVD representation for H+ and the orthonormality relations, the expan-
sion coefficients for f̂MN or f̂MNLS are given by

α̂k =

{

βk/
√
µk if µk != 0

0 if µk = 0
. (1.205)

The coefficients in the estimate are thus obtained by an operation called inverse
filtering, where each βk is divided by

√
µk, no matter how small µk is. The process

is truncated at k = R, so we never divide by zero, but we can divide by a very small
number in some cases.

With these coefficients, the explicit form of the minimum-norm estimates is

f̂MN = f̂MNLS =
R
∑

k=1

βk√
µk

uk . (1.206)

An algorithm to obtain these estimates is:

(a) Perform an SVD on H, obtaining {uk,vk, µk};

(b) Use the vectors {vk} to compute {βk};

(c) Compute {α̂k, k = 1, ..., R} via (1.205);

(d) Form the weighted sum in (1.203) to compute f̂.

Unfortunately this algorithm is not practical for large matrices. If there are more
than a few thousand elements (pixels, say) in the vectors f and g, the SVD cannot
be performed on current computers. In such cases we can use iterative algorithms,
to be introduced in Sec. 1.7.6.

Noise amplification Another serious problem with the SVD algorithm is that (1.205)
requires dividing by all nonzero singular values, no matter how small they may be.
This step has the effect of amplifying the errors in data coefficients βk for which
µk is small. A full treatment of this problem must wait until we have established
statistical models for the noise, but a simple analysis will illustrate the problem.

If we represent the actual vector f (not its estimate) by

f =
N
∑

k=1

αkuk , αk = u
†
kf , (1.207)

and the noise by

ε =
M
∑

k=1

γkvk , γk = v
†
kε , (1.208)

then the expansion coefficients for g are given by [cf. (1.161)]

βk =
√
µk αk + γk . (1.209)

Substituting (1.209) into (1.206), we find

f̂MN = f̂MNLS =
R
∑

k=1

[

αk +
γk√
µk

]

uk = fmeas +
R
∑

k=1

γk√
µk

uk , (1.210)
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where we have used (1.165) in the last step.
Were it not for the noise, the pseudoinverse solution would thus exactly repro-

duce fmeas. Noise in the data causes error, of course, and (1.210) shows that the
error can become very large if µk is near zero. This large noise amplification for
small singular values is the major drawback to pseudoinverse solutions. Methods of
dealing with this problem will be discussed in Chap. 15.

1.7.6 Iterative calculation of pseudoinverse solutions

In this section we discuss an important iterative technique for finding the pseudoin-
verse solution of a system of linear equations. This method will work when the
matrix is too large for direct SVD computation, but it does not actually yield the
pseudoinverse matrix; instead, for any given g, it computes H+g iteratively. If we
actually knew H+, computation of H+g would be just a matrix-vector multiply, but
the iterative methods have to be run anew for each g.

The starting point for developing an iterative algorithm is the limiting repre-
sentation (1.135). If H is the M×N matrix H, that representation can be rewritten
as

H+ = lim
η→0+

[

H†H+ ηI
]−1

H† = lim
η→0+

[I−Ω]−1
H† , (1.211)

where I is the N ×N identity matrix and Ω is an N ×N Hermitian matrix given
by

Ω = (1− η)I−H†H . (1.212)

From App. A, we know that we can express [I−Ω]−1 by a Neumann series.
Provided the series converges uniformly, we can write [see (A.59)]

[I−Ω]−1 =
∞
∑

j=0

Ωj . (1.213)

Convergence To determine the conditions under which the Neumann series con-
verges, we use the representations for I and H†H from Table 1.2 and write Ω in
SVD form as

Ω = (1− η)I−H†H =
N
∑

n=1

(1− η − µn)unu
†
n . (1.214)

The SVD representation for the jth power of a matrix is obtained simply by raising
each coefficient to the jth power:

Ωj =
N
∑

n=1

(1 − η − µn)
junu

†
n . (1.215)

The proof that (1.215) is correct makes use of the orthonormality of the {un} j
times.

Now consider the effect of this matrix operating on an arbitrary vector f in U.
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The squared norm of Ωjf is

||Ωjf ||2 =
∣

∣

∣

∣

N
∑

n=1

(1− η − µn)
junu

†
n

N
∑

m=1

αmum

∣

∣

∣

∣

2

=
∣

∣

∣

∣

N
∑

n=1

(1− η − µn)
jαnun

∣

∣

∣

∣

2
=

N
∑

n=1

|1− η − µn|2j |αn|2 . (1.216)

By the triangle inequality (see Sec. 1.1.2),

∣

∣

∣

∣

J
∑

j=0

Ωjf
∣

∣

∣

∣ ≤
J
∑

j=0

||Ωjf || =
J
∑

j=0

[

N
∑

n=1

|1− η − µn|2j |αn|2
]

1
2

. (1.217)

But

|1− η − µn|2j ≤ max
n

|1− η − µn|2j , (1.218)

so

∣

∣

∣

∣

J
∑

j=0

Ωjf
∣

∣

∣

∣ ≤
J
∑

j=0

max
n

|1− η − µn|j
[

N
∑

n=1

|αn|2
]

1
2

= ||f ||max
n

J
∑

j=0

|1− η − µn|j . (1.219)

The remaining sum over j, an ordinary geometric series, converges absolutely if

|1− η − µn| < 1 . (1.220)

Small singular values cause no problem since µn ≥ 0 and η > 0. The geometric
series converges for all n if the maximum singular value satisfies

µmax < 2− η . (1.221)

If (1.221) is satisfied, we can pass to the limit J → ∞, and (1.219) becomes

∣

∣

∣

∣

∞
∑

j=0

Ωjf
∣

∣

∣

∣ ≤ ||f ||max
n

∞
∑

j=0

|1− η − µn|j = max
n

||f ||
1− |1− η − µn|

. (1.222)

In the limit η → 0, the right-hand side is finite provided µmax < 2. Thus, under
this condition, the pseudoinverse can be represented as

H+ = lim
η→0+

∞
∑

j=0

ΩjH† , (1.223)

where Ω is given by (1.212). This form for H+ will be manipulated into an iterative
algorithm below.
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A trick Suppose, however, that the condition (1.221) is not satisfied. With a simple
trick, we can still use the Neumann series. Define a new matrix H′ by

H′ = CH , (1.224)

where C is a real constant. All of the eigenvalues µn are scaled by |C|2, so if C is
chosen such that |C|2µmax < 2, the Neumann series for H′ converges, and (1.223)
becomes

[H′]
+
= lim

η→0+

∞
∑

j=0

[Ω′]
j
[H′]

†
, (1.225)

where Ω′ is defined like Ω but with H′ in place of H. The pseudoinverse of the
original H is then found from

[H′]
+
=

1

C
H+ . (1.226)

This trick can be used even if µmax is not known. If the series diverges, simply
pick a C < 1, scale the matrix by (1.224), and try again. If it still diverges, use a
smaller C. When it converges, |C|2µmax will be less than 2.

Landweber algorithm In order to convert the Neumann series into an iterative al-
gorithm, we define partial sums of the series as

f̂ (k) = lim
η→0+

k
∑

j=0

ΩjH†g . (1.227)

If the series converges, then

f̂ (∞) = H+g = f̂MNLS . (1.228)

Now consider f̂ (k+1), given by

f̂ (k+1) = lim
η→0

k+1
∑

j=0

ΩjH†g = lim
η→0







H†g+
k+1
∑

j=1

ΩjH†g







. (1.229)

If we let m = j − 1, this equation becomes

f̂ (k+1) = lim
η→0

{

H†g+
k
∑

m=0

Ωm+1H†g

}

= lim
η→0

{

H†g+Ωf̂ (k)
}

. (1.230)

We can now insert the definition of Ω from (1.212) and pass to the limit η → 0; the
result is

f̂ (k+1) = f̂ (k) +H†
[

g−Hf̂ (k)
]

. (1.231)
Thus the (k+1)th partial sum (or estimate of f ) can be calculated from the kth by
adding a correction term H†

[

g−Hf̂ (k)
]

. The algorithm converges under the same
conditions as required for the convergence of the Neumann series.

Moreover, if the algorithm converges at all, it converges to f̂MNLS , provided
the initial estimate contains no null functions. One way to see this is to note
that the correction term is zero if f̂ (k) satisfies the normal equation, (1.194), so the
convergent estimate is at least an LS solution. The MN part comes about since
each correction step makes use of H†, an operator that erases null functions. If the
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initial estimate is chosen by (1.227) with k = 0, it is given by f̂ (0) = H†g ; since
this vector contains no null functions, neither will any subsequent estimates, and
the convergence point will be f̂MNLS .

The algorithm described by (1.231) has been frequently rediscovered in various
communities. In image processing it is known as the van Cittert or Landweber
algorithm (Landweber, 1951), and in tomography it is called SIRT (simultaneous
iterative reconstruction technique). As we shall see below, it is also closely related
to the Jacobi method from numerical analysis.

Other iterative methods One approach (Golub and van Loan, 1989) to devising a
whole family of iterative pseudoinversion algorithms is to define a splitting of the
matrix H†H by

H†H = A−B , (1.232)

where A can be any N × N matrix so long as A−1 exists. Some simple matrix
algebra is then used to rewrite the normal equation (1.194):

(A−B)f̂ = H†g ; (1.233)

Af̂ = H†g+Bf̂ = H†g+Af̂−H†Hf̂ ; (1.234)

f̂ = f̂ +A−1
[

H†g−H†Hf̂
]

. (1.235)

So far, this equation is algebraically equivalent to (1.194); to convert it into an
iterative algorithm, we assume that f̂ on the right-hand side refers to the current
estimate f̂ (k), and that the entire right-hand side is then the rule for forming the
next estimate f̂ (k+1). This procedure, known as a fixed-point iteration, is discussed
in more detail in Sec. 15.4. Here it yields

f̂ (k+1) = f̂ (k) +A−1
[

H†g−H†Hf̂ (k)
]

. (1.236)

If the algorithm converges, then
[

H†g−H†Hf̂ (k)
]

is zero and (1.194) is satis-
fied. We can thus write

f̂ (∞) = f̂LS , (1.237)

regardless of the choice of A, so long as the algorithm converges. It does not
follow, however, that f̂ (∞) = f̂MNLS = H+g since the matrix A−1 can introduce
null functions. It can be shown that (1.231) does indeed converge so long as the
maximum eigenvalue of A−1B is less than 1 (Golub and van Loan, 1989, p. 508).

Different iterative algorithms are generated by different choices of A. If A = I

and B = I − H†H, then (1.236) reverts to the Landweber algorithm. A classical
method called the Jacobi iteration is obtained by letting A be a diagonal matrix
with the same diagonal elements as H†H, or

Amn =
[

H†H
]

mn
δmn . (1.238)

The resulting iteration rule, in component form, is

f̂ (k+1)
n = f̂ (k)

n +
1

Ann

[

H†g−H†Hf̂ (k)
]

n

=
1

Ann

[

(H†g)n −
n−1
∑

m=1

(H†H)nmf̂ (k)
m −

N
∑

m=n+1

(H†H)nmf̂ (k)
m

]

. (1.239)
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It is only the normalizing factor 1/Ann that distinguishes the Jacobi and Landweber
algorithms.

Another classical method, the Gauss-Seidel iteration, corresponds to taking
A as the lower-triangular part of H†H, i.e.,

Amn =

{ [

H†H
]

mn
if n ≤ m

0 if n > m
. (1.240)

The Gauss-Seidel iteration rule is

f̂ (k+1)
n =

1

Ann

[

(H†g)n −
n−1
∑

m=1

(H†H)nmf̂
(k+1)
m −

N
∑

m=n+1

(H†H)nmf̂ (k)
m

]

. (1.241)

The only difference between Jacobi and Gauss-Seidel is that the latter makes use

of an updated component f̂ (k+1)
m as soon as it is available, while the former waits

until all components have been computed and then updates the entire vector f̂ (k)

to f̂ (k+1) simultaneously [compare the first sums in (1.241) and (1.239)].
Like the Landweber algorithm, Gauss-Seidel has been frequently rediscovered.

It was proposed by Kaczmarz (1937), who proved its convergence for nonsingular
matrices. It was rediscovered in a tomography context by Gordon et al. (1970),
who gave it the name ART (algebraic reconstruction technique), and it has been
widely used in that field (and widely called by that name) ever since.

There are many other iterative algorithms for solving (1.181) or (1.194). For
very large and sparse matrices, an important class of algorithms (of which ART is
an example) is called row-action methods. The distinguishing features of these
methods are that they do not make any modifications to the original matrix (unlike
Gaussian elimination, for example), that they require access to only a single row
of the matrix at a time, and that, when a new iterate f̂ (k+1) is computed, only
the immediately preceding iterate f̂ (k) is required. For a comprehensive survey of
row-action algorithms, see Censor (1981).

1.8 REPRODUCING-KERNEL HILBERT SPACE

We close this chapter with a discussion of a kind of vector space called a reproducing-
kernel Hilbert space, which is particularly useful for representing functions that
are smooth in some sense. Since smooth functions are very important in imaging
applications, reproducing-kernel Hilbert spaces will arise in many different contexts
in this book.

A formal definition of a reproducing-kernel Hilbert space is that it is a function
space in which each function can be evaluated at a point by use of a bounded lin-
ear functional (Weinert, 1983; Wahba, 1990; Daubechies, 1992; Zayed, 1993). Our
most familiar function space, L2(R), does not have this property since it contains
discontinuous or even mildly singular functions. In fact, functions in L2(R) are
not necessarily even defined pointwise. There are, however, many ways to select a
subspace of L2(R) that is a reproducing-kernel Hilbert space.

By the Riesz representation theorem (1.24), a bounded linear functional can
be written as a scalar product. Thus, in a reproducing-kernel Hilbert space there
exists a vector h(x′) such that, for all f in the space,

(h(x′), f )rk = f(x′) , (1.242)
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where (·, ·)rk denotes a scalar product in the space. Here h(x′) and f are both
vectors in the space, though h(x′) is characterized by the scalar parameter x′. Any
vector in a function space can be identified with a function; in (1.242), f is identified
with f(x) and h(x′) is identified with the function of x denoted h(x, x′), with x′

regarded as a fixed parameter. To fully specify the reproducing-kernel Hilbert space,
we must define the scalar product and find the kernel h(x, x′) such that (1.242) is
satisfied.

1.8.1 Positive-definite Hermitian operators

We can start with a compact, positive-definite Hermitian operator A on L2(R) and
use it to identify the subspace of L2(R) that constitutes a reproducing-kernel Hilbert
space related to the operator. Since A is compact, it satisfies an eigenvalue equation
like (1.67) with a discrete spectrum {λn, n = 1, ...,∞) , and the eigenvectors {ψn}
form an orthonormal basis in L2(R). Thus any vector f in L2(R) can be expressed
as [cf. (1.63)]

f =
∞
∑

n=1

αnψn , αn = ψ†
nf . (1.243)

An equivalent representation of f as a function rather than as an abstract
vector is

f(x) =
∞
∑

n=1

αn ψn(x) , αn =

∫ ∞

−∞

dx ψ∗
n(x) f(x) . (1.244)

The L2 norm of f is

||f ||2 =

[

∞
∑

n=1

|αn|2
]

1
2

=

[

∞
∑

n=1

∣

∣

∣

∫ ∞

−∞

dx ψ∗
n(x) f(x)

∣

∣

∣

2
]

1
2

=

[
∫ ∞

−∞

dx |f(x)|2
]

1
2

,

(1.245)
where the last step follows from (1.62) with the recognition that the unit operator
in L2 has the kernel δ(x− x′).

To construct a reproducing-kernel Hilbert space associated with A, we define
the norm in the space as

||f ||2rk =
∞
∑

n=1

1

λn
|αn|2 . (1.246)

Since we have assumed that A is positive-definite, none of the eigenvalues is zero for
finite n, but they may approach zero rapidly as n → ∞. It is possible for the sum
in (1.246) to diverge if |αn|2 falls off more slowly with increasing n than λn does.
A vector f (or equivalently, a function f(x)) is said to be in this reproducing-kernel
Hilbert space if ||f ||rk is finite.

For a normed space to be a Hilbert space, the norm must be derivable from a
scalar product. A suitable definition of scalar product is

(f1, f2)rk =
(

f1,A
−1f2

)

2
=

(

A−1f1, f2
)

2
, (1.247)

where (·, ·)2 denotes the L2 scalar product. The equality of the two L2 scalar prod-
ucts in (1.247) holds because A−1 is a Hermitian operator in L2.
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With (1.87), it is straightforward to show that the norm (1.246) is compatible
with the scalar product (1.247) in the sense that

||f ||2rk = (f , f )rk . (1.248)

The kernel for this reproducing-kernel Hilbert space is simply the kernel of A
when it is expressed as an integral operator. Combining (1.25) and (1.86), we find

[Af ](x) =

∫ ∞

−∞

dx′ h(x, x′) f(x′) =
∞
∑

n=1

λn(ψn, f )ψn(x)

=

∫ ∞

−∞

dx′

[

∞
∑

n=1

λn ψn(x)ψ
∗
n(x

′)

]

f(x′) . (1.249)

Hence,

h(x, x′) =
∞
∑

n=1

λn ψn(x)ψ
∗
n(x

′) , (1.250)

which is the functional counterpart of the spectral decomposition (1.86). The cor-
responding vector in the reproducing-kernel Hilbert space is given by

h(x′) =
∞
∑

n=1

[λn ψ
∗
n(x

′)]ψn , (1.251)

where the quantity in square brackets is the expansion coefficient.
Next consider the scalar product, defined as in (1.247), between h(x′) and an

arbitrary f in the reproducing-kernel space. We have

(h(x′), f )rk =
(

A−1 h(x′), f
)

2
. (1.252)

But, from (1.87), (1.89) and (1.251), we find

A−1 h(x′) =
∞
∑

n=1

ψ∗
n(x

′)ψn . (1.253)

After some algebra of the sort that by now should be standard, we find

(h(x′), f )rk = f(x′) , (1.254)

so (1.242) is satisfied.

1.8.2 Nonnegative-definite Hermitian operators

So far, we have considered reproducing-kernel Hilbert spaces based on positive-
definite operators, but (1.250) and (1.251) suggest a more general approach. Con-
sider an operator B defined by

B =
N
∑

n=1

µnunu
†
n , (1.255)
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where {un, n = 1, ..., N} is any orthonormal set in L2(R) and {µn} is any set of
positive real numbers. The operator B constructed in this way is nonnegative-
definite and Hermitian. Since N is not infinite, however, B is singular in L2(R). For
the same reason, {un} is not a basis in L2(R).

The reproducing-kernel Hilbert space associated with this operator is the ND
subspace of L2(R) spanned by {un, n = 1, ..., N}. Any vector in this space can be
represented as

f =
N
∑

n=1

βnun , βn = u†
nf . (1.256)

The norm is now defined by

||f ||2rk =
N
∑

n=1

1

µn
|βn|2 . (1.257)

None of the factors |βn|2 can be infinite since f is also in L2(R), none of the µn is
zero by definition, and there is a finite number of terms, so the norm in (1.257) is
finite for any f in the space.

The corresponding scalar product is given by

(f1, f2)rk =
N
∑

n=1

1

µn
β∗
1nβ2n , (1.258)

where β1n and β2n are expansion coefficients for f1 and f2, respectively. The rk
scalar product can be related to an L2 scalar product by (Helstrom, 1995)

(f1, f2)rk = (f1, f̃2)2 , (1.259)

where f̃2 is any vector in L2(R) related to f2 by

f2 = B f̃2 . (1.260)

Since B is singular in L2(R), there will be an infinity of vectors in that space that
can serve as f̃2; it does not matter which we choose since the scalar product of B f̃2
with an f1 in the span of {un} will not be affected by null vectors of B in f̃2.

The reproducing kernel of the space associated with B is given by

h(x, x′) =
N
∑

n=1

µn un(x)u
∗
n(x

′) . (1.261)

The relations in (1.258) – (1.261) agree with those given earlier if N → ∞ and B is
nonsingular.

An important special case of (1.258) – (1.261) is whereN is finite and all µn = 1.
In this case, B is the projector on the ND subspace spanned by {un, n = 1, ...,N }
and the reproducing kernel is the kernel of the projection operator.
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Table 1.1 SVD Representations of Vectors

f =
N
∑

n=1

αnun , αn = u†
nf

f̂ =
N
∑

n=1

α̂nun , α̂n = u†
nf̂

g =
M
∑

k=1

βkvk , βk = v
†
kg

ε =
M
∑

k=1

γkvk , γk = v†
kε

vn =
1

√
µn

Hun , (µn != 0)

fmeas =
R
∑

n=1

αnun , fnull =
N
∑

n=R+1

αnun

(where f ≡ fmeas + fnull and Hfnull ≡ 0)

g con =
R
∑

k=1

βkvk , g incon =
M
∑

k=R+1

βkvk

(where g ≡ g con + g incon and H†g incon ≡ 0)
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Table 1.2 SVD Representations of Operators

H†H=
R
∑

k=1

µkuku
†
k HH† =

R
∑

k=1

µkvkv
†
k

H=
R
∑

k=1

√
µk vku

†
k H† =

R
∑

k=1

√
µk ukv

†
k

[

H†H
]−1

=
N
∑

k=1

1

µk
uku

†
k (provided N = R)

[

HH†
]−1

=
M
∑

k=1

1

µk
vkv

†
k (provided M = R)

H+ =
R
∑

k=1

1
√
µk

ukv
†
k (Moore-Penrose pseudoinverse)

Pmeas = H+H=
R
∑

k=1

uku
†
k (Projector of f onto measurement space)

IU =
N
∑

k=1

uku
†
k (Identity operator in U)

Pnull = IU −H+H=
N
∑

k=R+1

uku
†
k (Projector of f onto null space)

Pcon = HH+ =
R
∑

k=1

vkv
†
k (Projector of g onto consistency space)

IV =
M
∑

k=1

vkv
†
k (Identity operator in V)

Pincon = IV −HH+ =
M
∑

k=R+1

vkv
†
k (Projector of g onto inconsistency space)



2
Dirac Delta and Other
Generalized Functions

Optical imaging systems are often experimentally characterized by imaging a small,
bright light source. If the dimensions of this source are much smaller than the
spatial resolution capability of the imaging system, the object is essentially a math-
ematical point. Such an object is called a point source, and its image is the point
spread function or PSF of the system. A more general source can be decomposed
into a collection of points; if the system is linear, the response to the general object
is obtained by adding up the responses to the individual points.

The mathematical construct that corresponds to a physical point source is the
delta function, introduced by P. A. M. Dirac in quantum mechanics. There are
three basic ways of defining a delta function. The first is an intuitive approach,
where we simply postulate a function that is zero except at a single point, but in-
finite at that point in such a way that the integral of the function is constrained
to be unity. A second, somewhat better approach is to consider a sequence of well-
behaved functions, all of which integrate to unity. The width of these functions
tends to zero and the amplitude tends to infinity in order to hold the integral con-
stant. The delta function is defined as the limit of this sequence.

Both of these approaches leave many mathematical questions unanswered.
They do not make it clear just when the definition is valid or how the delta function
can legitimately be manipulated in practice. The third approach, which puts the
delta function on a firmer mathematical footing, requires the theory of distribu-
tions, originally developed by Laurent Schwartz (1950). We give a brief summary
of this theory in the next section, but then make use of all three approaches to delta
functions in what follows. The hope is that this strategy will allow delta functions
to be understood at several different levels of rigor. The reader who is content with
a less rigorous development can jump to Sec. 2.2 without loss of continuity.

63
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2.1 THEORY OF DISTRIBUTIONS

2.1.1 Basic concepts

In brief, a distribution is a linear, continuous functional that maps a function t(x)
to a real or complex number. For simplicity, we assume initially that t(x) is a real,
scalar-valued function of a single real variable x. We have seen in Chap. 1 that the
general form of a bounded, continuous, linear functional on a Hilbert space is given
by the Riesz representation theorem, (1.24), as

Φ{t(x)} =

∫ ∞

−∞

dx g(x) t(x) , (2.1)

where g(x), known as the kernel of the functional, must lie in the Hilbert space
(Gohberg and Goldberg, 1981, p. 61). If the Hilbert space is L2, g(x) must be
square-integrable.

If we give up on the requirement that the kernel lie in a Hilbert space, we can
define a wider class of functionals known as distributions. When we do so, we shall
always write the distribution in the Riesz form, like (2.1), but then g(x) need not be
a square-integrable function or even a function at all in the conventional sense. All
we have to do is specify the mapping rule of the functional, and that, in turn, will
give meaning to the kernel function, which we then term a generalized function.

As a simple example, consider the function g(x) = 1/x. We might be tempted
to define a functional using this kernel as

Φ1/x{t(x)}
?
=

∫ ∞

−∞

dx
t(x)

x
, (2.2)

but this integral is not well defined (unless t(0) = 0) because of the singularity at
x = 0. Converting the integral to a contour integral in the complex plane, we have
three options in dealing with this pole. We can indent the contour above the pole,
indent it below the pole, or take the Cauchy principal value (see App. B) at the
singularity. Since these three options can lead to three different numerical values
for the integral, we must make an arbitrary choice. In some practical applications,
the physics of the situation dictates the use of the Cauchy principal value, and in
that case it is useful to define a functional by

Φ1/x{t(x)} = lim
ε→0

{
∫ −ε

−∞

dx
t(x)

x
+

∫ ∞

ε
dx

t(x)

x

}

. (2.3)

Now we have a clearly specified functional, provided that t(x) is sufficiently
well behaved that the limit exists. This functional gives meaning to the generalized
function P{1/x}, where P denotes the Cauchy principal value, and we can write

Φ1/x{t(x)} ≡
∫ ∞

−∞

dx t(x)P
{

1

x

}

, (2.4)

where the right-hand side must be interpreted according to (2.3). We have thus
succeeded in defining a distribution and, simultaneously, a generalized function. It
is important to note, however, that the generalized function is defined only by its
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action within an integral, and then only when certain restrictions are replaced on
the function t(x) that appears in the integrand.

One caution regarding terminology: The distinction between a distribution (a
functional) and its kernel (a generalized function) is often blurred. For example, it is
often said that a delta function is a distribution. What this means is that the delta
function is a generalized function that can be used as the kernel in a functional.

2.1.2 Well-behaved functions

As the example above shows, definition of a distribution as a functional places some
restrictions on the functions in the domain of the functional. For the distribution
associated with P{1/x}, the requirement on t(x) is that the limit in (2.3) exist.

Different kinds of distribution require different properties for the functions
t(x). The strongest requirements are that the nonzero values of t(x) be confined to
a finite interval a < x < b and that the function and all of its derivatives be bounded
and continuous within this region. If these conditions are satisfied, we say that t(x)
is infinitely differentiable and has compact support. Such functions are called test
functions. The space of all test functions with support (a, b) will be denoted by
T(a, b). Because t(x) is bounded and has compact support, it necessarily lies in
L2(a, b), but not all functions in L2(a, b) are test functions, so T(a, b) is a subspace
of L2(a, b).

It is actually fairly difficult to construct test functions since infinitely dif-
ferentiable functions such as polynomials or Gaussians tend not to have compact
support. One way to form test functions meeting the necessary conditions is to use
as a building block the function h(x) defined by (Richards and Youn, 1990)

h(x) =

{

exp(−1/x) if x > 0
0 if x ≤ 0

, (2.5)

which is plotted in Fig. 2.1a. It is not difficult to show that all derivatives of this
function exist everywhere, even at the transition point x = 0.

Amusingly, in the theory of functions of a complex variable, exp(−1/z) is the
archetype of a function that has an essential singularity (see App. B). Within an
arbitrarily small radius of the origin in the complex plane, exp(−1/z) takes on all
finite values an infinite number of times. The complex function exp(−1/z) is as
ill-behaved as a function can be, while the real function exp(−1/x) is the paragon
of good behavior.

By use of h(x) we can construct a test function on (a, b) as

t(x) = h

(

x− a

b− a

)

h

(

b− x

b− a

)

. (2.6)

As required, this function vanishes unless x is in the interval (a, b), and it is infinitely
differentiable within this interval (see Fig. 2.1b). More general test functions can
be constructed by superimposing shifted and scaled versions of the function defined
by (2.5) (see Richards and Youn, 1990, Chap. 1).
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Fig. 2.1 (a) Plot of the building-block function h(x) from (2.5); (b) plot of
the test function t(x) from (2.6), with (a, b) = (−4, 4).

The requirement of compact support is often onerous, and it is useful to define
distributions based on infinitely differentiable functions without compact support.
Following Lighthill (1958), we define a good function as one that is everywhere
differentiable any number of times and such that it and all of its derivatives vanish
faster than |x|−N for all N as x → ±∞. In other words, t(x) is a good function if
all derivatives exist and

lim
x→±∞

{

|x|N t(x)
}

= 0 for all N . (2.7)

An example of a good function is the Gaussian exp(−πx2). Good functions
are also called open-support test functions (Richards and Youn, 1990) or Schwartz
functions (Strichartz, 1994). The space of all good functions is often called Schwartz
space.

A fairly good function (Lighthill, 1958) is infinitely differentiable but may be
unbounded as x → ±∞. The requirement is that it must not blow up faster than
some power of x. Specifically, t(x) is a fairly good function if

lim
x→±∞

{

|x|−N t(x)
}

= 0 for some N . (2.8)

Any polynomial is a fairly good function, since it is infinitely differentiable and
(2.8) is satisfied for N greater than the degree of the polynomial, but exp(x) is not
a fairly good function. Fairly good functions are also called test functions of slow
growth.

2.1.3 Approximation of other functions

Many functions of practical interest do not fit into any of the categories of well-
behaved functions defined above. In optics, for example, the transmission of light
through a rectangular slit is described by the rect function, defined by

rect
( x

L

)

≡
{

1 if |x| < L/2
0 if |x| > L/2

. (2.9)
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This function has compact support but is not continuous at x = ±L/2, so it is not
a test function. As another example, the Heaviside unit step function, defined by

step(x) ≡
{

1 if x > 0
0 if x < 0

, (2.10)

satisfies (2.8) but is not differentiable at x = 0, so it is not a fairly good function.
Nevertheless, these and other functions of practical importance can be approx-

imated arbitrarily closely by test functions or good functions, depending on their
behavior at infinity, so the restrictions of differentiability are not so demanding as
might appear (Zemanian, 1965, p. 3, 1987).

To illustrate this point, we note that the building-block function h(kx) is a
fairly good function for all k. (In fact, it is the best of the fairly good functions
since it remains bounded at infinity.) In terms of this function,

step(x) = lim
k→∞

h(kx) , (2.11)

as illustrated in Fig. 2.2. The limit implies uniform convergence, which means that
the maximum value of the difference between h(kx) and step(x) tends to zero:

lim
k→∞

max
x

| step(x)− h(kx)| = 0 for all x , (2.12)

except possibly at the isolated point x = 0, where the step function has been
deliberately left undefined. The technical term is that it converges uniformly
almost everywhere. The proof of this result is elementary, but see Sec. 2.3.2 for
some cautions about using it.

Fig. 2.2 Plot of the limiting representation of a step function from (2.11);
The four curves are for k = 0, 3, 10 and 30.

A test function approximating rect(x/L) can also be obtained from h(x):

rect
( x

L

)

= lim
k→∞

h
[

k
(

x− L
2

)]

h
[

−k
(

x+ L
2

)]

. (2.13)
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This function vanishes identically unless −L/2 < x < L/2, and it is infinitely
differentiable inside that interval, so it qualifies as a test function. Again, the repre-
sentation converges uniformly to rect(x/L) except at the isolated points x = ±L/2.

A general procedure for approximating integrable functions by good functions
will be given in Sec. 2.2.5.

2.1.4 Formal definition of distributions

In order to define distributions, we must first define the notion of convergence of
test functions, which is stronger than the uniform convergence used above. Our
development follows Richards and Youn (1990).

A sequence of test functions {tn(x)} is said to converge to a specific test func-
tion t(x) as n → ∞ if:

(a) The functions t(x) and all of the tn(x) have a common region of support (a, b);

(b) For each k, the sequence of kth derivatives
{

t(k)n (x)
}

converges to t(k)(x).

A distribution Φ is defined as a linear, continuous mapping from the space T of
test functions to the real or complex numbers. Linearity and continuity are defined
in Sec. 1.3.2 of Chap. 1; their interpretation in the present notation is:

(a) (Linearity) Φ{αs(x)+βt(x)} = αΦ{s(x)}+βΦ{t(x)} for all test functions s(x)
and t(x) and all constants α and β;

(b) (Continuity) If tn(x) → t(x) in the sense defined above, then Φ{tn(x)} →
Φ{t(x)}.

The continuity condition will allow us to interchange distribution operations and
limits at will; the interchange is valid by definition.

A specific, if not very interesting, distribution is the one defined by an ordinary
function. If f(x) is a piecewise-continuous function on the real line, it defines a
distribution Φf given by

Φf {t(x)} =

∫ ∞

−∞

dx f(x) t(x) . (2.14)

It is easy to demonstrate that this distribution satisfies the requirements of linearity
and continuity.

2.1.5 Properties of distributions

In this section we give several important properties of distributions. The proofs can
be found in Messiah (1961) or Richards and Youn (1990).

The linear combination of two distributions is a distribution. If Φ1 and Φ2 are
distributions, Φ = αΦ1 + βΦ2 is a distribution defined such that

Φ{t(x)} = αΦ1{t(x)}+ βΦ2{t(x)} . (2.15)

It follows from this definition that the product of a generalized function and a
constant behaves just as one would expect from (2.1). When the product is used in
an integral, we can simply take the constant out of the integral.
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As an extension of (2.15), if the infinite series
∑

iΦi{t(x)} is summable, its
sum defines a distribution.

Integrals of distributions can also be defined. If Φλ is a distribution that
depends on a parameter λ that can vary continuously in some domain Λ, and if the
integral

I{t(x)} =

∫

Λ
Φλ{t(x)} dλ (2.16)

converges for all test functions t(x), then it defines a distribution (Messiah, 1961)
I given by

I =

∫

Λ
Φλ dλ . (2.17)

Derivatives of distributions (or, more correctly, derivative distributions) can
be defined by analogy with the familiar operation of integration by parts. If Φg is
a distribution corresponding to the kernel g(x), which may be an ordinary function
or a generalized one, then a distribution Φg′, where prime denotes derivative, can
be defined by

Φg′{t(x)} ≡ −Φg

{

dt(x)

dx

}

= −
∫ ∞

−∞

dx g(x)
dt(x)

dx
=

∫ ∞

−∞

dx g′(x) t(x) . (2.18)

If g(x) is an ordinary differentiable function, then (2.18) is simply a statement
of integration by parts. If g(x) is a generalized function, the last form in this
equation can be regarded as a definition of the new generalized function g′(x). It is
straightforward to verify that the definition in (2.18) satisfies the requirements of
linearity and continuity, so we have indeed defined a legitimate distribution.

Next we inquire about the product of two generalized functions. Suppose the
kernel g(x) = f(x)h(x), where f(x) or h(x) or both may be generalized functions.
The distribution Φg corresponding to g(x) does not necessarily exist, and there are
only a few conditions where we can be sure that it does (Messiah, 1961). If f(x)
has derivatives of all orders, then Φg exists for all h(x). This statement can easily
be proven by noting that f(x) t(x) is a test function in that case. Another case
where the product distribution is guaranteed to exist is when both f(x) and h(x)
are square-integrable functions, since in that case the product kernel is also square-
integrable and the Riesz representation theorem applies. With these exceptions,
however, we cannot be sure that products of generalized functions (or, loosely,
products of distributions) make any sense. For example, we shall see that the
square of a delta function is not defined.

2.1.6 Tempered distributions

Tempered distributions are defined exactly as other distributions except that the
conditions on the test functions are relaxed. In particular, we require infinite dif-
ferentiability but not compact support. Thus tempered distributions are contin-
uous, linear functionals acting on good functions as defined above. Moreover,
it will be useful to allow the number returned by the functional to be complex, so
a tempered distribution is a mapping from the space of good functions to C1.

Tempered distributions are a subset of all distributions. Since a tempered
distribution is well defined for differentiable functions of open support, it is also
well defined for test functions with compact support. Thus a tempered distribution
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is a distribution, but not all distributions are tempered distributions. All of the
distributions discussed in this chapter are, however, tempered distributions.

The main motivation for introducing tempered distributions is in connection
with Fourier theory, as explored further in the next chapter. A wide variety of
other distributions, based on others kinds of test functions, can also be defined
(Zemanian, 1965, 1987), but we shall not need them.

2.2 ONE-DIMENSIONAL DELTA FUNCTION

2.2.1 Intuitive definition and elementary properties

As noted in the introduction, the simplest—and least rigorous—approach to defin-
ing the delta function is simply to require it to vanish everywhere except at a single
point, say x = x0:

δ(x− x0) = 0 if x &= x0 . (2.19)

If this function were to be finite at x = x0, its integral would vanish, no matter
how the integral was defined. Thus, for δ(x − x0) to have nontrivial properties, it
must be infinite at x0, or at least in an infinitesimal neighborhood around x0. We
require that this infinity be such that the integral of the function is unity, i.e.,

∫ ∞

−∞

dx δ(x− x0) = 1 . (2.20)

Because of (2.19), we also have
∫ x0+ε

x0−ε
dx δ(x− x0) = 1 , (2.21)

where ε is any finite positive number.
A number of elementary properties follow from these equations (Gaskill, 1978;

Barrett and Swindell, 1981, 1996). The most important is the so-called sifting
property which arises when the delta function δ(x − x0) is multiplied by another
function f(x) in the integrand of an integral. Since the delta function is zero for
x &= x0, the behavior of f(x) for x &= x0 is irrelevant. We can thus write

∫ ∞

−∞

dx f(x) δ(x− x0) =

∫ x0+ε

x0−ε
dx f(x) δ(x− x0) , (2.22)

where ε is arbitrarily small. Then, if f(x) is continuous at x0, it does not vary over
the range of integration in the limit as ε approaches zero, and we can replace it by
f(x0), obtaining

∫ ∞

−∞

dx f(x) δ(x− x0) = lim
ε→0

∫ x0+ε

x0−ε
dx f(x) δ(x− x0)

= f(x0) lim
ε→0

∫ x0+ε

x0−ε
dx δ(x− x0) = f(x0) . (2.23)

This result is called the sifting property because integration of f(x) δ(x− x0) sifts
out the value of f(x) at x = x0. A more general statement of the property is that

∫ b

a
dx f(x) δ(x− x0) =

{

f(x0) if a < x0 < b
0 if x0 < a or x0 > b

. (2.24)
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Another way to state the same property is to write

f(x) δ(x− x0) = f(x0) δ(x− x0) , (2.25)

which is true in the sense that both sides of the equation yield the same result when
integrated over an arbitrary interval (a, b). A special case of (2.25) is

x δ(x) = 0 . (2.26)

Additional properties may be derived by simple changes of variable in (2.24).
Letting x′ = −x and setting x0 to zero shows that

δ(x) = δ(−x) . (2.27)

Thus the delta function is an inherently even function. Similarly, the transformation
x′ = ax, where a is a real constant, leads to

δ(ax− x0) = |a|−1 δ(x− x0/a) (2.28)

and the special case
δ(ax) = |a|−1 δ(x) . (2.29)

In these equations, the absolute value arises since the direction of integration is
reversed if a is negative.

Now suppose the argument of a delta function is itself a function, as in δ[g(x)].
This delta function is zero except where its argument vanishes. Suppose that

g(x) = 0 at x = xn , n = 1, ..., N . (2.30)

Then δ[g(x)] = 0 unless x = xn and we can write

∫ ∞

−∞

dx f(x) δ[g(x)] =
N
∑

n=1

∫ xn+ε

xn−ε
dx f(x) δ[g(x)] . (2.31)

If g(x) is differentiable at the points xn, we can expand it in a Taylor series about
that point. By definition, g(xn) = 0, and we shall assume that the first derivative
g′(xn) &= 0. Since ε is arbitrarily small, all higher terms in the Taylor series can be
neglected without approximation. We thus have

∫ ∞

−∞

dx f(x) δ[g(x)] =
N
∑

n=1

∫ xn+ε

xn−ε
dx f(x) δ[g′(xn) (x− xn)]

=
N
∑

n=1

1

|g′(xn)|

∫ xn+ε

xn−ε
dx f(x) δ(x− xn) =

N
∑

n=1

f(xn)

|g′(xn)|
, (2.32)

where we have used (2.29), recognizing that g′(xn) is a constant. This result can
be summarized succinctly as

δ[g(x)] =
N
∑

n=1

δ(x− xn)

|g′(xn)|
. (2.33)

Again, the sense of this equation, as with all equations involving delta functions, is
that it is true when both sides are multiplied by a suitable function and integrated
over some interval.
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2.2.2 Limiting representations

The delta function can be put on a somewhat more rigorous footing if it is defined as
the limit of an ordinary function. We define a Dirac sequence1 as a set of functions
ψk(x) with the following properties:

(a) ψk(x) ≥ 0 for all k;

(b) ψk(x) = ψk(−x) for all k;

(c)
∫∞

−∞
dx ψk(x) = 1 for all k;

(d) The width of ψk(x) decreases uniformly with increasing k.

This set of requirements follows Lang (1993, pp. 227 – 228), except that he does not
include property (b), so his results are more general. Other authors omit property
(a), and we shall also relax it eventually.

The width in property (d) is defined in terms of the integral of ψk over a finite
interval. By property (c), if the function is integrated over (−∞,∞), the result is
unity. If it is integrated over an interval (−β,β), where 0 < β < ∞, the result is
1− ε, where 0 ≤ ε ≤ 1. The value ε is the fraction of the integral contributed by the
part of ψk that lies outside (−β,β), and 2β is the width of ψk at level ε as defined
by

∫ β

−β
dx ψk(x) = 1− ε . (2.34)

The width 2β can obviously depend on both ε and the index k. The formal definition
of width in property (d) is basically that, whatever ε is chosen as a reference, the
resulting width 2β decreases as the index k is increased.

The key result from formal analysis that we need is that the Dirac sequence
can be used to approximate a bounded, continuous function f(x) arbitrarily closely.
That is,

lim
k→∞

∫ ∞

−∞

dx f(x)ψk(x− x0) = f(x0) , (2.35)

where the limit is to be understood in the sense of uniform convergence2 (Lang,
1993, p. 228). The particular form of integral in (2.35) is called a convolution, and
we say that f(x) is convolved with ψk(x) in this integral. Equation (2.35) says
that this convolution converges to f(x0) as k → ∞ provided ψk(x) satisfies the
conditions for a Dirac sequence.

Another way to write the result of (2.35) is

δ(x− x0) = lim
k→∞

ψk(x− x0) , (2.36)

by which we mean that use of the right-hand side will reproduce the sifting property,
(2.24), for all f(x) that are bounded and continuous at x = x0.

1The term Dirac family is also used, especially when k is not restricted to be an integer, but we
shall not make this distinction.
2Actually the function f(x) need not be continuous everywhere for (2.35) to hold. It is sufficient if
it is measurable and continuous in the neighborhood of x0. Specifically, if f(x) is in Lp(R1), with
1 ≤ p < ∞, and is continuous over some range x0 − ε < x < x0 + ε, then the integral in (2.35)
converges in the Lp sense to f(x0) (Lang, 1993, pp. 234 – 235).
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There are many possible choices for the functions {ψk(x)}, and each choice
yields a different limiting representation for the delta function. One choice is a
sequence of Gaussians, ψk(x) = k exp(−πk2x2), so that

δ(x) = lim
k→∞

k exp(−πk2x2) = lim
ε→0+

1

ε
exp

[

−π(x/ε)2
]

, (2.37)

where ε = 1/k [not to be confused with the ε in (2.34)]. This particular Dirac
sequence is illustrated in Fig. 2.3.

Other choices for the {ψk} yield

δ(x) = lim
ε→0+

1

ε
rect

(x

ε

)

, (2.38)

δ(x) = lim
ε→0+

ε/π

x2 + ε2
, (2.39)

δ(x) = lim
ε→0+

1

2ε
exp

(

−
|x|
ε

)

, (2.40)

δ(x) = lim
ε→0+

1

2ε
sech2

(

|x|
ε

)

. (2.41)

With all of these forms, it is straightforward to show that δ(x) = 0 if x &= 0 and
that

∫ ∞

−∞

dx δ(x) = 1 , (2.42)

as required. Furthermore, for all of these examples, ψk(0) tends to infinity, though
limiting representations of the delta function can be constructed for which this is
not the case (see, for example, Kanwal, 1983, pp. 10 – 12).

Fig. 2.3 Plot of the limiting representation of a delta function as a sequence
of Gaussians from (2.37). The three curves shown are for k = 0.5, 1.0 and 2.0.

A somewhat more subtle representation, which will turn out to be very useful,
is based on the sinc function, defined as

sinc(u) ≡
sin(πu)

πu
, (2.43)



74 DIRAC DELTA AND OTHER GENERALIZED FUNCTIONS

and plotted in Fig. 2.4. The sinc function is frequently referred to as the Dirichlet
kernel, after the Prussian mathematician Peter Gustave Lejeune Dirichlet (1805–
1859), disciple of Gauss and mentor of Riemann (Bell, 1937).

Fig. 2.4 Plot of the sinc function defined in (2.43).

We could consider a sequence of functions ψk(x) = k sinc(kx), but since the
sinc function can go negative, this choice for ψk does not define a Dirac sequence.
Nevertheless, ψk(0) → ∞ as k → ∞ and the integral of ψk(x) over (−∞,∞) is
unity for all k, leading us to expect that the limit behaves as a delta function and
that it is possible to write

δ(x) = lim
k→∞

k sinc(kx) = lim
k→∞

sin(πkx)

πx
. (2.44)

This statement is true, in the sense that the right-hand side yields the sifting prop-
erty, (2.24), if suitable restrictions are placed on the function f(x) that appears in
that equation. For example, it is sufficient to require that f(x) be differentiable,
with f ′(x) bounded and continuous, and f(±∞) = 0 (Stakgold, 1967, p. 27; Kan-
wal, 1983, pp. 6 – 7). Moreover, it works for all functions in the space Lp(−∞,∞),
with 1 < p < ∞, provided the limit is interpreted as limit in the mean (see Cham-
peney, 1987, p. 35, and Sec. 3.2.2 in Chap. 3 of this book).

Another useful way to write (2.44) is to recognize that the sinc function is the
integral of an exponential, so that we also have

δ(x) = lim
k→∞

∫ k/2

−k/2
dν exp(2πiνx) . (2.45)

We shall often write this equation in the simplified form,

δ(x) =

∫ ∞

−∞

dν exp(2πiνx) , (2.46)

where the infinite integral is to be understood in the sense of the limit in (2.45).
A useful form akin to (2.44) is the comb function, defined by

comb(x) = lim
N→∞

sin(πNx)

sin(πx)
, (2.47)
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where N is an integer that tends to ∞. The reason for the name of this function can
be discerned from Fig. 2.5. For finite N, the function has sharp peaks like teeth on a
comb for all integer values of x; as N tends to infinity, the heights of the peaks tend
to infinity while the widths tend to zero. That these peaks tend to delta functions
can be seen by examining the one at x = 0. For a small neighborhood of x = 0,
the denominator of (2.47) is approximately πx, which is also the denominator in
(2.44). Thus, for |x| < 1/2, comb(x) is indistinguishable from δ(x). Furthermore,
for integer N, sin(πNx)/ sin(πx) is periodic with period 1, so there must be other
delta peaks at all integer values of x. We can therefore write

comb(x) =
∞
∑

n=−∞

δ(x− n) . (2.48)

Another way to express the comb function is to recognize that sin(πNx)/ sin(πx)
is the sum of a geometric series:

M
∑

n=−M

exp(2πinx) =
sin(πNx)

sin(πx)
, (2.49)

where N = 2M + 1. Thus we can write

comb(x) =
∞
∑

n=−∞

exp(2πinx) . (2.50)

The difference between comb(x) from (2.50) and δ(x) from (2.46) is only in the
appearance of the sum rather than the integral; the replacement of integral by sum
results in an infinite comb of delta functions.

With any of the limiting forms discussed in this section, the various properties
listed in Sec. 2.2.1 can be derived by ordinary rules for manipulating integrals.

Fig. 2.5 Plot of a representation of the comb function from (2.49).

2.2.3 Distributional approach

In Sec. 2.2.1 we simply postulated, in a very nonrigorous way, the existence of a
function that vanished except for a single point and became infinite at that point
in such a way as to maintain an integral equal to one. The limiting representations
of Sec. 2.2.2 remove some, but not all, of the mathematical uncertainties associated
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with this definition. One question left unanswered is when it is valid to interchange
the order of an integral and a limit; the limit of an integral is not necessarily the
integral of the limit. Also, we have not clearly specified the conditions that have to
be placed on f(x) in order for our expressions to be valid.

These uncertainties are removed by using the theory of distributions to define
a delta function. In this view, δ(x) is a generalized function associated with the
distribution Φδ in such a way that

Φδ{t(x)} =

∫ ∞

−∞

dx δ(x) t(x) ≡ t(0) , (2.51)

where t(x) is a test function. The same equation can be used to define a tempered
distribution if t(x) is a good function as defined in Sec. 2.1.2.

To get a more general sifting property analogous to (2.24), we simply define
another distribution, rather clumsily designated as Φδx0

, specified by

Φδx0
{t(x)} =

∫ ∞

−∞

dx δ(x− x0) t(x) ≡ t(x0) . (2.52)

There can be no question of the validity of this equation since it is just a definition,
not something derived from (2.51). We define the result of the distribution to be
t(x0), and the integral expression involving δ(x−x0) is just a convenient mnemonic
for this definition.

We can proceed in this way, avoiding all questions of validity by just defining
whatever distributions we need. We do not do so willy-nilly, however, but try
to choose definitions consistent with ordinary functionals in the Riesz form, (2.1).
Moreover, the resulting distribution must satisfy the requirements of linearity and
continuity discussed in Sec. 2.1.4. We illustrate this approach in the next section
where we define the derivative of a delta function.

2.2.4 Derivatives of delta functions

If δ(x) is defined by the limit of a Dirac sequence as in (2.36) and the functions
ψk(x) are all differentiable, it is natural to define the derivative of a delta function
as

δ′(x− x0) = lim
k→∞

ψ′
k(x− x0) , (2.53)

where the prime denotes derivative. With this definition and the assumption that
f(x) is differentiable, we have

∫ ∞

−∞

dx f(x) δ′(x− x0) = lim
k→∞

∫ ∞

−∞

dx f(x)ψ′
k(x− x0)

= − lim
k→∞

∫ ∞

−∞

dx f ′(x)ψk(x− x0) = −
∫ ∞

−∞

dx f ′(x) δ(x− x0) = −f ′(x0) , (2.54)

where we have performed an integration by parts and made use of the fact that all
of the ψk vanish at infinity.

Repetition of this procedure and consideration of finite limits of integration
lead to the conclusion that

∫ b

a
dx f(x) δ(n)(x− x0) =

{

(−1)nf (n)(x0) if a < x0 < b
0 if x0 < a or x0 > b

, (2.55)
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where f (n)(x) is the nth derivative of f(x).
The development of (2.54) and (2.55) raises a number of mathematical ques-

tions about differentiability, support and the validity of interchanging limits and
integrals. All of these problems are avoided by use of distributions. In Sec. 2.1.5,
we discussed derivatives of distributions, and it is easy to apply this idea here. By
analogy to (2.18), we define a distribution

Φδ′{t(x)} =

∫ ∞

−∞

dx δ′(x) t(x) ≡ −Φδ{t′(x)} = −t′(0) , (2.56)

where the generalized function δ′(x) is defined by this equation. Similarly, higher
derivatives of the delta function are associated with other new distributions, and
we have in general

∫ ∞

−∞

dx t(x) δ(n)(x− x0) = (−1)nt(n)(x0) , (2.57)

where we have abandoned the Φ notation since it was getting impossibly clumsy.
From either the Dirac-sequence approach or the distributional one, the follow-

ing operational properties of derivatives of the delta function can be derived:

δ(n)(x− x0) = 0 if x &= x0 , (2.58)
∫ ∞

−∞

dx δ(n)(x− x0) = 0 if n > 0 , (2.59)

δ(n)(x) = (−1)n δ(n)(−x) , (2.60)

x δ′(x) = −δ(x) . (2.61)

All of these equations are true in the sense that, when multiplied by a test function
and integrated, both sides yield the same result.

2.2.5 A synthesis

As we have seen, the distributional approach to delta functions avoids many mathe-
matical difficulties, basically by defining them away. Anytime we need a previously
undefined result, such as the derivative of a delta function, we simply define a new
distribution. The rigor of equations such as (2.56) and (2.57) is beyond reproach
since they are merely definitions; virtually any definition of distribution is allowed,
so long as it satisfies the basic requirements of continuity and linearity. The price
we have paid is that the definitions are restricted to test functions (or at least good
functions), and we might want to use the results more widely. From the viewpoint
of Dirac sequences, on the other hand, (2.56) and (2.57) can be derived directly
since there is no difficulty in differentiating a delta function so long as the {ψk} are
themselves differentiable. The difficulty in that case is that it is not always clear
what restrictions have to be placed on the function f(x) that appears along with
the generalized function g(x) in an integral of the form

∫

f(x) g(x) dx.
To illustrate this dichotomy, consider an integral where the function f(x) is

bounded but discontinuous at x = x0. Then, from the Dirac-sequence view, there
is no problem in showing that
∫ ∞

−∞

dx f(x) δ(x− x0) =
1
2 lim
x→x+

0

f(x) + 1
2 lim
x→x−

0

f(x) = 1
2 [f(x

+
0 ) + f(x−

0 )] . (2.62)
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This very useful result would be meaningless in a strict distributional treatment
since the distribution is defined only with respect to continuous test functions.
What we need is an approach that will allow more flexibility in the choice of f(x)
yet retain the rigor and clarity of distributions.

The way to achieve this synthesis is to use test functions to approximate more
general functions. We have seen two examples of how this can be done in Sec. 2.1.2,
but we shall now make use of properties of Dirac sequences to develop a general
procedure.

The functions ψk(x) used in a Dirac sequence need not be test functions,
but they can be. A Dirac sequence of test functions can be constructed from our
building-block function, h(x), as defined in (2.5). The functions

sk(x) ≡ kh
(

kx+ 1
2

)

h
(

−kx+ 1
2

)

(2.63)

are test functions with support (−ε, ε), where ε = 1/2k, and with a proper nor-
malizing constant to satisfy condition (c) of Sec. 2.2.2, they also satisfy all of the
requirements for a Dirac sequence. Using these functions or any similar test func-
tions that qualify as a Dirac sequence, we define the kth approximant of a function
f(x) as

f̂k(x) ≡
∫ ∞

−∞

dx′ f(x′) sk(x− x′) . (2.64)

If f(x) has support (−a, a), then f̂k(x) has support (−a−ε, a+ε), which approaches
(−a, a) as k → ∞.

To complete the demonstration that f̂k(x) is a test function, we need to show
that all of its derivatives exist. For this purpose, we must assume that it is legitimate
to differentiate under the integral sign, which it is if the resulting integral exists
(perhaps in the Lebesgue sense3). For example, it is legitimate if f(x) has a finite
number of finite discontinuities. Under these conditions, we have

dnf̂k(x)

dxn
=

∫ ∞

−∞

dx′ f(x′)
dn sk(x− x′)

dxn
. (2.65)

Since sk is a test function for all k, all of its derivatives are guaranteed to exist
everywhere. Thus f̂k(x) is a test function of support (−a − ε, a + ε) for all k and,
since ε = 1/k, f̂∞(x) is a test function of support (−a, a). Moreover, we know from
the discussion in Sec. 2.2.2 that f̂k(x) converges uniformly to f(x) at every point
where f(x) is continuous. If f(x) is bounded but discontinuous at x = x0, then
f̂k(x0) can be shown to converge to the average as in (2.62) since sk(x) = sk(−x).

Thus integrable functions of compact support can be uniformly approximated
by test functions f̂k(x). If f(x) does not have compact support, but interchange of
differentiation and integration is still legitimate, f̂k(x) is a good function instead of
a test function.

To summarize, all of the functionals considered here can be written in the
form

∫

f(x) g(x) dx. In the distributional approach, g(x) is a generalized function
and f(x) is restricted to be a test function (or a good function for a tempered
distribution). The generalized function itself has no restrictions at all placed on it

3For a concise introduction to Lebesgue integration, see Champeney (1987) or Friedman (1991).
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since it is defined by the functional. In the Dirac-sequence approach, g(x) is the
limit of a sequence of functions obeying conditions (a) – (d) of Sec. 2.2.2, while f(x)
can be any function for which the product f(x) g(x) is integrable. The synthesis
suggested in this section combines these two approaches by allowing g(x) to be a
generalized function, defined by its distribution, but representing f(x) as the limit
of a Dirac sequence of test functions. Since a wide variety of functions can be so
represented, the distributional results derived for test functions can be more widely
applied. The reader is cautioned, however, not to use limiting representations for
both f(x) and g(x); see Sec. 2.3.2 for an example where the order of the limits
cannot be interchanged.

2.2.6 Delta functions as basis vectors

The sifting property of delta functions has a useful interpretation in terms of vector
spaces. If f(x) is a square-integrable function and hence a vector in L2(−∞,∞)
(see Chap. 1), then it can be expanded in terms of various sets of basis vectors
for that space. As discussed in Sec. 1.1.6, the basis vectors need not lie in the
space for which they form the basis. The example given in that section was the
Fourier basis, in which the basis vectors are the set {exp(2πiνx)}, indexed by the
continuous variable ν. The delta functions {δ(x − a)} can also be considered as a
continuous basis, this time indexed by the continuous variable a. Since the delta
functions are not square-integrable, they are not in L2(−∞,∞), but they can be
used to expand a continuous function in that space. The required expansion is just
the sifting property,

f(x) =

∫ ∞

−∞

da f(a) δ(x− a) , (2.66)

from which we see that the expansion coefficients are just the values of the function.
This viewpoint runs into some difficulties when f(x) is not continuous since

then f(a) is not uniquely defined. We can avoid these difficulties by confining f(x)
to the space of test functions, or we can appeal to the argument of the last section
that certain discontinuous functions can be approximated arbitrarily closely by test
functions.

2.3 OTHER GENERALIZED FUNCTIONS IN 1D

2.3.1 Generalized functions as limits

As we have seen, the generalized function δ(x) can be defined in two mathematically
defensible ways: either in terms of a distribution or as the limit of an ordinary
function. Either of these approaches can be extended to define a wide variety of
other generalized functions. The distributional approach merely defines whatever
generalized functions we need; suitable definitions will be given in the sections that
follow. The limiting-sequence approach, however, requires that we be able to place
suitable restrictions on the functions in the sequence. We have done this in Sec.
2.2.2 for the delta function, but we now need to examine how to extend the method
to other generalized functions.

The key mathematical result justifying the limiting-sequence approach is that
any generalized function g(x), no matter how wild, can be written as the limit of a
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sequence of good functions (Lighthill, 1958; Richards and Youn, 1990):

g(x) = lim
k→∞

wk(x) , (2.67)

where wk(x) is a good function for all k. The distribution associated with g(x) is,
of course,

Φg{t(x)} =

∫ ∞

−∞

dx g(x) t(x) = lim
k→∞

∫ ∞

−∞

dx wk(x) t(x) , (2.68)

where t(x) is a test function.
In the sections below, we shall show how to define new generalized functions

distributionally and to devise suitable limiting representations of them.

2.3.2 Generalized functions related to the delta function

Step function Consider the function step(x), which we defined as an ordinary dis-
continuous function in (2.10). A distributional definition of the step function is

Φstep{t(x)} ≡
∫ ∞

0
dx t(x) =

∫ ∞

−∞

dx t(x) step(x) , (2.69)

where the first integral defines the functional and the second defines the generalized
function step(x). We have already seen in (2.11) one way in which this generalized
function can be written as the limit of a sequence of fairly good functions. Other
representations can be derived from any of the Dirac sequences used to define δ(x).
If we have a Dirac sequence of functions {ψk(x)} that converges to δ(x), we can
define step(x) as

step(x) = lim
k→∞

∫ x

−∞

dx′ ψk(x
′) . (2.70)

Each integral in this limit is a fairly good function if ψk(x) is a test function.4

The shifted step function step(x− x0) is defined distributionally (without the
cumbersome Φ notation) as

∫ ∞

−∞

dx t(x) step(x− x0) =

∫ ∞

x0

dx t(x) . (2.71)

It is easy to modify the limiting representation of step(x) into one for step(x− x0).

Derivative of a step function We can define a derivative of step(x), even though it
is not differentiable in the conventional sense. From the discussion in Sec. 2.1.5,
and especially (2.18), we have
∫ ∞

−∞

dx t(x)
d

dx
step(x) = −

∫ ∞

−∞

dx t′(x) step(x) = −
∫ ∞

0
dx t′(x) = t(0) , (2.72)

4The result in (2.70) is a bit weaker than the theorem of (2.67), which says that any generalized
function can be expressed as the limit of a sequence of good functions. The integrals in (2.70)
are not good functions since they do not approach zero as x → ∞, but they are better than most
fairly good functions since they do not grow at infinity either. If we wanted to write step(x) as
the limit of a sequence of good functions, we could do so by multiplying (2.70) by a factor such
as exp(−x2/k2). This factor becomes unity for all finite x in the limit as k → ∞, but meets the
requirements for a good function at all k.
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since t(∞) = 0 for any test function t(x). Comparison of the first and last forms of
(2.72) shows that

d

dx
step(x) = δ(x) , (2.73)

since both sides of this equation yield the same result when multiplied by a test
function and integrated.

We can get the same result from a limiting sequence. If step(x) is represented
by (2.70), its derivative is

d

dx
step(x) = lim

k→∞

d

dx

∫ x

−∞

dx′ ψk(x
′) = lim

k→∞
ψk(x) = δ(x) . (2.74)

Thus we see from this viewpoint also that the derivative of a step function is the
delta function.

This is a good point at which to illustrate a potential pitfall when manipu-
lating generalized functions. Since we have two different limiting representations
for step(x), (2.11) and (2.70), it might be expected that the derivative of either
one could be used to represent δ(x) in an integral of the form

∫

δ(x) f(x) dx. That
expectation is correct if f(x) is continuous at x = 0, as it must be if it is a test func-
tion, but the two representations give different results if f(x) has a discontinuity at
x = 0. Use of the derivative of (2.70) to represent δ(x) yields [f(0+) + f(0−)]/2 as
in (2.62), but use of the derivative of h(kx) to represent δ(x), as in (2.11), can give
only f(0+) since h(kx) and all of its derivatives are zero for x ≤ 0.

The reason for the discrepancy between these two results is that both f(x) and
g(x) are being represented as limits in

∫

f(x) g(x) dx, and it matters in which order
the limits are taken. No problem would arise if either f(x) or g(x) were continuous.
The limiting representations are useful, but two of them should not be used in the
same integral.

Signum function Closely related to step(x) is the function sgn(x), pronounced
signum of x. Treated as a conventional (though discontinuous) function, sgn(x)
is defined as

sgn(x) ≡
{

1 if x > 0
−1 if x < 0

. (2.75)

Distributionally, it is defined by

Φsgn{t(x)} =

∫ ∞

−∞

t(x) sgn(x) dx ≡
∫ ∞

0
t(x) dx−

∫ 0

−∞

t(x) dx . (2.76)

Thus

sgn(x) = 2 step(x)− 1 , (2.77)

which, when combined with the distributional definition of step(x) and the rules
for manipulating distributions given in Sec. 2.1.5, will reproduce (2.76). Any valid
limiting representation for the step function gives one for the signum function via
(2.77). Similarly, we can show either distributionally or by a limiting representation
that

d

dx
sgn(x) = 2 δ(x) . (2.78)
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Products of delta functions Consider an integral of the form

I(x0, x1) =

∫ ∞

−∞

dx t(x) δ(x− x0) δ(x− x1) , (2.79)

where t(x) is a test function. As noted above, we can represent δ(x − x0) as the
limit of a Dirac sequence of test functions, and the product of two test functions is
a test function. Thus there is no problem in passing to the limit of the sequence
and writing

I(x0, x1) = t(x1) δ(x1 − x0) , (2.80)

which is identically zero if x0 &= x1. If x0 = x1, I(x0, x1) is infinite, so the square
of a delta function is not defined directly, but I(x0, x1) itself may be treated as a
generalized function. It is easy to establish that it corresponds to the functional

ΦI{s(x0)} =

∫ ∞

−∞

dx0 I(x0, x1) s(x0) = s(x1) t(x1) , (2.81)

where s(x) is a test function. In other words, the product of two delta functions,
δ(x−x0) δ(x−x1), behaves as a double generalized function; it has to be integrated
twice before arriving at a simple number. In the example above, the two integrals
were over x and x0, but in fact any two of the three variables can be chosen. The
following operational rule holds:

t(x) δ(x−x0) δ(x−x1) = t(x0) δ(x−x0) δ(x−x1) = t(x1) δ(x−x0) δ(x−x1) . (2.82)

Although this rule does not work if x0 = x1, there is one way we can define
something akin to the square of a delta function. The integral in (2.45) is a useful
limiting form for the delta function that often arises in spectral analysis. If we
denote this integral by dk(x), its square can be written as

[dk(x)]
2 =

∫ k/2

−k/2
dν

∫ k/2

−k/2
dν ′ exp[2πi(ν − ν ′)x] . (2.83)

For k large, [dk(x)]2 is sharply peaked like a delta representation; its width varies as
1/k, but its peak amplitude grows as k2, so it does not integrate to unity as desired
in a Dirac sequence. If integrated against a slowly varying function f(x), a useful
approximation might be

∫ ∞

−∞

dx [dk(x)]
2 f(x) ( k f(0) , (2.84)

provided f(x) ( f(0) for |x| < 1/k. Since dk(x) → δ(x) as k → ∞, we can express
this result loosely as (Bjorken and Drell, 1964, p. 101)

[δ(x)]2 ( k δ(x) , k → ∞ . (2.85)

A better way to express the same mathematics, however, is

lim
k→∞

1

k
[dk(x)]

2 = lim
k→∞

1

k

∫ k/2

−k/2
dν

∫ k/2

−k/2
dν′ exp[2πi(ν − ν ′)x] = δ(x) . (2.86)

This equation can also be written as

lim
k→∞

k sinc2(kx) = δ(x) , (2.87)

providing yet another useful limiting representation for the delta function.
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2.3.3 Other point singularities

1/x As an illustration of the concept of distributions, we introduced the gener-
alized function P{1/x} in (2.4). The use of this function in complex integrals was
also discussed in App. B. Henceforth, we drop the designation P and write 1/x,
with the understanding that the function is defined by a principal-value integral.

An alternative definition of 1/x (Lighthill, 1958) is that it is the odd gener-
alized function g(x) that satisfies x g(x) = 1. By this definition, g(x) coincides
with the ordinary function 1/x for x &= 0, while the requirement that g(x) be odd
guarantees that the value at x = 0 is zero.

As with any other generalized function, 1/x can be represented as the limit
of good or fairly good functions. One such representation can be derived by using
(2.39) to represent a delta function and convolving that representation with 1/x:

1

x
= lim

ε→0+

ε

π

∫ ∞

−∞

dx′

(

1

x− x′

)(

1

x′2 + ε2

)

= lim
ε→0

x

x2 + ε2
, (2.88)

where the integral has been performed by contour methods, taking advantage of
the distributional definition of 1/x, (2.4), for guidance in handling the pole on the
contour. The representation of (2.88) is illustrated in Fig. 2.6a.

Fig. 2.6 (a) Plot of a representation of the generalized function 1/x from
(2.88); (b) plot of a similar representation of the generalized function 1/x2

from (2.91).

The final form of (2.88) shows again that the generalized function 1/x agrees
exactly with the ordinary function 1/x except at x = 0, where the ordinary function
is not defined. The limit of the ordinary function 1/x as x → 0 is ±∞, depending
on the direction of approach. The generalized 1/x, on the other hand, is zero at
x = 0, corresponding to the deletion of the neighborhood of x = 0 from any integral
in which it appears [cf. (2.3)].

1/xm From the generalized function 1/x, we can use the rule for forming deriva-
tives of generalized functions, (2.18), to define new generalized functions 1/xm by
(Lighthill, 1958)

1

xm
≡

(−1)m−1

(m− 1)!

dm−1

dxm−1

1

x
, (2.89)

where m is an integer greater than one. Limiting representations can be obtained
by differentiating (2.88) the appropriate number of times.
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The generalized function 1/x2 will prove to be important in analysis of tomo-
graphic imaging systems. By (2.89) it should be interpreted as

∫ ∞

−∞

dx
t(x)

x2
= −P

∫ ∞

−∞

dx
t′(x)

x
. (2.90)

Again, the generalized function 1/x2 coincides with the ordinary function if x &= 0,
but, unlike 1/x, it is not correct to say that the generalized 1/x2 is zero at x = 0. To
see what does happen at the origin, we take the first derivative of (2.88), obtaining

1

x2
= lim

ε→0

[

2x2

(x2 + ε2)2
−

1

x2 + ε2

]

, (2.91)

which is depicted in Fig. 2.6b. For x &= 0, the first term limits to 2/x2 and the
second to −1/x2, so the sum has the proper behavior. For x ≡ 0, however, the first
term is zero and the second term limits to −∞. Moreover, this singularity has an
infinite integral over any vanishingly small region, i.e.,

lim
b→0

∫ b

−b

dx

x2
= −∞ . (2.92)

We can say, very loosely, that 1/x2 behaves like a delta function of weight negative
infinity at the origin (Richards and Youn, 1990, pp. 76 – 77). One way to understand
this wild singularity is to say that it arises from differentiating across the infinite
discontinuity of 1/x at x = 0 [cf. (2.79)]. Nevertheless, when integrated from −∞
to ∞, the infinities from the two terms in (2.91) cancel, giving

∫ ∞

−∞

dx

x2
= 0 . (2.93)

This result could be anticipated from (2.90) by letting t(x) → 1 (or t′(x) → 0), but
it is definitely not what one would expect by taking the integrand at face value. A
function denoted 1/x2 might be expected to be positive everywhere (which, in fact,
is true except for the isolated point x = 0), so a zero integral is a surprise.

These subtleties illustrate some of the potential difficulties in interpreting gen-
eralized functions and the need for anchoring the theory in clear definitions. In the
present example, the basic definition from which all interpretations must be derived
is (2.90).

Noninteger powers Noninteger powers of x present some new subtleties. In what
follows, we shall consider functions of the form |x|α to avoid complications with
noninteger powers of negative numbers. As the notation implies, |x|α is an even
generalized function. For α > 0, |x|α is a continuous function, bounded for all
finite x, so there is no difficulty in interpreting integrals of the form

∫

|x|α t(x) dx,
where t(x) is a test function. For −1 < α < 0, there is also no problem since |x|α
is singular but integrable at x = 0. To extend the definition of |x|α to noninteger
α < −1, we make use of the derivatives of |x|α. In particular, if x &= 0,

d

dx
|x|α = α|x|α−1 sgn(x) , (2.94)
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suggesting that we define the generalized function |x|α−1 by

|x|α−1 =
1

α

d

dx
{|x|α sgn(x)} , −1 < α < 0 . (2.95)

The distribution corresponding to |x|α−1 is, by (2.18),
∫ ∞

−∞

dx t(x) |x|α−1 = −
1

α

∫ ∞

−∞

dx
dt(x)

dx
|x|α sgn(x) for α > −1 . (2.96)

Since t(x) need only be a good function, and not strictly a test function, for this
integral to converge, (2.96) defines a tempered distribution.

This process can be extended to include all noninteger negative α by defining
(Lighthill, 1958)

|x|α =
1

(α+ 1)(α+ 2) · · · (α+ n)

dn

dxn

{

|x|α+n sgn(x)
}

, (2.97)

where n is an integer such that α+ n > −1.
To illustrate this result, consider the generalized function |x|−3/2, defined ac-

cording to (2.97) by

|x|−3/2 = −2
d

dx

{

sgn(x)
√

|x|

}

. (2.98)

Distributionally, this equation means
∫ ∞

−∞

dx t(x) |x|−3/2 = 2

∫ ∞

−∞

dx
t′(x) sgn(x)

√

|x|
. (2.99)

There is no problem with this definition at x = 0 since t′(x) is necessarily finite and
continuous there and 1/

√
x is an integrable singularity.

Though (2.98) and (2.99) are the formal definition of |x|−3/2, further insight
can be obtained by use of limiting representations. We choose

1
√

|x|
= lim

ε→0

1

(x2 + ε2)1/4
(2.100)

and
sgn(x) = lim

ε→0

x

(x2 + ε2)1/2
, (2.101)

from which we find

1

|x|3/2
= −2 lim

ε→0

d

dx

x

(x2 + ε2)3/4
= lim

ε→0

{

3x2

(x2 + ε2)7/4
−

2

(x2 + ε2)3/4

}

. (2.102)

As with the function 1/x2, this form shows a strong negative singularity at the origin
[cf. (2.91)].

x−m sgn(x) and ln |x| Though singular at the origin, ln |x| is an ordinary, in-
tegrable function, and functionals of the form

∫

t(x) ln |x| dx are easily evaluated.
Away from the origin, the following derivative relations hold:

d

dx
ln |x| =

1

x
, (x &= 0) , (2.103)
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and
d

dx

{

(ln |x|) sgn(x)
}

=
1

|x|
=

sgn(x)

x
, (x &= 0) . (2.104)

The first of these equations is valid without the exclusion of the origin if 1/x is
understood as the generalized function (Richards and Youn, 1990, p. 72), but the
second is more problematical. The generalized functions x−1 sgn(x) and x−m sgn(x)
turn out not to be uniquely definable.

We could simply define a generalized function g(x) by d{(ln |x|) sgn(x)}/dx
and call it 1/|x|, but it would obey some very strange manipulation rules (Lighthill,
1958, p. 38). For example, we would hope that g(ax) would equal g(x)/|a|, but
instead we find

g(ax) =
d {(ln |x|+ ln |a|) sgn(a) sgn(x)}

a dx
=

1

|a|
d

dx
{(ln |x|) sgn(x) + (ln |a|) sgn(x)}

=
1

|a|
{g(x) + 2(ln |a|) δ(x)} . (2.105)

Since a is arbitrary, we must conclude that 1/|x| is not uniquely defined. The best
we can say is that it is any generalized function that satisfies

1

|x|
=

d

dx
{(ln |x|) sgn(x)}+ 2C δ(x) =

d

dx
{(ln |x|+ C) sgn(x)} , (2.106)

where C is an arbitrary constant (Lighthill, 1958; Champeney, 1987). Similarly,

x−m sgn(x) =
(−1)m−1

(m− 1)!

dm

dxm
{(ln |x|+ C) sgn(x)}

=
(−1)m−1

(m− 1)!

dm

dxm
{(ln |x|) sgn(x)}+ C′ δm−1(x) , (2.107)

where m is a positive integer and C and C′ are arbitrary.

2.4 MULTIDIMENSIONAL DELTA FUNCTIONS

2.4.1 Multidimensional distributions

The theory of distributions is easily extended to functions of two or more variables.
We shall refer to a scalar-valued function of n scalar variables as an n-dimensional
(or nD) function for short.

A function t(x, y) is a 2D test function if all partial derivatives exist and it has
compact support in the x-y plane. For example, a suitable support region would
be the square of side 2L centered on the origin, in which case t(x, y) = 0 unless
L < x < L and −L < y < L. More generally, we denote the support region by S
and say that t(x, y) = 0 unless (x, y) lies in S. The test functions themselves lie in
a subset of L2(R2) denoted T(S) for test functions of support S.

Good functions and fairly good functions in 2D are defined by analogy with
(2.7) and (2.8), respectively. A good function in 2D is one for which all partial
derivatives exist and

lim
x→±∞

{

|x|N t(x, y)
}

= 0 for all N and all y;
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lim
y→±∞

{|y|N t(x, y)} = 0 for all N and all x . (2.108)

A fairly good function in 2D is one for which all partial derivatives exist and

lim
x→±∞

{

|x|−N t(x, y)
}

= 0 for some N and all y;

lim
y→±∞

{

|y|−N t(x, y)
}

= 0 for some N and all x . (2.109)

Similar definitions apply in three or more dimensions.
A 2D distribution is a linear, continuous functional that maps a test function

t(x, y) to a real or complex number. A 2D tempered distribution is defined the same
way except that t(x, y) need only be a good function. In both cases, the functional
can be written in terms of a generalized function g(x, y) as

Φg{t(x, y)} =

∫ ∞

−∞

dx

∫ ∞

−∞

dy t(x, y) g(x, y) . (2.110)

Again, the extension to higher dimensions is obvious.

Vector notation In 2D problems we can define a vector r with Cartesian components
(x, y), so that (2.110) can be written more compactly as

Φg{t(r)} =

∫

∞

d2r t(r) g(r) , (2.111)

where d2r = dx dy and the subscript ∞ on the integral sign denotes an integral over
the infinite x-y plane.

To extend this notation to n-dimensional (nD) functionals, all we have to do
is to replace d2r by dnr in (2.111). For example, in 3D, r is a vector with Carte-
sian components (x, y, z), d3r = dx dy dz and the integral runs over the infinite 3D
volume. No notational distinction will be made between 2D and 3D vectors unless
both appear in the same problem; r will denote the general position vector in any
number of dimensions, and the dimensionality will usually be clear by context (e.g.,
from dnr).

We also adopt the convention that r, without the boldface type, is the mag-
nitude of the vector r in any number of dimensions. Thus, r =

√

x2 + y2 in 2D or
√

x2 + y2 + z2 in 3D.

2.4.2 Multidimensional delta functions

The 2D delta function δ(r) is the generalized function associated with the distribu-
tion Φδ, defined by

Φδ{t(r)} =

∫

∞

d2r t(r) δ(r) ≡ t(0) , (2.112)

where t(0) is t(r) evaluated at r = 0, (i.e., x = 0, y = 0). It follows from this
definition that

δ(r) = δ(x) δ(y) , (r a 2D vector ) , (2.113)

since
∫ ∞

−∞

dx

∫ ∞

−∞

dy t(x, y) δ(x) δ(y) =

∫ ∞

−∞

dy t(0, y) δ(y) = t(0, 0) . (2.114)
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In performing these integrals, we have used the fact that t(x, y) for fixed y is a test
function of x, and vice versa.

The extension to nD is straightforward, and the following properties of nD
delta functions are easily established:

δ(r− r0) = 0 if r &= r0 ; (2.115)

∫

∞

dnr δ(r− r0) = 1 ; (2.116)

δ(r) = δ(−r) ; (2.117)

∫

∞

dnr t(r) δ(r− r0) = t(r0) ; (2.118)

∫

S
dnr t(r) δ(r− r0) = t(r0) if r0 is in region S ; (2.119)

t(r) δ(r− r0) = t(r0) δ(r− r0) ; (2.120)

δ(ar− r0) = |a|−n δ(r− r0/a) . (2.121)

Multidimensional limiting representations Any of the Dirac sequences introduced in
Sec. 2.2.2 can be used to construct a limiting representation for a multidimensional
delta function in Cartesian coordinates. In 2D, we have

δ(r) = δ(x) δ(y) = lim
k→∞

ψk(x)ψk(y) . (2.122)

For example, the 2D generalization of (2.40) is

δ(r) = lim
k→∞

k2 exp
[

−πk2(x2 + y2)
]

= lim
ε→0

1

ε2
exp

[

−π(x2 + y2)/ε2
]

= lim
ε→0

1

ε2
exp

[

−
πr2

ε2

]

, (2.123)

where ε = 1/k. The last form follows since x2 + y2 = r2 in 2D.
The extension of (2.122) to nD is

δ(r) = lim
k→∞

n
∏

j=1

ψk(xj) , (2.124)

where xj , j = 1, ..., n, are the Cartesian components of r. In particular, (2.123)
generalizes to

δ(r) = lim
ε→0+

1

εn
exp

[

−
πr2

ε2

]

. (2.125)
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2.4.3 Delta functions in polar coordinates

The reader is cautioned that the product form of (2.124) is valid in Cartesian
coordinates only. In 2D polar coordinates (r, θ), the following is true:

δ(r) =
δ(r)

πr
, (2.126)

where r = |r| =
√

x2 + y2. As with all equations involving delta functions, (2.126)
must hold if both sides are multiplied by a test function and integrated. We convert
the test function t(x, y) to polar coordinates by defining tp(r, θ) = t(x, y) and using
the usual transformation formulas from (x, y) to (r, θ). We have two options for
computing the integral in question. One is to write

∫

∞

d2r t(r) δ(r) =

∫ 2π

0
dθ

∫ ∞

0
r dr tp(r, θ)

δ(r)

πr
=

1

π

∫ 2π

0
dθ

∫ ∞

0
dr tp(r, θ) δ(r) .

(2.127)
At this point we can treat r as a dummy 1D variable of integration and use (2.62)
to obtain

∫ ∞

0
dr tp(r, θ) δ(r) =

∫ ∞

−∞

dr tp(r, θ) step(r) δ(r) =
1
2 tp(0, θ) . (2.128)

Since tp(r, θ) is a test function, it must be independent of θ at r = 0, so we have

∫

∞

d2r t(r) δ(r) =
tp(0, 0)

2π

∫ 2π

0
dθ = t(0) , (2.129)

as required.
The other option for performing this integral without appealing to (2.62) is

to allow r to assume negative values, which we do by redefining r as |r| if r is in
quadrants 1 or 2 and −|r| if it is in quadrants 3 or 4. Then d2r = |r|dr dθ, and the
infinite plane is traversed by letting θ run from 0 to π while r runs from −∞ to ∞.
This yields

∫

∞

d2r t(r) δ(r) =

∫ π

0
dθ

∫ ∞

−∞

|r|dr tp(r, θ)
δ(r)

π
|r| =

tp(0, 0)

π

∫ π

0
dθ = t(0) .

(2.130)
Both of these approaches establish the validity of (2.126) in 2D. The 3D counterpart
is

δ(r) =
δ(r)

2πr2
, (2.131)

where now r = |r| =
√

x2 + y2 + z2.

Dimensions and dimensions Equations (2.126) and (2.131) afford an opportunity to
comment on some semantic and notational points. In the former equation, r is a 2D
vector while r, its magnitude, is a scalar. We refer to δ(r) as a 2D delta function,
meaning that it can be used to perform a 2D integral. The right-hand side of the
equation involves δ(r), a delta function with a scalar argument, which we refer to
as a 1D delta function since it can be used to perform only a single integral, namely
the one over the scalar r (or |r|). That disparity in dimensions caused no problem
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in the calculation above since the integral over θ was trivial once the one over r was
performed.

We adopt the terminology that an nD delta function is one that can be used to
perform n integrals. Some authors use a notation such as δn(r) to state explicitly
the dimensionality of the delta function, but we shall not do so. Instead, we use
the convention that the dimensionality of the delta function is the same as the
dimensionality of the vector (or scalar) in its argument. By this rule, δ(r) is an nD
delta function if r is an nD vector, but δ(r) is always a 1D delta function.

Having said this, we now introduce a completely different usage of the word
dimension. In physical problems, dimensional analysis is a very useful tool for
ensuring that equations are consistent and independent of the particular system
of units chosen. One way to perform a dimensional analysis is to note that all
physical quantities can be expressed in terms of mass (M), length (L), time (T )
and charge (Q). Different units can be used, but the dimensions of a physical
quantity are always the same. Speed, for example, can be measured in cm/sec or
furlongs/fortnight, but it always has dimensions of L/T . An equation like v = dx/dt
(where v = speed, x = position and t = time) is dimensionally consistent since dx
has dimensions of length and dt dimensions of time, so speed has dimensions of L/T
as required. We shall often use square brackets to denote dimension. Here [dx] = L,
[dt] = T and [v] = L/T . Note that the fact that dx and dt are infinitesimal is of
no import for purposes of dimensional analysis. Neither is the distinction between
a vector and a scalar; speed and velocity have the same dimensions.

These same concepts can be applied to equations involving delta functions.
The equation

∫

dx t(x) δ(x) = t(0) must be dimensionally consistent, in the sense
of dimensional analysis. To be concrete, assume that x is a spatial position and
hence has dimensions of length. The test function t(x) can represent any physical
quantity, so we denote its (unknown) dimensions as [t(x)]. The dimensions of the
right-hand side of the equation, namely, [t(x)], must match those of the left-hand
side. On the left, however, dimensional analysis yields [dx][δ(x)][t(x)], so consistency
demands that

[δ(x)] =
1

[dx]
=

1

[x]
, (2.132)

or 1/L if x is a length. In (confusing) words, the one-dimensional delta function
has dimensions equal to the reciprocal of the dimensions of its argument.

If delta functions have dimensions, their limiting representation must as well.
To apply dimensional analysis to (2.40), for example, we must first determine the
dimensions of ε. Recall that an exponential can be expressed as a power series, and
one cannot add quantities with different dimensions. Thus each term in the power
series must be dimensionless, requiring that ε have the same dimensions as r, say
L. The exponential function itself, being a sum of powers of the exponent, is also
dimensionless, and the delta function represented by (2.40) has dimensions of 1/[ε]
or 1/L as required.

Similarly, an nD delta function has dimensions of

[δ(r)] =
1

[dnr]
=

1

[r]n
. (2.133)

Thus, if r is a 3D position vector, then δ(r) must be assigned the dimensions of
1/L3 for purposes of dimensional analysis. The 1D delta function δ(r), on the other
hand, has dimensions of just 1/L. Equations (2.126) and (2.131) are dimensionally
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consistent since the denominators serve to balance the dimensions of the two sides.
(Note that an angle, being the ratio of an arc length to a radius, is dimensionless.)

To add further to the confusion, we remind the reader that yet another usage
of dimension was introduced in the last chapter. The test functions t(r), which
map from Rn to T(S), are themselves vectors in a Hilbert space of infinite dimen-
sionality. Here are all three usages in a single sentence: An n-dimensional delta
function, which has dimensions 1/Ln, is a basis vector for an infinite-dimensional
space. Caveat lector.

2.4.4 Line masses and plane masses

The 1D delta function δ(r), where r is the magnitude of an nD vector, is defined for
all points in an nD space; it just happens that it is nonzero only at a single point
in that space, namely the origin. One can devise other 1D delta functions that
are also defined at all points in an nD space but are nonzero over lines or planes.
Consider, for example, a delta function of the form δ(r · n̂) where r is a 2D vector,
n̂ is a 2D unit vector and the dot indicates the usual 2D scalar product. This delta
function is nonzero everywhere that its argument vanishes, or for the set of points
r such that r · n̂ = 0. Since this equation requires that r be perpendicular to n̂, the
delta function is nonzero along a line through the origin and normal to n̂. Similarly,
the delta function δ(r · n̂ − p) is nonzero along a line normal to n̂ and a distance
p from the origin as shown in Fig. 2.7. To use either of these delta functions in an
integral, it is convenient to use a rotated coordinate system where r has Cartesian
coordinates (x′, y′), with the x′-axis parallel to n̂. In this system, a test function
t(r) is given by trot(x′, y′) and r · n̂ = x′. We therefore have
∫

∞

d2r t(r) δ(r · n̂− p) =

∫ ∞

−∞

dx′

∫ ∞

−∞

dy′ trot(x
′y′) δ(x′ − p) =

∫ ∞

−∞

dy′ trot(p, y
′) .

(2.134)
Since δ(r · n̂−p) is 1D, we can go no further. The result of using this 1D delta

function in a 2D integral is a specific number, namely the line integral of the test
function along the line r · n̂ = p. Thus δ(r · n̂−p) qualifies as a generalized function

Fig. 2.7 Illustration of the line r · !n = p in 2D.

and defines the functional specified in (2.134). Unlike the delta function δ(r− r0),
however, it does not sift out a single point from the test function.
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In 3D, the delta function δ(r · n̂ − p) has a different interpretation. Again it
is nonzero for those points r for which the argument vanishes, or r · n̂ = p. In
3D, however, this equation specifies a plane, so the result of using the generalized
function δ(r · n̂ − p) in a 3D integral is the integral of the test function over the
plane normal to n̂ and a distance p from the origin. We refer to δ(r · n̂ − p) as a
line mass or line delta function in 2D and as a plane mass or plane delta function
in 3D. Both of these constructs will prove to be very important when we discuss
tomography in Chap. 16.

If we wish to construct a line mass in 3D, one way to do so is to define a
generalized function g"n(r) by

g"n(r) =

∫ ∞

−∞

d* δ(r− n̂* ) . (2.135)

Since the integrand is a 3D delta function and a single integral is performed, g"n(r)
is a 2D delta function or, equivalently, a line delta function in 3D. It is nonzero for
all points along a line through the origin and parallel to n̂.

The line delta functions discussed above are all nonzero along straight lines.
An example of a line delta function in 2D where the line is not straight is the ring
delta function,

δ(r −R) = δ(|r|−R) , r a 2D vector . (2.136)

Not to be confused with δ(r−R), the ring delta function is nonzero along a circle
of radius R centered on the origin in the 2D plane. The same expression δ(r−R)
but with r a 3D vector would be nonzero along a shell of radius R and infinitesimal
thickness in the 3D space.

2.4.5 Multidimensional derivatives of delta functions

Various partial derivatives of multidimensional delta function can be defined by
analogy to the 1D derivatives discussed in Sec. 2.2.4. If r is an nD vector with
Cartesian coordinates {xj : j = 1, ..., N}, then the first partial derivatives of δ(r−r0)
are defined by

∫

∞

dnr t(r)
∂

∂xj
δ(r− r0) = −

∂t(r)

∂xj

∣

∣

∣

r=r0

. (2.137)

Higher partial derivatives are defined similarly. For example, gradients and Lapla-
cians of a delta function are defined by

∫

∞

dnr t(r)∇ δ(r− r0) = −∇t(r0) ; (2.137)

∫

∞

dnr t(r)∇2 δ(r− r0) = ∇2t(r0) . (2.138)

A general differential operator acting on a delta function is defined in terms
of its adjoint acting on the test function (see Sec. 1.3.5). The adjoint of ∇ is −∇
(which is a statement of integration by parts), while ∇2 is self-adjoint or Hermitian.

2.4.6 Other point singularities

In discussing various imaging applications in later chapters, we shall encounter some
multidimensional point singularities similar to the 1D ones defined in Sec. 2.3.3. A
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very common one will be the function 1/|r− r0|, where r and r0 are vectors in 2D
or 3D. Unlike the 1D function 1/|x−x0|, 1/|r− r0| is an integrable singularity, and
no special definition of a generalized function is needed. To prove this contention
in 2D, we make the change of variables, r′ = r− r0, and write

∫

∞

d2r
t(r)

|r − r0|
=

∫

∞

d2r′
t(r′ + r0)

|r′|
=

∫ 2π

0
dθ′

∫ ∞

0
r′ dr′

t(r′ + r0)

r′

=

∫ 2π

0
dθ′

∫ ∞

0
dr′ t(r′ + r0) , (2.139)

which must converge if t(r) is a test function. Similarly, 1/|r− r0|2 is an integrable
singularity in 3D.

The Laplacian of 1/|r − r0| in 3D is an important generalized function with
applications in coherent imaging and tomography. A change of variables as in
(2.139) allows us to set r0 to zero without loss of generality, and the Laplacian can
be calculated in spherical coordinates as follows:

∇2 1

r
=

1

r2
∂

∂r
r2

∂

∂r

1

r
= 0 if r &= 0 . (2.140)

To see the behavior at r = 0, we make use of the divergence theorem (Gauss’s
theorem), which states that

∫

S
D · n̂ da =

∫

V
∇ ·D d3r , (2.141)

where S is a closed surface surrounding volume V, da is the area element on S, n̂ is
an outwardly directed unit normal to S, and D is an arbitrary vector field. In the
present problem, D can be taken as the gradient of 1/r, which is a vector directed
radially away from the origin, and S can be taken as a sphere of radius R centered
on the origin so that n̂ is in the same direction as∇(1/r). Since ∇2f(r) = ∇·∇f(r),
we have
∫

V
∇·∇

1

r
d3r =

∫

S
n̂·∇

1

r
da =

∫

S

[

∂

∂r

1

r

]

r=R

da = −
1

R2

∫

S
da = −

1

R2
4πR2 = −4π ,

(2.142)
independent of R. Comparison of the first and last forms establishes that

∇2 1

r
= −4π δ(r) , r a 3D vector , r = |r| , (2.143)

or, more generally,

∇2 1

|r− r0|
= −4π δ(r− r0) . (2.144)

The same result can also be obtained more rigorously either by using a limiting
representation of 1/r or by using distribution theory.

An analogous result in 2D is

∇2 ln |r− r0| = 2π δ(r− r0) , r a 2D vector . (2.145)

Both (2.144) and (2.145) have important applications in the theory of wave propa-
gation and diffraction, and they show up in surprising ways in tomographic imaging
as well.
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2.4.7 Angular delta functions

So far in this chapter, the variable in the argument of a delta function has been a
spatial variable in some number of dimensions, but it is also frequently useful to
consider angular variables.

In 2D problems in polar coordinates, there is no difficulty in defining an angular
delta function. We can simply define δ(θ − θ0) by

∫ 2π

0
dθ δ(θ − θ0)t(θ) = t(θ0) , (2.156)

where t(θ) is a test function.
In 3D spherical coordinates, we need two angles; the usual choices are the

colatitude θ, measured from the z axis, and the longitude or azimuth φ, defined as
the rotation about the z axis as measured from the x axis. A unit vector n̂ in the
direction determined by these angles is given by

n̂ = (sin θ cosφ, sin θ sinφ, cos θ) . (2.157)

With these variables, we can define
∫

4π
dΩn δ(n̂− n̂0) t(n̂) = t(n̂0) , (2.158)

where dΩn = sin θ dθ dφ is the element of solid angle associated with n̂, and t(n̂) is
a test function in the angular variables.



3
Fourier Analysis

Jean Baptiste Joseph Fourier was born in a working-class French family in 1768.
Orphaned at age eight, he entered the military school at Auxerre, where his aptitude
for mathematics was evident. He was denied a commission in the artillery because
of his low birth and decided instead to become a monk (Whitrow, 1965). He en-
tered the Benedictine novitiate, but his plans were interrupted in 1789; the French
Revolution changed both Fourier’s life and the future of mathematics. Fourier was
an early supporter of the revolution but an outspoken opponent of the Terror. He
caught the eye of Napoleon and accompanied him to Egypt, where he became gov-
ernor of lower Egypt. On his return to France in 1801 he became prefect of Isère,
and during that time he conducted the investigations into heat flow that were to
lead to the methodology that we now know as Fourier analysis.

Lord Kelvin called Fourier’s Théorie Analytique de la Chaleur “a great math-
ematical poem,” and Kelvin and P. G. Tait called Fourier’s theorem “one of the
most beautiful results of modern analysis ... an indispensable instrument in the
treatment of nearly every recondite question in modern physics” (quoted in Bell,
1937).

Today, Fourier analysis is the cornerstone of many branches of science, engi-
neering and mathematics. The modern field of image science can be traced to the
turn-of-the century investigations of Ernst Abbé on the Fourier-transforming prop-
erties of lenses. Later work by P. M. Duffieux, Otto Schade, H. H. Hopkins, Edward
O’Neill and others laid a firm foundation for the concepts of modulation transfer
function and optical transfer function, which amount to analyzing an imaging sys-
tem in terms of its Fourier decomposition. The full power of this approach to image
science was evident by 1961 when Emmett Leith and Juris Upatnieks used Fourier
methods to analyze holographic imaging systems.

The term Fourier analysis actually covers a diverse range of mathematical
methods. We need to distinguish Fourier series, Fourier transforms and dis-
crete Fourier transforms. The Fourier series is an expansion of a continuous
function into a weighted sum of sines and cosines. We can view the Fourier-series

95
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expansion as a continuous-to-discrete mapping; a function of a continuous variable
is transformed into a discrete set of numbers. The Fourier transform, on the other
hand, maps one function to another, so it is a continuous-to-continuous mapping or
integral transform. The discrete Fourier transform (DFT), an often-used approxi-
mation to the Fourier integral, maps a discrete vector to another discrete vector, so
it is a discrete-to-discrete mapping or matrix operator. Finally, the discrete-space
Fourier transform, the spatial analog of the discrete-time Fourier transform often
used in digital signal processing, maps an infinite sequence of data samples to a
function, so it is a DC mapping. All four of these transforms are linear, so we can
build on what we learned in Chap. 1 about linear operators.

Since Fourier analysis is all about sines and cosines, we begin in Sec. 3.1 with
a short overview of some mathematical properties of these familiar trigonometric
functions. Then in Sec. 3.2 we introduce the Fourier series and discuss its proper-
ties in some depth. In Secs. 3.3 and 3.4, the Fourier transform in one or several
dimensions is developed as a generalization of the Fourier series, though it is also
possible to go in the other direction and regard the Fourier series as a special case
of the Fourier transform.

In Sec. 3.5 we discuss sampling, which can be viewed as a transformation from
a function to a discrete set of numbers. Conditions under which this transformation
is invertible and some specific inversion formulas are derived. In Sec. 3.6 we apply
sampling theory and derive the discrete Fourier transform, which can be viewed ei-
ther as an interesting matrix transformation in its own right or as an approximation
to the continuous Fourier transform.

The available books on Fourier analysis tend to cluster into two classes. En-
gineering-oriented texts such as Gaskill (1978) and Bracewell (1965) are excellent
compendia of practical properties of the transforms but spend little time discussing
the underlying mathematical issues such as convergence and the applicability of the
transforms to strange functions. At the opposite extreme, mathematical texts such
as Champeney (1987) and Körner (1988) discuss these points at length but provide
little guidance to the practitioner. To make matters worse, the mathematical lit-
erature itself is divided into two camps, depending on whether or not generalized
functions are admitted.

In this chapter we attempt to take a middle ground. It is our hope that the
chapter will indeed serve as a useful reference on practical properties of the trans-
forms, but we also discuss conditions that must be imposed on the functions for the
various results to hold in specified senses. Most importantly, we attempt to inte-
grate generalized functions into the overall framework and to relate the transform
theory to the Hilbert-space viewpoint that pervades this book.

As with the previous chapters, readers can skip over some of the more mathe-
matical sections without loss of continuity. For example, any section with the word
‘convergence’ in its title can be skipped on a first reading. A few key results from
these sections are used later, but they are called to the attention of the reader when
needed.
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3.1 SINES, COSINES AND COMPLEX EXPONENTIALS

3.1.1 Orthogonality on a finite interval

The basic building blocks of Fourier analysis are trigonometric functions of the form
cos(2πnx/L) or sin(2πnx/L), where n is an integer and x is a real variable. The
period of each of these functions is L/n, so the interval − 1

2L ≤ x ≤ 1
2L contains

exactly n cycles of both functions. The cosine is an even function of x on this
interval and the sine is an odd function.

The reciprocal of the period, n/L, is the frequency associated with the peri-
odic function cos(2πnx/L) or sin(2πnx/L). If x is a spatial variable, as it usually
is in imaging applications, we shall refer to n/L as a spatial frequency and denote
it ξn. Thus the functions {cos(2πnx/L)} and {sin(2πnx/L)} are sets of periodic
functions with different spatial frequencies ξn indexed by the discrete parameter n.
The numerical value of ξn is the number of cycles of cos(2πnx/L) or sin(2πnx/L)
per unit length. For purposes of dimensional analysis, spatial frequency has dimen-
sions (length)−1.

The following integrals involving these functions are well known from elemen-
tary calculus:

2

L

∫ 1

2
L

− 1

2
L
dx cos

(

2πnx

L

)

cos

(

2πmx

L

)

= δmn , m #= 0 , n #= 0 , (3.1)

2

L

∫ 1

2
L

− 1

2
L
dx sin

(

2πnx

L

)

sin

(

2πmx

L

)

= δmn , m #= 0 , n #= 0 , (3.2)

∫ 1

2
L

− 1

2
L
dx cos

(

2πnx

L

)

sin

(

2πmx

L

)

= 0 , (3.3)

where m and n are integers and δmn is the Kronecker delta symbol, with value 1
if n = m and 0 if n #= m. The factor of 2 is required in (3.1) and (3.2) since, for
n = m #= 0, the integrals are L times the spatial averages of sin2 or cos2 over an
integer number of periods. The average of sin2 or cos2 must be 1

2 since the corre-
sponding average of sin2 +cos2 is 1 and the average of sin2 must equal the average
of cos2 over an integer number of periods.

The case n = m = 0 must be treated separately. The left-hand side of (3.1) is
2 in this case since both cosines are one, while the left-hand side of (3.2) is 0 since
the sines are zero.

These sine and cosine functions are square-integrable over the interval
[− 1

2L,
1
2L], so they are vectors in the Hilbert space L2(−1

2L,
1
2L). From the discus-

sion in Chap. 1, the integrals in the three equations above will be recognized as scalar
products in that space. Equations (3.1) and (3.2) say that {

√

2/L cos(2πnx/L)}
and {

√

2/L sin(2πnx/L)} are two orthonormal sets in L2(−1
2L,

1
2L), while (3.3)

says that any member of the first set is orthogonal to any member of the second.
We know from Chap. 1 that complete orthonormal sets are useful since they

form a basis in terms of which any vector in the space can be expanded. The
central question in Fourier analysis is whether the sets {

√

2/L cos(2πnx/L)} and

{
√

2/L sin(2πnx/L)} are complete in that sense. This question is addressed in
Sec. 3.2.
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3.1.2 Complex exponentials

A more compact way to express the results of the last section uses complex expo-
nentials. By DeMoivre’s theorem (see App. B)

eiθ = cos θ + i sin θ . (3.4)

Equation (3.4), like any equation involving complex variables, is really two equa-
tions, one for the real part and one for the imaginary part. These two simultaneous
equations can be inverted to express the sine and cosine in terms of complex expo-
nentials, with the result

cos θ =
eiθ + e−iθ

2
, (3.5)

sin θ =
eiθ − e−iθ

2i
. (3.6)

In terms of complex exponentials, the three orthogonality relations, (3.1) – (3.3),
can be collapsed into a single equation:

1

L

∫ 1

2
L

− 1

2
L
dx exp

(

−
2πinx

L

)

exp

(

2πimx

L

)

= δmn , (3.7)

which is readily proved by separating real and imaginary parts and using (3.1) –
(3.3). The ugly

√
2 has disappeared since the complex exponentials have modulus

unity; if n = m, the integral is L. Also, it is no longer necessary to treat n = 0 or
m = 0 separately.

In (3.7) we introduced a complex conjugate in the first exponential in keeping
with the definition of a scalar product in L2. If we denote (1/

√
L) exp(2πinx/L) as

un(x), (3.7) says that the {un(x)} constitute an orthonormal set in L2(− 1
2L,

1
2L).

Again, the key question is whether they are a complete set.

3.1.3 Orthogonality on the infinite interval

In many applications of Fourier analysis, it is necessary to consider the infinite
interval −∞ < x < ∞. If we simply let L → ∞ in the treatment above, we
run into difficulty because of the factor 1/

√
L in the definition of the orthonormal

functions. Orthonormal functions with zero amplitude everywhere are of little use.
A better approach is to designate the functions by a continuous index rather than
a discrete one, so that n/L and m/L become the real continuous variables ξ and ξ′,
respectively. Then the counterpart of (3.7) is

∫ ∞

−∞
dx exp(−2πiξx) exp(2πiξ′x) = δ(ξ − ξ′) , (3.8)

which is (2.45) in Chap. 2 with a notational change. In the limit L → ∞, L times
the Kronecker delta has become the Dirac delta.

Equation (3.8) says that the functions exp(2πiξx) and exp(2πiξ′x) are orthog-
onal in the sense that their scalar product, defined appropriately for L2(−∞,∞),
vanishes if ξ #= ξ′. If ξ = ξ′, however, the scalar product is infinite, so exp(2πiξx) is
not itself a vector in L2(−∞,∞). Nevertheless, we can expect from the discussions
in Chap. 1 (see Sec. 1.1.6) that these complex exponentials will prove useful as a
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basis for L2(−∞,∞). Anticipating that result, we denote the set {exp(2πiξx)} as
{uξ(x)}.

The corresponding orthogonality relations for sines and cosines are

2

∫ ∞

−∞
dx cos(2πξx) cos(2πξ′x) = δ(ξ + ξ′) + δ(ξ − ξ′) , (3.9)

2

∫ ∞

−∞
dx sin(2πξx) sin(2πξ′x) = δ(ξ − ξ′)− δ(ξ + ξ′) . (3.10)

Thus cos(2πξx) and cos(2πξ′x) are orthogonal unless ξ = ξ′ or ξ = −ξ′, and similarly
for the sines.

3.1.4 Discrete orthogonality

In the last section we converted the discrete index n in the function exp(2πinx/L)
into a continuous variable. We can also do the reverse and convert the continuous
variable x into a discrete index k. In this case it is more convenient to work with
the range 0 ≤ x < L rather than the centered range used above. We get a discrete
variable simply by dividing the range [0, L) into K equal steps of size ∆x = L/K
and defining

xk = k∆x =
kL

K
, k = 0, ...,K − 1 . (3.11)

The function exp(2πinx/L) evaluated at x = xk is exp(2πink/K), which, for fixed
n, is a set of K complex numbers or a K×1 vector. Of course, the index n specifies
which K×1 vector we are considering. We denote by un the vector for which the kth

component is given by (1/
√
K) exp(2πink/K). With the scalar product appropriate

to the K-dimensional Euclidean space EK, we have the following orthogonality
relation:

(um,un) =
1

K

K−1
∑

k=0

e2πi(m−n)k/K = δmn . (3.12)

This result can be derived algebraically by recognizing the sum as a geometric series,
with terms of the form tk, where t = exp[2πi(m− n)/K]. The usual expression for
the sum of a geometric series then gives (3.12). A more intuitive view of the same
result is given in the next section.

3.1.5 View from the complex plane

For fixed x, the function un(x) = exp(2πinx/L) can be represented as a point on
the unit circle in the complex plane or as a vector from the origin to that point. The
axes in this complex representation are the real and imaginary parts of un(x). The
angle between the vector and the real axis is the phase, 2πnx/L, which increases
linearly as x increases. For this reason, the complex exponential is often referred
to as a linear phase factor. The term phasor is also frequently encountered,
especially in the electrical engineering literature.

A useful mental image is that there is a vector in the complex plane associated
with each value of x, with the vector rotating linearly as x increases (see Fig. 3.1).
The spatial frequency n/L specifies the rate of rotation.
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Fig. 3.1 Illustration of a complex exponential or linear phase factor exp(2πiξ0x).

This viewpoint can be used to give geometric interpretations of the vari-
ous orthogonality relations derived above. Consider first (3.7). The integrand is
the product of two complex exponentials, which is itself a complex exponential,
exp[2πi(m − n)x/L]. The resulting vector in the complex plane makes an angle
2π(m − n)x/L with the real axis. Again, this angle increases linearly as x varies,
with the rate of rotation now specified by the difference in spatial frequencies,
(m − n)/L. As x varies over the range of integration from −1

2L to 1
2L, the vector

rotates through a total angle of 2π(m − n), which is an integer number of turns
since m− n is an integer. Each x in the range of integration is paired with another
x such that the vector is oppositely directed. The integral, being just the sum of
all these vectors, is zero unless m = n.

Similarly, in (3.12), the complex number exp[2πi(m−n)k/K] is a vector in the
complex plane, making an angle 2π(m − n)k/K with the real axis. If m = n, the
angles are zero for each k, and the sum is K, but if m #= n, the vectors are uniformly
spaced in angle and the vector sum is zero.

3.2 FOURIER SERIES

3.2.1 Basic concepts

Consider a one-dimensional (1D) function f(x) defined on the interval
− 1

2L ≤ x < 1
2L. In the next section we shall be more precise about the require-

ments on f(x), but for now we simply assume that it can be expanded in terms of
sines and cosines in the form

f(x) = F0 +
∞
∑

n=1

F (c)
n cos

(

2πnx

L

)

+
∞
∑

n=1

F (s)
n sin

(

2πnx

L

)

. (3.13)

Discussion of the validity of this form and the sense in which the series converges
to f(x) is postponed to the next section.
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How do we find the coefficients of the expansion in (3.13)? The first term,
F0, is found by integrating both sides of (3.13) from − 1

2L to 1
2L, with the result

F0 =
1

L

∫ 1

2
L

− 1

2
L
f(x) dx , (3.14)

since all other terms in (3.13) yield integrals of a sine or cosine over an integer
number of periods and hence integrate to zero. Thus F0 is simply the average of
f(x) over the interval. The coefficient F0 is often referred to colloquially as the DC
term; if x is a temporal variable and f(x) is an electrical current, F0 is the average
or direct-current component, and the terminology has carried over to spatial vari-
ables as well.

To find the other coefficients, we multiply (3.13) by either cos(2πmx/L) or
sin(2πmx/L), integrate over the same interval as before, and make use of the or-
thogonality relations, (3.1) – (3.3). The results are

F (c)
n =

2

L

∫ 1

2
L

− 1

2
L
dx f(x) cos

(

2πnx

L

)

, (3.15)

F (s)
n =

2

L

∫ 1

2
L

− 1

2
L
dx f(x) sin

(

2πnx

L

)

. (3.16)

It follows from these equations that F (c)
n and F (s)

n are real numbers if f(x) is a real-
valued function (or simply a real function for short).

If f(x) is an even function, so that f(−x) = f(x), then F (s)
n ≡ 0 and only

the cosine series is needed. Similarly, if f(x) is odd, so that f(−x) = −f(x), then

F (c)
n ≡ 0 and only the sine series is needed.

Fourier series in terms of complex exponentials A more compact way to state these
results is by use of complex exponentials, so that the Fourier series takes the form

f(x) =
∞
∑

n=−∞

Fn e
2πinx/L . (3.17)

To find the coefficients {Fn}, we multiply both sides of (3.17) by exp(−2πimx/L)
and integrate from − 1

2L to 1
2L. With the orthogonality relation of (3.7), we find

∫ 1

2
L

− 1

2
L
dx e−2πimx/L f(x) =

∞
∑

n=−∞

Fn

∫ 1

2
L

− 1

2
L
dx e−2πimx/L e2πinx/L

=
∞
∑

n=−∞

FnL δmn = LFm . (3.18)

Solving for Fm and changing the dummy index m to n yields

Fn =
1

L

∫ 1

2
L

− 1

2
L
dx f(x) e−2πinx/L . (3.19)

Thus, if we know a priori that f(x) can be expanded in the form of (3.17), the
coefficients in the expansion are given by (3.19). The question of when f(x) can be
so represented will be treated in Sec. 3.2.2.
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Periodicity We assumed above that f(x) was defined on the interval [− 1
2L,

1
2L], and

of course the coefficients were fully determined by the values of f(x) in this interval.
It is, however, interesting to inquire about the behavior of the series outside that
interval. Since the function exp(2πinx/L) is periodic with period L/n, where n is
an integer, it is also periodic with period L. Since this is true for every term in the
Fourier series, it is true for the sum as well (if the sum converges). That is,

f(x+mL) = f(x) , m = 0,±1,±2, ... , (3.20)

provided f(x) is expressed by (3.17). We thus have two different ways of looking
at the Fourier series. It is a representation of an arbitrary function on the interval
[− 1

2L,
1
2L], and it is a representation of a periodic function1 with period L on the

interval (−∞,∞).
This view gives us alternative ways of expressing the Fourier coefficients. Since

both factors in the integrand of (3.19) are periodic with period L, we can perform
the integration over any period we choose. For example, it is straightforward to
show that (3.19) is equivalent to

Fn =
1

L

∫ L

0
dx f(x) e−2πinx/L (3.21)

if f(x) has the periodic symmetry stated by (3.20).

Relation to the Laurent series For x real, the complex exponential exp(2πinx/L)
lies on the unit circle in the complex plane. We can use this observation to relate the
Fourier series to the Laurent series for functions of a complex variable (see App. B).

We define w(x) ≡ exp(2πix/L), but we shall immediately drop the argument
and write simply w for w(x). Then the basic Fourier kernel is related to w by

exp(2πinx/L) = wn . (3.22)

To get to the Laurent series, f(x), must also be expressed in terms of w. To
this end we define

f(x) = fw(w) = fw
(

e2πix/L
)

. (3.23)

The Fourier series for f(x) is then the Laurent series for fw(w) around the point
w = 0, i.e.,

f(x) = fw(w) =
∞
∑

n=−∞

Fnw
n . (3.24)

The Laurent coefficients are identical to the Fourier coefficients. A change of vari-
ables from x to w in (3.19) allows us to write

Fn =
1

L

∫ 1

2
L

− 1

2
L
dx f(x) e−2πinx/L =

1

2πi

∮

C
dw

fw(w)

wn+1
, (3.25)

where the contour integral is around the unit circle, denoted C. Equation (3.25) is
identical (except for notation) to the relation given in App. B for Laurent coeffi-
cients.

1If the original definition of f(x) on [− 1
2
L, 1

2
L] does not have f (− 1

2
L) = f( 1

2
L), then the corre-

sponding periodic function on (−∞,∞) will have periodically placed discontinuities.



FOURIER SERIES 103

A potential advantage of the Laurent series is that it would allow us to ana-
lytically extend f(x) from a function of a real variable to a function of a complex
variable, and the theory of Laurent series would enable us to make statements about
convergence. Though we shall not have use for this extension, a related extension
will prove useful when we discuss Fourier transforms in Sec. 3.3. For the remainder
of the chapter, x will continue to denote a real variable.

3.2.2 Convergence of the Fourier series

In Sec. 3.2.1 we assumed that f(x) could be represented by a Fourier series and
used the orthogonality relations to derive expressions for the coefficients. In this
section we pose the opposite question: Given the series and the coefficients, to what
function does it converge?

To make this question more precise, we define

SN (x) =
N
∑

n=−N

Fn e
2πinx/L , (3.26)

where the {Fn} are now defined by (3.19). This sum is called the N th partial sum of
the Fourier series of f(x). For any finite N, SN (x) is a continuous, periodic function
of x with period L (Champeney, 1987). We discuss below several ways in which SN

might converge to f(x).

Pointwise convergence If f(x) is smooth in some sense, there is no difficulty in
showing that SN (x) → f(x) for all x as N → ∞. One way we could demonstrate
this point is by use of the Laurent series introduced above. As we have used it, the
Laurent series is convergent if fw(w) is analytic on the unit circle. As discussed in
App. B, all derivatives of analytic functions exist. From this we can deduce that
SN (x) converges to f(x) at all x if all derivatives of fw(w) exist for w on the unit
circle, which implies that all derivatives of f(x) exist for real x. This result is of
extremely limited usefulness.

A somewhat less restricted convergence statement is a classical theorem due to
Dirichlet (Körner, 1988; Stakgold, 1979). If f(x) is continuous and has a bounded
continuous derivative on (−1

2L,
1
2L), except possibly at a finite number of points,

then SN (x) converges to f(x) for all points where f(x) is continuous in that interval.
This is an improvement over the previous paragraph, but it still does not encompass
all of the functions for which we might want to construct a Fourier series. For more
interesting functions, SN (x) may converge but not to f(x), or it may not converge
at all.

Consider two functions f1(x) and f2(x) that differ only at an isolated point x0.
If the values of both functions at x0 are finite, these functions have the same set
of Fourier coefficients since the isolated point does not affect the integrals. Hence
the two functions have the same SN (x) for all N, so SN (x), while it may converge,
cannot converge to both functions at every point. A simple way to deal with this
problem is to say that f1(x) and f2(x) are really the same function almost every-
where. This disclaimer, often abbreviated a.e., allows us to disregard the isolated
point. The isolated point (or any countable set of points) is, in mathematical jar-
gon, a set of measure zero, which simply means it doesn’t affect any integrals so we
don’t worry about it.

Having dismissed problems arising from isolated points, we turn next to dis-
continuities in f(x). Consider a point x0 where f(x) is bounded but discontinuous
and assume that the limit of f(x) exists as x → x0 from both directions. Denote the
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limit from above by f(x+
0 ) and from below by f(x−

0 ). A classical result (Stakgold,
1979) is that SN (x0) → 1

2 [f(x
+
0 ) + f(x−

0 )] as N → ∞. A similar conclusion follows
if f(x) has a finite number of finite discontinuities. In other words, if we simply
redefine f(x) such that its value at every discontinuity is the average of its values on
the two sides, we can say that Sn(x) converges to f(x) everywhere; without redefi-
nition, we still need the almost everywhere disclaimer to exclude the discontinuity.

Many other theorems relate to the pointwise convergence of Fourier series
(Champeney, 1987; Titchmarsh, 1948). The following theorem, quoted from Cham-
peney, provides some useful guidelines:

Suppose that f (x) is periodic of period L, defined and bounded on [− 1

2
L, 1

2
L],

and that at least one of the following four conditions is satisfied: (i) f (x) is
piecewise monotonic on [− 1

2
L, 1

2
L] ; (ii) f (x) has a finite number of maxima

and minima on [− 1

2
L, 1

2
L] and a finite number of discontinuities on [− 1

2
L, 1

2
L] ;

(iii) f(x) is of bounded variation on [− 1

2
L, 1

2
L] ; (iv) f (x) is piecewise smooth

on [− 1

2
L, 1

2
L]. Then the Fourier series coefficients can be defined by (3.19), us-

ing proper Riemann integrals, and the Fourier series given by (3.26) converges
to f(x) at each point of continuity of f(x) and to the value 1

2
[f(x+

0 ) + f (x−

0 )]
at all x.

While the conditions listed above allow considerable latitude in the function
f(x), clever mathematicians can always find pathological cases. Certain peculiar
functions with a fractal character may be everywhere continuous but nowhere dif-
ferentiable (Walker, 1991; Körner, 1988). These functions are not covered by the
theorem above; for example, they have an infinite number of maxima and minima in
a finite interval. In such cases, it is possible that the Fourier series for a periodic and
everywhere continuous function can diverge for some x and even for a nondenumer-
able and dense set of x values. About all that can be proved unequivocally is that
the Fourier series of a continuous function cannot diverge everywhere (Champeney,
p. 157).

Uniform convergence After pointwise convergence, the next kind to consider is uni-
form convergence (Champeney, p. 26). Even though SN (x) may converge pointwise
almost everywhere to f(x), the rate of convergence may be different for different
x, so that even at large N, f(x) − SN (x) may not be small for some x. A formal
definition of uniform convergence is that the least upper bound of |f(x) − SN (x)|
over any interval of x tends to 0 as N goes to ∞.

One simple way to ensure uniform convergence of the Fourier series is to re-
quire that the function and its derivative be continuous (Stakgold, 1979). If the
function is discontinuous, however, there is a well known failure of the condition
of uniform convergence. As illustrated in Fig. 3.2, there is an oscillation and a
significant overshoot near the point of discontinuity. As N gets larger, the spatial
extent of the oscillation decreases, but the peak amplitude of the overshoot does
not tend to zero. This finite limiting overshoot is known as the Gibbs phenomenon
(after the American physicist J. Willard Gibbs). The Gibbs phenomenon does not
contradict the fact that the Fourier series converges pointwise, but it does show
that the convergence is not uniform in an interval surrounding the discontinuity
(Stakgold, 1979, p. 135). A good discussion of the Gibbs phenomenon is given in
Carslaw (1930).
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Fig. 3.2 Illustration of the Gibbs phenomenon. The function f(x) was a rect
function, and the partial Fourier sum SN (x) from (3.26) is shown for three
values of N. Though the oscillations become more rapid as N increases, the
amount of overshoot error does not change.

Convergence in the L2 sense Another important kind of convergence is con-
vergence in the L2 sense, which is often referred to in the literature as conver-
gence in the mean. If we approximate f(x) by SN (x), the mean-square error in
the approximation is just 1/L times the square of the L2 norm of f(x) − SN (x).
Convergence in the mean states that this mean-square error tends to zero as N
tends to ∞. To be precise, if we assume that f(x) is in L2(− 1

2L,
1
2L), then

lim
N→∞

∫ 1

2
L

− 1

2
L
dx |f(x)− SN (x)|2 = 0 . (3.27)

A formal proof of this theorem is given in Stakgold (1979), and a less formal one
based on properties of delta functions is given below.

This kind of convergence says that if we use the Fourier series in place of the
original function f(x), the error we make is a function with zero length, in the
sense of its L2 norm. In particular, if we form a scalar product with any function
h(x) in L2(−1

2L,
1
2L), it does not matter whether we use f(x) or its Fourier-series

representation, i.e.,

∫ 1

2
L

− 1

2
L
dxh∗(x) f(x) = lim

N→∞

∫ 1

2
L

− 1

2
L
dxh∗(x)SN (x) . (3.28)

Equation (3.27) says that f(x) − SN (x) tends to the zero vector in L2, and (3.28)
is the extension that any scalar product with the zero vector is zero.

A proof of (3.27) and (3.28) based on properties of delta functions is instructive.
If we use (3.26) for SN (x) and (3.19) for the coefficients, the right-hand side of (3.28)
becomes

lim
N→∞

1

L

∫ 1

2
L

− 1

2
L
dx

∫ 1

2
L

− 1

2
L
dx′h∗(x) f(x′)

N
∑

n=−N

e2πin(x−x′)/L . (3.29)

The sum is a geometric series with terms of the form sn = exp(iαn), where
α = 2π(x− x′)/L. From (2.50) we know that

lim
N→∞

N
∑

n=−N

e2πin(x−x′)/L = comb

(

x− x′

L

)

. (3.30)
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As discussed in Chap. 2, the comb function is an infinite series of delta func-
tions, but in the present problem only one of them lies in the range of integration,
(− 1

2L,
1
2L), so comb(x) is equivalent to δ(x). Moreover, this delta function has

the sifting property (2.24) not only for test functions but also for all functions in
L2(−1

2L,
1
2L) if convergence in the mean is understood (Champeney, 1987, p. 35).

Thus (3.29) becomes

1

L

∫ 1

2
L

− 1

2
L
dx

∫ 1

2
L

− 1

2
L
dx′h∗(x) f(x′) δ

(

x− x′

L

)

=

∫ 1

2
L

− 1

2
L
dxh∗(x) f(x) , (3.31)

again establishing (3.28) and the conclusion that SN (x)−f(x) converges to the zero
vector in L2(− 1

2L,
1
2L).

Having established that SN (x) converges to f(x) and recalling our previous dis-
cussion of orthogonality, we are now justified in claiming that the complex exponen-
tials {(1/

√
L) exp(2πinx/L)} form a complete, orthonormal basis in L2(− 1

2L,
1
2L).

This basis set is infinite but denumerable. Note that neither {cos(2πnx/L)} nor
{sin(2πnx/L)} by itself is a complete basis (unless we restrict attention to even or
odd functions). Both sines and cosines, or equivalently complex exponentials, are
needed to expand an arbitrary function in L2(− 1

2L,
1
2L).

Fourier series divergent at a point So far we have been discussing situations where
SN (x) converges to something at all x, though not necessarily to f(x). It is also
possible that SN (x) does not converge at all for one or more values of x.

One way to deal with such situations is to treat the resulting series not as
an ordinary function but as a generalized function. As discussed in Chap. 2, a
generalized function is defined by multiplying it by a well behaved test function
t(x) and integrating. Thus, if we can assign a meaning to the integral

∫ 1

2
L

− 1

2
L
dx t(x) f(x) = lim

N→∞

∫ 1

2
L

− 1

2
L
dx t(x)

N
∑

n=−N

Fn e
2πinx/L , (3.32)

then we shall have defined the generalized function f(x) associated with the Fourier
coefficients {Fn}, even if the series by itself does not converge.

As a simple example, consider the case where Fn = 1 for all n. The Fourier
series diverges at x = 0, but the right-hand side of (3.32) can be written as

lim
N→∞

N
∑

n=−N

∫ 1

2
L

− 1

2
L
dx t(x) e2πinx/L = lim

N→∞
L

N
∑

n=−N

T−n = lim
N→∞

L
N
∑

n=−N

Tn = Lt(0) ,

(3.33)
where Tn is the well-defined Fourier coefficient of the continuous test function t(x).
Since exactly this same result would been obtained by integrating Lt(x) δ(x), we
can say

∞
∑

n=−∞

e2πinx/L = δ(x/L) = L δ(x) , −1
2L < x < 1

2L . (3.34)

Furthermore, since any Fourier series is periodic, we can remove the restriction on
x and write

∞
∑

n=−∞

e2πinx/L = comb(x/L) . (3.35)
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Equation (3.30) provides another example of a divergent Fourier series. It can
be regarded as a Fourier series with coefficients given by Fn = exp(−2πinx′/L),
where x′ is a constant. The resulting Fourier series diverges if x = x′ + k/L, where
k is any integer, but it can be treated as the generalized function comb[(x−x′)/L].
Some other examples will be introduced below when we discuss derivatives of a
Fourier series.

Mollifying a divergent series A common trick in mathematical physics is to deal with
a divergent sum or integral by introducing a convergence factor in the summand or
integrand. This factor is chosen so that, in some limit, it becomes unity, but the new
sum or integral nevertheless converges. Fortunately, there is a good mathematical
justification for this trick, as we shall see here for the case of a divergent Fourier
series.

Consider a function f(x) with Fourier coefficients given by the usual integral,
(3.19). For this integral to exist, it is sufficient for f(x) to be absolutely integrable,
i.e., in L1(− 1

2L,
1
2L). If that is the case, then Fn is bounded since

|Fn| =
1

L

∣

∣

∣

∫ 1

2
L

− 1

2
L
dx f(x) e−2πiξx

∣

∣

∣
≤

1

L

∫ 1

2
L

− 1

2
L
dx

∣

∣f(x) e−2πiξx
∣

∣ =
1

L

∫ 1

2
L

− 1

2
L
dx |f(x)| .

(3.36)
This condition is not, however, sufficient to guarantee the convergence of the Fourier
series, so it is not clear to what extent a function in L1(− 1

2L,
1
2L) can be recon-

structed from its Fourier coefficients. (A function in L1(− 1
2L,

1
2L) need not be in

L2(−1
2L,

1
2L), as shown by the example of a delta function.)

The key question is the following: Given a set of Fourier coefficients of a func-
tion in L1(−1

2L,
1
2L), can we recover the function even when the series diverges?

Surprisingly, the answer to this question is yes. Consider two new partial sums
defined by

S(C)
N (x) =

N
∑

n=−N

(

1−
|n|
N

)

Fn e
2πinx/L , (3.37)

S(A)
λ (x) =

∞
∑

n=−∞

e−|n|/λ Fn e
2πinx/L . (3.38)

The first of these sums was devised by Cesaro and the second by Abel, hence the
superscripts. The additional factor in the summand in each case is the convergence
factor. If N → ∞ or λ → ∞, these factors approach unity for any fixed, finite n,
so they would not appear to influence the sums in the limit; in fact, they don’t if
the original Fourier series converges. The nice result, however, is that these partial
sums can converge to f(x) in some sense even when the Fourier series diverges, i.e.,

lim
N→∞

S(C)
N (x) = f(x) , (3.39)

lim
λ→∞

S(A)
λ (x) = f(x) . (3.40)

Convergence proofs can be found in Körner (1988) and Champeny (1987). For
example, it can be shown that the sums in (3.37) and (3.38) converge in all of the
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following senses (Champeney, p. 159):

(a) To f(x) almost everywhere;

(b) To f(x) at each point of continuity;

(c) Uniformly to f(x) on an interval [a, b] whenever f(x) is continuous on [a−ε, b+ε]
for some ε > 0;

(d) To 1
2 [f(x

+)+f(x−)] at each point where f(x+) and f(x−) exist, where f(x±) =
lim
ε→0

f(x± ε);

(e) As a limit in the mean in the L1 sense over (− 1
2L,

1
2L);

(f ) To the Lebesgue value of f(x) at each Lebesgue point.

A Lebesgue value is simply the local average of f(x) over some small region, where
the average is defined by an integral in the Lebesgue sense (Champeney, p. 31). A
Lebesgue point is one where such an integral exists.

The uniform convergence in point (c) is interesting. It says that the Gibbs
phenomenon is eliminated by inclusion of the convergence factors.

The use of a convergence factor can be illustrated by returning to our example
of a delta function, where f(x) = δ(x) and Fn = 1/L for all n. In this case the limit
of the Cesaro partial sum can be written

lim
N→∞

S(C)
N (x) = lim

N→∞

1

L

N
∑

n=−N

(

1−
|n|
N

)

e2πinx/L . (3.41)

Using results to be derived later [the Poisson summation formula (3.197) and the
expression for the Fourier transform of a triangle function, (3.141)], we find

lim
N→∞

S(C)
N (x) = lim

N→∞

N

L

N
∑

n=−N

sinc2
[

N

L
(x− nL)

]

=
∞
∑

n=−∞

δ(x− nL) =
1

L
comb

( x

L

)

, (3.42)

where we have used (2.48) and (2.87). This is the correct answer since the function
f(x) = δ(x) in (−1

2L,
1
2L) corresponds to (1/L) comb(x/L) when periodically ex-

tended.
The relation between this subsection and the previous one should not be over-

looked. Above we didn’t worry about the divergence of the Fourier series at a point
but simply used the divergent series to define a generalized function. Here we fixed
up the divergence with a convergence factor, arriving at a limiting representation
for the same generalized function. Different choices of convergence factors lead to
different limiting representations. For example, the reader may wish to show that
the Abel convergence factor leads to (2.39).

3.2.3 Properties of the Fourier coefficients

Having found expressions for the Fourier coefficients and discussed the convergence
properties of the series, we now examine some important practical properties of the
coefficients.
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Linearity The mapping from a function f(x) to its Fourier coefficients is a linear
operator, as defined in Chap. 1. If we define

h(x) = α f(x) + β g(x) , (3.43)

where α and β are constants, then

Hn = αFn + βGn , (3.44)

where Fn, Gn, and Hn are Fourier coefficients of f(x), g(x) and h(x), respectively.

Real functions Up until now, we have not imposed the requirement that f(x) be
real-valued; all of our results hold even if it is complex-valued. In practical appli-
cations, f(x) will often be real, so of course its Fourier series must be real as well.
By a change of variables, x′ = −x, in (3.19), it can be seen that

F ∗
n = F−n if f(x) is real . (3.45)

A consequence of this relation is that F0 must be real if f(x) is.
Equation (3.45) is sometimes referred to as the Hermiticity of the Fourier

coefficients, and the series itself is said to be Hermitian. This terminology derives
from properties of Hermitian matrices, where interchange of rows and columns
followed by complex conjugation leaves the matrix element unchanged. Here we see
that replacement of n with−n followed by complex conjugation leaves Fn unchanged
if it is a Fourier coefficient of a real function, so many writers use the term Hermitian
to describe this symmetry. An unfortunate aspect of this terminology is that it is
likely to foster the impression that we are dealing with Hermitian operators, which
we are not.

Even and odd functions Additional restrictions on the Fourier coefficients arise from
symmetry of f(x). In Sec. 3.2.1, we noted that an even function could be described
completely by a Fourier cosine series, while an odd function required only the sine
series. In terms of the coefficients in the complex exponential series, this implies

Fn = F−n if f(x) = f(−x) , (3.46a)

Fn = −F−n if f(x) = −f(−x) . (3.46b)

Thus even (odd) functions have Fourier coefficients that are even (odd) when we
replace n with −n.

Combining (3.45) and (3.46), we can make stronger statements: If f(x) is real
and even, its Fourier coefficients are also real and even, while if f(x) is odd, its
coefficients are pure imaginary and odd.

Asymptotic behavior It is of considerable importance to know how Fn behaves as
n tends to ±∞. The answer depends on the properties of f(x), but the following
theorem, proved by Stakgold (1979) is often useful: If f(x) is in L2(− 1

2L,
1
2L) and

the {Fn} are defined by (3.19), then

lim
n→±∞

Fn = 0 (3.47)
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and the decay of Fn is sufficiently rapid so that
∞
∑

n=−∞

|Fn|2 < ∞ . (3.48)

Moreover, the rate of decay is dependent on the smoothness of f(x). If we
know that f(x) is continuous and has continuous derivatives up to at least order q,
then (Stakgold, 1979)

lim
n→±∞

nqFn = 0 . (3.49)

We can understand these results intuitively by envisioning the real and imag-
inary parts of the integrand in (3.19). When a sine or cosine is multiplied by
a smooth function, adjacent positive and negative half-cycles tend to cancel out.
This cancellation becomes more complete as the frequency of the sine or cosine
increases or as the function becomes smoother.

Parseval’s relations Equation (3.48) says that the sum of squared moduli of the
Fourier coefficients converges if f(x) is in L2(−1

2L,
1
2L). What it converges to is

interesting. An important result called Parseval’s identity states that

∞
∑

n=−∞

|Fn|2 =
1

L

∫ 1

2
L

− 1

2
L
dx |f(x)|2 . (3.50)

This equation is a special case of a more general formula, known as the power
theorem or generalized Parseval’s theorem, which relates to products of two different
functions, f(x) and g(x) :

∞
∑

n=−∞

F ∗
nGn =

1

L

∫ 1

2
L

− 1

2
L
dx f∗(x) g(x) . (3.51)

There are several ways to derive these relations. A one-liner adapted from
Marks (1991) starts by expressing f∗(x) in (3.51) in terms of its Fourier series.
From the complex conjugate of (3.17), we have

1

L

∫ 1

2
L

− 1

2
L
dx f∗(x) g(x) =

1

L

∫ 1

2
L

− 1

2
L
dx

∞
∑

n=−∞

F ∗
n e−2πinx/Lg(x) . (3.52)

Interchanging sum and integral and recognizing the integral as Gn completes the
proof of (3.51), while setting f(x) = g(x) establishes (3.50).

An alternative derivation of the generalized Parseval relation parallels the
derivation given for (3.28). We begin with the left-hand side of (3.51) and in-
sert the integral expressions for both Fourier coefficients. Regarding the infinite
sum as the limit of partial sums, we obtain

∞
∑

n=−∞

F ∗
nGn = lim

N→∞

1

L2

N
∑

n=−N

∫ 1

2
L

− 1

2
L
dx f∗(x) e2πinx/L

∫ 1

2
L

− 1

2
L
dx′g(x′) e−2πinx′/L

= lim
N→∞

1

L2

∫ 1

2
L

− 1

2
L
dx

∫ 1

2
L

− 1

2
L
dx′ f∗(x) g(x′)

N
∑

n=−N

e2πin(x−x′)/L . (3.53)

By arguments identical to those used below (3.29), the sum becomes a delta func-
tion, and (3.51) follows.
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Fourier series and unitary transformations Parseval’s relations have an important in-
terpretation in terms of scalar products. The right-hand side of (3.51) is 1/L times
the L2 scalar product of g(x) and f(x), while the left-hand side can be interpreted
as a scalar product in an infinite-dimensional Euclidean space E∞. If we regard
the process of constructing a Fourier series as a linear transformation from L2 to
E∞, the generalized Parseval relation says that the transformation preserves the
scalar product except for the factor of 1/L. Similarly, (3.50) says that the norm is
preserved within 1/L.

In Chap. 1 we saw that unitary transformations preserve norms and scalar
products and that transformations based on orthonormal functions are unitary (see
Sec. 1.4.5). The only reason the transformation from f(x) to the set of Fourier
coefficients {Fn} is not unitary is that we did not define the coefficients with prop-
erly normalized orthonormal functions. As we have seen, the orthonormal set is
{(1/

√
L) exp(2πinx/L)}, while the Fourier coefficients are defined with 1/L rather

than 1/
√
L. Except for the gratuitous factor of

√
L, the transformation from f(x)

to {Fn} is unitary, and the Parseval relations follow.

Differentiation and integration of a Fourier series Suppose f(x) is continuous and
has a continuous derivative f ′(x) for some interval of x. Then both f(x) and f ′(x)
can be represented by Fourier series in this interval. Direct differentiation of the
series for f(x) yields

f ′(x) =
∞
∑

n=−∞

2πinFn

L
e2πinx/L . (3.54)

Hence the Fourier coefficients for f ′(x) are {2πinFn/L}, where {Fn} are the coef-
ficients for f(x).

Several comments about this result are in order. First, in spite of the factor
of i, f ′(x) is real if f(x) is real since replacing n with −n and taking the complex
conjugate leaves the product in unchanged [see (3.32)]. Second, if f ′(x) exists, the
series in (3.54) will converge. Finally, if the series in (3.54) does not converge, we
can nevertheless interpret it as a series representation of a generalized function.

For example, consider the function f(x) = rect(2x/L) defined in (2.9). As
discussed in Chap. 2, this function is discontinuous at x = ±L/4, and its deriva-
tive, interpreted as a generalized function, has a delta function of weight +1 at
x = −L/4 and another of weight −1 at x = +L/4. To show the same result in
terms of Fourier series, we first expand f(x) and then use (3.54). It follows that
F0 = 1

2 and Fn = (1/πn) sin(πn/2) for n #= 0. Hence the coefficients for f ′(x) are
(2i/L) sin(πn/2) for all n. The series for f ′(x) does not converge at x = ±L/4, but
we can write

f ′(x) =
∞
∑

n=−∞

2i

L
sin(πn/2) e2πinx/L = δ

(

x+ L
4

)

− δ
(

x− L
4

)

, − 1
2L ≤ x < 1

2L .

(3.55)
The validity of this form can be checked by multiplying by a test function and

integrating. Starting with the right-hand side, we obtain

∫ 1

2
L

− 1

2
L
dx t(x)

[

δ
(

x+ L
4

)

− δ
(

x− L
4

)]

= t
(

−L
4

)

− t
(

L
4

)

. (3.56)
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This result can be written in terms of the Fourier series for t(x) evaluated at
x = ±L/4, with the result

t
(

−L
4

)

− t
(

L
4

)

=
∞
∑

n=−∞

Tn

[

e−iπn/2 − eiπn/2
]

. (3.57)

The same result is obtained by multiplying the left-hand side of (3.55) by t(x)
and integrating, so (3.55) is a valid representation of the divergent series for the
derivative of the rect function.

Integration of a Fourier series is much simpler than differentiation. A term-
by-term indefinite integral introduces a factor of 1/(2πin), which can only help the
convergence as n → ∞. It can be proved that any Fourier series, whether convergent
or not, can be integrated term by term between any limits. The integrated series
converges to the integral of the periodic function corresponding to the original series
(Sokolnikoff and Redheffer, 1958).

3.3 1D FOURIER TRANSFORM

3.3.1 Basic concepts

The Fourier series is an expansion of a function on a finite interval, or of a pe-
riodic function on the infinite interval. For many applications, it is necessary to
have an expansion on the infinite interval without the requirement of periodicity.
Development of such an expansion is the goal of this section.

Formal limit of a Fourier series The simplest route to this goal is the one travelled
by Fourier himself, simply passing formally to the limit L → ∞. In this limit, the
spatial frequency n/L goes over to a continuous variable ξ. A change of one in n is
equivalent to a change of ξ by an amount ∆ξ = 1/L. The Fourier series thus limits
to

lim
L→∞

∞
∑

n=−∞

Fn e
2πinx/L = lim

L→∞

1

∆ξ

∫ ∞

−∞
dξ Fn e

2πiξx . (3.58)

Now we simply define the limit of Fn/∆ξ as F (ξ), obtaining

F (ξ) ≡ lim
L→∞

Fn

∆ξ
= lim

L→∞

∫ 1

2
L

− 1

2
L
dx f(x) e−2πiξx =

∫ ∞

−∞
dx f(x) e−2πiξx . (3.59)

The function F (ξ) is called the Fourier transform of f(x). Using an operator
notation similar to that introduced in Chap. 1, we denote this integral transform
by the operator F, with a subscript to denote the dimensionality of the integral.
Hence, we write

F (ξ) = F1 {f(x)} =

∫ ∞

−∞
dx f(x) e−2πiξx . (3.60)

The subscript will often be omitted when it is obvious from the context.
The limit in (3.58) suggests that the inverse transform is

f(x) = F
−1
1 {F (ξ)} =

∫ ∞

−∞
dξ F (ξ) e2πiξx . (3.61)
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Showing that this operator F−1
1 is indeed the inverse to F1, and defining the sense

in which the limits hold, requires a detailed discussion of convergence issues, which
we give in Sec. 3.3.2.

Fourier integral theorem Before launching into a formal discussion of convergence,
we present an alternative statement of the inverse Fourier transform. If the integral
transform in (3.61) is indeed the inverse of the one in (3.60), we can write

f(x) =

∫ ∞

−∞
dξ e2πiξx

[
∫ ∞

−∞
dx′f(x′) e−2πiξx′

]

. (3.62)

This equation is commonly known as the Fourier integral theorem, though it is
not yet a proper theorem since we have not stated the conditions that f(x) must
satisfy or the sense in which equality holds.

Taking a hint from the discussion above on Fourier series, we can also express
the Fourier integral theorem using the limit of a finite integral rather than an infinite
integral. We define

fK(x) =

∫ 1

2
K

− 1

2
K
dξ e2πiξx

[
∫ ∞

−∞
dx′f(x′) e−2πiξx′

]

. (3.63)

The advantage of this form is that, with a finite integral, we might be able to
interchange order of integration and write

f(x) = lim
K→∞

fK(x) = lim
K→∞

∫ ∞

−∞
dx′f(x′)

∫ 1

2
K

− 1

2
K
dξ e2πiξ(x−x′)

= lim
K→∞

∫ ∞

−∞
dx′f(x′)K sinc [K(x− x′)] , (3.64)

which is plausible since K sinc[K(x − x′)] is one of our limiting representations of
δ(x−x′). Proving the theorem in this form requires justifying the interchange of or-
der of integration, stating the conditions under which K sinc[K(x−x′)] → δ(x−x′),
and specifying the sense in which the right-hand side converges to f(x). We under-
take this enterprise in the next section.

3.3.2 Convergence issues

There is a vast literature on determination of conditions on f(x) sufficient for one
or more of the forms of the Fourier integral theorem to be valid. Papers and books
on this subject can be divided into two categories, which we might call classical and
distributional. The most influential book on the classical approach is, no doubt,
Titchmarsh (1948), while the distributional approach was most forcefully advocated
by Lighthill (1958).

The classical approach requires that we place restrictions on the function f(x),
just as we did with Fourier series. One possible restriction is that f(x) be in one of
the spaces Lp(−∞,∞), with 1 ≤ p < ∞. As we shall see, one immediate difficulty
with this approach is that f(x) and F (ξ) need not be in the same space. Another
problem is that some rather ordinary functions are not in a convenient Lp space.
For example, sinc(ax) is in Lp(−∞,∞) for p > 1, but is not in L1(−∞,∞), while a
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delta function, which we would certainly like to include in the theory, is absolutely
integrable and hence can be regarded as a function in L1(−∞,∞), but it is not
in Lp(−∞,∞) for p > 1. The function |x|− 1

2 is not in Lp(−∞,∞) for any p.
All of these problems will be circumvented by the use of distribution theory and
generalized functions in Sec. 3.3.4.

Before proceeding, we need to make a distinction between the Hilbert space Lp

in which f(x) is a vector and the domain of the function itself. The function f(x)
maps the real line (the x axis) to the complex plane. The Fourier transform F (ξ)
also maps the real line— this time the ξ axis— to the complex plane. Colloquially,
f(x) is often said to be a function in real space or coordinate space, while F (ξ)
is a function in reciprocal space or frequency space. Alternatively, the terms
space domain and Fourier domain are often encountered for the x and ξ axes,
respectively. All of these designations, however, refer merely to the real line R. The
space Lp is not the same as either real space or frequency space.

Absolutely integrable functions Much of the classical literature on Fourier’s theorem
centers on functions in L1(−∞,∞), the space of functions whose absolute value is
integrable on the real line. The reason for this is simple; if f(x) is in L1(−∞,∞),
then F (ξ) is finite for all ξ:

|F (ξ)| =
∣

∣

∣

∫ ∞

−∞
dx f(x) e−2πiξx

∣

∣

∣
≤

∫ ∞

−∞
dx |f(x) e−2πiξx| =

∫ ∞

−∞
dx |f(x)| < ∞ .

(3.65)
Moreover, it can be shown that F (ξ) is continuous everywhere and vanishes at

infinity if f(x) is in L1(−∞,∞), i.e.,

lim
ξ→±∞

F (ξ) = 0 . (3.66)

This theorem, known as the Riemann-Lebesgue lemma, is proved in many books,
such as Lang (1993).

Note, however, that having f(x) an L1 function does not necessarily mean
that F (ξ) is also an L1 function. Since the maximum absolute value of a continuous
function is its L∞ norm, all we can say about F (ξ) so far is that it is in L∞(−∞,∞).
In spite of the similarity of (3.60) and (3.61), we cannot be guaranteed that the
integral in the inverse transform exists just because the forward one does.

To proceed, we need to rule out certain pathological functions that, while
absolutely integrable and perhaps even differentiable everywhere, neverthelesss vary
arbitrarily rapidly. Such functions are said to be of unbounded variation. Roughly
speaking, a function of bounded variation is one where the graph of the function has
a finite length for any finite range of the variable (Strichartz, 1994, p. 39). Functions
of unbounded variation include any function that goes to infinity as well as functions
like cos(1/x) that oscillate infinitely rapidly. Differentiability and bounded variation
are independent conditions, neither implying the other (Champeney, 1987).

For functions of bounded variation that are also in L1(−∞,∞), there is a useful
form of the Fourier integral theorem. Such functions cannot go to infinity and can
have at most a finite number of discontinuities. These conditions are known as the
Dirichlet conditions; if they hold, it can be shown that (Lang, 1993, pp. 289 – 290)

lim
K→∞

fK(x) = 1
2 [f(x

+) + f(x−)] = f(x) , (3.67)
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where fK(x) is defined in (3.63) and f(x±) is defined below (3.40). The last form
in (3.67) holds either if f(x) is continuous at x or if we simply define f(x) as the
average of its values on either side of a finite discontinuity.

The reason that (3.67) works for L1 functions of bounded variation is that the
interchange of order of integration in (3.64) is legal under these conditions. Basi-
cally, a double integral can be written in either order if both single integrals are
absolutely convergent, which means that the integral of the absolute value of the
integrand remains finite. An L1 function, by definition, is absolutely integrable,
and any integral over a finite range is finite unless the integrand goes to infinity
somewhere. Thus the twin conditions of an L1 function and bounded variation en-
sure that the interchange in (3.64) is allowed.

Comparison of (3.64) and (3.67) shows that it is legitimate to say that
K sinc(Kx) limits to δ(x) when used in an integral with a function satisfying the
Dirichlet conditions. Moreover, should that function happen to be discontinuous at
x = 0, the interpretation of the delta function is that it sifts out the average of the
two values on either side of the discontinuity, as in (2.62).

Square-integrable functions As discussed in Chap. 1, a Hilbert space has advantages
over the more general Banach space, and L2 is a Hilbert space but Lp for p #= 2 is
not. Thus we turn next to Fourier transforms of functions in L2(−∞,∞), the space
of square-integrable functions on the real line.

The theory of Fourier transforms of functions in L2(−∞,∞) was developed by
Plancherel in the early part of the twentieth century. Plancherel’s main result is
stated in terms of two limiting functions, fK(x) defined in (3.63) and FL(ξ), defined
by

FL(ξ) =

∫ 1

2
L

− 1

2
L
dx f(x) e−2πiξx . (3.68)

Plancherel’s theorem (Titchmarsh, 1948, p. 69) states that if f(x) is in L2(−∞,∞),
then FL(ξ) converges in the mean to a function F (ξ) that is also in L2(−∞,∞), and
conversely if F (ξ) is in L2(−∞,∞), fK(x) converges in the mean to a function f(x)
in L2(−∞,∞). The limits f(x) and F (ξ) are related by the usual Fourier transform
relations. Loosely speaking, L2 functions transform to L2 functions. There is now a
satisfying symmetry between the transform and its inverse. The only catch is that
some of the functions we might wish to transform are not in L2(−∞,∞).

It is important to note that Plancherel’s theory is couched in terms of con-
vergence in the mean. The mean-square error we make in computing the inverse
Fourier transform via (3.61) is a function with zero L2 norm. More precisely,

lim
K→∞

∫ ∞

−∞
dx |fK(x)− f(x)|2 = 0 , (3.69)

and similarly,

lim
L→∞

∫ ∞

−∞
dξ |FL(ξ)− F (ξ)|2 = 0 . (3.70)

One way to look at these results is that the functions {exp(2πiξx)} form a
continuous basis for L2(−∞,∞). To expand an L2 function f(x) in this basis, we
write

f(x) =

∫ ∞

−∞
dξ F (ξ)uξ(x) , (3.71)
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where uξ(x) = exp(2πiξx), so the expansion is precisely the inverse Fourier trans-
form of F (ξ). Similarly, an expansion of the L2 function F (ξ) is given by

F (ξ) =

∫ ∞

−∞
dx f(x)ux(ξ) , (3.72)

where ux(ξ) = exp(−2πiξx). The expansion is now just the Fourier transform
of f(x). Except for the minus sign, the same basis functions are used in both
expansions. In (3.71) the basis function exp(2πiξx) can be viewed as a function of
x indexed by the continuous index ξ, while in (3.72) the basis function exp(−2πiξx)
can be viewed as a function of ξ indexed by x. Because of the continuous index,
the basis functions are not themselves in the space L2 (see Chap. 1, Sec. 1.4.4).

Convergence factors While the picture of a Fourier transform as a mapping from
L2(−∞,∞) to L2(−∞,∞) is appealing, there are many functions of practical inter-
est that are not in L2(−∞,∞). We can deal with such cases with a trick similar to
the one used with Fourier series in (3.37) and (3.38); we can multiply the integrand
by a convergence factor that tends to unity in some limit.

There are many theorems that justify this procedure, but we shall be content
with stating just one of them here (Champeney, 1987, p. 63). Suppose two functions
f(x) and F (ξ) are related almost everywhere as follows:

F (ξ) = lim
λ→∞

∫ ∞

−∞
dx f(x) e−|x|/λ e−2πiξx , (3.73)

f(x) = lim
λ→∞

∫ ∞

−∞
dξ F (ξ) e−|ξ|/λ e2πiξx . (3.74)

If at least one of the functions f(x) or F (ξ) is in Lp(−∞,∞) for some p in the range
1 ≤ p ≤ 2, then the other function will be in Lq(−∞,∞), where p−1 + q−1 = 1,
and both integrals will be well behaved. The special case p = q = 2 gets us back to
the statement that the Fourier transform of an L2 function is an L2 function, while
p = 1, q = ∞ corresponds to the asymmetric situation where the transform of an
L1 function is in L∞, or conversely.

An important example of the use of this theorem is the delta function,
f(x) = δ(x). Any limiting representation of the delta function is in L1, and it
follows from (3.73) and the definition of a delta function that F (ξ) = 1, which is
a function in L∞. We can also show that (3.74) is correct for this example. With
F (ξ) = 1, (3.74) becomes

f(x) = lim
λ→∞

∫ ∞

−∞
dξ e−|ξ|/λ e2πiξx = lim

λ→∞

2λ

4π2x2λ2 + 1
, (3.75)

which is one of the limiting representations for a delta function, (2.39) with
λ = 1/(2πε).

Many different convergence factors can be used in similar theorems. When
applied to F (ξ) = 1, they lead to different limiting representations of δ(x). In fact,
(3.64) is analogous to (3.74) but with convergence factor rect(ξ/K).
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3.3.3 Unitarity of the Fourier operator

As discussed in the last section, if f(x) is in L2(−∞,∞), so is F (ξ) except possibly
for a function of zero L2 norm; thus the Fourier transform is an integral operator
that maps L2 to itself. In Chap. 1 we discussed operators that map a Hilbert space
U to another Hilbert space V, but here U = V = L2. Even though functions in the
range and domain of the Fourier operator are denoted by different variables, the
two spaces are really the same.

The Fourier mapping can be given in abstract operator form by

F = F f , (3.76)

where f and F are the L2 vectors corresponding to the functions f(x) and F (ξ),
respectively. The operator F transforms f to F.

The mapping properties of an integral transform are specified by its kernel
function. The kernel of the Fourier transform is exp(−2πiξx) while the kernel of
the inverse transform is exp(2πiξx). In Chap. 1 we saw that the kernel for the
adjoint of an integral operator is obtained from the kernel for the operator itself by
interchanging the variables and taking the complex conjugate. Here the variables
are x and ξ, so the kernel for the adjoint is precisely the same as the kernel for the
inverse. A unitary operator is one for which the adjoint equals the inverse, so the
Fourier transform is a unitary operator. The analogous conclusion was found in
Sec. 3.2.3 for a Fourier series.

Recall from Chap. 1 that an operator can be moved from one factor in a scalar
product to the other if it is replaced by its adjoint (see Sec. 1.3.5). In the present
context, that means

(F2,F f1) = (F †F2, f1) , (3.77)

where the first scalar product is an integral over ξ and the second is over x. Since
F is unitary, we have

(F2,F1) = (F−1F2, f1) = (f2, f1) . (3.78)

In other words, scalar products are preserved under unitary transformations.

Parseval’s theorems Writing out (3.78) in terms of explicit integrals, we find
∫ ∞

−∞
dξ [F2(ξ)]

∗ F1(ξ) =

∫ ∞

−∞
dx [f2(x)]

∗ f1(x) . (3.79)

The special case where f1(x) = f2(x) gives
∫ ∞

−∞
dξ |F (ξ)|2 =

∫ ∞

−∞
dx |f(x)|2 . (3.80)

The left-hand side of this equation is the L2 norm of F (ξ) and the right-hand side
is the L2 norm of f(x).

Equation (3.80) is commonly called Parseval’s theorem for Fourier transforms,
while (3.79) is called the generalized Parseval theorem. Other terms such as
Rayleigh’s theorem or Plancherel’s theorem are occasionally encountered, especially
in the older literature. In essence, Parseval’s theorems are just a statement of the
unitarity of the Fourier operator and the fact that unitary transformations preserve
norms and scalar products.
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3.3.4 Fourier transforms of generalized functions

All of the Fourier theorems presented so far place restrictions on f(x) and F (ξ),
often with different restrictions on each. It would be highly desirable to be able to
choose a single class of functions broad enough to cover all functions of practical
interest and their transforms. Fortunately, that goal can be reached by means of
the theory of distributions and generalized functions.

Excellent pedagogical accounts of the distributional approach to Fourier trans-
forms are given by Lighthill (1958), Strichartz (1994), and Richards and Youn
(1990). For a much broader and more detailed treatment, see Zemanian (1965) and
Zemanian (1987).

Tempered distributions The specific generalized functions we shall use are those
corresponding to tempered distributions. Recall from Chap. 2 that tempered dis-
tributions are continuous, linear functionals acting on good functions, and that a
good function is an open-support test function. More specifically, a good function
is everywhere differentiable any number of times, and it and all of its derivatives
vanish at infinity faster than |x|−N for all N. The space of good functions on the
real line is sometimes called the Schwartz space and denoted S(−∞,∞) or simply
S. Note that good functions are necessarily square-integrable, so S is a subspace of
L2.

The general form for a tempered distribution is

Φg {t(x)} =

∫ ∞

−∞
dx g(x)t(x) , (3.81)

where t(x) is a good function and g(x) is a generalized function, defined by specifying
the number returned by the functional for each t(x). For example, if g(x) = δ(x),
Φg{t(x)} = t(0).

As its name implies, a good function is indeed very good as far as Fourier
transforms are concerned. It can be shown that, if t(x) is in S, then its Fourier
transform T (ξ) is also in S; Fourier transforms of good functions are good functions
(Strichartz, 1994, pp. 30 – 38). The same cannot be said of test functions in general;
the transform of a function of compact support cannot have compact support, so it
is important that we deal here with good functions and tempered distributions.

It might appear that this result is of little use since the conditions on good
functions are so stringent. It would be much more interesting if we could make a
similar statement about generalized functions. To do so, we must first define the
Fourier transform of a generalized function.

Definition of Fourier transform The key to the definition of the Fourier transform
of a generalized function is the unitary nature of the Fourier-transform operator.
We note that the functional in (3.81) resembles a scalar product in L2, even though
g(x) is almost never in L2. Of course, the scalar product usually includes an as-
terisk indicating complex conjugate on the first factor in the integrand, but that is
not needed since the generalized functions we consider are usually real. If t(x) or
F−1{T (ξ)} is in S, the functional Φg{F−1T (ξ)} is defined by

Φg

{

F
−1[T (ξ)]

}

=

∫ ∞

−∞
dx g(x)

[

F
−1

{

T (ξ)
}]

, (3.82)
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which we can think of as the scalar product of g(x) and the good functionF
−1{T (ξ)}.

Since F is a unitary operator in L2 and S is a subspace of L2, we can write

Φg

{

F
−1[T (ξ)]

}

=

∫ ∞

−∞
dx g(x)

[

F
†
{

T (ξ)
}]

. (3.83)

By analogy to scalar products in L2, we now define

Φg

{

F
−1[T (ξ)]

}

≡
∫ ∞

−∞
dξ

[

F
{

g(x)
}]∗

T (ξ) =

∫ ∞

−∞
dξ [G(ξ)]∗ T (ξ) ≡ ΦG

{

T (ξ)
}

,

(3.84)
whereF{g(x)} ≡ G(ξ), and the last distribution exists since T (ξ) is a good function.
In essence, the basic definition [for real g(x)] is

∫ ∞

−∞
dx g(x) t(x) =

∫ ∞

−∞
dξ [G(ξ)]∗ T (ξ) . (3.85)

Note that the complex conjugate on G(ξ) is needed; even though g(x) is real, its
Fourier transform need not be.

We emphasize that (3.85) is a definition, but it is a reasonable one. As with
other distributions defined in Chap. 2, this one holds for ordinary functions as well as
generalized functions. If g(x) were in L2, the transition from (3.83) to (3.85) would
follow from the definition of the adjoint (see Sec. 1.3.5 in Chap. 1). The definition
in (3.85) is tantamount to asserting that the generalized Parseval theorem holds
even for generalized functions.

Thus, so long as the action of the functional on any good function is defined,
(3.85) provides a definition of the Fourier transform of the associated generalized
function. Moreover, the Fourier transform of a generalized function defined this
way is itself a generalized function, since T (ξ) in (3.85) is a good function. So long
as we deal with tempered distributions, the Fourier transform of a generalized
function always exists and is always a generalized function.

This definition takes care of any doubts about the existence of the Fourier
transform of a generalized function, but we still need an operational way to calculate
it. To that end, we use the fact that a generalized function can always be written
as the limit of a regular sequence of good functions (Lighthill, 1958). With the
representation,

g(x) = lim
n→∞

gn(x) , (3.86)

we have
∫ ∞

−∞
dx g(x) t(x) = lim

n→∞

∫ ∞

−∞
dx gn(x) t(x) = lim

n→∞

∫ ∞

−∞
dξ [Gn(ξ)]

∗ T (ξ) , (3.87)

where the interchange of limit and integral is allowed since the integrand is so
well behaved (Lighthill, 1958, p. 18). Comparing (3.87) to (3.85) establishes the
important result that

F
{

g(x)
}

= lim
n→∞

F
{

gn(x)
}

= lim
n→∞

Gn(ξ) . (3.88)

Example: Transform of the derivative of a delta function We have already seen that
the Fourier transform of a delta function is unity (i.e., the function F (ξ) = 1),
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so we turn to a slightly more complicated example to illustrate the transform of a
generalized function. Suppose g(x) = δ′(x), the derivative of a delta function as
defined by [see (2.56)]

Φδ′ {t(x)} =

∫ ∞

−∞
dx δ′(x) t(x) ≡ −t′(0) . (3.89)

From (3.82) and (3.84), we have
∫ ∞

−∞
dξ

[

F
{

δ′(x)
}]∗

T (ξ) =

∫ ∞

−∞
dx δ′(x)

[

F
−1

{

T (ξ)
}]

=

∫ ∞

−∞
dx δ′(x) t(x) = −t′(0) . (3.90)

But note that

− t′(0) = −
[

∂

∂x

∫ ∞

−∞
dξ T (ξ) e2πiξx

]

x=0

=

∫ ∞

−∞
dξ (−2πiξ)T (ξ) , (3.91)

where differentiation under the integral sign is legal since the good function T (ξ) is
so well behaved. Comparison of (3.90) and (3.91) allows us to write

F {δ′(x)} = 2πiξ . (3.92)

Since this function increases without bound as ξ → ∞, it certainly isn’t in any of the
Lp spaces, but as a generalized function corresponding to a tempered distribution,
it is well defined.

The result in (3.92) could also be obtained from the limiting definition (3.88),
along with any of the limiting representations of delta functions in Chap. 2.

3.3.5 Properties of the 1D Fourier transform

In this section we list several important properties of the Fourier transform. Many of
these properties are implicit in the discussion above or follow from simple algebraic
manipulation of the definitions, so we shall merely indicate the method of derivation
without many details. Some comments will be made, however, on the extension of
classical theorems to generalized functions.

Linearity The Fourier transform is a linear operator, so

F {α f(x) + β g(x)} = αF (ξ) + βG(ξ) , (3.93)

where F (ξ) and G(ξ) are the Fourier transforms of f(x) and g(x), respectively.

Symmetry properties Fourier transforms have symmetry properties similar to those
discussed in Sec. 3.2.3 for Fourier coefficients. It is straightforward to show from
the definition of the transform that

F (−ξ) = [F (ξ)]∗ , if f(x) is real . (3.94)

As with Fourier coefficients, this relation is often referred to as Hermiticity, but
note that the Fourier operator is unitary, not Hermitian.
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Additional restrictions on the Fourier transform arise if f(x) is an even or odd
function. In particular,

F (ξ) = F (−ξ) , if f(x) = f(−x) , (3.95a)

F (ξ) = −F (−ξ) , if f(x) = −f(−x) . (3.95b)

Thus even (odd) functions have Fourier transforms that are even (odd). If f(x) is
real and even, its Fourier transform is also real and even, while if f(x) is odd, its
transform is pure imaginary and odd.

These results apply also to generalized functions. For example, δ(x) is real
and even, so its Fourier transform, unity, is real and even. The derivative of a delta
function is odd, and we have seen in (3.92) that its transform is pure imaginary and
odd.

Derivatives To discover an expression for the Fourier transform of the first deriva-
tive of a function f(x), we first represent the function in terms of its transform and
then apply the derivative operator:

df

dx
=

d

dx

∫ ∞

−∞
dξ F (ξ) e2πiξx . (3.96)

If the derivative is bounded, it is legitimate to differentiate under the integral sign,
yielding

df

dx
=

∫ ∞

−∞
dξ F (ξ) 2πiξ e2πiξx . (3.97)

Thus the Fourier transform of df/dx is 2πiξ F (ξ). In operator form, we can write

F

{

d

dx
f(x)

}

= 2πiξ F (ξ) . (3.98)

In words, taking the derivative of a function is equivalent to multiplying its Fourier
transform by 2πiξ.

We can repeat the process with impunity so long as the derivatives remain
bounded, yielding

F

{(

d

dx

)q

f(x)

}

= (2πiξ)qF (ξ) . (3.99)

In fact, the restriction to bounded derivatives is quite unnecessary. We have
already seen in (3.92) that F {δ′(x)} = 2πiξF {δ(x)} = 2πiξ, which is just (3.98)
with f(x) = δ(x). Equations (3.98) and (3.99) can be derived from the definitions
of derivatives and Fourier transforms of generalized functions, (2.18) and (3.85).

We can often discover useful dual relations by interchanging x and ξ and F

and F
−1. For example, the dual to (3.99) is

F
−1

{(

d

dξ

)q

F (ξ)

}

= (−2πix)qf(x) . (3.100)

This relation can be derived for ordinary functions with bounded derivatives by
differentiating under the integral sign; for generalized functions it follows from the
definitions of derivatives and Fourier transforms.
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Moments The qth moment of a function f(x) on (−∞,∞) is defined by

mq ≡
∫ ∞

−∞
dxxqf(x) . (3.101)

This integral can be thought of as the Fourier transform of xqf(x) at zero fre-
quency, i.e.,

mq =

[
∫ ∞

−∞
dxxqf(x) e−2πiξx

]

ξ=0

. (3.102)

From (3.100), we now have

mq = (−2πi)−qF (q)(0) , (3.103)

where F (q)(ξ) is the qth derivative of F (ξ). Thus, except for a constant, the qth

moment of a function is the qth derivative of its Fourier transform evaluated at the
origin.

The special case q = 0 gives

m0 =

∫ ∞

−∞
dx f(x) = F (0) . (3.104)

This result is known as the central-ordinate theorem since a graph of F (ξ) crosses
the ordinate ξ = 0 at the value m0.

The dual theorem to (3.103) relates to moments of F (ξ):

Mq ≡
∫ ∞

−∞
dξ ξqF (ξ) = (2πi)−qf (q)(0) . (3.105)

The dual central-ordinate theorem is

M0 =

∫ ∞

−∞
dξ F (ξ) = f(0) . (3.106)

Asymptotic behavior The asymptotic behavior of F (ξ) as ξ → ∞ is analogous to
the behavior of a Fourier coefficient as n → ∞. The classical Riemann-Lebesgue
lemma, (3.66), states that if f(x) is an ordinary function of bounded variation in
L1(−∞,∞) and F (ξ) is its Fourier transform, then F (ξ) → 0 as |ξ| → ∞. Further,
if f(x) is continuous and has bounded derivatives up to at least order q, then
(Stakgold, 1979)

lim
ξ→±∞

ξqF (ξ) = 0 . (3.107)

This result follows from the Riemann-Lebesgue lemma when we recognize that
ξqF (ξ) is just a constant times the Fourier transform of the qth derivative of f(x)
[see (3.99)]. If that derivative is bounded and absolutely integrable, its Fourier
transform must tend to zero as ξ → ∞.

This time the condition of boundedness is important, however. We know that
δ(x), though absolutely integrable, has a Fourier transform that does not vanish
at infinity. Equation (3.107) is one of the few results in Fourier theory where it is
really necessary to make a distinction between ordinary and generalized functions.

As an important example of this theorem, suppose f(x) is a good function.
Since all derivatives of a good function exist, (3.107) must hold for all q, which is
equivalent to saying that F (ξ) is also a good function.
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Shifts and linear phase factors It follows readily from the definition of the Fourier
transform that, for ordinary functions,

F {f(x− x0)} = e−2πiξx0F (ξ) . (3.108)

This equation holds also for generalized functions if we define shifted generalized
functions in a sensible way [for example, by analogy to Eq. (2.52)].

Equation (3.108) shows that shifting a function by x0 is equivalent to mul-
tiplying its Fourier transform by the complex exponential (or linear phase factor)
exp(−2πiξx0). This result can be understood by recalling the viewpoint presented
in Sec. 3.1.5 and Fig. 3.1. When we express a function f(x) in terms of its Fourier
transform, we are resolving it into a sum of vectors, F (ξ) exp(2πiξx), in the com-
plex plane. Replacing x by x − x0 changes the angle of each vector by an amount
−2πξx0 linearly dependent on ξ. Since the angle of the vector is the phase of the
complex number, this is equivalent to multiplying F (ξ) by exp(−2πiξx0).

The dual theorem is

F
{

e+2πiξ0xf(x)
}

= F (ξ − ξ0) , (3.109)

which can also be derived from basic definitions. Thus multiplying a function by
a linear phase factor (this time linear in x) is equivalent to shifting its Fourier
transform.

Scaled functions If a is a real number, f(x/a) is a scaled version of the function
f(x). For |a| > 1, a graph of f(x/a) is wider than a graph of f(x), while for |a| < 1
it is narrower. Put another way, f(x) takes on the same value at x = x0 as f(x/a)
does at x = ax0. Negative values of a correspond to reversal of the sense of the
function along the x axis as well as scaling.

For ordinary functions, the Fourier transform of f(x/a) is readily computed
by a change of variables:

F {f(x/a)} =

∫ ∞

−∞
dx f(x/a) e−2πiξx = |a|

∫ ∞

−∞
dx′f(x′) e−2πiξax′

, (3.110)

where x′ ≡ x/a. The absolute value of a is needed since, for x negative, the direction
of integration is reversed; if the integral is to always run from −∞ to ∞, we must
write dx = |a|dx′. The right-hand side of this equation is recognized as a scaled
version of F (ξ),

F {f(x/a)} = |a|F (aξ) . (3.111)

Note that the scaling factor a appears in the numerator of the argument of F (ξ), so
a function that is scaled so that it becomes wider has its transform scaled so that
it is narrower.

One way to understand the constant |a| in (3.111) is via the central-ordinate
theorem. The functions |a|−1f(x/a) and f(x) have the same integral since the
former has been increased in width by a and decreased in height by 1/a relative to
the latter. The integral of both functions is given by F (0) since F (a · 0) = F (0).

A derivation of (3.111) for generalized functions necessitates use of a scaled
generalized function, which is defined such that

∫ ∞

−∞
dx g(x/a) t(x) = |a|

∫ ∞

−∞
dx′g(x′) t(ax′) , (3.112)
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where g(x) is a generalized function, g(x/a) is its scaled counterpart and t(x) is a
good function. This definition is not directly applicable to the integral in (3.110)
since the complex exponential is not a good function, but we can construct a good
function such as exp[−2πiξx − (x/L)2] and pass to the limit L → ∞, yielding
(3.111). Alternatively, we can get (3.111) from (3.112) by appealing to (3.87).

Powers of the Fourier operator Application of the inverse Fourier transform to F (ξ)
yields f(x), but what happens if we take a Fourier transform, not the inverse
transform, of F (ξ)? It is straightforward to show from basic definitions that

[FF ](x) = [FF f ](x) = f(−x) . (3.113)

Thus the square of the Fourier operator is the coordinate-inversion operator which
maps f(x) to f(−x). If f(x) = f(−x), there is no distinction between F and F−1.
Since coordinate inversion applied twice returns us to the original function, the
fourth power of the Fourier operator is the identity operator.

3.3.6 Convolution and correlation

We briefly encountered the mathematical operation of convolution in Chap. 2 (Sec.
2.2.2), and we shall have many occasions to use it later in this book. As we shall
see in Chap. 7, convolution is a common and fruitful model for imaging systems.
Systems for which the input–output relation is a convolution are called linear, shift-
invariant systems. In Chap. 7, we shall examine in detail the conditions under
which the convolution model is applicable and develop alternative mathematical
descriptions when it is not. Here we confine our attention to some basic mathemat-
ical properties of the convolution operation, especially its Fourier transform. Also
included here is a brief discussion of the closely related operation of correlation.

Definition of convolution The convolution of two functions f(x) and h(x), denoted
[f ∗ h](x) or simply f ∗ h, is defined by

[f ∗ h] (x) =
∫ ∞

−∞
dx′f(x′)h(x− x′) =

∫ ∞

−∞
dx′′f(x− x′′)h(x′′) . (3.114)

The second form follows from the first by the change of variable x′ = x − x′′, so
[f ∗ h](x) = [h ∗ f ](x).

It can be shown that [f ∗ h](x) is bounded for all x (i.e., is in L∞) if f(x) and
h(x) are both in L2(−∞,∞). Moreover, if one function, say f(x), is in L1(−∞,∞)
and the other is in Lp(−∞,∞), then [f ∗ h](x) is also in Lp(−∞,∞). In this sense,
convolution with an L1 function or between two L2 functions is always possible
(Richards and Youn, 1990, p. 128).

There are several ways to look at the operation of convolution. If we regard
h(x) as a fixed kernel, then convolution is a linear integral transform mapping
f(x) to a new function [f ∗ h](x). The problem with this view is that it overlooks
the essential symmetry between f(x) and h(x). We could equally well fix f(x) and
regard the convolution as a transform mapping h(x) to [f ∗h](x). The convolution is
really a bilinear transform with two inputs, f(x) and h(x), and one output, [f∗h](x).
Still another way to look at convolution is as a linear functional mapping either
f(x) or h(x) to a number, [f ∗ h](x), which happens to depend on the continuous
variable x.
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Fig. 3.3 Graphical interpretation of convolution.

To envision the dependence of [f ∗ h](x) on the variable x, it is useful to draw
a graph of the factor h(x − x′) vs. x′ as in Fig. 3.3. This graph looks like a graph
of h(x′) but with the sense of the x′ axis reversed and the origin shifted by x. It is
this reversal or folding operation that gives rise to the term convolution. The value
of [f ∗h](x) for a particular x, say x = x0, is obtained by integrating the product of
the shifted and reversed function h(x0 − x′) and f(x′). The full function [f ∗ h](x)
is obtained by repeating the process for all values of the shift variable x. For a lucid
introduction to convolution with copious examples, see Gaskill (1978).

Notation A common alternative notation for the convolution is f(x)∗h(x) instead
of [f ∗h](x). Since x is the shift variable, and hence the only variable of which f ∗h
is a function, the notation f(x) ∗h(x) would appear to be redundant. Nevertheless,
expressions of the form f(x1) ∗ h(x2) can often be useful. For example, suppose
we wanted to convolve the shifted function f(x − x0) with h(x). We could define
fx0

(x) = f(x−x0) and write the convolution as [fx0
∗h](x) or fx0

(x)∗h(x), but the
more straightforward notation is f(x−x0)∗h(x). In practice, this notation will not
lead to difficulty since convolution commutes with translation [see (3.121) below].

Scale factors are a bit more problematical. If we wrote an expression like
f(x/a) ∗ h(x/b), we would not know how to convert it to an integral. Is the shift
variable x, x/a or x/b? Even f(x/a) ∗ h(x/a) is inherently ambiguous and best
avoided [see, e.g., (3.143) below]. We shall, however, stipulate that expressions
like f(x) ∗ h(x/b) are allowed and that the shift variable will be the unscaled one,
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x rather than x/b. With these caveats, we shall use f(x) ∗ h(x) and [f ∗ h](x)
interchangeably.

Correlation Correlation (sometimes called cross-correlation) is a bilinear transform
like convolution but without the reversal. It is defined by

[f * h] (x) =

∫ ∞

−∞
dx′f(x+ x′)h(x′) =

∫ ∞

−∞
dx′′f(x′′)h(x′′ − x) . (3.115)

The notation f(x) * h(x) is also common. Note that, unlike convolution, the order
of the functions matters in correlation, and f * h does not necessarily equal h * f .

The relation between convolution and correlation is often written

f(x) * h(x) = f(x) ∗ h(−x) , (3.116)

but this notation must be used with caution. The right-hand side really means
[f ∗hr](x), where hr(x) ≡ h(−x). The shift variable in the convolution is x, not −x.

Basic properties of convolutions As already stated, convolution is commutative and
linear in both inputs, i.e.,

f ∗ g = g ∗ f , (3.117)

f ∗ [αh1 + βh2] = αf ∗ h1 + βf ∗ h2 , (3.118)

[αf1 + βf2] ∗ h = αf1 ∗ h+ βf2 ∗ h , (3.119)

where α and β are arbitrary complex numbers. Convolution is also associative,

f ∗ [g ∗ h] = [f ∗ g ] ∗ h , (3.120)

which can be shown by writing out both sides as a double integral.
It is straightforward to show that convolution commutes with translation and

differentiation (Richards and Youn, 1990, p. 23):

f(x− x0) ∗ h(x) = f(x) ∗ h(x− x0) = [f ∗ h] (x− x0) , (3.121)

d

dx
[f(x) ∗ g(x)] = f ′(x) ∗ g(x) = f(x) ∗ g′(x) . (3.122)

An interesting observation that follows from this last equation is that f ∗ g is dif-
ferentiable if either f or g is differentiable. Convolution is a smoothing operation
in this sense (Richards and Youn, 1990, pp. 23 – 24).

Convolutions involving generalized functions Convolutions are bilinear transforms
with two input functions; in terms of distribution theory, either or both of these
functions could be a test function, a good function or a generalized function. We
shall examine each of these possibilities in turn.

If both f and g are test functions (infinitely differentiable functions of compact
support), so is f ∗ g. This statement follows from the comments above on differen-
tiability and support; the differentiability of f or g ensures the differentiability of
f ∗ g, while the support of f ∗ g is the sum of the supports of f and g, so f ∗ g must
be a function of compact support if f and g are. Thus the convolution of two test
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functions is a test function. Likewise, the convolution of two good functions or a
test function and a good function is a good function.

The convolution of a test function or a good function with an appropriate
generalized function presents no special difficulties (see Richards and Youn, 1990,
p. 25, or Strichartz, 1994, p. 52). If t(x) is a test function and g(x) is a generalized
function as defined by (3.81), then

t(x) ∗ g(x) =
∫ ∞

−∞
dx′g(x′) t(x− x′) = Φg{t(x− x′)} . (3.123)

Since t(x − x′) is a test function if t(x) is, the distribution on the right is well de-
fined. The analogous result holds for good functions and tempered distributions.

As a simple but important example, let g(x) = δ(x) and t(x) be a good func-
tion. Then

t(x) ∗ δ(x) =
∫ ∞

−∞
dx′δ(x′) t(x− x′) = t(x) . (3.124)

Thus convolution with δ(x) is the identity operator. Similarly,

f(x) ∗ δ(x− x0) = f(x− x0) , (3.125)

so convolution of a good function with δ(x − x0) produces a shifted version of the
function. Equations (3.124) and (3.125) provide an illustration of the statement
above that convolution commutes with translation.

Another important example of convolution with a generalized function involves
the derivative of a delta function. Either from the definition of that generalized
function or from (3.122) and (3.125), we see that

f(x) ∗ δ′(x− x0) =

∫ ∞

−∞
dx′f(x′) δ′(x− x0 − x′) = f ′(x− x0) . (3.126)

Note that there is no overall minus sign on the right-hand side, even though there is
one in the basic sifting property of δ′(x); the minus sign disappears when we make
a change of variables to put the integral in (3.126) into the form of (3.89).

Convolution of two generalized functions is a more delicate topic. To discuss
it, we must introduce the idea of support of a generalized function (Richards and
Youn, 1990, p. 25). The intuitive notion is that some generalized functions like the
delta function are zero outside a compact set, while others like the step function are
not. To get a more formal definition, consider a test function with support entirely
outside the interval [a, b]. If the action of a distribution Φg on this test function
is identically zero, we say that the generalized function g(x) has support inside
[a, b]. For example, for all test functions that vanish in [−ε, ε], where ε is a small
positive number, the distribution associated with δ(x) yields zero, so we can say
that δ(x) has support [−ε, ε]. If the support defined this way is finite, we say that
the generalized function has compact support.

An important property of generalized functions of compact support is that
they can always be represented as the limit of a sequence of test functions, which
allows us to define convolutions involving such functions. Richards and Youn (pp.
29 – 32) use this theorem as the starting point to show that all of the basic properties
of convolutions discussed above, (3.117) – (3.122), hold even if both functions are
generalized functions of compact support. For example,

δ(x− x1) ∗ δ(x− x2) = δ(x− x1 − x2) (3.127)
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and
δ(m)(x) ∗ δ(n)(x) = δ(m+n)(x) , (3.128)

where δ(m)(x) is the mth derivative of a delta function.
Richards and Youn state (p. 29) that no one has yet given a definition of the

convolution of two generalized functions that do not have compact support, and
they speculate that there probably is none.

Fourier transforms of convolutions and correlations The Fourier transform of a con-
volution [f ∗h](x) will turn out to play a pivotal role in the analysis of linear, shift-
invariant imaging systems. We shall compute the transform indirectly by writing
the convolution in a form that looks like the inverse transform of something.

Representing each of the functions f(x) and h(x) by its Fourier transform, we
obtain

[f ∗ h] (x) =
∫ ∞

−∞
dx′f(x′)h(x− x′)

=

∫ ∞

−∞
dx′

∫ ∞

−∞
dξ

∫ ∞

−∞
dξ′F (ξ) e2πiξx

′

H(ξ′) e2πiξ
′(x−x′) . (3.129)

We shall assume that f(x) and h(x) are sufficiently well behaved that we can in-
terchange the order of integration. This assumption holds for test functions, good
functions and L2 functions, for example, but it also holds for generalized functions
of compact support since they are the limit of a sequence of test functions. With
this assumption, we can write

[f ∗ h] (x) =
∫ ∞

−∞
dξ

∫ ∞

−∞
dξ′F (ξ)H(ξ′) e2πiξ

′x

∫ ∞

−∞
dx′e2πi(ξ−ξ′)x′

. (3.130)

The integral over x′ yields δ(ξ − ξ′), so

[f ∗ h] (x) =
∫ ∞

−∞
dξ

∫ ∞

−∞
dξ′F (ξ)H(ξ′) e2πiξ

′xδ(ξ − ξ′)

=

∫ ∞

−∞
dξF (ξ)H(ξ) e2πiξx = F

−1 {F (ξ)H(ξ)} . (3.131)

Thus
F {[f ∗ h] (x)} = F (ξ)H(ξ) . (3.132)

This result is often referred to as the convolution theorem. In words, the Fourier
transform of the convolution of two functions is the product of the transforms of
the two functions. The functions in question can be any functions for which both
sides of the equation are defined, so generalized functions of compact support are
allowed. One of the two functions can even be a generalized function of infinite
support, but problems arise if both are.

An interesting point follows by combining the convolution theorem with the
central-ordinate theorem, (3.104). If g(x) = [f ∗ h](x), then its integral is given by

∫ ∞

−∞
dx g(x) = G(0) = F (0)H(0) =

∫ ∞

−∞
dx f(x)

∫ ∞

−∞
dxh(x) . (3.133)

Thus the infinite integral of a convolution is the product of the integrals of the two
functions being convolved.
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From (3.116) and (3.132), we find that the Fourier transform of a correlation
is

F {[f * h] (x)} = F (ξ)H(−ξ) = F (ξ)H∗(ξ) , (3.134)

where the last form is valid only if h(x) is real [see (3.94)]. If h(x) is even, there
is no difference between correlation and convolution, and (3.132) and (3.134) are
identical.

In incoherent optical imaging, the complex autocorrelation will turn out to be
a very important function (Papoulis, 1968; Gaskill, 1978). It is defined by (3.115)
with h(x) = f∗(x), and its Fourier transform is given by

F {[f * f∗] (x)} = |F (ξ)|2 . (3.135)

3.3.7 Fourier transforms of some special functions

Useful tables of Fourier transforms are found in Campbell and Foster (1948), Mag-
nus and Oberhettinger (1949), Erdélyi (1954), Papoulis (1962), Bracewell (1965),
and Gaskill (1978). We discuss here a few transforms that we shall need frequently
in this book. We shall also use the opportunity to discuss further the basic Fourier
theorems given above.

Rect and sinc functions The rect and sinc functions were defined in Chap. 2 [see
(2.9) and (2.43)]. An elementary integration shows that these functions form a
Fourier transform pair and, in fact, we have already implicitly used this fact in
(2.44) and (2.45). The explicit relations are:

F {rect(x/L)} = L sinc(Lξ) , (3.136)

F {sinc(x/L)} = L rect(Lξ) . (3.137)

This Fourier-transform pair provides a nice illustration of many of the proper-
ties of Fourier transforms discussed above. For example, note that both the trans-
form and the inverse transform of a rect is a sinc, and vice versa. This symmetry
between forward and inverse transforms holds because both the sinc and rect are
real, even functions.

Note also that the rect function is discontinuous and hence its first derivative
is not bounded. Its transform, the sinc function, falls off only as 1/ξ as ξ → ±∞,
in accordance with (3.107), which is valid for q = 0 but not q = 1.

The central-ordinate theorem of (3.104) can also be verified here. The integral
of rect(x/L) is trivially found to be L, and L sinc(Lξ) evaluated at ξ = 0 is also L
since sin(u)/u → 1 as u → 0. Thus the integral of f(x) = rect(x/L) is the same as
F (0) as required by (3.104).

One way to remember the normalizations of the rect and sinc functions is to
note that rect(x) and sinc(x), without the scale factors of L, have unit integrals, i.e.,

∫ ∞

−∞
dx rect(x) =

∫ ∞

−∞
dx sinc(x) = 1 . (3.138)

By a simple change of variables, the integrals of rect(x/L) and sinc(x/L) are each
L, and the Fourier transform of each function evaluated at the origin is thus also
L. Hence the normalized functions L−1 rect(x/L) and L−1 sinc(x/L) integrate to
unity over (−∞,∞) and their Fourier transforms are unity at the origin.
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Triangle functions The triangle function is defined as

tri
( x

L

)

≡
{

1− |x|/L if |x| ≤ L
0 if |x| > L

. (3.139)

Like the rect and sinc functions, tri(x) without the 1/L scaling has unit integral
when integrated from −∞ to ∞.

To find the Fourier transform of a triangle function, we recognize that it is the
convolution of a rect with itself, i.e.,

tri(x) = rect(x) ∗ rect(x) , (3.140)

a relation that follows from the graphical interpretation of convolution. Hence, by
(3.132) and (3.136),

F {tri(x)} = sinc2(ξ) . (3.141)

From the scaling property of Fourier transforms, (3.111), we have

F {tri(x/L)} = L sinc2(Lξ) . (3.142)

This development affords us an opportunity to comment on a potential pitfall
with the shorthand notation for convolutions. It might be tempting to substitute
x/L for x in (3.140), but it would not give the right answer. To discover the form
for the convolution of rect(x/L) with itself, we define rL(x) ≡ rect(x/L) and write

[rL ∗ rL] (x) =
∫ ∞

−∞
dx′rL(x

′) rL(x− x′)

=

∫ 1

2
L

− 1

2
L
dx′ rect

[

x− x′

L

]

. (3.143)

Note that rL(x−x′) is just rect[x−x′

L ], which results from the substitution of x−x′

for x in the definition of rL(x); it is not the same as rect[ xL − x′] or rect[x − x′

L ],
neither of which is even dimensionally consistent.

Now the change of variable x′′ = x′/L gives

[rL ∗ rL] (x) = L

∫ 1

2

− 1

2

dx′′ rect
( x

L
− x′′

)

= L [r1 ∗ r1] (x/L) , (3.144)

where r1 is rL for L = 1, or simply rect(x). Taking a Fourier transform of (3.144)
gives

F {[rL ∗ rL] (x)} = L sinc2(Lξ) , (3.145)

which is not the same as F{tri(x/L)} in (3.142) because of the extra L. If we now
insist on going back to the rect notation, we are forced to write (see Gaskill, 1978,
p. 166)

rect(x/L) ∗ rect(x/L) = L tri(x/L) . (3.146)

This expression violates an elementary rule for functional equations: If f(x) = g(x)
for all x, then f(x/L) = g(x/L). We can either say that a convolution is not a
function and this rule doesn’t apply or avoid convolution expressions with scale
factors by defining auxiliary functions like rL. We prefer the latter.



1D FOURIER TRANSFORM 131

As a practical matter, if one has difficulty with scale factors in convolutions
or Fourier transforms, dimensional analysis can be used. For example, in (3.145)
above, if we assume that x has dimensions of length, then ξ must have dimensions
of (length)−1 since the argument of a trigonometric function, and hence of a sinc
function, must be dimensionless. Similarly, the argument of the rect function must
be dimensionless, and hence L must have dimensions of length. The convolution
and Fourier-transform operations are both integrals over x, and the dx contributes
an additional factor of length. The asterisk ∗ and the Fourier operator F have the
same dimensions as x, at least in one dimension. Thus (3.146) is dimensionally
consistent since both sides have dimensions of length, while both sides of (3.145)
have dimensions of (length)2.

The central-ordinate theorem can also help resolve difficulties with scale fac-
tors. A graph of the function tri(x/L) is an isosceles triangle with height unity
and base 2L, so its area is L. The central-ordinate theorem applied to (3.142) also
shows that the integral of tri(x/L) is L since sinc2(0) = 1.

The asymptotic properties of the Fourier transform of a triangle function are
worthy of note. While a rect function is discontinuous and has a transform that
falls off as 1/ξ, a triangle is continuous but has a discontinuous derivative. It can
be differentiated once but not twice, and its transform falls off as 1/ξ2, consistent
with (3.107) for q = 1. As noted above, a convolution is a smoothing operation
which increases the differentiability of the function and thus the rate of decay of its
transform.

Delta functions, sines and cosines We have discussed various Fourier transforms
involving delta functions above, but the main results are collected here for ease of
reference:

F {δ(x)} = 1 , (3.147)

F {δ(x− x0)} = e−2πix0ξ , (3.148)

F

{

δ(k)(x)
}

= (2πiξ)k , (3.149)

F

{

δ(k)(x− x0)
}

= (2πiξ)k e−2πix0ξ , (3.150)

where δ(k)(x) is the kth derivative of δ(x).
Since a shifted delta function transforms into a linear phase factor (or complex

exponential) as in (3.148), the converse also holds:

F
{

e2πiξ0x
}

= δ(ξ − ξ0) (3.151)

and
F
{

(−2πix)k e2πiξ0x
}

= δ(k)(ξ − ξ0) . (3.152)

A linear phase factor transforms to a single delta function, which can be paraphrased
by saying it consists of a single spatial-frequency component.

The linear phase factors can be used to construct sines and cosines via (3.5)
and (3.6), and the following transforms are obtained:

F {cos(2πξ0x)} =
1

2
[δ(ξ − ξ0) + δ(ξ + ξ0)] , (3.153)

F {sin(2πξ0x)} =
1

2i
[δ(ξ − ξ0)− δ(ξ + ξ0)] . (3.154)
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Sines and cosines transform to pairs of delta functions. First appearances
aside, these functions consist of two spatial frequencies each; positive and negative
frequencies must be considered distinct. For the cosine, the weights of the two delta
functions are real and equal, while for the sine they are pure imaginary and differ
by a minus sign.

Sines and cosines are infinitely differentiable and their transforms vanish iden-
tically at ξ = ±∞. Equation (3.107) holds for all q.

Comb function The comb function is defined as an infinite sum of delta functions
in (2.48), but (2.50) shows that it is also an infinite sum of linear phase factors.
Hence its Fourier transform is

F {comb(x)} =
∞
∑

n=−∞

F
{

e2πinx
}

=
∞
∑

n=−∞

δ(ξ − n) = comb(ξ) . (3.155)

Thus the Fourier transform of a comb is a comb. The scaled version of a comb
function is

comb
( x

L

)

=
∞
∑

n=−∞

δ
( x

L
− n

)

= L
∞
∑

n=−∞

δ(x− nL) , (3.156)

where the last step follows from (2.28). Thus comb(x/L) is a sum of delta functions
of weight L at the points x = nL, n = 0,±1,±2, ...,±∞. The Fourier transform of
the scaled comb is

F {comb(x/L)} = L comb(Lξ) = L
∞
∑

n=−∞

δ(Lξ − n) =
∞
∑

n=−∞

δ
(

ξ −
n

L

)

, (3.157)

which is a sum of delta functions of unit weight at points ξ = n/L.
It is worth looking at these results from the viewpoint of dimensional analysis.

In (3.155) x must be dimensionless since otherwise the exponent 2πinx would be
meaningless. Hence ξ is also dimensionless, as are the delta functions, and dimen-
sional analysis gets us nowhere. In (3.156) and (3.157) on the other hand, x and L
can be physical lengths. In this case ξ has dimensions of (length)−1, δ(ξ−n/L) has
dimensions of length and δ(x − nL) has dimensions of (length)−1. (See Sec. 2.4.3
for a discussion of dimensional analysis of delta functions.) All forms in (3.156) are
thus dimensionless, while all forms in (3.157) have dimensions of length.

Step and signum functions In Sec. 2.3.2 we discussed two generalized functions
related to the delta function, namely the step and signum functions. An important
property of step(x) is that its derivative is δ(x). Thus we know at once from (3.98)
that

F

{

d

dx
step(x)

}

= 2πiξF
{

step(x)
}

= F
{

δ(x)
}

= 1 . (3.158)

One might be tempted to conclude from this result thatF {step(x)} = 1/(2πiξ), but
this is not correct. For one thing, we wouldn’t know how to interpret the singularity
1/ξ. For another, specifying the derivative of a function does not uniquely specify
the function itself or its Fourier transform; we must account for the constant of
integration.

To fix the constant, let us retreat to basic definitions. From (3.85), we have
∫ ∞

−∞
dx step(x) t(x) =

∫ ∞

−∞
dξ [F {step(x)}]∗ T (ξ) , (3.159)
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where t(x) is any good function and T (ξ) is its Fourier transform. Expressing t(x) on
the left-hand side in terms of T (ξ) and using the definition of the step function gives

∫ ∞

−∞
dξ [F {step(x)}]∗ T (ξ) =

∫ ∞

0
dx

∫ ∞

−∞
dξ T (ξ) e2πiξx

=

∫ ∞

−∞
dξ T (ξ)

∫ ∞

0
dx e2πiξx , (3.160)

where the interchange of order of integration is legal since T (ξ) is a good function.
Comparison of the first and last integrals now reveals that

F {step(x)} =

∫ ∞

0
dx e−2πiξx , (3.161)

which we might have written immediately if we had treated the step function as an
ordinary function instead of defining it distributionally.

All that remains is to deal with the improper integral in (3.161), for which
purpose we appeal to (3.88). Introducing the convergence factor exp(−x/L) in
order to generate an integrable sequence, we find

F {step(x)} = lim
L→∞

∫ ∞

0
dx e−2πiξx−x/L = lim

L→∞

L

1 + 2πiξL

= lim
L→∞

L

1 + 4π2ξ2L2
− lim

L→∞

2πiξL2

1 + 4π2ξ2L2
. (3.162)

Letting ε = 1/(2πL) and comparing to (2.39), we recognize the first limit in (3.162)
as 1

2 δ(ξ). The second limit is a representation of P{1/(2πiξ)}, where P denotes
Cauchy principal value [see (2.88)]. Thus we have, finally,

F {step(x)} = 1
2 δ(ξ) + P

{

1

2πiξ

}

. (3.163)

Note that this result is consistent with (3.158) since ξ δ(ξ) = 0. The constant of
integration turned out to be 1

2 , which gave 1
2 δ(ξ) in the Fourier domain.

The Fourier transform of the signum function can now be derived. Since
sgn(x) = 2 step(x)− 1 by (2.77), we have

F {sgn(x)} = P
{

1

iπξ

}

. (3.164)

We can verify this transform by taking the inverse, i.e., by performing the integral

F
−1

{

P
(

1

iπξ

)}

= P
∫ ∞

−∞
dξ

e2πiξx

iπξ
. (3.165)

This integral is a standard exercise in complex integration (see App. B), with the
effect of the principal-value designation being that only half of the residue at ξ = 0
contributes (Friedman, 1991). The result is

F
−1

{

P
(

1

iπξ

)}

= sgn(x) , (3.166)

as expected. The dual to this transform is

F

{

P
(

1

x

)}

= −iπ sgn(ξ) . (3.167)

A derivation of this result by contour integration is given in App. B.
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Powers and logarithms The generalized functions xm (m an integer), |x|α (α any
real number not an integer) and ln |x| are defined in Sec. 2.3.3. These functions play
an important role in tomographic imaging. Their Fourier transforms are derived
from the basic definitions in Lighthill (1958). The results are

F {|x|α} =
{

2 cos
[

1
2π(α+ 1)

]}

α!(2π|ξ|)−α−1 , α real, noninteger, (3.168)

F
{

x−m
}

= −πi
(−2πiξ)m−1

(m− 1)!
sgn(ξ) , m > 0, integer , (3.169)

F {xm} = (−2πi)−m δ(m)(ξ) , m ≥ 0, integer , (3.170)

F {xm ln |x|} = πi
m!

(2πξ)m+1
sgn(ξ) , m ≥ 0, integer . (3.171)

In these equations, m! denotes the ordinary factorial function for the integer m,
while α! is defined for noninteger α in terms of the gamma function [see Abramowitz
and Stegun, 1965, or (C.123) in App. C] as α! = Γ(α + 1). Transforms involving
products of these generalized functions and signum and step functions can be found
in Lighthill.

An interesting special case of (3.168) is

F

{

|x|−
1

2

}

= |ξ|−
1

2 . (3.172)

Thus |x|− 1

2 is its own Fourier transform.

Gaussians and quadratic phase factors The Gaussian function is important in prob-
ability theory and as a model for the point spread function of imaging systems. It
is also the prototype of a good function (see Sec. 2.1.2). One convenient form for
the Gaussian is (Gaskill, 1978)

gaus(x) ≡ exp(−πx2) . (3.173)

An advantage of this definition is that
∫ ∞

−∞
dx gaus(x) = 1 . (3.174)

One way to derive this result, which will be important below, is to compute not the
integral, denoted I, but its square:

I2 =

[
∫ ∞

−∞
dx gaus(x)

]2

=

∫ ∞

−∞
dx e−πx2

∫ ∞

−∞
dy e−πy2

=

∫ ∞

−∞
dx

∫ ∞

−∞
dy e−π(x2+y2) .

(3.175)
In this form the double integral can be interpreted as a 2D integral over the infinite
plane. This integral can be performed in polar coordinates; letting r2 = x2 + y2, we
find

I2 = 2π

∫ ∞

0
r dr e−πr2 =

∫ ∞

0
du e−u = 1 , (3.176)

confirming (3.174).
The Fourier transform of gaus(x) is given by

F {gaus(x)} =

∫ ∞

−∞
dx e−2πiξx−πx2

. (3.177)
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The integral will be evaluated by forcing it to look like (3.174). To do so, we
complete the square by adding and subtracting πξ2 in the exponent, yielding

F {gaus(x)} = e−πξ2
∫ ∞

−∞
dx e−π(x+iξ)2 = e−πξ2

∫

C1

dz e−πz2

. (3.178)

where z is a complex variable and the (open) contour integral is along the path
C1 parallel to the real axis and displaced upward by iξ; for points on this contour,
z = x + iξ. Note, however, that exp(−πz2) is entire (analytic for all finite z) and
vanishes at infinity on both C1 and the real axis. We can thus deform the contour
to be the real axis, denoted C2, without changing the value of the integral (see App.
B), so

F {gaus(x)} = e−πξ2
∫

C2

dz e−πz2

= e−πξ2

∫ ∞

−∞
dx e−πx2

= e−πξ2 , (3.179)

where the last step follows from (3.174). Like the function |x|− 1

2 encountered above,
gaus(x) and its Fourier transform have the same form.

By the scaling theorem, (3.111), we now have

F
{

|a|−1 gaus(x/a)
}

= e−πa2ξ2 , (3.180)

where a is real. It follows from this equation and the central ordinate theorem that
|a|−1 gaus(x/a) integrates to unity over (−∞,∞).

Closely related to the Gaussian is the quadratic phase factor exp(iπβx2), where
β is real. In fact, one might be tempted to regard this as a Gaussian of the form
gaus(bx), where b =

√
iβ, but that view is dangerous. While gaus(bx) for b real

is very well behaved (in fact, the prototype of a good function), exp(iπβx2) for β
real is not even in L1(−∞,∞). A safer procedure is to regard the quadratic phase
factor as a generalized function and compute its transform from first principles.

As in (3.88), we shall regard the generalized function exp(iπβx2) as the limit
of a sequence of good functions. A convenient form for the good functions is
exp(iπβx2 − παx2), where α is real and positive. We then have

F

{

eiπβx
2
}

= lim
α→0

∫ ∞

−∞
dx eiπβx

2−παx2−2πiξx . (3.181)

As above, the approach is to complete the square. A little algebra yields

F

{

eiπβx
2
}

= lim
α→0

eπb
2

∫ ∞

−∞
dx e−π(γx+b)2 , (3.182)

where b = iξ/γ and γ =
√
α− iβ. Note that γ is a complex number with phase

φγ = 1
2 tan

−1(−β/α), which approaches π/4 as α → 0. The change of variables
z = γx+ b allows us to write

F
{

eiπβx
2}

= lim
α→0

eπb
2 1

γ

∫

C
dz e−πz2

, (3.183)

where the contour C makes an angle φγ to the real axis. The key point, however,
is that there are no singularities of the integrand anywhere between C and the real
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axis, and the integrand vanishes rapidly at infinity along both C and the real axis.
Therefore, we can again deform the contour to the real axis and write

F
{

eiπβx
2}

= lim
α→0

eπb
2 1

γ

∫ ∞

−∞
dx e−πx2

= lim
α→0

eπb
2 1

γ
. (3.184)

Passing to the limit, we have, finally

F
{

eiπβx
2}

=

√

i

β
e−iπξ2/β . (3.185)

The exponents in this expression are the same as we would have obtained by
use of (3.180) with complex a, but that ad hoc approach would have left us unsure
how to handle the factor |a|.

The quadratic phase factor and its Fourier transform play a crucial role in
diffraction theory (see Chap. 9) and radar signal processing (Chap. 18). Additional
properties are discussed in Sec. 4.3.

3.3.8 Relation between Fourier series and Fourier transforms

Most treatments of Fourier analysis introduce the Fourier series as a way of repre-
senting a periodic function by a discrete sum of complex exponentials. The Fourier
transform is then used to represent a general, nonperiodic function by a continuous
superposition or integral of complex exponentials. In a classical approach it would
not be possible to use the Fourier transform for a periodic function which cannot be
in L1(−∞,∞). The use of generalized functions, however, frees us of that restric-
tion and makes it possible to look at the Fourier transform of a periodic function.

Consider a periodic function f(x) of bounded variation and period L, so that
f(x +mL) = f(x), where m is any integer. Let f0(x) be identical with f(x) for x
in (− 1

2L,
1
2L) and zero outside this interval, i.e.,

f0(x) = f(x) rect(x/L) . (3.186)

Since f0(x) has bounded support, it is either a test function or the limit of a sequence
of test functions. Then we can write f(x) as

f(x) =
∞
∑

n=−∞

f0(x− nL) = f0(x) ∗
∞
∑

n=−∞

δ(x− nL) , (3.187)

where we have used (3.125) and the linearity of the convolution operation. With
some trepidation, we rewrite this equation in terms of the shorthand notation for
the convolution as

f(x) = f0(x) ∗
[

1

L
comb

( x

L

)

]

. (3.188)

Recall that we stipulated in Sec. 3.3.6 that, in expressions of this form with one
unscaled variable and one scaled one, the shift variable in the convolution would be
the unscaled one. Thus the interpretation of f0(x) ∗L−1 comb(x/L) is that it is the
same thing as f0(x) ∗ cL(x), where cL(x) = L−1 comb(x/L).
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With this notation, we can now take the Fourier transform of f(x) by use of
the convolution theorem, (3.132), along with (3.157) for the Fourier transform of a
comb. The result is

F (ξ) = F
{

f(x)
}

= F

{

f0(x) ∗
[

1

L
comb

( x

L

)

]}

= F0(ξ) comb(Lξ) , (3.189)

where F0(ξ) is the Fourier transform of f0(x). To be more explicit,

F (ξ) = F0(ξ)
∞
∑

n=−∞

δ(ξL− n) =
1

L

∞
∑

n=−∞

F0

(n

L

)

δ
(

ξ −
n

L

)

, (3.190)

where the last form has made use of (2.25) and (2.28).
Equation (3.190) says that the Fourier transform of a periodic function is

defined for all ξ but is zero unless ξ = n/L, where n is an integer. The behavior
at these discrete frequencies is that of a delta function, and the weight of the delta
function at ξ = n/L is given by F0(ξ) sampled (evaluated) at this discrete value.
The key point is that the periodicity of the function f(x) restricts its Fourier
transform to a discrete set of frequencies.

An interesting result is obtained by simply taking the inverse transform of
(3.190). We find

f(x) =
1

L

∞
∑

n=−∞

F0

(n

L

)

e2πinx/L , (3.191)

which we recognize as a Fourier series with coefficients L−1F0(n/L). In other
words, the Fourier coefficients of a periodic function are sampled values of the
Fourier transform of one period of the function. Of course, the Fourier-series
representation inherently has only a discrete set of frequencies present, and these
are the same frequencies, n/L, as selected by the comb of delta functions in the
Fourier transform.

Poisson summation formula The starting point for the discussion above was the
representation of a periodic function f(x) as the convolution of its values in one
period, f0(x), with a comb function. Now let us consider a slightly different problem.
Consider a function g(x) that is not periodic and does not necessarily have bounded
support. From this function we can create a periodic function gp(x) of period L
by forming all possible translated replicas of the original function and adding them
together. Mathematically, we define

gp(x) =
∞
∑

n=−∞

g(x− nL) = g(x) ∗
1

L
comb

( x

L

)

. (3.192)

The important difference between this equation and (3.188) is that here the different
terms can overlap spatially.

The new function gp(x) is periodic with period L and hence can be expanded
in a Fourier series:

gp(x) =
∞
∑

k=−∞

Ck e
2πikx/L . (3.193)
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The coefficients are given by

Ck =
1

L

∫ 1

2
L

− 1

2
L
dx

∞
∑

n=−∞

g(x− nL) e−2πikx/L . (3.194)

The change of variables x′ = x− nL leads to

Ck =
1

L

∞
∑

n=−∞

∫ 1

2
L−nL

− 1

2
L−nL

dx′g(x′) e−2πikx′/L e−2πink . (3.195)

The last exponential is identically one since nk is an integer, and the sum of integrals
over contiguous intervals of width L is equivalent to one integral over (−∞,∞).
Thus we have

Ck =
1

L

∫ ∞

−∞
dx′g(x′) e−2πikx/L =

1

L
G

(

k

L

)

, (3.196)

where, as usual, G(ξ) is the Fourier transform of g(x). Note that, in contrast to
(3.190) or (3.191), the transform that appears here is not the transform of one
period of a periodic function but rather of the original, nonperiodic function from
which we constructed the periodic one, gp.

Combining (3.192), (3.193) and (3.196), we obtain the Poisson summation
formula,

∞
∑

n=−∞

g(x− nL) =
1

L

∞
∑

k=−∞

G

(

k

L

)

exp

(

2πikx

L

)

. (3.197)

The special case x = 0 gives

∞
∑

n=−∞

g(nL) =
1

L

∞
∑

k=−∞

G

(

k

L

)

. (3.198)

This remarkable theorem says that, with suitable scale factors, the sum of the
samples of any function g(x) equals the sum of the samples of its Fourier
transform. Note that L is now simply the sample spacing in x, not a period. The
sample spacing in ξ is 1/L.

If g(x) has compact support, the Poisson summation formula takes a familiar
form. Suppose g(x) vanishes outside the range −1

2L < x < 1
2L. Then the left-

hand side of (3.197) is a sum of periodically repeated replicas of g(x), while on the
right side, the sampled Fourier transform G(k/L) is identical to Gk, the kth Fourier
coefficient of g(x). Thus, when g(x) has support (−1

2L,
1
2L), (3.197) is just the usual

Fourier-series representation. As it stands, however, (3.197) places no restriction
on g(x).

A practical advantage of the Poisson summation formula is that it converts a
slowly converging series into a rapidly converging one (Kanwal, 1983). For example,
if g(x) is a Gaussian, we find (Strichartz, 1994)

∞
∑

k=−∞

e−4π2tk2

=
1√
4πt

∞
∑

n=−∞

e−n2/4t . (3.199)

The left-hand side converges rapidly for large t, while the right-hand side does so
for small t.
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3.3.9 Analyticity of Fourier transforms

Up until now, the spatial frequency ξ has been a real variable, but it is also of
interest to consider complex frequencies. For this purpose, we write

ξ = ξr + iξi , (3.200)

where subscripts r and i denote real and imaginary parts, respectively. The Fourier
transform is still defined by (3.60), which now reads

F (ξ) =

∫ ∞

−∞
dx f(x) e−2πiξrx e2πξix . (3.201)

It is not obvious that F (ξ) exists for all complex ξ. For example, if ξi > 0, the
factor exp(2πξix) in the integrand blows up exponentially as x → ∞. This problem
is avoided, however, if f(x) is square-integrable and has compact support. In that
case, as we shall now show, F (ξ) is an analytic function of the complex variable ξ.

Suppose the support of f(x) is (−1
2L,

1
2L) and denote F (ξ) by

F (ξ) = Fr(ξr, ξi) + iFi(ξr, ξi) , (3.202)

where, if f(x) is real,

Fr(ξr, ξi) =

∫ 1

2
L

− 1

2
L
dx f(x) cos(2πξrx) e

2πξix ; (3.203)

Fi(ξr, ξi) = −
∫ 1

2
L

− 1

2
L
dx f(x) sin(2πξrx) e

2πξix . (3.204)

To demonstrate the analyticity of F (ξ), we must show that the Cauchy-Riemann
conditions are satisfied (see App. B). If f(x) is in L2(− 1

2L,
1
2L), there is no problem

in differentiating under the integral sign, so

∂Fr

∂ξr
=

∫ 1

2
L

− 1

2
L
dx f(x) (−2πx) sin(2πξrx) e

2πξix =
∂Fi

∂ξi
, (3.205)

verifying the first of the Cauchy-Riemann conditions; the second one follows sim-
ilarly. The conclusion is that F (ξ) is entire (analytic for all finite ξ) if f(x) is
square-integrable and has compact support. This statement is frequently referred
to as the Paley-Wiener theorem (Paley and Wiener, 1934).

The Paley-Wiener theorem can also be derived if f(x) is a generalized func-
tion of compact support (Strichartz, 1994), though in this case F (ξ) might grow
exponentially as ξ → ∞. The general statement of the theorem is that the Fourier
transform of a function or generalized function of compact support is an entire func-
tion of exponential type.

The Paley-Wiener theorem should not be surprising when we recall the relation
between the smoothness of a function and the asymptotic behavior of its Fourier
transform. Compact support is the ultimate in decay at infinity and analyticity is
the ultimate in smoothness (Strichartz, 1994).

An interesting consequence of the Paley-Wiener theorem is that the Fourier
transform of a function of compact support cannot itself have compact support.
That is the case since an analytic function that is zero over any finite region of the
complex plane must be zero everywhere (see App. B).
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3.3.10 Related transforms

Fourier cosine transform We saw in (3.95) that the Fourier transform of an even
function is an even function. If the function is also real, then

F (ξ) = F (−ξ) = 2

∫ ∞

0
dx f(x) cos(2πξx) , f(x) real and even . (3.206)

Even if f(x) is not even, however, we can use this form as the definition of the
Fourier cosine transform of f(x). Denoting this transform by Fc(ξ), we write

Fc(ξ) ≡ 2

∫ ∞

0
dx f(x) cos(2πξx) . (3.207)

Since the cosine is an even function, it follows at once that

Fc(ξ) = Fc(−ξ) . (3.208)

Since Fc(x) is computed from knowledge of f(x) for x ≥ 0, and negative x values
never enter into (3.207), we cannot expect to recover f(x) for x < 0 from Fc(ξ).
The inversion formula for x ≥ 0 follows from (3.153), with the result

f(x) = 2

∫ ∞

0
dξ Fc(ξ) cos(2πξx) , x ≥ 0 . (3.209)

This result is valid for x ≥ 0 without any assumptions about the symmetry of f(x).
On the other hand, should we ignore the condition on x and evaluate the right-hand
side of (3.209) for negative x, we would find that we had a representation of an even
function. The situation is analogous to a Fourier series, which can be viewed as a
representation of a periodic function for −∞ ≤ x ≤ ∞ or of an arbitrary function
for − 1

2L ≤ x ≤ 1
2L. Equation (3.209) is a representation of an even function for

−∞ ≤ x ≤ ∞ or of an arbitrary function for x ≥ 0.

Fourier sine transform The Fourier sine transform is defined as

Fs(ξ) ≡ 2

∫ ∞

0
dx f(x) sin(2πξx) . (3.210)

Since the sine is an odd function,

Fs(ξ) = −Fs(−ξ) , (3.211)

no matter the symmetry of f(x). The inversion formula, which follows from (3.154),
is

f(x) = 2

∫ ∞

0
dξ Fs(ξ) sin(2πξx) , x ≥ 0 . (3.212)

Again, this result is valid for x ≥ 0 without any assumptions about the symmetry
of f(x), but the right-hand side of the equation is an odd function of x. Equation
(3.212) is a representation of an odd function for −∞ ≤ x ≤ ∞ or an arbitrary
function for x ≥ 0.
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3.4 MULTIDIMENSIONAL FOURIER TRANSFORMS

3.4.1 Basis functions

One-dimensional (1D) Fourier analysis involves the complex-exponential basis func-
tion uξ(x) = exp(2πiξx). To perform a similar analysis for a 2D or 3D function, we
must construct 2D and 3D complex exponentials. In 2D a reasonable generalization
of uξ(x) is

uξη(x, y) ≡ exp[2πi(ξx+ ηy)] . (3.213)

Regarded as a function of x for fixed y, this function is periodic with period 1/ξ,
and as a function of y for fixed x it is periodic with period 1/η (see Fig. 3.4). Thus
ξ is the spatial frequency for the x variation and η is the spatial frequency for the
y variation.

Fig. 3.4 Illustration of the 2D basis function, exp[2πi(ξ0x + η0y)].

Vector notation It is convenient to think of ξ and η as Cartesian coordinates of a
2D vector ρ. Similarly, x and y are the components of a 2D spatial-position vector
r. We can then recognize the exponent in (3.213) as a simple 2D scalar product
and write

uρ(r) = exp(2πiρ · r) . (3.214)

In the same fashion, we can define a 3D complex-exponential basis function by

uξηζ(x, y, z) ≡ exp[2πi(ξx+ ηy + ζz)] . (3.215)

Now ξ, η and ζ are the spatial frequencies for variation along x, y and z, respectively.
We shall usually use the same notation in 3D as in 2D; that is, ρ is now a 3D spatial-
frequency vector with Cartesian components (ξ, η, ζ) while r is a 3D spatial position
vector with Cartesian components (x, y, z). With these conventions, (3.214) is valid
in 3D as well as 2D. In fact, it holds in any number of dimensions.

Sometimes we shall encounter 2D and 3D vectors in the same problem and
must make a notational distinction between them. In such cases, we shall reserve
ρ and r for the 2D vectors and use σ and r for the 3D ones. For the remainder
of this chapter, however, that distinction is not needed and dimensionality will be
determined by context.
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Orthonormality and completeness The orthonormality and completeness properties
of the multidimensional basis functions follow from their 1D counterparts. The
statement of orthonormality in two dimensions is [cf. (3.8)]

∫ ∞

−∞
dx

∫ ∞

−∞
dy [uξη(x, y)]

∗ uξ′η′(x, y)

=

∫ ∞

−∞
dx

∫ ∞

−∞
dy exp[−2πi(ξx+ ηy)] exp[2πi(ξ′x+ η′y)]

= δ(ξ − ξ′) δ(η − η′) . (3.216)

A similar expression holds in 3D, but it is much cleaner to use the vector notation.
In any number of dimensions we can write

∫

∞
dnr [uρ′(r)]∗ uρ(r) =

∫

∞
dnr exp[−2πi(ρ− ρ

′) · r] = δ(ρ− ρ
′) . (3.217)

See Sec. 2.4.1 for a review of notational conventions in nD and Sec. 2.4.2 for a
discussion of nD delta functions.

The closure or completeness integral in nD is

∫

∞
dnρ [uρ(r)]

∗ uρ(r
′) =

∫

∞
dnρ exp [−2πiρ · (r− r′)] = δ(r− r′) . (3.218)

Thus the nD complex exponentials form a complete orthonormal set in any of the
senses that their 1D counterparts do. In particular, they are complete in L2(Rn) if
convergence in the mean is understood.

3.4.2 Definitions and elementary properties

Definitions The 2D Fourier transform of a suitably well behaved function in Carte-
sian coordinates is defined as

F (ξ, η) = F2 {f(x, y)} =

∫ ∞

−∞
dx

∫ ∞

−∞
dy f(x, y) e−2πi(ξx+ηy) . (3.219)

We can look at this equation as two consecutive 1D transforms, first on y then on
x. In operator notation,

F2 = F1(x→ξ)F1(y→η) . (3.220)

These operators commute so long as both integrals remain finite. To obtain the in-
verse of the 2D transform, we simply perform two consecutive 1D inverse transforms
(in either order), giving

f(x, y) = F
−1
2 {F (ξ, η)} =

∫ ∞

−∞
dξ

∫ ∞

−∞
dη F (ξ, η) e2πi(ξx+ηy) . (3.221)

This result is valid in any circumstance where both of the individual 1D operations
are valid.

A similar argument holds in any number of dimensions; the nD Fourier trans-
form in Cartesian coordinates can always be decomposed into n consecutive 1D
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transforms, and the inverse transform has the expected form so long as all of the
constituent 1D operations are legal.

In vector form, the general nD expressions for the Fourier transform and its
inverse are

F (ρ) = Fn

{

f(r)
}

=

∫

∞
dnr f(r) exp(−2πiρ · r) , (3.222)

f(r) = F
−1
n

{

F (ρ)
}

=

∫

∞
dnρF (ρ) exp(2πiρ · r) . (3.223)

Multidimensional tempered distributions Multidimensional test functions and good
functions were defined in Sec. 2.4.1. By decomposing the nD transform of a good
function into n 1D transforms as above, it can be shown that the Fourier transform
of a good function is a good function in any number of dimensions (Strichartz,
1994). From this result we can define the nD Fourier transform of a generalized
function analogously to (3.85). Let g(r) be a generalized function corresponding
to an nD tempered distribution, t(r) be an nD good function and T (ρ) be its nD
Fourier transform. Then the defining equation for G(ρ) is

∫

∞
dnr g(r) t(r) =

∫

∞
dnρ [G(ρ)]∗ T (ρ) . (3.224)

Both sides of this equation have the look and feel of a scalar product in L2(Rn),
but of course they are not since g(r) is not necessarily in that space.

From this definition we can derive nD counterparts of most of the Fourier
theorems developed in 1D with the assurance that they are valid for generalized
functions as well as ordinary ones. In particular, (3.222) and (3.223) work for gen-
eralized functions so long as we interpret any improper integrals by expressing the
generalized function as the limit of good functions.

Below we present the nD extensions of several other theorems from Sec. 3.3.
Derivations are omitted, but in most cases they involve little more than the no-
tational change, x → r and ξ → ρ, in the corresponding 1D derivation. Except
as noted, all theorems given are valid for generalized functions associated with nD
tempered distributions (Strichartz, 1994).

Multidimensional Parseval’s relations If both f(r) and F (ρ) are in L2(Rn), then
the nD Fourier transformation is a unitary operator in that space. Since unitary
transformations preserve norms and scalar products, we can write at once

∫

∞
dnr [f1(r)]

∗ f2(r) =

∫

∞
dnρ [F1(ρ)]

∗ F2(ρ) , (3.225)

∫

∞
dnr |f(r)|2 =

∫

∞
dnρ |F (ρ)|2 , (3.226)

provided both f1(r) and f2(r) are in L2(Rn). If one of these functions is an nD
good function and the other is a generalized function, (3.225) also holds, virtually
by definition [see (3.224)]. Note, however, that (3.226) may not work since the
square of a generalized function is not necessarily defined.
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Symmetry All of the 1D symmetry properties derived in Sec. 3.3.5 carry over to nD
essentially unchanged. Directly from the definition we have the so-called Hermiticity
property:

F (−ρ) = [F (ρ)]∗ if f(r) is real . (3.227)

To clarify the notation, let us consider specifically the 2D case. If F (ρ) is a short-
hand for F (ξ, η), then F (−ρ) signifies F (−ξ,−η). If we represent F (ρ) as a gray-
scale image, then F (−ρ) is the same image with the ξ and η axes inverted.

Even (odd) functions transform to even (odd) functions in nD, i.e.,

F (ρ) = ±F (−ρ) if f(r) = ±f(−r) . (3.228)

Central-ordinate and central-slice theorems The central-ordinate theorems in nD
follow directly from the definitions of the transform and its inverse. The Fourier
kernel exp(2πiρ · r) = 1 if either ρ = 0 or r = 0 (but note that these are vector
equations, so all components must be zero). Thus

F (0) =

∫

∞
dnr f(r) , (3.229)

f(0) =

∫

∞
dnρF (ρ) . (3.230)

As in 1D, these relations are very useful for checking the constants in a Fourier
calculation.

An important generalization of the central-ordinate theorem ensues if we use
Cartesian coordinates and set some but not all of the corresponding frequency
variables to zero. For example, if we write f(r) = f(x, y) and F (ρ) = F (ξ, η) in
2D, we find that

F (0, η) =

∫ ∞

−∞
dx

∫ ∞

−∞
dy f(x, y) e−2πiηy ; (3.231)

F (ξ, 0) =

∫ ∞

−∞
dx

∫ ∞

−∞
dy f(x, y) e−2πiξx . (3.232)

These equations are special cases of the central-slice theorem, which plays a key
role in the theory of tomographic imaging. This theorem is explored further in
Chap. 4, but to get a glimmering of its content we rewrite (3.231) as

F (0, η) =

∫ ∞

−∞
dy

[
∫ ∞

−∞
dx f(x, y)

]

e−2πiηy . (3.233)

The quantity in square brackets is a 1D function of y obtained by integrating f(x, y)
along lines parallel to the x axis. This 1D function is called the line-integral projec-
tion (or simply projection) of f(x, y), with the projection direction being parallel
to the x axis. The remaining integral in (3.233) is just a 1D Fourier transform with
respect to y. Thus (3.233) says that the 1D Fourier transform of a projection of a
2D function is the same as the 2D Fourier transform of the function, but evaluated
along a line through the origin (ξ = 0) in the 2D frequency domain.
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Derivatives The Fourier transform of the derivative of a function is essentially the
same thing in 1D and nD, except that in nD we must distinguish the various possible
partial derivatives. For example, the rationale that led to (3.98) shows also that

Fn

{

∂

∂x
f(r)

}

= 2πiξ F (ρ) . (3.234)

Here ξ is the x-component of the spatial-frequency vector in any number of di-
mensions. Similar results hold for other components, higher derivatives and mixed
partial derivatives.

On the other hand, there is an additional richness to the subject of derivatives
in higher dimensions. Since f(r) is a scalar function, we can compute its gradient,
which is a vector in the direction of maximum rate of change of f(r). Proceeding
from the expression for a gradient in Cartesian components and using (3.234), we
can show that

Fn

{

∇f(r)
}

= 2πiρF (ρ) . (3.235)

Since ∇f(r) is a vector, so is its Fourier transform; (3.235) is really n equations,
one for each component of the vector. The Fourier transform of a gradient always
points in the same direction as ρ.

Similarly, the Fourier transform of a Laplacian (divergence of the gradient) is
given by

Fn

{

∇2f(r)
}

= (2πiρ)2F (ρ) , (3.236)

where ρ = |ρ| is the magnitude of the spatial frequency vector. For example, in 3D,
ρ =

√

ξ2 + η2 + ζ2. Since the Laplacian is a scalar, so is its Fourier transform.

Shifts and linear phase factors Just as in 1D, multiplying an nD function by a linear
phase factor produces a translation or shift of its Fourier transform, and vice versa.
It follows from the definition of the nD transform that

Fn{exp(+2πiρ0 · r)f(r)} = F (ρ− ρ0) . (3.237)

Fn{f(r− r0)} = exp(−2πiρ · r0)F (ρ) . (3.238)

Scaled functions In 2D, f(r) is the vector notation for the function f(x, y). We
shall use the notation f(r/a) (with a real) to mean f(x/a, y/a); the extension to any
number of dimensions is straightforward. By a change of variables in the definition
of the nD transform, we find, analogously to (3.111),

Fn

{

f(r/a)
}

= |a|nF (aρ) . (3.239)

This is one of the few Fourier theorems where the number of dimensions n enters
explicitly.

A consequence of this result and the central-ordinate theorem is that the inte-
gral of f(r) and |a|−nf(r/a) are the same. In nD, if we wish to scale all n coordinate
axes of a function by a factor a, we must scale its amplitude by |a|−n to maintain
a constant integral.
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3.4.3 Multidimensional convolution and correlation

The vector notation makes it simple to generalize the definitions of convolution and
correlation to nD. An nD convolution is defined by [cf. (3.114)]

[f ∗ h] (r) = f(r)∗h(r) =
∫

∞
dnr′f(r′)h(r−r′) =

∫

∞
dnr′′f(r−r′′)h(r′′) . (3.240)

Explicitly in 2D, we have

[f ∗ h] (x, y) =
∫ ∞

−∞
dx′

∫ ∞

−∞
dy′f(x′, y′)h(x− x′, y − y′) . (3.241)

Similarly, the nD correlation is given by [cf. (3.115)]

[f * h](r) =

∫

∞
dnr′f(r+ r′)h(r′) =

∫

∞
dnr′′f(r′′)h(r′′ − r) . (3.242)

The nD Fourier transforms of the convolution and correlation are, respectively,

Fn{[f ∗ h] (r)} = F (ρ)H(ρ) , (3.243)

Fn{[f * h] (r)} = F (ρ)H(−ρ) = F (ρ) [H(ρ)]∗ , (3.244)

where the last step in (3.244) is valid if h(r) is real.
An important special case of (3.244) occurs when h(r) = f∗(r). The correlation

is referred to as a complex autocorrelation in that case, and we have

Fn

{

[f * f∗] (r)
}

= |F (ρ)|2 , (3.245)

which is the generalization of (3.135). This equation will prove to be essential in
discussing the properties of incoherent optical systems.

3.4.4 Rotationally symmetric functions

So far we have discussed nD Fourier transforms as n-fold integrals in Cartesian
coordinates, but if the function being transformed has symmetry properties, other
coordinate systems could be preferable. Consider, for example, a 2D function with
rotational symmetry about the origin. The natural coordinate system is polar
coordinates (r, θ), with r = |r| being the distance from the origin and θ being the
angle measured from the x axis. In these coordinates, f(r) is independent of θ and
can be written as f(r).

In 2D polar coordinates, ρ · r = ρr cos(θ − θρ), where (ρ, θρ) are the polar
coordinates of ρ, and we can write

F2 {f(r)} =

∫ ∞

0
r dr f(r)

∫ 2π

0
dθ e−2πiρr cos(θ−θρ) . (3.246)

Since f(r) is independent of θ, the integral over θ can be done once and for all. A
well known integral (and a very important one in optics) is

Jk(z) =
i−k

π

∫ π

0
dθ eiz cos θ cos(kθ) , (3.247)
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where Jk(z) is the Bessel function of the first kind of order k (Abramowitz and
Stegun, 1965). This integral is often used as the definition of this Bessel function.

With a little algebra, the integral in (3.246) can be put into the form of (3.247)
with k = 0, yielding

F2 {f(r)} = 2π

∫ ∞

0
r dr J0(2πρr) f(r) . (3.248)

This form is often referred to as the Hankel transform of zeroth order, but we
emphasize that it is also the 2D Fourier transform of a function with rotational
symmetry.

A similar calculation applies in 3D for spherically symmetric functions. The
natural coordinate system is spherical polar coordinates (r, θ,φ), where θ is the co-
latitude, measured from the z axis, and φ is the azimuth or longitude. A spherically
symmetric function f(r) is independent of θ and φ, so we can write f(r) = f(r),
where r = |r|. The exponent in the Fourier kernel is simplified, without loss of
generality, by taking the z axis to be parallel to ρ, so that ρ · r = ρr cos θ. We then
have

F3 {f(r)} =

∫ ∞

0
r2dr f(r)

∫ 2π

0
dφ

∫ π

0
dθ sin θ exp(−2πiρr cos θ) , (3.249)

and some algebra gives

F3 {f(r)} = 4π

∫ ∞

0
r2dr sinc(2ρr) f(r) . (3.250)

The constants in (3.248) and (3.250) can be checked by the central-ordinate theorem;
since J0(0) = sinc(0) = 1, F (0) is given by the integral of the function in both cases.

3.4.5 Some special functions and their transforms

Delta functions The definitions of the nD delta function and the nD Fourier trans-
form show at once that

Fn {δ(r)} = 1 , (3.251)

Fn

{

δ(r− r0)
}

= exp(−2πir0 · ρ) . (3.252)

The transforms of various nD derivatives of the delta function follow from these
results and (3.234) – (3.236). For example,

Fn

{

∇2 δ(r)
}

= −4π2ρ2 . (3.253)

Complex exponentials, sines and cosines A modest change of variables in the ex-
pression for the nD Fourier transform shows that

Fn {exp(2πiρ0 · r)} = δ(ρ− ρ0) . (3.254)

From this result and (3.5) and (3.6), we find

Fn{cos(2πρ0 · r)} =
1

2
[δ(ρ− ρ0) + δ(ρ+ ρ0)] , (3.255)

Fn{sin(2πρ0 · r)} =
1

2i
[δ(ρ− ρ0)− δ(ρ+ ρ0)] . (3.256)

As in 1D, sines and cosines transform to pairs of delta functions. These delta
functions are located at ρ = ±ρ0, two points oppositely displaced from the origin
in the nD frequency space.
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Cylinders and besincs A convenient special function in 2D is the cylinder function,
which is unity inside a disc of diameter D and zero outside:

cyl
( r

D

)

≡
{

1 if r < D/2
0 if r > D/2

. (3.257)

Note that r is |r|, where r is a 2D vector, so cyl(r/D) is specifically a 2D function.
The name cylinder evokes a surface relief plot of the function, which looks like a
cylinder (see Fig. 3.5). The cylinder function is a useful representation of a circular
aperture in optics.

Fig. 3.5 (a) The cylinder function cyl(r); (b) The 2D Fourier transform of
the cylinder, besinc(ρ) presented as a relief plot; (c) Radial profile of the 2D
function in (b).

Since the cylinder function is rotationally symmetric, its Fourier transform can
be found from (3.248):

F2 {cyl (r/D)} = 2π

∫ 1

2
D

0
r dr J0(2πρr) =

πD2

4
·
2J1(πρD)

πρD
, (3.258)

where J1(·) is the first-order Bessel function of the first kind (Abramowitz and
Stegun, 1965). A succinct way to write this equation is

F2

{

cyl(r/D)
}

=
πD2

4
besinc(ρD) , (3.259)

where

besinc(t) ≡
2J1(πt)

πt
. (3.260)

The besinc function, also referred to as a jinc or sombrero function, is the 2D coun-
terpart of the sinc function. It is plotted in Fig. 3.5. Since besinc(0) = 1, the factor
of πD2/4 in (3.259) is in accord with the 2D central-ordinate theorem; the area of
the disc is the integral of the cylinder function.



MULTIDIMENSIONAL FOURIER TRANSFORMS 149

Gaussians and quadratic phase factors The nD Gaussian is just a product of 1D
Gaussians. For example, in 3D,

gaus
( r

a

)

= e−π(x2+y2+z2)/a2

= e−πx2/a2

e−πy2/a2

e−πz2/a2

. (3.261)

Since the nD function factors into a product of n 1D functions, it follows that

Fn {gaus(r/a)} = |a|n e−πa2ρ2

= |a|n gaus(aρ) , (3.262)

where we have used (3.180) and (3.239).
By the same argument, an nD quadratic phase factor is a product of n 1D

ones, and we have [cf. (3.185)]

Fn

{

eiπβr
2}

=

(

i

β

)
1

2
n

e−iπρ2/β . (3.263)

3.4.6 Multidimensional periodicity

Comb functions Consider the 2D function comb(r/a) defined by

comb(r/a) ≡ comb(x/a) comb(y/a) =
∞
∑

k=−∞

∞
∑

m=−∞

δ
(x

a
− k

)

δ
(y

a
−m

)

.

(3.264)
Regarded as a 2D function, δ(x/a − k) is a line mass (see Sec. 2.4.4) located at
x = ka. The product δ(x/a − k) δ(y/a −m) is the intersection of two line masses
or a point mass located at (x, y) = (ka,ma), so comb(r/a) is a set of 2D delta
functions located on a square lattice. Similarly, in nD, comb(r/a) is a product of n
1D combs or a set of delta functions on a regular lattice in Rn.

Since the nD comb function is a product of n 1D functions, we have

Fn{comb(r/a)} = |a|n comb(aρ) . (3.265)

If the lattice has different spacings in different directions, the nD comb function
can be expressed in product form and transformed one dimension at a time. For
example, in 2D,

F2{comb(x/a) comb(y/b)} = |ab| comb(aξ) comb(bη) . (3.266)

The delta functions in frequency space are now spaced by 1/a along ξ and 1/b
along η.

If the lattice is not orthogonal, more care is needed. Consider a 2D lattice of
delta functions located at the points r = m1a+m2b, where a and b are arbitrary
noncollinear vectors and m1 and m2 are integers. An array of delta functions on
these points can be written

∞
∑

m1=−∞

∞
∑

m2=−∞

δ(r−m1a−m2b) . (3.267)

A more compact way of writing this expression (and one more easily generalized to
higher dimensions) makes use of a matrix P, defined by

P =

[

ax bx
ay by

]

, (3.268)
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and a column vector m = (m1,m2)t, called a multi-index. With this notation,

∞
∑

m1=−∞

∞
∑

m2=−∞

δ(r−m1a−m2b) =
∑

m

δ(r−Pm) , (3.269)

where the sum over m implies the double sum over m1 and m2 from −∞ to ∞.
This matrix-vector form can be generalized to nD, in which case P becomes an
n× n matrix and m an n× 1 column vector of integers. With this notation, it can
be shown that (Marks, 1991)

Fn

{

| det(P)|
∑

m

δ(r−Pm)

}

=
∑

m

δ(ρ−Qm) , (3.270)

where Qt = P−1, and det(·) denotes determinant.
This equation shows that the Fourier transform of a general nD comb of delta

functions on the nonorthogonal lattice Pm is a similar comb on the reciprocal
lattice Qm. The reciprocal lattice is an important tool in solid-state physics (see,
for example, Ashcroft and Mermin, 1976).

In 2D, the points Qm are located at ρ = m1A + m2B, where A and B are
the basis vectors for the reciprocal lattice, defined such that a · A = b · B = 1
and a ·B = b ·A = 0. Equation (3.266) is the special case of (3.270) for diagonal
matrices P and Q, in which case a ⊥ b and A ⊥ B.

Multidimensional periodic functions An nD function f(r) satisfies the periodicity
condition

f(r+Pm) = f(r) , (3.271)

where P is some n × n matrix P and m is again an n× 1 vector of integers. As a
simple example, consider n = 3 and P = LI3, where I3 is the 3 × 3 unit matrix.
With this choice, (3.271) becomes

f(x+m1L, y +m2L, z +m3L) = f(x, y, z) . (3.272)

Since m1,m2 and m3 are integers, this equation describes a 3D function that is
periodic on a cubic lattice of spacing L. It will be useful to keep this simple example
in mind, but the remainder of this section will use the more general formula (3.271).

To proceed, we need to define a unit cell, just as in solid state physics (Ashcroft
and Mermin, 1976). One definition of a unit cell is that it is the set of points that
lies closer to the origin than to any other point in the lattice. This particular choice
is known as the Wigner-Seitz unit cell. A geometrical method to construct a
Wigner-Seitz unit cell is shown in Fig. 3.6.

By analogy to (3.188), the periodic function of (3.271) can be expressed as

f(r) = f0(r) ∗
∑

m

δ(r−Pm) , (3.273)

where

f0(r) =

{

f(r) if r is in unit cell
0 otherwise

. (3.274)
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Fig. 3.6 Method of constructing the Wigner-Seitz unit cell in 2D. The perpen-
dicular bisector is constructed for each line connecting the origin to another
point in the lattice, and the unit cell is the smallest area bounded by all of
these lines. Hence points in the unit cell lie closer to the origin than to any
other lattice point.

We can now take the Fourier transform of f(r) by use of (3.243) and (3.270). The
result is [cf. (3.189)]

F (ρ) = Fn

{

f(r)
}

= F0(ρ)
1

| det(P)|
∑

m

δ(ρ−Qm) , (3.275)

where Qt = P−1 and F0(ρ) is the Fourier transform of f0(r). Thus, just as in the
1D case, the Fourier transform of a periodic function is the Fourier transform of
its values in the unit cell times a sum of delta functions. Again the periodicity of
the function restricts its Fourier transform to a discrete set of frequencies. Here the
discrete frequencies are the points of the reciprocal lattice. In fact, it is precisely
this property that gives rise to the term reciprocal lattice; many books refer to
Fourier space as reciprocal space.

Still pursuing the analogy to the 1D case, we take the inverse transform of
(3.275), yielding [cf. (3.191)]

f(r) =
1

| det(P)|
∑

m

F0(Qm) exp[2πi(Qm)· r] . (3.276)

This is the nD Fourier series for the periodic function f(r). As in the 1D case, the
Fourier coefficients of a periodic function are sampled values of the Fourier trans-
form of one period (unit cell) of the function.

As noted in Sec. 3.2.1, there are two ways to view a Fourier series. It is a
representation of a periodic function in all space or a representation of an arbitrary
function in a finite region. We now investigate the latter view in the multidimen-
sional case.

Consider a function f(r) that vanishes identically unless r is in a region Sf
of the nD space. We choose an arbitrary lattice, defined by a matrix P, with no
restrictions except that Sf must fit entirely within the Wigner-Seitz unit cell of the
lattice. We define a support function Sf (r) via

Sf (r) =

{

1 if r is in Sf
0 otherwise

. (3.277)

Then an exact representation of f(r), valid in all space, is2

2The possibility of an exact representation like (3.278) is a consequence of sampling theory, a topic
to be introduced in the next section. The requirement that the function fit within the unit cell
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f(r) =
1

| det(P)|
∑

m

F (Qm) exp[2πi(Qm)· r]Sf (r) . (3.278)

Without the support function, the series in (3.278) would represent an infinite set
of replicas of f(r), but the presence of Sf (r) sets all replicas but one to zero.

A suggestive way to rewrite (3.278) is:

f(r) =
∑

m

F (Qm)Φm(r) , (3.279)

where Φm(r) is a basis function defined by

Φm(r) ≡
1

| det(P)|
exp[2πi(Qm)· r]Sf (r) . (3.280)

These basis functions can thus be used to represent exactly an arbitrary function
of compact support.

3.5 SAMPLING THEORY

So far we have considered Fourier expansions of functions of a continuous variable
x, and most of our results have been couched in terms of integrals with respect
to this variable. When it comes time to perform real calculations, however, we
often must have recourse to a digital computer, and computers usually deal with
discrete sets of numbers. It is straightforward to convert a continuous function f(x)
to such a discrete set—we can simply evaluate it at a discrete set of points. The
resulting numbers fj ≡ f(xj) are referred to as samples of f(x), and the process
of evaluation is called sampling. We shall express this operation via the sampling
operator S, a continuous-to-discrete operator that derives sample values from a
function. The inverse process—determination of a continuous function from its
discrete samples— is more difficult and in fact impossible without placing stringent
conditions on the function. If there were no restrictions, the function could vary in
an arbitrary manner between the samples and we would have no way of knowing it.
Some sort of smoothness constraint is required.

3.5.1 Bandlimited functions

One way of saying that a function is smooth is to say that its Fourier transform
vanishes identically outside a finite interval; such a function is said to be bandlim-
ited. One way to construct a bandlimited function, at least in principle, is to start
with an arbitrary function and pass it through an ideal low-pass filter. As we shall
see in Chap. 9, certain kinds of optical systems act as low-pass filters with a sharp
cutoff, so the image with such systems is bandlimited; its Fourier transform has
compact support. As we noted in Sec. 3.3.9, however, the Fourier transform of a
function of compact support cannot itself have compact support, so the output of

is equivalent to saying that the reciprocal lattice satisfies the Nyquist condition for sampling in
frequency space. See Sec. 3.5.4.
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an ideal low-pass filter must in principle have infinite spatial extent. If we truncate
the spatial function (e.g., record the image on a piece of film of finite size), we
induce higher spatial frequencies, so the image is no longer strictly bandlimited.

Nevertheless, the Fourier transform may drop to an insignificant level for |ξ|
larger than some frequency ξmax, in which case we can proceed as if the function
were bandlimited, recognizing that the resulting interpolation formula will be only
approximate. In practice, if we go through the two-step procedure of low-pass fil-
tering and truncation, an appropriate value for ξmax will be just slightly greater
than the cutoff frequency of the filter.

Paley-Wiener space A more formal way of discussing bandlimited functions makes
use of the Paley-Wiener theorem (see Sec. 3.3.9) and a reproducing-kernel Hilbert
space (see Sec. 1.8) called Paley-Wiener space.

The Paley-Wiener theorem shows that the Fourier transform of a function with
compact support is an entire function of exponential type. Similarly, if the Fourier
transform F (ξ) has compact support, the function f(x) itself, regarded as a func-
tion of a complex variable, is entire. That means that a bandlimited function is
continuous, differentiable and expandable in a complex Taylor series (see App. B).
We won’t have need for complex x, but all of these nice properties hold for real x as
well. Bandlimited functions of a real variable are said to be in Paley Wiener space.

Ideal low-pass filtering with a cutoff at ξ = ±ξmax corresponds to convolu-
tion with B sinc(Bx) in the spatial domain, where B = 2ξmax. Equivalently, this
convolution corresponds to multiplication in the frequency domain by the Fourier
transform of the sinc. Since

F1{B sinc(Bx)} = rect(ξ/B) , (3.281)

subsequent convolution with B sinc(Bx) has no further effect. (A rect function
raised to any power is still the same rect function.) Thus bandlimited functions
containing only frequencies for which |ξ| ≤ B/2 must satisfy

∫ ∞

−∞
dx′B sinc[B(x− x′)] f(x′) = f(x) . (3.282)

From the discussion in Sec. 1.8, (3.282) will be recognized as the condition for
Paley-Wiener space to be a reproducing-kernel Hilbert space. The operator B used
in Sec. 1.8 here corresponds to convolution with B sinc(Bx). All functions in Paley-
Wiener space are invariant to this operator, and B is simply the unit operator in
the reproducing-kernel space (or, equivalently, the projection operator from L2(R)
to the space). Thus Paley-Wiener space is a reproducing-kernel Hilbert space with
a sinc function as the kernel (Walter, 1994; Daubechies, 1992). As noted in Sec.
1.8, a function in a reproducing-kernel Hilbert space is smooth in a certain sense;
the smoothness of bandlimited functions will be exploited below.

3.5.2 Reconstruction of a bandlimited function from uniform samples

Bandlimited functions are so smooth that their behavior between samples can be
predicted exactly from the sample values, provided the samples are sufficiently
close together. In other words, there exists an exact interpolation formula, usu-
ally referred to as the Whittaker-Shannon sampling theorem, for reconstruct-
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ing a bandlimited function from its samples. Other names for this theorem in-
clude the Whittaker-Shannon-Kotel’nikov theorem, the Whittaker-Shannon-
Kotel’nikov-Kramer theorem, the sampling theorem, and the cardinal series
(Marks, 1991). We shall derive this important theorem in two different ways below.

Shannon’s derivation The first derivation of the sampling theorem that we present
is the one given originally by Shannon and discussed in Jerri (1977).

A bandlimited function can be represented by the truncated inverse Fourier
transform,

f(x) =

∫ 1

2
B

− 1

2
B
dξ F (ξ) exp(2πiξx) . (3.283)

The truncation of the range of integration to (− 1
2B , 1

2B ) entails no error since F (ξ)
vanishes identically outside this range. The full range B, including positive and
negative frequencies, is called the bandwidth of the function. (Caution: In engi-
neering texts, the term bandwidth often refers to the maximum frequency present
in a signal, which is our 1

2B .)
Another consequence of the bandlimited character is that F (ξ) can be exactly

represented on (− 1
2B , 1

2B) by the Fourier series,

F (ξ) =
∞
∑

k=−∞

Ck exp(−2πiξk/B) . (3.284)

This expression is essentially the same as (3.17) but with x → ξ and L → B. The
coefficients in (3.284) are given by [cf. (3.191)]

Ck =
1

B

∫ 1

2
B

− 1

2
B
dξ F (ξ) exp(2πiξk/B) =

1

B
f

(

k

B

)

. (3.285)

Plugging (3.285) into (3.284) and the result into (3.283), we find

f(x) =

∫ 1

2
B

− 1

2
B
dξ

∞
∑

k=−∞

1

B
f

(

k

B

)

exp(−2πiξk/B) exp(2πiξx) . (3.286)

Interchanging sum and integral and performing an integration yields

f(x) =
∞
∑

k=−∞

f

(

k

B

)

sinc(Bx− k) . (3.287)

This is the desired interpolation formula, the Whittaker-Shannon sampling theorem.
We can see that the right-hand side of (3.287) exactly reproduces f(x) at the sample
points as follows: If x = j/B (j an integer), then sinc(Bx− k) = sinc(j − k) = δjk,
so the equation reads f(j/B) = f(j/B). The interpolation function has the nice
property that it is unity at one of the sampling points and zero at all others.

Of course, giving the right answer at the sample points is not sufficient for an
interpolation formula; it must also work for all x. Linear or spline interpolants, for
example, could reproduce f(x) at x = j/B, but only the sinc function gives the
exact values for f(x) at all intermediate points, and then only if f(x) is bandlimited
to bandwidth B.



SAMPLING THEORY 155

In spite of their approximate character, linear interpolants and splines do have
one practical advantage over the Whittaker-Shannon theorem; determination of
f(x) at some point x requires knowledge of the sample values at only the adjacent
sample points. Equation (3.287) shows that knowledge of f(j/B) for all j is required
to determine f(x) for any x other than a sampling point.

Alternative derivation In this section, we present an alternative derivation of the
Whittaker-Shannon sampling theorem based on comb functions. This derivation,
found in many modern texts (e.g., Marks, 1991 or Gaskill, 1978), makes it clearer
what the sampling rate must be and what happens if it is not large enough.

Suppose the continuous-to-discrete operator S acts on f(x) to give a set of
sample values {f(j∆x)}, j = 0,±1,±2, ...,±∞, where for the moment ∆x is arbi-
trary. We can use the adjoint operator S † to construct an auxiliary function fs(x),
formed by using the sample values as weights for an infinite set of delta functions.
Thus fs(x) is defined by

fs(x) = S
†
S f(x) =

∞
∑

j=−∞

f(j∆x) δ(x− j∆x) . (3.288)

This function and others encountered in this derivation are illustrated in Fig. 3.7.

Fig. 3.7 Functions encountered in a derivation of the Whittaker-Shannon
sampling theorem. (a) The original function f(x), illustrated by a sinc2 func-
tion plus a narrow Gaussian. The narrow Gaussian keeps f(x) from being
bandlimited. (b) The Fourier transform of f (x). (c) The sampled function
fs(x); the spikes represent delta functions. (d) The Fourier transform of fs(x),
showing the replication induced by sampling.

Since f(x) δ(x− j∆x) = f(j∆x) δ(x− j∆x) [see (2.25)], we can also write

fs(x) =
∞
∑

j=−∞

f(x) δ(x− j∆x) = f(x)
∞
∑

j=−∞

δ(x− j∆x) = f(x)
1

∆x
comb

( x

∆x

)

.

(3.289)



156 FOURIER ANALYSIS

Reconstructing f(x) from the set of samples {f(j∆x)} is equivalent to finding an
operator that maps fs(x) to f(x). To ferret out such an operator, we take the
Fourier transform of fs(x), with the result

Fs(ξ) = F1{fs(x)} = F (ξ) ∗ comb(∆xξ) =
1

∆x

∞
∑

j=−∞

F

(

ξ −
j

∆x

)

, (3.290)

where we have used (3.125), (3.132) and (3.157).
Thus, as illustrated in Fig. 3.7, the Fourier transform of fs(x) is a set of

displaced replicas of the Fourier transform of f(x). There is no overlap of the
replicas if f(x) is bandlimited to bandwidth B and the sample interval ∆x satisfies

∆x ≤ 1/B . (3.291)

This important condition is known as the Nyquist sampling condition (Nyquist,
1928a). If it is satisfied, we can use a simple rect function to isolate a single replica,

F (ξ) =
1

B
rect

ξ

B
Fs(ξ) . (3.292)

Thus, provided the Nyquist condition holds, the operator that maps Fs(ξ) to F (ξ)
is nothing more than multiplication by a rect.

The corresponding operator in the space domain is convolution with a sinc; an
inverse transform of (3.292) gives

f(x) = sinc(Bx) ∗ fs(x) = sinc (Bx) ∗





∞
∑

j=−∞

f(j∆x) δ(x− j∆x)





=
∞
∑

j=−∞

f(j∆x) sinc [B(x− j∆x)] . (3.293)

This result is a valid interpolation formula provided B∆x ≤ 1; the special case
B∆x = 1 gives us back (3.287).

How many samples are needed? If we really had a bandlimited function, it could
not be strictly spatially limited, so an infinite number of samples spaced at the
Nyquist interval would be needed to specify the function. In many practical situa-
tions however, the function is spatially limited, and we regard it as approximately
bandlimited to a bandwidth of B. If this approximation is adequate and we sample
at an interval of ∆x = 1/B, then a function of spatial extent L requires L/∆x = LB
samples. The product LB, known as the space-bandwidth product measures the
number of degrees of freedom of the function, or the number of independent pa-
rameters needed to specify it.

Generalizations of Whittaker-Shannon There are many generalizations and exten-
sions of the sampling theorem. The reader who wishes to delve further is referred
to Jerri (1977), Butzer (1983), Jerri (1986), Marks (1991) and Zayed (1993). Top-
ics treated in these references include nonuniform sampling, sampling of random
processes, non-bandlimited functions, implicit sampling and sampling for general
integral transforms.
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A very powerful generalization of the sampling theorem uses the idea of a sam-
pling basis in a reproducing-kernel Hilbert space (Zayed, 1993). Consider a space
of functions f(x) with reproducing kernel h(x, x′). A basis {sn(x)} in this space is
called a sampling basis if there exists a set of points xn along the real line such that

f(x) =
∑

n

f(xn) sn(x) . (3.294)

For simplicity, we consider only orthonormal bases. It is proved in Zayed (1993)
that an orthonormal basis is a sampling basis if and only if it is generated from the
reproducing kernel by

sn(x) = h(x, xn) . (3.295)

Paley-Wiener space satisfies this condition with the kernel being a sinc function,
and (3.294) is just the Whittaker-Shannon sampling theorem in this case.

3.5.3 Aliasing

A crucial assumption in the derivation of the Whittaker-Shannon sampling theo-
rem above is that there is no overlap of the displaced replicas of F (ξ) in (3.290). If
there is overlap, there is no way to distinguish a particular frequency ξ0 from the
frequencies ξ0 ± n/∆x. Such frequencies are said to be aliased since they produce
identical sets of samples, as illustrated in Fig. 3.8.

Fig. 3.8 Illustration of aliasing. The two cosines differ in frequency by the
reciprocal of the sampling interval, so they agree exactly at the sample points.

One way to think about aliasing is that it results from heterodyning. In
the temporal domain, heterodyne detection is the multiplication of a signal, say
cos(2πν1t), with a local oscillator at a different frequency, say cos(2πν2t). By ele-
mentary trigonometry, the product has terms at the sum and difference frequencies,
cos[2π(ν1±ν2)t]. Exactly the same argument holds in the spatial domain; multipli-
cation of cos(2πξ1x) and cos(2πξ2x) yields terms in cos[2π(ξ1±ξ2)x]. In (3.289), the
function f(x) is sampled by multiplying it by the comb function, which contains all
harmonics of the fundamental sampling frequency 1/∆x. In the multiplication each
frequency component ξ in f(x) is heterodyned to a set of new frequencies ξ ± n

∆x ,
as seen in (3.290).

Another way to think about aliasing is in terms of null functions of the sam-
pling operator S which maps f(x) to its samples {f(j∆x)}. Since cos(2πξx)
and cos[2π(ξ ± n

∆x )x] yield exactly the same samples, the difference function
cos(2πξx)− cos[2π(ξ ± n

∆x )x] is a null function of S.
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The reader has, no doubt, seen examples of aliasing in everyday experience. A
television image is sampled by the raster lines, and the moiré pattern seen in a TV
image of empty seats in a football stadium or a performer’s striped coat is due to
aliasing. Here the coat or stadium is multiplied by the raster function, generating
a multitude of new frequencies. An interesting point in this case is that the spa-
tial frequencies are vectors, and heterodyning produces vector sum and difference
frequencies. Both the raster pattern and the coat might correspond to very high
spatial frequencies, but if the vector difference is small, it is easily seen in the TV
image.

There are two ways to avoid significant aliasing in practice. One is simply to
use a very fine sampling interval small (small ∆x) to ensure that the Nyquist con-
dition is satisfied. If the function being sampled is not truly bandlimited, it would
be desirable to choose ∆x small compared to 1/(2ξmax), where F (ξ) has dropped
to some very small value by ξ = ±ξmax.

The second way to avoid aliasing is to prefilter the function with a low-pass
anti-aliasing filter before sampling. In the TV example above, the camera lens
might constitute such a filter. If the lens cannot pass the high spatial frequencies in
the performer’s coat, they cannot heterodyne with the raster pattern. Some infor-
mation has been lost by the low-pass filter, but the effect is usually less deleterious
than aliasing.

3.5.4 Sampling in frequency space

The sampling theorem (3.293) and the Nyquist condition (3.291) are applicable
when f(x) is a bandlimited function, which means that its Fourier transform has
finite support. Two dual relations hold if f(x) itself has finite support. In that case
we can reconstruct its Fourier transform F (ξ) from samples taken according to a
different Nyquist condition.

Suppose f(x) is zero outside (− 1
2L,

1
2L) and that F (ξ) is sampled at ξj = j∆ξ,

j = 0,±1,±2, ...,±∞. Under what circumstances can F (ξ) be recovered from
{F (j∆ξ)} and what is the explicit interpolation formula? We can answer these
questions by little more than a change of notation in the derivation above. The
spatial variable x becomes the frequency variable ξ, f(x) becomes F (ξ), the sample
interval ∆x becomes ∆ξ, and the bandlimit B is replaced by the space limit L. The
new Nyquist condition is, by analogy to (3.291),

∆ξ ≤ 1/L , (3.296)

and the interpolation formula analogous to (3.293) is

F (ξ) =
∞
∑

j=−∞

F (j∆ξ) sinc

(

ξ

∆ξ
− j

)

. (3.297)

3.5.5 Multidimensional sampling

If samples are acquired in Cartesian coordinates, the Whittaker-Shannon sampling
theorem extends trivially to higher dimensions. Suppose, for example, we sample
a 2D function f(x, y) at x = ja, y = ka, where j and k are integers, and that
F (ξ, η) = 0 unless −1

2B ≤ ξ, η ≤ 1
2B, with aB ≤ 1. Under these circumstances,
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(3.293) generalizes to

f(x, y) =
∞
∑

j=−∞

∞
∑

k=−∞

f(ja, ka) sinc
(x

a
− j

)

sinc
(y

a
− k

)

. (3.298)

But there are many other possible sampling theorems in two or more dimen-
sions. The sampling need not be on a square lattice, and the support of the Fourier
transform of f(x, y) need not be a simple product of rects. Rather than enumerate
some subset of these theorems, we shall present a single general formula from which
they can all be derived. The treatment parallels the ‘alternative derivation’ of the
1D sampling theorem above.

Consider an nD function f(r) with Fourier transform F (ρ). Consider also a
function S(ρ) that takes on the value 1 within the support of F (ρ) and 0 outside
it, so that

F (ρ) = F (ρ)S(ρ) . (3.299)

Using the notation of Sec. 3.4.6 and following the development in Marks (1991), we
presume that f(r) is sampled on the points r = Pm, where P is an n × n matrix
and m is an n× 1 column vector with all elements given by integers ranging from
−∞ to∞. The samples of f(r) are thus the set of numbers {f(Pm)}. As in (3.288),
we can use the samples to define an auxiliary function fs(r), given by

fs(r) =
∑

m

f(Pm) δ(r−Pm) = f(r)
∑

m

δ(r−Pm) . (3.300)

An nD Fourier transform and use of (3.270) yields [cf. (3.290)]

Fs(ρ) = F (ρ) ∗Fn

{

∑

m

δ(r−Pm)

}

=
1

| det(P)|
F (ρ) ∗

∑

m

δ(ρ−Qm)

=
1

| det(P)|
∑

m

F (ρ−Qm) , (3.301)

where Qt = P−1. As discussed in Sec. 3.4.6, the points Qm define the reciprocal
lattice.

As in the corresponding 1D derivation, we now have a set of shifted replicas of
F (ρ); here the replicas are centered on the reciprocal lattice points Qm. If these
replicas do not overlap, we can multiply Fs(ρ) by the support function S(ρ) to
isolate a single replica, giving [cf. (3.292)]

F (ρ) = | det(P)|S(ρ)Fs(ρ) . (3.302)

An inverse transform now gives

f(r) = | det(P)| s(r) ∗ fs(r) = | det(P)| s(r) ∗

[

∑

m

f(Pm) δ(r−Pm)

]

= | det(P)|

[

∑

m

f(Pm) s(r−Pm)

]

. (3.303)

This is the desired multidimensional generalization of the Whittaker-Shannon sam-
pling theorem. The interpolation function is, within a constant, the inverse Fourier
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transform of the support function S(ρ). There is no simple statement of the Nyquist
condition except to say that there must be no overlap of the replicas of F (ρ) cen-
tered on the reciprocal-lattice points. For many special cases and applications of
this formula, see Marks (1991).

3.5.6 Sampling with a finite aperture

So far we have considered only point sampling as the operator S. In one dimension,
S transforms the function f(x) into a discrete set of numbers {f(xj)}. There are,
however, many other possible forms for the sampling operator. We can, for example,
define S as a normalized integral of the function over a small region, so that

fj = S f(x) =
1

ε

∫ xj+
1

2
ε

xj−
1

2
ε
dx f(x) . (3.304)

If we take xj = j∆x and ∆x = ε, then the regions are contiguous pixels. On the
other hand we can also take xj = j∆x but pass to the limit ε → 0. In this case, if
f(x) is continuous at x = xj , we have

lim
ε→0

fj = f(xj) = f(j∆x) . (3.305)

A general way of describing these transformations is in terms of continuous-
to-discrete mappings as discussed in Sec. 1.2.4. By analogy to (1.30), we can write

fj =

∫ ∞

−∞
dx f(x) a(xj − x) , (3.306)

where a(x) is called the sampling function or aperture function. The latter
designation is suggestive of instruments such as scanning microdensitometers where
an optical aperture is placed at a sequence of locations in an image plane.

To get back to (3.304) from this general form, we take

a(x) = ε−1 rect(x/ε) , (3.307)

while point sampling is recovered by taking a(x) = δ(x).
It is interesting to inquire whether there exists a counterpart of the Whittaker-

Shannon theorem for the more general kind of sampling defined in (3.306). To
answer this question, note that (3.306) can also be written as

fj = [f ∗ a] (xj) , (3.308)

where [f ∗ a](x) denotes the convolution of f(x) and a(x) (see Sec. 3.3.6). Thus
sampling a function with a finite aperture is equivalent to first convolving it with
an aperture function, then performing point sampling on the result.

Since convolution corresponds to multiplication in the frequency domain,
[f ∗ a](x) is bandlimited to (−1

2B , 1
2B) if f(x) is. Thus [f ∗ a](x) can be recov-

ered from its samples {fj} if xj = j∆x and ∆x satisfies the Nyquist condition,
B∆x = 1. From (3.293), we have immediately that

[f ∗ a] (x) =
∞
∑

j=−∞

fj sinc
( x

∆x
− j

)

. (3.309)
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Of course, all this says is that we can recover [f ∗ a](x); we would really like to
recover f(x) itself. To see when that is possible, we take the Fourier transform of
the convolution, yielding

F1{[f ∗ a] (x)} = F (ξ)A(ξ) , (3.310)

where, as usual, functions with capital letters are the Fourier transforms of the corre-
sponding lower-case functions. If A(ξ) does not vanish in the interval
− 1

2B < ξ < 1
2B, we can find F (ξ) in that interval by dividing through by A(ξ).

Since F (ξ) is assumed to vanish outside that interval, an inverse Fourier transform
then yields the desired f(x).

As an example, let a(x) be given by (3.307). Then, by (3.136), A(ξ) = sinc(εξ),
which does not vanish in (− 1

2B , 1
2B ) provided ε < 2B−1. If the Nyquist condition

is exactly satisfied, so that B∆x = 1, A(ξ) will not vanish in the interval of interest
if ε < 2∆x. Since the usual pixel sampling corresponds to ε = ∆x, there is no
problem in recovering f(x) from its samples on contiguous pixels if the Nyquist
condition is satisfied. It will be left as an exercise for the reader to develop an
explicit interpolation formula for this case.

3.6 DISCRETE FOURIER TRANSFORM

3.6.1 Motivation and definitions

Though many Fourier transforms can be found analytically, there are also many
circumstances where numerical methods are needed. In image processing, for ex-
ample, we usually do not have an analytical description of the image, so analytical
determination of its Fourier transform is out of the question. In other circumstances
we might have an analytic expression for the function but not be able to express its
Fourier transform in closed form.

In such cases, we are forced to represent the function to be transformed by a
discrete set of numbers and to approximate the Fourier integral by a sum. One way
to do so is:

F (ξ) - ∆x
∞
∑

k=−∞

f(k∆x) exp(−2πiξk∆x) . (3.311)

This form is still not amenable to numerical computation for two reasons: For each
ξ an infinite sum is required, and there are an infinite number of values of ξ.

To restrict the sum to a finite number of terms, we must presume that f(x)
vanishes, at least approximately, outside some finite interval. As in Sec. 3.1.4, we
take that interval as [0, L) and divide it into N equal steps of size ∆x = L/N, so
that the samples are at x = xk = k∆x = kL/N, k = 0, ..., N − 1. Since f(x) now
has finite support, F (ξ) can be represented exactly by its samples at ξ = ξn = n∆ξ,
provided these samples in frequency space satisfy the dual Nyquist condition (3.296),
∆ξ ≤ 1/L. We choose the inequality to be an equality. The samples F (n∆ξ) can
be approximated by ∆xFn, where

Fn ≡
N−1
∑

k=0

fk exp(−2πikn/N) , (3.312)
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and fk = f(k∆x). In the limit as N → ∞ (or equivalently, ∆x → 0),
∆xFn → F (n∆ξ).

Though motivated as an approximation to the Fourier integral, (3.312) is an
important linear transformation in its own right. Known as the discrete Fourier
transform or DFT, it transforms the N -dimensional vector f with components {fk}
to another N -dimensional vector F with components {Fn}. The exact inverse to
this transform can be established from the orthogonality relation (3.12), yielding

fk =
1

N

N−1
∑

n=0

Fn exp(2πikn/N) . (3.313)

Another way to express these results is to recognize that exp(−2πi/N), which
we can denote as WN, is an N th root of unity (see Sec. B.1.5), i.e.,

[WN ]N = [exp(−2πi/N)]N = exp(−2πi) = 1 . (3.314)

In terms of WN, the DFT is

Fn =
N−1
∑

k=0

fkW
kn
N , (3.315)

and its inverse is

fk =
1

N

N−1
∑

n=0

FnW
−kn
N . (3.316)

We shall return to the question of how well the DFT approximates the Fourier
transform in Sec. 3.6.3, but first we establish some basic properties of the DFT
itself.

3.6.2 Basic properties of the DFT

The DFT has many properties analogous to those of the Fourier series and Fourier
transform as discussed in Secs. 3.2 and 3.3. The one exception is that there is no
need to discuss convergence since finite sums of finite values are necessarily finite.

Linearity Like its kin, the DFT is a linear transformation. If f and g are N -
dimensional vectors with DFTs F and G, respectively, and we define

h = αf+ βg , (3.317)

where α and β are constants, then

H = αF+ βG , (3.318)

where H is the DFT of h.

Periodicity and folding Since WN is an N th root of unity, raising it to a power that
is an integer multiple of N leaves it invariant. From this observation it follows that

W kn
N = W k(n+N)

N . (3.319)
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Plugging this result into (3.315) reveals that

Fn+N = Fn . (3.320)

In other words, regardless of the sequence {fk}, its DFT is periodic with period N.
Though we are free to evaluate Fn for any n, there are only N independent values.
It is conventional to choose n = 0, 1, ..., N −1, but we could equally well choose any
other range of N contiguous integers.

Furthermore, if all of the {fk} are real, there is an additional constraint on
the {Fn}. It is straightforward to show in this case that

Fn = F ∗
−n if fk is real for all k . (3.321)

This result is the DFT analog of the Hermiticity condition for Fourier series or
transforms, (3.45) or (3.94). Combining (3.320) and (3.321), we also have

F 1

2
N+n = F ∗

1

2
N−n if fk is real for all k . (3.322)

Thus if we choose the basic range of n to run from 0 to N−1 and all of the {fk} are
real, there is a folding point at n = 1

2N. The real part of Fn is symmetric about this
point while the imaginary part is antisymmetric. These relations are illustrated in
Fig. 3.9.

Fig. 3.9 Illustration of symmetry properties of the DFT of a real sequence.
(a) A 32-point real sequence {fn, n = 0, ..., 31}; (b) Real part of the DFT of
this sequence plotted over five periods; (c) Imaginary part of the DFT of this
sequence plotted over five periods.

The same symmetry relations apply to the inverse DFT. We can regard (3.313)
as a representation of our original sequence for n = 0, 1, ..., N − 1, but given the
representation, we can plug in any n whatsoever. Doing so shows that the repre-
sentation is periodic with period N. Like the Fourier series, an inverse DFT is a
representation of an arbitrary function on a finite interval or of a periodic function
on the infinite interval.

Shifted sequences In discussing Fourier transforms, we found that shifting the func-
tion was equivalent to multiplying its transform by a linear phase factor [see (3.108)].
A similar result holds for the DFT, but we must be careful how we define a shift.

Given a sequence {fk, k = 0, ..., N − 1}, let us define a new sequence
{yk, k = 0, ..., N − 1} by

yk = fk−m . (3.323)

The problem with this definition is that k−m may not be in the range 0 to N − 1.
When this occurs, we have two options: we can either take fk−m to be zero or
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we can assume that the original sequence {fk} is defined for all k by periodically
repeating the original N values. This latter view is the one that is consistent with
the periodicity properties of the DFT as discussed above, and it is the choice we
shall make. Thus, if k−m in (3.323) lies outside [0, N−1], we must add or subtract
a multiple of N to get it back into this range. Technically, the index of f is k −m,
modulo N, but to keep the notation simple we do not explicitly show the modulo
convention. Shifting modulo N is also referred to as cyclic shifting.

The DFT of the (cyclically) shifted sequence is

Yn = exp(−2πinm/N)Fn . (3.324)

Again, as in (3.108), shifting the input to the transform operation has the effect of
multiplying the output by a linear phase factor, here linear in n.

Kronecker deltas Suppose the sequence {fk} consists of all zeros except for a one
in the mth position, i.e.,

fk = δkm , (3.325)

where δkm is the Kronecker delta. The DFT of this particular sequence is

Fn =
N−1
∑

k=0

δkm exp(−2πikn/N) = exp(−2πimn/N) . (3.326)

This result is the DFT analog of (3.148); again a delta function transforms to a
linear phase factor.

Since exp(−2πimn/N) is periodic in n with periodN, we have a simple example
of the general periodicity condition (3.320). Equation (3.326) is also an illustration
of the shift theorem (3.324) since Fn = 1 for all n if fk = δk0.

Now consider a sequence {fk} defined by

fk = exp(2πikm/N) . (3.327)

The DFT yields
Fn = N δmn , (3.328)

where we have used (3.12). This is the analog of (3.151); a linear phase factor
transforms to a delta function. Here it is a Kronecker delta times a factor of N.

Discrete convolution and correlation A discrete implementation of the convolution
equation g(x) = [f ∗ h](x) is [cf. (3.114)]

gn =
1

N

N−1
∑

k=0

fkhn−k , n = 0, 1, 2, ..., N − 1 , (3.329)

where, as above, the shift is interpreted modulo N. The factor of 1/N, corresponding
to the dx in a convolution integral, should not be overlooked.

The DFT counterpart of the convolution theorem, (3.132), is

Gn = FnHn . (3.330)

The proof follows from the definition of the DFT and (3.12). The factor of 1/N in
the definition of discrete convolution, (3.329), eliminates the factor of N that comes
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from the discrete orthogonality relation, (3.12).
Discrete correlation can be defined similarly:

gn =
1

N

N−1
∑

k=0

fkhn+k , n = 0, 1, 2, ..., N − 1 , (3.331)

and a DFT gives the analog of (3.134),

Gn = FnH
∗
n . (3.332)

Parseval’s relation Parseval’s relation, the analog of (3.51) or (3.79), is

N−1
∑

k=0

fkh
∗
k =

1

N

N−1
∑

n=0

FnH
∗
n . (3.333)

The left-hand side of this equation is the Euclidean scalar product of the
N -dimensional vectors f and h, while the right-hand side is 1/N times the simi-
lar scalar product of F and H. Had we defined the DFT with a factor of 1/

√
N in

both the forward and inverse transforms, this extra factor of 1/N would not have
appeared and we would be able to say that discrete Fourier transformation was
unitary. The situation is completely analogous to Fourier series, where we have an
asymmetric factor of 1/L (see Sec. 3.2.3).

3.6.3 Relation between discrete and continuous Fourier transforms

We return now to the question of how a DFT is related to a continuous Fourier
transform. Our goal in this section is not only to show the mathematical relation
but also to offer some practical suggestions to anyone who wishes to use the DFT
to compute an approximation to a continuous transform.

The formal mathematical connection between the discrete and continuous
transforms rests on two concepts: sampling and periodic replication. We saw in
Sec. 3.5 that sampling a function in the space domain, as in (3.289), produces a
periodic function in the frequency domain, (3.290). Conversely, periodically repli-
cating a function as in (3.192) yields a Fourier transform that is sampled in the
sense that it contains only a discrete set of frequencies. The DFT of any sequence
is both discrete (sampled) and periodic, so we might suspect that it corresponds in
some sense to a continuous Fourier transform from one periodic, sampled function
to another.

To make this argument more precise, we begin with an arbitrary continuous
function f(x) and consider the sequence of steps needed to create from it a peri-
odic, sampled function (Hayes, 1992; Hakimmashhadi, 1988). The steps involved
are illustrated in Fig. 3.10.

The first step is to sample the function at points xn = n∆x. As in (3.289)
we can then define the auxiliary function fs(x) in terms of the sample values by

fs(x) = f(x)
1

∆x
comb

( x

∆x

)

=
∞
∑

n=−∞

f(n∆x) δ(x− n∆x) . (3.334)

From (3.290) and Fig. 3.7, we know that this operation has the effect of periodically
replicating the Fourier transform F (ξ). If F (ξ) does not have finite support or the
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Nyquist condition is not satisfied, there is aliasing or overlap of the various replicas.
Since we do not wish to assume that the original f(x) itself has finite support,

we now impose a finite support by multiplying fs(x) by a window function that
selects 0 ≤ x < L. The appropriate window function is

w(x) = rect

[

x− 1
2L+ ε

L

]

, (3.335)

where ε is a positive number less than ∆x which ensures that the point at x = 0
is included in the window while the one at x = L is not. We define N = L/∆x so
that exactly N points are included in the window; the index n thus ranges from 0
to N − 1. The resulting function after sampling and windowing is

fsw(x) = fs(x)w(x) =
N−1
∑

n=0

f(n∆x) δ

(

x−
nL

N

)

. (3.336)

The (continuous) Fourier transform of this function is

Fsw(ξ) = Fs(ξ) ∗W (ξ) . (3.337)

The next (and last) step is periodic replication. As defined in (3.192), this
operation is described mathematically by convolution with L−1 comb(x/L), where
L is the period. (Note that we take the period to be identical to the width of the
window function.) The resulting sampled, windowed and periodically replicated
function is given by3

fswp(x) = fsw(x) ∗
1

L
comb

( x

L

)

. (3.338)

Substituting (3.336) into (3.338) and performing the convolution by means of (3.127),
we find

fswp(x) =
N−1
∑

n=0

f(n∆x) δ

(

x−
nL

N

)

∗
∞
∑

m=−∞

δ(x−mL) =

∞
∑

m=−∞

N−1
∑

n=0

f(n∆x) δ

(

x−
nL

N
−mL

)

. (3.339)

Now it is straightforward to take the Fourier transform of fswp(x), with the result

Fswp(ξ) =
∞
∑

m=−∞

N−1
∑

n=0

f(n∆x) exp[−2πiξ(nL/N +mL)] . (3.340)

By (2.50) we can also write

Fswp(ξ) =
1

L

∞
∑

m=−∞

[

N−1
∑

n=0

f(n∆x) exp(−2πinm/N)

]

δ(ξ −m/L) . (3.341)

3The shorthand notation for convolution in (3.338) should not be misinterpreted. The shift variable
is x, not x/L. See Sec. 3.3.6 and the discussion below (3.142).
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Not surprisingly, Fswp(ξ) is sampled and periodic, and the samples are given by the
DFT of the sequence {f(n∆x)}. Thus, performing a DFT of the samples of f(x)
produces the samples of the Fourier transform of a sampled, windowed and
periodically replicated version of f(x).

Fig. 3.10 Steps in going from the FT to the DFT.

Errors in the DFT: Their causes and cures Each of the steps leading up to (3.341)
constitutes a potential source of error in computation of the continuous Fourier
transform by means of the DFT. In this section we briefly discuss the nature of
these errors and some ways to minimize them.

As we have seen, sampling the original function produces error if f(x) is not
bandlimited or the Nyquist condition is not satisfied. One solution to this problem is
to use finer sampling. If we have an analytic expression for f(x), the only price paid
for this remedy is increased computer time. In many practical situations, however,
the number of samples is limited by a finite sensor array or other technological
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considerations. In those cases some sort of anti-aliasing filter as discussed in Sec.
3.5.3 is desirable. In an imaging context, the bandwidth of the signal being sampled
can be limited by the characteristics of the imaging lens or by finite detector size.

The windowing step produces an error if the function being sampled does not
fit into the window. The nature of the error is seen from (3.337); the convolution
of Fs(ξ) with the transform of the window function has the effect of smoothing out
sharp features in Fs(ξ) as shown in Fig. 3.10. Since adjacent frequency components
are blurred together in this way, the effect is sometimes referred to as spectral
leakage. The effect can be minimized by using a larger window so that W (ξ)
more closely approximates a delta function. Another useful measure is to use a
smooth function for w(x) rather than a rect so that W (ξ) falls off more rapidly
with increasing ξ.

The final source of error is the sampling of F (ξ) itself. The spacing of samples
in the frequency domain is 1/L, which satisfies the dual Nyquist condition (3.296)
if the support of f(x) is L, but nevertheless we may want finer samples in order to
fully appreciate the structure of F (ξ). It is often desirable to use a window function
that is substantially larger than the support of f(x) simply to decrease the spacing
of the points in the frequency domain. In practice, this is done by appending a
string of zeros to the sample values f(n∆x), creating an artificially longer sequence
as the input to the DFT. This procedure is known as zero padding.

For further tips on practical applications of the DFT, see Lathi (1992), Hayes
(1992), or Walker (1991).

3.6.4 Discrete-Space Fourier Transform

The mathematics of the DFT are based on the assumption that the input is a fi-
nite set of N numbers. In this section we investigate the discrete-space Fourier
transform, or DSFT, which maps an infinite number of discrete values to the
spatial-frequency domain. The assumption of an infinite number of samples is
often plausible in the analysis of temporal data sets such as those encountered in
many communications applications. For such problems the discrete-time Fourier
transform (Oppenheim and Schafer, 1989) is a common method of analysis. In
imaging applications involving large detector arrays, where boundary effects are
less important, the assumption of an infinite set of samples may also be reasonable.
We present here a description of the properties of the DSFT for completeness.

Suppose we are given an infinite number of samples fk. The discrete-space
Fourier transform of this set is defined by

FDS(ξ) ≡
∞
∑

k=−∞

fk exp(−2πikξ∆x) , (3.342)

where the subscript DS is short for discrete-space and ∆x is the distance between
sample values. The sample values fk can be recovered from FDS(ξ) by the following
inverse transformation:

fk ≡ ∆x

∫ 1/(2∆x)

−1/(2∆x)
dξ FDS(ξ) exp(2πikξ∆x) . (3.343)

As we shall see, the DSFT can be thought of as the limit of the DFT in the
case of an infinite number of samples, but it has several unique properties of its
own.
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Relationship with DFT The DFT (3.312) transforms the set of discrete samples
{fk} to the samples {Fn}. If we were to consider a slightly different definition, in
which the summation is symmetric, we could write

Fn =

N
2
−1

∑

k=−N
2

fk exp(−2πikn/N) . (3.344)

When we make the changes of variables, ∆ξ = 1/L, ξ = n∆ξ and ∆x = L/N, we
find that

Fn|n= ξ
∆ξ

=

N
2
−1

∑

k=−N
2

fk exp(−2πikξ∆x) . (3.345)

We know from our discussion of the DFT that as the number of samples N increases,
the output of (3.345) becomes increasingly finely sampled. In the limit where N
becomes infinite, (3.345) is equivalent to (3.342), and the output is continuous.
Thus the transformation of (3.342) is a discrete-to-continuous transformation.

From Sec. 3.6.2 we also know that Fn in (3.345) is periodic with period 1/∆x.
Thus FDS(ξ) is also periodic with period 1/∆x. For this reason the integral in
(3.343) need only be evaluated over the central zone of the periodic function FDS(ξ);
values of the function outside this zone are redundant.

Relationship with Fourier series By comparison with (3.17) we see that (3.342) is
a Fourier-series expansion of the continuous function FDS(ξ). The samples of the
discrete function fk in (3.342) play the role of the series coefficients. The inverse
discrete-space transform of (3.343) is directly analogous to the formula given for
determination of the Fourier series expansion coefficients [cf. (3.19)]. Perhaps the
odd thing here is that (3.342) is a Fourier series expansion of a function we think
of as being in the Fourier domain!

Another way to see the relationship between the DSFT and the Fourier series
is to use operator theory. We noted in Sec. 3.2.3 that the mapping from a function
on a finite interval to the infinite set of Fourier coefficients is a linear operator; the
DSFT, which is a mapping from an infinite set of coefficients to a function on a
finite interval, is the adjoint of the Fourier-series operator. Since we also know from
Sec. 3.2.3 that the Fourier-series operator is unitary (up to normalization factors),
the DSFT is the inverse of the Fourier series, slightly disguised by the notation.

Relationship with sampling Suppose, as we did in Sec. 3.5.2, that the samples {fk}
have been acquired from an underlying continuous function f(x) via the sampling
operator S. The samples can be used to form the auxiliary function fs(x), related
to f(x) by

fs(x) = S
†
S f(x) =

∞
∑

k=−∞

f(x) δ(x− k∆x) = f(x)
1

∆x
comb

( x

∆x

)

. (3.346)

The Fourier transform of this function is

Fs(ξ) =
∞
∑

k=−∞

∫ ∞

−∞
dx f(x) δ(x− k∆x) exp(−2πiξx) =

∞
∑

k=−∞

fk exp(−2πkiξ∆x) ,

(3.347)
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where fk = f(k∆x). By comparison with (3.342) we see that Fs(ξ) is equivalent to
FDS(ξ), the DSFT of the samples of f(x).

Consider again the transform pairs represented by the various rows of Fig.
3.10. We have just found that the DSFT plays a role in row 3 of the figure. The
function on the left in row 3 is fs(x), the continuous auxiliary function obtained by
weighting delta functions with the sample values of f(x). The Fourier transform
on the right of row 3 is Fs(ξ), the continuous FT of fs(x). We now know this to be
also the DSFT of the sample values fk, FDS(ξ). The figure shows that FDS(ξ) is
the sum of an infinite number of shifted replications of the Fourier transform F (ξ).
The amount of overlap of the replications is zero if the bandwidth B of f(x) is such
that the sampling distance ∆x ≤ 1/B.

In summary, the striking difference between the discrete Fourier transform
(DFT) and the discrete-space Fourier transform (DSFT) is that the DFT is a trans-
formation from a finite set of samples to another finite set of samples. In the case of
the DSFT, where the number of input samples is infinite, the output is a continuous
function. Another way to consider this is that the input to the DSFT is not assumed
to be periodic, or equivalently, the period is infinite. The continuous-to-continuous
Fourier transform can be recovered from the DSFT in the limit where the sampling
distance becomes infinitesimally small.

Relationship with Poisson summation We have seen that FDS(ξ) is a periodic func-
tion with periodicity 1/∆x. It is the function we obtain when we add an infinite
number of shifted replications of the general (nonperiodic) function F (ξ). That is,

FDS(ξ) =
1

∆x

∞
∑

n=−∞

F
(

ξ −
n

∆x

)

, (3.348)

which can be verified by taking the Fourier transform of (3.346). By (3.342) we can
equate this periodic function with a Fourier series with coefficients fk, which are
the samples of f(x), giving

1

∆x

∞
∑

n=−∞

F
(

ξ −
n

∆x

)

=
∞
∑

k=−∞

fk exp(−2πikξ∆x) , (3.349)

which is equivalent to the Poisson summation formula of (3.197). For the special
case ξ = 0 we obtain

1

∆x

∞
∑

n=−∞

F
( n

∆x

)

=
∞
∑

k=−∞

fk . (3.350)

As expected, the sum of the samples of f(x) is equal to the sum of the samples of
its Fourier transform.

3.6.5 Fast Fourier Transform

It can be seen from (3.315) that the DFT can be regarded as a matrix-vector
multiplication. We can rewrite that equation in matrix-vector form as

F = Df , (3.351a)
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or, in detail,

Fn =
N−1
∑

k=0

Dnkfk , (3.351b)

where Dnk = Wnk
N = exp(−2πink/N). In order to obtain the value of a particular

Fn, we must multiply each fk by the appropriate matrix element, Dnk and sum
the results. Doing this for all N components appears to require a total of N2

multiplications and additions, but in fact it is possible to perform a DFT with only
about N log2 N operations if N is a power of 2. Algorithms for computing a DFT
in this manner are known as fast Fourier transforms or FFTs. The classic text
on the FFT is Brigham (1974), and the more recent books by Ramirez (1985) and
Walker (1991) are also useful. Excellent short discussions are given by Hayes (1992),
Hakimmashhadi (1988), and Kraniauskas (1994).

Though often attributed to Cooley and Tukey (1965), the basic idea of the
FFT is actually much older. A fascinating historical survey is given by Heidemann
et al. (1985) who trace the algorithm back to work by Gauss, first published only
posthumously in 1866. Heidemann estimates that Gauss developed the FFT in
1805, which, if accurate, puts it two years before Fourier’s own work on the Fourier
series. The method was also used by the German numerical analyst Karl Runge
in 1905, and there were numerous other independent discoveries of the same basic
algorithm. What all of these works have in common is the recognition that the N2

elements of D are not independent. Rather, the elements are all powers of WN , the
N th root of unity, so there are only N independent elements.

We now show how to take advantage of this redundancy in the matrix elements.
Our treatment closely follows the lucid account given by Hayes (1992), but similar
treatments can be found in all of the references given in this section. Assume that
N is even,

N = 2M , (3.352)

and divide the sum in (3.315) into even and odd parts:

Fn =
N−1
∑

k=0

fk(WN )nk =
M−1
∑

m=0

f2m(W2M )2mn +
M−1
∑

m=0

f2m+1(W2M )(2m+1)n . (3.353)

Since (W2M )2 = WM , we can also write

Fn =
M−1
∑

m=0

f2m(WM )mn + (W2M )n
M−1
∑

m=0

f2m+1(WM )mn . (3.354)

Each of these sums will be recognized as an M -element DFT. It is useful to define
separate DFTs of the even and odd terms as

F (e)
n =

M−1
∑

m=0

f2m(WM )mn (3.355a)

F (o)
n =

M−1
∑

m=0

f2m+1(WM )mn , (3.355b)

where the superscripts denote even and odd, respectively. Thus

Fn = F (e)
n + (W2M )nF (o)

n . (3.356)
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Since each of the M -element DFTs returns M numbers, this formula gives only the
first M values of Fn, but the remaining ones are found by adding M to each index:

Fn+M = F (e)
n+M + (W2M )n+MF (o)

n+M = F (e)
n − (W2M )nF (o)

n , (3.357)

where the last steps follows since (W2M )M = exp(−iπ) = −1.
Equations (3.356) and (3.357) show that the desired N -element DFT can be

computed as two M -element ones, where M = N/2. This result was first derived
by Danielson and Lanczos (1942). If N is a power of 2, say 2K, we can repeat this
halving process K times and eventually perform a set of single-point transforms.4

The total number of operations is then of order NK or N log2 N instead of N2.
Some additions are also required by (3.356) and (3.357), but if N is large, the num-
ber of additions is small compared to N log2 N. We say that the required number
of operations is O(N log2 N), where O is to be read “on the order of.”

Practical algorithms for efficient computation of the DFT are found in many
places. Hayes gives programs in BASIC, and Press et al. (1992) give ones in FOR-
TRAN and C. Many commercial software packages provide FFT routines integrated
with excellent graphics.

3.6.6 Multidimensional DFTs

The 2D DFT The 2D DFT is defined by

Fmn =
N−1
∑

j=0

N−1
∑

k=0

fjk exp[−2πi(mj + nk)/N ] =
N−1
∑

j=0

N−1
∑

k=0

fjk(WN)mj+nk . (3.358)

The indices j, k, m and n all run from 0 to N − 1.
An alternative form of (3.358) is obtained by regarding Fnm and fjk as elements

of the N×N matrices F and f, respectively. In both matrices, the first index denotes
the row and the second the column. Now we can write

F = DfD , (3.359)

where D is the N ×N matrix defined in (3.351). Note that this is not a similarity
transformation since D itself, rather than D† or D−1, appears in both places. Thus
the 2D DFT with N elements in each direction can be conceptualized as resulting
from a matrix product of three N ×N matrices.

To see how the 2D DFT can be computed in practice, rewrite (3.358) as:

Fmn =
N−1
∑

j=0

{

N−1
∑

k=0

fjk exp(−2πink/N)

}

exp(−2πimj/N) . (3.360)

The quantity in brackets is a 1D N -element DFT on each column, with the column
replaced in situ by its DFT. The outer sum corresponds to similar 1D DFTs on

4The halving process is frequently referred to as decimation or radix-2 decimation, but the word
decimation has an evident root in Latin decem for ten, not two. Though used more broadly, the
word decimate refers to the practice of selecting by lot and killing one-tenth of a population. It
does not mean to reduce by a factor of ten, and certainly not to reduce by a factor of two.
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the resulting rows. Thus the 2D DFT of an N × N image can be computed in
O(N2 log2 N

2) operations.
The extension to n dimensions is straightforward: An nD DFT can be per-

formed as a sequence of n 1D DFTs in O(Nn log2 N
n) operations.

General lattices If we regard the nD DFT as a sampled approximation to the
Fourier integral, it is of interest to study the case of sampling on an arbitrary
lattice as in Sec. 3.4.6. The starting point for this discussion is the nD Fourier
series (3.276).

Consider a function f0(r) defined at all points within a unit cell of an arbitrary
lattice. The lattice points are r = Pk, where k is a multi-index, i.e. an nD vector
with integer components. If we extend f0(r) to a periodic function f(r) as in (3.273)
and sample f(r) at the points r = Pk/N, so that N points fit along each axis in
the unit cell, then (3.276) becomes

f(Pk/N) =
1

|det(P)|
∑

m

F0(Qm) exp(2πiQm ·Pk/N) =

1

| det(P)|
∑

m

F0(Qm) exp(2πim · k/N) , (3.361)

where Qm are the points on the reciprocal lattice and the second form of (3.361)
follows from Qt = P−1.

With this motivation we define the nD inverse DFT as

fk =
1

Nn

N−1
∑

m=0

Fm exp(2πim · k/N) , (3.362)

where fk corresponds to f(Pk/N) and Fm to F0(Qm). We emphasize however, that
these are correspondences and not equalities; the DFT is only an approximation to
the sampled Fourier series, so (3.362) is a definition, not something derived from
(3.361).

Note that the specific geometry of the lattices has disappeared in (3.362); the
exponent involves only the scalar product m·k of the multi-indices, not the matrices
P and Q. It is only when we want to interpret fk and Fm as samples of a function
and its Fourier transform that the geometry matters.

The inverse of (3.362), the DFT itself, is given by

Fk =
N−1
∑

m=0

fm exp(−2πim · k/N) . (3.363)

Lexicographic ordering Another way to formulate a 2D DFT is to reorder the N2

elements of f into an N2 × 1 column vector by use of lexicographic ordering. In
this approach we define a new index 1 as

1 ≡ k+jN , j = 0, ..., N−1 , k = 0, ..., N−1 , 1 = 0, ..., N2−1 . (3.364)

This indexing amounts to starting with 0 at the upper left of the 2D matrix and
counting in a raster fashion from left to right and top to bottom.

The inverse of (3.364) is

j = int(1/N) , k = 1− jN = 1 (modulo N) , (3.365)
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where int(x) denotes the integer part of x.
A similar ordering of F is obtained by defining

p = n+mN , m = 0, ..., N − 1 , n = 0, ..., N − 1 , p = 0, ..., N2 − 1 ,
(3.366)

with a similar inversion rule. With these definitions, (3.358) becomes

F (lex)
p =

N2−1
∑

-=0

D(lex)
p- f (lex)

- , (3.367)

or, in matrix-vector form,
F(lex) = D(lex)f (lex) , (3.368)

where f (lex) and F(lex) are the lexicographically ordered N2×1 vectors correspond-
ing to fjk and Fmn, respectively, and D(lex) is an N2 ×N2 matrix. The elements
of D(lex) are exp[−2πi(jm+ kn)/N ] with application of (3.365) and the analogous
rule for p.



4
Series Expansions and

Integral Transforms

This chapter comprises a collection of miscellaneous mathematical concepts and
techniques that we shall need later in the book. Section 4.1 develops the theory of
orthogonal expansions and provides us with several sets of orthonormal functions
that can be used to represent objects and images. Section 4.2 surveys several
classical integral transforms that are of use in describing imaging systems. The
treatment in this section is brief, amounting to little more than a compendium of
properties, since the transforms in question are well known and treated fully in
many texts.

Section 4.3 deals with an integral transform that is not so widely known, yet
which plays a fundamental role in image science. The Fresnel transform arises in
signal processing, diffraction theory, coherent imaging and radar, so we present a
relatively detailed account of its properties.

Finally, in Sec. 4.4, we introduce the Radon transform, an important tool in
the mathematical description of tomographic imaging systems.

4.1 EXPANSIONS IN ORTHOGONAL FUNCTIONS

Fourier analysis is an expansion in complex exponentials, but there are many other
sets of orthogonal functions that can be used in an exactly parallel manner. Since
virtually all of the theorems that apply to conventional Fourier analysis have coun-
terparts with these functions, the broader field of expansion in orthonormal func-
tions is often called generalized Fourier analysis. We survey this field here, con-
centrating on families of orthonormal functions with particular usefulness in image
science.
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4.1.1 Basic concepts

The main thing that distinguishes one family of orthogonal functions from another
is the definition of orthogonality used. The simplest definition is in terms of a
scalar product on L2(a, b), but we can also use the scalar product appropriate to
the weighted Hilbert space L2(a, b;w(x)) (see Sec. 1.1.4). Norms in L2(a, b;w(x))
are denoted ‖ · ‖w. In this space, two functions un(x) and um(x) are said to be
orthonormal if

(un, um)w =

∫ b

a
dx w(x)u∗

n(x)um(x) = δnm , (4.1)

where w(x) ≥ 0 for a < x < b.
Suppose we are given a set of functions {un(x), n = 1, ...,∞}, satisfying (4.1)

and wish to use them to represent a function f(x) in L2(a, b;w(x)). As in Sec. 3.2.1,
we begin by simply assuming that f(x) can be represented by a series of the form
[cf. (3.17)]

f(x) =
∞
∑

n=1

αnun(x) . (4.2)

If this expansion is valid, then the coefficients must be given by [cf. (3.19)]

αn =

∫ b

a
dx′ w(x′)u∗

n(x
′) f(x′) . (4.3)

This set of coefficients is optimal in the sense that

∥

∥f(x)−
N
∑

n=1

βnun(x)
∥

∥

w
≥

∥

∥f(x)−
N
∑

n=1

αnun(x)
∥

∥

w
, (4.4)

where {αn} is given by (4.3) and {βn} is any other set of coefficients (Rade and
Westergren, 1990).

The function set {un(x)} is complete in L2(a, b;w(x)) if

lim
N→∞

∥

∥f(x)−
N
∑

n=1

αnun(x)
∥

∥

w
= 0 (4.5)

for all f(x) in the space. If this condition is satisfied, the assumed expansion (4.2)
indeed exists.

Expansions in orthogonal functions obey Parseval’s relations analogous to
those found in Fourier analysis (Rade and Westergren, 1990). The analog of the
Parseval relation for a Fourier series, (3.50), is

∞
∑

n=1

|αn|2 =

∫ b

a
dx′ w(x′) |f(x′)|2 , (4.6)

where {un(x)} is any complete set of orthonormal functions in L2(a, b;w(x)), and
αn is given by (4.3). The analog of the generalized Parseval relation (3.51) also
holds.
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4.1.2 Orthogonal polynomials

Some of the most important sets of orthogonal functions are real polynomials
{φn(x), n = 0, 1, 2, ...}, where φn(x) is a polynomial of degree n. For historical
reasons the polynomials are usually not normalized but instead constructed to sat-
isfy

∫ b

a
dx w(x)φn(x)φm(x) = hn δnm , (4.7)

where hn is a normalization factor to be discussed below. The orthonormal functions
required in Sec. 4.1.1 can be obtained simply by

un(x) =
φn(x)√

hn
. (4.8)

The Gram-Schmidt procedure outlined in App. A can be used to construct a set
of orthogonal polynomials satisfying (4.7). Starting by convention with φ0(x) = 1,
we write φ1(x) = c10 + c11x, choosing the coefficients so that φ0 and φ1 are or-
thogonal according to (4.7). Then we write φ2(x) = c20 + c21x + c22x2, choosing
the coefficients via the algorithm in App. A to make φ2 orthogonal to both φ1 and
φ0. Continuing in this way, we can in principle construct the infinite set; a detailed
example of this procedure can be found in Arfken and Weber (1995).

The Gram-Schmidt procedure tends to be numerically unstable because it re-
quires subtracting numbers of similar magnitude. A more practical way to compute
the polynomials is by means of recurrence relations. It can be shown (Walter,
1994) that it is always possible to write

xun(x) = Anun+1(x) +Bnun(x) +Cnun−1(x) , n = 1, 2, ... , (4.9)

where the coefficients depend on the interval (a, b) and the weighting function w(x).
One use of the recurrence relation is to prove the completeness of the set

of polynomials. Given a function f(x) in L2(a, b;w(x)) and assuming that the
polynomials are orthonormal, we can form the partial sum SN (x) given by

SN (x) =
N
∑

n=0

αnun(x) , αn =

∫ b

a
dx′ w(x′)un(x

′) f(x′) , (4.10)

where un(x) is φn(x) normalized as in (4.8), and we have omitted the complex
conjugate on the assumption that the polynomials are real. In the limit N → ∞,
SN (x) converges to f(x) in the sense that

lim
N→∞

‖SN(x)− f(x)‖w = 0 , (4.11)

so the functions {un(x)} (and hence also {φn(x)}) are complete in L2(a, b;w(x)).
We can also write SN (x) as an integral transform:

SN (x) =

∫ b

a
dx′ w(x′) f(x′)

N
∑

n=0

un(x)un(x
′) ≡

∫ b

a
dx′ w(x′) f(x′)KN (x, x′) .

(4.12)
Walter (1994) shows that the kernel KN is given by the Christoffel-Darboux for-
mula:

KN (x, x′) =
AN [uN+1(x)uN (x′)− uN (x) uN+1(x′)]

x− x′ . (4.13)
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This kernel is the analog of the Dirichlet kernel in Fourier theory [see Secs. 2.2.2
and 3.2.2].

The convergence of SN (x) can now be restated as

lim
N→∞

w(x′)KN (x, x′) = δ(x− x′) . (4.14)

The Dirac delta function allows the integral in (4.12) to be performed readily in the
limit, showing that SN (x) → f(x). Thus each distinct set of orthogonal polynomials
has associated with it a representation of the delta function.

4.1.3 Sturm-Liouville theory

A rich source of orthonormal function sets is the literature on Hermitian operators.
As discussed in detail in Chap. 1, the eigenfunctions of any Hermitian operator can
be chosen to form a complete, orthonormal basis in the relevant Hilbert space. In
this section we discuss orthonormal functions that arise as eigenfunctions of certain
Hermitian differential operators.

Many of the classical second-order partial differential equations encountered
in mathematical physics can be solved by the method of separation of variables
(Morse and Feshbach, 1953, p. 719). The resulting ordinary differential equations
involve differential operators called Sturm-Liouville operators. The general form
of a Sturm-Liouville operator L is (Arfken and Weber, 1995)

Lf(x) =
d

dx

[

p(x)
df(x)

dx

]

+ q(x)f(x) , (4.15)

where p(x) and q(x) are real, bounded functions that are characteristic of the orig-
inal partial differential equation and of the coordinates used for separation. If
p(x) (= 0 on an interval [a, b], the operator is said to be regular on that interval.
If p(x) = 0 or q(x) is singular on [a, b], or if the interval is infinite, the operator is
said to be singular. The points at which p(x) = 0 are called the singular points of
the operator, and the range [a, b] is often taken to extend from one singular point
to another.

It is a straightforward exercise in integration by parts to show that any operator
in the form (4.15) is Hermitian in L2(a, b) subject to certain boundary conditions.
That is,

(f1(x),Lf2(x)) =

∫ b

a
dx [f1(x)]

∗
Lf2(x)

= (Lf1(x), f2(x)) =

∫ b

a
dx [Lf1(x)]

∗ f2(x) . (4.16)

The boundary conditions are that the boundary terms produced by the integration
by parts must vanish, which will happen if f1 and f2 satisfy

[

f∗
1 p

df2
dx

]

x=a

=

[

f∗
1 p

df2
dx

]

x=b

(4.17a)

and
[

f∗
2 p

df1
dx

]

x=a

=

[

f∗
2 p

df1
dx

]

x=b

. (4.17b)
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These conditions are satisfied if either the functions or their derivatives vanish at
the end points.

The eigenvalue problem for a Sturm-Liouville operator is usually stated as

Lψn(x) + λnw(x)ψn(x) = 0 , (4.18)

where w(x) is real, continuous and positive for a < x < b. Though this equation
arises naturally in many physical problems (Morse and Feshbach, 1953, p. 719), it
has a rather different structure from our usual eigenvalue equation
Oun(x) = λnun(x). To get the standard form, we can define a new operator Lw by

Lwf(x) = −
1

w(x)
Lf(x) , (4.19)

so that
Lwψn(x) = λnψn(x) . (4.20)

This new operator Lw is Hermitian in the space L2(a, b;w(x)) (see Sec. 1.1.4) if the
original operator L is Hermitian in L2(a, b) since

∫ b

a
dx w(x)f∗

1 (x)Lwf2(x) = −
∫ b

a
dx f∗

1 (x)Lf2(x)

= −
∫ b

a
dx [Lf1(x)]

∗ f2(x) =

∫ b

a
dx w(x)[Lwf1(x)]

∗f2(x) . (4.21)

Thus we can work with either the original L, considered as an operator in L2(a, b),
or with the modified operator Lw in L2(a, b;w(x)).

With either viewpoint, the eigenfunctions form an orthogonal set with respect
to w(x):

∫ b

a
dx w(x)ψ∗

n(x)ψm(x) = hn δnm . (4.22)

The eigenfunctions are often but not always polynomials. They form a complete
set in the sense that any function in L2(a, b;w(x)) which satisfies the boundary
conditions of the eigenvalue problem can be expanded as

f(x) =
∑

n

cnψn(x) , cn =
1

hn

∫ b

a
dx w(x)ψ∗

n(x) f(x) . (4.23)

The particular choice of indexing is arbitrary, but n = 0 to ∞ is common.

Sturm-Liouville and Fourier Fourier analysis emerges as a special case of Sturm-
Liouville theory if we take p(x) = 1 and q(x) = 0, so that L = d2/dx2. For
(a, b) = (− 1

2L,
1
2L) and w(x) = 1, the eigenfunctions (for various boundary condi-

tions) are
ψn(x) = sin(2πnx/L) , ψn

(

± 1
2L

)

= 0 ; (4.24a)

ψn(x) = cos(2πnx/L) , ψ′
n

(

±1
2L

)

= 0 ; (4.24b)

ψn(x) = exp(2πinx/L) , ψn

(

1
2L

)

= ψn

(

−1
2L

)

. (4.24c)
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Green’s functions If zero is not an eigenvalue, a regular Sturm-Liouville operator
can be inverted by use of aGreen’s function (Walter, 1994). This function, denoted
G(x, x′), is the kernel of the integral operator that is the inverse of the differential
operator L. It satisfies

LG(x, x′) = δ(x− x′) . (4.25)

The Green’s function must also satisfy the relevant boundary conditions.
One use of a Green’s function is to solve the inhomogeneous differential equa-

tion,
Lf(x) = s(x) , (4.26)

subject to boundary conditions on f(x). For example, if f(x) is required to vanish
at x = ±1

2L, then the solution to (4.26) is given by

f(x) =

∫ 1

2
L

− 1

2
L
dx′ s(x′)G(x, x′) , (4.27)

provided G(± 1
2L,x

′) = 0. That (4.27) indeed solves (4.26) can be verified by
operating on both sides with L and differentiating under the integral sign.

An important practical application of Green’s functions is diffraction theory,
introduced in Chap. 9. Extension of the concept to higher dimensions and more
complicated boundary conditions will be discussed there.

4.1.4 Classical orthogonal polynomials and related functions

This section is a brief summary of some useful orthogonal polynomials and orthogo-
nal functions derived from them. Most of these functions arise from Sturm-Liouville
operators. For a tutorial discussion of these functions in the context of mathemati-
cal physics, the reader can consult Morse and Feshbach (1953) or Arfken and Weber
(1995). A detailed compendium of their properties can be found in Abramowitz and
Stegun (1965) or Magnus and Oberhettinger (1949).

Legendre polynomials The Legendre polynomials Pn(x) are perhaps the simplest
and best-known of the classical orthogonal polynomials. They are not normalized
but satisfy the orthogonality relation (4.7) with (a, b) = (−1, 1), w(x) = 1 and
hn = 2/(2n+1). For n even (odd), Pn(x) is a polynomial of order n with only even
(odd) terms. The first few Legendre polynomials are

P0(x) = 1 , P1(x) = x , P2(x) =
1
2 (3x

2 − 1) , P3(x) =
1
2 (5x

3 − 3x) .
(4.28)

On the boundaries of the orthogonality interval, the Legendre polynomials satisfy

Pn(1) = 1 , Pn(−1) = (−1)n . (4.29)

Legendre polynomials are particularly useful for expanding functions of the
cosine of an angle. Such functions arise frequently in physical applications when
scalar products between 3D vectors occur. If we let x = cos θ, then the interval
(−1, 1) for x corresponds to the interval (0,π) for θ. For any function f(θ) that
depends only on cos θ, f(2π − θ) = f(θ), so the full angular range (0, 2π) is not
needed, and the functions {Pn(cos θ), n = 0, ...,∞} form a complete set on (0,π).
The boundary conditions in (4.29) are also appropriate for functions of cos θ. All
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powers of cos θ are 1 at θ = 0 (or cos θ = 1), and the nth power of cos θ is (−1)n at
θ = π (or cos θ = −1).

One important function that can be expanded in Legendre polynomials is 1/R,
where R = |r − r′| is the distance between two 3D vectors r and r′. This function
fits the scheme of the paragraph above since

R = |r− r′| =
√

r2 + r′2 − 2rr′ cos θ , (4.30)

where θ is the angle between r and r′. The reciprocal of this distance, 1/R, plays an
important role in both electrostatics and optics. It is the potential of a point source,
and hence the Green’s function for the Poisson equation in electrostatics, and it is
one factor in the Green’s function for the Helmholtz equation or the time-dependent
wave equation in optics (see Chap. 9).

An expansion of 1/R can be obtained from the generating function for the
Legendre polynomials (Arfken and Weber, 1995), which is given by

g(u, x) = (1− 2xu+ u2)−
1

2 =
∞
∑

n=0

Pn(x)u
n . (4.31)

This function is called a generating function since Pn(x) can, in principle, be gen-
erated from

Pn(x) =
1

n!

[

∂ng(u, x)

∂un

]

u=0

. (4.32)

To get the expansion for 1/R, we let x = cos θ and u = r′/r in (4.31).

Associated Legendre functions Closely related to the Legendre polynomials are the
associated Legendre functions, defined by1

Pm
n (x) = (1− x2)m/2 dm

dxm
Pn(x) . (4.33)

Since Pn(x) is a polynomial of degree n, we must have m ≤ n. While it might
be expected that only nonnegative values of m are allowed, a series representation
of the Legendre polynomials permits −n ≤ m ≤ n (see Arfken and Weber, 1995,
p. 724). The Legendre polynomials themselves are a special case of Pm

n with m = 0.
The orthogonality relation for the associated Legendre functions is (Arfken and

Weber, 1995, p. 727)
∫ 1

−1
dx Pm

k (x)Pm
n (x) =

∫ π

0
Pm
k (cos θ)Pm

n (cos θ) sin θ dθ =
2

2k + 1
·
(k +m)!

(k −m)!
δkn .

(4.34)
The first few associated Legendre functions are

P 1
1 (x) =

(

1− x2
)

1

2 = sin θ , P 1
2 (x) = 3x

(

1− x2
)

1

2 = 3cos θ sin θ ,

P 2
2 (x) = 3

(

1− x2
)

= 3 sin2 θ , P 1
3 (x) =

3
2

(

5x2 − 1
)(

1− x2
)

1

2= 3
2 (5 cos

2 θ−1) sin θ ,

P 2
3 (x) = 15x

(

1− x2
)

= 15 cos θ sin2 θ . (4.35)

1The reader is cautioned that other normalizations for these functions can be found in the litera-
ture. Our convention follows that of Arfken and Weber (1995).
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Spherical harmonics The associated Legendre functions are used to construct the
spherical harmonics, familiar in virtually all branches of mathematical physics
(Morse and Feshbach, 1953; Arfken and Weber, 1995). The spherical harmonic
Y"m(θ,φ) is defined by

Y"m(θ,φ) = (−1)m

√

2*+ 1

4π

(*−m)!

(*+m)!
Pm
" (cos θ) exp(imφ) . (4.36)

These functions satisfy the orthogonality relation,

∫ 2π

0
dφ

∫ π

0
sin θ dθ Y ∗

"m(θ,φ)Y"′m′(θ,φ) = δmm′ δ""′ , (4.37)

and they form a complete set for expansions of square-integrable functions f(θ,φ)
in spherical polar coordinates.

An important property of spherical harmonics is the addition theorem (Arfken
and Weber, 1995). If we consider two unit vectors ŝ and ŝ′, with polar coordinates
(θ,φ) and (θ′,φ′), respectively, and denote the angle between ŝ and ŝ′ as θ0, then

P"(cos θ0) =
4π

2*+ 1

"
∑

m=−"

Y"m(θ,φ)Y ∗
"m(θ′,φ′) . (4.38)

This result will prove beneficial in Chap. 10, where we discuss scattering processes.

Zernike polynomials and circular harmonics The circle polynomials, now known as
Zernike polynomials, were introduced by Frits Zernike in a classic 1934 paper for
which he was to win the Nobel Prize in physics two decades later. The Zernike
polynomials Rj

k(r) are orthogonal on [0, 1] with respect to weight r and are there-
fore well suited to expressing the radial dependence of a 2D function f(r) in polar
coordinates.

When f(r) is expressed in Cartesian coordinates, we shall denote it as f (c)(x, y),
and in polar coordinates we shall call it f (p)(r, θ). Since f (p)(r, θ) is periodic in θ
with period 2π, it can be expanded in an angular Fourier series of the form

f (p)(r, θ) =
∞
∑

j=−∞

fj(r) exp(ijθ) , (4.39)

where the coefficients, which are still functions of r, are given by

fj(r) =
1

2π

∫ 2π

0
dθ f (p)(r, θ) exp(−ijθ) . (4.40)

To obtain a complete expansion of f (p)(r, θ) in orthogonal functions, we must find
an appropriate expansion of fj(r). In order to do so, the range of the variable r must
be specified. We can assume, without loss of generality, that the maximum value
of r is unity; if it is any other finite value R, we merely introduce the normalized
radius r/R.

Of course, any set of orthogonal polynomials on [0, 1] could be used as a basis
for fj(r), but such an expansion might contain terms that cannot arise physically
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and must therefore have zero coefficients. To discover what terms are allowed, we
consider an expansion of f (c)(x, y) in a power series:

f (c)(x, y) =
∞
∑

n=0

∞
∑

m=0

Anmxnym . (4.41)

Since x = r cos θ and y = r sin θ, we can also write f(r) in polar coordinates as

f (p)(r, θ) = f (c)(r cos θ, r sin θ) =
∞
∑

n=0

∞
∑

m=0

Anmrn+m [cos θ]n [sin θ]m

=
∞
∑

n=0

∞
∑

m=0

Anmrn+m

[

exp(iθ) + exp(−iθ)

2

]n [exp(iθ)− exp(−iθ)

2i

]m

. (4.42)

The radial Fourier coefficients are thus given by

fj(r) =
1

2π

∞
∑

n=0

∞
∑

m=0

Anmrn+m

∫ 2π

0
dθ

[

exp(iθ) + exp(−iθ)

2

]n

×
[

exp(iθ)− exp(−iθ)

2i

]m

exp(−ijθ) . (4.43)

With the binomial theorem and a little algebra, we find that

1

2π

∫ 2π

0
dθ

[

exp(iθ) + exp(−iθ)

2

]n [exp(iθ)− exp(−iθ)

2i

]m

exp(−ijθ)

=
1

2n
1

(2i)m

n
∑

p=0

m
∑

q=0

(

n

p

)(

m

q

)

(−1)q
1

2π

∫ 2π

0
dθ exp[−2i(p+ q)θ + i(n+m)θ − ijθ] .

(4.44)
Because of the orthogonality of the complex exponentials [see (3.7)], the last integral
is unity if

j = 2(p+ q)− (n+m) , 0 ≤ p+ q ≤ n+m, (4.45)

and zero otherwise. This condition restricts the values of j that can be associated
with any particular power of r. If k = n+m, we must have

j = −k,−k + 2, ..., k . (4.46)

Thus we must have |j| ≤ k (where k is the power of r), and j must vary in steps of 2.
Stated differently, a polynomial of degree k in r can only have terms rj, r|j|+2, ..., rk

if it is to be used in expanding fj(r).
If we look for polynomials of this form and require them to be orthogonal on

[0, 1] with respect to weight r, we are led to the Zernike polynomials, given by (Born
and Wolf, 1965)

R j
k(r) =

1

2
(k−|j|)
∑

s=0

(−1)s(k − s)!

s!
[

k−|j|
2 − s

]

!
[

k+|j|
2 − s

]

!
rk−2s , (4.47)



184 SERIES EXPANSIONS AND INTEGRAL TRANSFORMS

where j and k must satisfy (4.46). The orthogonality condition for the Zernike
polynomials is

∫ 1

0
r dr R j

k(r)R
j
k′(r) =

1

2(k + 1)
δkk′ . (4.48)

The functions
√

2(k + 1)R j
k(r) exp(ijθ) thus form a convenient orthonormal set on

the unit disk.
For a detailed treatment of Zernike polynomials, see Born and Wolf (1965),

and for a practical discussion of their use in aberration theory, see Mahajan (1981).

Hermite polynomials Hermite polynomials, denoted Hn(x), can be defined as

Hn(x) = (−1)n exp(x2)

(

d

dx

)n

exp(−x2) . (4.49)

The first few Hermite polynomials are:

H0(x) = 1 , H1(x) = 2x , H2(x) = 4x2−2 , H3(x) = 8x3−12x . (4.50)

The Hermite polynomials are orthogonal on (−∞,∞) with respect to a Gaussian
weighting function (Arfken and Weber, 1995, p. 768):

∫ ∞

−∞
dx Hn(x)Hm(x) exp(−x2) = 2nn!

√
π δmn . (4.51)

The generating function for the Hermite polynomials is (Poularikas, 1996)

exp(2tx− t2) =
∞
∑

n=0

Hn(x)

n!
tn . (4.52)

The Hermite polynomial Hk(x) can be obtained from this expression by differenti-
ating k times with respect to t and then setting t = 0.

Hermite-Gauss functions Instead of considering the Gaussian in (4.51) as a weight
in the scalar product, we can lump it into the definition of the orthogonal functions.
Thus we can consider a set of functions {HGn(x)} orthonormal on (−∞,∞) with
respect to unit weight and defined by

HGn(x) =
[

2nn!
√
π
]− 1

2 Hn(x) exp
(

− 1
2x

2
)

. (4.53)

These functions, known as Hermite-Gauss functions, arise in a variety of physical
applications. In quantum mechanics, they are the wavefunctions for the simple
harmonic oscillator. In optics they occur in beam-like solutions of the Helmholtz
equation and as eigenmodes of laser resonators.

An important property of the Hermite-Gauss functions is that they form a
complete orthonormal basis for L2(R;w(x) = 1) (or simply L2(R) for short). A
formal proof of this statement is given by Titchmarsh (1948), but it also follows
from the observation that the functions are eigenfunctions of a Hermitian operator,
namely the Schrödinger operator for the simple harmonic oscillator.

Because of the completeness of the Hermite-Gauss functions in L2(R), any
function in that space can be expressed with vanishing L2 error as

f(x) =
∞
∑

n=0

αn

[

2nn!
√
π
]− 1

2 Hn(x) exp
(

−1
2x

2
)

, (4.54)
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and the coefficients {αn} can be found by using (4.51).
The discrete expansion in (4.54) may be somewhat surprising. We are more

used to expanding functions on (−∞,∞) in Fourier basis functions {exp(2πiξx)},
which can be regarded as a basis set with a continuous index ξ, but (4.54) shows
we can also use a set with a discrete index n. The possibility of using a discrete
(denumerably infinite) basis follows from the fact that L2(−∞,∞) is a separable
Hilbert space (see Sec. 1.1.5).

The Hermite-Gauss functions are also naturally associated with tempered dis-
tributions and Schwartz space (Walter, 1994). A polynomial times a Gaussian is,
virtually by definition, a good function or open-support test function (see Sec.
2.1.2). Schwartz space is the space of good functions, and tempered distributions
are linear functionals on this space.

One interesting property of Hermite-Gauss functions, occasionally exploited in
imaging applications, is that they are their own Fourier transforms. Explicitly,

∫ ∞

−∞
dx exp

(

−1
2x

2
)

Hn(x) exp(ixy) = in
√
2π exp

(

− 1
2y

2
)

Hn(y) , (4.55)

from which a change of variables shows that

F1

{

HGn

(√
2πx

)}

= (−i)nHGn

(√
2πξ

)

. (4.56)

Thus the Hermite-Gauss functions are eigenfunctions of the Fourier operator.

Laguerre polynomials The Laguerre polynomials, orthogonal on (0,∞) with respect
to the weight exp(−x), are familiar in the quantum mechancs of the hydrogen atom.
They are defined by (Arfken and Weber, 1995)

Ln(x) =
n
∑

m=0

(−1)m
(

n

m

)

xm

m!
, (4.57)

and the orthogonality relation is

∫ ∞

0
dx e−xLn(x)Lm(x) = δnm . (4.58)

Imaging uses of Laguerre polynomials are rare, but a few authors (e.g., Seger,
1993) have exploited the fact that Laguerre polynomials can be used to construct
eigenfunctions of the zeroth-order Hankel transform. From Sec. 3.4.4 we know that
this Hankel transform is the same as the 2D Fourier transform for rotationally
symmetric functions. A tabulated integral (Gradshteyn and Ryzhik, 1980, formula
7.421.1) shows that

∫ ∞

0
r dr exp(−πr2)Ln(2πr

2) J0(2πrρ) =
(−1)n

2π
exp(−ρ2/4π)Ln(ρ

2/2π) . (4.59)

The similarity to (4.55) and (4.56) should be noted. Just as Hermite-Gauss functions
are eigenfunctions of the 1D Fourier operator, so too are Laguerre-Gauss functions
eigenfunctions of the 2D rotationally symmetric Fourier operator.
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Chebyshev polynomials There are two kinds of Chebyshev polynomials, both or-
thogonal on (−1, 1) but with different weights. Chebyshev polynomials of the first
kind, denoted Tn(x), satisfy the orthogonality relation

∫ 1

−1
dx (1 − x2)−

1

2 Tn(x)Tm(x) =
π

2
δmn(1 + δm0) . (4.60)

The right-hand side is π/2 if m = n (= 0 and π if m = n = 0.
Chebyshev polynomials of the second kind, denoted Un(x), satisfy

∫ 1

−1
dx (1 − x2)

1

2Un(x)Um(x) =
π

2
δmn . (4.61)

These functions occur most commonly when x is the cosine of some angle, say
x = cos θ. Then we have

Tn(cos θ) = cosnθ = cos(n cos−1 x) , |x| ≤ 1 , (4.62)

Un(cos θ) =
sin(n+ 1)θ

sin θ
. (4.63)

As we shall see in Chap. 17, Chebyshev polynomials play a prominent role in
the analysis of tomographic imaging systems; for a review, see Barrett (1984).

4.1.5 Prolate spheroidal wavefunctions

Walter (1994) refers to prolate spheroidal wavefunctions ψn(x) as a lucky accident
since they are eigenfunctions of both an integral operator and a Sturm-Liouville
differential operator. The Sturm-Liouville operator arises when the wave equation
is separated in prolate spheroidal coordinates, hence the name of the functions. In
imaging applications, however, the integral operator is more important.

The integral operator in question corresponds to first truncating a function, so
that it is spatially limited, and then passing it through an ideal low-pass filter. The
prolate spheroidal wavefunction is the eigenfunction of this operator (Marks, 1991;
Percival and Walden, 1993):

B

∫ 1

2
L

− 1

2
L
dx′ ψ(x′) sinc[B(x− x′)] = λnψn(x) . (4.64)

In abstract operator form, we can rewrite (4.64) as

BBSLψn(x) = λnψn(x) , (4.65)

where SL is the space-limiting operator [multiplication by rect(x/L)] and BB is the
band-limiting operator (convolution with B sinc(Bx) or equivalently, multiplication
by rect(ξ/B) in the frequency domain).

The eigenfunctions depend on the parameters L and B and the eigenvalues de-
pend only on the product LB, but we shall not indicate these dependences explicitly.
The first few eigenfunctions are plotted in Fig. 4.1, and the eigenvalue spectrum is
shown in Fig. 4.2. The key point to note from Fig. 4.2 is the precipitous rolloff near
n = LB of the plot of λn vs. n.
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Fig. 4.1 The first few prolate spheroidal wavefunctions.

Because of the lucky accident, prolate spheroidal wavefunctions satisfy two
separate orthogonality conditions. They are orthonormal on (−∞,∞),

∫ ∞

−∞
dx ψn(x)ψm(x) = δnm , (4.66)

and they are orthogonal but not normalized on the finite interval (− 1
2L,

1
2L),

∫ 1

2
L

− 1

2
L
dx ψn(x)ψm(x) = λn δnm . (4.67)

Since the prolates are eigenfunctions of a Hermitian operator on L2(− 1
2L,

1
2L), they

are complete on that space. On the infinite interval, however, they are orthonormal
but not complete; by (4.65) they are bandlimited so they cannot be used to rep-
resent an arbitrary function in L2(−∞,∞). The best we can say is that they are
complete in the space of bandlimited, square-integrable functions on the real line
(Paley-Wiener space).

Fig. 4.2 The eigenvalue spectrum λn for the integral operator with eigenfunc-
tions given by prolate spheroidal wavefunctions. Figure adapted from Marks
(1991).

These properties give the prolates great utility in a variety of bandwidth-
extrapolation and superresolution problems [see, e.g., Mammone, (1987)].
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Finite Fourier transform Another way of understanding prolate spheroidal wave-
functions is through the finite Fourier transform, performed by multiplying a func-
tion by a rect function before doing an ordinary Fourier transform. Under this
operation, prolates satisfy (Slepian and Pollak, 1961; Marks, 1991):

F
{

ψn(x) rect(x/L)
}

=

√

Lλn
B

ψn

(

ξL

B

)

, (4.68)

where both λn and ψn depend on the parameter LB. Note that this is not exactly
an eigenvalue equation because of the scale factor in the argument on the right.
If we use dimensionless variables and set L/B = 1, we can say that prolates are
eigenfunctions of the finite Fourier transform.

The dual relation to (4.68) is

F
{

ψn(x)
}

=

√

L

Bλn
ψn

(

ξL

B

)

rect(ξ/B) . (4.69)

From (4.68) and (4.69), it is straightforward to derive (4.64), so (4.68) can be
regarded as the defining property of prolates.

Degrees of freedom One use of prolate spheroidal wavefunctions is in enumerating
the degrees of freedom of a bandlimited and approximately spacelimited function.
Consider a function f0(x) that is obtained by starting with an arbitrary square-
integrable function f(x) and applying the operator BBSL :

f0(x) ≡ BBSLf(x) = B

∫ 1

2
L

− 1

2
L
dx′ f(x′) sinc[B(x− x′)] . (4.70)

Since BB is applied last, f0(x) is exactly bandlimited, but if LB is large the function
is also approximately spacelimited.

Since f(x) is in L2(−∞,∞), SLf(x) is in L2(− 1
2L,

1
2L) and can be expressed

as

SLf(x) =
∞
∑

n=0

αnψn(x) rect(x/L) . (4.71)

The operator SL is idempotent, so we can write

f0(x) = BBSLf(x) = BBSL

∞
∑

n=0

αnψn(x) =
∞
∑

n=0

αnBBSLψn(x) =
∞
∑

n=0

αnλnψn(x) .

(4.72)
From Fig. 4.2, however, we see that λn + 0 for n > LB (provided LB > 1), so only
about LB terms are required to represent f0(x) in the expansion (4.72).2

We recognize LB as the space-bandwidth product, introduced in Sec. 3.5.2
as a way of estimating the number of degrees of freedom of a signal. Here the
same quantity appears as the number of parameters needed to represent a function
f0(x) resulting from the operator in (4.67), placing the concept of space-bandwidth
product on a firm theoretical footing. For an excellent review of this topic, see
Slepian (1976).

2It is possible to construct pathological functions for which αn grows rapidly in the vicinity of
n = LB, and then this argument does not hold.
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4.2 CLASSICAL INTEGRAL TRANSFORMS

The Fourier transform is treated in detail in Chap. 3. Here we survey a few other
integral transforms with applications in imaging. For simplicity, only 1D versions of
the transforms are discussed, but all are readily extended to two or more dimensions
in Cartesian coordinates.

Good general treatments of these transforms are given by Bracewell (1965),
Jerri (1992) and Poularikas (1996). Extensive tables of transforms are given by
Erdélyi (1954), Abramowitz and Stegun (1965), and Oberhettinger (1972, 1973,
1974).

4.2.1 Laplace transform

The Laplace transform is defined as

FL(s) =

∫ ∞

0
dt f(t) exp(−st) . (4.73)

We have written the variable of integration as t and taken the range of integration
as (0,∞) since the Laplace transform is most commonly used for functions of time,
and we are often interested only in t > 0. For example, if we are dealing with a
transient signal that is excited at t = 0, then we know that there is no signal before
the excitation. Similarly, a linear shift-invariant temporal filter is described by its
impulse response h(t), which must vanish if t < 0. This mathematical condition
simply says that there can be no output from the filter before an input is applied,
or that cause must precede effect. Temporal functions that vanish for t < 0 are
called causal or one-sided.

We shall denote the Laplace operator by La. Thus we write

FL(s) = La {f(t)} . (4.74)

If we restrict attention to causal functions, so that f(t) = 0 for t < 0, then the
Laplace transform is formally the same thing as the Fourier transform with the
temporal frequency being s/2πi. That is,

FL(s) =

[
∫ ∞

0
dt f(t) exp(−2πiνt)

]

ν=s/2πi

= F (s/2πi) , (4.75)

where F (ν) is the 1D Fourier transform of f(t). If we do not restrict the function to
be causal, then the Laplace transform of f(t) is the same as the Fourier transform
of f(t) step(t) with ν = s/2πi, or

FL(s) = [F1{f(t) step(t)}]ν=s/2πi . (4.76)

Alternatively, for noncausal functions we can also define a two-sided Laplace
transform FL2(s) and the associated operator La2 via

FL2(s) = La2{f(t)} =

∫ ∞

−∞
dt f(t) exp(−st) , (4.77)

which is identically F (s/2πi) without any further restrictions. Unless the specifi-
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cation two-sided is given explicitly, the term Laplace transform will refer to the
one-sided expression given in (4.73).

One practical difference between Fourier and Laplace transforms is that the
Fourier variable ν is usually taken to be real (though we saw in Sec. 3.3.9 that
complex frequencies can be useful). The Laplace variable s, on the other hand, is
usually regarded as complex. The transform FL(s) is defined for any complex s
for which the integral in (4.73) converges. The one-sided nature of the integral is
helpful in this respect since the factor e−st decays rapidly for all positive t if s has
a positive real part. Even if f(t) diverges exponentially, say as exp(αt) with α real,
then the Laplace transform will still exist whenever Re(s) > α. The point s = α in
the complex s-plane is a singularity of FL(s) in this case.

Inverse Laplace transform By analogy to the Fourier transform, the inverse Laplace
transform involves an integral over s. Since s is complex, we must specify a contour
for this integral. The usual choice is the Bromwich contour shown in Fig. 4.3.
With this contour, the inverse Laplace transform is (Titchmarsh, 1948)

1

2πi

∫ c+i∞

c−i∞
ds FL(s) e

st =

{

f(t) if t > 0
0 if t < 0

, (4.78)

where c is a real constant chosen so that the contour is to the right of all singularities
of FL(s) in the complex s-plane. The integral vanishes for t < 0 since the integrand
in (4.78) is analytic within and on the closed contour shown in Fig. 4.3. For t > 0,
the validity of (4.78) can be shown by use of (4.73), (2.46) and (2.25).

Fig. 4.3 The Bromwich contour used in the inverse Laplace transform. This
contour in the complex s-plane lies to the right of all singularities of FL(s)
and extends vertically from c − iR to c+ iR, with R → ∞.

The inversion formula (4.78) is still valid if FL(s) is replaced by the two-sided
transform of (4.75), without the causality restriction, but in that case the integral
on the left agrees with f(t) only for t > 0. Thus the inverse Laplace transform can
be regarded as a representation of a one-sided function for all t or of an arbitrary
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function for t > 0. In this sense it is analogous to the Fourier series or Fourier
cosine transform. We saw in Chap. 3 that a Fourier series is a representation of
an arbitrary function on a finite interval or of a periodic function for all space.
Similarly, a Fourier cosine transform is a representation of an arbitrary function for
positive x or of an even function for all x. No matter what function was used to find
the original transform, the inverse transform is a representation of a function with
a certain symmetry property: one-sidedness for the Laplace transform, periodicity
for the Fourier series, and evenness for the Fourier cosine transform.

Filters and Laplace convolution The Laplace transform is very important for solving
equations of motion—differential equations for the time evolution of a linear system
subject to boundary conditions. Electrical filters and other causal linear systems
fit this description. For spatial functions, the one-sided integral of (4.73) does not
usually arise naturally, and we may as well use Fourier transforms. One exception to
this statement occurs with exponentially attenuated beams of radiation, for which
the Laplace transform is frequently useful.

An important tool in many of these applications is the Laplace convolution
theorem. The Laplace convolution of two functions f(t) and p(t) is defined by

[p ∗L f ] (t) =

∫ t

0
dt′ p(t′) f(t− t′) , (4.79)

which is the same as the ordinary convolution if p(t) and f(t) are both causal.
Just as Fourier transformation converts convolution to multiplication, so too

does Laplace transformation convert Laplace convolution to multiplication (Carrier
et al., 1966). That is,

La{p ∗L f}=
∫ ∞

0
dt exp(−st)

∫ t

0
dt′ p(t′) f(t− t′)=

∫ ∞

0
dt′

∫ ∞

t′
dt exp(−st) p(t′) f(t− t′)

=

∫ ∞

0
dt′ exp(−st′) p(t′)

∫ ∞

t′
dt exp [−s(t− t′)] f(t− t′) = PL(s)FL(s) . (4.80)

Conversely, the inverse Laplace transform of the product PL(s)FL(s) is the Laplace
convolution (4.79).

4.2.2 Mellin transform

The Mellin transform can be derived from the two-sided Laplace transform by
making a change of variables (Bracewell, 1965). If we let x = exp(−t) in (4.77), we
obtain

FL2(s) =

∫ ∞

0
dx f(− lnx)xs−1 . (4.81)

The integral on the right is the Mellin transform of the logarithmically distorted
function f(− lnx). Letting k(x) = f(− lnx), we can write

KM (s) =

∫ ∞

0
dx k(x)xs−1 = M{k(x)} = La2

{

f(t)
}

, (4.82)

where KM (s) denotes the Mellin transform of k(x) and M is the Mellin operator.
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Expressions like (4.82) were used by Riemann in the context of number theory, but
the first rigorous treatment was due to Mellin (Titchmarsh, 1948).

A similar change of variables in the inverse Laplace transform shows that the
inverse Mellin transform is given by (Bracewell, 1965; Carrier et al., 1966)

k(x) = M
−1{KM (s)} =

1

2πi

∫ c+i∞

c−i∞
ds KM (s)x−s . (4.83)

One interpretation of the Mellin transform is in terms of moments of the func-
tion being transformed. If s is real and k(x) = 0 for x < 0, then KM (s) is the
(s− 1)th moment of k(x).

Mellin and magnification The Mellin transform finds its main imaging application
in dealing with magnification. If k(x) represents an image, then k(αx) represents
an image magnified by 1/α. It follows readily from (4.82) that

M{k(αx)} =

∫ ∞

0
dx k(αx)xs−1 = α−sKM (s) = exp(−s lnα)KM (s) . (4.84)

Hence the magnification has the effect of multiplying the Mellin transform by
exp(−s lnα), which has unit modulus if s is pure imaginary. Thus |M{k(αx)}|
is invariant to magnification. This property is analogous to the shifting property of
Fourier transforms: If a function f(x) is shifted by α, its Fourier transform F (ξ) is
multiplied by exp(2πiαξ), which has unit modulus if ξ is real, and |F (ξ)| is invariant
to shift. For this reason, Fourier transforms are important in the analysis of shift-
invariant systems, while Mellin transforms are used for magnification-invariant or
scale-invariant systems. Applications include modeling of the visual cortex of pri-
mates (Kaas, 1978; Cavanaugh, 1978), which evidently functions in a scale-invariant
manner, and scale-invariant pattern recognition (Casasent and Psaltis, 1976).

Mellin convolution The Mellin convolution is defined by

[p ∗M f ] (x) =

∫ ∞

0

dx′

x′ p
( x

x′

)

f(x′) . (4.85)

This expression is similar to the usual convolution expression (3.114); one key dif-
ference, however, is that x/x′ appears rather than x−x′. From the discussion above
of Mellin and magnification, we might expect that a Mellin transform would be a
useful thing to apply to (4.85). In fact, it gives

M{p ∗M f}=
∫ ∞

0
dx xs−1

∫ ∞

0

dx′

x′ p
( x

x′

)

f(x′) =

∫ ∞

0

dx′

x′ f(x′)

∫ ∞

0
dx xs−1p

( x

x′

)

=

∫ ∞

0
dx′ x′s−1f(x′)

∫ ∞

0
du us−1p(u)=FM (s)PM (s) , (4.86)

where u = x/x′. Thus Mellin transformation converts Mellin convolution to multi-
plication. A related result is

M

{
∫ ∞

0
dx f(x) p(αx)

}

=

∫ ∞

0
dα αs−1

∫ ∞

0
dx f(x) p(αx) = FM (1− s)PM (s) .

(4.87)
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4.2.3 z transform

The z transform is used in discrete problems where a function f(t) is known only at
a discrete set of sample points {tn = n∆t, n = 0, 1, 2, ...}. Letting fn = f(n∆t), we
can define the z transform of the sequence f0, f1, ..., by constructing a polynomial in
z−1, where z is a complex number, with fn as the weight of the nth term. Explicitly,

Fz(z) = Z{fn} =
∞
∑

n=0

fnz
−n , (4.88)

where Z is the z-transform operator, which maps a sequence of numbers to a func-
tion of a complex variable.

Another way to view the z transform is that it is the Laplace transform of
a function φ(t) constructed from the sample values of f(t) and delta functions
(Bracewell, 1965), i.e.,

φ(t) =
∞
∑

n=0

fn δ(t− tn) . (4.89)

The Laplace transform of φ(t), denoted ΦL(s), is given by3

ΦL(s) =
∞
∑

n=0

fn exp(−sn∆t) =
∞
∑

n=0

fn[exp(−s∆t)]n . (4.90)

This expression agrees with (4.88) if we let

z = exp(s∆t) . (4.91)

Since both s and z are arbitrary complex numbers, this substitution entails no loss
of generality.

The main utility of the z transform is in analyzing problems involving discrete
convolutions. Given two sequences {fn} and {pn}, n = 0, 1, 2, ..., their discrete
convolution is defined by analogy to (4.79) as

(p ∗ f)n =
n
∑

m=0

pmfn−m . (4.92)

The z transform yields

Z{p ∗ f} =
∞
∑

n=0

z−n
n
∑

m=0

pmfn−m =
∞
∑

m=0

∞
∑

n=m

z−mpmz−(n−m)fn−m = Pz(z)Fz(z) .

(4.93)
Once again, a particular kind of convolution has been converted to a simple product
by the appropriate transform.

3Strictly speaking, the Laplace transform used here has to be two-sided. Even though φ(t) = 0
for t < 0, the impulse exactly at t = 0 has to be included.
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4.2.4 Hilbert transform

The Hilbert transform of a function f(x) is defined by

FHi(x) = [Hi{f}](x) = −
1

π
P
∫ ∞

−∞
dx′ f(x′)

x− x′ , (4.94)

where P denotes the Cauchy principal value, discussed in App. B. The Hilbert
transform of f(x) can be regarded as the convolution of f(x) with the generalized
function −π−1P{1/x}, which was discussed in Secs. 2.1.1 and 3.3.7.

The inverse of the Hilbert transform can be found by use of the convolution
theorem (3.132) and the expression (3.167) for F{P[1/x]}. These results allow us
to write

F{FHi(x)} = iF (ξ) sgn(ξ) , (4.95)

where the sgn function is defined in (2.75) and F (ξ) is the usual Fourier transform
of f(x). Thus Hilbert transformation corresponds to multiplication by i sgn ξ in the
frequency domain, and inverse Hilbert transformation is simply multiplication by
−i sgn ξ. Use of the convolution theorem in reverse then shows that

f(x) = [Hi−1{FHi}](x) =
1

π
P
∫ ∞

−∞
dx′ FHi(x′)

x− x′ . (4.96)

Causality and the Kramers-Kronig relations The Hilbert transform plays an impor-
tant role in the analysis of temporal filters and other causal linear systems. As noted
above in Sec. 4.2.1, the temporal impulse response h(t) of a linear, shift-invariant
filter must vanish if t < 0. As we shall now show, this condition imposes a strong
requirement on the Fourier transform of h(t), which is the transfer function of the
filter.

We can write the causality condition as

h(t) = 0 if t < 0 , (4.97)

but an equivalent statement is

h(t) = h(t) sgn(t) . (4.98)

For t > 0, sgn(t) = 1 and (4.98) reads h(t) = h(t). For t < 0, (4.98) requires that
h(t) = −h(t), which can be satisfied only if h(t) = 0.

Taking the Fourier transform of both sides of (4.98), we obtain

H(ν) ∗
(

−
i

π

)

P
(

1

ν

)

= H(ν) . (4.99)

Since H(ν) is a complex function, this equation, like any equation involving complex
variables, is really two equations: one for the real part and one for the imaginary
part. If we split H(ν) into real and imaginary parts as

H(ν) = Hr(ν) + iHi(ν) , (4.100)

then (4.99) is equivalent to

Hr(ν) =
1

π

∫ ∞

−∞
dν ′

Hi(ν′)

ν − ν ′
= −Hi{Hi(ν)} ; (4.101a)
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Hi(ν) = −
1

π

∫ ∞

−∞
dν ′

Hr(ν′)

ν − ν′
= Hi{Hr(ν)} . (4.101b)

These equations, known as the Kramers-Kronig relations, show that the real and
imaginary parts of the transfer function of a causal linear system are a Hilbert-
transform pair. Imaging systems, however, do not usually have this nice mathemat-
ical property.

Analytic signals In practical applications we often deal with real-valued functions
of time that oscillate at a single frequency ω. It is convenient to represent such
functions as the real part of a complex exponential:

f(t) = A cos(ωt+ φ) = Re{A exp(iωt+ iφ)} . (4.102)

But we may also be interested in amplitude-modulated waves where A is a function
of time or phase-modulated waves where φ is a function of time. We consider,
therefore, the more general real-valued function,

f(t) = A(t) cos[ωt+ φ(t)] . (4.103)

We may still want to express f(t) as the real part of some complex function fc(t).
Trivially, we can write

fc(t) = f(t)− ig(t) , (4.104)

where g(t) is an arbitrary real function. No matter what we choose for g(t), we still
have f(t) = Re{fc(t)} since −ig(t) is pure imaginary.

One way to fix g(t) is to require that fc(t) be an analytic function when t is
replaced by a complex variable z = t + iτ . Since the real and imaginary parts of
an analytic function must be related by the Cauchy-Riemann equations (see App.
B), this condition removes the arbitrariness of the imaginary part g(z). It will be
left as an exercise for the reader to show that the Cauchy-Riemann equations are
satisfied if we take g(z) to be the Hilbert transform of f(z). Then the analytic
signal associated with the real function f(t) is defined as

fa(t) = f(t)− iHi{f(t)} . (4.105)

From (4.95), the Fourier transform of the analytic signal, denoted Fa(ν), is given
by

Fa(ν) = F (ν) [1 + sgn(ν)] =

{

2F (ν) if ν > 0
0 if ν < 0

, (4.106)

and therefore fa(t) itself is given by

fa(t) = 2

∫ ∞

0
dν F (ν) exp(2πiνt) . (4.107)

An operational way to get the analytic signal is thus to take the Fourier transform
of the original real signal, set negative-frequency components to zero, multiply the
positive-frequency components by two, and inverse transform.

As an example, consider the single-frequency signal f(t) = cos(2πν0t). Since
F (ν) = 1

2 δ(ν − ν0) +
1
2 δ(ν + ν0) for this signal, we find that Fa(ν) = δ(ν − ν0).

Thus the analytic signal in this case is the expected exp(2πiν0t). The same result
follows from the observation that Hi{cos(2πν0t)} = − sin(2πν0t).
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4.2.5 Higher-order Hankel transforms

We encountered the zeroth-order Hankel transform in Sec. 3.4.4, where we saw that
it was also the 2D Fourier transform for rotationally symmetric functions. Higher-
order Hankel transforms are also important in some imaging applications. The
nth-order Hankel transform of a 1D function f(x) is defined by

FHn(ρ) = Hn{f(x)} = 2π

∫ ∞

0
xdx Jn(2πρx) f(x) , (4.108)

where Jn(·) in the nth-order Bessel function of the first kind. The inverse transform
is

f(x) = H
−1
n {FHn(ρ)} = 2π

∫ ∞

0
ρ dρ Jn(2πρx)FHn(ρ) . (4.109)

Thus, for any order, the Hankel transform is its own inverse.
To see how higher-order Hankel transforms can arise in 2D imaging problems,

consider the Fourier transform of f (p)(r, θ) as given by (4.39). The derivation of
this transform in polar coordinates parallels the derivation of (3.248). From (3.246)
and (4.39), we find

F2

{

f (p)(r, θ)
}

=
∞
∑

n=−∞

∫ ∞

0
r dr fn(r)

∫ 2π

0
dθ exp[−2πiρr cos(θ − θρ)] exp(inθ) .

(4.110)
From (3.247) and a bit of algebra, the θ-integral is given by

∫ 2π

0
dθ exp[−2πiρr cos(θ − θρ)] exp(inθ) = 2πinJn(2πρr) exp(inθρ) . (4.111)

Thus

F2

{

f (p)(r, θ)
}

=
∞
∑

n=−∞
inFHn(ρ) exp(inθρ) =

∞
∑

n=−∞
inHn{fn(r)} exp(inθρ) .

(4.112)
This expansion has the form of an angular Fourier series, but with the angular

variable θρ itself being a variable in Fourier space. The Fourier coefficient associated
with this variable, is in times the nth-order Hankel transform of the original radial
Fourier coefficient fn(r). In other words, if we represent both a 2D function and its
2D Fourier transform by angular Fourier series, then the two sets of coefficients are
related by Hankel transforms of appropriate order.

4.3 FRESNEL INTEGRALS AND TRANSFORMS

In Sec. 3.3.7 we introduced the quadratic phase factor exp(iπβx2) as a Gaussian
function with a complex argument. Another name for a quadratic phase factor is
chirp; the reason for this designation will be seen in the next chapter. In Chap. 9
we shall encounter the same function in Fresnel diffraction theory, where it is an
approximate description of a spherical wave. Here we explore two topics related to
chirps: special functions called Fresnel integrals and an integral transform called
the Fresnel transform.



FRESNEL INTEGRALS AND TRANSFORMS 197

4.3.1 Fresnel integrals

The complex Fresnel integral Z(x) is defined as the integral of a chirp:

Z(x) =

∫ x

0
dt exp

(

i
π

2
t2
)

. (4.113)

Related functions, also called Fresnel integrals, are defined by

C(x) =

∫ x

0
dt cos

(π

2
t2
)

, (4.114a)

S(x) =

∫ x

0
dt sin

(π

2
t2
)

. (4.114b)

If x is real, C(x) and S(x) are, respectively, the real and imaginary parts of
Z(x). These functions are plotted vs. x in Fig. 4.4, and C(x) is plotted vs.
S(x) in Fig. 4.5, a plot known as a Cornu spiral. Note that C(0) = S(0) = 0,
and C(±∞) = S(±∞) = ± 1

2 . Perhaps surprisingly, both C(x) and S(x) are odd
functions.

Fig. 4.4 Plots of the Fresnel integrals C(x) and S(x).

Fig. 4.5 The Cornu spiral, a plot of C(x) vs. S(x).
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Fourier transform of a chirp segment As an illustration of the use of Fresnel integrals,
we now compute the Fourier transform of a finite segment of a chirp:

f(x) =

{

exp(iπβx2) if L1 < x < L2

0 otherwise
. (4.115)

The Fourier transform of this function is given by

F (ξ) =

∫ L2

L1

dx exp(iπβx2 − 2πiξx) . (4.116)

To evaluate this integral, we complete the square by requiring

πβx2 − 2πξx =
π

2
[(t− t0)

2 − t20] , (4.117)

which is achieved if
t =

√

2β x , t0 =
√

2/β ξ . (4.118)

With these substitutions,

F (ξ) =
1√
2β

exp
[

−i
π

2
t20

]

∫

√
2βL2

√
2βL1

dt exp
[

i
π

2
(t− t0)

2
]

. (4.119)

From the definition of the complex Fresnel integral, we find

F (ξ) =
1√
2β

exp(−iπξ2/β)
[

Z
(

√

2βL2 −
√

2/βξ
)

− Z
(

√

2βL1 −
√

2/βξ
)]

.

(4.120)
If we let L1 → −∞ and L2 → ∞, then, since Z(±∞) = ± 1

2 (1 + i) = ±
√

i/2,

F (ξ) →
√

i/β exp(−iπξ2/β) , (L1, L2) → (−∞,∞) , (4.121)

which is exactly the expression (3.185) for the Fourier transform of an infinite chirp.

4.3.2 Fresnel transforms

One use of a chirp is as the kernel in a little-known integral transform, the Fresnel
transform (Gori, 1994). As we shall see in Chap. 9, many diffraction problems can
be formulated as Fresnel transforms.

The Fresnel transform associated with a chirp of rate β is defined as

Fβ(x) = [Frβ{f}](x) =
√

−iβ

∫ ∞

−∞
dx′ f(x′) exp

[

iπβ(x− x′)2
]

. (4.122)

Different values of β lead to different functions Fβ(x), so the operator Frβ actually
refers to a whole family of transforms. When we revisit Fresnel transforms in the
context of diffraction, we shall see that the parameter β indexes different planes in
which the diffraction pattern can be observed.

Since the integral in (4.122) is a convolution, we can find the form for the
inverse Fresnel transform by taking Fourier transforms of both sides. With (4.121),
the result is

F1{Fβ(x)} = exp(−iπξ2/β)F (ξ) . (4.123)
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Since the chirp on the right never goes to zero, we can divide through with impunity
and obtain

F (ξ) = F1{Fβ(x)} exp(+iπξ2/β) . (4.124)

An inverse Fourier transform yields

f(x) =
√

iβ

∫ ∞

−∞
dx′ Fβ(x

′) exp
[

−iπβ(x− x′)2
]

=
[

Fr−1
β {Fβ}

]

(x) . (4.125)

Thus the inverse Fresnel transform for parameter β is the same as the forward
Fresnel transform with parameter −β. In operator form,

Fr−1
β = Fr−β . (4.126)

When we apply this transform to diffraction, reversal of the sign of β will imply
propagation of the wave in the opposite direction.

Some useful properties of the Fresnel transform are listed below. For more
details, see Gori (1994) or Papoulis (1994).

Convolution Since Fresnel transformation is a convolution, and convolution is as-
sociative, it follows that

Frβ{f(x) ∗ p(x)} = Fβ(x) ∗ p(x) = f(x) ∗ Pβ(x) . (4.127)

Derivatives Differentiation commutes with Fresnel transformation. That is,

Frβ
{

f ′(x)
}

=
d

dx
Fβ(x) , (4.128)

which can be proved by differentiating under the integral sign in (4.122), recognizing
that

d

dx
exp

[

iπβ(x− x′)2
]

= −
d

dx′ exp
[

iπβ(x− x′)2
]

, (4.129)

and then performing an integration by parts.

Shifting and scaling Shifting and scaling of a function have a very simple effect on
its Fourier transform; the situation is not quite so neat with the Fresnel transform.
The scaling relation is (Gori, 1994):

Frβ{f(x/k)} = Fβk2(x/k) . (4.130)

Thus scaling changes only the parameter β in the Fresnel transform, leaving the
argument unchanged.

The shift relation is

Frβ{f(x− k/2πβ)} = exp(ik2/4πβ − ikx)Frβ{f(x) exp(ikx)} . (4.131)

Correlation invariance The correlation operation is defined in (3.115). Since the
Fourier transform of [f 0p∗](x) is just F (ξ)P ∗(ξ) [cf. (3.135)], it follows from (4.123)
that

Frβ{[f 0 p∗] (x)} =
[

Fβ 0 P
∗
β

]

(x) . (4.132)

Thus the Fresnel transform of the complex cross-correlation of two functions is the
same as the complex cross-correlation of their Fresnel transforms.
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Parseval’s relations Since Fresnel transformation is simply multiplication by a pure
phase factor in the Fourier domain [see (4.123)], it is a unitary transformation.
Since unitary transformations preserve norms and scalar products, we have

∫ ∞

−∞
dx |f(x)|2 =

∫ ∞

−∞
dx |Fβ(x)|2 , (4.133)

∫ ∞

−∞
dx f∗(x) p(x) =

∫ ∞

−∞
dx F ∗

β (x)Pβ(x) . (4.134)

Fresnel transform of a constant Suppose f(x) = C, a constant. Then

Fβ(x) =
√

−iβ

∫ ∞

−∞
dx′ C exp

[

iπβ(x− x′)2
]

= C , (4.135)

where the last step follows from (4.121) and the central-ordinate theorem, (3.104).
Thus a constant is invariant to Fresnel transformation.

Special functions Gori (1994) gives expressions for Fresnel transforms of sgn, step,
rect, cos, delta, comb and Hermite-Gauss functions. The Fresnel transforms of sgn,
step and rect functions are all expressible in terms of Fresnel integrals. The cosine
turns out to be an eigenfunction of the Fresnel transform:

Frβ{cos(Kx+ φ)} = exp(iK2/4πβ) cos(Kx+ φ) . (4.136)

This result follows immediately from (3.153) and (4.123).
The Fresnel transform of a single delta function is easy, but that of a comb is

surprisingly subtle; see Gori (1994) for details.
Hermite-Gauss functions transform into different Hermite-Gauss functions with

complex arguments, a property that has some use in discussing Gaussian laser beams
(Siegman, 1986).

4.3.3 Chirps and Fourier transforms

Though chirps are most naturally associated with Fresnel transforms, they can
also be used to perform Fourier transforms. Given a function f(x), consider the
following sequence of operations:

(a) Multiply f(x) by a chirp, exp(−iπβx2);

(b) Convolve with the conjugate chirp, exp(iπβx2);

(c) Multiply again by the original chirp, exp(−iπβx2).

This sequence results in the Fourier transform of f(x), as we now demonstrate.
Simply writing out the three steps gives

exp(−iπβx2)
{[

f(x) exp(−iπβx2)
]

∗ exp(iπβx2)
}

= exp(−iπβx2)

∫ ∞

−∞
dx′ f(x′) exp(−iπβx′2) exp

[

iπβ(x− x′)2
]

=

∫ ∞

−∞
dx′ f(x′) exp(−2πiβxx′) = F (βx) . (4.137)
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Thus the result of the three steps, though a function of x, is precisely the Fourier
transform of f(x), but evaluated at ξ = βx. As we shall see in Sec. 5.1, frequency
ξ and position x are always linearly related for chirps.

The three steps listed above are often referred to as the chirp-transform al-
gorithm, but this designation risks confusion with a Fresnel transform. A more
precise (though somewhat awkward) term is chirp-Fourier transform. Even this
term is ambiguous, however, since there is another algorithm that uses chirps to
obtain a Fourier transform. We can also perform the following steps:

(a) Convolve f(x) with a chirp, exp(iπβx2);

(b) Multiply by the conjugate chirp, exp(−iπβx2);

(c) Convolve again with the original chirp, exp(iπβx2).

Again the result is F (βx), though the proof is somewhat more complicated since two
integrals are involved. If it is necessary to distinguish these two chirp-Fourier algo-
rithms, the first can be called the MCM algorithm (for multiply-convolve-multiply)
and the second CMC (for convolve-multiply-convolve).

A discrete version of the chirp-Fourier transform leads to the chirp-z trans-
form, an implementation of the z-transform (see Sec. 4.2.3) by means of discrete
convolutions with sampled chirps.

Fourier implementation of the Fresnel transform We have just seen that chirps can be
used to perform a Fourier transform. It is also possible to go in the other direction
and use Fourier transforms to perform a Fresnel transform, or convolution with a
chirp.

The defining integral for the Fresnel transform, (4.122), can be rewritten as

Fβ(x) =
√

−iβ exp(iπβx2)

∫ ∞

−∞
dx′ {f(x′) exp(iπβx′2)

}

exp(−2iπβxx′) . (4.138)

The integral can now be recognized as the Fourier transform of the quantity in {},
with the role of spatial frequency ξ played by βx. The Fresnel transform of f(x)
can thus be calculated by the following algorithm:

(a) Multiply f(x) by a chirp exp(iπβx2);

(b) Compute the Fourier transform of the product;

(c) Evaluate the Fourier transform at ξ = βx;

(d) Multiply again by exp(iπβx2);

(e) Multiply by
√
−iβ.

This approach, though mathematically equivalent to (4.122), has practical im-
plications since the Fourier transform can be performed efficiently with the FFT
algorithm.
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4.4 RADON TRANSFORM

In 1917, the Austrian mathematician Johann Radon published a classic paper
(Radon, 1917) on the reconstruction of a multidimensional function from its in-
tegrals over lower-dimensional manifolds. In imaging applications, the concern is
usually with a function f(r) defined on a 2D plane, so the manifolds are lines. A
continuous set of integrals of f(r) over all parallel lines in a specified direction is
called a 1D projection of the 2D function, and the 2D Radon transform is the
set of 1D projections for all projection directions. This mathematical construct is
often used as an idealized description of tomographic imaging systems that collect
1D data from 2D objects. Reconstruction of some representation of the object from
a sequence of such measurements is called reconstruction from projections or to-
mographic reconstruction. A useful starting point for developing tomographic
reconstruction algorithms is the inverse Radon transform.

In this section we shall introduce the basic mathematics of the Radon trans-
form and its inverse, postponing until Chaps. 15 and 17 the connection between
this theory and real tomographic imaging systems. The notation and approach
used here follow Barrett (1984), to which the reader is referred for more details. A
more comprehensive discussion at a similar level is given by Deans (1983), and ad-
vanced mathematical treatments are given by Helgason (1980) and Natterer (1986).

4.4.1 2D Radon transform and its adjoint

The 2D Radon transform is an integral transform in which the kernel is a line mass
as introduced in Sec. 2.4.4. Specifically, if the equation of the line is r · n̂ = p, where
n̂ is a unit vector making angle φ to the x-axis (see Fig. 2.7), then the line integral
is defined by (2.133) as

λ(p,φ) =

∫

∞
d2r f(r) δ(p− r · n̂) . (4.139)

Alternative expressions for λ(p,φ) in rotated coordinate systems are given in (2.133).
The set λ(p,φ) for fixed φ and all p is the 1D projection of f(r) in direction φ, and
the set of λ(p,φ) for all p and φ is the 2D Radon transform of f(r).

Equation (4.139) can be written in operator form as

λ(p,φ) = R2{f(r)} , (4.140)

where R2 is the 2D Radon-transform operator as defined in (4.139).

Norms and scalar products in Radon space The Radon operator R2 maps the func-
tion f(r), or f(x, y), to another function λ(p,φ). If we restrict f(r) to be square-,
the domain of R2 is L2(R2). It is necessary, however, to impose certain smoothness
or differentiability conditions on f(r) to avoid mathematical difficulties. It suffices
to assume that f(r) is a good function as defined in Sec. 2.1.2 (see, e.g., Natterer,
1986). Since any L2 function can be approximated arbitrarily closely with a good
function, however, there is not much loss of rigor in considering the object space to
be L2(R2).

The range of R2 is usually called Radon space, but we need to define the
characteristics of this space more carefully. All Hilbert spaces are defined in terms
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of scalar products. One natural way to define Radon space would be to use p and
φ as polar coordinates of a vector p, with area element d2p = p dp dφ, and to use
integrals over area to define norms and scalar products. As we shall see below,
however, it is more convenient to treat φ as a Cartesian coordinate for this purpose.
Thus we define the norm of λ(p,φ) by

||λ||2 =

∫ π

0
dφ

∫ ∞

−∞
dp |λ(p,φ)|2 . (4.141)

The function λ(p,φ) constitutes a vector λ in Radon space if this norm is finite.
Scalar products are defined similarly:

(λ1,λ2) =

∫ π

0
dφ

∫ ∞

−∞
dp λ∗1(p,φ) λ2(p,φ) . (4.142)

Having defined the Hilbert spaces, we can now write (4.140) more abstractly
as

λ = R2f . (4.143)

Adjoint From Sec. 1.3.5, we know how to compute the adjoint of an integral oper-
ator. Since the kernel of the Radon operator is real, we can write

[

R
†
2λ

]

(r) =

∫ π

0
dφ

∫ ∞

−∞
dp λ(p,φ) δ(p− r · n̂) . (4.144)

The integral over p is easily performed, and we have

[

R
†
2λ

]

(r) =

∫ π

0
dφ λ(r · n̂,φ) . (4.145)

The substitution p → r · n̂ converts each 1D function of p into a 2D function.
As illustrated in Fig. 4.6, this function is defined for all r, but it varies only along
the direction parallel to n̂. Since the original projection direction was perpendicular
to n̂, the function is smeared out in the projection direction by the substitution. For
this reason, the operation p → r · n̂ is called backprojection. The adjoint operation
is then equivalent to backprojecting each 1D projection and integrating the result
over all projection directions. Geometrically, the 2D Radon transform integrates
over all points along a line, and its adjoint integrates over all lines passing through
a point (Natterer, 1986).

Fig. 4.6 Illustration of the operation of backprojection. (a) A 2D object and
one of its 1D projections. (b) Backprojection of the 1D projection into the
2D space. (The density of lines in the backprojection suggests a gray scale).
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We can now see why it was more convenient to define the scalar product with
dp dφ rather than p dp dφ; with the latter form, we would have had a factor of r · n̂
in the definition of backprojection.

Sinogram Since the definition of adjoint treats φ as a Cartesian coordinate rather
than a polar one, it is useful to plot projection data in this way. A gray-level image
of [R2f ](p,φ) with p and φ as the axes is known as a sinogram (see Fig. 4.7).

To understand the structure of a sinogram, consider first an object consisting
of a single point, fδ(r) = δ(r− r0). The Radon transform of this object is

[

R2f
δ
]

(p,φ) =

∫

∞
d2r δ(r− r0) δ(p− r · n̂) = δ(p− r0 · n̂) . (4.146)

Not surprisingly, the 1D projection of a 2D delta function is a 1D delta function.
Explicitly, in terms of the p and φ coordinates,

[

R2f
δ
]

(p,φ) = δ[p− r0 cos(θ0 − φ)] , (4.147)

where r0 and θ0 are the polar coordinates of r0.
If we plot this delta function as a function of p for fixed φ, we see a spike at

p = r0 cos(θ0−φ). If we also vary φ, the spike moves along the p axis in a cosinusoidal
fashion (see Fig. 4.7b). The amplitude of the cosine is the radial coordinate r0, and
the phase is the polar angle θ0.

Fig. 4.7 The sinogram format, in which λ(p,φ) is plotted against Cartesian
coordinates p and φ. (a) An object consisting of a single point at r = r0. (b)
Sinogram depiction of the projection data from the single-point object.
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Since the Radon transform is linear, the sinogram of a more general object can
be constructed by linear superposition. If we express an object as

f(r) =

∫

∞
d2r0 f(r0) δ(r− r0) , (4.148)

then its Radon transform is given by

[R2f ] (p,φ) =

∫

∞
d2r0 f(r0) δ[p− r0 cos(θ0 − φ)] . (4.149)

The sinogram is thus the superposition of cosinusoidal patterns of the form (4.147)
with the gray level of the cosine of amplitude r0 and phase θ0 determined by f(r0).

4.4.2 Central-slice theorem

To see what information about f(r) is contained in a single 1D projection, we can
take the 1D Fourier transform (with respect to p) of λ(p,φ). From (4.139), we find

Λ(ν,φ) = [F1λ(p,φ)] (ν) =

∫ ∞

−∞
dp exp(−2πiνp)

∫

∞
d2r f(r) δ(p− r · n̂)

=

∫

∞
d2r f(r)

∫ ∞

−∞
dp exp(−2πiνp) δ(p− r · n̂) =

∫

∞
d2r f(r) exp(−2πir · n̂ν) .

(4.150)
The remaining integral is recognized as the 2D Fourier transform, but with the
vector n̂ν appearing in place of the usual spatial frequency ρ. Since n̂ is fixed once
we have chosen the particular 1D projection λ(p,φ), the points in the frequency
plane for which ρ = n̂ν describe a line passing through the origin. For this reason,
(4.150) is called the central-slice theorem. In words, the 1D Fourier transform
of the projection λ(p,φ) is equal to the 2D transform of the original function f(r)
evaluated along a line through the origin of the Fourier plane. This relation is
illustrated in Fig. 4.8.

Fig. 4.8 Illustration of the central-slice theorem. A symmetric 2D function
is shown so that its Fourier transform is real.
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We can also express the central-slice theorem in operator form as

F2 = F1R2 . (4.151)

Applied to any 2D function f(r), this relation says that forming a 1D projection
and then taking the 1D Fourier transform is equivalent to taking the 2D Fourier
transform. In interpreting the operators, however, we must keep in mind the need
to evaluate the 2D transform at ρ = n̂ν.

One consequence of the central-slice theorem is that the Radon transform is
invertible if 1D projection data are collected for 0 ≤ φ < π since all points in the
frequency plane are reached by φ in this range and −∞ < ν < ∞.

Moreover, projections with π ≤ φ < 2π are redundant with those with
0 ≤ φ < π since projections at φ and φ+π give information on the same line in the
Fourier plane. We can reach this same conclusion by noting that φ→ φ+π is equiv-
alent to n̂ → −n̂. The delta function in (4.139) is unchanged if p−r · n̂ → −p+r · n̂,
so

λ(p,φ) = λ(−p,φ+ π) . (4.152)

Thus we can always recover f(r) if we know λ(p,φ) for −∞ < p < ∞ and φ in any
interval of length π.

If f(r) has finite support, we need even less data. If f(r) = 0 for r > Rmax,
then λ(p,φ) = 0 for |p| > Rmax. We do not need to collect projections for which
the line of integration does not intersect the object.

4.4.3 Filtered backprojection

One route to the inverse Radon transform starts with the operator relation (4.151).
Turning that relation around, we can express the Radon transform as

R2 = F
−1
1 F2 . (4.153)

Thus the inverse is, formally,

R
−1
2 = F

−1
2 F1 . (4.154)

Implicit in this relation is the identification of ρ with n̂ν, so it is necessary to
express the integral over ρ in F

−1
2 in terms of ν and φ. We could write d2ρ = νdν dφ

and integrate over 0 ≤ φ < 2π and 0 ≤ ν < ∞, but we will usually know λ(p,φ)
only for 0 ≤ φ < π. Fortunately, this suffices to give Λ(ν,φ) for −∞ < ν < ∞, so it
is much more convenient to integrate over 0 ≤ φ < π and −∞ ≤ ν < ∞. When we
do so, we must write d2ρ = |ν|dν dφ since the area element must be positive. Thus,

[

F
−1
2 F1λ

]

(r) =

∫ π

0
dφ

∫ ∞

−∞
|ν|dν exp(2πir · n̂ν)

∫ ∞

−∞
dp λ(p,φ) exp(−2πiνp)

=

∫ π

0
dφ

∫ ∞

−∞
dν exp(2πir · n̂ν) |ν|Λ(ν,φ) . (4.155)

The integral over ν can be regarded as the inverse Fourier transform of the
product |ν|Λ(ν,φ). This transform would normally yield a function of p, but we see
that r · n̂ appears where p should be, so we can write

∫ ∞

−∞
dν exp(2πir · n̂ν) |ν|Λ(p,φ) = λ̂(r · n̂,φ) , (4.156)
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where λ̂(p,φ) is a filtered version of λ(p,φ), with the filtering operation expressed in
the 1D frequency domain as multiplication by |ν|. For later convenience, we define

H(ν) = |ν| . (4.157)

Putting the pieces together, we now have one form of the inverse Radon trans-
form:

f(r) =
[

R
−1
2 λ

]

(r) =

∫ π

0
dφ λ̂(r · n̂,φ) . (4.158)

Thus, one recovers f(r) by filtering each projection (multiplying it by H(ν) in the
1D frequency domain), backprojecting the result and integrating over all projection
angles. A discretized version of this inverse, known as filtered backprojection, is
used in almost all commercial tomographic instruments at this writing.

Alternative form A shift-invariant filtering operation can be specified either as a
multiplication in the frequency domain or as a convolution in the space domain.
Thus the filtering operation of (4.158) can be written as a convolution of λ(p,φ)
with the inverse Fourier transform of H(ν), which we denote by h(p). The shift
variable in the convolution is given by r · n̂, so we can write

f(r) =

∫ π

0
dφ

[
∫ ∞

−∞
dp′ λ(p′,φ)h(p− p′)

]

p=r·!n

=

∫ π

0
dφ

∫ ∞

−∞
dp′ λ(p′,φ)h(r · n̂− p′) . (4.159)

We know the functional form of h(p) from Sec. 3.3.7. In particular, from
(3.169) with m = 2, we see that

−
1

2π2
F1

{

1

p2

}

= ν sgn(ν) = |ν| , (4.160)

where 1/p2 is the rather bizarre generalized function4 discussed in Sec. 2.3.3.
Combining (4.159) and (4.160) yields another form for the inverse Radon trans-

form:

f(r) = −
1

2π2

∫ π

0
dφ

∫ ∞

−∞
dp′

λ(p′,φ)

(r · n̂− p′)2
. (4.161)

The structure of this result may be surprising; if f(r) is nonnegative, as it is in most
tomographic problems, then λ(p,φ) is also nonnegative, so the integrand appears to
be nonnegative everywhere. There is an overall minus sign in front of the integral,
yet the right-hand side of (4.161) is supposed to equal the nonnegative function
f(r). To resolve this paradox, recall from Sec. 2.3.3 that the generalized function
1/p2 has a strong negative singularity at the origin (see (2.91) and the discussion
in that vicinity, esp. Fig. 2.6b). Because of this singularity, the integral is in fact
negative.

4Strictly speaking, λ(p′,φ) must be a good function (see Sec. 2.1.2) for this generalized function
to be defined, so we are dealing with a Schwartz space rather than the more general L2 space.
As we noted in Sec. 2.1.3, however, L2 functions can be approximated arbitrarily closely by good
functions.
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4.4.4 Unfiltered backprojection

It is instructive to see what happens if we leave out the filtering operation in the
filtered-backprojection algorithm. Since backprojection plus integration over φ is
the same as R†

2, we wish to compute

[

R
†
2λ

]

(r) =
[

R
†
2R2f

]

(r) . (4.162)

If we can find a simple form for R†
2R2, we may be able to construct R−1

2 as

R
−1
2 =

[

R
†
2R2

]−1
R

†
2 . (4.163)

The alert reader will recognize (4.162) as the normal equation developed in Sec.
1.7.4 in the context of least-squares solutions of noisy, inconsistent equations and
singular operators. Here, however, we are ignoring noise, and we argued in Sec.
4.4.2 that R2 is nonsingular if we know λ(p,φ) for all p and an angular range of π.
Therefore (4.163) is just an identity which may provide another form of R−1

2 .
To compute R

†
2R2f explicitly, we combine (4.139) and (4.145), yielding

[

R
†
2R2f

]

(r) =

∫ π

0
dφ

∫

∞
d2r′ f(r′) δ(r · n̂− r′ · n̂) . (4.164)

To simplify the integral over φ, we define a vector R = r−r′ and express it in polar
coordinates as (R, θR), where R = |r − r′|. The angle between n̂ and R is thus
φ− θR, and we have

[

R
†
2R2f

]

(r) =

∫

∞
d2r′ f(r′)

∫ π

0
dφ δ[R cos(φ− θR)] . (4.165)

We can perform the integral over φ with the help of (2.33), from which we
know

δ(R cosφ) =
δ(φ− θR − π

2 )

|R sin π
2 |

=
1

R
δ
(

φ− θR −
π

2

)

. (4.166)

Since the argument of the delta function vanishes exactly once in (0,π], the integral
over φ yields

[

R
†
2R2f

]

(r) =

∫

∞
d2r′

f(r′)

R
=

∫

∞
d2r′

f(r′)

|r− r′|
. (4.167)

The integral in (4.167) is a convolution; even though neither R2 nor R†
2 describes

a shift-invariant system, R†
2R2 does. The point spread function for this operator is

1/r, and the combined effect of Radon projection and its adjoint (unfiltered back-
projection) is to convolve the object with 1/r.

A graphical way of understanding this result is given in Fig. 4.9. Shown there
is an object consisting of the single 2D delta function, fδ(r) = δ(r − r0). From
(4.146) we know that the Radon transform of this object is a 1D delta function.
The backprojection operation smears this 1D delta function into a line delta func-
tion: δ(p− r0 · n̂) → δ(r · n̂− r0 · n̂). Though still 1D, in the sense that it can be
used for only one integral, the line delta function is defined in the 2D space. Note
that this line delta function passes through the original point r0 for all p and φ.
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Fig. 4.9 Graphical explanation of the point spread function for †
2 2. (a)

A single 2D delta function at r = r0 and its projection at angle φ. (b) Back-
projection of the 1D projection in (a). (c) Sum of many backprojections. This
sum limits to a 1/r function as the number of projection angles approaches
infinity.

We now bring in the integration over angles needed in the definition of R†
2. If

we had only a finite set of angles (as we necessarily do in any practical situation),
then the integral over φ would be a sum, and the result would be a spoke pattern
as shown in Fig. 4.9c. As the number of angles approaches infinity, the sum of line
deltas becomes an integral and the spoke pattern approaches 1/|r− r0|, a cusp-like
function that is singular at the original point location. We shall have more to say
about finite angular sampling and the resulting PSF in Chap. 17.

If the object is more complicated than a single point, then there is a spoke
pattern, or a 1/r pattern in the limit, associated with each object point. Because
R

†
2R2 is shift invariant (if the object support is infinite), the form of this pattern

is the same for each object point. The overlapping of these long-tailed point spread
functions results in a considerable blurring of the object.

Deblurring Since the blurring is a simple convolution with a known blur function, it
can in principle be corrected by inverse filtering in the Fourier domain. (We are, of
course, neglecting practical issues like noise and discrete sampling in this section.)

To find the form of the inverse filter, we must first determine the Fourier
transform of the blur function. From (3.248), we know that

F2

{

1

r

}

= 2π

∫ ∞

0
r dr J0(2πρr)

1

r
. (4.168)
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The change of variables u = 2πρr and a well-known integral yield

F2

{

1

r

}

=
1

ρ

∫ ∞

0
du J0(u) =

1

ρ
. (4.169)

Thus blurring by convolution with 1/r is equivalent to multiplication with 1/ρ in
the Fourier domain.

We can summarize what we have learned to this point by defining a multiplica-
tive operator M1/ρ which acts on functions in the frequency domain and multiplies
their value at each point by 1/ρ. In terms of this operator, we have

R
†
2R2 = F

−1
2 M1/ρF2 . (4.170)

If we don’t worry too much about the isolated point ρ = 0, the inverse of
multiplication by 1/ρ is multiplication by ρ, so M

−1
1/ρ = Mρ, and

[

R
†
2R2

]−1
= F

−1
2 MρF2 . (4.171)

With (4.163), therefore, we have

R
−1
2 = F

−1
2 MρF2R

†
2 . (4.172)

In words, the inverse Radon transform can be implemented by first performing an
unfiltered backprojection, then transforming to the 2D Fourier domain, multiplying
by the inverse filter H(ρ) = ρ, and inverse-transforming back to the 2D space
domain.

4.4.5 Radon transform in higher dimensions

In n dimensions, the Radon transform is an integral of an nD function over a set of
(n− 1)-dimensional hyperplanes. In particular, the 3D Radon transform is a set of
integrals of a 3D function over ordinary 2D planes.

The equation of a 2D plane in a 3D space is p = r · n̂, which is identical in form
to the equation of a line in a 2D space except that now r and n̂ are 3D vectors. In
fact, with appropriate interpretation of the vectors, p = r · n̂ is the general equation
of an (n− 1)-dimensional hyperplane in an nD space, and the nD Radon transform
is defined as

[Rnf ] (p, n̂) =

∫

∞
dnr f(r) δ(p− r · n̂) . (4.173)

Note that the delta function here is 1D, so it can be used to perform only one of
the n integrals implicit in

∫

dnr. Also note that the unit vector n̂ is specified by
n − 1 variables in an nD space. For example, if n = 3, we can specify n̂ by two
polar angles.

Norms, scalar products and adjoints By analogy to (4.142), we define the norm of
the Radon transform of an nD function as

||λ||2 =

∫

S
dΩ

∫ ∞

0
dp |λ(p, n̂)|2 , (4.174)
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where dΩ is the element of solid angle in the nD space and the integral is over
the unit sphere S. Since λ(p, n̂) = λ(−p,−n̂), we could equally well extend the p
integral to (−∞,∞) and integrate over half the unit sphere:

||λ||2 =

∫

1

2
S
dΩ

∫ ∞

−∞
dp |λ(p, n̂)|2 . (4.175)

For example, if n = 3, dΩ = sin θ dθ dφ, where θ and φ are the usual spherical
coordinates, and the integral is over 4π steradians if 0 ≤ p < ∞ or 2π steradians if
−∞ < p < ∞. The function λ(p, n̂) constitutes a vector λ in nD Radon space if
the norm defined in (4.174) is finite.

Scalar products are defined by analogy to (4.142) as

(λ1,λ2) =

∫

S
dΩ

∫ ∞

0
dp λ∗1(p, n̂)λ2(p, n̂) =

∫

1

2
S
dΩ

∫ ∞

−∞
dp λ∗1(p, n̂)λ2(p, n̂) .

(4.176)
Note that we use dp dΩ as the volume element here rather than pn−1dp dΩ. With
this definition of the scalar product, the adjoint of Rn is given by

[

R
†
nλ

]

(r) =

∫

1

2
S
dΩ

∫ ∞

−∞
dp λ(p, n̂) δ(p− r · n̂) =

∫

1

2
S
dΩλ(r · n̂, n̂) . (4.177)

The interpretation of this equation is analogous to that of (4.145); the substitution
p → r · n̂ converts each 1D function of p into an nD function by assigning the value
λ(p, n̂) uniformly to all r for which r · n̂ = p. For n = 3, this means smearing it
uniformly over the original plane of integration.

Central-slice theorem By taking the 1D transform of (4.173) as we did in Sec. 4.4.2,
we can derive the nD central-slice theorem. By analogy to (4.150), we have

Λ(ν, n̂) = [F1λ(p, n̂)] (ν) =

∫

∞
dnr f(r)

∫ ∞

−∞
dp exp(−2πiνp) δ(p− r · n̂)

=

∫

∞
dnr f(r) exp(−2πir · n̂ν) = F (n̂ν) , (4.178)

where F (ρ) is the nD Fourier transform of f(r). In words, the 1D Fourier transform
of the projection is the same as one line through the nD of the original function f(r).
Note that the central-slice theorem in any number of dimensions always relates to
a line in nD Fourier space, not a hyperplane. In operator form, we can express the
central-slice theorem as

Fn = F1Rn . (4.179)

In using this form, the implicit substitution ρ → n̂ν must always be kept in mind.

Inverse transform From the central-slice theorem, the formal inverse Radon trans-
form is [cf. (4.154)]

R
−1
n = F

−1
n F1 . (4.180)

Converting the operators into explicit integrals as in Sec. 4.4.3, we find [cf. (4.155)]
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[

F
−1
n F1λ

]

(r) =

∫

1

2
S
dΩ

∫ ∞

−∞
|ν|n−1dν exp(2πir · n̂ν)

∫ ∞

−∞
dp λ(p, n̂) exp(−2πiνp)

=

∫

1

2
S
dΩ

∫ ∞

−∞
dν exp(2πir · n̂ν) |ν|n−1Λ(ν, n̂) . (4.181)

The integral over ν can be regarded as the inverse Fourier transform of the product
|ν|n−1Λ(ν, n̂), so (4.156) generalizes to

∫ ∞

−∞
dν exp(2πir · n̂ν) |ν|n−1Λ(p, n̂) = λ̂(r · n̂, n̂) , (4.182)

where again λ̂(p, n̂) denotes a filtered version of λ(p, n̂). The filter function is now

H(ν) = |ν|n−1 , (4.183)

but note that the absolute-value signs are unnecessary if n is odd.

Odd vs. even dimensions The filter function given in (4.183) is fundamentally dif-
ferent for even and odd n. If n is odd, then H(ν) is just νn−1, and we know from
(3.97) that multiplying a function by (2πiν)k in the frequency domain is equivalent
to differentiating it k times. Thus the 1D filtering operation before backprojection
is equivalent to differentiating the projection data n− 1 times with respect to p.

The key point is that differentiation is a local operation; to compute any deriva-
tive of the projection λ(p, n̂) at, say, p = p0, we need to know the function only
in an infinitesimal neighborhood of p = p0. That means that we can reconstruct
an nD function f(r) at some point r0 knowing only its integrals over hyperplanes
passing through a neighborhood of r0, provided n is odd.

For n even, we must account for the absolute-value operation in H(ν), which
greatly affects the behavior of its Fourier transform, h(p). One way to think about
this difference is in terms of the Hilbert transform, introduced in Sec. 4.2.4. We
know from (4.95) that the Hilbert transform is equivalent to multiplying by i sgn(ν)
in the frequency domain, and for n even we can write

H(ν) = |ν|n−1 = νn−1 sgn(ν) . (4.184)

Thus, within constant factors, the 1D filtering operation can be expressed as n− 1
derivatives compounded with a Hilbert transform. (The differentiations and Hilbert
transformation can be performed in any order.) From (4.94) we know that Hilbert
transformation is essentially convolution with the principal value of 1/p. Since 1/p
has long tails, Hilbert transformation is decidedly nonlocal. To reconstruct f(r) at
r = r0 for n even, we need to know its integrals over all hyperplanes, not just those
passing through a neighborhood of r0.

Another way to think about this difference is in terms of the asymptotic be-
havior of h(p) as p → ∞. It follows from the Riemann-Lebesgue lemma [see (3.107)]
that pkh(p) → 0 as p → ∞ if H(ν) has bounded derivatives at least up to order k.
For n odd, all derivatives of H(ν) are bounded, so h(p) → 0 faster than p−k for all
k. In fact, we know that h(p) is the (n− 1)th derivative of a delta function in this
case, so it is identically zero away from the neighborhood of the origin. For n even,
however, the absolute-value signs spoil the differentiability. For n = 2, for example,
the first derivative of |ν| is bounded but the second is not, and we know from Sec.
4.4.3 that h(p) is the generalized function 1/p2. This function coincides with the
ordinary function 1/p2 for p (= 0, so p h(p) → 0 as p → ∞, but p2h(p) does not.
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3D case If n = 3, then H(ν) = ν2, and we know that multiplication by ν2 in a 1D
frequency domain is essentially the same thing as taking a second derivative [see
(3.99)], which in turn is equivalent to convolving with the second derivative of a
1D delta function. Specifically, the space-domain filter function for the 3D Radon
transform is

h(p) = F
−1
n

{

ν2
}

= −
1

4π2
δ′′(p) . (4.185)

Thus one form of the 3D inverse Radon transform is

f(r) = −
1

4π2

∫

1

2
S
dΩ λ′′(r · n̂, n̂) , (4.186)

where λ′′(p, n̂) is the second derivative of the projection with respect to p. Recon-
struction in this case is just backprojection of the second derivative of the projection.

As in 2D, it is also possible to backproject first and then filter. The reader
may show that [cf. (4.167)]

[

R
†
3λ

]

(r) =

∫

1

2
S
dΩ λ(r · n̂, n̂) =

∫

∞
d3r′

f(r′)

|r− r′|2
. (4.187)

It then follows from (2.143) that

f(r) = −
1

4π2
∇2

∫

1

2
S
dΩ λ(r · n̂, n̂) . (4.188)

Thus the 3D filter is also a second derivative, the Laplacian.

Dipole-sheet transform The dipole-sheet transform (Barrett, 1982, 1984) is a sym-
metrized version of the 3D Radon transform and its inverse. The asymmetry can be
seen by defining a 3D vector p ≡ p n̂, so that d3p = p2dp dΩn. With this definition,
we can write the inverse 3D Radon transform, (4.186), as

f(r) = −
1

4π2

∫

∞

d3p

p2
[R3f ](p) δ

′′(p− r · n̂) , (4.189)

while the forward Radon transform is

[R3f ](p) =

∫

∞
d3r f(r) δ(p− r · n̂) . (4.190)

These forms differ by the second derivative and the factor of −1/(4π2p2) in (4.189);
to symmetrize, we can move one derivative and a factor of i/(2πp) to the forward
transform. We thus define the dipole-sheet operator D3 by

[D3f ](p) =

∫

∞
d3r f(r)ψ(p, r) , (4.191)

where ψ(p, r) is the dipole-sheet basis function, defined by

ψ(p, r) =
i

2πp
δ′(p− r · n̂) . (4.192)

The derivative of the delta function here has the same structure as the double layer
of charge used to enforce boundary conditions in electrostatics (Jackson, 1998).
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Regarded as a function in three dimensions, δ′(p − r · n̂) vanishes except in the
neighborhood of the plane p = r · n̂, and it can be regarded, loosely, as being +∞
just to one side of this plane and −∞ on the other side. If we think of δ(p− r · n̂)
as a distribution of charge confined to a plane, then δ′(p− r · n̂) is a double layer of
positive and negative charges, or a sheet of dipoles.

It follows from (4.189) and (4.190) that the dipole-sheet transform is unitary;
the inverse is given by the adjoint. Many other interesting properties of the dipole-
sheet transform are given in Barrett (1982, 1984). For example, the transform of
any rotationally symmetric function is just a constant times that same function. In
addition, as we shall see in Chap. 17, the dipole-sheet transform arises naturally in
cone-beam tomography.

Related transforms in an arbitrary number of dimensions are discussed in Lud-
wig (1966).

4.4.6 Radon transform in signal processing

One application of the Radon transform is to reduce nD signal-processing opera-
tions to a sequence of 1D operations (Gmitro et al., 1983; Barrett, 1984b). Though
many different operations can be reduced in this way (Easton and Barrett, 1987),
we shall confine our attention here to convolutions.

There are two mathematical theorems that make it possible to reduce nD con-
volutions to 1D. The first one, which follows directly from the central-slice theorem,
states that

(Rnf 1) ∗ (Rnf 2) = Rn(f 1 ∗ f 2) , (4.193)

where the asterisk on the left denotes a 1D convolution with respect to p, while
the asterisk on the right denotes an nD convolution. Thus, to convolve two nD
functions, one can take the nD Radon transform of each, perform 1D convolutions
for every projection angle, and then perform an nD inverse Radon transform. This
approach is particularly attractive for n odd because of the local character of the
inverse, as discussed above.

The second theorem (Natterer, 1986) does not directly require an inverse
Radon transform; it states that

(R†
nh) ∗ f = R

†
n[h ∗ (Rnf )] . (4.194)

Note that h here denotes a set of 1D functions of p, one function for each projection
direction. Therefore, the asterisk on the left denotes nD convolution but the one
on the right denotes 1D convolution on the variable p. Proof of (4.194) requires
writing the operators in integral form and shuffling the order of integration.

If we want to use (4.194) to compute f 1 ∗ f 2, we must first solve the problem
R†

nh = f 1 to find the set of functions h, but then no further inverse transforms are
required. We merely compute a set of 1D convolutions and backproject.

Quite apart from signal processing, (4.194) can also be used to derive inverses
of the Radon transform and related transforms. For example, we shall see in Chap.
17 how it is useful in analyzing attenuation problems in SPECT.



5
Mixed Representations

In this chapter we discuss a class of mathematical descriptions called mixed rep-
resentations, since they mix apparently incompatible variables such as spatial po-
sition and spatial frequency. These descriptions can also be called extended rep-
resentations, since they use more variables than are needed for a parsimonious
specification of a function.

In Sec. 5.1 we introduce a variety of integral transforms where a function of a
spatial variable is augmented, apparently redundantly, with a spatial frequency ξ.
These transforms are linear, like all of the other integral transforms treated earlier
in the book, but in Sec. 5.2 we consider bilinear transforms, where a product of the
original function with itself appears in the integrand. Later, in Sec. 5.3, the spatial
variable will be augmented with a scale variable.

As we shall see, these new variables, though superfluous from a strict mathe-
matical viewpoint, offer new insights into the behavior of the functions. Moreover,
when the functions are sampled in all variables, little or no increase in the number
of required sample points is needed with the extended representations.

5.1 LOCAL SPECTRAL ANALYSIS

A spatial description f(x) gives information about the behavior of a function at
every point x, while its Fourier transform F (ξ) gives information about the behavior
at every spatial frequency ξ. Neither description gives any information about what
frequencies are associated with what spatial location. Often it would be useful
to have the spatial counterpart of a musical score, associating frequencies with
positions.

215
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5.1.1 Local Fourier transforms

One mathematical construct to accomplish this end is the sliding-window Fourier
transform or local Fourier transform, defined by

Fb(ξ;x0) =

∫ ∞

−∞

dx b∗(x− x0) f(x) exp(−2πiξx) , (5.1)

where b(x) is a window function. The window function is usually chosen to be real-
valued, but can, in general, be complex. The shape of b(x) is arbitrary as far as the
mathematics is concerned, but it is usually taken to be more or less concentrated
around x = 0, so that the shifted function b(x−x0) in (5.1) is concentrated around
x = x0. Suppose, for example, that b(x) = rect(x/∆x). Then the window in (5.1)
extends from x0 − 1

2
∆x < x < x0 +

1
2
∆x, and only in this range does the behavior

of f(x) contribute to Fb(ξ;x0).
The window width ∆x controls the degree of localization in x, but it also

controls the resolution in ξ. To see this, suppose that f(x) can be well approximated
by exp(2πiξ0x) over the window width. We would like to find that Fb(ξ;x0) is
sharply peaked at ξ = ξ0, approximating a delta function, but (5.1) shows that

Fb(ξ;x0) = B∗(ξ0 − ξ) exp[2πi(ξ0 − ξ)x0] , (5.2)

where B(ξ) = F{b(x)}. Continuing the previous example where b(x) = rect(x/∆x),
we now have Fb(ξ;x0) ∝ ∆x sinc[(ξ − ξ0)∆x], which has a width (measured from
the peak to the first zero) of 1/∆x. Thus if we make ∆x smaller to improve the
spatial localization, we pay the price in spectral localization.

5.1.2 Uncertainty

One of the most celebrated scientific discoveries of the twentieth century is the
Heisenberg uncertainty principle, which says that two physical observables that
are represented quantum mechanically by noncommuting operators cannot be mea-
sured simultaneously with arbitrary precision. Any reduction in the inherent uncer-
tainty in one observable must be accompanied by an increase in the uncertainty of
the other. This is a profound result, intimately related to the nature of matter and
the measurement process in quantum-mechanical systems, but in a purely formal
sense it is a simple consequence of basic Fourier mathematics.

The connection between Fourier analysis and quantum-mechanical uncertainty
was made by the physicist C. G. Darwin, grandson of Charles Darwin (Cohen, 1995).
We shall present the concept of Fourier uncertainty here in the context of the local
Fourier transform and then return briefly to the quantum-mechanical analogy.

To understand the inverse relation between the width of a function like b(x)
and the width of its Fourier transform, we need a more general definition of width.
A mathematically convenient approach is to treat |b(x)|2, when properly normalized,
as a probability density function (PDF) and use the associated standard deviation
σx (see App. C) as a measure of width. The width is thus the square-root of the
variance σ2

x, where

σ2
x =

∫∞

−∞
dx (x− x)2 |b(x)|2
∫∞

−∞
dx |b(x)|2

. (5.3)
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In this expression, x is the mean value of x with respect to the density |b(x)|2, i.e.,

x =

∫∞

−∞
dx x|b(x)|2

∫∞

−∞
dx |b(x)|2

. (5.4)

Similarly, the width of B(ξ) is taken as σξ, where

σ2
ξ =

∫∞

−∞
dξ (ξ − ξ)2 |B(ξ)|2
∫∞

−∞
dξ |B(ξ)|2

, (5.5)

and ξ is defined analogously to (5.4). Since a change of variables can set x and ξ
to zero, we shall henceforth neglect these terms without loss of generality.

Use of the Parseval and derivative theorems, (3.80) and (3.98), respectively,
lets us express σ2

ξ in the spatial domain as

σ2
ξ =

1
4π2

∫∞

−∞
dx |b′(x)|2

∫∞

−∞
dx |b(x)|2

, (5.6)

where the prime denotes derivative. The Schwarz inequality (1.14) yields

∫ ∞

−∞

dx x2 |b(x)|2
∫ ∞

−∞

dx |b′(x)|2 ≥
∣

∣

∣

∣

∫ ∞

−∞

dx b∗(x)xb′(x)

∣

∣

∣

∣

2

, (5.7)

from which it follows that

σxσξ ≥

∣

∣

∫∞

−∞
dx b∗(x)xb′(x)

∣

∣

2π
∫∞

−∞
dx |b(x)|2

. (5.8)

A more useful form results if we use the operator relation,

d

dx
x− x

d

dx
= 1 , (5.9)

which can be proved by operating on an arbitrary function and using the chain rule
of differentiation. This relation can be used to express the function xb′(x), in (5.8).
With an integration by parts and a little algebra,1 we then find that

σxσξ ≥
1

4π
. (5.10)

The inequality in (5.8) becomes an equality if b′(x) is proportional to xb(x), which
occurs if b(x) is a Gaussian function of the general form A exp(−αx2). Gaussians
are therefore sometimes referred to as minimum uncertainty signals. They are the
most common choice for the window function in a local Fourier transform.

It is interesting to verify the uncertainty relation for a rect function,
b(x) = rect(x). Then an easy integral shows that σx = 1/(2

√
3), but in fact σξ = ∞

since the integral of [ξ sinc(ξ)]2 diverges. The sinc has a finite width (unity, in fact)
as measured from its peak to the first zero, but an infinite width by the variance
measure.

1The derivation of (5.10) from (5.8) and (5.9) is straightforward if b(x) is real, but a little tricky
if it is complex. See Cohen (1995), p. 47.
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Relation to quantum mechanics The connection of this Fourier math to quantum
mechanics takes two distinctly different forms, depending on just which variables
are involved. The most familiar form of Heisenberg uncertainty involves the po-
sition and momentum of a particle such as an electron. We discuss this position-
momentum uncertainty relation first and then comment briefly on the so-called
energy-time uncertainty principle.

For simplicity we consider one-dimensional motion, denoting the electron posi-
tion by x and its momentum by p. One way of identifying p with a spatial frequency
is to follow Prince Louis DeBroglie, who in 1923 postulated that an electron could
behave either as a particle or as a wave. When it behaved as a wave, he showed, its
wavelength λ would be related to the momentum by p = h/λ, where h is Planck’s
constant. This audacious suggestion, made several years before Schrödinger’s quan-
tum theory, was experimentally verified in 1927 by Davisson and Germer in New
York and Thomson in Aberdeen.

We rewrite the DeBroglie relation as

p =
h

λ
= hξ , (5.11)

where ξ is now interpreted as the spatial frequency (reciprocal wavelength) of the
electron wave. From (5.10) and (5.11), we see that

σxσp ≥ 1
2
! , (5.12)

where ! = h/2π. This is the usual form of the Heisenberg position-momentum
uncertainty principle.

Another way to derive this relation is to follow modern wave mechanics as
pioneered by Schrödinger. This theory postulates that the state of a physical system
is specified by a wavefunction and that physical observables are represented by
Hermitian operators that can operate on this function. For a single particle in one
dimension, the wavefunction is denoted ψ(x), and the effect of the position operator,
which we shall denote by X̂, is simply multiplication by x. The momentum in
this picture is represented by the Hermitian differential operator P̂ ≡ −i! d

dx . The
operator equation (5.9) can thus be reinterpreted as a commutation relation between
position and momentum operators:

[

P̂ , X̂
]

= P̂ X̂ − X̂P̂ = −i! . (5.13)

In quantum mechanics the expectation value of an operator Ω̂ for a system in
state ψ(x) is given by the L2 scalar product,

〈Ω̂〉 = (ψ, Ω̂ψ) =

∫ ∞

−∞

dx ψ∗(x) Ω̂ψ(x) , (5.14)

provided the wavefunction is normalized so that

‖ψ‖2 =

∫ ∞

−∞

dx |ψ(x)|2 = 1 . (5.15)

The variance of the position is now defined as σ2
x = 〈[X̂ − 〈X̂〉]2〉, and similarly for

the variance of the momentum.
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To derive the uncertainty relation, we take the expectation value of the oper-
ator Ω̂†Ω̂, where Ω̂ = X̂ + iεP̂ and ε is an arbitrary real number (Cohen-Tannoudji
et al., 1977). Since X̂ and P̂ are Hermitian, the adjoint of X̂ + iεP̂ is X̂ − iεP̂ (see
Sec. 1.3.5), and we find

〈Ω̂†Ω̂〉= (ψ, [X̂−iεP̂ ][X̂+iεP̂ ]ψ)=〈X̂2〉+ε2〈P̂ 2〉−iε〈P̂ X̂−X̂P̂ 〉=〈X̂2〉+ε2〈P̂ 2〉−ε! .
(5.16)

Since 〈Ω̂†Ω̂〉 = (Ω̂ψ, Ω̂ψ) = ‖Ω̂ψ‖2, we also have

‖Ω̂ψ‖2 = 〈X̂2〉+ ε2〈P̂ 2〉 − ε! ≥ 0 . (5.17)

The discriminant of this quadratic form in ε is !2−4〈X̂2〉〈P̂ 2〉; if this discrimi-
nant is positive, then the quadratic form has two real roots, and the form itself goes
negative between these two values of ε. To satisfy (5.17) for all ε, we must therefore
have

〈X̂2〉〈P̂ 2〉 ≥ 1

4
!
2 . (5.18)

A change of variables to remove the mean (Cohen-Tannoudji et al., 1977) completes
the derivation of the uncertainty relation, (5.12).

An important manifestation of Heisenberg uncertainty arises when a particle
moving in three dimensions is localized in one direction (say x) by passing it through
a slit. If the slit width is w, then the particle has an uncertainty in the x component
of position of this amount and a corresponding minimum uncertainty in px of order
h/w. An image scientist conversant with the DeBroglie relation, p = h/λ, would
recognize the uncertainty in px as a natural consequence of diffraction.

Energy-time uncertainty Another relation, also frequently referred to as an uncer-
tainty relation in quantum mechanics, involves the energy E and the time t. The
energy-time uncertainty relation conveys very different physics from the position-
momentum principle, however, since time is simply a classical parameter in quantum
mechanics, not an operator. Time can be measured with arbitrary precision.

An electromagnetic wave can induce transitions between two energy states of
an atom. If the states have an energy difference of ∆E and the wave has frequency
ν, then an energy-conserving transition can be made if ν = ∆E/h. In a quantum-
electrodynamical view (discussed further in Sec. 9.1), the field is quantized and the
transition corresponds to absorption or emission of one quantum (photon) of energy
hν. Quantization of the field is, however, not necessary to an accurate quantum-
mechanical description of the transition; almost all of the salient features can be
derived with a purely classical model for the field, using quantum mechanics only
for the atom (see Sec. 9.1.4).

If the atom is initially in the lower-energy state and the field is applied at
t = 0, then there is some probability of observing it in the upper state at time
t = T even if hν *= ∆E. All that is required is that |hν −∆E| be less than about
h/T. From a Fourier viewpoint, this result is not surprising since the windowed
temporal Fourier transform of the field has a frequency spread of order 1/T, and
some frequency component in this range resonates with the atomic transition. For
large T, the Fourier transform of the field over this interval is sharply peaked, and a
transition can be observed only if energy is conserved, in the sense that hν = ∆E.
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5.1.3 Local frequency

Local spectrogram The local spectrogram is the squared modulus of the local
Fourier transform,

Wb(ξ;x0) = |Fb(ξ;x0)|2 , (5.19)

where Fb(ξ;x0) is defined by (5.1). This nonnegative real quantity has many ap-
plications in signal analysis and pattern recognition since it shows how the signal
energy is distributed in both spatial position and spatial frequency.

If Wb(ξ;x0) as a function of ξ (for some choice of window function and some
shift x0) exhibits one or more well-defined peaks, then it is reasonable to say that
the position of each peak is a frequency associated with position x0. For example,
suppose f(x) can be approximated by cos(2πξ0x) over the region defined by the
window when it is centered at x = x0. Then we can write

Wb(ξ;x0) +
∣

∣

∣

∣

∫ ∞

−∞

dx b(x− x0) cos(2πξ0x) exp(−2πiξx)

∣

∣

∣

∣

2

= 1

4
|B(ξ − ξ0)|2 + 1

4
|B(ξ + ξ0)|2 . (5.20)

No cross terms appear in this expression if the window is chosen so that B(ξ − ξ0)
and B(ξ + ξ0) do not overlap at any frequency.

The two terms in (5.20) show peaks when their arguments vanish, namely at
ξ = ±ξ0, so frequencies ξ0 and −ξ0 are both local to x0. Similarly, if f(x) can be
approximated by a square wave of fundamental frequency ξ0 for a window centered
at x0, then Wb(ξ;x0) will exhibit peaks at all odd harmonics of ±ξ0, and all of these
frequencies are local to x0.

Pure phase functions There is one circumstance where a unique local frequency can
be associated with each position x0. That is for a pure phase function with slowly
varying phase. A pure phase function, illustrated in Fig. 5.1, is a complex-valued
function of a real variable x with the form

f(x) = exp[iφ(x)] = cosφ(x) + i sinφ(x) , (5.21)

where φ(x) is real. Since |f(x)| = 1, both the real part and the imaginary part
are fully determined by the phase function φ(x). As we shall see later in the book,
functions of this form have many applications in optics and imaging. Plane waves,
spherical waves and nonabsorbing optical elements such as lenses and prisms can
be described by pure phase functions.

If φ(x) is differentiable to all orders at x = x0, it can be represented as a Taylor
series:

φ(x) = φ(x0) + (x− x0)φ
′(x0) +

1

2
(x− x0)

2 φ′′(x0) + ... . (5.22)

If the phase varies sufficiently slowly for x near x0 that this expansion can be
truncated with the linear term, we can write

f(x) + exp[iφ(x0) + i(x− x0)φ
′(x0)] = const · exp[2πiξloc(x0)x] , (5.23)

where

ξloc(x0) =
1

2π
φ′(x0) . (5.24)
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Fig. 5.1 (a) Plot of a phase φ(x); (b) Real part of the pure phase function
exp[iφ(x)].

The approximation in (5.23) thus has the effect of replacing the pure phase
function f(x) in the vicinity of x0 with a simple, exactly periodic, complex expo-
nential. The spatial frequency of this exponential is just ξloc(x0).

Local period Another way to look at spatial frequency is that it is the reciprocal
of the period (or wavelength) of a periodic function. An approximate period Λ(x0)
of f(x) in the vicinity of x0 can be defined by

f [x0 + Λ(x0)] = f(x0) . (5.25)

For a pure phase function, this means that

φ[x0 + Λ(x0)]− φ(x0) = 2π . (5.26)

If φ′(x0) is approximately constant over a distance Λ(x0), a Taylor expansion shows
that

1

Λ(x0)
+

1

2π
φ′(x0) = ξloc(x0) . (5.27)

Thus ξloc(x0) can be interpreted as the reciprocal of the distance from one crest of
f(x) in the vicinity of x0 to the next (see Fig. 5.2).

Fig. 5.2 Interpretation of local spatial frequency as reciprocal of local period.
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Local frequency of a chirp In Secs. 3.3.7 and 4.3 we discussed quadratic phase
factors, also known as chirp functions. Now we shall discover the reason for the
latter designation.

For a 1D chirp of the form

f(x) = exp(iπβx2) , (5.28)

the local frequency is given from (5.24) by

ξloc(x) = βx . (5.29)

Thus the local frequency increases linearly with x, reminiscent of a bird’s chirp
which increases with time. The parameter β is known as the chirp rate. Because
of the linear variation of local frequency, a chirp is also referred to as linear FM
(frequency modulation).

Pure phase functions and quantum-mechanical operators We saw in Sec. 5.1.2 that
DeBroglie related momentum to spatial frequency via p = h/λ = hξ. Later
Schrödinger represented p by an operator P̂ = −i! d

dx . For a pure phase func-
tion we also know that ξloc is given by (5.24). With f(x) = exp[iφ(x)], we can
write

P̂ f(x) = −i!
d

dx
exp[iφ(x)] = !f(x)

dφ(x)

dx
= hξloc(x) f(x) =

h

Λ(x)
f(x) . (5.30)

The DeBroglie relation thus holds for pure phase functions in the sense that
applying the momentum operator to such functions is the same as multiplying by
Planck’s constant over the local wavelength.

Local frequency and analytic signals Another way to define local frequency is by
means of the analytic signal, introduced in Sec. 4.2.4. For a real spatial function
f(x), the analytic signal fa(x) is a complex function given by the spatial counterpart
of (4.107). If fa(x) is written as

fa(x) = |fa(x)| exp[iφa(x)] , (5.31)

then a local frequency can be defined as

ξa(x0) =
1

2π

dφa(x)

dx
. (5.32)

This definition applies to all functions f(x), without any assumptions about
the phase being slowly varying, but a number of counterintuitive features arise if
the function has a large bandwidth (Cohen, 1977). For example, the local frequency
may not even be contained in the Fourier transform of f(x).

Extension to two or more dimensions The concept of local spatial frequency can be
extended to pure phase functions of two or more real variables. In 2D Cartesian
coordinates, for example, such a function would have the form

f(x, y) = exp[iφ(x, y)] . (5.33)



LOCAL SPECTRAL ANALYSIS 223

By arguments similar to those used in the 1D case, we can define local spatial
frequencies ξloc(x0, y0) and ηloc(x0, y0) for the x and y directions, respectively, by

ξloc(x0, y0) =
1

2π

[

∂

∂x
φ(x, y)

]

x=x0,y=y0

, ηloc(x0, y0) =
1

2π

[

∂

∂y
φ(x, y)

]

x=x0,y=y0

.

(5.34)
A succinct vector notation for these expressions is

ρloc(r0) =
1

2π
∇φ(r0) , (5.35)

where ρloc has Cartesian coordinates (ξloc, j1ηloc), r0 has Cartesian coordinates
(x0, y0), and ∇ is the usual 2D gradient operator. Because of the gradient, ρloc(r0)
is always normal to contours of constant phase.

The vector form of local frequency, (5.35), holds in any number of dimensions.
All that is required is to interpret ρloc, r0 and ∇ as vectors with an appropriate
number of components.

As an example of a multidimensional local frequency, consider a 2D rotationally
symmetric chirp defined by

f(r) = exp(iπβr2) , (5.36)

where r = |r| =
√

x2 + y2. For this function, illustrated in Fig. 5.3, the contours of
constant phase are concentric circles, and the local frequency vector is given from
(5.35) by

ρloc(r) = βr . (5.37)

This frequency vector is directed radially away from the center of the circles.

Fig. 5.3 Illustration of a 2D rotationally symmetric chirp. The function is
complex, and only its real part is shown here.

5.1.4 Gabor’s signal expansion

The local Fourier transform of a function f(x) is a way of expressing the spatial and
frequency content of that function. In this section we look at the inverse problem:
recovering the function from its spatial and frequency content, as expressed by the
local Fourier transform. This discussion will lead to a signal expansion developed by
Dennis Gabor (1900–1979), one of the founders of modern communications theory.
Gabor also brought communications theory into image science, establishing the
viewpoint that pervades this book. He received the Nobel prize for physics in 1971
for the invention of holography.
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Inversion of the local Fourier transform As a step toward Gabor’s signal expansion,
we first discuss a method of inverting the local Fourier transform, (5.1) (de Bruijn,
1973; Bastiaans, 1981). Note that (5.1) is an L2 scalar product of f(x) with the
function b(x− x0) exp(2πiξx). We define a normalized version of this function by

u(x; ξ, x0) =
b(x− x0) exp(2πiξx)
[

∫∞

−∞
dx′ |b(x′)|2

]
1

2

=
b(x− x0) exp(2πiξx)

‖b‖
. (5.38)

Consider the family of functions {u(x; ξ, x0)} indexed by two continuous indices ξ
and x0. Perhaps surprisingly, this family forms a complete set in L2(R); no matter
what we choose for the window function b(x), any function in L2(R) can be expressed
as a linear combination of {u(x; ξ, x0)}. The closure relation (decomposition of the
unit operator) has the form [cf. (1.64)]

∫ ∞

−∞

dξ

∫ ∞

−∞

dx0 u∗(x′; ξ, x0)u(x; ξ, x0) = δ(x− x′) , (5.39)

which can be demonstrated with the help of (2.46) and (2.25). From (5.39) it follows
that

f(x) =

∫∞

−∞
dξ

∫∞

−∞
dx0 Fb(ξ;x0) b(x− x0) exp(2πiξx)

∫∞

−∞
dx′ |b(x′)|2

, (5.40)

which is the desired representation of f(x) in terms of its local Fourier transform.

Sampling Just as the local Fourier transform is redundant, using two variables
where one would suffice, so too is the set {u(x; ξ, x0)} redundant; it is an overcom-
plete set for L2, in the sense that some subset would form a basis. One way to
select such a subset is to sample u(x; ξ, x0) in the variables ξ and x0. We denote the
sample interval in x0 as δx and the interval in ξ as δξ. A basis results if δξ = 1/δx
(Bastiaans, 1981). Samples chosen in this way are said to be points on the Gabor
lattice, illustrated in Fig. 5.4. The sampled counterpart of (5.40), known as Gabor’s
signal expansion, has the form

f(x) =
∞
∑

m=−∞

∞
∑

n=−∞

amnb(x−m δx) exp(2πinx δξ) , (δξ = 1/δx) . (5.41)

Gabor referred to b(x) as the elementary signal; the basis functions in the
Gabor expansion are thus the elementary signal shifted in discrete steps of δx and
modulated with linear phase factors with a discrete set of frequencies n δξ. To force
(5.41) to look like the other expansions in Chap. 4, we define

bmn(x) = b(x−m δx) exp(2πinx δξ) , (5.42)

so that the Gabor expansion becomes

f(x) =
∞
∑

m=−∞

∞
∑

n=−∞

amnbmn(x) . (5.43)

With suitable choice of the coefficients {amn}, this expansion can represent any
function in L2(R). Unfortunately, since the expansion functions are not orthogonal
in general, it is not trivial to find the coefficients.
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Fig. 5.4 The Gabor lattice of sample points in the x-ξ plane.

Degrees of freedom The number of coefficients {amn} required to represent a func-
tion adequately via a Gabor expansion is another measure of the number of degrees
of freedom of the function. To estimate this number, we consider, as in Sec. 5.1,
a function that is spatially limited and approximately bandlimited. If we neglect
the width of b(x) compared to the width L of the function, then L/δx points are
required along the x axis in the Gabor lattice. Note that there is no requirement
that δx satisfy the Nyquist condition, so this number is quite arbitrary. However,
if the function has bandwidth B, then B/δξ = B δx points are required along the
ξ axis. The total number of points required is simply the space-bandwidth product
LB, just as with Nyquist sampling. Whatever we save by sampling more sparsely
along x, we must make up by sampling more finely in ξ. The space-bandwidth
product is the number of parameters required to specify the function, and all the
Gabor expansion does is give us some flexibility in how we distribute the samples
between space and spatial frequency.

An important consequence of this discussion is that we do not need more sam-
ples when we decide to represent a function of one variable with a function of two
variables, in spite of the apparent redundancy of the representation.

Biorthonormality It would be easy to find the coefficients {amn} in the Gabor
expansion if we could find an auxiliary function w(x) such that

∫ ∞

−∞

dx w∗
m′n′(x) bmn(x) = δmm′ δnn′ , (5.44)

where wmn(x) is defined by analogy to (5.42) as

wmn(x) = w(x−m δx) exp(2πinx δξ) . (5.45)

Equation (5.44) is called a biorthonormality relation (Bastiaans, 1981, 1994).
If it is satisfied for some w(x), we can multiply both sides of (5.43) by w∗

m′n′(x) and
integrate over x, obtaining

amn =

∫ ∞

−∞

dx w∗
mn(x) f(x) . (5.46)

The next section describes one approach to finding a suitable w(x). The concept of
biorthonormality will recur in Sec. 5.3 in the context of wavelets.
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Zak transform An elegant approach to finding w(x) that satisfies (5.44) uses the
Zak transform, defined for an arbitrary function µ(x) by (Bastiaans, 1994)

µzak(x, ξ) =
∞
∑

m=−∞

µ(x+m δx) exp(−2πiξm δx) . (5.47)

There is an equivalent form of the Zak transform in the frequency domain. From
the Poisson summation formula (3.197) with g(x) = µ(x) exp(−2πiξx), we can show
that

µzak(x, ξ) = (δx)−1 exp(2πiξx)
∞
∑

m=−∞

M(ξ +m δξ) exp(−2πimx δξ) , (5.48)

where M(ξ) is the Fourier transform of µ(x).
Since (5.47) can be recognized as a Fourier series in ξ (with coefficients that

depend on x), it follows at once that µzak(x, ξ) is periodic in ξ with period δξ.
Moreover, from (5.48) it follows that µzak(x, ξ) is quasiperiodic in x (periodic except
for a phase factor). Thus, for n and k integers,

µzak(x+ k δx, ξ + n δξ) = exp(2πiξk δx)µzak(x, ξ) . (5.49)

Because of this periodicity, µzak(x, ξ) is fully determined by its behavior in a unit
cell of the Gabor lattice, i.e., −1

2
δx < x ≤ 1

2
δx, −1

2
δξ < ξ ≤ 1

2
δξ.

The inverse of the Zak transform follows easily from its interpretation as a
Fourier series in ξ. From (5.47) and (3.19), we see that (Bastiaans, 1994)

µ(x+m δx) =
1

δξ

∫ 1

2
δξ

− 1

2
δξ

dξ µzak(x, ξ) exp(2πiξm δx) . (5.50)

We can find µ(x′) for any x′ = x +m δx from this formula by restricting x to the
unit cell and letting m range over all integers.

Application of the Zak transform to the Gabor expansion We shall now apply the Zak
transform to the problem of finding the coefficients in a Gabor expansion. With a
change of variables and the explicit expressions (5.42) and (5.45) for bmn(x) and
wmn(x), respectively, the biorthonormality relation (5.44) can be written,

∫ ∞

−∞

dx w∗[x− (m′ −m) δx] b(x) exp[2πi(n′ − n)x δξ] = δmm′ δnn′ . (5.51)

Letting k = m−m′ and l = n− n′ and summing over k and l, we find

∞
∑

k=−∞

∞
∑

l=−∞

∫ ∞

−∞

dx w∗[x+ k δx] b(x) exp(−2πix δξ) = 1 . (5.52)

After a nontrivial amount of algebra, including the use of (2.50), we find (Bas-
tiaans, 1994)

δx bzak(x, ξ)w
∗
zak(x, ξ) = 1 . (5.53)

Thus, like many of the transforms considered in the last chapter, the Zak transform
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converts a certain kind of convolution to a simple product; here the convolution is
expressed by the integral in (5.44).

To find the auxiliary function w(x) that corresponds to any given elementary
signal b(x), we must take the Zak transform of b(x), compute its reciprocal, and
perform an inverse Zak transform. The Gabor coefficients {amn} then follow from
(5.46). Even for the simple case of a Gaussian elementary signal, however, this
program leads to quite complicated expressions involving theta functions.

5.2 BILINEAR TRANSFORMS

To this point, most of the integral transform we have considered have been linear,
but it is also of some interest to study bilinear forms, where a product of two
versions of the function being transformed appears in the integrand. We have
already encountered one example of a bilinear form: the autocorrelation integral
defined in Sec. 3.3.6 involves an integral of the product of a function with a shifted
version of the same function. Two other bilinear forms, the Wigner distribution
function and the Woodward ambiguity function, will be introduced here. Stochastic
bilinear forms, including a stochastic version of the Wigner distribution function,
will be discussed in Chaps. 8 and 10.

5.2.1 Wigner distribution function

Another candidate for a local spectrum is the Wigner distribution function (WDF),
introduced by Wigner in 1932 in quantum mechanics and first applied to signal
processing by Ville (1948). For an excellent review of the Wigner representation in
quantum mechanics, see Tatarskii (1983), and for a detailed treatment in a signal-
processing context, see Claasen and Mecklenbräuker (1980). For a snapshot of the
applications of Wigner distributions and phase space in optics at the turn of the
millennium, see the December, 2000 special issue of Journal of the Optical Society
of America A.

The WDF of a 1D function f(x) is defined by

Wf (x, ξ) =

∫ ∞

−∞

dx′ f(x+ 1
2
x′) f∗(x− 1

2
x′) exp(−2πiξx′) . (5.54)

Unlike the local Fourier transform, the WDF is not a linear functional of f(x); it
is a bilinear form since f(x) appears twice with two different shifts. One way of
thinking about the WDF is that it is a sliding-window Fourier transform, where the
function itself serves as the window.

As the reader may demonstrate, Wf (x, ξ) can also be expressed in terms of the
Fourier transform F (ξ) rather than f(x) directly:

Wf (x, ξ) =

∫ ∞

−∞

dξ′ F (ξ + 1
2
ξ′)F ∗(ξ − 1

2
ξ′) exp(2πiξ′x) . (5.55)

Even though (5.55) is written in terms of F (ξ), it is the WDF of f(x), which is not
the same thing as the WDF of F (ξ) itself. For more on this latter function, which
we denote as WF (ξ, x), see Sec. 5.2.3.
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Inversion One way to recover f(x), up to a constant, from the WDF is to perform
an inverse Fourier transform on the ξ variable in Wf (x, ξ), yielding

∫ ∞

−∞

dξ Wf (x, ξ) exp(4πiξx) = f(2x) f∗(0) . (5.56)

The modulus of the constant, |f(0)|, can be found since
∫ ∞

−∞

dξ Wf (x, ξ) = |f(x)|2 . (5.57)

Thus f(x) can be uniquely determined from Wf (x, ξ) except for a constant phase
factor; multiplying f(x) by exp(iα) with α constant leaves Wf (x, ξ) unchanged.

Similarly,
∫ ∞

−∞

dx Wf (x, ξ) exp(−4πiξx) = F (2ξ)F ∗(0) (5.58)

and
∫ ∞

−∞

dx Wf (x, ξ) = |F (ξ)|2 . (5.59)

Pure phase functions revisited Suppose that f(x) = exp[iφ(x)]. Then the Wigner
distribution function is given by

Wf (x, ξ) =

∫ ∞

−∞

dx′ exp[iφ(x+ 1
2
x′)] exp[−iφ(x− 1

2
x′)] exp(−2πiξx′) . (5.60)

If φ(x± 1
2
x′) is expanded in powers of x′ as in (A.176), the quadratic terms cancel.

If cubic and higher terms can be neglected, we find

Wf (x, ξ) +
∫ ∞

−∞

dx′ exp

[

−2πix′

(

ξ −
1

2π

∂φ(x)

∂x

)]

= δ

(

ξ −
1

2π

∂φ(x)

∂x

)

. (5.61)

For slowly varying phase functions, therefore, the WDF is nonzero only if
ξ = ξloc(x). If the Taylor expansion is not strictly valid, the WDF will have some
width around the line ξ = ξloc(x) in the ξ-x plane. Examination of the WDF is
thus a way of assessing the validity of the local-frequency approximation.

A curious nonlocality There are some decidedly counterintuitive features of the
WDF as a local spectrum. For example, suppose f(x) is given by

f(x) = δ(x− x1) + δ(x− x2) . (5.62)

One might expect a local spectrum of this function to be localized spatially around
the two points x1 and x2, but the WDF says otherwise. Some manipulations using
formulas from Chap. 2 show that

Wf (x, ξ) = δ(x− x1) + δ(x− x2) + 2 δ

(

x−
x1 + x2

2

)

cos[2πξ(x1 − x2)] . (5.63)

We see that there is a concentration at the midpoint 1
2
(x1 + x2), even though f(x)

is zero at that point. This nonphysical effect, resulting from the cross-term when a
sum of two delta functions is multiplied by another such sum, is the price we pay
for using a bilinear form rather than the square of a linear form as a spectrum.
Note, however, that the cosine term is an oscillatory function of ξ; if we smooth the
spectrum in the ξ direction with a filter of width greater than 1/(x2−x1), then the
cross-term will be removed.
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Positivity Another objection to the use of the WDF as a spectrum is that it can
take on negative values. One approach to dealing with this problem is to smooth
Wf (x, ξ) by convolving with a 2D Gaussian in x and ξ. It can be shown that
if the width of the Gaussian is chosen properly, the smoothed WDF cannot go
negative (Cohen, 1995). This smoothing operation has an important interpretation
in quantum mechanics; it relates to the choice of ordering of the noncommutative
operators in an expectation value (Tatarskii, 1983).

5.2.2 Ambiguity functions

Another useful extended representation of a function f(x) is obtained by taking a
double Fourier transform of Wf (x, ξ):

Af (ξ
′, x′) =

∫ ∞

−∞

dx

∫ ∞

−∞

dξ Wf (x, ξ) exp[2πi(ξx
′ − ξ′x)] . (5.64)

Use of (5.54), (2.46) and some algebra shows that

Af (ξ
′, x′) =

∫ ∞

−∞

dx f(x+ 1
2
x′) f∗(x− 1

2
x′) exp(−2πiξ′x) . (5.65)

This function, known as the Woodward ambiguity function, arises in radar
signal processing, where the variable x is time and ξ is temporal frequency. In
this application, the ambiguity function measures the degree of similarity between
a signal and a delayed and Doppler-shifted version of the same signal. Note that if
ξ′ = 0, then the ambiguity function is essentially an autocorrelation, analogous to
(3.115) but defined with a symmetric shift.

The ambiguity function is very similar in form to the WDF, both involving a
Fourier transform of the product function f(x + 1

2
x′) f∗(x − 1

2
x′). The difference

is that the transform is over the shift variable x′ in the WDF and over the center
variable x in the ambiguity function.

5.2.3 Fractional Fourier transforms

An interesting line of research emerges if we examine the WDF associated with the
Fourier transform F (ξ) of a signal f(x). This procedure should not be confused
with the ambiguity function, which is the double Fourier transform of the WDF of
a signal f(x); here we are concerned with the WDF of a Fourier transform, not the
Fourier transform of the WDF.

We define the WDF of F (ξ) by analogy to (5.54) as

WF (ξ, x) =

∫ ∞

−∞

dξ′ F (ξ + 1

2
ξ′)F ∗(ξ − 1

2
ξ′) exp(−2πixξ′) . (5.66)

Comparing this integral to (5.55), we see that

WF (ξ, x) = Wf (−x, ξ) . (5.67)

Thus WF is the same function as Wf but rotated by an angle of π/2 in the x-ξ
plane. To compute a Fourier transform, therefore, one can compute the WDF of
f(x), rotate it by π/2, and then compute the inverse WDF. The result will be F (ξ).
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This observation has prompted several authors to consider rotations of the
WDF by angles other than π/2 and to use such rotations to define Fourier transforms
of fractional (or even complex) order. Rotation of the WDF by an angle of pπ/2
corresponds to a fractional Fourier transform of order p. The case p = 1 corresponds
to the usual Fourier transform and p = 0 to the identity. Since the Fourier domain
allows perfect localization of a signal in frequency and the space domain allows
perfect spatial localization, the fractional order p controls the tradeoff between
spatial and frequency localization.

Given a function f(x), we denote its fractional Fourier transform of order p by
fp(x). An explicit formula for fp(x) is (Lohmann, 1993)

fp(x) =

∫ ∞

−∞

dx′ f(x′) exp

[

iπ

tanφ
(x′2 + x2)

]

exp

[

−2iπ

sinφ
xx′

]

(5.68)

where φ is related to the fractional order p by

φ = p
π

2
. (5.69)

If p = 1, then sinφ = 1 and 1/ tanφ = 0, so the ordinary Fourier transform is
obtained. If p is small, so sinφ + tanφ + φ, then (5.68) reduces to the Fresnel
transform of parameter β = 1/φ.

Applications of the fractional Fourier transform to optics and imaging are
discussed by Lohmann (1993), Ozaktis et al. (1994), Ozaktis and Mendlovic (1994),
Alieva et al. (1994) and Dorsch (1995).

5.3 WAVELETS

As discussed in Sec. 5.1.4, the local Fourier transform can be computed as a
sequence of L2 scalar products of a function f(x) with expansion functions
u(x; ξ, x0) ∝ b(x − x0) exp(2πiξx). These expansion functions are parameterized
by a shift x0 and a modulation frequency ξ, and there is considerable freedom in
choosing the elementary signal b(x) from which the expansion functions are con-
structed. In this section we introduce expansion functions known as wavelets, where
the parameters are shift and scale rather than shift and frequency. Again, as we
shall see, there is considerable freedom in how these functions are constructed.

Though wavelets have many historical antecedents in mathematics and physics,
their emergence as practical tools for signal analysis stems from the work of a cadre
of European mathematicians in the 1980s. Notable among this group were Mor-
let, who coined the word wavelets (ondelettes), Meyer, Mallat, Grossmann and
Daubechies.

Comprehensive treatments of wavelets are given by Kaiser (1994), Walter
(1994), Chui (1992) and Daubechies (1992).

5.3.1 Mother wavelets and scaling functions

Just as local Fourier transforms and Gabor expansions are built on elementary
signals, wavelets are built on elementary functions called mother wavelets. Given



WAVELETS 231

a mother wavelet ψ(x), a wavelet ψa,b(x) is defined by

ψa,b(x) =
1

√

|a|
ψ

(

x− b

a

)

. (5.70)

Thus b is the shift of the wavelet, a specifies the scale, and the factor of 1/
√

|a|
ensures that the L2 norm of ψa,b(x) is independent of a. Both a and b range over
the real line, with negative a corresponding to reversal of the sense of the wavelet.
For even wavelets, positive a would suffice.

The Fourier transform of ψa,b(x) is given by

Ψa,b(ξ) =
√

|a| exp(−2πibξ)Ψ(aξ) . (5.71)

The mother wavelet can be derived from a scaling function φ(x), which will usually
be chosen to be smooth and compact in some sense. In addition, we shall require
the scaling functions to have unit L2 norm, so

∫ ∞

−∞

dx |φ(x)|2 = 1 . (5.72)

Given a scaling function, the mother wavelet can be defined by

ψ(x) =
√
2
2N−1
∑

n=0

cN−1−n φ(2x− n) , (5.73)

where the value of N and the coefficients are specific to the family of wavelets cho-
sen. For the Haar wavelet (described below), N = 2 and there are only two terms
in the sum.

The usefulness of scaling functions will be seen below when we discuss mul-
tiresolution analysis. A few wavelets and their scaling functions are illustrated in
Fig. 5.5.

Examples: Haar and spline One specific example that has received considerable
attention is the Haar wavelet, for which the scaling function is rect(x− 1

2
) and the

mother wavelet is given by

ψH(x) = rect
(

2x− 1
2

)

− rect
(

2x− 3
2

)

=







+1 if 0 < x < 1
2

−1 if 1
2
< x < 1

0 otherwise
. (5.74)

For reference, the Fourier transform of this mother wavelet is

ΨH(ξ) =
[1− exp(−iπξ)]2

2πiξ
. (5.75)

Haar wavelets are related to a family of interpolating functions called B-
splines.2 The first-order B-spline is simply the scaling function for the Haar

2Different books give conflicting accounts of the origin of the term; B may stand for basis or
Bernstein, the latter because of a connection to polynomials of the same name (Chui, 1992).
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wavelet, rect(x − 1
2
). The B-spline of order m, denoted Nm(x), is the first-order

function convolved with itself m−1 times (de Boor, 1978). Thus a B-spline of order
m is a piecewise polynomial of degree m− 1. From any B-spline, a corresponding
wavelet can be constructed by

ψm(x) =
3m−2
∑

n=0

qnNm(2x− n) , (5.76)

where an explicit expression for the coefficients {qn} is given in Chui (1992, Chap. 6).
Wavelets constructed this way are piecewise polynomials with compact support.
The higher-order spline wavelets are very similar to Gabor functions, being concen-
trated both spatially and in spatial frequency. The key difference is that the width
and frequency are independent in a Gabor function, while they scale together for
a wavelet. High-frequency wavelets are narrow, while low-frequency wavelets are
broad.

Fig. 5.5 Some wavelets and their scaling functions (adapted from Daubechies,
1992).

5.3.2 Continuous wavelet transform

For a function f(x) in L2(R), the wavelet transform associated with the mother
wavelet ψ(x) is given by

[Wf ] (a, b) = (ψa,b(x), f(x)) =
1

√

|a|

∫ ∞

−∞

dx ψ∗

(

x− b

a

)

f(x) , (5.77)

where −∞ < a < ∞ and −∞ < b < ∞.
The inverse wavelet transform, to be derived below, is given by

f(x) =
1

Cψ

∫ ∞

−∞

da

a2

∫ ∞

−∞

db [Wf ](a, b)ψa,b(x) , (5.78)
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where the constant Cψ is most easily defined in the Fourier domain:

Cψ =

∫ ∞

−∞

dξ
|Ψ(ξ)|2

|ξ|
. (5.79)

The similarity of (5.78) to the corresponding result for the local Fourier transform,
(5.40), should be noted.

For (5.78) to make sense, we must have

Cψ < ∞ . (5.80)

This condition is known as the admissibility condition for the mother wavelet
ψ(x). To satisfy it in spite of the apparent singularity at ξ = 0, we must have
Ψ(0) = 0, which implies that

∫ ∞

−∞

dx ψ(x) = 0 . (5.81)

The admissibility of the Haar wavelets can be verified from (5.75); the inte-
grand in (5.79) is linear for small ξ, so there is no divergence at the origin.

Decomposition of the unit operator The inversion formula (5.78) is equivalent to

1

Cψ

∫ ∞

−∞

da

a2

∫ ∞

−∞

db ψ∗
a,b(x

′)ψa,b(x) = δ(x− x′) . (5.82)

This equation is the decomposition of the unit operator in L2(R) in terms of expan-
sion functions of the wavelet operator W, hence a statement of the completeness of
those functions.

To derive (5.82), we express ψa,b(x) in terms of its inverse Fourier transform.
The integral in (5.82), denoted I, is then given by

I =

∫ ∞

−∞

da

a2

∫ ∞

−∞

db ψ∗
a,b(x

′)ψa,b(x)

=

∫ ∞

−∞

da

|a|

∫ ∞

−∞

db

∫ ∞

−∞

dξ

∫ ∞

−∞

dξ′ Ψ∗(aξ)Ψ(aξ′) exp[2πib(ξ−ξ′)] exp[2πi(ξx−ξ′x′)] ,

(5.83)
where we have used (5.71). The integral over b yields δ(ξ − ξ′) by (2.46), so

I =

∫ ∞

−∞

da

|a|

∫ ∞

−∞

dξ |Ψ(aξ)|2 exp[2πiξ(x− x′)] . (5.84)

Letting a′ = 1/a and ξ′ = aξ, we find

I =

∫ ∞

−∞

dξ′ |Ψ(ξ′)|2
∫ ∞

−∞

da′ exp[2πia′ξ′(x− x′)] = Cψ δ(x− x′) , (5.85)

where the last step has used (2.46), (2.29) and (5.79). From (5.85), the decomposi-
tion of the unit operator in (5.82) follows readily, and from there we get the wavelet
inversion formula (5.78).
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Reproducing-kernel of the continuous wavelet transform If f(x) is in L2(R), then it
can be shown that [Wf ](a, b) is square-integrable with weight a−2 in the 2D a-b
plane, so [Wf ](a, b) is in L2(R2; a−2). Not every function in this space, however,
can be realized by use of the operator W on a function in L2(R), so the space of
realizable wavelet transforms is a subspace of L2(R2; a−2). The reader who has
perused Sec. 1.8 should expect this subspace to be a reproducing-kernel Hilbert
space (Kaiser, 1994).

To find the reproducing kernel, we simply insert the unit operator on L2(R),
denoted I, into the wavelet transform. Symbolically, we write

Wf = WIf . (5.86)

The unit operator has kernel δ(x − x′), which of course we express by means of
(5.82). With the wavelet transform from (5.77) and some shuffling of integrals, we
find that

[Wf ] (a′, b′) =

∫ ∞

−∞

da

a2

∫ ∞

−∞

db K(a′, b′; a, b) [Wf ] (a, b) , (5.87)

where

K(a′, b′; a, b) =
1

Cψ

∫ ∞

−∞

dx ψa′,b′(x)ψ
∗
a,b(x) . (5.88)

Thus the space of all realizable wavelet transforms is a reproducing-kernel
Hilbert space with scalar product defined by the measure a−2da db and kernel given
by (5.88).

5.3.3 Discrete wavelet transform

Orthonormal wavelets The discussion above shows that the set of all wavelets
{ψa,b(x)}, −∞ < a, b < ∞, is complete for L2(R) provided the mother wavelet
is admissible. Like the elementary signals in the local Fourier transform, however,
this set is overcomplete in the sense that some subset will form a basis. We can
sample the wavelet transform and still have an invertible mapping.

A virtually universal sampling of the wavelet transform consists of binary di-
lations (a = 2−j) and dyadic translations (b = 2−jk). The resulting functions
are

ψjk(x) = 2j/2ψ(2jx− k) , j, k integers . (5.89)

With certain conditions on ψ(x), discussed below, every function in L2(R) can be
written as

f(x) =
∞
∑

j=−∞

∞
∑

k=−∞

cjkψjk(x) , (5.90)

where convergence of this series is in L2(R) (see Sec. 3.2.2). If we use the wavelet
series in place of the original function f(x), the L2 norm of the error converges to
zero.

It is straightforward to find the coefficients in (5.90) if we use orthonormal
wavelets, i.e., a set {ψjk(x), j, k integers} satisfying

(ψjk,ψj′k′) =

∫ ∞

−∞

dx ψ∗
jk(x)ψj′k′(x) = δjj′ δkk′ . (5.91)
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For orthonormal wavelets, the coefficients are scalar products (ψjk, f ), which are
samples of the continuous wavelet transform:

cjk = [Wf ](2−j , 2−jk) . (5.92)

The decomposition of the unit operator (or closure relation) for orthonormal
wavelets is

∞
∑

j=−∞

∞
∑

k=−∞

ψjk(x)ψ
∗
jk(x

′) = δ(x− x′) . (5.93)

The simplest example of orthonormal wavelets is the set derived from the
Haar mother wavelet, but many other complete, orthonormal sets exist as well
(Daubechies, 1992; Chui, 1992).

Frames For the continuous wavelet transform, any mother wavelet satisfying the
admissibility condition can be used in (5.77) and (5.78). This transform pair is
symmetric in the sense that the same function ψa,b(x) is used in both the forward
and the inverse transforms (though of course the variables of integration are dif-
ferent). For the discrete wavelet transform, somewhat stronger conditions must be
placed on the choice of mother wavelet, and the forward and inverse transforms
may involve different functions.

The theory that determines when an expansion like (5.90) exists, and allows
us to find the coefficients, is the theory of frames. Frames, like bases, are building
blocks of Hilbert space, allowing expansion of any vector in the space (Zayed, 1993).
Frames for L2(R) are generated from a single function by translations, dilations,
modulations or some combination of these operations. Unlike basis functions, the
functions that form a frame are not necessarily linearly independent; a frame may
be an overcomplete set.

For a set of functions to constitute a frame in L2(R), it must satisfy the sta-
bility condition, which states that there exist constants A and B independent of
f(x), with 0 < A ≤ B < ∞, such that

A‖f ‖2 ≤
∑

j,k

|(ψjk, f )|2 ≤ B‖f ‖2 , (5.94)

for all f(x). Function sets {ψjk(x)} satisfying this condition are called frames, and
the constants A and B are the frame bounds. If A = B, the frame is said to be
tight. If {ψjk(x)} is a complete orthonormal set, then A = B = 1 by Parseval’s
relation, (4.6).

Whenever (5.94) is satisfied, there exists a dual frame of functions {ψjk(x)}
that are biorthogonal to {ψjk(x)}, i.e.,

(ψj′k′ ,ψjk) = δjj′ δkk′ . (5.95)

The expansion coefficients in (5.90) are then given by (Chui, 1992; Zayed, 1993)

cjk = (ψjk, f ) . (5.96)

We have already encountered two examples of dual frames. The functions
{wmn(x)} in (5.44) are a dual frame to the Gabor expansion functions, and the
reciprocal lattice is a dual frame to an ordinary lattice (see Secs. 4.4.6 and 5.1.5).
For orthonormal frames, the dual frame is identical to the original one.
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5.3.4 Multiresolution analysis

The completeness relations (5.90) and (5.93) require summation over both trans-
lations k and dilations j in order to represent an arbitrary function in L2(R) by a
discrete wavelet series. There is, however, a subset of functions in L2(R) that can
be represented by fixing j and summing only over k. This set of functions defines
a Hilbert space, which we shall denote as Wj , with a scalar product defined by

(f1j(x), f2j(x))j =
∞
∑

k=−∞

c∗1jkc2jk , (5.97)

where c1jk and c2jk are the wavelet coefficients for f1j(x) and f2j(x), respectively,
and we are considering only orthonormal wavelets.

Since any function in L2(R) can be represented by summing the wavelet series
over both j and k, it follows that any such function can be decomposed into a sum
of functions, each of which is in one of the subspaces Wj . Moreover, for orthonormal
wavelets, these functions are mutually orthogonal, so the spaces Wj are orthogonal
subspaces of L2(R). In formal language, this says that L2(R) can be expressed as
the direct sum of the subspaces Wj. We thus write

L2(R) = · · ·⊕ Wj−2 ⊕ Wj−1 ⊕ Wj ⊕ Wj+1 ⊕ · · · , (5.98)

where ⊕ denotes direct sum. A more transparent expression of the same mathe-
matics is

f(x) =
∞
∑

j=−∞

fj(x) , f(x) in L2(R) , fj(x) in Wj . (5.99)

The component fj(x) is said to represent f(x) at the scale 2−j. Often in image
analysis, it turns out that the important information about an object or a scene is
contained in only a few scales.

Another way of decomposing L2(R) is to lump together the subspaces Wj ,
creating a cumulative space Vj defined by

Vj = · · ·⊕ Wj−2 ⊕ Wj−1 . (5.100)

Thus Vj is spanned by wavelets {ψik(x), i < j,−∞ < k < ∞}.
The function in Vj corresponding to f(x) is

fVj
(x) =

j−1
∑

i=−∞

fi(x) =
j−1
∑

i=−∞

∞
∑

k=−∞

cikψik(x) . (5.101)

It follows from this equation that if some function g(x) is in Vj , then g(2x) is in
Vj+1, and conversely.

The spaces Vj , called scaling subspaces, are not orthogonal; Vj is contained en-
tirely in Vj+1. The full set of scaling subspaces {Vj}, with j being an integer ranging
from −∞ to ∞, is said to form a multiresolution ladder of nested Hilbert spaces,
and the sequence of functions {fVj

(x)} is called the multiresolution analysis of
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f(x). As j increases, fVj
(x) contains finer details and more closely approximates

f(x), i.e., fVj
(x) → f(x) in the L2 sense as j → ∞.

The definition (5.100) of Vj can also be written recursively as

Vj+1 = Vj ⊕ Wj . (5.102)

Since Wj consists of wavelets with scale index j while Vj consists of wavelets with
scale index less than j, and we are assuming orthogonal wavelets, Wj is the orthog-
onal complement of Vj in Vj+1. Thus any function in Vj+1 can be written uniquely
as the sum of a function in Wj and one in Vj . This recursive characteristic leads to
fast algorithms for multiresolution analysis.

Let us suppose that one of the scaling subspaces, say j = 0, can be generated
by integer translates of a scaling function φ(x). In other words, V0 consists of all
functions in L2(R) that can be written as linear combinations of φ(x − k). Then,
by (5.102), V1 consists of the functions in V0 supplemented by linear combinations
of wavelets ψ0k(x). By (5.73), however,

ψ0k(x) = ψ(x− k) =
√
2
2N−1
∑

n=0

cN−1−n φ(2x− 2k − n) . (5.103)

Thus a function fV1
(x) in V1 can be expressed as a linear combination of

{φ(x− k)} and {φ(2x− k)} for integer k. However, φ(x− k) itself can be expressed
as a linear combination of {φ(2x−k)} since V0 is a subspace of V1. It follows that all
functions in V1 are linear combinations of {φ(2x− k)}. Continuing this process up
and down the ladder, we see that every scaling subspace Vj is spanned by φ(2jx−k)
for integer k. We are thus led to define basis functions by analogy to (5.89) as

φjk(x) = 2j/2φ(2jx− k) . (5.104)

The set {φjk(x), j fixed, k an integer} is a basis for Vj , though not necessarily an
orthonormal one.

As a trivial example, suppose we wish to approximate a function f(x) with a
function in VJ using Haar functions. The Haar scaling function is a rect function
with width 1, so φJk(x) has width 2−J. Approximating f(x) with a function in VJ

thus amounts to representing it with rectangles of this width. Similarly, a Haar
wavelet expansion like (5.90) truncated at j = J − 1 allows for the finest detail to
be a rectangle of width 2−J.

More reproducing-kernel Hilbert spaces Each of the spaces Vj is a reproducing-kernel
Hilbert space (see Sec. 1.8). If we assume that V0 is spanned by integer translates of
the scaling function φ(x), then the reproducing kernel for that subspace is (Walter,
1994)

h0(x, x
′) =

∞
∑

k=−∞

φ(x− k)φ∗(x′ − k) . (5.105)

The reproducing kernel for Vj is obtained from h0(x, x′) by (Walter, 1994)

hj(x, x
′) = 2jh0(2

jx, 2jx′) , (5.106)

and the reproducing kernel for the wavelet subspace Wj is given by

kj(x, x
′) = 2j

∞
∑

k=−∞

ψ(2jx− k)ψ∗(2jx′ − k) . (5.107)
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The derivation of these kernels parallels the derivation of (5.87) but with sums
replacing integrals.



6
Group Theory

Group theory is the mathematics of symmetry, and many imaging systems have
symmetry properties. An ordinary circular lens, for example, is symmetric un-
der arbitrary rotations about its optical axis, while a tomographic system with M
equally spaced projections is symmetric under rotations of 2π/M. A shift-invariant
system, as the name implies, is symmetric with respect to translations. In this sec-
tion we develop the tools needed to describe and exploit these symmetry properties.
Sections 6.1 through 6.6 survey the mathematics, and Sec. 6.7 makes the connection
with physics and image science. Section 6.8 then shows how group theory leads to
an expanded understanding of familiar concepts such as convolution and Fourier
transformation.

An excellent place to begin reading about symmetry and groups is the clas-
sic essay by Weyl (1952). Succinct introductions to the mathematics of group
theory are given by Kanatani (1990), Margenau and Murphy (1956) and Messiah
(1962). More complete treatments are found in Hamermesh (1989), Armstrong
(1988), Fässler and Stiefel (1992), Lomont (1959) and numerous other texts.

6.1 BASIC CONCEPTS

6.1.1 Definition of a group

Subject to certain conditions listed below, a group is a set of elements and a com-
bination rule referred to as multiplication. This rule must allow us to combine any
ordered pair of elements and obtain a unique result called the product of the two
elements, but it need not have any relation to more familiar kinds of multiplication.

We denote the elements of a group by boldface script letters; the group itself
will be denoted by boldface block letters. Thus a group G consists of elements G1,

239
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G2, ...,GN. The number of elements N is called the order of G. The combination
rule will be denoted by simple juxtaposition of elements, just as with ordinary al-
gebraic multiplication. Thus GmGn denotes the product of Gm and Gn.

In order for the elements {Gn} to form a group, the following conditions must
be satisfied:

(a) The product of any two elements in the group is an element in the group;

(b) The product of any two elements in the group is unique;

(c) Multiplication is associative: (GiGj)Gk = Gi(GjGk);

(d) There exists a unique identity element E in the group such that
EGn = GnE = Gn for all elements Gn in the group;

(e) Every element in the group has a unique inverse in the group, i.e., for every
element Gn in the group, there is another element G−1

n in the group such that
GnG

−1
n = G−1

n Gn = E.

Two examples As a simple example of a group, consider the set of all integers
(positive, negative and zero) and let the multiplication operation be arithmetic
addition. This group satisfies the conditions listed above. The identity element is
0, the inverse of any integer n is −n, which is also an element of the group, and
all possible products (sums) are members of the group. The order of this group is
(countably) infinite.

As an example of a finite group, consider the complex numbers {1, i,−1,−i}
and let the multiplication rule be ordinary complex multiplication. Again, this set
meets the requirements for a group. The identity element is the number 1, every
possible product is an element of the group, and every element has an inverse in the
group. For example, −1 is the inverse of 1, and −i is the inverse of i. The order of
this group is four, and it is frequently denoted as C4.

6.1.2 Group multiplication tables

A convenient way to depict a finite group is by its group multiplication table in
which an entry in row n and column m is the product GnGm. Since group ele-
ments are distinct, all entries in a row (or column) of a multiplication table must be
distinct.

Fig. 6.1 Group multiplication table for the group C4. In (a), the table is
depicted for the set {1, i,−1,−i}, while in (b) it is depicted in abstract form.
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The multiplication table for the group C4 is shown in Fig. 6.1a, where the rows
and columns are labelled by the group elements (1, i,−1,−i). We can also denote
the elements of C4 abstractly as, say, (E,R1,R2,R3) rather than (1, i,−1,−i).
The group multiplication table in this notation is reproduced in Fig. 6.1b.

An advantage of the abstract notation is that very different physical entities
may have the same group properties. In many applications in physics and image
science, for example, group elements refer to geometrical transformations. In C4 we
can think of R1 as a 90◦ rotation, R2 as a 180◦ rotation, and R3 as a 270◦ rotation.
Then E is either no rotation or a 360◦ one. The product of two such rotations, say
RnRm, is interpreted as the rotation Rm followed by Rn. For example, R1R3

is a 270◦ rotation followed by a 90◦ one, which is the identity. In this way it is easy
to verify that the multiplication table in Fig. 6.1b, originally derived for complex
multiplications of the element {1, i,−1,−i}, holds also for physical rotations of a
square. This equivalence is hardly surprising when we recall the Argand represen-
tation of a complex number, discussed in App. B, but it does emphasize that the
essence of a group is the multiplication table, not the physical interpretation of the
elements.

Group multiplication is not necessarily commutative. It may happen that
GnGm "= GmGn for one or more pairs of elements in the group. On the other hand,
if the group is commutative, then it has some special properties discussed below,
and it is given a special name: a commutative group is said to be Abelian. The
group C4 is Abelian.

An example of a non-Abelian group is D3, defined by the multiplication table
of Fig. 6.2. For reasons that will appear in Sec. 6.4, the elements of this group
are designated as {E,R1,R2,M1,M2,M3}. The multiplication table shows that
M1M2 = R2, for example, but M2M1 = R1, so the elements do not commute.

Fig. 6.2 Group multiplication table for the group D3, the symmetry group
of an equilateral triangle.

6.1.3 Isomorphism and homomorphism

We saw above that the set of numbers {1, i,−1,−i} and the set of rotations of a
square have the same multiplication table. We can say that the two sets are two
different physical realizations of the same group C4, or in more formal language
we can say that the two groups are isomorphic. Two groups G and G′ of order
N are isomorphic if there exists a one-to-one correspondence that preserves the
multiplication table (Margenau and Murphy, 1956), i.e.,
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(a) To each element Gj of G, there corresponds one and only one element G′
j of G

′,
and conversely;

(b) GiGj = Gk implies that G′
iG

′
j = G′

k for all i, j, k = 1, ..., N, and conversely.

A related concept is homomorphism. A group G is homomorphic to G′ if:

(a) To each element Gj of G, there corresponds one and only one element G′
j of

G′, and to each element G′
j of G′, there corresponds at least one (and perhaps

more than one) element of G.

(b) GiGj = Gk implies that G′
iG

′
j = G′

k for all i, j, k = 1, ..., N, but the converse
doesn’t necessarily hold.

Thus isomorphism is homomorphism that is one-to-one and onto (see Sec. 1.3.4).

6.2 SUBGROUPS AND CLASSES

6.2.1 Definitions

A subgroup of a group G is a subset of the elements of G that itself constitutes
a group under the same multiplication rule as for G. For example, (1,−1) is a
subgroup of (1, i,−1,−i) under complex multiplication. Since every group must
contain the identity element, that element is a member of every subgroup, and the
identity by itself is a subgroup of order one for any group.

Groups can be uniquely partitioned into conjugacy classes, or simply classes
for short. To define a conjugacy class, we must first define conjugacy (from the
Latin conjugare, to yoke together). Two elements Gn and Gm in a group G are
said to be conjugate to each other if there exists an element Gk in G such that

G−1
k GnGk = Gm . (6.1)

In this equation, Gm is called the transform of Gn by Gk.
Conjugate elements have the following properties (Margenau and Murphy,

1956):

(a) Every element in a group is conjugate with itself;

(b) If Gn is conjugate to Gm, then Gm is conjugate to Gn;

(c) If Gn is conjugate to both Gm and Gp, then Gm and Gp are conjugate to each
other.

A class is a complete set of elements that are conjugate to each other. The union
of all classes is the group itself, and no element can appear in more than one class.

6.2.2 Examples

To see how to decompose a group into its classes, we examine the groups C4 and
D3, with multiplication tables given by Figs. 6.1 and 6.2, respectively.

In an Abelian group like C4, all elements commute, and it follows at once that

G−1
k GnGk = GnG

−1
k Gk = Gn . (6.2)
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Thus each element is transformed only into itself, so an Abelian group of order N
can always be decomposed into N classes of one element each. Hence C4 consists
of 4 classes.

Since D3 is not Abelian, its classes are more interesting. The identity element
E commutes with all other elements, so it forms a class by itself. There is also a
class consisting of R1 and R2 since

E−1R1E = R1 , R−1
1 R1R1 = R1 , R−1

2 R1R2 = R1 ,

M−1
1 R1M1 = R2 , M−1

2 R1M2 = R2 , M−1
3 R1M3 = R2 . (6.3)

A similar argument shows that {M1,M2,M3} forms a class. Thus D3 can be
decomposed into three classes, one each with 1, 2 and 3 elements.

6.3 GROUP REPRESENTATIONS

6.3.1 Matrices that obey the multiplication table

Given a group multiplication table, it is always possible to find a set of square ma-
trices (not necessarily distinct) that behave in the same way under ordinary matrix
multiplication. This set of matrices is called a representation of the group. Explic-
itly, a set of nonsingular K ×K matrices {M(Gn), n = 1, ..., N} is a representation
of the group G = {Gn, n = 1, ..., N} if

M(Gn)M(Gm) = M(GnGm) . (6.4)

The order K of the matrices is referred to as the dimensionality1 of the represen-
tation.

If the mapping of group elements to matrices is an isomorphism, the represen-
tation is faithful, which is possible only if all of the matrices are distinct. If a new
representation is formed by applying a similarity transformation to each matrix in
a representation, the two representations are said to be equivalent.

A trivial KD representation of any group of order N is a set of N K ×K unit
matrices. This set satisfies the multiplication table for any group, but it is clearly
not faithful. Since K is arbitrary, an infinite set of (trivial) group representations
can be constructed in this way.

As a more interesting example, C4 can be represented by

M(E) =

[
1 0
0 1

]
, M(R1) =

[
0 1

−1 0

]
,

M(R2) =

[
−1 0
0 −1

]
, M(R3) =

[
0 −1
1 0

]
. (6.5)

It can be verified that this set of matrices follows the multiplication table of Fig.
6.1. In this example, K = 2, so the representation is two-dimensional.

1This is yet another meaning of the term dimension. For some others, see Sec. 2.4.6.
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6.3.2 Irreducible representations

A K ×K matrix MK×K is said to be in lower-block-triangular form if

MK×K =

[
MQ×Q 0Q×P

MP×Q MP×P

]
, (6.6)

where MQ×Q, MP×Q and MP×P are matrices with dimensions indicated by the
subscripts, P + Q = K, and 0Q×P is a Q × P matrix of all zeros. Similarly, the
matrix is said to be in upper-block-triangular form if the block of zeros is in the
lower left corner. If MP×Q can be made zero, the matrix is block-diagonal.

A matrix representation of a group {M(Gn)} is reducible if there exists a
similarity transformation S such that S−1M(Gn)S is block-triangular (with the
same P and Q) for all n. The representation is said to be fully reducible if there is
a similarity transformation that transforms all of the matrices into block-diagonal
form.

A representation that is not reducible is said to be irreducible, and irreducible
representations will turn out to be crucial in physical applications of group theory.
A 1D representation is irreducible, of course.

Example The 2D representation of C4 in (6.5) is fully reducible. If we let

S =
1√
2

[
1 i
i 1

]
, (6.7)

then the four matrices in (6.5) transform to

S
−1

M(E)S =

[
1 0
0 1

]
, S

−1
M(R1)S =

[
i 0
0 −i

]
,

S
−1

M(R2)S =

[
−1 0
0 −1

]
, S

−1
M(R3)S =

[
−i 0
0 i

]
. (6.8)

Since each of these matrices is block-diagonal (with 1 × 1 blocks), we can read off
two new 1D representations. The upper-left blocks are, in sequence, (1), (i), (−1),
(−i), and this set of scalars satisfies the multiplication table. (In fact, it is precisely
the set we used to define the group in the first place.) Similarly, the lower-right
blocks in (6.8) give (1), (−i), (−1), (i), and this set also satisfies the multiplication
table. Two other 1D representations of C4 are: (1), (1), (1), (1); and (1), (−1), (1),
(−1).

How many irreducible representations are there? There are some rules that let us
deduce the number of irreducible representations of a group and the dimensionality
of each without actually finding the representations. Derivations of these rules are
given in any standard text on group theory (e.g., Hamermesh, 1989).

The first rule is that the number of nonequivalent irreducible representations is
also the number of conjugacy classes in the group. If we have partitioned the group
into classes, we know immediately how many irreducible representations there are.
For example, we saw above that an Abelian group of order N has N classes, so
it also has N irreducible representations. In the case of C4, N = 4, and the four
irreducible representations are enumerated above just after (6.8).
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Another useful rule is an algebraic one: If a group G of order N has M
irreducible representations, and the mth such representation has dimensionality
Nm, then it can be shown that (Hamermesh, 1989)

M∑

m=1

N2
m = N . (6.9)

When applied to an Abelian group, for which M = N, this constraint shows that all
irreducible representations must be 1D since (6.9) can be satisfied only if Nm = 1
for all m.

On the other hand, if the number of classes M is less than the order N, then
at least one of the irreducible representations must have a dimensionality greater
than 1. For example, we know that D3 has six elements but only three classes. In
this case, (6.9) is sufficient to completely determine the dimensionalities of all three
irreducible representations. There is only one combination of three integers such
that the sum of their squares is 6, namely 12 + 12 + 22 = 6, so D3 must have one
2D irreducible representation and two 1D ones.

6.3.3 Characters

If the set of K ×K matrices {M(Gn)} constitutes a representation of a group G,
then the character of Gn in this representation, denoted χ(Gn), is the trace of the
corresponding matrix:

χ(Gn) = tr {M(Gn)} =
K∑

k=1

Mkk(Gn) . (6.10)

The trace of a square matrix is unchanged by similarity transformations, so
equivalent representations have the same sets of characters. For the same reason,
elements in the same conjugacy class have the same characters in any given repre-
sentation.

A matrix representation is irreducible if and only if the sum of the squares of
the characters equals the order of the group, i.e.,

N∑

n=1

|χ(Gn)|2 = N . (6.11)

When it is necessary to distinguish characters arising from different represen-
tations, we shall use a superscript in parentheses. Thus χ(m)(Gn) is the character
of element Gn in the mth representation. Most texts on group theory include char-
acter tables, listing the character χ(m)(Gn) associated with each group element Gn

for each irreducible representation.

6.3.4 Unitary irreducible representations and orthogonality properties

We now state without proof two classical theorems attributed to Schur and Frobe-
nius. For the proofs, see Schensted (1976), Margenau and Murphy (1956) or Hamer-
mesh (1989).



246 GROUP THEORY

The first theorem says that any irreducible representation of a group can be
transformed into a unitary representation by means of a similarity transformation.
That is, it is possible to find a matrix S such that S−1M(Gn)S is unitary for all
n. This theorem allows us to work with unitary irreducible representations at will.
Since similarity transformations do not affect traces, all of the results above on
characters still apply if we choose to make the irreducible representations unitary.

The second theorem states that unitary irreducible representations have a pow-
erful orthogonality property. Let {M(m)(Gn)} and {M(m′)(Gn)} be the unitary
irreducible representations m and m′, respectively, with dimensionalities Nm and
Nm′ . Then it can be shown (Hamermesh, 1989, Chap. 3) that

N∑

n=1

[
M (m)

ij (Gn)
]∗

M (m′)
kl (Gn) =

N

Nm
δmm′ δik δjl . (6.12)

Summing a product of matrix elements for unitary irreducible representations over
the group elements thus yields zero unless they are exactly corresponding elements
from the same irreducible representation.

For fixed i, j and m, we can think of the set of numbers

{M (m)
ij (Gn), n = 1, ..., N} as a vector m

(m)
ij , so that (6.12) is the scalar product

between m
(m)
ij and m

(m′)
kl . With this view, it might appear that there are too many

orthogonality relations implied by (6.12) since there are at most N orthogonal vec-
tors in an ND space. For each m, there are N2

m combinations of i and j and hence

that many different vectors m
(m)
ij , and we must also allow m to vary. From (6.9),

however, we see that there are N different vectors m(m)
ij , so (6.12) is plausible.

If we let i = j and k = l in (6.12) and sum over i and k, we get an orthogonality
relation for the characters:

N∑

n=1

[
χ(m)(Gn)

]∗
χ(m′)(Gn) = N δmm′ , (6.13)

in agreement with (6.11) if m = m′.
The orthogonality relations (6.12) and (6.13) pair up matrices or characters

associated with the same group element Gn. It is natural to inquire if there is
any orthogonality relation involving different elements. For example, is there an
orthogonality relation involving χ(m)(Gn) and χ(m)(Gk)? In general, the answer to
this question must be no since elements in the same class have the same characters,
but there is an important orthogonality relation if we restrict Gn and Gk to be in
different classes. For an Abelian group, this is no restriction at all since each class
consists of one element.

Let Lj be the number of elements in the jth class, and denote the character of

all of these elements in the mth unitary irreducible representation by χ(m)
j . Let M

denote the number of (nonequivalent) irreducible representations, which is also the
number of classes. Hamermesh (1989) proves the following relations:

M∑

j=1

Lj

[
χ(m)
j

]∗
χ(m′)
j = N δmm′ . (6.14)

M∑

m=1

[
χ(m)
j

]∗
χ(m)
k =

N

Lj
δjk . (6.15)
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These matrix orthogonality relations will lead to corresponding orthogonality rela-
tions on certain functions when we discuss group transformations on Hilbert spaces
in Sec. 6.6.

6.4 SOME FINITE GROUPS

We now expand our repertoire of groups, introducing several new ones that are
important in physics and image science.

6.4.1 Cyclic groups

A cyclic group is one in which all elements, including the identity, can be generated
from one basic element by raising it to various powers. The cyclic group of order
N is denoted CN, and we have already studied the special case N = 4. If the basic
element is denoted R, then CN consists of elements

Rn = Rn , n = 1, ..., N , RN = E . (6.16)

Since R can be interpreted as rotation by an angle of 2π/N, CN is also called the
N-fold rotation group.

It follows from (6.16) that CN is Abelian for all N, so it has N classes and N
irreducible representations, all 1D. We can label these representations by an index
m = 1, ..., N . The character of Rn in the mth irreducible representation is

χ(m)(Rn) = exp(−2πimn/N) , (6.17)

which we recognize immediately as the kernel of the discrete Fourier transform (see
Sec. 6.8.4 for more on this connection). The orthogonality relation (6.13) becomes

N∑

n=1

exp

[
−2πi

(m−m′)n

N

]
= N δmm′ , (6.18)

which we have encountered in the discussion of the DFT [cf. (3.327) and (3.328)].
The cyclic group of order 2 is called the inversion group. The elements are

frequently denoted {E,I} with the multiplication table shown in Fig. 6.3. The two
elements in this group are the identity E and the inversion2 I. The irreducible
representations of this group are {1, 1} and {1,−1}.

Fig. 6.3 Group multiplication table for the group C2, known either as the
cyclic group of order 2 or the inversion group.

2Do not confuse the inversion with the identity operator, which we also call elsewhere in this
book. By convention, the identity operator is denoted by the letter E (for German Einheit) in
group theory, and we use the script .
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6.4.2 Dihedral groups

Geometrically, the dihedral group DN is the set of transformations that leave a
regularN -gon (polygon withN sides) unchanged. The example we have used above,
D3, is the symmetry group of an equilateral triangle. This figure is unchanged by
a rotation of 120◦, so the group includes two rotation operators, but it also includes
three mirror reflection operators, one passing through each vertex. The mirror
operators are the ones designated as Mn, n = 1– 3, in Fig. 6.2. The six operators
can be divided into three classes, so there are three irreducible representations. Two
of the irreducible representations are 1D and one is 2D.

The dihedral group D4 is the symmetry group of a square. It includes three
rotations (90◦, 180◦, and 270◦) as well as four mirror reflections. With the identity
operator, this makes a total of 8 elements. This group has five classes, hence five
irreducible representations (four 1D and one 2D).

In general, the dihedral group of order 2N (which is denoted DN here but D2N

in some books), has 1
2 (N+3) classes if N is odd and 1

2N+3 classes if N is even. For
odd N there are always two 1D irreducible representations, and for even N there
are four 1D ones; in both cases, all of the remaining irreducible representations are
2D (James and Liebeck, 1993). The cyclic group CN is always a subgroup of DN .

6.5 CONTINUOUS GROUPS

6.5.1 Basic properties

Consider the limit of the cyclic group CN as N → ∞. Since a circle is the limit
of a regular polygon as the number of sides tends to ∞, C∞ is the group of ro-
tations that leave a circle unchanged. Instead of labeling the rotation operator
with a discrete index n in this case, it is convenient to use a continuous label θ,
specifying the rotation angle. Thus the group C∞ consists of the set of operators
{R(θ), 0 ≤ θ < 2π}.

Other kinds of continuous groups are also important in various physical ap-
plications. A general affine linear transformation of a real number to another real
number, for example, is given by x′ = ax+b. The group of all such transformations
is a two-parameter continuous group, where a group element is specified by an
ordered pair (a, b) and written G(a, b). Generalizing, we can write an element of a
k-parameter continuous group as G(θ), where θ is a kD parameter vector.

The requirements for these elements to form a group are directly analogous to
those for discrete groups (Hamermesh, 1989):

(a) There must be a parameter value θ0 such that G(θ0) is the identity element E,
i.e., G(θ0)G(θ) = G(θ)G(θ0) = G(θ).

(b) For each value θ, there must be a corresponding value θ such that
G(θ)G(θ) = G(θ)G(θ) = G(θ0) = E.

(c) The product of any two elements must be a member of the group. In other
words, for any pair of parameter vectors θ1 and θ2, it must be possible to find
another vector θ3 = f(θ1,θ2) such that G(θ1)G(θ2) = G(θ3).

In point (c), if we require f(θ1,θ2) to be infinitely differentiable with respect to the
components of θ1 and θ2, the group is said to be a Lie group.
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6.5.2 Linear, orthogonal and unitary groups

The general linear group or full linear group L(N) on an ND space is the set of
all nonsingular N ×N matrices. For N = 2, for example, a general linear mapping
from (x, y)t to (x′, y′)t is given by

[
x′

y′

]
=

[
a b
c d

] [
x
y

]
. (6.19)

If the matrix elements are real and chosen so that the matrix is invertible, then
this transformation is an element of the four-parameter group denoted L(2). The
group operation is 2 × 2 matrix multiplication, and it is easy to show that L(2) is
a Lie group.

If we add the further condition that the determinant of the transformation
matrix be one, L(N) is known as the special linear group of order N, denoted
SL(N). The term special in this context indicates simply unit determinant. The
group SL(2) is a 3-parameter continuous group since the condition on the determi-
nant eliminates one of the free parameters.

As discussed in App. A (Sec. A.3.2), an N ×N matrix is called unitary if its
adjoint equals its inverse. A unitary matrix with real elements is referred to as an
orthogonal matrix. An orthogonal matrix has determinant ±1; a unitary matrix
can have a complex determinant, but its modulus is necessarily one. The group of
all unitary N ×N matrices is called U(N), and the corresponding group of orthog-
onal matrices is called O(N). The group of unitary matrices with determinant +1
is SU(N) (for special unitary group), and the group of orthogonal matrices with
determinant +1 is SO(N). Since an orthogonal N × N matrix performs a pure
rotation on an N × 1 vector, SO(N) is the rotation group in N dimensions.

6.5.3 Abelian and non-Abelian Lie groups

Like finite groups, continuous groups are termed Abelian if all elements com-
mute. The 2D rotation group C∞ is Abelian since R(θ1)R(θ2) = R(θ2)R(θ1) =
R(θ1 + θ2). The 3D rotation group SO(3), on the other hand, is not Abelian since
a rotation of θ around the x axis followed by a rotation of φ around the z axis does
not yield the same point as a rotation of φ around the z axis followed by a rotation
of θ around the x axis.

Even in 2D, the full symmetry group of a disk is not Abelian. This group
includes all of the rotations in C∞, but it also includes improper rotations, which
include inversions. In 2D, a pure rotation can be represented by a 2 × 2 matrix of
real entries with determinant = 1. Improper rotations enlarge this group to allow
determinant = −1. In general, an element of the 2D rotation-inversion group can
be represented by (Margenau and Murphy, 1956)

M(θ, d) =

[
cos θ sin θ

−d sin θ d cos θ

]
, (6.20)

where d = 1 for proper rotations and −1 for improper ones. The simplest improper
rotation is inversion through the origin, which is described by M(π,−1). It is easy
to see that M(θ, 1) and M(θ′,−1) do not commute.



250 GROUP THEORY

The 1D affine group is another example of a Lie group that is not Abelian
(Hamermesh, 1989). An element of this two-parameter group transforms a point x
on the real line to another point x′ according to

x′ = S(a, b)x = ax+ b . (6.21)

The group multiplication rule is

S(a′, b′)S(a, b)x = a′(ax+ b) + b′ = S(a′a, a′b+ b′)x , (6.22)

which is not the same thing as S(a, b)S(a′, b′)x. The set of pure translation op-
erators {S(1, b)} does, however, form an Abelian subgroup of the 1D affine group.
Likewise, the scale group {S(a, 0)} (also called the dilation group) is an Abelian
subgroup of the affine group.

Continuous one-parameter Abelian groups such as C∞ have an infinite num-
ber of 1D irreducible representations, and no other finite-dimensional3 irreducible
representations. As with finite Abelian groups, the characters are identical with the
irreducible representations. If we impose the reasonable condition that the represen-
tations be single valued, then the set of irreducible representations is denumerably
infinite and can be labelled with a single integer m. For C∞, the character associ-
ated with R(θ) in representation m will be denoted χ(m)(θ); by analogy to (6.17),
it is given by

χ(m)(θ) = e−imθ , m = 0,±1,±2, ... . (6.23)

Determination of irreducible representations and characters for non-Abelian
Lie groups is much more complicated, leading to discussion of Lie algebras, in-
finitesimal generators and commutators, all of which are beyond our present needs.
An excellent reference on these topics is Hamermesh (1989).

6.6 GROUPS OF OPERATORS ON A HILBERT SPACE

So far we have considered groups of geometrical transformations such as rotations,
translations and mirror reflections. These transformations map one point in a Eu-
clidean space to another, say r → r′, where r and r′ are both vectors in R2. In
Sec. 6.6.1 we shall see how to connect these geometrical transformations to trans-
formations of a function f(r) that itself maps R2 to R1 or C1. If the functions in
question live in a Hilbert space, we can relate a group of geometrical operators to
a group of operators in the Hilbert space. Subspaces of this Hilbert space are dis-
cussed in Secs. 6.6.2 and 6.6.3, and some useful orthogonality relations are derived
in Sec. 6.6.4.

Other operators on a Hilbert space, including various integral transforms, have
been introduced previously, and the mathematics discussed here is equally appli-
cable to these kinds of operators whenever a useful group can be identified. A
connection between geometrical transformations and other Hilbert-space operators
will be given in Sec. 6.7, and integral transforms will be explored further in Sec. 6.8.

3Some one-parameter Lie groups also have infinite-dimensional irreducible representations, though
C∞ does not.
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6.6.1 Geometrical transformations of functions

The connection between geometrical transformations and associated transforma-
tions of functions is straightforward. A nonsingular geometrical operator G maps
a point r to a new point r′ = Gr. A transformed function f ′(r′) is defined by
assigning it the value at point r′ that the original function had at point r, i.e.,
f ′(Gr) = f(r). The functional transformation operator T corresponding to the
geometrical operator G is thus

T f(r) = f ′(r) = f(G−1
r) . (6.24)

If we have a group of geometrical operators {Gn}, we can define a corresponding
group of functional operators {Tn} simply by adding subscripts in (6.24). There is
an isomorphism between {Tn} and {Gn}; the multiplication rule for the set {Tn}
is the same as the one for {Gn} since

TmTnf(r) = f(G−1
n G−1

m r) = f
[
(GmGn)

−1
r
]
. (6.25)

To demonstrate that these functional transformation operators are linear, we
note that

Tn[αf1(r) + βf2(r)] = αf1(G
−1
n r) + βf2(G

−1
n r) = αTnf1(r) + βTnf2(r) , (6.26)

proving the linearity. Moreover, if Gn is a continuous mapping, then f(Gnr) is
a square-integrable function if f(r) is, so Tn is a linear operator mapping an L2

Hilbert space to itself.

6.6.2 Invariant subspaces

A subspace S of a Hilbert space U is said to be invariant under a group T if, for
any vector f in S and any operator Tn in T, Tnf is also a vector in S. For a concrete
mental picture, consider a 2D subspace or plane in Hilbert space. If this plane is an
invariant subspace, then application of any group operator to a vector in the plane
produces another vector in the plane. In a function space, each vector is a function,
and each function in the plane can be written as a linear combination of two basis
functions. Saying that this plane is invariant under the group means that a group
operator acting on any linear combination of the basis functions can only produce
some other linear combination of them.

More generally, K linearly independent (but not necessarily orthogonal) func-
tions {uk(r), k = 1, ...,K}, form a basis for a KD space. Any function f(r) that
can be written as

f(r) =
K∑

k=1

αkuk(r) (6.27)

is a vector in this space. Once the basis functions are given, an arbitrary function
in the space is specified by a KD column vector of coefficients α.

Now consider the effect of the group operator Tn on f(r). If a KD space
containing f(r) is invariant to the group, then the transformed function Tnf(r) can
be written as a linear combination of the basis functions, i.e.,

Tnf(r) =
K∑

k=1

αkTnuk(r) =
K∑

j=1

β(n)
j uj(r) , (6.28)
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where
{
β(n)
j

}
is the set of coefficients for Tnf(r). Again, we can arrange these

coefficients into a column vector β(n). Since the basis vectors themselves are in the
space, we can also write

Tnuk(r) =
K∑

j=1

Mjk(Tn) uj(r) , (6.29)

where {Mjk(Tn), j = 1, ...,K} is the appropriate set of expansion coefficients for
Tnuk(r).

Since the basis functions are linearly independent, (6.28) and (6.29) imply that

β(n)
j =

K∑

k=1

Mjk(Tn)αk , (6.30)

or, in matrix-vector form,

β(n) = M(Tn)α . (6.31)

The set of K × K matrices {M(Tn)} obeys the group multiplication table of the
group of Hilbert-space operators T and hence forms a KD representation of that
group. As noted previously, the multiplication rule for the set {Tn} is the same as
the one for {Gn}, so the matrices {M(Tn)} are essentially the matrices {M(Gn)}
introduced in Sec. 6.3, but now associated with a specific invariant subspace of a
Hilbert space and a particular basis. The subspace S is said to be reducible if the
matrix representation {M(Tn)} is reducible; otherwise it is irreducible.

In summary, if the operators of a group T act on some Hilbert space, and
the KD subspace S of that Hilbert space is invariant under T, then any set of
basis functions {un(r)} for S can be used to form a KD matrix representation of
the group T. The same basis functions can be used to represent any function in
the subspace as a KD vector, and the matrices of the group representation allow
transformation of these vectors by the group operators.

Construction of invariant subspaces The paragraph above lists some nice features
of invariant subspaces, but how do we find such subspaces? The simplest way is
to start with an arbitrary function u(r) in the Hilbert space and apply each of the
group operators in turn, obtaining the set {un(r), n = 1, ..., N}, where, with (6.24),

un(r) = Tnu(r) = u(G−1
n r) . (6.32)

If T1 is the identity operator E, then u1(r) is the original function u(r).
These functions are not necessarily orthogonal, but they can be linearly inde-

pendent if u(r) is sufficiently general. For example, if the group includes rotation
by some angle φ, we must make sure that the chosen u(r) is not invariant to this
rotation. With this caveat, the set {un(r)} will be assumed to be linearly indepen-
dent and hence to constitute a basis for an ND subspace of the Hilbert space.

A function in this subspace is one that can be represented in the form

f(r) =
N∑

n=1

αnun(r) =
N∑

n=1

αnTnu(r) . (6.33)
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The original function u(r) is in the subspace since it corresponds to αn = δn1.
To see that the subspace is invariant under the group, operate on f(r) with

any operator in the group, yielding

Tkf(r) =
N∑

n=1

αnTkTnu(r) . (6.34)

By the definition of a group, TkTn is also a unique element of the group, which we
can denote as Tj . As n ranges from 1 to N for any fixed k, Tj becomes each of the
group elements exactly once, so

Tkf(r) =
N∑

j=1

αn(j,k)Tju(r) =
N∑

j=1

αn(j,k)uj(r) , (6.35)

where αn(j,k) is the coefficient αn associated with Tn = T −1
k Tj in (6.33). Since

Tkf(r) has the same form as (6.33), it is also in the subspace for all k, so the
subspace is indeed invariant under the group.

6.6.3 Irreducible subspaces

The subspace obtained by the procedure just outlined will necessarily be reducible
since the dimensionality of the subspace is the order of the group, and the only
finite group for which there is an irreducible representation with dimension equal to
the order of the group is the trivial group consisting only of the identity [see (6.9)].
To find irreducible subspaces, we could set about to reduce the one specified by
(6.33), but there is a shortcut based on character tables. For simplicity, we consider
an Abelian group, so that all irreducible representations are 1D.

Irreducible subspaces for Abelian groups Given an arbitrary function u(r) in a Hilbert
space and a finite Abelian group of transformations in that space, we define

u(m)(r) =
1

N

N∑

n=1

[
χ(m)(Tn)

]∗
Tnu(r) , (6.36)

where N is the order of the group and χ(m)(Tn) is the character associated with
group element Tn in the mth unitary irreducible representation.

We contend that the function u(m)(r) constructed in this way is the basis for the
mth (1D) irreducible representation, so that the only functions in the corresponding
1D subspace of the Hilbert space are scalar multiples of u(m)(r). If this contention is
correct, u(m)(r) must transform according to a simple version of (6.29), with K = 1
and Mjk(Tn) replaced by the character χ(m)(Tn).

To check this contention, we operate on u(m)(r) with any operator in the group,
say Tk. By the same argument that led to (6.35), we find

Tku
(m)(r) =

1

N

N∑

j=1

[
χ(m)(T −1

k Tj)
]∗

Tju(r) . (6.37)

For a 1D irreducible representation, however, the character of a product is the
product of the characters, so χ(m)(T −1

k Tj) = χ(m)(T −1
k )χ(m)(Tj). Moreover, since
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we can always work with unitary representations,
[
χ(m)(T −1

k )
]∗

= χ(m)(Tk), and
we are left with

Tku
(m)(r) = χ(m)(Tk)

1

N

N∑

j=1

[
χ(m)(Tj)

]∗
Tju(r) = χ(m)(Tk) · u(m)(r) , (6.38)

in accordance with (6.29). Hence, any u(m)(r) constructed according to (6.36),
using characters of a 1D irreducible representation, is invariant under the group;
the action of the operator Tk is simply to multiply u(m)(r) by the corresponding
character, and we say that u(m)(r) transforms according to the mth irreducible
representation of the group. Every function in the 1D subspace constructed from
u(r) and associated with the mth irreducible representation must be a scalar mul-
tiple of u(m)(r).

From the basis functions for all of the irreducible representations,
{u(m)(r),m = 1, ...,M}, we can recover the original u(r) merely by summing:

u(r) =
M∑

m=1

u(m)(r) =
1

N

M∑

m=1

N∑

n=1

[
χ(m)(Tn)

]∗
Tnu(r) . (6.39)

This result can be derived from (6.15), but some comment on the notation is
needed first. For an Abelian group (the present concern), there is one element per

class, so χ(m)
j = χ(m)(Tj) and (6.15) can be rewritten as

1

N

M∑

m=1

[
χ(m)(Tj)

]∗
χ(m)(Tj′) = δjj′ . (6.40)

Now we simply let Tj′ be the identity operator E and recognize that χ(m)(E) = 1 for
a 1D irreducible representation. Then (6.39) follows readily from (6.36) and (6.40).

Equation (6.39) shows that any function in the Hilbert space can be decom-
posed into a sum of basis functions of the irreducible representations of a group of
operators that act on that Hilbert space, at least if the group is Abelian. For the
generalization to the non-Abelian case, the reader is referred to Hamermesh (1989).

Example Consider the cyclic group C4 of rotations by multiples of π/2 in the
complex plane and denote the function to be decomposed as u(z) = u(riθ). The
transformation operator Tn in this case corresponds to letting θ → θ + (n− 1)π/2
or, equivalently, letting z → in−1z. The irreducible representations of C4 are listed
in Sec. 6.3.2, and the characters are identical to these representations since C4 is
Abelian. From the characters and (6.36), we find

u(1)(z) = 1
4 [1 · u(z) + 1 · u(iz) + 1 · u(−z) + 1 · u(−iz)] ;

u(2)(z) = 1
4 [1 · u(z) + i · u(iz)− 1 · u(−z)− i · u(−iz)] ;

u(3)(z) = 1
4 [1 · u(z)− 1 · u(iz) + 1 · u(−z)− 1 · u(−iz)] ;

u(4)(z) = 1
4 [1 · u(z)− i · u(iz)− 1 · u(−z) + i · u(−iz)] . (6.41)

Since the sum of these four equations is u(z), (6.39) is satisfied.
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Another manifestation of the same mathematics is the group of powers of the
Fourier operator. We saw in Sec. 3.3.5 that FFu(x) = u(−x), so the square of the
Fourier operator is the coordinate-inversion operator which maps u(x) to u(−x).
From this observation it is easy to deduce that the group {Fn−1, n = 1, ..., 4} is
isomorphic to C4. Application of each operator in turn to an arbitrary function
u(x) yields: u(x), U(x), u(−x), U(−x), where U(x) is the Fourier transform of u(x)
after the substitution ξ → x. With this interpretation of the operator, the basis
functions (6.41) become

u(1)(x) = 1
4 [u(x) + U(x) + u(−x) + U(−x)] ;

u(2)(x) = 1
4 [u(x) + iU(x)− u(−x)− iU(−x)] ;

u(3)(x) = 1
4 [u(x)− U(x) + u(−x)− U(−x)] ;

u(4)(x) = 1
4 [u(x)− iU(x)− u(−x) + iU(−x)] . (6.42)

No matter what we start with for u(x), each of these functions transforms into a
constant times the same function under any group operator. In particular, each is
a self-Fourier function (Mendlovic et al., 1994).

6.6.4 Orthogonality of basis functions

We are often required to evaluate scalar products such as

(f1(r), f2(r)) =

∫

∞

d2r f∗
1 (r) f2(r) . (6.43)

It can be shown (Hamermesh, 1989) that this integral must be zero if f1(r) and
f2(r) are basis functions for two different irreducible representations of some group.
The only requirement we need to impose on the group is that it consist of transfor-
mations on the Hilbert space in which the scalar product is defined. Moreover, even
if f1(r) and f2(r) are not basis functions for irreducible representations, we know
from the discussion above that they can be written as sums of such basis functions,
and the only cross-products in f∗

1 (r) f2(r) that contribute to the scalar product are
those involving basis functions from the same irreducible representation.

We can go a step further if we choose to make all of the irreducible representa-
tions unitary, which we can always do by use of a suitable similarity transformation.
Then the orthogonality relations discussed in Sec. 6.3 come into play and lead to a
powerful orthogonality relation on the basis functions.

Suppose that the set of functions {u(m)
p (r), p = 1, ..., Nm} transforms according

to the mth unitary irreducible representation of T, that is, according to (6.29) with
unitary matrices. Then it can be shown that (Schensted, 1976; Hamermesh, 1989)

(
u(m)
p (r), u(m′)

p′ (r)
)
= V δmm′ δpp′ , (6.44)

where the quantity V does not depend on p. In words, (6.44) says that basis
functions of two different unitary irreducible representations (m "= m′) or two
different rows of the same representation (m = m′, p "= p′) are orthogonal. If
the basis functions are also normalized, then V = 1 in (6.44).
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Simple example: Even and odd functions The reader is, no doubt, already familiar
with one special case of (6.44). Consider the Hilbert space L2(R) and the inversion
group of Fig. 6.3. This simple two-element group, when recast as a functional
transformation, has elements TE and TI with the interpretations

TEf(x) = f(x) , TIf(x) = f(−x) . (6.45)

To construct a basis for a 2D invariant subspace of L2(R), we start with an arbi-
trary function f(x) in that space and, as in (6.32), apply the two group operators,
yielding basis vectors f(x) and f(−x). The corresponding group representation is,
of course, reducible since the inversion group is Abelian and has only 1D irreducible
representations. Since the irreducible representations are (1, 1) and (1,−1), the
basis functions for the irreducible representations are given from (6.36) as

fe(x) =
1
2 [f(x) + f(−x)] , fo(x) =

1
2 [f(x)− f(−x)] , (6.46)

where the subscripts e and o stand for even and odd, respectively.
The original 2D subspace consisted of all functions that could be written as

linear combinations of f(x) and f(−x), and it is clear that all of these functions
can also be written as linear combinations of fe(x) and fo(x). In other words,
any function can be written uniquely as the sum of an even and an odd function.
However, the new 1D subspaces spanned (separately) by fe(x) and fo(x) are also
invariant under the inversion group. Explicitly,

TEfe(x) = fe(x) , TIfe(x) = fe(x) ; (6.47)

TEfo(x) = fo(x) , TIfo(x) = −fo(x) = const · fo(x) . (6.48)

Since fe(x) and fo(x) are basis functions for two different unitary irreducible
representations of a group of transformations on L2(R), it follows from the discussion
below (6.43) that their scalar product on L2(R) must be zero. Of course, this is
nothing more than the familiar statement that the integral of the product of an
odd function and an even function over a symmetric interval must vanish, but it
serves as a prototype of a much broader class of symmetry relations that can lead
to vanishing scalar products.

6.7 QUANTUM MECHANICS AND IMAGE SCIENCE

The main purpose of this section is to convince the reader that a discussion of group
theory belongs in a book on image science. Toward this end, we take a brief look
at how group theory is useful in quantum mechanics and suggest a formal analogy
between quantum mechanics and image science. An excellent general reference for
quantum-mechanical applications of group theory is Tinkham (1964).

6.7.1 Smattering of quantum mechanics

A central tenet of quantum mechanics is that all physical observables can be repre-
sented by Hermitian operators on a Hilbert space. The only possible outcome of a
physical measurement is one of the eigenvalues of the operator. If the system is in
an eigenstate of the operator in question, then the result of the measurement will,
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with probability one, be the corresponding eigenvalue. Otherwise, the probability
of obtaining a particular eigenvalue, say λn, is the probability of finding the system
in the corresponding eigenstate. Thus quantum mechanics is intimately connected
with eigenanalysis of Hermitian operators.

The most important Hermitian operator in quantum mechanics is the
Hamiltonian H, corresponding to the total energy of a system. It operates on
the wavefunction of the system, which for simplicity we assume to be a function
of a single 3D spatial variable r. This assumption is valid if we consider only a
single electron in a potential field and ignore its spin. With this simplification, the
Hilbert space in which H operates can be taken as L2(R3). The eigenfunctions of
H, vectors in this Hilbert space, are called stationary states of the system, and the
eigenvalues specify the allowed energy levels in the system. The eigenvalue equation
for H, called the time-independent Schrödinger equation, is

Hψk(r) = Wkψk(r) . (6.49)

Though the notation does not yet show it, several linearly independent eigen-
functions may correspond to the same eigenvalue Wk, in which case the level is said
to be degenerate. As we shall see, degeneracies can (and usually do) arise as a
result of symmetry properties of the Hamiltonian.

6.7.2 Connection with image science

As discussed in Chap. 1 and developed much more fully in Chap. 7, an imaging
system can often be described in terms of a linear operator mapping one Hilbert
space, called object space, to another Hilbert space called image space. If the two
spaces are not identical, then the operator cannot be Hermitian. This is a pity
since Hermitian operators have many nice mathematical properties, as detailed in
Chap. 1.

Fortunately, we can always construct a relevant Hermitian operator simply by
forming H†H, where † denotes the adjoint operator. Eigenanalysis of this new
operator, which maps object space to itself, then provides a full system characteri-
zation, including sets of orthonormal basis vectors for both object and image space
(see Sec. 1.5). This method, called singular-value decomposition, is a central
theme of this book.

Singular-value decomposition begins with solving the key eigenvalue equation
(1.111),

H†Huk(r) = µkuk(r) . (6.50)

The formal analogy between (6.49) and (6.50) is strong; the most important theo-
retical task in both quantum mechanics and image science is to solve an eigenvalue
equation for a Hermitian operator.

As in quantum mechanics, the eigenfunctions uk(r) may be degenerate, and
again degeneracies usually arise from symmetries; in image science it is symmetries
of H†H that play a key role.

6.7.3 Symmetry group of the Hamiltonian

When group theory is applied to quantum mechanics, the discussion usually begins
with an enumeration of the operators that commute with the Hamiltonian of the
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system. That is, we look for a set of operators {Tn} such that

T −1
j HTj = H . (6.51)

An equivalent statement is
[Tj ,H] = 0 , (6.52)

where [Tj ,H] is the commutator of the two operators, defined by

[Tj ,H] = TjH −HTj . (6.53)

The operators {Tj} usually arise from various symmetry properties of H. A
simple example is the inversion operator defined by (6.45). If the Hamiltonian itself
is symmetric with respect to inversion, r → −r, then it does not matter if we
apply the inversion to a function and then operate with H or first operate with
H and then apply the inversion. The inversion operator then commutes with the
Hamiltonian. The group of all such symmetry operators is called the symmetry
group of the Hamiltonian, and that group plus the Hamiltonian itself is called a
complete set of commuting observables. Note, however, that this latter set does
not necessarily form a group since the Hamiltonian may not have an inverse.

An analogous symmetry group of the imaging system consists of the set of
operators that commute with H†H. Thus all of the results obtained by applying
group theory to quantum mechanics have immediate applicability to image science.

6.7.4 Symmetry and degeneracy

We now expand on the connection between symmetry and degeneracy. The discus-
sion here is specifically for quantum mechanics, but the corresponding results for
image science are obtained by substituting H†H for H everywhere.

Suppose we have a set of linearly independent eigenfunctions ψ(p)
k (r) of H,

satisfying (6.49) with the same eigenvalue Wk, i.e.,

Hψ(p)
k (r) = Wkψ

(p)
k (r) , p = 1, 2, ..., Pk . (6.54)

This set of eigenfunctions is called a multiplet in quantum mechanics, and Pk is
called its multiplicity. As discussed in Chap. 1, the eigenfunctions can be chosen
(via Gram-Schmidt orthogonalization) to be orthonormal.

Now consider the group of transformation operators {Tn, n = 1, ..., N}, all of
which commute with H. The action of Tn on an arbitrary function in the relevant
Hilbert space is defined by (6.24). Since H and Tn commute, we have

HTnψ
(p)
k (r) = TnHψ(p)

k (r) = WkTnψ
(p)
k (r) . (6.55)

Thus the transformed function Tnψ
(p)
k (r) is also an eigenfunction of H, with the

same eigenvalue as for ψ(p)
k (r).

This might be a trivial result since it may happen that Tnψ
(p)
k (r) is simply a

constant times ψ(p)
k (r), which means that the functional form is unchanged by the

transformation. In that case, ψ(p)
k (r) is an eigenfunction of both H and Tn.

On the other hand, Tnψ
(p)
k (r) might also be a new, linearly independent, func-

tion, but it still has to be an eigenfunction of H with eigenvalue Wk. That means it
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can be written as a linear combination of functions in the multiplet. The coefficients
in this linear superposition can depend on k and Tn, so we write

Tnψ
(p)
k (r) =

Pk∑

p′=1

M (k)
p′p (Tn)ψ

(p′)
k (r) . (6.56)

The right-hand side still satisfies the Schrödinger equation with eigenvalue Wk.
Moreover, since the transformed function has the general form of (6.29), the set

of functions {ψ(p)
k (r), p = 1, ..., Pk} spans an invariant subspace of the symmetry

group of the Hamiltonian.
The set of matrices {M(k)(Tn)} forms a representation of the symmetry group.

Since the eigenfunctions in the multiplet are orthonormal, the elements of this
matrix are given by4

M (k)
p′p (Tn) =

(
ψ(p′)
k ,Tnψ

(p)
k

)
. (6.57)

6.7.5 Reducibility and accidental degeneracy

Is the representation {M(k)(Tn)} defined by (6.57) reducible? If it is, it means that

there is a subset of the functions {ψ(p)
k (r)} that transforms among itself under the

group transformations {Tn}. Functions in this subset are, of course, degenerate with

those in its complement since all of the functions {ψ(p)
k (r)} are eigenfunctions of the

Hamiltonian with the same eigenvalue Wk, but this degeneracy is not mandated by

the symmetry of the Hamiltonian. We know that transformed functions Tnψ
(p)
k (r)

are degenerate if Tn commutes with H, but the converse does not necessarily hold;
two degenerate functions are not necessarily related by a group transformation.

Degeneracy unrelated to the elements of the symmetry group is said to be
accidental. True accidental degeneracy, however, almost never occurs; if we com-
pute eigenvalues to floating-point precision, it would be surprising if two unrelated
eigenvalues were exactly the same. What we call an accidental degeneracy is more
often due to hidden symmetries, elements of the symmetry group of the Hamilto-
nian that have not been taken into account. The accident is a result of our state of
knowledge.

If there is no accidental degeneracy, the eigenfunctions {ψ(p)
k (r)} are degener-

ate because of symmetry. That is, the eigenfunctions transform among themselves
under the group transformations {Tn}, and there is no subset that does so. The
degenerate eigenfunctions then span an irreducible subspace of the symmetry group
of the Hamiltonian, and the matrices in (6.57) form an irreducible matrix represen-
tation of that group.

Thus, barring accidental degeneracies, the degenerate eigenfunctions

{ψ(p)
k (r)} transform according to some irreducible representation of the symmetry

group of the Hamiltonian. The multiplicities of the eigenvalues of H correspond
to the dimensionalities of the irreducible representations of its symmetry group. In
particular, 1D irreducible representations must be associated with nondegenerate
eigenfunctions (again barring accidents).

4In Dirac notation, this matrix element would be written 〈k, p′| n|k, p〉.
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6.7.6 Parity

To illustrate the ideas developed above, consider a system with inversion symmetry.
Physically, this means that there is no way to distinguish r from −r; they are
equivalent position vectors. Mathematically, inversion symmetry means that the
inversion operator TI commutes with the Hamiltonian. The 1D definition of TI

given in (6.45) generalizes, in multiple dimensions, to

TIf(r) = f(−r) . (6.58)

If there is no other symmetry operator (other than the identity) that also
commutes with the Hamiltonian, the symmetry group is the inversion group, with
the multiplication table given in Fig. 6.3. Since this group is Abelian, it has only 1D
irreducible representations and hence no degeneracies (or, at least, none mandated
by symmetry).

Since H commutes with TI , a nondegenerate eigenfunction of H must also be
an eigenfunction of TI . That is, if

Hψk(r) = Wkψk(r) , (6.59)

then
TIHψk(r) = HTIψk(r) = WkTIψk(r) , (6.60)

so TIψk(r) is also an eigenfunction of Hwith eigenvalue Wk.
Since there is no degeneracy, we must have

TIψk(r) = Cψk(r) , (6.61)

where C is a constant.
Another interpretation of (6.61) is that ψk(r) is an eigenfunction of TI with

eigenvalue C. Operating on both sides of (6.61) with TI and recognizing that T 2
I

is the identity shows that C2 = 1 or C = ±1. Thus (6.61) can be rewritten as

TIψk(r) = ±ψk(r) . (6.62)

Nondegenerate eigenfunctions of an inversion-symmetric Hamiltonian must there-
fore be either purely even or purely odd. They are said to be functions of definite
parity, with even parity referring to the plus sign and odd parity referring to the
minus sign in (6.62).

From a group-theoretical perspective, an even eigenfunction transforms accord-
ing to the irreducible representation (1, 1), while an odd one transforms according
to (1,−1).

6.7.7 Rotational symmetry in three dimensions

In classical mechanics and quantum mechanics we often consider central potentials,
where the force acting on a particle is a function of only the distance of the particle
from some center of attraction. In a coordinate system with origin at that center
point, the potential is independent of the angular coordinates. In the language of
group theory, the symmetry group of the Hamiltonian is SO(3).

As we noted in Sec. 6.5.3, SO(3) is not Abelian. It has a set of irreducible
representations usually denoted by an index +, (+ = 0, ...,∞), and the +th irreducible
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representation has 2++1 dimensions. This set exhausts the list of odd-dimensional
irreducible representations of SO(3), but there are also even-dimensional ones. The
basis functions for the even-dimensional irreducible representations have the appar-
ently unphysical property that ψ(φ) "= ψ(φ + 2π), but they must nevertheless be
considered for particles with spin (Tinkham, 1964).

The basis functions for the +th odd-dimensional irreducible representation are
the spherical harmonics Y m

" (θ,φ) with m ranging from −+ to +. (See Sec. 4.1.4 for
a definition of the spherical harmonics.) If we ignore spin, the wavefunction for an
electron in a central potential is thus specified by three indices, usually taken as n,
+ and m, and it has the form

ψn"m(r, θ,φ) = un"m(r)Y m
" (θ,φ) . (6.63)

States with the same n and + but different m are necessarily degenerate.

6.8 FUNCTIONS AND TRANSFORMS ON GROUPS

A function is a mapping from some set, called the domain of the function, to the
real or complex numbers. A familiar example of the domain is the real line or some
portion of it, but we can be much more general in thinking about functions. In
this section we shall allow the domain to be the elements of a group. If we have
some rule for assigning a real or complex number to each element, we have defined
a function on a group. From there it is straightforward to generalize further to
functionals or integral transforms on groups. In particular, the familiar concepts of
convolution and Fourier transformation can be extended.

We shall introduce these ideas by way of finite groups. Then we shall introduce
the important concept of invariant integration, from which we can discuss convo-
lutions and Fourier transforms on infinite groups. Many of the results obtained in
Chaps. 3 and 4 will recur and be reinterpreted from a group-theoretic perspective.
Then we shall revisit Chap. 5, and especially wavelets, from this new viewpoint.

6.8.1 Functions on a finite group

Consider a finite group G of order N and denote the elements of this group by
G1,G2, ...,GN . A function on the group is any rule that associates a unique scalar,
denoted f(Gn), with any element Gn. Since the product of two group elements is
also a group element, this same rule gives us a definition of f(GnGm) for all n and m
in (1, ..., N). Since we have not yet imposed any restrictions on either the function
or the group structure, any sequence of N numbers fn can be considered a function
on any group of order N.

These functions can be embedded in a Hilbert space by defining a scalar prod-
uct. The definition of the scalar product of two functions f1(Gn) and f2(Gn) on G

is

(f1, f2) =
N∑

n=1

f∗
1 (Gn) f2(Gn) , (6.64)
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and the norm is defined by

||f ||2 =
N∑

n=1

|f(Gn)|2 . (6.65)

The space L2(G) is the set of all functions on G with finite norm.
As in Sec. 6.6.1, we can define a group of transformations {Tm} by [cf. (6.24)]:

Tmf(Gn) = f(G−1
m Gn) . (6.66)

The group T of transformations is isomorphic to the original group G. That is, if
GiGj = Gk, then TiTj = Tk.

In ordinary 3D vector analysis, a scalar is a quantity that is independent of
coordinate transformations. In the vector space L2(G), scalar products are invariant
to the transformations defined in (6.66), i.e.,

(Tmf1,Tmf2) =
N∑

n=1

f∗
1 (G

−1
m Gn) f2(G

−1
m Gn) =

N∑

k=1

f∗
1 (Gk) f2(Gk) = (f1, f2) , (6.67)

where we have used the fact that G−1
m Gn is a unique element Gk of G (by the

definition of a group). Since both k and n run over all group elements, the sum
over k is identical to the sum over n.

The invariance demonstrated in (6.67) shows that each operator Tm is unitary.
On a finite-dimensional space, any operator that merely shuffles components is
unitary.

Example The considerations above can be illustrated with the rotation group
CN , where the element Gn can be interpreted as rotation in a plane by an an-
gle θn = 2πn/N. To define a function on this group, we associate a number f(θn)
with each of N angles uniformly distributed around a circle. A transformation of
this function by Tm corresponds to cyclically rotating the numbers by m steps, so
that f(θn) → f(θn − θm). Scalar products are unchanged by this rotation, which
just cyclically relabels the numbers.

6.8.2 Extension to infinite groups

The equations above can be extended to encompass denumerably infinite groups just
by letting N → ∞. The more interesting case is continuous groups as introduced in
Sec. 6.5, where group elements are specified by a continuous parameter θ (possibly
a vector). We shall now denote elements of this group by Gθ (which is the same
thing as G(θ) in Sec. 6.5) and the group itself as G.

A function on G can be defined by devising a rule for associating a scalar
f(Gθ) with each group element Gθ, or equivalently with each θ. In the latter view,
the function could be denoted as f(θ).

A group T of transformations on functions on G can be defined by analogy to
(6.66) as

Tθ′f(Gθ) = f(G−1
θ′ Gθ) . (6.68)

As in the case of discrete groups, T is isomorphic to G.



FUNCTIONS AND TRANSFORMS ON GROUPS 263

Example: Translation group A translation in the 2D plane is specified by a 2D
vector r, and the set of all possible translations forms an Abelian Lie group. Thus
a function on the translation group could be denoted f(r). This function might
represent some physical object, for example, the radiant exitance (see Sec. 9.2 for
a definition) on a plane at a point defined by translation r from an origin.

A function on the translation group can itself be translated by the operator
Tr′ , yielding

Tr′f(r) = f(r− r
′) . (6.69)

With this form, we are not far from being able to discuss convolution; all we need
is a definition of integration on a group.

Invariant integration Several of the expressions in Sec. 6.8.1 require summation over
group elements. In the continuous case, the sums must be replaced by integrals over
θ, but we have many options on how to define this integral. A useful way to resolve
the ambiguity is to require an invariance property analogous to the one displayed in
(6.67). To achieve this invariance, we define a left-invariant integration measure
or left Haar measure dθL by requiring that

∫

G

dθL f(Gθ′Gθ) =

∫

G

dθL f(Gθ) , (6.70)

for all Gθ′ in G. We could also define a right-invariant integration measure or
right Haar measure dθR by requiring that

∫

G

dθR f(GθGθ′) =

∫

G

dθR f(Gθ) , (6.71)

but we shall use the left-invariant measure exclusively.
For any particular continuous group, (6.70) and (6.71) are sufficient to deter-

mine the invariant measures uniquely. For the translation group, where
θ = r = (x, y), dθL = dθR = dxdy . If the left- and right-invariant measures
coincide, as in this example, the group is said to be unimodular.

Hilbert space To treat a function f(Gθ) on a continuous group G as a vector in a
Hilbert space, a scalar product is defined by

(f1, f2) =

∫

G

dθL f∗
1 (Gθ) f2(Gθ) . (6.72)

This scalar product is invariant to the transformations Tθ′ defined in (6.68).
The norm is given by ||f ||2 = (f, f), and L2(G) is the space of all functions

on G with finite norm.

6.8.3 Convolutions on groups

We encountered several different kinds of convolution (continuous, discrete, Mellin,
Laplace) in Chap. 4. Now we shall see that all of them are special cases of a more
general concept called group convolution.

Given two functions f(Gn) and p(Gn) on a discrete group G of order N (pos-
sibly infinite), their group convolution is defined by

[p ∗G f ] (Gm) =
N∑

n=1

p(G−1
n Gm) f(Gn) . (6.73)
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Similarly, for a continuous group, convolution is defined by

[p ∗G f ] (Gθ′) =

∫

G

dθL p(G−1
θ

Gθ′) f(Gθ) . (6.74)

The connection of this expression to ordinary, continuous convolution is im-
mediate. If G is the translation group, θ = r, f(Gθ) = f(r), p(G−1

θ
Gθ′) = p(r′ − r)

and

[p ∗G f ] (Gθ′) = [p ∗ f ] (r′) =
∫

∞

2r p(r′ − r) f(r) , (6.75)

which is the usual expression.
For this example, and for Abelian groups in general,

[p ∗G f ] (Gθ) = [f ∗G p] (Gθ) , (6.76)

but for non-Abelian groups, the order matters.

Mellin convolution The Mellin convolution is defined in (4.85) by

[p ∗M f ] (x) =

∫ ∞

0

da

a
p
(x
a

)
f(a) . (6.77)

We shall now show that this expression is group convolution on the scale group
discussed in Sec. 6.5.3; the exercise will also serve to clarify the idea of invariant
measures.

A scale transformation is specified by a positive scale factor a, defined so that
p(x/a) is a magnified version of p(x); that is, p(x/a) has the same value at x = ax0

as p(x) does at x = x0. Thus the transformation operator Ta and the scale operator
Ga are defined by

Tap(x) = p(G−1
a x) = p(x/a) . (6.78)

Now, since the group consists of all scale factors in the range 0 < a < ∞, any
function defined on the positive real line can be regarded as a function on the scale
group, and we can write f(Ga) as f(a); conversely, an arbitrary function f(x) can
be interpreted as f(G−1

x ). With this notation,

p(x/a) = p(G−1
a x) = p(G−1

a Gx) . (6.79)

By these manipulations, we have cast the integrand of the Mellin convolution
into the same form as for a general group convolution, but we still need to compute
the left-invariant measure. By its definition, (6.70), this measure must satisfy

∫ ∞

0
daL f(a/x) =

∫ ∞

0
daL f(a) , (6.80)

for all positive x. The change of variables a′ = a/x on the left-hand side of (6.80),
with subsequent dropping of the prime, yields the right-hand side if daL = da/a.
Thus, finally,

[p ∗M f ] (x) =

∫ ∞

0

da

a
p
(x
a

)
f(a) =

∫

G

daL p(G−1
a Gx) f(Ga) = [p ∗G f ] (Gx) .

(6.81)
It will be left as an exercise to reduce the other forms of convolution from

Chap. 4 to appropriate group convolutions.
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6.8.4 Fourier transforms on groups

We saw in Chap. 4 that each of the convolutions introduced there could be reduced
to a simple product by a related integral transform. In particular, the usual contin-
uous convolution becomes a product under ordinary Fourier transformation. Now
we shall see why that result is general.

Let M(m)(Gn) be the matrix corresponding to Gn in the mth unitary irre-
ducible representation of group G (see Sec. 6.3). If G is discrete (though possibly
infinite), then the group Fourier transform of a function f(Gn) on G is defined by

Fm ≡
N∑

n=1

f(Gn)M
(m)(Gn) . (6.82)

The corresponding definition for a continuous group is

Fm = FG{f} ≡
∫

G

dθL f(Gθ)M
(m)(Gθ) , (6.83)

where the index m is an integer if the group has a countable set of irreducible
representations.

Note that Fm is a matrix of the same dimensions as M(m)(Gn). One way to
think about Fm is that it is a matrix-valued function on representations. That
is, it assigns a matrix to each unitary irreducible representation of G. The index
m plays the role of Fourier frequency, but the Fourier transform is not one number
for each frequency but, in general, a matrix. To complicate matters even further,
different m will yield matrices of different dimensionality.

Most of these complications disappear for Abelian groups, where all irreducible
representations are one-dimensional (see Sec. 6.3.2). In that case, Fm is a scalar Fm

and the integrand in (6.83) is a rather conventional integral transform.

Example 1: Finite group The structure of a group Fourier transform can be il-
lustrated by considering the cyclic group CN, which is a finite-dimensional Abelian
group. Since all of the irreducible representations are one-dimensional, the matrices
M(m)(Gn) reduce to scalars, which are identical to the characters given in (6.17):

M
(m)(Gn) = exp(−2πimn/N) . (6.84)

It is easy to show that these matrices are unitary and obey the group multiplication
rule.

With these representations, (6.82) takes a familiar form,

Fm =
N∑

n=1

f(Gn) exp(−2πimn/N) , (6.85)

which is just the discrete Fourier transform of the sequence f(Gn).

Example 2: Continuous, Abelian group Next consider the translation group in 1D,
where the operators are given by a 1D counterpart of (6.69). This group is Abelian,
and its irreducible representations are scalars given by exp(−2πiξx), where x labels
a group element [like n in (6.85)] and ξ labels the representation (like m). The
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left-invariant measure is just dx, so the Fourier transform is, not surprisingly,

F (ξ) =

∫ ∞

−∞

dx f(x) exp(−2πiξx) . (6.86)

Example 3: Another continuous, Abelian group We know that the scale group leads
to Mellin convolution. What is the corresponding Fourier transform? Once again
the group is Abelian, so we seek 1D irreducible representations. We have seen that
group elements are specified by nonnegative numbers x, and it can be verified that
the following functions form a unitary representation:

M (α)(x) = xiα , (6.87)

where α is a real number labeling the representation. We determined the left-
invariant measure in Sec. 6.8.3. Thus the Fourier transform derived from the scale
group has the form

F (α) =

∫ ∞

0

dx

x
xiαf(x) . (6.88)

From (4.82) we recognize this integral as the Mellin transform of f(x) with the
Mellin variable s = iα. (The Mellin transform can be evaluated for arbitrary com-
plex s, but a purely real α is required for M (α)(x) to be a unitary representation.)

Shift theorem One of the most important theorems of ordinary Fourier analysis is
the shift theorem, (3.108). We now derive its counterpart for group Fourier analysis.

If f(Gθ) is a function on a continuous group G, then a shifted function, with
shift corresponding to Gθ′ , can be defined by

fs(Gθ) = f(G−1
θ′ Gθ) . (6.89)

From (6.83),

FG{fs} ≡
∫

G

dθL f(G−1
θ′ Gθ)M

(m)(Gθ) . (6.90)

The group product of any two group elements is another group element, so we can
write

G−1
θ′ Gθ = Gθ′′ , (6.91)

from which we find

FG{fs} =

∫

G

dθL f(Gθ′′)M(m)(Gθ′Gθ′′) = M
(m)(Gθ′)

∫

G

dθ′′L f(Gθ′′)M(m)(Gθ′′) ,

(6.92)
where we have used the invariance of dθL and the fact that the matrices M(m)(Gθ)
obey the group multiplication rule. We recognize the integral in (6.92) as the
transform of f, so we have

FG{fs} = M
(m)(Gθ′)FG{f} , (6.93)

which is the generalized shift theorem. As an exercise, the reader should show that
(6.93) leads to the ordinary shift theorem for the translation group.
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Fourier transform of a convolution Next we derive the group counterpart of the
convolution theorem, (3.132). Combining (6.74) and (6.83), we have

[FG{p ∗G f}]m =

∫

G

dθ′L

∫

G

dθL p(G−1
θ

Gθ′) f(Gθ)M
(m)(Gθ′) . (6.94)

The manipulations are now very similar to the ones used in the derivation of the
shift theorem. With G−1

θ
Gθ′ ≡ Gθ′′ , the invariance of the integration measure and

the representational nature of M(m)(Gθ), we have

[FG{p ∗G f}]m =

[∫

G

dθ′′L p(G′′
θ)M

(m)(G′′
θ)

] [∫

G

dθL f(Gθ)M
(m)(Gθ)

]

= [FG{p}FG{f}]m , (6.95)

as anticipated.

Fourier inversion theorem When we derived various inversion theorems in Chaps.
3 and 4, the procedure was always to multiply a transformed quantity by one of
the basis functions, sum or integrate, and appeal to the orthogonality of the basis
functions. The situation is more complicated with group Fourier transforms which
map scalar-valued functions on a group to matrices of various sizes. The inverse
thus has to map a set of matrices back to a scalar function, suggesting that a trace
operation might be involved. (The trace of a matrix is a scalar.) Perusal of Sec.
6.3.4 suggests further that the orthogonality relation (6.15) might be useful. This
is indeed the case for a finite group, to which we restrict attention here.

To move in the direction of applying (6.15), we multiply (6.82) by
[M(m)(Gk)]† and take the trace of the resulting matrix. This procedure yields

tr

{[
M

(m)(Gk)
]†

Fm

}
=

N∑

n=1

f(Gn)χ
(m)

{
G−1
k Gn

}
, (6.96)

where we have appealed to the unitary nature of the representation to set

tr

{[
M

(m)(Gk)
]†

M
(m)(Gn)

}
= tr

{
M

(m)(G−1
k Gn)

}
= χ(m)(G−1

k Gn) . (6.97)

Guided by (6.15), we now multiply (6.97) by the character for the identity ele-
ment in the mth irreducible representation, χ(m)(E), which is just the dimension of
the representation, Nm (hence a real number). After summing over representations,
we have

∑

m

Nmtr

{[
M

(m)(Gk)
]†

Fm

}
=

N∑

n=1

f(Gn)
∑

m

[
χ(m)(E)

]∗
χ(m)(G−1

k Gn) . (6.98)

By (6.15), the sum over m can be nonzero only if E and G−1
k Gn are in the same class.

But the identity element E is always in a class by itself (literally), so we must have
G−1
k Gn = E or Gk = Gn. The sum over m in (6.98) is thus a group representation

of a Kronecker delta; from (6.15) with Lj = 1 for the identity class,

∑

m

[
χ(m)(E)

]∗
χ(m)(G−1

k Gn) = N δkn . (6.99)
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Kronecker performs the remaining sum in (6.98) for us, and we have, finally,

f{Gk} =
1

N

∑

m

Nmtr

{[
M

(m)(Gk)
]†

Fm

}
. (6.100)

This equation is the inversion theorem for Fourier transforms on a finite group. It
holds also for certain continuous groups called nonunimodular locally compact
groups (Duflo and Moore, 1976) if the order of the group, N, is replaced by the
volume of the group V (G), defined by

V (G) =

∫

G

dθL . (6.101)

Unfortunately, this volume is not always finite.

6.8.5 Wavelets revisited

Wavelets are related to the affine group, introduced in Sec. 6.5.3. This group brings
two new complications to the fore. First, unlike the translation and scale groups
used for Fourier and Mellin transforms, respectively, the affine group is not Abelian.
Second, its irreducible representations have infinite dimensionality.

To accommodate the second problem, we need to broaden our concept of rep-
resentation. A matrix representation of dimension K is a set of K × K matrices
that obey the group multiplication rule. Equivalently, as noted in Sec. 6.6.2, the
matrices can be regarded as operators on a K-dimensional Hilbert space (usually a
subspace of L2). Thus a representation is a set of operators that obey the group
multiplication rule. In this sense, the set of operators {Tn} defined in (6.66) is a
representation of a finite group, and the set {Tθ} defined in (6.68) is a representa-
tion of an infinite group. Since these operators act on infinite Hilbert spaces, they
define representations of infinite dimensionality. Usually such representations are
reducible, but in the case of the affine group we are stuck with representations of
infinite dimensionality.5

There are three infinite-dimensional unitary representations of the affine group,
but they are equivalent to one another through a similarity transformation, so there
is really only one representation (Sibul, 1995). The representation of the affine
group used most commonly, and specifically in wavelet analysis, consists of a set of
operators on L2(R) defined by

Ta,b f(x) =
1

√
|a|

f

(
x− b

a

)
=

1
√
|a|

f
{
[S(a, b)]−1x

}
, (6.102)

where S(a, b) is the operator used to define the group in (6.21). The factor of 1/
√
a

is required for unitarity.
Since Ta,b is an operator in L2(R), its action can be expressed as an integral

transform,

[Ta,b f ] (x) =

∫ ∞

−∞

dx′ ta,b(x, x
′) f(x′) , (6.103)

5There is a trivial exception to this statement. If we fix the translation at 0, we can find one-
dimensional representations of the affine group. These representations, which are also representa-
tions of Abelian subgroups of the affine group, are of no use in discussing the full affine group.
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where ta,b(x, x′) is the kernel of Ta,b. Comparison of (6.102) and (6.103) shows that
we must have

ta,b(x, x
′) =

1√
|a|

δ

(
x′ −

x− b

a

)
, (6.104)

where δ(·) is the usual 1D Dirac delta function.
In terms of the operator, Ta,b, the continuous wavelet transform defined in

(5.73) can be written as

w(a, b) =

∫ ∞

−∞

dx f(x)Ta,b ψ
∗(x) . (6.105)

The wavelet transform is a function of the parameters a and b specifying an element
of the affine group, so it is a function on that group.

Fourier transform on the affine group From the discussion in Sec. 6.8.4, it is natural
to examine the group Fourier transform of w(a, b). Recall from the discussion
below (6.83) that a group Fourier transformation maps a scalar-valued function on
the group to a matrix-valued function on representations. For the affine group,
there is only one representation, so there is just one Fourier coefficient like Fm in
(6.83)— the index m is irrelevant! It would seem that we have lost an enormous
amount of information by transforming a function of two variables down to a single
Fourier coefficient, but the thing that saves us is that this coefficient is an operator
in an infinite-dimensional Hilbert space.

Specifically, the Fourier transform of w(a, b) on the affine group is defined, by
a modest generalization of (6.83), as

FG{w} ≡ w̃ =

∫ ∞

−∞

da

a2

∫ ∞

−∞

db w(a, b)Ta,b . (6.106)

In comparing (6.106) with (6.83), note that dθL = da db/a2 and that the L2 operator
Ta,b plays the role of the matrix M(m)(Gθ). If we had chosen to write (6.83) in

terms of matrix elements, M (m)
nn′ (Gθ) would have appeared, with the indices n and

n′ running up to the dimensionality of the representation. Correspondingly, for the
infinite-dimensional representation used in (6.106), the indices are the arguments
of the kernel ta,b(x, x′). Finally, the operator w̃ should not be confused with the
wavelet transformation operator W(a, b) used in Chap. 5; the latter maps from L2

to wavelet space, while the former maps L2 to itself.

Relation to the inverse wavelet transform The remaining question is how w̃ is related
back to the original function f(x). The inverse wavelet transform (5.78) provides
the answer. From that equation and (6.106), we find

f(x) =
1

Cψ
w̃ψ(x) . (6.107)

Thus the wavelet-transformation operator W(a, b) maps a function in L2 to a func-
tion in wavelet space, the group Fourier transform maps that function to an operator
on L2, and application of that operator to the original mother wavelet recovers the
original L2 function. In shorthand,

1

Cψ
[FGW(a, b)f ]ψ(x) = f(x) . (6.108)
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This result may become a bit more transparent when we realize that the
wavelet-transformation operator W(a, b) corresponds to a scalar product in L2,
so that

W(a, b) f = (Ta,bψ, f ) = [Ta,bψ]
†
f . (6.109)

Taking the group Fourier transform and applying the resulting operator to ψ yields

[FGW(a, b) f ]ψ =

∫

G

dθL
{
[Ta,bψ]

†
f

}
[Ta,bψ]

=

∫

G

dθL [Ta,bψ] [Ta,bψ]
†
f . (6.110)

Equations (6.108) and (6.110) then state that

1

Cψ

∫

G

dθL [Ta,bψ] [Ta,bψ]
† = I , (6.111)

where I is the identity operator in L2. We know independently from (5.80) that
this is the correct resolution of the identity for wavelets.



7
Deterministic Descriptions

of Imaging Systems

With the background gained from Chapters 1-6, we are now ready to undertake the
main task of this book, mathematical analysis of imaging systems. As noted in the
Prologue, this analysis must consist of two distinct components, which we can call
deterministic and stochastic. Deterministic analysis is the description of objects,
images and the mapping between them without regard to noise or other sources of
randomness or uncertainty. Such analysis is the topic of this chapter. Stochastic
analysis, which addresses these random aspects, is taken up in the next chapter.

We begin in Sec. 7.1 with a survey of possible deterministic descriptions of
objects and images. Since an object or an image can always be regarded as a vec-
tor in some Hilbert space, the concepts and tools of linear algebra introduced in
Chap. 1 will be essential here, and the reader is assumed to have a good grasp of
those topics.

Similarly, an imaging system can always be regarded as a transformation from
one Hilbert space to another, and many imaging systems are linear, so the discus-
sion of linear operators in Chap. 1 is also key in this chapter. Specifically, as in
Chap. 1, we distinguish three important classes of linear operators: (1) continuous-
to-continuous (CC) operators, which map a function of a continuous variable to
another function of a (possibly different) continuous variable; (2) continuous-to-
discrete (CD) operators, which map functions to finite sets of numbers or discrete
vectors; and (3) discrete-to-discrete (DD) operators, which map one discrete vector
to another. Each type of operator has an important application in image science,
and each is discussed in detail in one major section of this chapter.

Linear CC operators are treated in Sec. 7.2. Not surprisingly, Fourier analysis
will be a crucial tool in this section, and the reader will frequently be referred to
Chap. 3 for mathematical details.

As mentioned in the prologue, CD mappings are the most natural for describ-
ing digital imaging systems since real objects are functions and digital images are
discrete vectors. Section 7.3 is a detailed treatment of these mappings, one we shall
rely on heavily in later chapters.

271
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On the other hand, we cannot deal directly with functions when we want to
represent an object in a computer, so discrete object models and DD operators are
also essential in image science. Though such discrete models are often taken for
granted in the imaging literature, there are some mathematical subtleties which we
shall discuss in Sec. 7.4. This treatment will be of considerable use in Chap. 15
when we discuss inverse problems and image reconstruction.

Finally, in Sec. 7.5, we move beyond linear systems and discuss nonlinear imag-
ing operators.

7.1 OBJECTS AND IMAGES

In the prologue we glimpsed some of the enormous diversity of things that can be
regarded as objects to be imaged. There is a similar diversity in the mathematical
language that can be used to describe those objects and the images they produce.
The goal of this section is to survey these mathematical descriptions and lay the
groundwork for discussing imaging systems in the later sections.

7.1.1 Objects and images as functions

An object to be imaged can often be described naturally as a function on a three-
dimensional (3D) Euclidean space. A point in this space is described by the Carte-
sian coordinates (x, y, z) or, more succinctly, by a vector r from the origin to the
point. When an object is regarded as a scalar-valued function in this space, it is
denoted f(r) or, equivalently, f(x, y, z). The value of this function is often referred
to as the gray level of the object. Following common, though loose, terminology,
we shall often refer to a scalar-valued function of a 3D vector as a 3D function for
short.

The physical meaning of f(r) depends, of course, on the nature of the imaging
system. For example, in nuclear medicine, f(r) refers to the density of a radioactive
tracer, perhaps measured in radioactive disintegrations per second per cubic cen-
timeter. The goal of an imaging system in nuclear medicine is to produce a map of
this density. Similarly, in fluorescence microscopy the object of interest is the fluo-
rescent radiation from the sample. Suitable units could be the number of emitted
photons per cm3 or watts per cubic meter (W/m3). Alternatively, the object can
be described by the density of the fluorophor.

Sometimes it is a useful approximation to regard the object as being confined
to a plane. For example, an ordinary camera focused on an object a long distance
away (at infinity) does not record any depth information, so the object is effectively
planar. As another example, a computed-tomography system that uses a thin fan
of radiation receives no information about the object outside the slab defined by
the fan, so again the object is essentially planar. In these cases we shall still denote
the object by f(r), with the understanding that r is now a two-dimensional (2D)
vector so that f(r) stands for f(x, y). Occasionally 2D and 3D vectors will both
occur in the same problem, and in those cases we shall use r for the 3D position
vector and r for the 2D one.
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In the camera example with a planar object, f(r) could refer to the reflected
optical flux per unit area1 and be measured in W/m2. In x-ray computed tomogra-
phy, the quantity of interest is the x-ray attenuation coefficient µ, measured in cm−1,
for example. The object f(r) in this case is the two-dimensional distribution of µ.

Other variables Interesting objects are almost always functions of time. They move
about from place to place or change their orientation with respect to the imaging
system at some rate. The strength of the radiation from the object can also be a
function of time. Thus we should be writing f(r, t) consistently instead of simply
f(r). Only if the object function is essentially constant over the imaging time is the
static description really justified.

Other variables may also be required. For example, the radiation emitted by
or reflected from the object can have a range of energies or wavelengths, and this
dependence should be accounted for in the functional argument. Thus we might
want to describe an object as f(r, t,λ), where λ is the wavelength of the radia-
tion. Specific functions that incorporate this spectral information are introduced in
Chap. 10.

Sometimes the angle of the radiation with respect to the object surface or a
symmetry axis of the imaging system is important. In these cases the functional
dependence must include one or more angles. Again, specifics as to how this is done
are postponed to Chap. 10.

For notational simplicity, we shall usually not list all of the possible variables
in the argument of f. Instead we shall write f(r) but, when necessary, interpret r
more broadly than as spatial coordinates. If q variables are required to specify the
object, r will be interpreted as a qD vector. The time variable will be included only
when the dynamics of the object play a role in the imaging system.

Restrictions on the value of the function Physical considerations often place restric-
tions on the values that an object function f(r) can assume. For example, if f(r)
represents a concentration of a radiotracer or fluorophor, it cannot be negative, and
if it represents a reflectivity it must satisfy 0 ≤ f(r) ≤ 1.

Sometimes it is reasonable to assume that f(r) can have only two values. If
we photograph a newspaper, for example, the object is only black and white (even
in the half-tone photographs!). Such objects are said to be binary-valued, or just
binary for short.

Vector-valued functions So far we have considered only scalar-valued functions, but
vector-valued functions or vector fields arise in some imaging applications. Perhaps
the most familiar example is the electric field, which is central to coherent imaging.
In this case each of the three Cartesian components of the field is a separate scalar-
valued function of space, time and any other relevant variables. While the three
components may be interrelated because of the wave equation or other constraints,
full specification of the vector field requires all three functions.

Color images can also be regarded as vectors. If a scene is recorded through
three separate color filters (say, red, green and blue), then each individual image is

1The proper radiometric term for this quantity is radiant exitance, but we postpone a complete
discussion of radiometric units to Chap. 10.
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a scalar field or scalar-valued function of position, and the collection of three images
is a 3D vector field.

Sometimes the components of a vector field are entirely different physical quan-
tities. For example, objects encountered in magnetic resonance imaging (MRI) can
be described in terms of three spatial maps: (1) spin density, (2) spin-lattice relax-
ation time and (3) spin-spin relaxation time. We can think of these maps as three
separate spatial functions fj(r), j = 1, ..., 3, or as three components of a single
vector field f (r).

This concept can be extended further as needed. If J separate attributes are
required to describe an object, and each attribute is a function of q variables, we
can denote the object as f (r), where r is a qD vector and f (r) for a fixed r is a JD
vector.

Complex functions In the examples given above, an object is described as a real-
valued function, but complex-valued ones are also frequently required. In coherent
imaging with ultrasound, microwaves or laser beams, the phase of the radiation
plays a crucial role, and a complex notation is mathematically very convenient.

Consider, for example, a holographic imaging system in which an object is
illuminated with a monochromatic plane wave of frequency ν. We might choose in
this case to define the object by the amplitude of the reflected electric field in some
plane near the object. This field is a function of two spatial variables and time,
and we can denote it as e(r, t). This function is real, since it represents an actual
physical field, and we can write it as

e(r, t) = A(r) cos[φ(r)− 2πνt] , (7.1)

where A(r) specifies the strength of the wave and φ(r) is the phase of its temporal
oscillation at point r. Note that we have assumed that both A(r) and φ(r) are
independent of time, which is appropriate if the object is not changing with time in
any way and the illumination is constant except for the oscillation at frequency ν.

The real function in (7.1) can be expressed as

e(r, t) = A(r) Re{exp[iφ(r)− 2πiνt]} , (7.2)

where Re{·} denotes real part. Because the frequency ν is constant and known a
priori, the factor exp(−2πiνt) is an unnecessary part of the specification of the
wave. Therefore we can completely define the object in this case by the complex-
valued function f(r) given by

f(r) = A(r) exp[iφ(r)] . (7.3)

The actual real field can be reconstituted by means of (7.2) if desired.
The complex form will prove to be very useful when we consider the effect of an

imaging system. Any linear system operates on the real and imaginary parts of the
input separately; the real part of the output is obtained by a linear transformation
of the real part of the input, and similarly for the imaginary part. Therefore we can
assume, quite unphysically, that the object is a complex wave, compute the image,
and then take the real part. We caution the reader, however, that this approach
presumes an imaging system that is strictly linear in wave amplitude.
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Images as functions So far we have discussed objects, but images can also be treated
as functions. Different imaging systems require different choices for the independent
variables in these functions.

We need to distinguish variables that affect the response of the detector from
ones that the detector measures. Photographic film, for example, responds to total
energy per unit area to a first approximation. Although the response may depend
on angle of arrival of the radiation or the time interval over which it is spread, film
does not record these variables. Thus the natural description of an optical image
in the film plane of a camera is g(xd, yd), where xd and yd are spatial coordinates
(d denotes detector), and the variable g itself denotes the exposure (joules/m2). If
we wish to consider the developed film, the same independent variables can be used
but then g will denote transmittance or optical density of the film.

One important variable that affects film response strongly, but is not measured
by the film, is the wavelength. To illustrate how such a variable enters into the
mathematical description of the image, we can define a spectral response function
R(λ) so that the effective exposure on the film is given by

g(rd) =

∫ ∞

0
dλ R(λ) gλ(rd,λ) , (7.4)

where gλ(r,λ) is the exposure per unit wavelength on the film. Thus the dependence
on wavelength is integrated out, and λ does not appear in g. In order to calculate
g(rd) we must know gλ(rd,λ), but the final image is not a function of λ (for black-
and-white film). On the other hand, if we consider a detector that does measure
wavelength, such as an imaging spectrometer, then the λ variable must be included
in the description of g.

7.1.2 Objects and images as infinite-dimensional vectors

As noted in Chap. 1, it is often fruitful to regard objects and images as vectors in
linear vector spaces. If the basic description of the object or image is a function
of one or more continuous variables, then the space will have an infinite number of
dimensions.

In order to decide what vector spaces are most appropriate for imaging appli-
cations, we must inquire about the basic mathematical properties of the functions
used for describing objects and images. We do not want to impose artificial and
physically unrealistic conditions on the functions, but we do want to specify them
as completely as possible.

One thing we should not assume is that the functions (especially object func-
tions) are continuous or differentiable. Objects have abrupt edges, so they are not
differentiable. Similarly, we do not want to assume that objects are bandlimited (see
Sec. 3.5.1) because functions with finite bandwidth also cannot have sharp edges.
It may sometimes be useful to approximate images as bandlimited, since the edges
are blurred by the imaging system, but even there it cannot be an exact description.

One mathematical feature that we can take advantage of is compact support.
Objects and images have finite size. An exception to this statement might ap-
pear to occur in astronomy—cosmological arguments aside, the universe is infinite.
Nevertheless, astronomical objects can usefully be described as functions of finite
support. The essentially infinite distances from the earth are no problem since the
imaging systems don’t measure that distance, so the object is described by angular
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coordinates which are restricted to 4π steradians. Thus even the universe is, for our
purposes, a function with finite support.

Moreover, functions that describe real objects and images do not have infinite
values. A function with finite support and no infinite values is necessarily square-
integrable and hence a vector in the Hilbert space L2(S), where S is the region of
support of the function in terms of its independent variables (not including time).

Explicitly, if an object is described as a bounded function of q variables (or,
equivalently, a qD vector r), and f(r) is zero outside some region Sf in Rq, then it
is square-integrable:

∫

Sf

dqr |f(r)|2 < ∞ . (7.5)

Thus the object can be regarded as a vector in the Hilbert space L2(Sf ). If the
object is square-integrable over the infinite domain, it is a vector in L2(Rq). We
shall denote an object as f(r) when we want to emphasize its functional dependence,
but we shall use f when we wish to think of it as a vector in Hilbert space.

Similarly, if an image g(rd) is defined as a function on Rs and is zero outside
a region Sg, then it corresponds to the vector g in the Hilbert space L2(Sg), which
may be L2(Rs) if no support restriction is required.

If the function includes angles, it can still be regarded as a vector in a Hilbert
space. For example, f(x, y, z, θ,φ) or f(r, n̂) is a vector in the Hilbert space with
norm defined by

||f ||2 =

∫

Sf

d3r

∫

4π
dΩ |f(r, n̂)|2 , (7.6)

where dΩ is the element of solid angle associated with n̂.

Vector-valued functions A Hilbert-space formalism is also applicable to vector-
valued functions. As discussed in Sec. 7.1.1, we can think of a J-component object
as J separate spatial functions fj(r) or as J components of a single vector field f (r)
in Rq. The norm of such a function can be defined by

||f ||2 =
J
∑

j=1

∫

Sf

dqr |fj(r)|2 . (7.7)

This norm corresponds to a mixed Hilbert space, the direct product of the JD Eu-
clidean space EJ and L2(Rq). If the norm in (7.7) is finite, as it will be in real-world
applications, the object f (r) is a vector in the Hilbert space L2(Rq)× EJ.

Note that boldface f in this context has two distinct meanings. When we write
f (r), we mean a vector field with a small number of components, but f without
an argument refers to a vector in an infinite-dimensional Hilbert space. To avoid
notational complications, we shall consider only scalar-valued functions for the re-
mainder of this chapter, but all results are easily extended to the vector-valued case.

Is L2 too large? To summarize the considerations above, we shall always assume
that object and image functions are square-integrable and hence vectors in an L2

Hilbert space with appropriate variables and support. No physically obtainable
objects or images are ruled out by this assumption. For generality, we shall often
denote the object Hilbert space as U and the image space as V, but L2 spaces
will always be understood. Of course, not all vectors in these spaces correspond
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to meaningful objects or images. As noted in Sec. 7.1.1, we may have additional
restrictions, such as the fact that in many applications objects and images are real
and nonnegative. Thus many of the vectors in the L2 spaces are ruled out for other
reasons, but at least we can be assured that U and V are large enough to include
all physically realizable objects and images, respectively.

Basis vectors The L2 Hilbert spaces are all separable, which means that they are
spanned by denumerably infinite sets of basis vectors (see Sec. 1.1.5). Thus any
object f(r) can be represented exactly as an infinite series of the form

f(r) =
∞
∑

n=1

αn ψn(r) , (7.8)

where {ψn(r)} is any orthonormal basis for the relevant Hilbert space. If the space
is L2(Sf ), the coefficients are given by

αn = (ψn(r), f(r)) =

∫

Sf

dqr ψ∗
n(r) f(r) , (7.9)

where (ψn(r), f(r)) denotes a scalar product.
In the more abstract Hilbert-space notation, (7.8) and (7.9) can also be written

as

f =
∞
∑

n=1

αnψn , αn = (ψn, f ) . (7.10)

Fourier basis functions To illustrate the expansion (7.8), we shall discuss Fourier-
series representations, first in one dimension and then in an arbitrary number of
dimensions. For background material, see Secs. 3.2.1 and 3.4.6.

As discussed in Sec. 3.2.1, a 1D square-integrable function that vanishes outside
− 1

2L < x < 1
2L can be represented as

f(x) =
∞
∑

k=−∞

Fk exp(2πiξkx) rect(x/L) , (7.11)

where ξk is a discrete spatial frequency given by ξk = k/L, and the Fourier coef-
ficients {Fk} can be computed from (3.19). Without the rect function, the right-
hand side of (7.11) would represent a periodic function consisting of an infinite
set of replicas of f(x), but the rect function sets all replicas but one to zero.
Thus the Fourier series (7.11) has the same structure2 as (7.8), with ψk(x) =
exp(2πi kx/L) rect(x/L). These functions form a basis for L2(−1

2L,
1
2L).

Next we consider a function f(r), where r is a qD vector. To generalize
(7.11) to q dimensions, we need to replace k with a set of q indices. A conve-
nient notation for this set is the multi-index k (see Sec. 3.4.6), a set of q integers
(k1, ..., kq) where each integer specifies a component of the qD spatial-frequency

2One minor difference between (7.8) and (7.11) is that the index runs from 1 to ∞ in the former
and from −∞ to ∞ in the latter, but that is of no great import. A reparameterization, which we
won’t bother with, could easily solve this problem. If f(x) is real, the negative k values in (7.11)
are redundant anyway by dint of (3.45).
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vector ρk = (k1∆ρ, ..., kq∆ρ). Thus the set of frequency vectors {ρk} defines an
infinite regular lattice of points in the qD frequency space. We shall adopt the
convention that summation over the multi-index k is equivalent to summing over
all q of its components:

∞
∑

k=−∞

=
∞
∑

k1=−∞

∞
∑

k2=−∞

· · ·
∞
∑

kq=−∞

. (7.12)

We assume that f(r) vanishes identically unless r is in a region Sf of the qD
space. This region is assumed to be bounded by a cube of support, a region defined
by − 1

2L < rj <
1
2L, j = 1, ..., q. For q = 3 the cube of support is literally a cube in

3D space, but for q = 2 it is a square of side L, while for q > 3 it is a hypercube.
The support region Sf can be either the cube of support itself or any smaller region
containing the object and lying entirely within the cube.

With this support constraint, an exact Fourier-series representation of f(r) is
possible if we choose ∆ρ ≤ 1/L (see Sec. 3.5.4). If this condition is satisfied, then

f(r) =
∞
∑

k=−∞

Fk exp(2πiρk · r)Sf (r) , (7.13)

where ρk ·r denotes a scalar product of the two qD Euclidean vectors, and Sf (r) is a
support function that equals 1 for r in Sf and 0 otherwise. The support function,
like the rect function in (7.11), sets all replicas but one to zero.

A useful way to rewrite (7.13) is [cf. (3.279)]

f(r) =
∞
∑

k=−∞

Fk Φk(r) , (7.14)

where Φk(r) is a basis function defined by

Φk(r) ≡ exp(2πiρk · r)Sf (r) . (7.15)

If the support region Sf is the cube of support as discussed above, the set {Φk(r)}
is orthogonal3 and complete. For some smaller support region lying within the cube
of support, the orthogonality is lost but the set is still complete. A few of the basis
functions for the case of q = 3 and spherical support are shown in Fig. 7.1.

If we do not wish to assume that the object has finite support, we can take the
object space to be L2(Rq). Fourier analysis can still be used, of course, but now the
object is represented by its qD inverse Fourier transform rather than by a Fourier
series. As discussed in Sec. 1.1.6, this approach amounts to using a continuous or
nondenumerable basis for L2(Rq), where the basis functions themselves do not lie in
the space they span. On the other hand, because L2(Rq) is a separable Hilbert space
even without any restriction to finite support, we can also adopt some denumerable
basis functions such as Hermite-Gauss functions (see Sec. 4.1.4) or eigenfunctions
of some compact, Hermitian operator (see Sec. 1.4.4).

3As defined here, the basis functions are not normalized. They could be by inclusion of a factor
1/

√
V, where V is the qD volume of the support region. This factor, corresponding to 1/|det(P)|

in (3.280), is omitted here for convenience.
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Fig. 7.1 Illustration of the sine and cosine basis functions Φk(r) for the case
of spherical support. (Courtesy of Howard Gifford.)

Spatio-temporal basis functions If the object is explicitly a function of time, f(r, t),
and if it is square-integrable over the spatial support for each time, then it can still
be expanded in terms of purely spatial basis functions, but with the coefficients
being functions of time; thus (7.8) becomes

f(r, t) =
∞
∑

n=1

αn(t)ψn(r) . (7.16)

If we consider a finite time interval, say −T < t < T, then αn(t) must be square-
integrable for any finite object, so it is a vector in L2(−T, T ), and the coefficients
can be expanded in temporal basis functions as

αn(t) =
∞
∑

j=1

αnj φj(t) . (7.17)

Combining (7.16) and (7.17), we have

f(r, t) =
∞
∑

n=1

∞
∑

j=1

αnj φj(t)ψn(r) . (7.18)

Thus, under the stated square-integrability conditions, the spatio-temporal function
can be expanded in terms of separable4 basis functions, each a product of a function
of time and a function of position.

7.1.3 Objects and images as finite-dimensional vectors

For numerical computations we must represent objects and images as finite sets
of numbers. There is a key difference between objects and images in this respect.
Objects are actually functions of continuous variables, so a finite discrete repre-
sentation is necessarily an approximation. Digital images, on the other hand, are

4This usage of the term separable is distinct from the usage in describing Hilbert spaces; see Sec.
1.1.5.
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inherently discrete sets of numbers. Thus a finite object vector approximates real-
ity, whereas a finite image vector is reality, at least for digital images.

Since finite representations of images are virtually automatic in a digital setting
and involve no approximation, we concentrate in this section on finite representa-
tions of objects.

Truncation of exact expansions Consider an object f(r), a function of the qD vector
r, and assume that it is square-integrable over the support region Sf in Rq. Then,
as in Sec. 7.1.2, f(r) can be regarded as a vector in the Hilbert space L2(Sf ), and
it can be represented exactly by an infinite series like (7.8).

An approximate representation can be obtained by retaining a finite subset of
the terms in this expansion and deleting all others. Often the index n can be chosen
so that it ranges monotonically over the subset of terms we want to retain, so the
approximation is obtained simply by truncating the series:

ft(r) =
N
∑

n=1

αn ψn(r) , (7.19)

where the subscript t stands for truncated and N is the number of terms retained.
For example, in a truncated Fourier series, N specifies the highest frequency re-
tained, and in an SVD expansion, N specifies the smallest singular value.

Representation space We can also describe the process of truncating the series in
terms of a projection operator PN , defined such that

ft(r) = PN{f(r)} . (7.20)

As discussed in Sec. 1.3.6, PN is idempotent (P2
N = PN ). It projects f(r) from

L2(Sf ) onto the subspace spanned by {ψn, n = 1, ..., N}. We shall refer to that space
as representation space. Since the set of all ψn(r), n = 1, ...,∞, spans the object
space, we can say that representation space approaches object space as N → ∞.

Representation space is a reproducing-kernel Hilbert space (see Sec. 1.8). Any
function in the space satisfies

ft(r) =

∫

Sf

dqr′ pN (r, r′) ft(r
′) , (7.21)

where pN (r, r′) is the reproducing kernel, given by

pN (r, r′) =
N
∑

n=1

ψn(r)ψ
∗
n(r

′) . (7.22)

Since pN (r, r′) is also the kernel for the projection operator PN , (7.21) says simply
that once an infinite expansion is truncated, it does not matter if it is truncated
again (with the same N).

Truncation as continuous-to-discrete mapping Since ft(r) is fully described by the
set of coefficients {αn, n = 1, ..., N}, another way to think about the truncation
process is that it is a continuous-to-discrete mapping (see Sec. 1.2.4) from L2(Sf ) to
a finite-dimensional Euclidean space EN, where N is the total number of coefficients
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in the set. Let α denote the vector in EN with components {αn}. Then we can
define a discretization operator Dψ such that

α = Dψ{f(r)} , (7.23)

where the components of α are given by (7.9). We shall need several discretization
operators in this chapter, so we distinguish them by subscripts indicating the basis
functions used.

There is a simple relation between PN and Dψ if the finite set {ψn(r),
n = 1, ..., N} is orthonormal. From (1.45), we see that5

[

D
†
ψα

]

(r) =
N
∑

n=1

αn ψn(r) . (7.24)

Hence,
[

D
†
ψDψ f(r)

]

(r) = ft(r) , (7.25)

or

D
†
ψDψ = PN . (7.26)

Thus, choice of the basis functions {ψn(r)} and a value of N fully determines
the representation space in which ft(r) lies. Specification of the ND vector of
coefficients is equivalent to specifying the components of f(r) in representation
space. The space EN in which α lies is not identical to representation space, but it
is isomorphic to it; each vector α in EN is uniquely associated with a vector ft in
representation space and hence with a function ft(r). When we need to distinguish
EN from representation space, we shall refer to the former as coefficient space.
These spaces are illustrated schematically in Fig. 7.2.

Fig. 7.2 The relationships among object space, representation space (here
shown as a subspace of object space) and coefficient space.

5The lack of a complex conjugate in (7.24) may be puzzling when that equation is compared with
(1.45). In defining ψ to agree with (7.9), we included the conjugate in the forward operator, so
we do not need it in the adjoint.
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Approximate series expansions Rather than obtaining approximate series represen-
tations of f(r) by truncating exact ones, we can also invent the approximations de
novo. The generic form of a linear approximation to f(r) is

fa(r) =
N
∑

n=1

θn φn(r) , (7.27)

where the subscript a stands for approximate. Though superficially similar, (7.27)
differs from (7.19) in several important respects:

(a) The functions {φn(r)} are not necessarily normalized;

(b) The functions {φn(r)} are not necessarily orthogonal;

(c) The coefficients {θn} are not necessarily computed as scalar products between
f(r) and φn(r);

(d) The function fa(r) does not necessarily lie in L2(Sf ).

Since the functions {φn(r)} do not form a basis for the object Hilbert space,
we refrain from calling them basis functions (though this term is common in the lit-
erature). Instead we call them expansion functions. These functions do, however,
span some ND space that we can still call representation space; now representation
space is simply defined as the space of all functions that can be expressed as linear
combinations of {φn(r), n = 1, ..., N}. If the expansion functions are chosen to be
orthonormal, they form an orthonormal basis for representation space. Moreover,
if the expansion functions themselves lie in object space, then representation space
is a subspace of object space.

Example — pixels We can illustrate some of the subtleties of (7.27) by considering
the simple and familiar pixel expansion of a 2D function f(r), where r = (x, y).
We consider a regular lattice of points specified by the multi-index n, a 2D vector
with integer components (nx, ny). Then a lattice point is denoted rn = (xn, yn),
where

xn = nxε , yn = nyε , (7.28)

and ε is the spacing between lattice points. With this notation, we can write the
nth expansion function as

φn(r) = pixn(r) ≡ rect

(

x− xn

ε

)

rect

(

y − yn
ε

)

. (7.29)

This expansion function is not normalized (though it easily could be), but the set
is orthogonal:

∫

∞

d2r pixn(r) pixm(r) = ε2 δnm , (7.30)

where the Kronecker delta with vector indices is defined so that δnm = 1 if nx = mx

and ny = my, and it is zero otherwise.
Choosing a set of expansion functions does not finish the job of constructing

the approximation fa(r); we still have to choose the coefficients. One logical way
to do so is by analogy to (7.9):

θn =
1

ε2

∫

∞

d2r φn(r) f(r) . (7.31)
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This choice is, however, not mandated; we might also choose

θn = f(rn) =

∫

∞

d2r δ(r− rn) f(r) . (7.32)

Comparing the integral form of (7.32) to (7.31), we see that they can both be written
as

θn =

∫

∞

d2r χ∗
n(r) f(r) , (7.33)

where χn(r) = ε−2 pixn(r) for (7.31) and δ(r− rn) for (7.32).
Other choices are possible as well. We might, for example, reverse the roles

of φn and χn, letting χn(r) = pixn(r) and φn(r) = δ(r − rn), in which case our
approximate representation would be

fa(r) =
N
∑

n=1

[

1

ε2

∫

∞

d2r′ pixn(r
′) f(r′)

]

δ(r− rn) . (7.34)

While this form might be unappealing because the expansion functions are not
square-integrable, there is no a priori reason to rule it out. Once we begin approx-
imating, we have great flexibility in how we do so.

General operator treatment To formalize what we have learned from this discussion,
we restate it in a general operator notation. Construction of a finite linear approx-
imation to a qD function f(r) is a two-step process. First we use a discretization
operator Dχ to form a vector of coefficients θ given by

θ = Dχ{f(r)} . (7.35)

The operator is defined by a modest generalization of (7.33):

θn = [Dχ{f(r)}]n =

∫

∞

dqr χ∗
n(r) f(r) , n = 1, ..., N , (7.36)

where N is the total number of expansion functions used (and we have returned to
a scalar index n). According to the Riesz representation theorem (see Sec. 1.2.1),
(7.36) is the general form for a linear functional of f(r). So long as we restrict
attention to linear operators, the coefficients {θn} can always be written in the
form of (7.36) for some choice of {χn(r)}.

The second step is to use a (potentially different) discretization operator Dφ

to construct fa(r). By analogy to (7.24), we rewrite (7.27) as

fa(r) = D
†
φθ = D

†
φDχ{f(r)} =

N
∑

n=1

θn φn(r) . (7.37)

Construction of a finite approximation to an object function thus requires
choice of two sets of functions, {φn(r)} and {χn(r)}, or equivalently, two discretiza-
tion operators Dφ and Dχ. In much of the literature, the form of one or both of
these function sets is simply left unspecified, and the precise relation between an
object function and its discrete representation is not spelled out. When it is spelled
out, the most common assumption is that Dφ = Dχ, but we shall maintain the
distinction for the sake of generality. Taking {φn(r)} and {χn(r)} to be identical
orthonormal function sets means that the coefficients {θn} are given by scalar prod-
ucts of the expansion functions and the object. Using distinct function sets means
that the coefficients are calculated some other way.
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Representation space and projection operators If the expansion functions are square-
integrable and have the same support as the objects, then all functions in represen-
tation space are also in object space, and hence representation space is a subspace
of object space. In that case we can define a projection operator Prep that projects
a general object vector onto representation space as [cf. (1.166)]

Prep = D
+
φ Dφ , (7.38)

where D
+
φ is the Moore-Penrose pseudoinverse of Dφ.

We can go a step further if the expansion functions are orthonormal; in that
case, we know from Sec. 1.3.6 [cf. (1.51)] that

Prepf(r) =
N
∑

n=1

(φn, f )φn(r) . (7.39)

In operator form, we can write this relation as

Prep = D
†
φDφ =

N
∑

n=1

φnφ
†
n , (7.40)

where the second form makes use of the outer-product notation of (1.57).
Comparison of (7.38) and (7.40) shows that D

†
φ = D

+
φ if {φn(r)} is an or-

thonormal set. This statement can be proved independently from either the Penrose
equations (see Sec. 1.6.1) or the singular-value decomposition of Dφ and the results
in Sec. 1.6.2.

To summarize, the approximate representation fa(r), defined generally as
D

†
φDχf(r), is given by Prepf(r) if {φn(r)} and {χn(r)} are identical orthonormal

sets of square-integrable functions. It also follows from the discussion in Sec. 1.8.2
that representation space is a reproducing-kernel Hilbert space in this case.

7.1.4 Representation accuracy

When constructing approximate representations of object functions, two important
questions arise: How much error do we make in any particular representation? How
do we choose the best representation? The answers to these questions depend on
what we want to do with the representation.

There are several possible applications for finite object representations. One
is to simulate images so that we can understand how an imaging system would
perform without actually building it. This is the forward problem, where we are
given an object and want to compute the image it produces. Solving the forward
problem on a computer requires a finite object representation that leads to accurate
data vectors.

Another application is the inverse problem, where we are given a noisy im-
age or data vector and want to determine some information about the object that
produced it. If we represent the object by a finite series, the inverse problem is
to determine (or estimate) the coefficients in the series. The accuracy of the final
estimate depends both on how well we can determine the coefficients from noisy
data and how well the series would describe the actual object if the coefficients
were known perfectly. We therefore distinguish representation accuracy from es-
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timation accuracy; the former is discussed in this section, but discussion of the
latter is postponed until we take up estimation theory in Chap. 13.

One application where representation accuracy can be assessed, unencumbered
by questions of estimation accuracy, is image display. Suppose we have stored a dig-
ital representation of an object f(r) as a set of digital values {θn} and later want
to display the digital data as a luminance pattern on a cathode-ray tube. To do so,
we have to convert the digital values to a function like fa(r), and we are naturally
interested in the degree of agreement between the two functions f(r) and fa(r).

Another way to answer questions about representation accuracy is in terms of
objective measures of image quality. We shall argue in Chap. 14 that image quality
cannot be defined in the abstract. It must be related to the particular purpose
for which the image was acquired, which we refer to as the task. It must also be
related to just how the task is performed, which we call the observer. In Chap. 14,
we develop figures of merit for imaging systems for specific tasks and observers and
relate these figures of merit to properties of the system and any data-processing al-
gorithms that might be used. In addition, however, the figures of merit are sensitive
to the mathematical representation chosen, which is the subject of this section.

One specific task we shall consider in Chap. 14 is the estimation of certain
moments of the object, such as its integral over a specified region of interest. An-
other task is pattern recognition, which begins with estimation of functionals called
features. In estimating either moments or features, a prerequisite is an object rep-
resentation that accurately describes the quantities being estimated.

Object error If our goal is to represent an object as accurately as possible, we
can examine the norm of the error between the actual object and any approximate
representation of it. This error is defined by

δf(r) ≡ f(r)− fa(r) . (7.41)

From (7.37) we can also write

δf(r) = f(r)−D
†
φDχ f(r) =

[

I−D
†
φDχ

]

f(r) , (7.42)

where I is the identity operator (here simply multiplication by unity).
The error norm is thus given by

||δf(r)|| =
∣

∣

∣

∣

∣

∣

[

I−D
†
φDχ

]

f(r)
∣

∣

∣

∣

∣

∣
. (7.43)

This norm depends on the choice of the expansion functions and on the particular
object function f(r).

It is necessary that fa(r) be square-integrable for the error norm to be finite.
For example, we cannot use a representation like (7.34) where φn(r) = δ(r − rn)
since that would make ||δf(r)|| infinite. In what follows, we shall therefore usually
assume that the functions {φn(r)} are square-integrable and hence fa(r) lies in ob-
ject space. Representation space will be a subspace of object space unless otherwise
stated.

Once we have chosen the set {φn(r)}, and hence the representation space, the
next step is to minimize ||δf(r)|| through choice of the expansion coefficients {θn},
or equivalently through choice of the set {χn(r)}. This minimization is essentially
least-squares fitting of fa(r) to f(r). As discussed in Sec. 1.7 and illustrated graph-
ically in Fig. 7.3, the optimal fitting is accomplished by making fa(r) = Prep f(r),
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where Prep is the projector onto representation space. Since fa(r) can also be ex-

pressed as D
†
φDχ f(r), the optimum (least-squares) choice of {χn(r)} implies the

operator relation, D†
φDχ = Prep = D

+
φ Dφ. Hence,

δf(r) = [ I−Prep] f(r) =
[

I−D
+
φ Dφ

]

f(r) . (7.44)

From the idempotency (P2
rep = Prep) and Hermiticity (P†

rep = Prep) of the projector,
the minimum achievable error norm is found to be

||δf(r)||2 = ||f(r)||2 − ||Prep f(r)||2 , (7.45)

where the first norm on the right refers to object space, say L2(Rq), and the second
refers to representation space.

Fig. 7.3 Graphical demonstration that ||δf || is minimized by choosing fa =

repf. Here f is shown as a vector in a 3D Hilbert space, while its approximate
representation fa lies in a 2D subspace called representation space, illustrated
as the 1-2 plane. Thus repf is the projection of f onto the 1-2 plane. Among
all vectors fa in this plane, the one that minimizes ||f− fa|| is fa = repf.

If {φn(r)} is an orthonormal set, then, as shown in Sec. 7.1.3, D+
φ = D

†
φ

and

Prepf(r) =
N
∑

n=1

θn φn(r) , θn = (φn(r), f(r)) . (7.46)

In this case the norm in representation space is given by

||Prep f(r)||2 =

∫

∞

dqr
∣

∣

∣

N
∑

n=1

θn φn(r)
∣

∣

∣

2

=
N
∑

n=1

θn

N
∑

n′=1

θ∗n′

∫

∞

dqr φ∗
n′(r)φn(r) =

N
∑

n=1

|θn|2 , (7.47)

and hence

||δf(r)||2 =

∫

∞

dqr |f(r)|2 −
N
∑

n=1

|θn|2 = ||f(r)||2 − ||θ||2 . (7.48)

Thus, so long as we construct a representation by using identical orthonormal sets
for {χn(r)} and {φn(r)}, the error norm is simply the squared norm of the function
minus the squared norm of its coefficient vector.
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If {φn(r)} were a complete set on L2(Rq), this error norm would be imme-
diately zero by the Parseval relation (4.6). Similarly, if f(r) were entirely in the
representation space, then the error norm would again be zero. Neither of these
conditions is likely to prevail in practice since they imply that f(r) can be repre-
sented exactly by a finite-dimensional vector.

If the approximate representation is obtained by truncating an exact infinite
representation, as in (7.19), then we have

||δf(r)||2 = ||f(r)||2 −
N
∑

n=1

|αn|2 =
∞
∑

n=N+1

|αn|2 (7.49)

and
lim

N→∞
||δf(r)||2 = 0 . (7.50)

How rapidly this limit is approached depends on the specific basis functions and
the object. For a truncated Fourier series and a differentiable object, for example,
the coefficients Fk fall off rapidly as any component of the multi-index k tends to
infinity [see (3.49)].

Ensembles of objects We are rarely interested in the error norm just for one object;
we want a representation that performs well for many objects. For this reason it is
useful to consider a statistical ensemble of objects and average the error norms over
that ensemble. In this view, each object is a sample function of a random process,
a topic to be discussed in Chap. 8. For completeness in this section, however, we
give expressions for the mean-square representation error (MSRE), averaged over
the ensemble of objects.

The MSRE is defined by

MSRE = 〈||δf(r)||2〉 , (7.51)

where the angle brackets denote an average over the ensemble of objects. For
representations derived from a single orthonormal function set, (7.48) holds, and
the MSRE is given by

MSRE = 〈||f(r)||2〉 − 〈||θ||2〉 . (7.52)

Since θn is obtained optimally as a scalar product with the expansion functions,
〈||θ||2〉 is given by

〈||θ||2〉 =
N
∑

n=1

∫

∞

dqr

∫

∞

dqr′ φ∗
n(r)〈f∗(r) f(r′)〉φn(r′)

=
N
∑

n=1

∫

∞

dqr

∫

∞

dqr′ φ∗n(r)R(r, r′)φn(r
′) , (7.53)

where R(r, r′) = 〈f(r) f∗(r′)〉 is the autocorrelation function of the random process
(see Sec. 8.2). The autocorrelation function can be regarded as the kernel of an
integral operator R called the autocorrelation operator, and we can rewrite (7.53)
as a Hermitian form,

〈||θ||2〉 =
N
∑

n=1

φ†
nRφn . (7.54)
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To minimize the MSRE, we must maximize the sum in (7.54). The first term,
φ†

1Rφ1, is maximized (among vectors with unit norm) by choosing φ1 to be the

eigenvector of R with the largest eigenvalue. Then the second term, φ†
2Rφ2, is

maximized (among vectors with unit norm that are orthogonal to φ1) by choosing
φ1 to be the eigenvector of R with the second largest eigenvalue. Continuing in
this way, we see that the sum in (7.54) is maximized by choosing the orthonormal
vectors {φn, n = 1, ..., N} as the eigenvectors of R corresponding to the N largest
eigenvalues. This choice of expansion functions is called the Karhunen-Loève (KL)
expansion, which we now see is optimal in terms of MSRE when a fixed number of
terms is used in the expansion.

With the KL expansion functions, (7.54) simplifies to

〈||θ||2〉 =
N
∑

n=1

λnφ
†
nφn =

N
∑

n=1

λn , (7.55)

where λn is the nth eigenvalue of R, and the eigenvalues are all ordered by decreas-
ing value. It will be left as an exercise to show that [cf. (7.49)]

MSRE =
∞
∑

n=N+1

λn . (7.56)

In summary, if the objects are sample functions drawn from some ensemble, the
KL expansion minimizes the MSRE (for a fixed number of terms), and all we need
to know to compute this minimum MSRE is the set of eigenvalues of the covariance
operator.

Moment errors In some imaging situations the task is to determine certain linear
functionals of the object. As a simple example, in nuclear medicine we might be
interested in the total amount of radioactive tracer inside some specified volume
of the object. If we knew the actual object f(r), we could simply perform the
integral and get the desired number. In reality, we have available some noisy and
imperfect data set, so we can only estimate the value. One common approach to
this estimation is to adopt a finite representation like (7.19) or (7.27), estimate the
coefficients, and then integrate the series term by term. Of course, if the series does
not accurately represent the object in the first place, its integral will not accurately
reflect the desired integral even if the coefficients are accurately estimated.

To formalize this idea, suppose the linear functional of interest is specified by
a template function t(r). In the notation of Chap. 2, this functional would be
denoted as Φt{f }, but we are using Φ for other things in this chapter, so we shall
call the functional τ (f ), or just τ for short, and define it by

τ =

∫

Sf

dqr t(r) f(r) . (7.57)

In the nuclear-imaging example mentioned above, t(r) is unity in some region of
interest and zero outside, and τ is the integral of the object over the region of
interest. More generally, τ is referred to as a moment6 of the object.

6This usage of the word moment is more general than, but consistent with, the usage in statistics
and mechanics. For example, if r is a random vector and f(r) is its probability density function
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If the object is approximated by the finite series (7.27), then τ is approximated
by

τa =

∫

Sf

dqr t(r) fa(r) =
N
∑

n=1

θn

∫

Sf

dqr t(r)φn(r) . (7.58)

If we have obtained a set of estimates {θ̂n} of the coefficients, then one (not neces-
sarily optimal) way of estimating τ is by

τ̂ =
N
∑

n=1

θ̂n

∫

Sf

dqr t(r)φn(r) . (7.59)

The estimation error is τ − τ̂, but in this section we are concerned with the
moment error δτ, given by

δτ ≡ τ − τa =

∫

Sf

dqr t(r) δ f(r) =

∫

Sf

dqr t(r)
[

I−D
†
φDχ

]

f(r) , (7.60)

where we have used (7.41) in the last step. We can go a step further if Dφ = Dχ

and {φn(r)} is an orthonormal set. In this case D
†
φDχ is the projector onto repre-

sentation space, and we have

δτ =

∫

Sf

dqr t(r) [ I−Prep] f(r) =

∫

Sf

dqr f(r) [ I−Prep] t(r) , (7.61)

where the second step follows since the projector is Hermitian. Thus τa might be
a good approximation to τ even if fa(r) is not a good approximation to f(r), so
long as Prept(r) is a good approximation to t(r). It is the template rather than
the object that has to be accurately approximated if we use the moment error as a
figure of merit for the representation. Another way to state this conclusion is that
components of f(r) that lie in the orthogonal complement of representation space
can greatly influence δf(r), but they do not affect δτ at all if t(r) lies entirely in
representation space.

An immediate consequence of (7.61) is that δτ = 0 if t(r) is any linear combina-
tion of the representation functions {φn(r)}. For example, if we choose to represent
an object in pixels, then any moment obtained by integrating over regions defined
by an integral number of pixels is exactly represented.

7.1.5 Uniform translates

In many practical situations, the functions φn(r) are chosen as uniform translates
of a single function φ(r), such as a pixel function. In a slightly modified notation,
we can write

φn(r) = φ(r− rn) , (7.62)

where n is a multi-index as in Sec. 7.1.3, and the points rn form a regular lattice.
For pixels in 2D for example, rn = (nxε, nyε) with nx and ny being integers.

More generally (see Sec. 3.4.6), we can construct the regular lattice by

rn = Pn , (7.63)

(PDF), then the second moment of the component x can be obtained from (7.57) by letting
t(r) = x2.
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where P is a real, nonsingular q × q matrix. For the 2D pixel example, P = εI,
where I is the 2×2 identity matrix. In q dimensions, the condition P = εI generates
a generalized cubic lattice where the sides of a unit cell are mutually orthogonal
and of equal length.

In this section we shall analyze expansions based on functions of this form,
first under the assumption that {φ(r − rn)} is an orthonormal set and then more
generally. For simplicity, we consider initially a generalized cubic lattice where
P = εI, but this assumption will also be lifted shortly.

Orthonormal translates Consider an approximation to the object f(r) in the form,

fa(r) =
∞
∑

n=−∞

θn φ(r− rn) . (7.64)

If {φ(r − rn)} is an orthonormal set, the coefficients are given optimally (in the
sense of minimum ||δf(r)||) by

θn =

∫

∞

dqr f(r)φ∗(r− rn) . (7.65)

If the object and the expansion function φ(r) both have finite support, then there
are a finite number of terms in (7.64) even though the sums on all components of
the multi-index run over (−∞,∞); the coefficient θn = 0 when there is no overlap
of f(r) and φ∗(r− rn) in the integrand of (7.65).

With this way of constructing fa(r), the error norm ||δf(r)||2 is given, from
(7.48), by

||δf(r)||2 =

∫

∞

dqr |f(r)|2 −
∞
∑

n=−∞

∣

∣

∣

∣

∫

∞

dqr f(r)φ∗(r− rn)

∣

∣

∣

∣

2

. (7.66)

With Parseval’s relations (3.225) and (3.226) and the shift theorem (3.238), we have

||δf(r)||2 =

∫

∞

dqρ |F (ρ)|2

−
∞
∑

n=−∞

∫

∞

dqρ

∫

∞

dqρ′ F (ρ)F ∗(ρ′)Φ∗(ρ)Φ(ρ′) exp[−2πi(ρ− ρ′) · rn] , (7.67)

where, as usual, capital letters denote Fourier transforms. Interchanging sum and
integral in (7.67) yields

||δf(r)||2 =

∫

∞

dqρ |F (ρ)|2

−
∫

∞

dqρ

∫

∞

dqρ′ F (ρ)F ∗(ρ′)Φ∗(ρ)Φ(ρ′)
∞
∑

n=−∞

exp[−2πi(ρ− ρ′) · rn

=

∫

∞

dqρ |F (ρ)|2−
∫

∞

dqρ

∫

∞

dqρ′ F (ρ)F ∗(ρ′)Φ∗(ρ)Φ(ρ′) comb[ε(ρ−ρ′)] , (7.68)

where we have assumed that P = εI. With this assumption, the multidimensional
comb function (see Sec. 3.4.6) is given by

comb[ε(ρ− ρ′)] =
∞
∑

n=−∞

δ[ε(ρ− ρ′)− n] =
1

εq

∞
∑

n=−∞

δ
(

ρ− ρ′ −
n

ε

)

, (7.69)
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so we have

||δf(r)||2 =

∫

∞

dqρ |F (ρ)|2 − ε−q
∞
∑

n=−∞

∫

∞

dqρ F (ρ)F ∗
(

ρ−
n

ε

)

Φ∗(ρ)Φ
(

ρ−
n

ε

)

.

(7.70)
The terms in the sum with n )= 0 result from aliasing. These terms can be

neglected if the integrand is small at all ρ for nonzero n, which is a valid assumption
if either the object f(r) or the expansion function φ(r) is smooth and nearly ban-
dlimited. For this reason, several authors have advocated using smooth expansion
functions; see, for example, Hanson and Wecksung (1985) and Lewitt (1990, 1992).

When aliasing can be neglected, the error norm is

||δf(r)||2 =

∫

∞

dqρ |F (ρ)|2
[

1− ε−q|Φ(ρ)|2
]

. (7.71)

If f(r) is constant or very slowly varying, then F (ρ) is small except near ρ = 0. For
such functions, aliasing can certainly be neglected, and the error norm is minimized
when

|Φ(0)| =
∣

∣

∣

∣

∫

∞

dqr φ(r)

∣

∣

∣

∣

= εq/2 . (7.72)

This condition is satisfied by pixels if they are properly normalized (with a factor
of ε−q/2) and the rect functions fit together without gaps or overlap.

Non-orthonormal translates We assumed above that the set {φ(r − rn)} was or-
thonormal, but this condition is often violated in practice. For example, it is vi-
olated if φ(r) is nonnegative and the translates are allowed to overlap. We now
examine the error norm without the orthonormality assumption, and we also ex-
tend the treatment to more general lattices where P )= εI.

Assume that a function φ(r) has been chosen so that the set {φ(r − rn)} can
be generated. The only remaining freedom we have is in the choice of the expansion
coefficients, or equivalently the functions {χn(r)}. We know from the discussion in
Sec. 7.1.4 that the object error is minimized if we choose {χn(r)} such that

D
†
φDχ = D

+
φ Dφ . (7.73)

The operator Dχ, a linear mapping from a function of r to a discrete vector,
is given by (7.36), with the functions {χn(r)} yet to be determined. The operator
D

†
φDχ is then given by [cf. (7.37)]

[

D
†
φDχf

]

(r) =

∫

∞

dqr′ f(r′)
∑

n

χ∗
n(r

′)φ(r− rn) . (7.74)

SinceD+
φ is the Moore-Penrose pseudoinverse ofDφ, it must satisfy the Penrose

equations, (1.130a-d). In particular, the fourth Penrose equation requires that
D

+
φ Dφ be Hermitian, so (7.73) implies that D†

φDχ = [D†
φDχ]†, or

∑

n

χn(r)φ
∗(r′ − rn) =

∑

n

χ∗
n(r

′)φ(r− rn) . (7.75)

This condition holds if we choose

χn(r) =
∑

k

Bknφ(r− rk) , (7.76)
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with Bkn being an element (in multi-index notation) of a Hermitian matrix B. In
operator form, (7.76) is equivalent to

Dχ = BDφ . (7.77)

If we multiply both sides of (7.73) by Dφ and apply the first Penrose equation,
(1.130a), we find

DφD
†
φDχ = Dφ . (7.78)

The operator DφD
†
φ is a Hermitian matrix, which we shall call A, with elements

given by the overlap integral,

Amn =
[

DφD
†
φ

]

mn
=

∫

∞

dqr φ∗(r− rm)φ(r− rn) . (7.79)

The indices m and n on Amn can, in principle, extend to infinity in each of q
directions, so A is an infinite matrix. In practice, however, DφD

†
φ will be applied

to finite vectors, so infinite sums will not be required.
Combining (7.77) and (7.78), we find

ABDφ = Dφ . (7.80)

Multiplying from the right by D
†
φ gives

ABA = A . (7.81)

This is again the first Penrose equation, so B is a 1-inverse of A (see Sec. 1.6.1).
Solving (7.81) for B is equivalent to finding Dχ because of (7.77).

In practice, the function φ(r) will either have compact support or fall off rapidly
with r, so there will be very little overlap of the functions in the integrand of (7.79)
unless m is near n. With this assumption, the matrix A is diagonally dominant.
Moreover, if rm = Pm, then

Amn =

∫

∞

dqr φ∗(r−Pm)φ(r−Pn) =

∫

∞

dqr′ φ∗[r′ −P(m− n)] φ(r′) . (7.82)

Thus Amn is a function of m− n. In App. A we noted that a square matrix where
each element is determined by the difference in the indices is called a Toeplitz
matrix. We can extend the definition of a Toeplitz matrix to include the present
case with vector indices, though it is more common in the literature to refer to
matrices of this form as block-Toeplitz. See Sec. 7.4.4 or Andrews and Hunt (1977)
for more discussion of block-Toeplitz matrices.

We can also argue from the discrete shift-invariance that B must be Toeplitz
as well. With these considerations on the structure of A and B, we can express
ABA in component form as

[ABA]mn =

m+ 1
2
N−1

∑

k=m− 1
2
N

n+ 1
2
N−1

∑

k′=n− 1
2
N

Am−kBk−k′Ak′−n , (7.83)

where the limits are specified component-wise (e.g., k = m − 1
2N means that

ki = mi − 1
2N , i = 1, ..., q), and N is any sufficiently large number such that no
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significant nonzero elements of A or B are cut off by the limits. With this choice of
N, (7.83) is essentially a discrete double convolution, and we do not need to worry
about the modulo-N arithmetic usually involved in discrete convolutions (see Sec.
3.6.2). We know from (3.332) that the discrete Fourier transform (DFT) is a natural
tool for solving problems involving discrete convolutions, and that is the approach
we take here.

Though the DFT is usually defined on the interval [0, N − 1] [cf. (3.363)], a
symmetric definition is more convenient here, so we represent Amn and Bmn as

Amn = Am−n =

1
2
N−1
∑

j=− 1
2
N

aj exp[−2πi(m− n) · j/N ] ; (7.84)

Bmn = Bm−n =

1
2
N−1
∑

j=− 1
2
N

bj exp[−2πi(m− n) · j/N ] , (7.85)

where the Fourier coefficients are given by

aj = N−q

1
2
N−1
∑

k=− 1
2
N

Ak exp(2πik · j/N) , (7.86)

and similarly for bj. We assume that N is large enough that no significant compo-
nents are truncated by the limits in either the forward or inverse transform. The
individual indices m and n, however, can still be allowed to run from −∞ to ∞.

With these representations, (7.81) becomes

[ABA]mn =

m+ 1
2
N−1

∑

k=m− 1
2
N

n+ 1
2
N−1

∑

k′=n− 1
2
N

1
2
N−1
∑

j=− 1
2
N

1
2
N−1
∑

j′=− 1
2
N

1
2
N−1
∑

j′′=− 1
2
N

aj b
′
j a

′′
j

× exp[−2πi(m− k) · j/N ] exp[−2πi(k− k′) · j′/N ] exp[−2πi(k′ − n) · j′′/N ]

= Amn =

1
2
N−1
∑

j=− 1
2
N

aj exp[−2πi(m− n) · j/N ] . (7.87)

The sum over k yields Nq δjj′ and the one over k′ yields N q δj′j′′, so (7.81) becomes

N2q

1
2
N−1
∑

j=− 1
2
N

aj bj aj exp[−2πi(m−n) · j/N ] =

1
2
N−1
∑

j=− 1
2
N

aj exp[−2πi(m−n) · j/N ] , (7.88)

which can hold only if
N2qaj bj aj = aj . (7.89)

If aj = 0, bj is arbitrary, but in the spirit of pseudoinverses, we take it to be zero as
well (thereby making B the Moore-Penrose pseudoinverse ofA, not just a 1-inverse).
Thus we take

bj = lim
η→0+

N−2qaj
a2j + η

, (7.90)
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and the solution for Bmn is

Bmn = lim
η→0+

1
2
N−1
∑

j=− 1
2
N

N−2qaj
a2j + η

exp[−2πi(m− n) · j/N ] . (7.91)

If the translates are orthonormal, (7.91) reduces to Bmn = δmn, which implies
that χn(r) = φ(r− rn) as before. More generally, χn(r) must be constructed from
(7.76) and (7.91).

Biorthonormality In the discussions of Gabor expansions and wavelets in Chap. 5,
we encountered examples of expansions in non-orthonormal functions where the ex-
pansion coefficients could be found by constructing a suitable family of biorthonor-
mal functions [see, e.g., (5.44) and (5.93)]. We shall now show that the family
{χ(r−Pn)} is biorthonormal to {φ(r−Pn)} with a mild assumption.

Biorthonormality is related to the operator DχD
†
φ, which by (7.77) is the same

as the matrix BA. This matrix has elements given by

[

DχD
†
φ

]

mn
= [BA]mn =

∫

∞

dqr χ∗(r−Pm)φ(r−Pn) . (7.92)

This matrix, like the others that occur in this problem, is Toeplitz and diagonally
dominant. By analogy to (7.84), we can represent it as

[

DχD
†
φ

]

mn
=

1
2
N−1
∑

j=− 1
2
N

cj exp[−2πi(m− n) · j/N ] . (7.93)

By algebra similar to that which led to (7.89), the second Penrose equation,
BAB = B, can be written as

Nqcj bj = bj . (7.94)

If the expansion functions are spatially compact, then the Fourier coefficient aj
extends to large j. If we assume that aj does not vanish identically for any j, then
(7.90) shows that bj is also not zero, and (7.94) requires cj = N−q for all j. Under
this assumption (which is equivalent to replacing the pseudoinverse with a true
inverse in the discussion above), we find

[

DχD
†
φ

]

mn
= N−q

1
2
N−1
∑

j=− 1
2
N

exp[−2πi(m− n) · j/N ] = δmn , (7.95)

which is the anticipated biorthonormality relation.

7.1.6 Other representations

So far in this chapter we have concentrated on linear representations, but nonlinear
ones are often useful as well. In this section we briefly survey a few nonlinear
representations that occur in the imaging literature.
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Nonlinear parametric models The general approximate representation fa(r) defined
in (7.27) is a linear representation since it results from a linear operator acting on
f(r). A nonlinear representation can be constructed in the form

fp(r) =
N
∑

n=1

Υn(r,Θn) , (7.96)

where subscript p connotes parametric and Θn is the parameter vector. This
representation is nonlinear in two senses. First, the function Υn(r,Θn) depends
nonlinearly on the free parametersΘn, so fp(r) does as well. Second, the parameters
will be determined from f(r) by a nonlinear computation.

The advantage of (7.96) is that it is often possible to use fewer terms than
in a pixel representation and to use parameter vectors with few components. As
a simple example, consider an astronomical image of a double star, where it is
known a priori that the object consists of two point sources and the objective of
the imaging is to determine the location and strength of each. In that case the
object can be described by two terms:

fp(r) =
2

∑

n=1

An δ(r− rn) . (7.97)

Now each vector Θn has three components, An, xn and yn, and the expansion
function depends nonlinearly on the latter two. Equation (7.97) is a more compact
representation than any linear expansion fa(r) that we might construct, yet it is
capable of being an exact representation for the given problem. With this object
representation, the inverse problem is to estimate the six unknown parameters from
some data set g.

A simple extension of this example might be appropriate in x-ray astronomy
if we know that the objects are point sources but do not know a priori how many
point sources to expect. In that case the summation limit N in (7.96) can itself be
one of the nonlinear parameters to be estimated in the inverse problem.

Shape parameters Sometimes it is valid to regard an object as a superposition of
geometrical shapes such as circles, ellipses or polygons. The parameters in the
representation can then include things like the center coordinates and semimajor
axes of each ellipse or the vertices of each polygon, as well as an amplitude like An

in (7.97) associated with each term.

Gray levels within a shape Shape alone is an incomplete object specification; func-
tional values (gray levels) within the shape also influence the data. Often we are
much more interested in the shape than in the functional values, however, so we
can use a much coarser description of the latter than the former. For example, we
might approximate a 2D object as

fp(r) =





K
∑

k=0

k
∑

j=−k

ajkR
j
k(r) e

ijθ



SΘ(r) , (7.98)

where r and θ are the polar coordinates of r (do not confuse θ and Θ), Rj
k(r) is

the Zernike polynomial (see Sec. 4.1.4) and SΘ(r) is a function that is unity inside
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some region defined by the parameter vector Θ and zero outside. The complete
parametric description of the object thus consists of the coefficients {ajk} and the
components of Θ (e.g., vertex positions). If the gray levels within this region are
relatively unimportant to the eventual use of the image, then a small number of
Zernike polynomials (small K) can be used. The extreme case is where we assume
that the object is uniform within the shape outline, so only the k = 0 term is used.
Representation of the object in this case requires specifying the shape parameters
Θ and the overall gray level a00.

Geometrical transformations For complex shapes such as the cerebral cortex, it
may not be feasible to find an analytic expression, but we may have one or more
exemplars that capture the essential features of the shape. Then representation of a
particular object can be performed by warping each exemplar to fit to that object,
and choosing the best fit if more than one exemplar is available. Once the best
fit has been found, the warping parameters and an index identifying the exemplar
constitute a nonlinear representation of the object. This method is sometimes called
atlas matching.

The warping can be an affine transformation of the coordinate system of the
form

r′ = Wr+ r0 , (7.99)

where W and r0 are a matrix and vector, respectively, to be chosen by the fitting
procedure. More complex nonlinear transformations can be also used; for example,
the elements of W and r0 can be functions of r. Very complex transformations
known as morphing have been developed for computer graphics.

Adaptive linear expansions In Sec. 7.1.3 we discussed finite representations obtained
by truncating infinite, exact representations [see (7.19)]. Such truncations are use-
ful if terms with higher values of the index n convey less information in some sense
about the object being represented. An example is the Fourier series representation
of (7.11) where the index codes spatial frequency. Truncating the series thus elimi-
nates high frequencies or small structures, with the hazard that these components
might be weak but of prime importance for the intended task.

An alternative approach is to start with an exact (and hence infinite) expan-
sion and keep only the N largest terms in order to represent a particular object.
This method is commonly used with wavelets. From (5.90) we know that a 1D
function can be represented exactly as

f(x) =
∞
∑

j=−∞

∞
∑

k=−∞

cjkψjk(x) , (7.100)

where ψjk(x) is a wavelet. If this expansion is truncated, the resulting approximate
representation fa(x) is linear in both senses: fa(x) is a linear function of the co-
efficients cjk, and the coefficients are determined by a linear operation on f(x) as
in (5.92). If, on the other hand, we keep all terms for which |cjk| is greater than
some threshold cth, then linearity in the latter sense is lost, but perhaps many fewer
terms will be needed to get a given representation accuracy.

We can think of the two methods of getting an approximate representation
from (7.100) as thresholding on the horizontal axis or on the vertical axis of a
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wavelet transform; this idea is illustrated in Fig. 7.4. An analysis of the mean-
square representation error for thresholding on the vertical axis has been given by
Cohen and d’Ales (1995, 1997).

Fig. 7.4 Illustration of two ways of deriving an approximate finite represen-
tation from the discrete wavelet transform.

7.2 LINEAR CONTINUOUS-TO-CONTINUOUS SYSTEMS

Having surveyed many different representations of objects and images, we turn now
to imaging systems. In this section both the object and the image are described
as scalar-valued functions as in Sec. 7.1.1, and we assume that the mapping from
object to image is linear. The action of the imaging system is thus described by a
linear integral transform (see Sec. 1.2.2). Since the input and output of the system
are functions defined on continuous domains, we refer to this system description as
the continuous-to-continuous (CC) model. There is, however, no implication that
the functions themselves are continuous or even that the system is a continuous
mapping as defined in Sec. 1.3.2.

As we shall see in Chap. 9, the linear CC model is valid for optical imaging in
two important limits, complete coherence and complete incoherence, and it can be
salvaged for partial coherence as well. The CC model also plays a role in indirect
imaging. In that case the final image is unlikely to be a function of a continuous
variable, since the reconstruction step is usually performed digitally, but the CC
model may describe the mapping from an object to an intermediate data set prior
to detection and digitization. We shall use the language of direct imaging in this
section, but the mathematics is often applicable as well to the first stage in an
indirect system.

7.2.1 General shift-variant systems

As in Sec. 7.1.1, we regard the object as a function f(r), where r is a vector in q
dimensions, and the image as a function g(rd), where rd is a vector in s dimensions.
As in Sec. 7.1, the subscript d denotes detector, and we shall think of g(rd) as a
radiation pattern incident on some detector.

The object will be assumed to be supported within a region Sf in Rq and
square-integrable over that region. Similarly, the image will be assumed to be
supported within a region Sg in Rs and square-integrable over that region. One or
both of these regions might be infinite in a particular problem.

With these assumptions, the imaging system is a mapping from L2(Sf ) to
L2(Sg), or from object space U to image space V. If this mapping is linear, the
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Riesz representation theorem (see Sec. 1.2.2) tells us that it must have the form

g(rd) =

∫

Sf

dqr h(rd, r) f(r) . (7.101)

In a more abstract notation, we can express this integral as

g = Hf , (7.102)

where f and g are Hilbert-space vectors and H is the linear operator defined by
(7.101). We shall also, on occasion, use the notation [Hf(r)](rd) or [Hf ](rd) to
indicate that the function f(r) has been transformed to a function of rd.

Since we have defined V without reference to the characteristics of H, it is a
larger space than we need to encompass all vectors of the form g = Hf ; the range
of H is a subspace of V. Nevertheless, it is very convenient to choose a familiar L2

space as image space, and it will prove essential to do so when we consider noise.
With noise, the mapping takes the form g = Hf + n, where n is a random vector
whose sample space may be all of V.

Basis functions Because the system is linear, we can expand f(r) in any basis we
choose, and each basis function will be mapped independently. With the general
expansion (7.8), we have

g(rd) =
∞
∑

n=1

αn

∫

Sf

dqr h(rd, r)ψn(r) =
∞
∑

n=1

αn[Hψn](rd) , (7.103)

where Hψn is the vector in image space produced by the system in response to
vector ψn in object space, and [Hψn](rd) is the same thing expressed as a function.

Thus, once we know the response of the system to the basis functions, we can
obtain the response to an arbitrary object by performing the sum over n. The
same conclusion holds for continuous bases (see Sec. 1.1.6), even though the basis
functions themselves are not square-integrable.

Point response As discussed in Sec. 2.2.6, Dirac delta functions can be regarded
as basis functions for L2, even though they are not themselves in that space. The
sifting property of delta functions can be used to express f(r) as

f(r) =

∫

Sf

dqr0 δ(r− r0) f(r0) . (7.104)

When the right-hand side of this equation is substituted for f(r) in (7.101), f(r0)
is simply a constant and the entire r-dependence is carried by the delta function.
Thus we obtain

g(rd) =

∫

Sf

dqr h(rd, r)

∫

Sf

dqr0 δ(r− r0) f(r0) =

∫

Sf

dqr0 h(rd, r0) f(r0) . (7.105)

At first glance, the final form here is just a trivial change of variables in (7.101),
but it provides an important insight into the meaning of the kernel. Equations
(7.103) and (7.104) have the same structure if we think of the integral over r0 in
the latter as equivalent to the sum over n in the former. In this view, h(rd, r0)
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plays the same role as [Hψn](rd). That is, the kernel h(rd, r0) is the response of
the system at point rd in image space to a delta function at point r0 in object space.
Since a delta function is frequently referred to as a point source in optics, h(rd, r0)
is called the point response function (PRF). Another common term, especially in
electrical engineering is impulse response.7

Another way to see the interpretation of the kernel as a PRF is to treat the
delta function as the limit of a Dirac sequence. If we write

δ(r− r0) = lim
k→∞

dk(r− r0) , (7.106)

where each function dk(r−r0) is square-integrable and meets the criteria for a Dirac
sequence (see Sec. 2.2.2), then we can investigate the effect of the system on each
function and pass to the limit. If the operator H is a continuous mapping (see Secs.
1.3.2 and 2.1.4), then

lim
k→∞

[Hdk(r− r0)](rd) = [H δ(r− r0)](rd) = h(rd, r0) , (7.107)

where the last step uses the definition of H and the sifting property of the delta
function. This step can, in fact, be regarded as the definition of H δ(r− r0), which
is otherwise undefined since the delta function is not strictly in the domain of H.

Thus, if the term point source is interpreted in the sense of a Dirac sequence
as the limit of a very small, very bright source at point r0, then the kernel h(rd, r0),
regarded as a function of rd for a fixed r0, is the limit of the corresponding image.

The concept of PRF is illustrated in Fig. 7.5 for a 2D imaging system
(q = s = 2).

Fig. 7.5 Illustration of the point response function for a 2D CC imaging
system. Three different input locations for a point object are shown on the
left; the image on the right illustrates the location dependence of the response
function.

Resolution measures The full PRF, h(rd, r0) for all values of rd and r0, is required
for a complete specification of a general linear CC system. This specification is a

7The reader familiar with the imaging literature will notice that we are avoiding the term point
spread function here; that term is being reserved for the special case of shift-invariant imaging,
to be discussed shortly. Another expression with essentially the same meaning as PRF is Green’s
function, and that terminology will be used in the context of diffraction.
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function of q + s variables, in general, or 4 variables for the 2D imaging situation
where q = s = 2. Since display of even a 4D function is difficult, there is some
impetus for finding simpler, though less complete, descriptions of the system. One
way to simplify the description is to report some scalar measure of the width of
the function rather than the full function. This measure of the width of the PRF
is often referred to as the spatial resolution of the system. Perversely, however, a
system for which the width is small is often said to have high resolution.

One common width measure is the full width at half maximum (FWHM).
This idea is best illustrated by assuming first that q = s = 1, so h(rd, r0) becomes
h(xd, x0), which we shall assume to be real. Let hmax(x0) be the maximum value
of h(xd, x0) as a function of xd for fixed x0, and assume that this maximum occurs
at xd = xd0, as illustrated in Fig. 7.6. (The value of xd0 depends, of course, on
x0.) If h(xd, x0) falls off monotonically away from the peak, it is possible to identify
two unique points xd+ > xd0 and xd− < xd0 such that h(xd±, x0) =

1
2hmax(x0). A

simple measure of the width of the PRF, for a point source at x0, is then given by

δFWHM(x0) = xd+ − xd− . (7.108)

The FWHM definition can be extended straightforwardly to higher dimen-
sions. If s = 2, for example, we can define a 2D vector δFWHM(r0) with components
xd+ − xd− and yd+ − yd−. If the object is also 2D (i.e., q = 2), we can display the
resolution by this definition in the form of two separate 2D images, one for each
component of δFWHM(r0) as a function of the coordinates of the object point, x0

and y0. If the PRF is well approximated by a specific functional form such as a
Gaussian, then these images fully specify the PRF; otherwise they merely give an
indication of general trends.

Fig. 7.6 Illustration of the FWHM measure of resolution.

Some authors argue that tails on the PRF are very important, so we should
define additional resolution measures such as full width at one-tenth maximum or
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even one-fiftieth, but these definitions require some strong constraints on the form
of the PRF. If, for example, the function has low level ripples, there may be many
points where it takes on the values hmax/10 or hmax/50. We could take the points
closest to the maximum, but the resulting width measure is not very representative
of the entire function.

Another way to define a width measure is to normalize the PRF as a probability
density function and think of rd as a random vector (see Fig. 12.28). The width of
the PRF in any direction can then be defined by the variance of the corresponding
component of rd. If we assume that h(rd, r0) is a real, nonnegative function, the
required normalization is

p(rd, r0) =
h(rd, r0)

∫

Sg
dsr′ h(r′, r0)

. (7.109)

The resolution width in the x direction is then defined by

δ2x =

∫

Sg

d2rd x2
d p(rd, r0)−

[

∫

Sg

d2rd xd p(rd, r0)

]2

, (7.110)

and the width in the y direction is defined analogously.
Other definitions of spatial resolution are appropriate in particular problems.

In optics, for example, the PRF often has the form of a sinc or besinc function, and
it is common to define a resolution width as the distance from the peak to the first
zero. This definition is the Rayleigh criterion for resolution.

This discussion of resolution has focused on the dependence of the PRF h(rd, r0)
on the image position rd, with the object point r0 fixed. It is also useful to consider
the dependence of h(rd, r) on r with rd fixed. This function of r can be regarded as
the PRF associated with H

†, and summary measures such as δFWHM can be defined
by direct analogy to the ones discussed above. If the system has some magnification
associated with it (see Sec. 7.2.7), the numerical values of the resolution measures
in object space may be quite different from those in image space.

Flood images and point sensitivities In addition to providing a sharp image of a
point, a good imaging system will exhibit good spatial uniformity in two distinct
senses. It will produce a uniform image of a uniform object (often called a flood
source), and its total response to a point source will be independent of where the
point is in the field of view.

The first kind of uniformity is measured by the flood image, obtained from
the basic imaging equation (7.101) with f(r) set to a constant, which we may as
well take to be unity. Thus the flood image is given by

gfld(rd) =

∫

Sf

dqr h(rd, r) . (7.111)

A common goal, at least in direct imaging, is to make gfld(rd) constant (independent
of rd). If this condition cannot be achieved by design of the system, it always can be
achieved by post-processing; we simply define a normalized image of any object by

gnorm(rd) =
g(rd)

gfld(rd)
, (7.112)
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where g(rd) is related to f(r) by (7.101). It follows from the definition that
gnorm(rd) must be constant if f(r) is constant. In addition, large uniform regions
of a general object will also be rendered as uniform regions in the image (provided
the regions are large compared to the width of the PRF).

Uniformity of response to point sources can be quantified by the point sensi-
tivity, defined as

spt(r0) =

∫

Sg

dsrd h(rd, r0) . (7.113)

If g(rd) physically represents a mean number of photons per unit area on the detec-
tor, then spt(r0) is interpreted as the total mean number of photons collected from
a unit point source at r0.

Constant point sensitivity does not imply constant flood uniformity since the
latter depends on where the photons are recorded in the image plane, while the
former depends only on the total number of photons recorded. Image distortion,
for example, can degrade the flood image without affecting point sensitivity. This
point is discussed further in Sec. 7.2.7.

7.2.2 Adjoint operators and SVD

As we saw in Chap. 1, singular-value decomposition (SVD) is a powerful tool for
analyzing linear systems. If the system is described by a CC operator H, SVD
requires knowledge of the eigenfunctions of H

†
H and HH

†, denoted un(r) and
vn(rd), respectively. In this section we shall discuss the interpretation and uses of
these eigenfunctions for CC systems, but first we need to discuss the interpretation
of the adjoint operator.

Since H is a mapping from object space U to image space V, the adjoint
operator H† maps from V to U. In a CC problem, the adjoint converts a function
of image coordinates rd to a function of object coordinates r. Specifically, for the
operator H defined in (7.102), the adjoint is given (see Sec. 1.3.5) by8

[

H†g
]

(r) =

∫

Sg

dsrd g(rd) h
∗(rd, r) . (7.114)

If the PRF is real, the complex conjugate is not needed, but we shall maintain the
generality.

Since (7.114) is a linear CC mapping like (7.102), it is again useful to discuss
it in terms of a point response function. The adjoint PRF is the response in object
space produced by a point source in image space. If that point is at the specific
location rd0, then the response is h∗(rd0, r). Thus there is no need for a separate
characterization of the adjoint operator; its PRF is fully determined by the PRF
for H itself.

Figure 7.7 illustrates the adjoint PRF for a 2D system with a nonnegative, real
kernel. If we think of H as a blurring operation in this case, then H† is a further
blurring, but with h(rd, r) replaced by h(r, rd).

8Note that we have not interchanged the two arguments in h∗(rd, r). The interchange stated in
(1.44) is implicit in (7.114) since the variable of integration is the first argument, not the second;
see the discussion of this point in Sec. 1.3.5.
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Fig. 7.7 Illustration of the point response function for † for a 2D CC imag-
ing system. As in Fig. 7.5, 3 input points are shown on the left. The result-
ing image, shown in (b), illustrates that the PRF of the adjoint operator is
position-dependent.

The adjoint operation is frequently called backprojection (especially in the
tomography literature), since each point is, in a sense, projected back into the
object space by the operation defined in (7.114). We caution the reader, however,
that the word projection in this context does not imply idempotency.

The operator H is Hermitian if h(r, rd) = h∗(rd, r), which cannot happen
unless q = s. Even if q = s, it is rare to find that H is Hermitian.

Eigenfunctions in object space The operator H†H that forms the starting point for
SVD is given by

[

H†Hf
]

(r) =

∫

Sf

dqr′ k(r, r′) f(r′) , (7.115)

where the kernel k(r, r′) is

k(r, r′) =

∫

Sg

dsrd h∗(rd, r)h(rd, r
′) . (7.116)

This kernel can be interpreted as the PRF for the CC operator H†H (see Fig. 7.8).
It is necessarily symmetric, in the sense that k(r, r′) = k∗(r′, r), so H

†
H is (not

surprisingly) Hermitian.
If H†H is compact (see Sec. 1.3.3), then the eigenvalues form a denumerable

set. For a compact operator, the eigenvalue problem is
[

H†Hun

]

(r) = µnun(r) , n = 1, ...,∞ . (7.117)

Since H†H is Hermitian, all of the eigenvalues are real.
To clarify the interpretation of the eigenvalue equation, we again consider a 2D

system with a nonnegative, real kernel. If an eigenfunction un(r) is placed in the
object plane of this system, the image Hun is a blurred version of it, and H†Hun

is blurred further. Since the input is an eigenfunction, however, the result of this
double blurring must be the original function simply multiplied by a real number
µn. It may seem surprising that any function would exist with this property, but
from the theory of Hermitian operators, we know there must be an infinite number
of them. The eigenfunctions may be complex, however, so they cannot represent
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real, physical objects. In many imaging situations, the object is constrained to be
real and perhaps nonnegative, but no such constraint applies to the eigenfunctions.

Fig. 7.8 Illustration of the point response function for † for a CC imaging
system.

From the discussion in Sec. 1.5.1, we know that the eigenfunctions can be
chosen to form an orthonormal basis in U. The orthonormality is expressed by

∫

Sf

dqr u∗
n(r)um(r) = δnm (7.118)

and the completeness by

∞
∑

n=1

u∗
n(r)un(r

′) = δ(r− r′) . (7.119)

Because of the completeness, any object can be expanded as

f(r) =
∞
∑

n=1

αnun(r) . (7.120)

From (7.118), the coefficients are given by

αn =

∫

Sf

dqr u∗
n(r) f(r) . (7.121)

Eigenfunctions in image space If we have solved (7.117) and found a un(r) corre-
sponding to a nonzero µn, then we can construct a function vn(rd) in image space
by [cf. (1.116) and (1.117)]

vn(rd) =
1

√
µn

[Hun] (rd) . (7.122)

This function is easily shown to be a normalized eigenfunction of HH
†. It satisfies

[

HH†vn

]

(rd) =

∫

Sg

dsrd0 K(rd, rd0) vn(rd0) = µnvn(rd) , (7.123)



LINEAR CONTINUOUS-TO-CONTINUOUS SYSTEMS 305

where the kernel K(rd, rd0) is given by

K(rd, rd0) =

∫

Sf

dqr h∗(rd0, r)h(rd, r) . (7.124)

Note that the eigenvalues of HH† are the same as those of H†H.
The full set of functions {vn(rd)} (not just the ones corresponding to nonzero

µn) form an orthonormal basis in image space, satisfying relations analogous to
(7.118) – (7.120). Any image g(rd) can thus be expanded as

g(rd) =
∞
∑

n=1

βnvn(rd) , (7.125)

where the coefficients are given by

βn =

∫

Sg

dsrd v∗n(rd) g(rd) . (7.126)

SVD of a CC operator Having discussed the eigenanalysis of HH
† and H

†
H, we

are now in a position to treat the SVD of a CC operator. The generic form of the
SVD representation of a compact linear operator is given in (1.120), repeated here
for convenience:

H=
R
∑

n=1

√
µn vnu

†
n , (7.127)

where R is the rank of the operator or the number of nonzero singular values. By
the discussion in Sec. 1.4.4, the eigenvalues µn cannot be negative, so the singular
values

√
µn are real and nonnegative. Thus we can assume that they are ordered

by descending value as in (1.114) and hence the first R terms (where R may be
infinite) encompass all nonzero terms in this expansion.

Transcribing (7.127) to the specific case of a CC operator and applying it to
an arbitrary object, we obtain

g(rd) = [Hf ] (rd) =
R
∑

n=1

√
µn

[

vnu
†
nf

]

(rd) =
R
∑

n=1

[

√
µn

∫

Sf

dqr u∗
n(r) f(r)

]

vn(rd)

=
R
∑

n=1

√
µn αnvn(rd) . (7.128)

That is, given the singular system {un(r), vn(r), µn}, the procedure for computing
[Hf ](rd) is to form all of the scalar products of f(r) with the object-space singular
functions un(r), weight these products with the singular values

√
µn and use the

results as coefficients of the image-space singular functions vn(rd). Whenever we use
the generic form (7.127) for a CC operator, the detailed implementation of (7.128)
will be implied.

Equations (7.125) and (7.128) are two expansions for g(rd) in terms of {vn(rd)}.
Since the expansion functions are orthogonal, the sums can be equal only if they
are equal term by term, or

βn =
√
µn αn . (7.129)

Thus SVD expansions reduce the imaging equation g = Hf to a simple multiplica-
tion.
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Null functions A CC operator does not necessarily have null functions. If it does,
then the sum over n in (7.128) includes only terms for which µn )= 0. These terms
define the measurement space Umeas for the operator H, which is a subspace of
object space U. The orthogonal complement of this space, spanned by singular
functions un(r) for which µn = 0, is the null space Unull. A vector in this space
is called a null vector and denoted fnull, and the corresponding function is called a
null function and denoted fnull(r).

7.2.3 Shift-invariant systems

Temporal filters In electrical engineering, linear filters are described by a temporal
impulse response p(t, t′). The voltage on the output of the filter is related to the
voltage on the input by

vout(t) =

∫ ∞

−∞

dt′ p(t, t′) vin(t
′) . (7.130)

As in the spatial case, p(t, t0) is the filter output when the input is δ(t′ − t0).
In spite of the analogy of p(t, t′) to the PRF h(rd, r) introduced above, there

are two crucial distinctions (other than dimensionality). First, temporal systems
are causal, which means that there can be no output before there is an input.
Causality imposes the following constraint on the impulse response of any temporal
filter:

p(t, t′) = 0 if t < t′ . (7.131)

Other properties of causal systems have been discussed in Secs. 4.2.1 and 4.2.4.
There is no requirement that spatial filters be causal, and they seldom are.

The second distinction applies to temporal filters in which the physical param-
eters of the filter (capacitances, inductances, etc.) are independent of time. This is
the usual case in passive electrical filters, and it implies that p(t, t′) is a function of
only the time difference t − t′. It is convenient to use the same letter to designate
the new function of one variable as we used for the function of two variables, and
we write

p(t, t′) = p(t− t′) . (7.132)

A linear filter satisfying this condition is said to be linear and shift-invariant
(LSIV), implying that there is no preferred origin in time; if input vin(t) produces
output vout(t), then vin(t−∆t) will produce vout(t−∆t).

Spatial shift-invariance? Unlike temporal filters with constant parameters, spatial
linear systems usually do have preferred origins. The optical axis of a rotationally
symmetric lens system or the center of the field of view in a tomographic imager
establishes a unique point in space. For such systems, the LSIV model is only
an approximation, but it is more mathematically tractable than the general CC
model, and it may capture the essential features of a real system, especially when
deviations from shift-invariance are small or attention can be confined to a small
spatial region.

In addition, there are a few linear systems in optics and imaging that can be
described accurately as LSIV. One example is a linear scanner, where a detector
and imaging optics are moved continuously over an object. In that case, a shift of
the object causes a corresponding shift of the image with no other changes.
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Another example of a spatial LSIV system is diffraction. In a typical diffraction
problem, an open aperture in a planar screen is illuminated with a monochromatic
plane wave, and the diffracted field is observed on a plane a distance z from the
aperture. As we shall see in detail in Chap. 9, this problem can be formulated as
a linear mapping of one 2D function (the field u0(ra) in the aperture) to another
2D function (the field uz(r) on the observation plane). This mapping is linear, and
it is SIV since a joint translation of the aperture and the observation point has no
effect; if field u0(ra) produces the diffracted field uz(r), then u0(ra −∆r) produces
uz(r −∆r). Free space has no preferred origin and the wave equations are linear,
so diffraction is an LSIV system. We shall exploit this simple observation fully in
developing diffraction theory in Chap. 9.

Convolution operator and its adjoint When a spatial system in q dimensions can be
described as LSIV, its output is given by

g(rd) =

∫

∞

dqr h(rd − r) f(r) . (7.133)

By a change of variables, this integral can also be written as

g(rd) =

∫

∞

dqr h(r) f(rd − r) . (7.134)

Note that the range of integration is infinite in all variables; LSIV systems cannot
have limited fields of view.

From (3.240) we recognize the integral in (7.133) or (7.134) as a convolution,
which we can write in shorthand form as

g(rd) = [h ∗ f ] (rd) = h(rd) ∗ f(rd) . (7.135)

The 1D convolution operator was introduced in Sec. 3.3.6, and the multidimensional
case was discussed in Sec. 3.4.3. Many properties of convolution were developed in
those two sections, and we assume here that the reader is conversant with that
material.

The kernel of the convolution operator can again be interpreted as the point
response function, but it is now a function of one argument rather than two. We
shall use the term point spread function or PSF instead of PRF when we want to
imply the LSIV case.

The adjoint of the convolution operator can be obtained from (7.114), which
now becomes

[

H†g
]

(r) =

∫

∞

dqrd h∗(rd − r) g(rd) . (7.136)

From (3.242) we recognize this integral as the correlation [g 0 h∗](r). Thus the
adjoint of convolution with h(r) is correlation with h∗(r). If h(−r) = h∗(r), then
these two operations are identical and H is Hermitian.

Flood images and point sensitivities As in the general CC case, we can define flood
images and point sensitivities for LSIV systems, but they are rather uninteresting.
The flood image is given by [cf. (7.111)]

gfld(rd) =

∫

∞

dqr h(rd − r) =

∫

∞

dqr′ h(r′) , (7.137)
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where the last form follows from a simple change of variables. It is evident from this
form that gfld(rd) is necessarily independent of rd. Similarly, the point sensitivity is
necessarily independent of r. LSIV systems cannot suffer from either of these kinds
of nonuniformity (which is another reason why LSIV models do not accurately
describe real systems).

7.2.4 Eigenanalysis of LSIV systems

For an LSIV operator, r and rd must have the same dimensionality (q must equal s),
since otherwise the algebraic operation r − rd would make no sense. Furthermore,
the object and image supports are both infinite (Sf = Sg = Rq), so object space
U is identical to image space V. Under these circumstances, it is possible to find
eigenfunctions (not just singular functions) and eigenvalues of H.

We do not expect, however, that the eigenvalues will form a denumerable set
since the convolution operator is not compact. In Sec. 1.3.3 we introduced the
Hilbert-Schmidt condition, (1.33), as a test for compactness. Convolution fails this
test, even if the kernel is square-integrable. By a change of variables, the Hilbert-
Schmidt integral for a qD convolution can be written

∫

∞

dqrd

∫

∞

dqr |h(rd − r)|2 =

∫

∞

dqrd

∫

∞

dqr′ |h(r′)|2 =

∫

∞

dqrd const = ∞ ,

(7.138)
so we cannot show by this route that convolution is compact. We must expect that
a general convolution operator will have a continuous spectrum.

The eigenvalue problem for an LSIV operator has the form

[Hψ](rd) = [ψ ∗ h](rd) = λψ , (7.139)

where ψ(r) is the eigenfunction and λ is the eigenvalue. From the convolution
theorem, (3.132), we can write the Fourier transform of this equation as

H(ρ)Ψ(ρ) = λΨ(ρ) , (7.140)

where H(ρ) is the Fourier transform of the PSF and Ψ(ρ) is the Fourier transform
of the eigenfunction.

At first glance it might seem impossible to find a solution to (7.140); we seek
a function Ψ(ρ) that can be multiplied by some other function, yet retain its func-
tional form. The only function with this property is the Dirac delta function,

Ψ(ρ) = δ(ρ− ρ0) . (7.141)

That this function satisfies (7.140) follows from (2.25), according to which

H(ρ) δ(ρ− ρ0) = H(ρ0) δ(ρ− ρ0) . (7.142)

Since H(ρ0) is a constant, it is the eigenvalue λ in (7.140), and the delta function
is the required Ψ(ρ). Any choice of the constant vector ρ0 works, so ρ0 is the
continuous index that distinguishes one eigenfunction from another.

An inverse transform of (7.141) shows that the eigenfunctions, now embellished
with a subscript, are given by

ψρ0
(r) = exp(2πiρ0 · r) , (7.143)
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and the corresponding eigenvalue is

λρ0
= H(ρ0) . (7.144)

Since these equations hold for any spatial-frequency vector, the subscript on ρ0 is
superfluous and will be dropped.

Another way to see that (7.143) and (7.144) satisfy the eigenvalue equation is
by direct substitution in (7.139):

[

Hψρ

]

(rd) =

∫

∞

dqr h(r) exp[2πiρ · (rd − r)]

= exp(2πiρ · rd)
∫

∞

dqr h(r) exp(−2πiρ · r) . (7.145)

The last integral is H(ρ), but the interesting point for the present discussion is that
it is independent of rd. For the convolution operator, we can thus write

[Hψρ](rd) = λρψρ(rd) , (7.146)

where the eigenvalue is again λρ = H(ρ).
In summary, the eigenfunctions of an LSIV operator are the Fourier basis

functions or complex exponentials, and the eigenvalues are obtained by Fourier-
transforming the PSF. Note that the eigenfunctions are not square-integrable, so
they are not contained in the space they span.

7.2.5 Singular-value decomposition of LSIV systems

We have just seen that convolution has eigenfunctions and eigenvalues; like any
linear operator, it also has singular functions and singular values. In fact, the
singular functions are precisely the eigenfunctions. It will be left as an exercise to
show that

[

H†Hψρ

]

(r) = |λρ|2ψρ(r) = |H(ρ)|2ψρ(r) , (7.147)

where H† is given by (7.136). Hence the object-space singular function (or eigen-
function of H†H), which we denote by uρ(r), is also equal in this case to the
eigenfunction ψρ(r). The corresponding singular value is

√
µρ = |λρ| = |H(ρ)| . (7.148)

As expected, the singular values are all nonnegative.
When H(ρ) )= 0, the singular functions in image space are given by (7.122) as

vρ(rd) =
1

|H(ρ)|
[Huρ](rd) =

H(ρ)

|H(ρ)|
exp(2πiρ · rd) . (7.149)

The factor H(ρ)/|H(ρ)| is a constant phase factor (±1 if H(ρ) is real); if it is omit-
ted, vρ(rd) is still an eigenfunction of HH

†, but the factor is needed for consistency
in our overall formalism.

The SVD representation of a convolution, applied to an arbitrary object, is
given by (7.128) with the sum over n generalized to an integral over ρ:



310 DETERMINISTIC DESCRIPTIONS OF IMAGING SYSTEMS

g(rd) = [Hf ] (rd) =

∫

∞

dqρ |H(ρ)|
[

vρu
†
ρ
f
]

(rd)

=

∫

∞

dqρ |H(ρ)|
[
∫

∞

dqr u∗
ρ(r) f(r)

]

vρ(rd) . (7.150)

The integral in square brackets is just the Fourier transform of the object, denoted
F (ρ), and vρ(rd) is given by (7.149), so

g(rd) =

∫

∞

dqρ H(ρ)F (ρ) exp(2πiρ · rd) . (7.151)

Taking Fourier transforms of both sides yields

G(ρ) = H(ρ)F (ρ) , (7.152)

where G(ρ) = Fq{g(rd)}.
This result is the convolution theorem, (3.132), but now it acquires a new

interpretation which we can elucidate by writing Fourier expressions beside their
SVD counterparts:

f(r) =
∫

∞
dqρ F (ρ) exp(2πiρ · r) f =

∑∞
n=0 αnun

g(rd) =
∫

∞
dqρ G(ρ) exp(2πiρ · rd) g =

∑∞
n=0 βnvn

g(rd) = [h ∗ f ] (rd) g = Hf

G(ρ) = H(ρ)F (ρ) βn =
√
µn αn .

Thus the Fourier transform of an object or image gives the coefficients in an SVD
representation derived from a convolution operator. The lack of compactness of the
convolution means that we have to use integrals rather than sums, but otherwise
the familiar SVD results are obtained. In particular, SVD (or Fourier analysis)
reduces the convolution operation to a simple multiplication.

7.2.6 Transfer functions

A complex exponential exp(2πiρ · r) is transferred through an LSIV system un-
changed except for multiplication by the eigenvalue H(ρ); for this reason H(ρ) is
often called the transfer function of the system.

Of course, the transfer function is also the Fourier transform of the PSF. If the
PSF is real, the transfer function must satisfy

H(−ρ) = H∗(ρ) , (7.153)

which shows that the real part of H(ρ) is even and the imaginary part is odd (see
Sec. 3.2.3). The transfer function is real and even if h(r) is real and even. In any
case, (7.153) ensures that H(0) is real if h(r) is real.

As noted in Chap. 3, many books refer to (7.153) as Hermiticity or Hermitian
symmetry, but this terminology is unfortunate since H(ρ) does not necessarily
relate to a Hermitian operator. As noted in Sec. 7.2.3, the condition that an LSIV
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operator be Hermitian is that h(r) = h∗(−r). This condition implies that H(ρ) is
real for all ρ (which must be the case for a Hermitian operator since its eigenvalues
are real). To avoid confusion, we shall refer to (7.153) as conjugate symmetry.

For LSIV systems with real PSFs, it is common to define the optical transfer
function (OTF) by

OTF(ρ) =
H(ρ)

H(0)
. (7.154)

Since OTF(0) is unity, OTF(ρ) gives the strength with which a complex exponential
of frequency ρ is transferred through the system relative to the transferred strength
of a constant, which can be regarded as an exponential of frequency zero.

Another normalized transfer function is the modulation transfer function
(MTF) defined by

MTF(ρ) =
|H(ρ)|
H(0)

= |OTF(ρ)| . (7.155)

Many systems have the character of a low-pass-filter, which means that
MTF(ρ) ≤ 1.

To see why |H(ρ)|/H(0) is called MTF, consider as the input to the system
not a complex exponential but a raised cosine of the form

f(r) = A+B cos(2πρ · r− φf ) , (7.156)

where A and B are real, with A ≥ B ≥ 0 and hence f(r) ≥ 0. This function has a
modulation defined by

Mf ≡
fmax − fmin

fmax + fmin
=

B

A
, (7.157)

where fmax, the maximum value of f(r), occurs when the cosine = 1 and is given
by fmax = A+B. Similarly, fmin = A−B.

To see how this function is affected by an LSIV system, we decompose it as

f(r) = A+ 1
2B exp(2πiρ · r− φf ) +

1
2B exp(−2πiρ · r+ φf ) . (7.158)

Each of the three terms is now an eigenfunction, so we can write down the image
at once:

g(rd) = AH(0) + 1
2BH(ρ) exp(2πiρ · rd − φf ) +

1
2BH(−ρ) exp(−2πiρ · rd + φf ) .

(7.159)
Now we assume that the PSF is real, so that (7.153) is satisfied, and write the
transfer functions as

H(ρ) = |H(ρ)| exp[iΦH(ρ)] , H(−ρ) = |H(ρ)| exp[−iΦH(ρ)] . (7.160)

Some easy algebra shows that

g(rd) = AH(0) +B|H(ρ)| cos[2πρ · rd − φf + ΦH(ρ)] . (7.161)

The modulation of g(rd), defined analogously to (7.157), is given by

Mg =
B|H(ρ)|
AH(0)

. (7.162)
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Thus the modulation transfer function is aptly named since it is the ratio of output
modulation to input modulation:

MTF(ρ) =
Mg

Mf
. (7.163)

This computation also provides an interpretation of the phase of H(ρ). The
cosine is not an eigenfunction unless ΦH(ρ) = 0, but the change in form as it is
transferred through the system is just a phase shift by an amount ΦH(ρ). For this
reason, ΦH(ρ) is often referred to as the phase transfer function.

Fourier transformation as diagonalization Another way of looking at the process
of Fourier transformation with an LSIV system is that it diagonalizes the system
operator. The basic idea of diagonalization was introduced in Sec. 1.4.5; here we
extend the argument specifically to a convolution operator.

Consider first a general linear CC operator as defined in (7.101), with no
restriction other than that r and rd have the same dimensionality (q = s). The
object f(r) can be expressed in terms of its qD inverse Fourier transform as

f(r) =

∫

∞

dqρ F (ρ) exp(2πiρ · r) , (7.164)

or in abstract form,
f = F

−1
q F . (7.165)

A similar representation holds for the image, and the imaging equation becomes

g = F
−1
q G = HF

−1
q F . (7.166)

Operating on both sides with Fq yields

G = FqHF
−1
q F . (7.167)

The kernel of the operator FqHF
−1
q is given by

[

FqHF
−1
q

]

(ρd,ρ) =

∫

∞

dqrd

∫

∞

dqr exp(−2πiρd · rd)h(rd, r) exp(2πiρ · r) .

(7.168)
So far this treatment is applicable to any linear CC system with q = s, but

now we assume shift-invariance, so that h(rd, r) = h(rd − r). Then a change of
variables and use of (3.217) shows that

[

FqHF
−1
q

]

(ρd,ρ) = H(ρ) δ(ρ− ρd) . (7.169)

If we think of [FqHF
−1
q ](ρd,ρ) as a matrix, with continuous vector indices ρ and

ρd replacing the usual integer indices, then (7.169) shows that the matrix is diag-
onal, in the sense that all elements with ρ )= ρd are zero. The diagonal elements
are infinite, but the strength of the delta function along the diagonal is the transfer
function H(ρ). In this sense the Fourier domain is the representation in which the
system operator is diagonal.
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Diagonal operators, like ordinary diagonal matrices, simplify computations
considerably. If we apply the operator FqHF

−1
q to an arbitrary object, expressed

in the Fourier domain by F, we quickly find

[

FqHF
−1
q F

]

(ρd) =

∫

∞

dqρ H(ρ) δ(ρ− ρd)F (ρ) = H(ρd)F (ρd) . (7.170)

Again we rediscover that convolution amounts to multiplication by the transfer
function in the Fourier domain.

For later reference, we note that all LSIV operators are diagonalized by Fourier
transformation. In particular, H†H is LSIV if H is, and it can be shown that

[

FqH
†HF

−1
q

]

(ρd,ρ) = |H(ρ)|2 δ(ρ− ρd) . (7.171)

7.2.7 Magnifiers

An LSIV system necessarily has unit magnification; if two points on the object are
separated by the vector ∆r, then the two corresponding points on the image must
also be separated by ∆r. Optical systems, however, often function as magnifiers,
with the size of the image scaled with respect to the object by a real number m,
called themagnification. Negativem implies an inverted image, and |m| < 1 means
that the image is smaller than the object. In this section we examine the effects
of magnification from the viewpoint of SVD. Then we generalize the discussion to
allow more general affine mappings and space-variant magnification.

Constant magnification An ideal magnifier has a PRF given by

h(rd, r) = δ(rd −mr) = |m|−q δ
(rd

m
− r

)

, (7.172)

so that
g(rd) = |m|−qf(rd/m) . (7.173)

With the factor of |m|−q, the integral of g(rd) is equal to the integral of f(r) for
all objects, and hence the point sensitivity is unity. This conclusion follows also
from the definition of point sensitivity, (7.113), and the sifting property of delta
functions.

Next consider a magnifier with blur. If the form of the blur is independent
of position in the object, the PRF is similar to (7.172) but with the delta function
replaced by a blur function:

h(rd, r) = h(rd −mr) . (7.174)

Though this PRF is not strictly LSIV, a simple redefinition of the image converts
it to LSIV form. The input–output relation can be written as

g(rd) =

∫

∞

dqr h(rd −mr) f(r) =

∫

∞

dqr h[m(r̃d − r)] f(r) , (7.175)

where r̃d = rd/m. If we define g̃(r̃d) = g(rd) and h′(r) = h(mr), then we have

g̃(r̃d) =

∫

∞

dqr h′(r̃d − r) f(r) = [h′ ∗ f ] (r̃d) . (7.176)

Thus, after we refer both the image and the PRF back to the scale of the object, a
magnifier with shift-invariant blur is described by a convolution operator.
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SVD of a magnifier with blur Another way to salvage the LSIV model with a mag-
nifier is to look at H†H rather than H. From (7.116) and (7.174), the kernel for
H†H is given by

k(r, r′) =

∫

∞

dqrd h∗(rd −mr)h(rd −mr′)

=

∫

∞

dqr0 h∗(r0)h[r0 +m(r− r′)] , (7.177)

where r0 = rd −mr.
By inspection, k(r, r′) is a function of r− r′, so H†H is LSIV (and hence has

unit magnification). Its eigenfunctions uρ(r), which are also the singular functions
of H in object space, are therefore the complex exponentials ψρ(r). With a little
algebra it can be shown that

[

H
†
Huρ

]

(r) =

∫

∞

dqr′ k(r, r′) exp(2πiρ · r′) = µρ exp(2πiρ · r) , (7.178)

where the eigenvalues are [cf. (7.147)]

µρ = |m|−q|H(ρ/m)|2 . (7.179)

The scale factor occurs since the blur function h(rd) was originally defined in image
space.

When H(ρ) )= 0, the singular functions in image space are given by [cf. (7.149)]

vρ(rd) =
1

√
µρ

[Huρ](rd) =
H(ρ/m)

|mq/2H(ρ/m)|
exp(2πiρ · rd/m) . (7.180)

Thus, with minor insertions of factors of m, magnifiers with shift-invariant blur and
constant magnification have the same SVD as LSIV systems.

Affine mapping Next we consider systems where the mapping between a point in
the object and the corresponding point in the image is an affine transformation.
For simplicity, we neglect blur and take the PRF as [cf. (7.172)]

h(rd, r) = δ(rd −Mr− rd0) = |det(M)|−1 δ(M−1rd − r−M−1rd0) , (7.181)

where M is a nonsingular q × q matrix and det(M) is its determinant. With this
PRF, the point r in the object maps to Mr+rd0 in the image, and the origin in the
object (r = 0) maps to the point rd = rd0 in the image. If M = mI and rd0 = 0,
then (7.181) reduces to (7.172).

The point sensitivity, defined by (7.113), is a constant for this system since the
integral of h(rd, r) over rd is unity for all r, as we can see by applying the sifting
property of delta functions to the first form of (7.181). Similarly, the flood image
is also constant, as we can see by integrating the second form over r.

SVD for this system is simple since the kernel for H†H is given by

k(r, r′) =

∫

∞

dqrd δ(rd −Mr− rd0) δ(rd −Mr′ − rd0)

= δ(Mr−Mr′) = | det(M)|−1 δ(r− r′) . (7.182)



LINEAR CONTINUOUS-TO-CONTINUOUS SYSTEMS 315

Thus H†H is a constant times the identity operator. The SVD basis functions can
be any orthonormal basis for the object space, including complex exponentials and
space-domain delta-functions.

We can modify this discussion to apply to a system with affine
mapping and shift-invariant blur. The delta function in (7.181) is replaced by
h(rd −Mr − rd0), and H†H is readily shown to be LSIV. Then the SVD analysis
of (7.177) – (7.180) holds simply by replacing the scalar magnification m with the
matrix M and |m|q with | det(M)|.

Shift-variant magnification Now suppose the magnification varies with position in
the object field. Again neglecting blur, and setting rd0 to zero for simplicity, we
write the PRF as

h(rd, r) = δ{rd − [M(r)] r} . (7.183)

Now point r in the object maps to [M(r)]r in the image.
Since the argument of the delta function vanishes if r = [M(r)]−1rd, we see that

h(rd, r) ∝ δ{r − [M(r)]−1rd}, but the proportionality factor is a function of r. To
compute it rigorously, we would need to apply the multidimensional counterpart of
the transformation rule (2.33), which requires computing derivatives of [M(r)]r with
respect to each of the components of r. A reasonable approximation is available,
however, if M(r) varies slowly with r, in which case

h(rd, r) ≈
1

| det [M(r)] |
δ
{

r− [M(r)]−1
rd

}

. (7.184)

For this system, the point sensitivity is still independent of r, as we can see by
integrating (7.183) over rd, but now the flood image is not constant. To compute
the flood image, we need to integrate (7.184) over r. For a specific rd, the argument
of the delta function vanishes at r = r0, where r0 = [M(r0)]−1rd. Actually finding
r0 may require numerical methods or a specific analytic model for M(r). If M(r) is
slowly varying in the vicinity of r0, then the delta function can be integrated, with
the result

gfld(rd) /
1

| det [M(r0)] |
. (7.185)

Thus the flood image at point rd is the reciprocal of the determinant of the transfor-
mation matrix evaluated at the point r0 that solves [M(r0)]r0 = rd. The distortion
associated with the space-variant mapping results in a nonuniform flood image.

By analogy to (7.182), the kernel of H†H for a non-blurring, shift-variant
magnifier is given by

k(r, r′) =

∫

∞

dqrd δ{rd − [M(r)] r} δ{rd − [M(r′)] r′}

= δ{[M(r)] r− [M(r′)] r′} /
1

| det [M(r)] |
δ(r− r′) , (7.186)

where the last step again assumes M(r) is slowly varying.
The SVD domain in this case is the space domain since

H
†
H δ(r− a) =

1

| det [M(a)] |
δ(r− a) . (7.187)
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Thus the eigenvectors and eigenvalues of H†H are indexed by a vector a, and we
have

ua(r) = δ(r− a) , µa =
1

| det [M(a)] |
. (7.188)

This result illustrates a general rule: the SVD domain for any invertible point-
to-point mapping without blur is the space domain. The reader is invited to extend
the calculation above to an operator Hwith kernel δ[rd −Φ(r)], where Φ(r) is an
arbitrary, invertible, vector-valued function. It will be seen that the eigenvectors of
H†H are delta functions; the assumption that Φ(r) is slowly varying will be needed
only to determine the eigenvalues.

7.2.8 Approximately shift-invariant systems

In this section we examine several other systems where the LSIV model is useful
but not exact.

Systems with finite field A real imaging system has a finite field of view (FOV) in
object space and records an image of finite size. The image field is the same thing
as the support of the image, which we denoted as Sg in Sec. 7.1.2, but we have to be
more careful for the FOV in object space. The object may be known a priori to fit
within support Sf , but there is no guarantee that the imaging system can respond
to all points in this region.

For direct imaging, the main physical effects that limit the fields are finite
detector size and vignetting (obscuration of one part of the imaging system by
another). The effect of detector size is simply to multiply the image by a function
bg(rd), which is 1 for rd in Sg and 0 otherwise. It may be valid to account for
vignetting or other field limitations in object space by defining a similar function
bf (r). We shall refer to bf (r) and bg(rd) as FOV functions.

If the blur is shift-invariant except for the FOV functions, the PRF will have
the form

h(rd, r) = h(rd − r) bg(rd) bf (r) . (7.189)

The kernel for H†H is given by [cf. (7.116)]

k(r, r′) = bf (r) bf (r
′)

∫

∞

dqrd bg(rd)h
∗(rd − r)h(rd − r′) , (7.190)

where we have used the fact that bf (r) is either 0 or 1, hence it is equal to its square.
Because k(r, r′) is not a function of r− r′ alone, the singular functions are not

complex exponentials; nevertheless, it is interesting to see what happens if H†H

operates on ψρ(r) = exp(2πiρ · r). With the kernel from (7.190), we have

[

H†Hψ
ρ

]

(r)

= bf (r)

∫

∞

dqrd bg(rd)h
∗(rd − r)

∫

∞

dqr′ bf (r
′)h(rd − r′) exp(2πiρ · r′) . (7.191)
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If we represent each of the functions in the double integral by its Fourier trans-
form, we obtain

[

H
†
Hψρ

]

(r)

= bf (r)

∫

∞

dqrd

∫

∞

dqr′
∫

∞

dqρd

∫

∞

dqρ′d

∫

∞

dqρ′
∫

∞

dqρ′′ Bg(ρd)H
∗(ρ′d)Bf (ρ

′)H(ρ′′)

× exp {2πi [ρ · r′ + ρd · rd − ρ′d · (rd − r) + ρ′ · r′ + ρ′′(rd − r′)]} . (7.192)

Though this expression may appear frightening, it simplifies readily. By (3.217),
the integral over rd yields δ(ρd−ρ′d+ρ′′) and the one over r′ yields δ(ρ+ρ′−ρ′′).
These two delta functions let us perform two other integrals, and we find

[

H†Hψ
ρ

]

(r)

= bf (r)

∫

∞

dqρd

∫

∞

dqρ′ Bg(ρd)H
∗(ρd + ρ+ ρ′)Bf (ρ

′)H(ρ+ ρ′)

× exp[2πi(ρ+ ρd + ρ
′) · r] . (7.193)

So far this development has been exact, but now we make a reasonable ap-
proximation. We assume that the FOV functions bf (r) and bg(rd) cover a large
area so that their Fourier transforms, Bf (ρ′) and Bg(ρd), respectively, are peaked
in a narrow range around the origin. For example, if an FOV function covers a
region of width L in each dimension, then its Fourier transform is small when any
component of the spatial frequency exceeds about 1/L. If the transfer function
H(ρ) is slowly varying on this scale, it may be valid to replace ρ′ and ρd with zero
in the arguments of H∗(ρd + ρ+ ρ′) and H(ρ+ ρ′). Doing so gives

[

H†Hψ
ρ

]

(r) / bf (r) |H(ρ)|2
∫

∞

dqρd

∫

∞

dqρ′ Bg(ρd)Bf (ρ
′) exp[2πi(ρ+ ρd + ρ

′) · r]

= bf (r) bg(r) |H(ρ)|2 exp(2πiρ · r) . (7.194)

We can also define btot(r) = bf (r) bg(r), which is a function that is unity for points
inside both fields and zero elsewhere.

Thus the truncated exponential function btot(r) exp(2πiρ · r) is a useful ap-
proximate singular function for systems described by (7.189); a large but finite field
of view does not rule out Fourier analysis so long as the transfer function is rela-
tively slowly varying on a scale given by the reciprocal of the width of the field.
Roughly speaking, the errors made with this approximation will be concentrated
within about δ of the edge of the field, where δ is one of the resolution measures
defined in Sec. 7.2.1.

Weak shift-variance For a shift-variant linear system, the PRF must be a function
of two variables. In Sec. 7.2.1 we chose those variables as rd and r0 (where r0 is the
location of the point in the object domain), but if q = s we can equally well choose
rd − r0 and r0, writing

h(rd, r0) = p(rd − r0; r0) . (7.195)

The form on the right is particularly useful if p(rd − r0; r0) is a slowly varying
function of its second argument.

To clarify this idea, we need to consider two characteristic distances. One is
the full width at half maximum of the PRF, δFWHM(r0) [see (7.108)]. The other is
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a variation distance, defined loosely as a scalar ∆(r0) such that p(rd − r0; r0) /
p(rd − r1; r1) if |r1 − r0| < ∆(r0). A system is said to be weakly shift-variant if
δFWHM(r0) 0 ∆(r0).

One way to analyze a weakly shift-variant system is via the continuous form
of Gabor’s signal expansion, introduced in Sec. 5.1.4. Generalizing (5.40) to q
dimensions, we can express an object f(r) as

f(r) =

∫

∞

dqρ

∫

∞

dqr0 Fb(ρ; r0) b(r− r0) exp(2πiρ · r) , (7.196)

where we have assumed that the window function b(r) is real and has unit norm.
With these assumptions, the inverse of (7.196) is the multidimensional local Fourier
transform [cf. (5.1)]:

Fb(ρ; r0) =

∫

∞

dqr b(r− r0) f(r) exp(−2πiρ · r) . (7.197)

If we apply the operator with kernel (7.195) to (7.196), we obtain

g(rd) = [Hf ](rd)

=

∫

∞

dqρ

∫

∞

dqr0 Fb(ρ; r0)

∫

∞

dqr b(r− r0) p(rd − r; r) exp(2πiρ · r) . (7.198)

For this expression to be useful, we must be able to choose the width δb of the
window function so that

δFWHM(r0) 0 δb 0 ∆(r0) (7.199)

for all r0. If this condition is satisfied, b(r − r0) / b(rd − r0) and p(rd − r; r) /
p(rd − r; r0), and we can write

g(rd) =

∫

∞

dqρ

∫

∞

dqr0 Fb(ρ; r0) b(rd − r0)

∫

∞

dqr p(rd − r; r0) exp(2πiρ · r)

=

∫

∞

dqρ

∫

∞

dqr0 Fb(ρ; r0)P (ρ; r0) b(rd − r0) exp(2πiρ · rd) , (7.200)

where P (ρ; r0) is the Fourier transform (with respect to rd) of p(rd; r0).
The similarity between (7.200) and (7.151) should be noted. The latter equa-

tion shows that the output of an LSIV system can be computed by multiplying the
Fourier transform of the input by the transfer function and then taking an inverse
Fourier transform; the former equation shows that the same thing holds true for
weakly shift-variant systems if local Fourier transforms are used and the conditions
(7.199) can be satisfied.

Under the same conditions, the windowed exponentials b(r− r0) exp(2πiρ · r)
are approximately eigenfunctions (hence also singular functions) ofH and the eigen-
values are P (ρ; r0). Though the eigenfunctions and eigenvalues are characterized
here by two continuous indices, it follows from the discussion in Sec. 5.1.4 that a
countably infinite complete set can be obtained by sampling ρ and r0 on a Gabor
lattice.
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7.2.9 Rotationally symmetric systems

A CC system may have rotational symmetry, whether or not it is shift-invariant.
A simple example is a rotationally symmetric lens with aberrations. As we shall
see in Chap., the aberrations usually spoil the shift-invariance, but the rotational
invariance remains and has a strong effect on the allowable forms of H and H†H.
In this section we shall discuss the effects of rotational symmetry specifically for
systems that map a 2D object to a 2D image. For essential background material,
see Chap. 6.

Symmetry group To give a precise definition of rotational symmetry, we need to
introduce a Lie group of rotation operators. This group, denotedC∞ in Sec. 6.5, can
describe either geometric rotations in the plane R2 or transformations of functions in
the Hilbert space U. As in Chap. 6 we make a notational distinction between these
two kinds of operators by using T with various subscripts to denote the functional
operator. We denote a geometric rotation through angle φ by the operator Rφ

and the corresponding functional transformation by Tφ. Specifically, if the 2D
vectors r and r′ are given in polar coordinates by (r, θ) and (r′, θ′), respectively,
and r′ = Rφr, then r′ = r and θ′ = θ + φ. The functional operator Tφ is defined
by (6.24) as

[Tφf ] (r) = f
[

R
−1
φ r

]

= f [R−φr] = f(r, θ − φ) , (7.201)

where f is an arbitrary vector in U, corresponding to the function f(r, θ) in polar
coordinates.

As discussed in Sec. 6.7, rotational symmetry means that all rotation operators,
Tφ for all φ, commute with H†H, so that

H†HTφ = TφH
†H. (7.202)

In the language of group theory, this equation says that the symmetry group of the
system is C∞. In more intuitive terms, it says that we can either rotate the object
in its plane by φ and then image it and backproject the result into object space,
or we can first image and backproject and then rotate, and the result must be the
same if the system has rotational symmetry.

Eigenfunctions The eigenfunctions of H†H have been denoted by un(r), but in
this problem it is natural to express the 2D vector r in polar coordinates as (r, θ).
In addition, it will prove useful to use two indices, j and k, in place of n, so we
shall denote the eigenfunctions by ujk(r, θ), and we shall use ujk to denote the
corresponding Hilbert-space vector. With these notational changes, the eigenvalue
equation (7.117) becomes

[

H†Hujk

]

(r, θ) = µjk ujk(r, θ) . (7.203)

It follows from (7.202) and (7.203) that

H†HTφujk = TφH
†Hujk = µjkTφujk . (7.204)

Looking at the first and third forms in this equation, we see that Tφujk is an
eigenvector of H†H with eigenvalue µjk if ujk is such an eigenvector (see Sec.
6.7.4). If the eigenvalue µjk is not degenerate, then Tφujk can only be a constant
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times ujk. In other words, ujk must be simultaneously an eigenvector of Tφ and
H†H.

To discover the structure of these eigenvectors, we note from (7.201) that
ujk(r, θ) is an eigenvector of Tφ if

ujk(r, θ − φ) = const · ujk(r, θ) . (7.205)

The solution to this functional equation is

ujk(r, θ) = ujk(r) e
ikθ , (7.206)

where ujk(r) is an arbitrary function of r.
The constant in (7.205) (the eigenvalue of Tφ) is given by

χ(k)(φ) = e−ikφ , k = 0,±1,±2, ... . (7.207)

Comparison with (6.23) reveals the reason for the notation chosen: χ(k)(φ) is the
character associated with Tφ in the k th irreducible representation of C∞. Since C∞

is an Abelian group, all of its irreducible representations are 1D, so all operators in
the (infinite) group are represented by 1 × 1 matrices and act on 1D subspaces of
the Hilbert space U. The k th subspace consists of all scalar multiples of eikθ (times
an arbitrary function of r), and the matrix corresponding to the operator Tφ in this
representation is the scalar e−ikφ. Since the matrices are 1× 1, the character (trace
of the matrix) and the eigenvalue of Tφ are identical.

The conclusion from this discussion is that the nondegenerate eigenfunctions
of H†H for a rotationally symmetric system must have the form,

ujk(r, θ) = ujk(r) e
ikθ . (7.208)

The utility of the double index jk is now apparent: the index k specifies the angular
dependence, while different eigenvectors with the same angular dependence are
distinguished by j. Since k also indexes the irreducible representation, we can say
that ujk transforms under rotation according to the k th irreducible representation
of C∞.

A similar argument shows that nondegenerate eigenfunctions of HH
† have the

form,
vjk(rd, θd) = vjk(rd) e

ikθd . (7.209)

This function also transforms under rotation according to the kth irreducible rep-
resentation of C∞, but now the rotation operator is defined in image space V.

Form of the operators We can use (7.208) along with the spectral decomposition
(see Sec. 1.4.5) to discuss the structure of the operators H†Hand H. In the present
notation, the spectral decomposition of H†H is

H†H=
∑

j,k

µjk ujk u
†
jk . (7.210)

In polar coordinates, where r = (r, θ) and r′ = (r′, θ′), the kernel of this operator is

k(r, r′) = k(r, θ, r′, θ′) =
∑

j,k

µjk ujk(r) u
∗
jk(r

′) eik(θ−θ
′) . (7.211)
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By inspection, the kernel is a function of only the three variables, r, r′ and θ − θ′.
Angular shift-invariance results from rotational symmetry in the same way that the
usual positional shift-invariance results from translational symmetry. The angular
shift-invariance can also be stated as

k[Rφr,Rφr
′] = k(r, r′) . (7.212)

A similar argument can be used to determine the structure of the operator H.
From the SVD expansion (7.127) and the forms (7.208) and (7.209), the kernel for
H is given by [cf. (7.127)]

h(rd, r) = h(rd, θd, r, θ) =
∑

j,k

√
µjk vjk(rd)u

∗
jk(r) e

ik(θd−θ) . (7.213)

This kernel is a function of only rd, r and θd−θ. We shall make use of this structure
in Chap. 9 when we discuss aberrations of rotationally symmetric optical systems.

Mirror symmetry and degeneracy We assumed above thatH†H has no degeneracies,
so each eigenvalue µjk corresponds uniquely to an eigenvector ujk. This assump-
tion may not hold if the system has other symmetries (see Sec. 6.7.5) so that C∞

is just a subgroup of the full symmetry group of the system. An important addi-
tional symmetry, which often accompanies C∞, is mirror-reflection symmetry. As
a geometric transformation in R2, mirror reflection about the x axis transforms
point (x, y) to (x,−y). We denote this operator by M0, where the subscript in-
dicates that the mirror axis is the line φ = 0, or the x axis. Since M0 is its
own inverse, the corresponding functional transformation, denoted TM0

, satisfies
[TM0

f ](x, y) = f(x,−y).
An immediate consequence of mirror symmetry is that the kernel of H†H

must satisfy k[M0r,M0r
′] = k(r, r′) [cf. (7.212)]. Since mirror reflection about

the x axis transforms θ to −θ, it follows (for a system with rotational and mirror
symmetry) that k(r, r′, θ − θ′) = k(r, r′, θ′ − θ), where k(r, r′, θ − θ′) is the same
function as k(r, θ, r′, θ′) but with the angular shift-invariance displayed explicitly.
Thus the kernel can only be an even function of θ − θ′.

To examine the degeneracies of the eigenvalues, we must first determine the
full symmetry group of the system. If a rotationally symmetric H†H is invari-
ant under TM0

, it is also invariant under all other mirror reflections obtained by
rotating the mirror axis by an arbitrary angle. The full symmetry group of the
system thus consists of all rotations Tφ and all mirror transformations of the form
TMφ

≡ T
−1
φ TM0

Tφ. This group is isomorphic to the group of geometric operators
that leave a uniform disc invariant. It will be denoted D∞ since it can be regarded
as the limit as N → ∞ of the dihedral group DN (the symmetry group of an N -
sided regular polygon), which is discussed in Sec. 6.4.2. The group D∞ has two 1D
irreducible representations and a denumerable infinity of 2D ones. A 2D irreducible
representation of the symmetry group of the system leads to two-fold degeneracy
of the eigenvectors of H†H.

Specifically, ujk(r, θ) and [TM0
ujk](r, θ) must be degenerate if TM0

commutes
with H

†
H. Since the eigenfunctions have the form of (7.206) by rotational sym-

metry, and mirror reflection about the x axis merely reverses the sign of θ, we
have

[TM0
ujk] (r, θ) = ujk(r) e

−ikθ , (7.214)
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and the eigenfunctions ujk(r) exp(ikθ) and ujk(r) exp(−ikθ) must be degenerate.
If k = 0, the two functions are identical, so k = 0 corresponds to a 1D irreducible
representation. For any other k, however, the two functions are linearly indepen-
dent and the irreducible representation is 2D.

We can always choose the eigenfunctions to have the form ujk(r) exp(ikθ), in

spite of the degeneracy. Suppose P linearly independent eigenvectors u
(p)
jk ,

p = 1, ..., P, have the same eigenvalue µjk. These vectors define a P -dimensional
subspace, and any linear combination of vectors in the space is an eigenvector of
H†H with eigenvalue µjk. Moreover, we know from (7.204) that this subspace is
invariant under C∞ if H†H is rotationally symmetric. That is, the action of Tφ
on any vector in the space yields another vector in the space. Following (6.68), we
can construct a representation of C∞ on this space by forming the P × P matrices
M(Tφ), with elements given by

[M(Tφ)]p′p =
(

u
(p′)
jk ,Tφu

(p)
jk

)

. (7.215)

SinceC∞ is Abelian, it has only 1D irreducible representations, so the P -dimensional
representation defined by (7.215) is necessarily reducible if P > 1. We can therefore
find a P ×P unitary transformation that will diagonalize each of the P matrices of
(7.215), and each diagonal element will be one of the characters defined in (7.207).
That is, we can choose the basis of the subspace to consist of eigenvectors of the
rotation operators. Since the unitary transformation leaves us within the space of
degenerate eigenvectors, the resulting basis vectors are also eigenvectors of H†H,
and the corresponding eigenfunctions have the form ujk(r) exp(ikθ).

Rotational and translational symmetry: The kernels Next we consider systems that
are invariant under both rotations and translations. We saw in (7.213) that the
kernel of a rotationally symmetric H is a function of r, rd and θ− θd, and we know
that the kernel (PSF) of a shift-invariant system is a function of rd − r. Here we
examine the form of the kernel when both symmetries are present.

A system is rotationally and translationally symmetric if h(rd, r) = p(|rd−r|),
where p(·) is a scalar-valued function. This form satisfies both conditions in the
paragraph above. Any function of |rd− r| is also a function of rd− r as required by
translational symmetry and, since |rd− r| = [r2+ r2d +2rrd cos(θ− θd)]

1
2, p(|rd− r|)

can be rewritten as a function of r, rd and θ−θd as required by rotational symmetry.
Thus any LSIV system where the PSF p(r) is a function of only the magnitude

of r is rotationally symmetric, but the converse does not necessarily hold. Since we
have defined rotational symmetry by the condition that TφH

†H= H†HTφ, it is
possible for an LSIV system to have rotational symmetry but for the PSF to depend
on θ. A simple example is when p(r) is a function of |r−a|. The offset amakes p(r) a
function of θ, but k(r), the PSF associated with H†H, is the autocorrelation of p(r)
and hence insensitive to offset. Thus k(r) = k(r). The same conclusion emerges
in the Fourier domain when we recognize that the transfer function H(ρ) has a
factor exp(2πiρ · a) resulting from the offset, but the transfer function associated
with H

†
H is |H(ρ)|2. Since the phase factor disappears when we take the squared

modulus, we can have |H(ρ)|2 = |H(ρ)|2 even though H(ρ) )= H(ρ).
We could remove this peculiarity by defining rotational symmetry differently.

If object space U and image space V are the same, we could require that H itself,
and not just H

†
H, commute with each Tφ. Then the kernel of H would have
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angular shift-invariance and the eigenfunctions of H would vary as exp(ikθ). The
advantage of working with H†H, however, is that we can define rotational and
other symmetries even when U and V are different spaces. An example where this
feature is useful will be seen in Sec. 7.2.10.

Rotational and translational symmetry: The eigenfunctions We know from Sec. 7.2.4
that the eigenfunctions of H†

H for LSIV systems are the complex exponentials,
exp(2πiρ · r), and this statement must still hold true if the system also has rota-
tional symmetry. We have also argued, however, that the eigenfunctions of rota-
tionally symmetric systems should vary as eikθ. To reconcile these statements, we
must recognize that the translation-rotation group, like the affine group, has only
infinite-dimensional irreducible representations (see Sec. 6.8.5). That means that
all eigenfunctions have infinite degeneracy for an LSIV system with rotational sym-
metry.

Though this conclusion may be surprising as a mathematical proposition, there
is actually a simple physical explanation. We saw in Sec. 7.2.5 that the eigenvalues
of H†H, now indexed by the continuous vector variable ρ, are given by |H(ρ)|2,
where H(ρ) is the transfer function [see (7.147)]. If the system is rotationally
symmetric, |H(ρ)|2 = |H(ρ)|2. All points on a circle around the origin in the 2D
frequency plane have the same transfer function and hence the same eigenvalue.
The subspace associated with a set of degenerate eigenvectors now has infinite di-
mensionality.

We are free to choose as the basis for this subspace either functions of the
form exp(2πiρ · r) (with ρ constant and the functions indexed by θρ) or functions
proportional to eikθ for integer k. A function from either set can be expanded in
terms of the other set. For example, a Fourier basis function, rewritten in polar
coordinates, can be expressed as

uρ(r) = exp(2πiρ · r) = exp [2πiρ r cos(θ − θρ)]

=
∞
∑

k=−∞

Ak(r, ρ, θρ) e
ikθ . (7.216)

The coefficients can be found by the usual formula for Fourier-series coefficients,
with the result,

Ak(r, ρ, θρ) = Jk(2πρ r) exp(−2πikθρ) , (7.217)

where Jk(·) is a Bessel function.

7.2.10 Axial systems

Many real-world imaging systems (including our eyes) produce 2D images of 3D ob-
jects, so q = 3 and s = 2. These systems may have a preferred axis, often referred
to as the optic axis. For a rotationally symmetric system, the axis of rotational
symmetry is the optic axis, but rotational symmetry is not the only way to establish
a preferred axis. For a pinhole or coded-aperture system, for example, it is natural
to take the optic axis to be normal to the plane of the aperture and detector. We
shall refer to such imaging systems as axial systems, and the optic axis will con-
sistently be taken as the z axis.
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It may be a good approximation to model an axial system as LSIV in each
plane normal to the axis and as a simple integrator over z. With this model, the
system operator is specified by

g(rd) = [Hf ](rd) =

∫

∞

d2r

∫ ∞

0
dz h(rd − r; z) f(r, z) , (7.218)

where r and rd are both 2D vectors but (r, z) specifies location in 3D. This model
is appropriate for emissive objects that are not opaque to their own radiation (as in
fluorescent microscopy). It works also for reflective objects (as in ordinary photog-
raphy) if structures close to the imaging system do not obscure more distant ones.

By the methods developed in Sec. 1.3.5, the adjoint operator is given by

[

H†g
]

(r, z) =

∫

∞

d2rd h∗(rd − r; z) g(rd) , (7.219)

and hence

[

H†Hf
]

(r, z) =

∫

∞

d2r′
∫ ∞

0
dz′ f(r′, z′)

∫

∞

d2rd h∗(rd − r; z)h(rd − r′; z′)

=

∫

∞

d2r′
∫ ∞

0
dz′ f(r′, z′) p(r− r′; z, z′) , (7.220)

where p(r − r′; z, z′) is just the indicated integral over rd, which is the complex
cross-correlation (see Sec. 3.3.6) of h(r; z) and h(r; z′). The physical picture is that
a point source at (r′, z′) produces an image value of p(r − r′; z, z′) at point (r, z)
after projection (H) and backprojection (H†).

As usual, to perform an SVD we must first find the eigenfunctions of H†H.
Since the system is LSIV in the lateral dimensions, a 2D Fourier transform is indi-
cated. Denoting the eigenfunctions as

uρ,j(r, z) = ũρ,j(z) exp(2πiρ · r) , (7.221)

we can write the eigenvalue equation as

[

H†Huρ,j

]

(r, z) =

∫

∞

d2r′
∫ ∞

0
dz′ ũρ,j(z

′) exp(2πiρ · r′) p(r− r′; z, z′)

= exp(2πiρ · r)
∫ ∞

0
dz′ ũρ,j(z

′)P (ρ; z, z′)

= exp(2πiρ · r)H(−ρ; z)
∫ ∞

0
dz′ ũρ,j(z

′)H(ρ; z′) , (7.222)

where P (ρ; z, z′) is the 2D Fourier transform of p(r; z, z′), and we have used (3.134)
to factor it as P (ρ; z, z′) = H(−ρ; z)H(ρ; z′).

Because the kernel factors, the integral on the middle line in (7.222) is a rank-
one operator and hence has only a single nonzero eigenvalue; by our conventions,
we denote that eigenvalue with j = 1. The measurement space of H†H is thus
spanned by the set {uρ,1(r, z)} for all ρ, and there is also a null space spanned by
{uρ,j(r, z)} for all ρ and j > 1.

We can obtain the eigenfunction and eigenvalue for j = 1 by inspection of
(7.222). The integral on the last line is a constant, independent of r and z, and
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it is therefore the eigenvalue. If this integral is not zero, the only possible spatial
dependence of the eigenfunction is

uρ,1(r, z) ∝ exp(2πiρ · r)H(−ρ; z) . (7.223)

The corresponding eigenvalue is

µρ,1 =

∫

Sz

dz′ |H(ρ; z′)|2 , (7.224)

where the integral is now over the object support in the z direction. (The object
support in x and y is infinite since the system is shift-invariant in those directions.)
To complete the story, the reader may show that the required normalizing constant
in (7.223) is just 1/

√
µρ,1 and that the singular functions in image space are given

by vρ,1(rd) = exp(2πiρ · rd).
To summarize, axial systems with lateral shift-invariance have very simple

SVDs; all object-space singular functions corresponding to nonzero singular values
have the form exp(2πiρ · r)H(−ρ; z). We shall see an example of the usefulness of
this result in Sec. 16.2.6.

7.3 LINEAR CONTINUOUS-TO-DISCRETE SYSTEMS

Digital imaging systems view objects defined on a continuous domain and produce
finite vectors as their output. A simple example, introduced in the Prologue, is a
digital video camera using a charge-coupled device. Each of the M discrete detector
elements in this device performs a spatial and temporal integration of the image
irradiance.9 As a result, the image output from this detector in one video frame
is simply M numbers {gm,m = 1, ...,M}, and we can order these numbers as an
M × 1 column vector g.

In the digital-camera example and many other digital imaging systems, it is an
excellent approximation to say that each output datum gm is linearly related to the
object, so the correct system description is a linear continuous-to-discrete mapping
as introduced in Sec. 1.2.4. It is the goal of this section to describe that mapping
in more detail.

7.3.1 System operator

As in Sec. 7.2, we assume that the object is square-integrable and supported within
a region Sf in Rq, so object space U is L2(Sf ). The image vector g is a finite set of
finite numbers, so image space V is the M -dimensional Euclidean space EM. Thus
the imaging system is a mapping from L2(Sf ) to EM. If this mapping is linear, then,
by a generalization of (1.30), it must have the form

gm =

∫

Sf

dqr hm(r) f(r) . (7.225)

9Irradiance is simply the radiant power per unit area incident on a surface. For more discussion,
see Chap. 10.
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As usual, we shall express this relation in operator form as

g = Hf , (7.226)

where now H indicates a linear continuous-to-discrete (CD) mapping.
The index m can have a variety of meanings, depending on the system being

considered. A digital camera has a regular array of detectors, which we describe
with a single index by lexicographic ordering. Alternatively, we might choose to use
a multi-index as in Sec. 7.1.3 and then denote an element of g as gm. In tomography,
for another example, m is a composite index specifying projection angle and location
of a particular detector element in an array that measures the projection.

The function hm(r) specifies how sensitive the mth detector is to radiation
originating at point r in the object. It can be called the detector sensitivity
function when we wish to consider a single detector and describe how its output
varies with location of a point source. As in Sec. 7.2, however, we shall also use
the term point response function or PRF for hm(r), especially when we wish to
think of r as fixed and the discrete index m as the variable. If f(r) = δ(r − r0),
then gm = hm(r0), so the set {hm(r0)} is the digital image of a point at r0. Fig.
7.9 illustrates the PRF for a CD imaging system.

Fig. 7.9 Illustration of the PRF for a CD operator for three input locations.

Continuous imaging followed by sampling In most applications of the CD operator to
imaging, we can separate the imaging process into two stages: continuous imaging
followed by sampling or discretization. In the digital-camera example, the first stage
is accomplished by the imaging lens, and the output of this stage is the continuous
irradiance pattern on the detector face. The discretization step arises since the
detector integrates the irradiance over each pixel area.

In more mathematical terms, a CC operator HCC followed by a discretization
operator Dw is equivalent to a composite CD operator:

g = DwHCCf = Hf . (7.227)
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By analogy to (7.33), the general form10 of Dw (if it is linear) is

[Dwg]m =

∫

Sg

dsrd g(rd)wm(rd) . (7.228)

The general form of HCC is given by (7.101), so we can write (7.227) in general as

gm =

∫

Sg

dsrd wm(rd)

∫

Sf

dqr h(rd, r) f(r) . (7.229)

We see that this form agrees with (7.225) if we set

hm(r) =

∫

Sg

dsrd wm(rd)h(rd, r) . (7.230)

In a digital camera with an ideal detector array, h(rd, r) accounts for blur arising
from the imaging lens, and wm(r) is real and equal to a constant whenever r is within
the mth detector pixel. In the terminology of Sec. 3.5.6, wm(r) is the sampling
aperture.

Flood uniformity and point sensitivity Flood uniformity and point sensitivity for a
CD system can be defined as in Sec. 7.2, but now gfld is a vector, given by [cf.
(7.111)]

[gfld]m =

∫

Sf

dqr hm(r) . (7.231)

The point sensitivity is, however, still a function, and (7.113) is modified to

spt(r0) =
∑

m

hm(r0) . (7.232)

If we decompose the CD operator as a CC operator followed by a discretization
operator and use (7.230), the flood image becomes

[gfld]m =

∫

Sf

dqr

∫

Sg

dsrd wm(rd)h(rd, r)

=

∫

Sg

dsrd wm(rd) gfld(rd) , (7.233)

where gfld(rd) is the flood image for the underlying CC system as defined in (7.111).
We saw in (7.137) that gfld(rd) is constant if the CC system is shift-invariant.

In that case,

[gfld]m = const ·
∫

Sg

dsrd wm(rd) . (7.234)

The integral accounts for detector nonuniformities; it is a constant if the detectors

10To agree strictly with the notation used in Sec. 7.1.3, we would either have to write w∗
m(rd)

in the integrand of (7.228) or denote the operator by w∗. This minor notational inconsistency
disappears if wm(rd) is real.



328 DETERMINISTIC DESCRIPTIONS OF IMAGING SYSTEMS

are identical, so that wm(rd) = w(rd − rdm), where rdm is the center of the mth

detector pixel.
The point sensitivity for a general CD system decomposed as a CC system

plus discretization is

spt(r0) =
∑

m

∫

Sg

dsrd wm(rd) h(rd, r0) =

∫

Sg

dsrd η(rd)h(rd, r0) , (7.235)

where
η(rd) =

∑

m

wm(rd) . (7.236)

This function is proportional to the probability that radiation incident at point rd
on the detector will contribute to the final image. For an ideal digital camera, η(rd)
is unity whenever rd lies in any one of the detector pixels, and it is zero if rd lies
in a gap between pixels. Because of the blur associated with the CC component,
however, gaps in the detector do not necessarily cause spt(r0) to fall to zero.

7.3.2 Adjoint operator and singular-value decomposition

The adjoint of a continuous-to-discrete operator is a discrete-to-continuous opera-
tor. That is, if H maps from the infinite-dimensional object space U to a finite-
dimensional image space V, thenH

†maps from V to U. Specifically, for the operator
H defined in (7.225), the adjoint is given by [cf. (1.45)]

[

H†g
]

(r) =
M
∑

m=1

gmh∗
m(r) . (7.237)

If the PRFs hm(r) are real, the function [H†g](r) is a linear superposition of
the PRFs, with components of g serving as weights. This operation is illustrated in
Fig. 7.10. As in the CC case (see Sec. 7.2.2), this adjoint operator is often referred
to as backprojection.

Since the spaces U and V have different dimensionalities, a CD operator H

cannot have eigenfunctions. Nevertheless, we can make good use of singular-value
decomposition, which is based on eigenanalysis of the Hermitian operators H†H

and HH
†.

Fig. 7.10 Illustration of the adjoint of a CD operator.
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Eigenfunctions in object space The operator H†H maps object space U to itself.
From (7.225) and (7.237), it is given explicitly by

[

H†Hf
]

(r) =
M
∑

m=1

h∗
m(r)

∫

Sf

dqr′ hm(r′) f(r′)

=

∫

Sf

dqr′ k(r, r′) f(r′) , (7.238)

where the kernel is given by

k(r, r′) =
M
∑

m=1

h∗
m(r)hm(r′) . (7.239)

Comparing this result to the corresponding expression for a CC system, (7.116), we
see that the only difference is that the integral over the continuous detector space
in the CC case has been replaced by a sum over discrete image components here.
Figure 7.11 illustrates the meaning of k(r, r′).

Fig. 7.11 Illustration of the operator † when is a CD operator.

Compact operators and eigenanalysis The operator H†H is compact (see Sec. 1.3.3)
if its kernel satisfies the Hilbert-Schmidt condition [cf. (7.138)],

∫

Sf

dqr

∫

Sf

dqr′ |k(r, r′)|2 < ∞ . (7.240)

This condition is satisfied if k(r, r′) is bounded and Sf is finite, as they will be with
all physically realizable imaging systems.

We know from Sec. 1.4.4 that a compact Hermitian operator on an infinite-
dimensional Hilbert space has a countably infinite set of eigenvectors and real eigen-
values. The eigenvectors of H†H are a set of functions {un(r)} or, equivalently, a
set of vectors {un} in the object Hilbert space.

The eigenvalue equation is

H†Hun = µnun , n = 1, ...,∞ , (7.241)

which is equivalent to (7.117). The structure of the eigenvalue problem here is
exactly the same as in the CC case since in both cases H†H is a Hermitian operator
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mapping U to U; the intermediate stop at V does not invalidate any of the key
properties of the eigenfunctions or eigenvalues. In particular, the eigenvalues {µn}
are real and nonnegative, and {un} can be chosen as a complete, orthonormal set
in U (i.e., (7.118) and (7.119) still hold). Thus any object in U can be expanded
as in (7.120) with coefficients given by (7.121):

f =
∞
∑

n=1

αnun , αn = u†
nf =

∫

Sf

dqr u∗
n(r) f(r) . (7.242)

Eigenvectors in image space Though the eigenvalue problems for H†H have the
same structure for CC and CD systems, the corresponding problems for HH† are
quite different. The operator HH

† maps image space V to itself, and for a CD
system V has a finite dimension.

The action of the operator HH† can be expressed as

[

HH†g
]

m
=

∫

Sf

dqr hm(r)
M
∑

k=1

gkh
∗
k(r)

=
M
∑

k=1

[

∫

Sf

dqr hm(r)h∗
k(r)

]

gk . (7.243)

In other words, HH† is an M ×M Hermitian matrix with elements given by

[

HH
†
]

mk
=

∫

Sf

dqr hm(r)h∗
k(r) . (7.244)

The eigenvalue problem is thus

HH†vn = µnvn , n = 1, ...,M , (7.245)

where vn is an M × 1 column vector. Since HH† is a matrix, this eigenvalue
problem can be solved by standard algorithms (Golub and van Loan, 1989; Press
et al., 1992) or by various software packages.

From the general discussion in Sec. 1.4.4, we know that the eigenvectors of
HH

† can be chosen to form a complete, orthonormal set in V, so that

v
†
kvn = δkn ; (7.246)

M
∑

n=1

vnv
†
n = IM , (7.247)

where IM is the M ×M unit matrix. From these equations it follows that any data
vector g can be expressed as

g =
M
∑

n=1

βnvn , βn = v†
ng . (7.248)
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Rank and null space To establish that the eigenvalues for HH† are the same as
those for H†H, we operate on both sides of (7.245) with H† and add some brackets
for clarity; we find

H†H
[

H†vn

]

= µn

[

H†vn

]

, (7.249)

so H†vn is an eigenvector of H†H with eigenvalue µn. Similarly, by operating on
both sides of (7.241) with Hwe can show that Hun is an eigenvector of HH†with
eigenvalue µn. Thus the two operators HH† and H†H share the same eigenvalue
spectrum. But HH

† is a finite matrix, so its rank R cannot exceed its dimension
M (see Sec. 1.2.3). Moreover, from Sec. 1.4.3 the rank is the number of nonzero
eigenvalues. The operator H†H has an infinite number of eigenvalues, since it op-
erates in an infinite-dimensional space, but at most M of them are nonzero.

An important consequence of this discussion is that H†H necessarily has an
infinite-dimensional null space if H itself is a CD operator. If we order the eigen-
values by descending value as in (1.114), so that µR is the last non-vanishing
eigenvalue, then the measurement space of H†H is the subspace of U spanned
by {un, n = 1, ..., R}, and the null space is the infinite-dimensional orthogonal com-
plement of the measurement space (see Secs. 1.5.2 and 1.5.3).

Thus an arbitrary object vector f can be uniquely decomposed into measure-
ment and null functions as follows:

f = fmeas + fnull , (7.250)

where

fmeas = Pmeasf =
R
∑

n=1

αnun , (7.251)

fnull = Pnullf =
∞
∑

n=R+1

αnun . (7.252)

In these expressions, Pmeas and Pnull are the projectors onto measurement and null
space, respectively, and in both spaces the coefficients αn are given by u†

nf as in
(7.242).

Relation between eigenvectors in object and image space Comparison of (7.249) and
(7.241) provides a relation between vn and un. In fact, the reader’s first impulse
might be simply to equate H†vn with un, but that would not necessarily produce
a properly normalized eigenvector in object space. We can, however, multiply an
eigenvector by any constant and it remains an eigenvector with the same eigenvalue.
We shall now show that an appropriate choice for the constant is 1/

√
µn.

Suppose we have solved the eigenvalue problem for the matrix HH† and found
a set of orthonormal eigenvectors {vn, n = 1, ...,M} and that we form the functions
{un(r)} by

1
√
µn

[

H†vn

]

(r) = un(r) , n = 1, ..., R . (7.253)

That is, we backproject each vector vn and then divide by
√
µn. By (7.249), the

resulting functions are eigenfunctions of H†H.
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The following manipulations show that the set of eigenfunctions is orthonormal:

(un,uk) =
1

√
µnµk

(

H†vn,H
†vk

)

=
1

√
µnµk

(HH†vn,vk)

=
µn√
µnµk

(vn,vk) =
µn√
µnµk

δnk = δnk . (7.254)

Similar arguments show that

1
√
µn

Hun = vn , n = 1, ..., R . (7.255)

Thus, for n ≤ R, the eigenvectors of H†H are uniquely determined from those of
HH† and vice versa.

SVD and the imaging equation The general form for the SVD of a compact linear
operator is (1.120) or (7.127):

H=
R
∑

n=1

√
µn vnu

†
n . (7.256)

For the specific case of a CD operator, the action of this expansion on an arbitrary
object is [cf. (7.128)]

gm = [Hf ]m =
R
∑

n=1

√
µn

[

vnu
†
nf

]

m
=

R
∑

n=1

[

√
µn

∫

Sf

dqr u∗
n(r) f(r)

]

vnm

=
R
∑

n=1

√
µn αnvnm , (7.257)

where vnm is the mth component of vector vn. Note especially that only the object
components with n ≤ R contribute to g; the operator H has the same infinite-
dimensional null space as H†H.

Applying the same arguments as used above (7.129) to (7.248) and (7.257), we
see that

βn =
√
µn αn . (7.258)

Thus SVD again reduces the imaging equation g = Hf to a simple multiplication.

7.3.3 Fourier description

The theoretical advantage of SVD is that it reduces the complicated integral oper-
ator to a simple multiplication, just as a Fourier transform reduces convolution to
multiplication. (In fact, as we saw in Sec. 7.2.4, Fourier transformation is SVD for
a convolution operator.) The SVD representation is very attractive for this reason,
but it has some drawbacks as well, as we shall now enumerate.

The basis functions used in Fourier analysis have a simple analytical form, but
it is often impossible to express SVD basis functions analytically. The singular func-
tions corresponding to nonzero singular values can be found numerically by solving



LINEAR CONTINUOUS-TO-DISCRETE SYSTEMS 333

the eigenvalue problem for the matrix HH
†, but this matrix has size M ×M, where

M is the number of measurements. In practice, even this numerical approach is not
tractable for M greater than a few thousand.

Moreover, if one wants to compare two different imaging systems, or even two
variants on the same system, it is convenient to use the same basis functions for
both. LSIV systems can be compared by SVD since the basis functions for all LSIV
systems are plane waves of infinite extent, but with this exception different systems
have different SVD basis functions.

Another drawback to SVD analysis is that it is difficult to develop any intu-
ition about the basis functions. With Fourier analysis, the spatial frequency has
a simple physical interpretation, and we have no difficulty in visualizing the basis
function or the action of an LSIV system on it. It would appear, however, that
there is little benefit to using Fourier transforms with systems that are not at least
approximately shift-invariant.

In fact, we can develop a fruitful Fourier theory for an arbitrary CD system by
employing the Fourier series as in (7.14) [see also (3.279)]. A Fourier representation
of the system can be obtained by substituting (7.14) into (7.226), yielding

g =
∑

k

FkH{Φk(r)} ≡ ΨF , (7.259)

where Ψ is a complex matrix with element ψmk. In component form, (7.259) is

gm =
∑

k

ψmkFk . (7.260)

Recall from Sec. 7.1.2 that k is a multi-index, a qD vector with integer components.
Since each of the q components of k ranges over (−∞,∞), F has a q-fold infinity
of elements and Ψ is a matrix with M rows and a q-fold infinity of columns.

The matrix elements of Ψ are given explicitly by

ψmk = [HΦk]m =

∫

∞

dqr exp(2πiρk · r)hm(r)Sf (r) . (7.261)

The integral is the Fourier transform of the product hm(r)Sf (r) evaluated at the
specific spatial frequency ρk. Except for the normalizing constant 1/

√
V [see (7.15)],

the integral can also be interpreted as a coefficient in the Fourier-series expansion
of the same product. If hm(r) is real and the multi-index k is constructed so that
ρ−k = −ρk, then it follows from (7.261) that

ψm(−k) = ψ∗
mk . (7.262)

This is the so-called Hermiticity property of Fourier coefficients, (3.227), but Ψ is
definitely not a Hermitian matrix; it cannot be since it is not square.

The complex matrix Ψ is completely equivalent to the operator H; the latter
maps the object f to the discrete data set g, while the former maps the infinite set
of object Fourier coefficients F to g, but of course f is uniquely related to F. Since
Ψ has an infinite number of columns, there is no loss of information in using it
rather than H.

Fourier crosstalk matrix With the system representation of (7.259), it is natural
to investigate the operator Ψ†Ψ, where Ψ† is the adjoint of the matrix Ψ, i.e.,
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[

Ψ†
]

km
= ψ∗

mk. SinceΨ maps a vector of Fourier coefficients to a finite-dimensional

vector in image space, Ψ† maps from image space back to the space of Fourier
coefficients; in this sense it is another backprojection operator. Thus Ψ†Ψ maps a
vector in the space of Fourier coefficients to another vector in the same space.

Since Ψ†Ψ maps an infinite vector to another infinite vector, it can be regarded
as a square matrix with an infinite number of rows and columns. For reasons
discussed below, this matrix will be referred to as the Fourier crosstalk matrix,
or simply crosstalk matrix for short. We denote the crosstalk matrix itself as B

(capital beta) and its elements by βkk′ . The elements are given by

βkk′ =
M
∑

m=1

ψ∗
mkψmk′ =

M
∑

m=1

[HΦk]
∗
m [HΦk′ ]m = (HΦk,HΦk′) , (7.263)

where (·, ·) here denotes a scalar product in image space.
From this definition, it follows that the crosstalk matrix is Hermitian:

B† = B or βkk′ = β∗
k′k . (7.264)

In addition, if hm(r) is real, it follows from (7.262) that

β(−k)(−k′) = β∗
kk′ . (7.265)

Without any restriction on the form of H or Ψ, B is positive-semidefinite (see
Sec. 1.4.4).

Interpretation of the crosstalk matrix The scalar product in (7.263) is zero if the two
M -dimensional vectors HΦk and HΦk′ are orthogonal to each other. If that is the
case, the two Fourier components k and k′ make linearly independent contributions
to the data and can be easily separated by any inversion algorithm. On the other
hand, if HΦk is parallel to HΦk′ in data space, the two Fourier components pro-
duce identical data patterns and cannot be separated by any algorithm. Frequencies
ρk and ρk′ are fully aliased.

Even if this extreme case does not occur, βkk′ with k != k′ is a useful measure
of the degree of aliasing or crosstalk between two different frequencies. When we
discussed aliasing in Sec. 3.5.3, we presented it as a binary concept—either the
Nyquist condition is satisfied or it is not. A little reflection reveals the inadequacy
of this approach for anything other than regular sampling schemes. Figure 3.8 in
Chap. 3 shows how two different cosines are indistinguishable if one knows only
their values at a set of evenly spaced points, but all we have to do to make them
distinguishable in principle is to displace one of the sampling points slightly.

As a quantitative measure of degree of aliasing, we define the angle θkk′ be-
tween HΦk and HΦk′ by (see Sec. 1.1.4)

cos θkk′ ≡
(HΦk,HΦk′)

||HΦk|| · ||HΦk′ ||
=

βkk′

√
βkkβk′k′

. (7.266)

For complete aliasing, | cos θkk′ | = 1, and for no aliasing at all, cos θkk′ = 0.
The diagonal elements of the crosstalk matrix also have a neat interpretation.

If k = k′, (7.263) becomes
βkk = ||HΦk||2 . (7.267)



LINEAR CONTINUOUS-TO-DISCRETE SYSTEMS 335

Thus a diagonal element of the crosstalk matrix is a measure of the strength (norm)
of the data when the object consists of a single truncated plane wave. It specifies
how strongly a particular spatial frequency is transferred through the system to the
data. In this sense, the set of diagonal elements {βkk} constitutes a kind of transfer
function, even though the Fourier-series basis functions are not eigenfunctions of
the system.

Eigenanalysis of the crosstalk matrix The eigenvalue equation for Ψ†Ψ is

Ψ†ΨUn = µnUn , (7.268)

where Un has the same structure as F, namely, an infinite vector of Fourier coeffi-
cients.

The eigenfunctions of Ψ†Ψ are related to the eigenfunctions of H†H (which
are also the singular functions in object space). If we denote by Fs the operator
that converts a function f(r) to its Fourier-series coefficients, then Ψ and H are
related by

H= ΨFs , (7.269)

so
H†Hun = F

†
s Ψ

†ΨFsun = µnun . (7.270)

As discussed below (7.15), we can choose the support region so that the basis set
{Φk(r)} is orthogonal. In that case F

†
s = F

−1
s , and the eigenvalue equation for

H†H, (7.241), becomes
Ψ†ΨFsun = µnFsun . (7.271)

Comparison with (7.268) shows that Un is just the Fourier-series representation
of un.

7.3.4 Sampled LSIV systems

To gain more insight into the crosstalk matrix, we return to a problem introduced
in Sec. 7.3.1. We consider a CD system decomposed into a CC system followed by
sampling or discretization, but now we add the additional restriction that the CC
system be shift-invariant.

Specifically, we assume that h(rd, r) = h(rd − r) and that the discretization
functions are translates of a single function, so that wm(rd) = w(rd−rdm). Next we
make a change of variables and recognize that we can always take Sg large enough
that the limits of integration do not need to be changed. The kernel specified in
(7.230) then becomes

hm(r) ≡ p(rdm − r) =

∫

Sg

dqrd h(rd + rdm − r)w(rd) . (7.272)

Thus p(r), the cross-correlation of h(r) and w(r), serves as an overall shift-invariant
PSF prior to point sampling.

With this form for the PRF and (7.261), elements of the system matrix Ψ are
given by

ψmk =

∫

∞

dqr exp(2πiρk · r)Sf (r) p(rdm − r) . (7.273)
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If p(r) is spatially compact and we choose the region of support large enough, we
can replace the support function Sf (r) by unity. Then a change of variables yields

ψmk =

∫

∞

dqr exp[−2πiρk · (r− rdm)]p(r) = exp(2πiρk · rdm)P (ρk) , (7.274)

where P (ρ), the Fourier transform of p(r), is the transfer function of the overall
LSIV system (including the sampling aperture).

The elements of the crosstalk matrix, defined in (7.263), are now given by

βkk′ = P (ρk)P
∗(ρk′)

M
∑

m=1

exp[2πi(ρk − ρk′) · rdm] . (7.275)

The diagonal elements,
βkk = M |P (ρk)|2 , (7.276)

are completely determined by the transfer function P (ρ) of the underlying LSIV
system, independent of the location of the samples.

It is interesting to compare (7.276) to (7.147), where we saw that the squared
modulus of the transfer function, |H(ρ)|2, is the eigenvalue of H†H for an LSIV
system. Equivalently, |H(ρ)|2 is the transfer function of H†H, which is also an
LSIV system if H is. In (7.276) we see that the squared modulus of a transfer
function (now including a sampling aperture) recurs in the diagonal elements of the
crosstalk matrix when the output of an LSIV system is sampled, even though the
sampling spoils the shift-invariance.

Aliasing effects can be expressed in terms of cos θkk′ , defined in (7.266). In the
present problem, we have

| cos θkk′ | =
1

M

∣

∣

∣

M
∑

m=1

exp[2πi(ρk − ρk′) · rdm]
∣

∣

∣
. (7.277)

Note that | cos θkk′ | is determined solely by the location of the sample points {rdm}
and is independent of P (ρ).

1D Example To understand these results better, consider a 1D problem in which
the object f(x) is contained in the interval − 1

2L < x ≤ 1
2L and the sample points

are spaced by ε. It is convenient to replace the index m with another index n,
chosen to run symmetrically from −N to N, so that M = 2N + 1. Then we can
specify the sample points by

xdn = nε , −N ≤ n ≤ N , ε =
L

M
=

L

2N + 1
. (7.278)

In 1D, k is an ordinary integer index instead of a multi-index, and the spatial
frequency is a scalar ξk given by

ξk = k/L , −∞ < k < ∞ . (7.279)

Thus (7.277) becomes

cos θkk′ =
1

M

N
∑

n=−N

exp[2πi(ξk−ξk′)xdn] =
1

M

N
∑

n=−N

exp[2πi(k−k′)n/M ] . (7.280)
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A geometric progression of this form was discussed in Chap. 2; using (2.49), we find
that

cos θkk′ =
1

M

sin [π(k − k′)]

sin [π(k − k′)/M ]
=

1

M

sin [πMε(ξk − ξk′)]

sin [πε(ξk − ξk′)]
. (7.281)

This function is plotted in Fig. 7.12, and the crosstalk matrix for this problem
is depicted in Fig. 7.13 for the case where p(x) = rect(x/ε). Both figures show
that frequencies ξk and ξk′ are fully aliased if ξk − ξk′ is an integer multiple of the
sampling frequency 1/ε.

Fig. 7.12 Plot of the function sin(πMu)/ sin(πu).

In the limit of very fine sampling (ε → 0), a finite frequency ξk is not aliased
with any other finite frequency. In this limit, cos θkk′ → δkk′ , so the crosstalk matrix
is diagonal and given by

lim
ε→0

βkk′ = M |P (ξk)|2 δkk′ . (7.282)

In this limit, the frequencies ξk become arbitrarily close together, so ξk can be re-
placed by the continuous variable ξ. The squared modulus of the transfer function
of the underlying LSIV system then lies along the diagonal, but multiplied by the
number of samples M, which has to go to ∞ as ε goes to 0. We have already encoun-
tered (7.282); in (7.171) we showed that H†H for an LSIV system is diagonalized
by Fourier transformation, and (7.282) reiterates that conclusion.

Another special case of this formalism is when the LSIV system is bandlimited
(see Sec. 3.5.1) so that P (ξ) = 0 if |ξ| ≥ ξmax. This means that the crosstalk
matrix is zero outside a submatrix of dimension 2ξmaxL×2ξmaxL. Moreover, if the
Nyquist condition (3.291) is satisfied, then there is no aliasing and this submatrix is
diagonal. Note that two distinct Nyquist conditions are operative here. We assume
that the object is spatially limited to extent L so that we can represent it by a
Fourier series with sample spacing 1/L, and we assume that the LSIV system is
bandlimited so that its output can be sampled without aliasing by a discrete detec-
tor array. These conditions are not contradictory; we do not need to assume that
the object is bandlimited or that the system impulse response is spatially limited.
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Fig. 7.13 Low-frequency portion of the crosstalk matrix for a 1D CD system
with uniformly spaced sampling apertures (Gifford, 1997). (a) Point sampling,
no presampling blur. (b) Sampling with rect functions, low-pass presampling
blur, Nyquist condition not satisfied. (c) Same as (b) but lower cutoff fre-
quency in presampling blur, so Nyquist is satisfied.

7.3.5 Mixed CC-CD systems

So far we have treated CC and CD systems separately, but sometimes it is useful
to mix continuous and discrete variables in the description of the object, the image
or both.

One example is a linear system that acquires multiple images of the same
object. We can denote the jth image by the vector gj , with components given by

gj(rd) =

∫

Sf

dqr hj(rd, r) f(r) . (7.283)

In this case, the object is a function of a continuous variable r, but the image is
mixed, in the sense that it has both a continuous variable rd and a discrete index j.
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A system that acquires multiple images of multiple object attributes is mixed
in both object and image space. An appropriate linear description would be

gj(rd) =
∑

k

∫

∞

dqr hjk(rd, r) fk(r) . (7.284)

In this case we have a matrix of CC operators.

Color imaging As a practical example of a mixed CC-CD system, consider a color
imaging system that views an object f(r,λ), where r is a 2D vector and λ is the
wavelength, through three color filters. Three separate 2D images are produced,
each related to the object by

gm(rd) =

∫

∞

d2r

∫ ∞

0
dλ f(r,λ)hm(rd, r,λ) , (7.285)

where m = 1 indicates the red filter, m = 2 green and m = 3 blue. This operator,
denoted as usual byH, maps a function of three variables (x, y,λ) to three functions
of two variables (xd, yd) each.

The adjoint operator H† maps these data back to a function of r and λ; its
form is

[

H
†g
]

(r,λ) =
3

∑

m=1

∫

∞

d2rd gm(rd)h
∗
m(rd, r,λ) . (7.286)

It follows that
[

H†Hf
]

(r,λ) =

∫

∞

d2r′
∫ ∞

0
dλ′ k(r, r′;λ,λ′) f(r′,λ′) , (7.287)

where

k(r, r′;λ,λ′) =
3

∑

m=1

∫

∞

d2rd h∗
m(rd, r,λ)hm(rd, r

′,λ′) . (7.288)

This kernel is a combination of the corresponding CC and CD kernels, (7.116) and
(7.239), respectively.

The operator HH†, which maps the mixed image space to itself, is given by

[

HH†g
]

m
(rd) =

3
∑

k=1

∫

∞

d2rd0 Kmk(rd, rd0) gk(rd0) , (7.289)

where now the kernel is [cf. (7.124)]

Kmk(rd, rd0) =

∫

Sf

d2r

∫ ∞

0
dλ hm(rd, r,λ)h

∗
k(rd0, r,λ) . (7.290)

As with the other system descriptions considered in this chapter, we can now,
in principle, find the eigenvectors of H†H and HH† and use them to construct an
SVD of the operator H. The singular vectors in image space are functions of rd but
also require an index m to specify the color band; we denote them by vn(rd,m).
These functions must satisfy

[

HH†vn

]

(rd,m) = µnvn(rd,m) . (7.291)

The singular vectors in object space are functions of r and λ, so we denote them
by un(r,λ). For n ≤ R they can be found by operating on vn(rd,m) with H† and
renormalizing as in (7.253).
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Special case: LSIV color imaging The expressions given above simplify considerably
if we assume that the basic imaging system is LSIV and achromatic, so that

hm(rd, r,λ) = h(rd − r)Tm(λ) , (7.292)

where Tm(λ) is the transmission of the mth filter. With this form, the kernel for
HH†, (7.290), becomes

Kmk(rd − rd0) =

∫

∞

d2r hm(rd − r)h∗
k(rd0 − r)

∫ ∞

0
dλ Tm(λ)Tk(λ) . (7.293)

The integral over r is the complex autocorrelation of the PSF, and the integral over
λ expresses the overlap of the filter functions.

Since this kernel is spatially (though not spectrally) shift-invariant, it suggests
a spatial Fourier transform. If we denote the 2D Fourier transform of the image-
space singular function by Vn,ρ(ρd,m) and the corresponding Hilbert-space vector
as Vn,ρ, then the eigenvalue equation, (7.291), becomes

[

F2HH†F
−1
2 Vn,ρ

]

(ρd,m) = µnVn,ρ(ρd,m) . (7.294)

Arguments analogous to those leading to (7.169) reveal the structure of the
operator F2HH†F

−1
2 . It maps a function of ρd and index m to another function

of the same form, and its kernel is
[

F2HH†F
−1
2

]

(ρd,ρd0,m, k) = |H(ρd)|2 δ(ρd − ρd0)Amk , (7.295)

where

Amk =

∫ ∞

0
dλ Tm(λ)Tk(λ) . (7.296)

If we first solve
3

∑

k=1

AmkVnk = µnVnm , (7.297)

then Vn,ρ(ρd,m) = δ(ρd − ρ)Vnm. We have thus reduced the complicated mixed
CD eigenvalue problem to a 3× 3 matrix eigenvalue problem.

This reduction is reminiscent of the one that occurred in Sec. 7.2.10, where
we considered axial systems that were LSIV in two of the three dimensions [see
especially (7.222)]. In that case as well as the present problem, we were able to
make good use of partial shift-invariance.

7.3.6 Discrete-to-continuous systems

Though Sec. 7.3 deals with CD mappings, it is an easy digression to touch on
discrete-to-continuous (DC) mappings. As we shall see below, a DC mapping is the
adjoint of a CD one.

The most common imaging application of DC mappings is image display. For
example, if a set of coefficients stored in a computer is converted into a luminance
pattern on a cathode-ray tube or other display device, the mapping is DC. Similarly,
computer-generated holograms can be regarded as systems for converting discrete
vectors into continuous optical fields. Again, the mapping is DC and the goal is
display. Linear DC mappings are treated briefly here, and the effect of inevitable
display nonlinearities is discussed in Sec. 7.5.
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Form of the operator For definiteness, we shall discuss DC mappings specifically in
terms of image display. A display system maps a stored set of numbers, described
by a vector θ, to a luminance pattern fd(r), where the subscript stands for display.
If the system is linear, the general form of the mapping is

fd(r) =
N
∑

n=1

dn(r) θn . (7.298)

By comparison with (7.24), we see that this equation involves the adjoint of a CD
operator with kernel dn(r). It can be written abstractly as

fd = D
†
dθ . (7.299)

Uniformity A desirable feature of any image display is that it convert a uniform set
of coefficients into a uniform displayed function. If all components of θ are unity,
the displayed function is

f (unif)
d (r) =

N
∑

n=1

dn(r) . (7.300)

This expression is formally identical to that for the point sensitivity of a CD system,
(7.232).

Magnification An image is rarely displayed at the same scale as the original object.
For direct imaging, that means that the operator D†

dH functions as a magnifier as
discussed in Sec. 7.2.7. An easy way to incorporate an arbitrary magnification into
D

† itself is to replace dn(r) with dn(r/m) in (7.298).

7.4 LINEAR DISCRETE-TO-DISCRETE SYSTEMS

We have argued above that the correct mathematical description for a digital imag-
ing system is a continuous-to-discrete mapping, but when we want to represent
such a system in a computer, we must resort to discrete object representations. We
learned in Sec. 7.1.3 how to construct such representations, and now we examine
how they fit into the analysis of imaging systems.

7.4.1 System matrix

A linear object representation fa(r) is defined as a linear combination of more or
less arbitrarily chosen expansion functions {φn(r)}. The definition is given in (7.27),
repeated here for reference:

fa(r) =
N
∑

n=1

θnφn(r) , (7.301)

where the subscript a stands for approximate. The expansion coefficients {θn} can
be regarded as components of an N × 1 vector θ in the coefficient space introduced
in Fig. 7.2.
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Application of an imaging operator H to this approximate object gives an
approximate image vector ga, defined by

ga = H{fa(r)} =
N
∑

n=1

θnH{φn(r)} . (7.302)

In the literature, the subscript is often omitted on ga and the vector θ is often
denoted f, but both of those notations can be misleading. Omitting the subscript
on ga risks confusing it with an actual, measured data vector, and the use of f for
a vector of expansion coefficients obscures the arbitrariness of the representation;
there is no unique finite representation associated with a particular object f(r).
Moreover, with our convention of using f for the infinite-dimensional object vector
in Hilbert space, we need another symbol for a finite-dimensional approximation.

If we take H as a general, linear CD mapping, then the mth component of ga

is given by

gam =
N
∑

n=1

θn

∫

Sf

dqr hm(r)φn(r) , m = 1, ...,M . (7.303)

We can write this equation more compactly by defining an M ×N matrix H with
elements Hmn given by

Hmn =

∫

Sf

dqr hm(r)φn(r) , (7.304)

so that

ga = Hθ . (7.305)

The element Hmn is the response of the mth detector in the actual CD system to an
object consisting of a single expansion function with unit weight, i.e., f(r) = φn(r).

We shall refer to (7.305) as a discrete-to-discrete (or DD) model for an imaging
system since both ga and θ are specified by discrete indices, but it should be kept
in mind that ga is also the result of a CD operator acting on an approximate
(continuous but finite-dimensional) object representation, i.e., Hθ = Hfa. There
is a one-to-one mapping between a vector fa in representation space and a vector
θ in coefficient space, so either can be used to compute ga. As illustrated in Fig.
7.14, H maps a vector θ from coefficient space to a vector ga in image space, and
H maps the corresponding vector fa in representation space to the same vector in
image space.

Relation to discretization operators The matrix H can be expressed in terms of the
discretization operators introduced in Sec. 7.1.3. From (7.37), we can write

ga = HD
†
φθ = HD

†
φDχ{f(r)} , (7.306)

where {φn(r)} is the set of expansion functions and {χn(r)} is the set of functions
used to compute the coefficients in the expansion.
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Fig. 7.14 Extension of Fig. 7.2 to include a CD imaging system. Shown
are the effects of the actual CD operator on an object and its approximate
representation as well as the effect of the matrix H on the vector of coefficients
associated with the object representation.

Comparison of (7.306) with (7.305) shows that

H = HD
†
φ , (7.307)

where, as in (7.35),
θ = Dχ{f(r)} . (7.308)

These relations are illustrated in Fig. 7.14.

Measurement and computation of H The definition of H immediately suggests a
way of measuring its elements if we have an actual digital imaging system in our
laboratory. Suppose, for example, that the object is a 2D function and that we have
chosen the expansion functions as pixels, so φn(r) = pixn(r) as defined in (7.29).
Then we can construct a self-luminous or reflective test object in the form of a single
pixel, place it at the nth location in the object space, and record the response of all
M detectors. This vector of responses is one column of H, namely, the set of Hmn

values for the chosen n and all m.
For some kinds of expansion functions, direct measurement of elements of H is

not possible. For example, with a truncated Fourier series, the expansion functions
are complex and not realizable as physical objects. In these cases, or when the actual
system is not available, we must resort to numerical computation. A straightforward
approach is to sample the integrand in (7.304) finely and replace the integral by a
sum.

A useful alternative, especially when the dimension q is large, is Monte Carlo
integration. If hm(r) is nonnegative, as it must be in many kinds of imaging, then
it can be normalized as a probability density on position r:

pm(r) ≡
hm(r)

∫

Sf
dqr hm(r)

. (7.309)

If sample points rj can be generated from this density, the elements of H are given
by

Hmn =

[

∫

Sf

dqr hm(r)

]

· lim
J→∞

1

J

J
∑

j=1

φn(rj) . (7.310)
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With a finite J, an estimate of Hmn is obtained, and it can be shown that this
estimate is unbiased. See Gifford (1997) for details of the procedure and error
analysis.

Flood uniformity and point sensitivity By analogy to (7.231) and (7.232), flood uni-
formity and point sensitivity for a DD system model can be defined, respectively,
as

[gfld]m =
N
∑

n=1

Hmn ; (7.311)

[spt]n =
M
∑

m=1

Hmn . (7.312)

These two vectors are easily obtained from a calculated or measured system matrix.
We can relate these uniformity measures for the DD model back to the corre-

sponding measures for an actual CD system. Inserting (7.304) into (7.311) yields

[gfld]m =
N
∑

n=1

∫

∞

dqr hm(r)φn(r) =

∫

∞

dqr hm(r)
N
∑

n=1

φn(r) . (7.313)

Comparison with (7.231) shows that the flood image determined from the H matrix
is proportional to the flood image for a CD system provided the sum of expansion
functions is a constant independent of r. This condition implies that the expansion
functions are adequate to represent a flood object exactly. For example, it is satisfied
by pixel functions if they fit together without gaps or overlap. [See the discussion
around (7.72).]

The point sensitivity for the DD model is given explicitly by

[spt]n =

∫

∞

dqr φn(r)
M
∑

m=1

hm(r) =

∫

∞

dqr φn(r) spt(r) , (7.314)

where spt(r) is the CD point sensitivity from (7.232). We see that the DD point
sensitivity spt is a sampled version of spt(r) if the latter varies sufficiently slowly
that φn(r) can be approximated by const · δ(r− rn).

7.4.2 Adjoint operator and singular-value decomposition

Unless the number of measurements M is equal to the number of expansion coeffi-
cients N, H is not a square matrix and eigenanalysis of H is not possible, but SVD
will prove to be a useful tool here as in earlier sections of this chapter. After intro-
ducing the adjoint of the operator H, we shall discuss the SVD of a DD imaging
operator and relate it to the SVD of the CD operator it is intended to model.

Adjoint operator We know from Sec. 1.3.5 that the adjoint of an M ×N matrix is
an N ×M matrix obtained by transposing the original matrix (interchanging rows
and columns) and taking the complex conjugate of each element. For real matrices,
the adjoint is just the transpose. In the context of DD models for imaging systems,
the operator H†maps a vector in the M -dimensional image space to a vector in the
N -dimensional coefficient space, which is isomorphic to representation space.
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From (7.307) and a basic property of adjoints (see Sec. 1.3.5), the adjoint of a
system matrix H can be written formally as

H† = DφH
† . (7.315)

This operator can be applied to any vector in data space. If it is applied to an
actual data vector g = Hf, where H is a CD operator, the result is

H†g = DφH
†Hf . (7.316)

The right-hand side is the same as we would have obtained by backprojecting g

through the actual CD system and then discretizing the result with the functions
{φn(r)}.

On the other hand, if H† is applied to an approximate data vector ga as given
by (7.306), the result is

H†ga = DφH
†
HD

†
φDχf . (7.317)

We can simplify this expression if we assume that {χn(r)} has been chosen for
optimal representational accuracy. From Sec. 7.1.4 we recall that the norm of the
object error is minimized if D†

φDχ = Prep, the projector onto representation space.
A simple way to achieve this condition is to take {φn(r)} and {χn(r)} as identical
orthonormal sets. With this assumption, (7.317) becomes

H†ga = DφH
†
HD

+
φ Dφf = DφH

†HPrepf . (7.318)

The effect of the operator H†HPrep is to eliminate components of f that do not
lie in representation space, then project and backproject what is left through the
system (thereby eliminating null functions and weighting measurement functions
by eigenvalues of H†

H). The result is a vector (function) in measurement space; a
subsequent discretization of this function yields H†ga.

Singular-value decomposition As with the other operators discussed in this chapter,
we shall construct the SVD of H by first considering the eigenvalue problems for
two Hermitian operators, H†H and HH†.

Since H is an M × N matrix, H†H is an N × N matrix mapping one N × 1
vector in coefficient space to another. Its eigenfunctions are N × 1 vectors denoted

u
(d)
n , where the superscript d, standing for discrete, serves to distinguish these eigen-

vectors from the Hilbert-space eigenvectors of H†H, which we have denoted by un.
The eigenvalue equation for H†H is thus

H†Hu(d)
n = µ(d)

n u(d)
n . (7.319)

There is no reason to expect the eigenvalues of H†H, here denoted µ(d)
n , to equal

those for H†H, even if H is intended to model H, so again we use the superscript.

The set {u(d)
n , n = 1, ..., N} is orthonormal and complete in coefficient space,

so any coefficient vector θ can be expanded as

θ =
N
∑

k=1

aku
(d)
k , ak =

[

u
(d)
k

†

θ , (7.320)
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and an individual coefficient θn is given by

θn =
N
∑

k=1

ak u
(d)
kn , (7.321)

where u(d)
kn is the nth component of the vector u

(d)
k . The set {ak} constitutes a

vector a, which is simply the vector θ in a different basis in coefficient space. Since

we always choose {u(d)
n } to be an orthonormal set, a and θ differ by a unitary

transformation.
The operator HH† is an M ×M matrix mapping image space to itself, and its

eigenvalue equation is
HH†v(d)

m = µ(d)
m v(d)

m . (7.322)

The set {v(d)
m ,m = 1, ...,M } is orthonormal and complete in image space, so any

image vector (approximate or real) can be expanded in terms of them. In particular,
the approximate image vector ga can be written as

ga =
M
∑

m=1

bmv(d)
m , bm =

[

v(d)
m

†

ga . (7.323)

With these preliminaries, we can now express the SVD of H as

H =
R
∑

n=1

√

µ(d)
n v(d)

n u(d)†
n , (7.324)

where, as discussed in Sec. 1.2.3, the rank R must satisfy the constraint R ≤
min(M,N).

If R = N, then H does not have a null space, but this statement must be
interpreted carefully. SinceH operates on coefficient vectors, the lack of a null space
means simply that there is no vector θnull in coefficient space such that Hθnull = 0.
It does not imply that the actual CD operator H, which H is supposed to represent,
has no null space; all CD operators have null spaces, even when their approximate
matrix representations do not.

Discrete imaging equation in SVD form We saw in (7.129) and (7.258) that SVD
reduces an actual imaging equation to a simple multiplication. The same holds true
for an approximate imaging equation; (7.305) is equivalent to

bn =

√

µ(d)
n an , (7.325)

where an and bn are expansion coefficients for θ and ga, respectively, as defined by
(7.320) and (7.323).

Relation between discrete and continuous singular vectors Since the matrix H is in-
tended to be a finite approximation to the CD operator H, we hope that there is

some simple relation between the finite-dimensional singular vectors {u(d)
n } appro-

priate to H and the infinite-dimensional ones {un} appropriate to H. Since u
(d)
n

is a discrete vector, the only way it can be related to a function of a continuous
variable, such as un, is through some discretization operator, and the natural one
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to consider is the one we have been using all along, Dφ. We inquire, therefore,
whether Dφun might be an eigenvector of the matrix H†H.

From (7.307) and (7.315), we can write

H†HDφun = DφH
†HD

†
φDφun . (7.326)

If {φn} is an orthonormal set, we know from (7.40) thatD†
φDφ = Prep, the projector

onto representation space. If un lies in representation space, so that

Prepun = un , (7.327)

then we have at once that

H†HDφun = µnDφun . (7.328)

This equation shows that Dφun is indeed an eigenvector ofH†H and that the eigen-

value µ(d)
n is identical to µn, but keep in mind that we have used the assumptions

that {φn} is an orthonormal set and that un lies in representation space. The
latter condition is equivalent to saying that un can be written exactly as a linear
superposition of the expansion functions {φn}.

If pixels are used for the expansion functions, then (7.327) is approximately
satisfied for eigenfunctions un that vary slowly on the scale of the pixel. In practice,
this often means for large values of µn since systems usually image fine details more
poorly than coarse ones; thus eigenfunctions that contain fine detail correspond to
small eigenvalues.

In Sec. 7.4.3, we shall show how to choose the functions {φn} so that rep-
resentation space is identical to measurement space; in this case all of the eigen-
vectors of H†H corresponding to nonzero eigenvalues (i.e., the entire measurement
space of H) can be found simply by discretizing the measurement-space eigenvectors
of H†

H.

7.4.3 Image errors

In Sec. 7.1.4 we discussed several error norms that could be used to evaluate the
degree of agreement between an actual object f and an approximate representation
fa. These norms were defined in object space, but we can also use an image-space
error norm ||H δf || as a way of specifying the accuracy of the data produced through
an actual CD system by an approximate object representation. Because of the dual
interpretation of ga as either Hfa or Hθ [see (7.302) and (7.305)], this same norm is
also a measure of how accurately the CD system is modeled by a discrete matrix H.

The definition of the image error norm is

||H δf || = ||H(f− f a)|| = ||g− ga|| . (7.329)

But we know from (7.306) – (7.308) how ga is related to f, so we can write

||H δf || = ||Hf−Hθ|| = ||H(I−D
†
φDχ)f || , (7.330)

where I is the identity operator in object space. One immediate conclusion from
(7.330) is that only the components of δf within the measurement space of H con-
tribute to ||H δf ||.

The image error is zero if and only if

D
†
φDχf = fmeas + f 0 , (7.331)
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where f 0 is any null vector of H (not necessarily the null component of f ). One
way to satisfy this condition is to require that

D
†
φDχ = Pmeas , (7.332)

but we could also add any operator whose range lies entirely in the null space of H.

Truncated SVD expansions One way to make ||H δf || vanish is to use the singular
vectors of H as the expansion functions, so that

fa =
N
∑

n=1

θnun . (7.333)

If we choose N ≥ R, then ||H δf || is identically zero. The first R terms of the SVD
expansion are an exact object representation in the sense that the representation
produces exactly the same data set as the true object itself. The remaining N −R
terms constitute a vector that lies entirely in the null space of H.

If we choose φn = un and N = R, then representation space and measure-
ment space are identical and (7.332) holds. Under these same assumptions, the

measurement-space eigenvector u
(d)
n of H†H is given by Dφun, where un is an

eigenvector of H†Hwith n ≤ R.

Natural pixels Another way to implement (7.332) is to use the point response func-
tions as the expansion functions. Because we wish to allow the generality of complex
kernels, we take the expansion functions as {φm(r),m = 1, ...,M } = {h∗

m(r),m =
1, ...,M }, where M is the number of measurements acquired by the CD system we
are trying to represent. Buonocore et al. (1981) refer to these expansion functions
as natural pixels.

With natural pixels, the approximate object representation has the functional
form,

fa(r) =
M
∑

m=1

θmh∗
m(r) . (7.334)

By comparison with (7.237), we see that this function corresponds to a vector fa in
object space given by

fa = H†θ . (7.335)

Since we have chosen the number of coefficients, previously denoted by N, to be
equal to the number of measurements M, coefficient space and image space are now
identical and D

†
φ = H†.

The natural pixels are not orthonormal, but they span measurement space.
Any fa of the form (7.335) is necessarily in measurement space since

Pmeasfa = H
+
Hfa = H

+
HH†θ = H†θ = fa , (7.336)

where we have used the pseudoinverse identity (1.153). Moreover, it is always
possible to choose the coefficient vector θ so that fa equals fmeas. The proper
choice is

θ =
[

H†
]+

f , (7.337)
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for then, by use of (1.151) and (1.149),

fa = H†
[

H
†

+
f = H

+
Hf = fmeas . (7.338)

With coefficients chosen by (7.337), therefore, (7.332) is satisfied and ||H δf || = 0.
When fa is given by (7.338), we have

g = Hf = Hfa = HH†
[

H†
]+

f = HH†θ . (7.339)

The system matrix H is thus HH† in this case, and its elements are given by the
overlap between point response functions (Buonocore et al., 1981):

Hmn =
[

HH†
]

mn
=

∫

Sf

dqr hm(r) h∗
n(r) . (7.340)

We shall return to natural pixels in Chap. 15 when we discuss inverse problems.

7.4.4 Discrete representations of shift-invariant systems

As discussed in detail in Sec. 7.2.3, a linear shift-invariant CC system is described
by a convolution integral. The corresponding DD description models the integral
by a matrix-vector multiplication. If we take the expansion functions as uniform
translates of a single function and also sample the image on a regular grid, then the
matrix has a certain regular structure, which is the topic of this section. We discuss
that structure first for 1D imaging and then in an arbitrary number of dimensions.

Matrix description of a 1D LSIV system A 1D linear shift-invariant CC system has a
kernel of the form h(xd−x). As in Sec. 7.3.4, we assume that the image is sampled
with detector elements spaced by ε. The resulting CD kernel hm(x) has the form
[cf. (7.272)],

hm(x) = p(mε− x) . (7.341)

To get a DD model, we also assume that the object is expanded in uniform translates
as

f(x) =
∑

n

θnφ(x− nε) , (7.342)

where the spacing is the same as in the image.
With these assumptions, the DD system matrix has elements given, from

(7.304), by

Hmn =

∫ ∞

−∞

dx p(mε− x)φ(x− nε) =

∫ ∞

−∞

dx′ p(x′)φ [(m− n)ε− x′] , (7.343)

where the second integral follows from the change of variables x′ = mε − x. By
inspection of that integral, we see that the value of each element of H is a function
of only the difference in its indices, so we can write

Hmn = hm−n . (7.344)

As illustrated on the left in Fig. 7.15, each column is identical to the one adjacent
to it but shifted by one element. Matrices of this form, called Toeplitz, were intro-
duced in App. A and discussed earlier in this chapter in Sec. 7.1.5.



350 DETERMINISTIC DESCRIPTIONS OF IMAGING SYSTEMS





























c b a 0 0 0 0 0 0
d c b a 0 0 0 0 0
e d c b a 0 0 0 0
0 e d c b a 0 0 0
0 0 e d c b a 0 0
0 0 0 e d c b a 0
0 0 0 0 e d c b a
0 0 0 0 0 e d c b
0 0 0 0 0 0 e d c

























































c b a 0 0 0 0 e d
d c b a 0 0 0 0 e
e d c b a 0 0 0 0
0 e d c b a 0 0 0
0 0 e d c b a 0 0
0 0 0 e d c b a 0
0 0 0 0 e d c b a
a 0 0 0 0 e d c b
b a 0 0 0 0 e d c





























Fig. 7.15 Matrix representations of a 1D LSIV system in which the PSF has
the form (...0 0 a b c d e 0 0 ...). The object and image vectors are both 9×1.
Left: Toeplitz matrix; Right: Circulant approximation to the Toeplitz matrix.

It is convenient to take the indices m and n to range from 0 to N−1. The DD
imaging equation (7.305) for a 1D LSIV system represented by a Toeplitz matrix
then becomes

gam =
N−1
∑

n=0

hm−nθn . (7.345)

One column of H can be interpreted as a discrete PSF. A discrete point object
is a vector θ where all elements but one are zero and that one is unity. If the nonzero
element is the kth, so that θn = δnk, then the image elements gam are hm−k. Thus
the kth column of H is the shift-invariant discrete PSF shifted to pixel k.

Truncation issues Even with very fine sampling, (7.345) is a poor representation of
an LSIV system in one respect: a convolution integral has infinite limits but the
indices m and n have a finite range. If there is no restriction on the form of hm−n,
the system is not really shift-invariant; as the PSF is shifted, part of it falls off one
end of the column. What we are really modeling is not a true LSIV system but
one with a finite field of view and detector size (see Sec. 7.2.8). The DD system of
(7.345) corresponds to a CC system with the kernel given in (7.189).

Fortunately, in many imaging applications both the object and the PSF have
finite spatial support, so infinite fields of view are not really needed. In particular,
for direct imaging the width of the PSF is almost always much less than the size of
the object field, so most of the elements in one column of H are zero. Moreover, for
any given object, we can always define the spatial support to extend well beyond
the region where the object is nonzero, so the vector θ will have strings of zeros
on both ends. If we choose N and the sample spacing to allow coverage of this
extended field, then there is no truncation of nonzero portions of the image by the
finite limits in (7.345).

Discrete convolutions and circulant matrices The right-hand side of (7.345) is al-
most—but not quite—a discrete convolution. When we defined discrete convolu-
tions in (3.329), it was asserted that all indices would be interpreted modulo N. If
we apply this convention to the Toeplitz matrix H, then when the PSF is shifted
so that part of it falls off the bottom of the matrix, that same part magically reap-
pears on the top as illustrated in the matrix on the right in Fig. 7.15. The matrix
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elements then satisfy
Hmn = h[m−n] , (7.346)

where the square brackets denote modulo-N arithmetic. That is, whenever m − n
falls outside the range [0, N − 1], an appropriate integer multiple of N is added
to bring it back to that range. Matrices with this structure are called circulant
(Davis, 1979).

The cyclic behavior of circulant matrices has almost no counterpart in real
imaging systems,11 but it is very convenient mathematically. Moreover, if the PSF
and the object have finite support and N is chosen large enough, there is no error at
all from replacing a Toeplitz matrix by a circulant one. If there is no restriction on
the width of the PSF or the size of the field of view, however, the circulant matrix
is only an approximation to the Toeplitz one, and significant errors might occur,
especially at the edges of an image.

Diagonalization of circulant matrices In Sec. 7.2.4 we showed the key role played by
the Fourier transform in the analysis of LSIV systems. A similar role is played by
the discrete Fourier transform (DFT) in analyzing discrete models of LSIV systems,
but only when the circulant form of the system matrix is used.

To develop this point, we express both ga and θ in terms of their DFTs [cf.
(3.313)]:

θn =
1

N

N−1
∑

k=0

Ak exp(2πink/N) ; (7.347)

gam =
1

N

N−1
∑

j=0

Gaj exp(2πimj/N) . (7.348)

The circulant version of the DD imaging equation now becomes

1

N

N−1
∑

j=0

Gaj exp(2πimj/N) =
1

N

N−1
∑

n=0

N−1
∑

k=0

Akh[m−n] exp(2πink/N) . (7.349)

Following a line parallel to (7.166) - (7.169), we next multiply both sides of (7.349)
by exp(−2πimp/N ) and sum over m from 0 to N − 1. Because of the discrete
orthogonality of the complex exponentials, (3.12), this step yields

Gap =
1

N

N−1
∑

k=0

Ak

N−1
∑

n=0

N−1
∑

m=0

h[m−n] exp [2πi(nk −mp)/N ] . (7.350)

Now we can make a change of variables, 1 = m − n. It is at this point that the
cyclic nature of the kernel comes into play: since both h[m−n] and the exponential
factor are cyclic functions, there is no need to change the limits of integration, and
we can write

Gap =
1

N

N−1
∑

k=0

Ak

N−1
∑

n=0

exp[2πin(k − p)/N ]
N−1
∑

*=0

h* exp(−2πi1p/N) . (7.351)

11For amusement, the reader may try to devise an imaging system in which the cyclic behavior
actually occurs. Hint: It is all done with mirrors.
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The sum over 1 is now recognized as the DFT of one column of H, which we shall
denote as Hp. The sum over n gives N δnk, and the Kronecker delta allows us to
perform the sum over k, so we find

Gap = ApHp . (7.352)

Thus discrete Fourier transformation has reduced multiplication by a circulant ma-
trix to a simple product. The discrete transfer function is, not surprisingly, the
DFT of the discrete PSF.

We can also view this result in terms of matrix diagonalization. By analogy
to (7.167), we can express (7.350) as

Ga = WNHW−1
N A , (7.353)

where WN is the matrix operator that performs the DFT [see (3.315)]; the elements
ofWN are [WN ]kn = exp(2πikn/N ). Comparison of (7.353) and (7.352) reveals that

[

WNHW−1
N

]

kp
= Hp δkp , (7.354)

which is the discrete counterpart of (7.169). Thus a circulant matrix is diagonalized
by the DFT, and the diagonal elements are given by the DFT of one column of the
original matrix.

Multidimensional systems The concepts of Toeplitz and circulant matrices can be
extended to multidimensional systems by use of multi-indices. Suppose we want
to devise a matrix representation for a CC system that maps a qD object to a qD
image. If we approximate the object as a weighted sum of uniform translates of a
single expansion function as in (7.64), then each term is specified by a multi-index
n. Similarly, if we presume that the digital image is obtained by regular sampling
of the image g(rd), then elements of the discrete image vector can be specified by a
multi-index m. An element of the system matrix can then be written as Hmn.

In a matrix with scalar indices, the elements Hmn for all values of m and one
particular n constitute one column of the matrix. With multi-indices, we can still
think of the index n as specifying a column, which is now the collection of all ele-
ments with different m1, ...,mq for fixed values of n1, ..., nq.

If the CC system to be represented is LSIV, the matrix H has a multidimen-
sional Toeplitz structure,

Hmn = hm−n = function of (m1 − n1, ...,mq − nq) . (7.355)

Like its 1D counterpart, this form shows that each column is identical to the one
adjacent to it but shifted by one element.

As in the 1D case, we assume that each component of each multi-index runs
from 0 to N0 − 1, so the DD imaging equation (7.305) becomes

gam =
N0−1
∑

n=0

hm−nθn . (7.356)

As in Sec. 7.1.2, summation over a multi-index is equivalent to summing over all q
of its components, so here each nj(j = 1, ..., q) runs from 0 to N0 − 1. The total
number of elements in both ga and θ is thus M = N = N q

0 .
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Multidimensional circulant matrices and DFTs With the same arguments as in the
1D case, the multidimensional Toeplitz matrix can be replaced by a multidimen-
sional circulant one simply by replacing hm−n with h[m−n], where now the square
brackets imply modulo-N arithmetic in each of the elements of the multi-index.
Again, this substitution entails no approximation if the object and the PSF have
finite support in all dimensions and N0 is large enough to avoid truncation of the
image. If this condition is not satisfied, some error will arise at the edge of the
image.

The derivations of (7.352) and (7.354) still hold if all indices are rewritten in
boldface type. A qD DFT diagonalizes a qD circulant matrix and hence reduces a
discrete qD convolution to simple multiplication.

Display of multidimensional Toeplitz and circulant matrices Though it simplifies the
notation, the use of multi-indices makes it tricky to display the matrix H on a
printed page. Another approach is to use lexicographic ordering and specify the
matrix by scalar indices. If each component of a multi-index takes on N0 values,
the scalar lexicographic index takes on Nq

0 values, so a very large number of elements
may have to be displayed, but at least four-dimensional paper is not required. We
shall illustrate the procedure for q = 2.

A matrix describing a 2D imaging system has two multi-indices and a total
of four component indices. To convert such a matrix to one specified by only two
indices, let n = (nx, ny) and define the scalar index n by

n = nx + nyN0 , n = 0, ..., N − 1 , N = N2
0 , (7.357)

and similarly for m. Next we define a new matrix of size N2
0 × N2

0 with elements
equal to Hmn after the conversion (7.357). This new matrix, referred to as the
lexicographic matrix, can be displayed as a function of n and m as usual.

For a 2D LSIV system, the lexicographic matrix consists of a set of blocks,
each of which is a Toeplitz matrix. Moreover, the blocks themselves have a Toeplitz
structure; shifting horizontally by N0 is equivalent to shifting vertically by N0. We
say that the matrix is block-Toeplitz with Toeplitz blocks. Similar terminology
applies to lexicographic circulant matrices.

More details on lexicographic matrices can be found in Andrews and Hunt
(1977) and Pratt (1991), but we shall generally avoid lexicographic ordering and
work mainly with vector indices in this book.

7.5 NONLINEAR SYSTEMS

So far we have discussed only linear imaging systems, but sometimes nonlinear
mathematics is either mandated by the physics of the system or convenient for
analysis. In this section we survey some of the main nonlinear descriptions that
have found use in image science.

7.5.1 Point nonlinearities

One way to classify nonlinear responses is to distinguish point nonlinearities from
nonlocal nonlinearities. Photographic film provides a good way of making this
distinction.
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Film is a highly nonlinear detector. The output variable (transmission of the
developed film or optical density) is a complicated nonlinear function of the input
(irradiance or exposure), but it may be a good approximation to say that the
output at point rd is determined fully by the input at that same point. Under this
assumption, we can write the input–output relation of film as

gout(rd) = Φ{gin(rd)} , (7.358)

where Φ{·} is an ordinary scalar-valued nonlinear function of a scalar argument.
When an equation of this form is valid, we say that the system exhibits a point

nonlinearity. On the other hand, if it is necessary to know gin(rd) at more than
one point in order to compute gout(rd) at one point, then the system is said to be
nonlocal, and if it is also nonlinear, it is said to exhibit a nonlocal nonlinearity.

In reality, film is indeed nonlocal. Light entering the emulsion diffuses and
affects the optical density over a region with a width which we can call the resolution
width of the film. If this resolution width is small compared to the width of the PSF
associated with the remainder of the system (e.g., the imaging lens), then it may be
a useful approximation to treat the film as a point nonlinearity. Alternatively, we
can describe the light diffusion as a nonlocal but linear blurring process and then
regard the nonlinear step as just the conversion of light to developed photographic
grains. In that case (7.358) can be used, with a reinterpreted gin(rd), even though
blur within the film is not negligible.

Another example of a point nonlinearity occurs in coherent optical imaging. As
discussed in Chap. 18, such systems are linear in a complex amplitude u(r) related
to the electric field. Thus all of the formalism for linear CC systems developed in
Sec. 7.2 is applicable— right up to the detector. Optical detectors, however, do not
respond to complex amplitude but rather to the irradiance, which is proportional
to the squared modulus of the amplitude, |u(rd)|2. Since the irradiance at point
rd is a nonlinear function of the amplitude at that point and is independent of the
amplitude at any other point, the conversion from amplitude to irradiance is a point
nonlinearity.

Point nonlinearities in CD systems The concept of point nonlinearities applies to
discrete images also. If we think of the CD system as a CC operator HCC fol-
lowed by a discretization operator D as in (7.227), there are two places where the
nonlinearity can occur—before or after discretization. In a digital camera with a
nonlinear detector array, for example, the output voltage of the mth detector can
be written as

Vm = Φdet{gm} = Φdet{[DHCCf ]m} , (7.359)

where Φdet(·) is a function describing detector saturation and nonlinearities in the
subsequent electronics. In this equation, the image is first integrated over the
detector area and then subjected to the nonlinearity. It is a point nonlinearity in a
discrete sense because Vm is determined solely by [DHCCf ]m for that same m.

For coherent imaging, on the other hand, it is the irradiance rather than the
amplitude that is integrated, so the proper description is

gm = [D{Φsq[HCCf ]}]m , (7.360)

where Φsq(u) = |u|2. In this case we encounter a point nonlinearity in the continuous
sense, before discretization.
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Both kinds of nonlinearity may be present simultaneously. If the detector in a
coherent imaging system responds nonlinearly, its output voltage is expressed by

Vm = Φdet

{

[D[Φsq(HCCf )] ]m
}

. (7.361)

This form now involves two nested nonlinearities; both of them are point nonlin-
earities, but in different senses.

X-ray computed tomography involves a form similar to (7.361). This kind of
imaging involves an exponential decay of radiation, and the exponent is a linear
CC mapping of the object of interest; the output of this step is then integrated
over a detector. As a preprocessing step, the logarithm of the measured data is
computed, but this step does not cancel the exponential because of the intervening
discretization operator. Instead, the result has the form

Vm = ln {[D[exp(HCCf )] ]m} . (7.362)

Invertible vs. noninvertible point nonlinearities Often the nonlinear function Φ(·) will
be a monotonic function of its argument, at least over some range of values. In such
cases, we can define an inverse function Φ−1(·) and use it to undo the effects of the
nonlinearity. In (7.359), for example, all we require is that an increase in irradiance
on the detector always produces an increase in the output voltage, and we can then
recover gm by

gm = Φ−1
det{Vm} = [DHCCf ]m . (7.363)

In other words, an invertible point nonlinearity does not interfere at all with the nice
linear models we have emphasized in this chapter, provided we know the nonlinear
response and correct the measured data accordingly.

Conversion of complex amplitude to irradiance is an example of a noninvertible
point nonlinearity. We cannot determine the amplitude and phase of a complex
number from its squared modulus.

Linearization If the function Φ(·) is differentiable, it may be possible to approximate
a nonlinear system by a linear one for small excursions from some nominal operating
point. Consider a nonlinear detector that always receives an input gm near some
mean value gm. The output can be written as a Taylor expansion of (7.359):

Vm = Φdet{gm}+ [(DHCCf )m − gm]Φ′
det{gm}+ ... , (7.364)

where Φ′
det{gm} is the derivative of Φdet{·} evaluated at the nominal operating

point. If higher terms can be neglected and Φdet{gm} and Φ′
det{gm} are known, we

can solve (7.364) for (DHCCf )m, again salvaging all of our efforts to understand
linear systems.

7.5.2 Nonlocal nonlinearities

A general expression covering a wide variety of nonlinear responses is the Volterra
series (Schetzen, 1980), given by
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g(rd) =

∫

Sf

dqr f(r)h1(rd; r) +

∫

Sf

dqr

∫

Sf

dqr′ f(r) f(r′)h2(rd; r, r
′)

+

∫

Sf

dqr

∫

Sf

dqr′
∫

Sf

dqr′′ f(r) f(r′) f(r′′)h3(rd; r, r
′, r′′) + ... . (7.365)

If f(r) is complex, additional terms with various combinations of f and f∗ are
needed for full generality.

Bilinear transforms When only the second term in the Volterra series is present, as
in partially coherent imaging (see Chap. 9), we refer to the system as bilinear. In
this case it is convenient to include a complex conjugate in the definition and write

g(rd) =

∫

∞

dqr

∫

∞

dqr′ f∗(r) f(r′)h(rd; r, r
′) . (7.366)

A more general bilinear transform would be obtained by using two different
functions f1(r) and f2(r), but this degree of generality is not needed for imaging if
we map a single object f(r) to an image.

Other bilinear transforms, such as the Wigner distribution function and the
Woodward ambiguity function, were introduced in Chap. 5. Note, however, that
both the Wigner and Woodward functions involve single integrals, so the kernel in
(7.366) must be a delta function to reproduce those special cases.

A bilinear system in q dimensions can be reformulated as a linear system in 2q
dimensions (Saleh, 1978; Saleh and Freeman, 1987). Let R be the 2q-dimensional
vector obtained by concatenating r and r′, and define an auxiliary function F (R) by

F (R) ≡ f∗(r) f(r′) . (7.367)

Then (7.366) becomes

g(rd) =

∫

∞

d2qR F (R)h(rd;R) , (7.368)

where h(rd;R) ≡ h(rd; r, r′). We see that (7.368) has the general form of a linear
CC mapping, but now the mapping is from a 2qD function to an sD one rather
than from qD to sD as in (7.101).

7.5.3 Object-dependent system operators

In some imaging systems it is difficult to distinguish the object from the imaging
operator. Consider, for example, an optical microscope viewing a thick biological
specimen. The light reaching the lens from one layer in the specimen is altered
as it passes through other layers (Andrews and Hunt, 1977). If the specimen is
transparent, the alteration is in the phase of the light, so the effect is similar to
that produced by lens aberrations, which also alter the phase. The medium is both
message and messenger.

A general mathematical description for a CC system with an object dependent
system operator is

g(rd) =

∫

Sf

dqr h(rd, r; f ) f(r) . (7.369)
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Since the kernel h(rd, r; f ) can depend on f(r) at more than one point r, this
equation expresses a nonlocal nonlinearity in f.

The Volterra structure emerges if we assume that the kernel depends only
weakly on f. To see this, we first decompose the kernel into object-independent and
object-dependent parts:

h(rd, r; f ) = h1(rd, r) + δh1(rd, r; f ) , (7.370)

where h1(rd, r) might be computed by ignoring the effect of the object on the system,
and δh1(rd, r; f ) is whatever is left over. If we can approximate δh1(rd, r; f ) as a
linear functional in f, then we can write

δh1(rd, r; f ) *
∫

Sf

dqr′ h2(rd; r, r
′) f(r′) . (7.371)

Substituting (7.370) and (7.371) into (7.369) yields the first two terms in the
Volterra expansion, (7.365).

If the approximation of (7.370) is not adequate, h2 must also depend on f.
Then we can write h2 as a term independent of f plus a correction term δh2 which
we can approximate as a linear functional in f. This step yields the next term in the
Volterra expansion, and repeating the process indefinitely gives the entire series.

Multicomponent objects As noted in Sec. 7.1.1, it is often necessary to consider
multiple attributes of an object. If J attributes are needed for a full object de-
scription, then the object function f (r) is a vector field with J components. The
object in fluorescence microscopy, for example, is characterized by its emission den-
sity f1(r), but also by a spatially varying absorption coefficient f2(r) and refractive
index f3(r), so in this case J = 3.

These components do not necessarily enter into the imaging equation in the
same way. A fluorescent microscope, for example, may respond linearly to the
emission density but with a kernel that depends on the absorption coefficient and
refractive index. Thus we can write12

g(rd) =

∫

Sf

dqr h(rd, r; f2, f3) f1(r) . (7.372)

We see that g is linear in f1 for fixed f2 and f3, but it is nonlinear in the latter two
quantities.

We can convert (7.372) to a CD description by integrating g(rd) over a detector,
as in (7.229), so that

gm =

∫

Sg

dsrd wm(rd) g(rd) =

∫

Sf

dqr hm(r; f2, f3) f1(r) . (7.373)

Nonlinear imaging with known sources In many imaging systems, the radiation
source is controllable and known, and the detector may respond linearly to the

12The notation here is potentially confusing. We use fj(r) for one component of the 3D vector
field f (r), but we also use fj for fj(r) when we wish to regard it as a vector in Hilbert space. The
kernel in (7.372) is written as h(rd, r; f2, f3) since it depends on f2(r) and f3(r) at all r, not just
at a single point.
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radiation, but the radiation reaching the detector may be a complicated nonlinear
function of the object. An example occurs in optical imaging through a turbid
medium, where the light is strongly scattered en route from source to detector.
The goal of the imaging is to map the distribution of the scatterers. As we shall
see in detail in Chap. 10, the propagation of light in a strongly scattering medium
can often be described by a diffusion equation of the form,

∇ · [f(r)∇u(r)] = s(r) , (7.374)

where u(r) is the photon density in the medium, s(r) is the source distribution and
f(r) is the diffusion coefficient, which we denote by f(r) here to emphasize that it
is the object we seek to image. A detector placed on the periphery of the medium
responds linearly to the photon density, which in turn is a linear functional of the
source distribution, but the kernel of that linear mapping depends nonlinearly on
f(r). Since many different detectors and source configurations can be used, we write
the response of the mth detector to the nth source as

gmn =

∫

∞

dqr hm(r; f ) sn(r) . (7.375)

This form is analogous to (7.373) except there is only one object component (the
diffusion coefficient) and the source is not considered an attribute of the object.

Parametric models In Sec. 7.1.6, we surveyed a variety of parametric object de-
scriptions. In every case, the end result was an expression for an object function
f(r), which could be the input to an imaging system. Even if the system out-
put is a linear functional of f(r), however, it may be nonlinear in the parameters.
For the forward problem, this nonlinearity poses no great difficulty. Given a set
of parameters describing an object, the image can be computed in two stages: a
nonlinear mapping from parameters to f, then a linear mapping from f to g. The
inverse problem, estimating the parameters from g, is more complicated and will
be discussed in Chap. 15.

Sometimes a mixed linear/nonlinear parametric representation is useful. An
example occurs in magnetoencephalography (MEG), which is the imaging of mag-
netic sources in the brain. A popular model in that field is that the object consists
of a discrete set of magnetic dipoles, each characterized by a dipole moment µk

and location rk(k = 1, ...,K) (Leahy et al., 1998). The detectors used in MEG
respond linearly (though nonlocally) to the dipole strengths, but that response is a
complicated nonlinear function of the dipole positions.

To get a mathematical description of an MEG system, we define two new vec-
tors. Since each dipole moment is a 3D vector, we can define a 3K × 1 vector d

that contains the information about the strength of each component of each dipole.
Similarly, a 3K × 1 vector R contains the information about the location of the
dipoles. If M measurements are collected, the imaging equation takes the form

g = [H(R)]d , (7.376)

where H(R) is an M ×3K matrix, the elements of which depend nonlinearly on R.

Adaptive imaging systems An adaptive system is one where system parameters are
modified in response to its input. The prime example in imaging is adaptive optics,
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where controllable mirrors are often used to compensate for image blurring resulting
from atmospheric turbulence.

We can describe adaptive systems as linear CC or CD mappings, where the
kernel has one or more controllable parameters. To be specific, we take the CD
form and assume that there are J controllable parameters, which we can arrange
as a J × 1 vector Θ. The imaging equation is then

gm =

∫

Sf

dqr hm(r;Θ) f(r) . (7.377)

For the system to be adaptive, each parameter Θj must be determined in some way
by the object, but we have access only to the image values. We therefore assume
that each Θj is a functional of g. In adaptive optics, for example, we might derive
some measure of image sharpness and use it in a feedback system to control mirror
positions.

If the parameters are controlled linearly, we can write

Θj = Θj0 +
M
∑

m=1

Tjmgm , (7.378)

where Θj0 is some nominal or preset value that Θj assumes when no object is
present and T is a J ×M matrix.

The two simultaneous sets of equations, (7.377) and (7.378), then constitute
a nonlinear system, even though each individual equation is linear in f if other
parameters are held fixed.

7.5.4 Postdetection nonlinear operations

So far in this section we have discussed nonlinear imaging systems, where g is a
nonlinear function of f, but often nonlinear operations are performed on an im-
age g after detection. These operations may have many purposes, including data
compression and storage, image reconstruction, image enhancement, and various
forms of image analysis, including pattern recognition and estimation of numerical
parameters. In this section we take a brief look at some of these topics with the
aim of showing how they can be incorporated into the mathematical description of
the overall system. Nonlinear estimation and image-reconstruction algorithms are
discussed in further detail in Chap. 15.

Digitization and bit planes The output of a detector is often digitized by an analog-
to-digital (A/D) converter in order to store it in computer memory. A convenient
mathematical description of A/D converters (especially for programmers) is

ΦAD(gm) = int(C1gm + C2) , (7.379)

where C1 and C2 are constants, and int(·) returns the integer part of its argument
[e.g., int(2.57) = 2].

In the language of Sec. 7.5.1, ΦAD(·) is a noninvertible point nonlinearity. The
nonlinear function in this case has a stairstep response with a discrete set of possible
output values. It is not invertible since it is not a one-to-one mapping; all inputs in
some finite range yield the same output.
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If we assume that the output of an A/D converter is always ≤ 2K − 1, we can
write it as

ΦAD(gm) =
K−1
∑

k=0

gmk2
k , gmk = 0 or 1 . (7.380)

The set of all gmk for a chosen level k and all m can be displayed as a binary image,
taking on only the values 0 and 1 or black and white. This image is referred to as
the kth bitplane map.

The conversion of the A/D outputs to a set of bitplane maps is another non-
linear operation. Since any integer ≤ 2K − 1, can be expressed as a binary number
with K bits, ΦAD(gm) can be reconstructed from the full set of K bitplane maps,
so the nonlinearity is invertible. On the other hand, conversion from ΦAD(gm) to a
single bitplane map is noninvertible.

Image compression A simple way of storing an image is to assign one location in
computer memory to each value of ΦAD(gm). For example, if K in (7.380) is 8, we
can use one byte for each m and store values of ΦAD(gm) in the range 0 to 255. If
more precision is needed, we can use 2 bytes for each m, which makes K = 16 and
allows storage of values from 0 to 65,535.

In many applications, however, computer storage or data-transmission capa-
bility is at a premium, and it is highly desirable to use more efficient digital rep-
resentations. The generic term for methods that start with one set of digital data
and return another set occupying less space is data compression. When applied
specifically to images, data compression is often called image compression.

An image-compression algorithm can be thought of as an imaging system where
the input is one digital image and the output is another. In this sense a compres-
sion algorithm is a discrete-to-discrete or DD mapping. Since compression is almost
always nonlinear, it cannot be described by a matrix as linear DD mappings can.

As with point nonlinearities, it is necessary to distinguish reversible from ir-
reversible compression. A simple example of reversible compression is run-length
coding. If an image (or any other digital data set) contains a sequence of N entries
all of which have the same value, then it is more efficient to store the value once
along with the number of entries N rather than to store the same value N times.
It is straightforward to undo this mapping.

Reversible compression is in the realm of computer science rather than im-
age science; the techniques could as well be applied to any digital data. The fact
that the data constitute an image is of little import, except perhaps in determining
the degree of compression attainable. Irreversible image compression, on the other
hand, results in an image that is not mathematically equivalent to its input, so in
some sense it is degraded. The methods of image-quality assessment developed later
in this book can be used to quantify the degree of degradation for specific tasks and
observers.

Specific techniques for image compression are well beyond the scope of this
book. For a succinct review, see Dorf (2000), and for many details see Rabbani and
Jones (1991).

Nonlinear displays Linear image displays were discussed in Sec. 7.3.6. Real displays,
however, exhibit nonlinearities, and their output can be written generally as

fdisp(r) = Φdisp {fd(r)} , (7.381)
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where fd(r) is given by (7.298). The display function Φ(·) is often a monotonic but
nonlinear curve. A common form is

Φdisp {x} = Axγ , γ > 0 , (7.382)

where γ is called (not surprisingly) the gamma of the display. Higher gammas
correspond to more contrast in the displayed image.

In addition to this inherent display nonlinearity, various other point nonlinear-
ities are often applied in software before display in order to manipulate the contrast
of an image. When the useful information in an image occupies a limited range
of gray levels, for example, we can set upper and lower thresholds and not display
values outside this range at all. Values within the range can then be multiplied by a
constant to fill up the available range of the display, or more complicated nonlinear
mappings such as histogram equalization can be performed. These mappings go
under the general term gray-level transformations.

Since gray-level transformations are applied to individual image values before
display as a function of a continuous variable, the general form of the mapping is
obtained by combining (7.298) with a point nonlinearity acting on each θn and then
inserting the result into (7.381); the result is

fdisp(r) = Φdisp

{

N
∑

n=1

dn(r)Φgl {θn}

}

, (7.383)

where Φgl{·} is the gray-level mapping.



8
Stochastic Descriptions
of Objects and Images

There are many random, unpredictable physical effects that influence the structure
of images. The inherent randomness that occurs in photoelectric detection and the
noise limits imposed by basic thermodynamics inevitably make images noisy or
stochastic (Greek stochos, aim, guess, chance). Additional randomness can arise
from a variety of mechanisms in real image detectors. A full description of imaging
systems requires analysis of all of these processes. Moreover, any imaging system
will be used for a variety of objects, and the randomness of the objects themselves
must be taken into account for many purposes.

The natural stochastic description for a digital image is as a finite-dimensional
random vector, where each component corresponds to the gray value of a single
pixel or to an individual measurement. Objects, on the other hand, are more accu-
rately described as functions of continuous spatial or temporal variables (hence as
vectors in an infinite-dimensional vector space); when these functions are stochastic
in nature, they are called random processes. In either case, a stochastic model is
at least a partial description of the statistics of the random vector or process.

Stochastic models have many uses in image science. They are needed for com-
puting simple statistical descriptors such as moments and autocorrelation functions;
they allow realistic computer simulation of typical images, and they provide the
framework for pattern recognition, image analysis and data compression. In image
reconstruction, it is useful to incorporate prior information about the object, and
this information is often statistical in nature. Furthermore, as we shall see in detail
in Chap. 14, objective assessment of image quality necessarily requires knowledge of
the statistical properties of images, and these in turn are sensitive to the statistical
properties of the objects being imaged.

It is our objective in this chapter to lay the groundwork for discussing all
of these manifestations of randomness. As a starting point, we assume that the
reader has a good grasp of the basic concepts of probability and random variables
as surveyed in App. C. In Sec. 8.1 we discuss multivariate probability and vector
random variables in general terms, though without reference to specific probability
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laws. Random processes are treated in similar generality in Sec. 8.2. In Sec. 8.3
we discuss an important class of specific probability laws, the Gaussian or normal
distributions, as applied to random vectors and random processes. In Sec. 8.4, we
introduce a few of the many stochastic models that have been used for random
objects, and in Sec. 8.5 we extend the discussion to images (as opposed to objects).

A notable omission in this chapter is any discussion of the Poisson distribu-
tion, which plays a crucial role in stochastic modeling of many imaging systems;
that omission will be remedied in Chap. 11.

The assistance of Robert F. Wagner in formulating and writing this chapter is
gratefully acknowledged.

8.1 RANDOM VECTORS

In Sec. C.2.1 of App. C, a random variable was defined as a function that maps
the sample space S of some experiment onto the set of real numbers. That is, each
experimental outcome ζ in S is associated with a real scalar g(ζ). To generalize
this idea to a random vector, we need only consider a vector-valued function g(ζ).

For example, suppose we want to measure the irradiance of a light beam at
some location. We can insert an appropriate photodetector at that location, and
the detector output is a scalar random variable. If the beam consists of white light,
however, we might want to know the irradiance in each of three color bands. In
that case we can use three photodetectors and an arrangement of beamsplitters
and filters so that each measurement yields three scalars, which we can regard as
components of a three-dimensional (3D) random vector.

Repeated scalar measurements can also be arranged as a vector. If we measure
the irradiance at some locationK times with a single photodetector, it is often useful
to think of the result as a K-dimensional (KD) random vector. Alternatively, we
might be interested in the spatial distribution of light in some image plane. We
can use an array of M photodetectors and measure the irradiance at M different
locations simultaneously, regarding the result as an MD random vector.

Finally, complex scalar random variables can be regarded as 2D vectors. If we
measure the amplitude A and phase φ of an electromagnetic wave received on an
antenna, these quantities can be regarded as two components of a vector. We can
also use A and φ to compute the real and imaginary parts of a complex number
g = g′ + ig′′, and the components g′ and g′′ are naturally depicted as Cartesian
coordinates of a random vector in the complex plane. Equivalently, we can think
of g as a complex random scalar if that is convenient. If we measure M complex
numbers, we can display the results as either a vector with M complex components
or one with 2M real components.

It is the goal of this section to establish notation and procedures for dealing
with all of these manifestations of random vectors.

8.1.1 Basic concepts

A real MD random vector, denoted g, can be formed from any collection of M real
scalar random variables {gm,m = 1, ...,M}. For definiteness, the elements will be
arranged as a column, so g is a column vector or M × 1 matrix.
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An MD complex random vector g has components gm = g′m + ig′′m. It can be
represented by the M ×1 column vector of complex random values (g1, g2, ..., gM )T,
or as the 2M × 1 column vector (g′1, g

′
2, ..., g

′
M , g′′1 , g

′′
2 , ..., g

′′
M )T. Hence it is equiva-

lent to think of an MD vector of complex numbers as residing in either CM or R2M.
Therefore, the treatment in this chapter is often given in terms of real random vec-
tors, with the understanding that the complex case can be obtained by doubling
the number of components in the random vector to include both real and imaginary
parts as separate elements.

The probability law for a random vector is nothing more than the multivariate
probability law for all of its components. Like any other random variable, each
component of a random vector is either discrete-valued or continuous-valued. If
each component can take on only a finite set of values, or at most a countably
infinite set, then we refer to the random vector as discrete-valued. The probability
law of a discrete-valued random variable specifies the probability associated with all
possible combinations of values for all components. If all of the components of an
MD random vector g are continuous-valued random variables, the full probability
law is a multivariate probability density function (PDF) pr(g1, g2, ..., gM ).

The cumulative distribution function for a random vector is defined analo-
gously to that of a scalar random variable [cf. (C.26)]:

F(c) ≡ Pr(g1 ≤ c1, g2 ≤ c2, ..., gM ≤ cM ) , (8.1)

where c is a vector with components {ci}.
If g is a continuous-valued random vector, F(c) is a continuous function of

each ci. Then, in a generalization of (C.29), the PDF on g can be defined in terms
of partial derivatives of F(g):

pr(g) ≡ ∂MF(g)

∂g1∂g2 · · · ∂gM
. (8.2)

If we integrate (8.2) we retrieve the cumulative distribution function:

F(g) =

∫ g1

−∞
dg′1

∫ g2

−∞
dg′2 · · ·

∫ gM

−∞
dg′M pr(g′) . (8.3)

A more compact vector notation for (8.3) is

F(g) =

∫ g

−∞
dMg′ pr(g′) . (8.4)

The corresponding expression for a discrete-valued random vector would in-
volve multiple sums in place of the continuous integrals in (8.4), one for each of the
components of g.

Marginal probability densities We are often interested in the statistical behavior of
a subset of the components of a random vector regardless of the behavior of the
others. The statistical description of a single component gm of the random vector
g is called the marginal probability density function on gm. To determine the
marginal probability density of gm, we integrate the joint density of g over all other
components:

pr(gm) =

∫ ∞

−∞
dg1 · · ·

∫ ∞

−∞
dgm−1

∫ ∞

−∞
dgm+1 · · ·

∫ ∞

−∞
dgM pr(g) . (8.5)
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We can also determine the marginal density of the (M − 1)-dimensional subvector
g′ = (g1, g2, ..., gM−1)t, which is given by

pr(g′) =

∫ ∞

−∞
dgM pr(g) . (8.6)

Equation (8.5) gives the marginal density of one component of the random vector
g; (8.6) gives the marginal density of the random vector g′ formed from all but one
component of the random vector g. The marginal density of any other subset of the
components of g is similarly obtained by integrating over all variables not included
in the subset.

A simple geometric construction can be used to visualize computation of a
marginal. If we compute pr(x0) by integrating pr(x0, y) over y, we can write that
integral as

pr(x0) =

∫

∞
dx

∫

∞
dy pr(x, y) δ(x− x0) . (8.7)

The delta function is nonzero on a line parallel to the y-axis, and only values of
pr(x, y) along that line contribute to the integral. The PDF of x0 is essentially a
1D projection of the 2D joint PDF on (x, y).

Conditional probability densities All of the relations given in Sec. C.4 for joint and
conditional probabilities and densities hold for random vectors with minor nota-
tional changes. For example, given two random vectors f and g, Bayes’ rule [cf.
(C.17)] becomes

pr(g|f ) = pr(f |g) pr(g)
pr(f )

. (8.8)

Two random vectors f and g are statistically independent if the value of one
of them has no influence on the other, that is, pr(f |g) = pr(f ). When two random
vectors are independent, their joint PDF factors:

pr(f,g) = pr(g) pr(f ) . (8.9)

It can be shown that the cumulative distribution function of two independent ran-
dom vectors also factors.

8.1.2 Expectations

Discrete-valued random vectors Expectation values of discrete-valued random vec-
tors are defined by summing over the possible combinations of the components
weighted by the corresponding probabilities. Consider, for example, the MD vec-
tor g, where each component gm can take on any of J values xj , j = 1, ..., J. By
extension of the discussion in Sec. C.4, the expectation of an arbitrary function of
the components is given by

〈h(g1, g2, ..., gM )〉

=
J∑

j1=1

J∑

j2=1

· · ·
J∑

jM=1

h(xj1 , xj2 , ..., xjM ) Pr(g1 = xj1 , g2 = xj2 , ..., gM = xjM ) .

(8.10)
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This notation is cumbersome, but we can shorten it to

〈h(g)〉 =
∑

g1

∑

g2

· · ·
∑

gM

h(g) Pr(g) , (8.11)

where it is understood that each sum runs over the possible values of the component.
An even more compact notation with the same meaning is

〈h(g)〉 =
∑

g

h(g) Pr(g) , (8.12)

where the sum over a vector index signifies a multiple sum over all components
running over all possible values.

As in App. C, we shall use the notations 〈h(g)〉 and E{h(g)} interchangeably,
and we shall also use an overbar to denote expectation. Thus, g = 〈g〉 = E{g}.

Continuous-valued random vectors Given a continuous-valued random vector g, the
expectation of an arbitrary function h(g) is written as

〈h(g1, g2, ..., gM )〉 =
∫ ∞

−∞
dg1

∫ ∞

−∞
dg2 ·· ·

∫ ∞

−∞
dgM h(g1, g2, ..., gM ) pr(g1, g2, ..., gM ) .

(8.13)
There is no loss of generality in the infinite limits since the density might be zero
except on a finite support. In more compact notation, (8.13) becomes

〈h(g)〉 =
∫

∞
dMg h(g) pr(g) , (8.14)

where the subscript ∞ on the integral sign indicates that it runs over an infinite
range for each of the M variables of integration.

We have not specified the nature of the function h(g). It could be a scalar-
valued or a vector-valued function of the random vector g. It could even be g itself,
in which case 〈g〉 is the mean vector g. The components of this vector are given
by

gm = 〈gm〉 . (8.15)

For complex vectors, the mean is defined separately for real and imaginary
parts. Thus g = g′ + ig′′ implies gm = g′m + ig′′m and g = g′ + ig′′, which means
that gm = g′m + ig′′m for all m.

8.1.3 Covariance and correlation matrices

It is often of interest to know whether two different components of a random vector
covary, that is, whether fluctuations in one are statistically related to fluctuations
in the other. To quantify this concept, we define the covariance matrix K. For an
MD random vector g, K is an M ×M matrix with elements given by

Kij =
〈
(gi − gi)(gj − gj)

∗
〉
, (8.16)

where the asterisk indicates complex conjugate, allowing for the possibility that
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components of g might be complex. It is easy to see from this definition that K is
Hermitian, i.e., Kij = K∗

ji.
For the special case where gi and gj are statistically independent, we can write

Kij = 〈(gi − gi)〉
〈
(gj − gj)

∗
〉
= 0 , i (= j . (8.17)

Any random variable covaries with itself. The diagonal elements of the covari-
ance matrix are the variances of the components:

Kjj = Var{gj} . (8.18)

Another way of expressing the covariance matrix is as an outer product, as
discussed in Sec. 1.3.7. With the notation of (1.53), (8.16) is equivalent to

K =
〈
(g− g)(g− g)†

〉
=
〈
∆g∆g†

〉
, (8.19)

where ∆g ≡ g− g.
A related matrix is the correlation matrix R, defined as

R =
〈
gg†

〉
. (8.20)

By unscrambling the outer-product notation, we see that Rij =
〈
gig∗j

〉
, so R is the

matrix organization of the second moments of the random vector. As a generaliza-
tion of a well-known relation for two random variables, (C.85), we have

K = R− gg† . (8.21)

For zero-mean random vectors, therefore, R and K are identical.
When two or more random vectors are involved in the same problem, we shall

add appropriate subscripts to K and R. Thus Rg =
〈
gg†

〉
and Rf =

〈
f f †
〉
.

Positive-definiteness Every covariance matrix K is positive-semidefinite, as defined
in Sec. A.8. To demonstrate this point, consider an arbitrary quadratic form as in
(A.115):

QK(x) = x†Kx = x†
〈
∆g∆g†

〉
x =

〈
x†∆g∆g†x

〉

=
〈∣∣x†∆g

∣∣2
〉
, (8.22)

where x is a nonrandom vector and we have used elementary properties of scalar
products and norms from Chap. 1. Since |x†∆g|2 is never negative, its expectation
is never negative, so the quadratic form QK(x) is never negative and K is positive-
semidefinite (nonnegative-definite) by definition.

Moreover, it is rare that covariance matrices are not strictly positive-definite.
From Sec. A.8 we know that an M × M positive-semidefinite matrix is positive-
definite if its rank R equals its dimension M, and from Sec. A.3 we know that the
rank is the number of linearly independent rows or columns. Thus the only way
we can have R < M is if at least one of the columns of K can be written as a
linear combination of the other columns. One way in which this can happen is if
not all components of g are measured independently, but instead one component
is computed as a weighted sum of the others. Barring such unusual circumstances,
however, it is reasonable to assume that R = M.
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Cross-covariance and cross-correlation The cross-covariance matrix and the cross-
correlation matrix for two random vectors g and f are defined analogously to (8.19)
and (8.20), respectively. They are related by an expression analogous to (8.21):

Rgf =
〈
g f †

〉
= Kgf + g f

†
. (8.23)

The random vectors g and f are said to be uncorrelated if their cross-correlation
matrix factors as

Rgf = 〈g〉〈f †〉 = g f
†
, (8.24)

or, equivalently, if their cross-covariance matrix is identically zero.
Since the PDF of two independent random vectors separates into the product

of their individual PDFs, we have the immediate result that independent random
vectors are uncorrelated. No general statement can be made to the converse, but
we shall see later in this chapter that uncorrelated normally distributed random
vectors are statistically independent.

Two random vectors are said to be orthogonal if

Rgf =
〈
g f †

〉
= 0 . (8.25)

Note that this stochastic definition involves the outer product whereas the deter-
ministic definition of orthogonality of two vectors involves the inner product. From
(8.23) we see that if the mean of either g or f is zero, the cross-correlation and the
cross-covariance matrices are equal; in that case orthogonal random vectors are also
uncorrelated.

8.1.4 Characteristic functions

The characteristic function ψg(ξ) of a random vector can be defined as the natural
generalization of the characteristic function of a scalar random variable (see Sec.
C.3.3). For a realM×1 random vector g (column vector), the characteristic function
is defined as

ψg(ξ) =
〈
exp(−2πiξtg)

〉
, (8.26)

where ξt is a real 1 ×M vector1 (row vector) and hence ξtg is the scalar product
of g and ξ.

For the case of a continuous-valued random vector, ψg(ξ) can be written as

ψg(ξ) =

∫

∞
dMg pr(g) exp(−2πiξtg) . (8.27)

This integral is the MD Fourier transform of the PDF, so the properties of Fourier
transforms from Chap. 3 can be used in its manipulation. In particular, since any
PDF is nonnegative and normalized to unity, it is in L1; thus ψg(ξ) is finite for all
ξ, is continuous everywhere, and vanishes at infinity [see (3.65) and (3.66)]. The
PDF on g is given by the inverse Fourier transform of ψg(ξ):

pr(g) =

∫

∞
dMξ ψg(ξ) exp(2πiξ

tg) . (8.28)

1One should not confuse ξ with the x component of spatial frequency, denoted ξ in other chapters.
The vector ξ used here is a frequency in the sense that it is a variable in a Fourier transform, but
it is not a spatial frequency.
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The characteristic function of a random vector is unique, in that two random
vectors have the same characteristic function if and only if they have the same
probability distribution. And, as in the univariate case, two random vectors are
independent if and only if their joint characteristic function can be written as the
product of their marginal characteristic functions.

Moments The characteristic function has great utility not only for deriving PDFs
but also as a shortcut to obtaining the moments of a random vector. This property
follows from the definition (8.26) by expanding the exponential in a power series
before taking the expectation value. This leads to a series of terms involving increas-
ingly higher moments of the random variable g. These moments can be isolated by
differentiation of the series and then setting ξ = 0, where 0 is the vector with all
elements equal to zero. Alternatively, one can simply differentiate the characteristic
function directly. For example, if we take the gradient we obtain (in the notation
of Sec. A.9.2)

∂ψg(ξ)

∂ξ
=
〈
(−2πig) exp(−2πiξtg)

〉
. (8.29)

On setting ξ = 0, this yields

〈g〉 = (−2πi)−1

[
∂ψg(ξ)

∂ξ

]

ξ=0

. (8.30)

Differentiating twice yields the second moment:

R =
〈
ggt

〉
= (−2πi)−2

[
∂2ψg(ξ)

∂ξ∂ξt

]

ξ=0

. (8.31)

Higher-order moments can be determined using the following general expression:

E
{
gk1
1 gk2

2 ...gkM

M

}
= (−2πi)k1+k2+···+kM

[
∂k1+k2+···+kMψg(ξ)

∂ξk1
1 ∂ξk2

2 · · · ∂ξkM

M

]

ξ=0

. (8.32)

Complex random vectors The characteristic function of a complex random vector
g can be written

ψg(ξ)=
〈
exp[−2πiRe(ξ†g)]

〉
=
〈
exp[−πi(ξ†g+ g†ξ)]

〉

= 〈exp [−2πi(ξ′1g
′
1 + ξ′′1 g

′′
1 + · · ·+ ξ′Mg′M + ξ′′Mg′′M )]〉 , (8.33)

where now ξ is an MD complex vector ξ = ξ′ + iξ′′.
We see that the scalar product in the exponent of (8.33) is the sum of 2M

real terms, rather than the M terms of (8.26). Another avenue for obtaining this
expression is to make use of the fact that complex vectors can be considered to lie in
either CM or R2M. Thus we could have chosen to represent theMD complex random
vector g by the 2MD vector of real components (g′1, g

′
2, ..., g

′
M , g′′1 , g

′′
2 , ..., g

′′
M )t and

similarly represent ξ by the vector of real components (ξ′1, ξ
′
2, ..., ξ

′
M , ξ′′1 , ξ

′′
2 , ..., ξ

′′
M )t.

The use of (8.26) with these real vectors would give an expression for the charac-
teristic function identical to (8.33).

The moments of g can be determined by differentiation of ψ(g) if we mind the
rules for differentiation with respect to complex vectors given in Sec. A.9.5. The
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mean of the random vector g is found by taking the derivative of ψg(ξ) with respect
to the complex vector ξ:

∇ψg(ξ) =

[
∂

∂ξ′
+ i

∂

∂ξ′′

]
ψg(ξ) =

〈
(−2πig) exp[−πi(ξ†g+ g†ξ)]

〉
, (8.34)

where we have made use of (A.159) and (A.160). When we set ξ to zero we find

〈g〉 = (−2πi)−1 [∇ψg(ξ)]ξ=0
. (8.35)

The second moment is found from the generalized Hessian (A.165):

R =
〈
gg†

〉
= (−2πi)−2

[
∇∇†ψg(ξ)

]
ξ=0

. (8.36)

Higher-order moments can be derived using successive differentiation, similar
to the case of real g.

8.1.5 Transformations of random vectors

Section C.3.1 gives rules for transforming PDFs of scalar random variables. A
bivariate extension of these rules is presented in Sec. C.4.5. In this section we extend
these rules further so that they apply to random vectors of general dimension. Our
treatment is limited to real vectors; the extension to complex vectors can be done
by converting the complex vectors to real vectors with double the dimension as
described above.

Suppose the random vector g is related to the random vector f through the
general nonlinear relationship g = Of. The mapping from f to g is discrete-to-
discrete even though the components of the vectors are continuous valued. If we
assume that this mapping is differentiable (with respect to the component values)
and also one-to-one and onto, then the inverse mapping f = O

−1(g) exists. The
PDF of g is then obtained from the known PDF of f by recognizing the equivalence
of the probability spaces used to describe random events in terms of either f or g:

prg(g) d
Ng = prf (f ) d

N f . (8.37)

The random vector g must have the same dimensionality as f if the mapping from
f to g is invertible. From (8.37) we obtain

prg(g) = prf (O
−1g)|detJ| , (8.38)

where J is the Jacobian matrix of partial derivatives relating the components of f
and g [cf. (C.102)]:

Jij =
∂fi
∂gj

, (8.39)

and | detJ| is the absolute value of its determinant.

Linear transformations If the random vector g is generated as the output of a linear
filter acting on the random vector f, we can characterize the linear transformation
by an M ×N matrix H. Then we can write the M × 1 output vector g in terms of
the N × 1 input vector f as

g = Hf . (8.40)
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If M = N and H−1 exists, the PDF of g can be written in terms of the PDF
of f as a special case of (8.38):

prg(g) = prf (H
−1g) | detH−1| . (8.41)

Characteristic function of the transformed vector IfH is not invertible, we cannot use
(8.41) to relate the PDF for g to the PDF for f, but we can relate the corresponding
characteristic functions. With (8.40), (8.26) becomes

ψg(ξ) =
〈
exp(−2πiξtHf )

〉
=
〈
exp

[
−2πi(Htξ)tf

]〉
, (8.42)

where the last step has used the definition of the adjoint, (1.39). (Since we are
considering real matrices here, adjoint is the same as transpose.) Comparison of
the last expectation in (8.42) with (8.26) shows that

ψg(ξ) = ψf (H
tξ) , (8.43)

so knowledge of ψf and H immediately gives ψg. As an exercise, the reader can
show that (8.43) and (8.38) are equivalent if H−1 exists.

The PDF on g can in principle be found by taking an inverse MD Fourier
transform of (8.43). Formally, we can write

pr(g) =

∫

∞
dMξ ψf(H

tξ) exp(2πiξtg) , (8.44)

but in practice the integral might not be easy. The problem is that we are integrating
a function of an ND vector over an MD space.

Alternative approach Another way to derive an expression for the PDF of g, when
g = Hf, is to use the multivariate counterpart of (C.77) to write

pr(g) =

∫

∞
dNf pr(g|f ) pr(f ) . (8.45)

Here the notation pr(g|f ) is a bit tricky: g is defined as Hf (not Hf + n here), so
once f is given, g is no longer random; it is just Hf. Nevertheless, we can still use
(8.45) if we let pr(g|f ) be the MD delta function, δ(g−Hf ). Then we have

pr(g) =

∫

∞
dNf δ(g−Hf ) pr(f ) . (8.46)

This form is, in fact, equivalent to (8.42). If we take the MD Fourier transform of
both sides of (8.46), we find

ψg(ξ) = FM{pr(g)} =

∫

∞
dMg

∫

∞
dNf δ(g−Hf ) pr(f ) exp(−2πiξtg) . (8.47)

The delta function allows us to perform the integral over g, and we obtain

ψg(ξ) =

∫

∞
dNf pr(f ) exp(−2πiξtHf ) =

〈
exp(−2πiξtHf )

〉
. (8.48)

This equation is the same as (8.42), and (8.43) follows as before.
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Although (8.43) and (8.46) are equivalent, the latter may be easier to in-
terpret geometrically. Suppose M < N. Then the integral is over an ND space
but the delta function is nonzero only on an MD hyperplane defined by g = Hf.
Only vectors f that lie on this hyperplane make any contribution to the integral for
a particular g. This is similar to the geometric construction we presented for the
computation of a marginal in (8.7).

Transformation of the mean and covariance When g = Hf, all moments of g can
be derived by differentiating (8.43), but often we are interested in just the mean
or covariance matrix. From the linearity of the expectation operator, we have
immediately for the mean of g,

g = 〈g〉 = 〈Hf 〉 = H 〈f 〉 = Hf . (8.49)

The covariance matrix of g is found as

Kg =
〈
∆g∆g†

〉
=
〈
(Hf−Hf )(Hf−Hf )†

〉
= H

〈
∆f∆f †

〉
H† = HKfH

† , (8.50)

where ∆f ≡ f− f. The same results can, of course, also be found from (8.43).
These rules for transforming means and covariance matrices will recur often in

this book.

8.1.6 Eigenanalysis of covariance matrices

A covariance matrix is Hermitian, and we saw in Sec. 1.4.4 that eigenvectors and
eigenvalues of Hermitian matrices have many nice properties. The eigenvalues are
real, and the eigenvectors can be chosen to form a complete, orthonormal set in
the domain of the matrix. Expansion of a random vector in eigenvectors of its
covariance matrix is a valuable tool in statistical analysis.

LetKg be the M×M covariance matrix for a random vector g. The eigenvalue
equation for this matrix is

Kgφm = µmφm , m = 1, ...,M , (8.51)

where φm is an M × 1 eigenvector and µm is the corresponding eigenvalue. (Note
that the subscript on φm denotes a particular eigenvector, not a component.) Since
Kg is Hermitian, µm is real even if Kg is complex.

We showed above that Kg is at least positive-semidefinite, so µm ≥ 0 for all
m. For convenience we assume that the eigenvalues are labeled by decreasing value:

µ1 ≥ µ2 ≥ · · · ≥ µR > 0 , (8.52)

where R is the rank. We know from Sec. 1.4.3 that the rank is also the number
of nonzero eigenvalues, so µR is the smallest nonzero eigenvalue. We also argued
above that the rank of Kg is likely to be the dimension M, in which case there are
no nonzero eigenvalues. Then Kg is positive-definite and hence nonsingular (see
Sec. 1.4.3).

We know from Sec. 1.4.4 that the eigenvectors of Kg can always be chosen as a
complete, orthonormal set. The orthonormality can be expressed in inner-product
notation as

φ†
mφn = δmn , (8.53)
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where φ†
m is the row vector obtained by transposing the column vector φm and tak-

ing an element-by-element complex conjugate. The completeness of the eigenvectors
is expressed by the closure relation,

M∑

m=1

φmφ
†
m = I , (8.54)

where φmφ
†
m is an outer product (see Sec. 1.3.7) and I is the M ×M unit matrix.

From the discussion in Sec. 1.4.5, we know that the eigenvalue problem (8.51)
can also be expressed as

KgΦ = ΦM , (8.55)

where Φ is a matrix formed by arraying the column vectors φm side by side and
M is a diagonal matrix with the mth diagonal element equal to µm. (Note that M
is capital µ.) From (8.53) and (8.54), it follows that Φ is a unitary matrix, i.e.,
Φ−1 = Φ†. From this property, we immediately find a useful representation of the
covariance matrix [cf. (1.85)]:

Kg = ΦMΦ† . (8.56)

This representation can also be expressed in terms of outer products [cf. (1.86)] as

Kg =
M∑

m=1

µmφmφ
†
m . (8.57)

This expression is the spectral decomposition of the covariance matrix.

Discrete Karhunen-Loève expansion Since the eigenvectors of a Hermitian operator
form a complete, orthonormal set in the relevant space, any M × 1 vector g can be
expressed as

g =
M∑

m=1

βmφm , (8.58)

where the coefficients are given by

βm = φ†
mg . (8.59)

We can express these relations in matrix-vector form by defining an M × 1
vector β with components {βm}. Then

g = Φβ , β = Φ†g . (8.60)

These equations are quite general, holding for any g and any orthonormal basis
vectors. If, however, g is a random vector and the vectors {φm} are eigenvectors of
its covariance matrix, then the coefficients {βm} are uncorrelated random variables.
It is easy to demonstrate this point. In component form, the covariance matrix for
β is given by

〈∆βn∆β∗
m〉 =

〈[
φ†

n∆g
] [
φ†

m∆g
]∗〉

=
〈
φ†

n∆g∆g†φm

〉

= φ†
n

〈
∆g∆g†

〉
φm = φ†

nKgφm = µmφ
†
nφm = µm δnm , (8.61)



RANDOM VECTORS 375

where ∆βm ≡ βm − 〈βm〉 and we have used the eigenvalue equation (8.51) and the
orthonormality of the eigenvectors (8.53). In matrix form, (8.61) reads

Kβ = Φ†KgΦ = Φ†ΦMΦ†Φ = M , (8.62)

where we have used (8.56), (8.60) and the unitarity of Φ.
Expansion of a random vector in eigenvectors of its covariance matrix is known

as Karhunen-Loève or KL expansion. The key feature of a KL expansion is that
the coefficients are uncorrelated (since Kβ is diagonal). A similar expansion for
random processes will be presented in Sec. 8.2.7.

The KL expansion enables us immediately to find a useful representation of
the inverse of a covariance matrix. Since Φ is a unitary matrix, i.e., Φ−1 = Φ†, we
can use (8.62) to write the covariance matrix Kg as

Kg = ΦMΦ† . (8.63)

The inverse of Kg is then given by

K−1
g = ΦM−1Φ† , (8.64)

where M−1 is also diagonal, with the mth diagonal element given by 1/µm. Thus
the same matrix that diagonalizes Kg also diagonalizes K−1

g .

Whitening As we have just seen, the KL expansion results in a vector β with
uncorrelated components. It is often useful to go further and force the components
all to have the same variance. The concept of a square-root matrix, discussed in
Sec. A.8.3, provides us with the tool to accomplish this goal.

By analogy to (A.118), we can define the square root of the covariance matrix
of g by

K
1
2
g =

M∑

m=1

√
µm φmφ

†
m . (8.65)

If Kg is nonsingular, as it usually is, we can write the inverse of the square-root
matrix as

K
− 1

2
g =

M∑

m=1

1
√
µm
φmφ

†
m . (8.66)

To verify that this is the correct form for the inverse, one can multiply (8.65) by
(8.66) and use the orthonormality relation (8.53) to obtain (8.54).

We now define the vector y by

y = K
− 1

2
g (g− g) . (8.67)

With this construction y = 0, and its covariance matrix is given by

Ky =
〈
yy†

〉
= K

− 1
2

g KgK
− 1

2
g = I , (8.68)

where we have used the definition of the square-root matrix from (A.117) and the

fact that covariance matrices are Hermitian, so that K
− 1

2
g is its own adjoint.

Thus the transformation (8.67) always results in a random vector y such that

〈ynym〉 = δnm . (8.69)
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By analogy to white noise (a topic discussed further in Sec. 8.2.6), this transfor-
mation is referred to as whitening; it is also called prewhitening when it precedes
other signal processing. As we shall see in Chap. 13, prewhitening plays a key role
in signal-detection theory.

Simultaneous diagonalization We have shown that a Hermitian matrix can always
be diagonalized by a unitary transformation. It can be shown that two different
Hermitian matrices can be diagonalized by the same unitary transformation if and
only if they commute. If the different Hermitian matrices do not commute, they can
be simultaneously diagonalized by a linear transformation, but the transformation
matrix will not be unitary (Fukunaga, 1990). Details of the procedure were given
in Sec. 1.4.6.

8.2 RANDOM PROCESSES

8.2.1 Definitions and basic concepts

We now generalize the concept of a random variable further by assigning to every
experimental outcome ζ a spatial or temporal function, real or complex, according
to some rule (Wentzell, 1981). In the spatial case the function will be denoted
f(r, ζ), where r is a position vector, and in the temporal case it will be denoted
by f(t, ζ), where t is the time. We now have a family of functions referred to as
a stochastic or random process. The words stochastic and random will be used
interchangeably here. If the spatial (or temporal) variable r (or t) is a continuous
one, the family is referred to as a continuous stochastic process; if the variables are
taken as discrete, for example by sampling in space or time, the family is referred
to as a discrete stochastic process, or a random sequence. A random process or
sequence is said to be continuous-valued or discrete-valued according to whether
the underlying random variables are continuous- or discrete-valued.

A spatial random process is a function of two variables, r and ζ. Depending
on the context, f(r, ζ) can refer to (Papoulis, 1965; Middleton, 1960):

1. The family of spatial functions, referred to as the ensemble; in this case, r
and ζ are variables.

2. A single realization or sample of the spatial functions; in this case, r is variable
and ζ is fixed.

3. The random variable at a single point; in this case, r is fixed and ζ is variable.

4. A single number; in this case, r is fixed and ζ is fixed.

The intended interpretation will usually be clear from the context.
Some notational issues require attention here. First, it is frequently cumber-

some to carry along the index ζ, so we shall usually refer to the random process
simply as f(r). Second, we usually make no notational distinction between the
random process per se, understood as the ensemble of all possible functions f(r)
(interpretation 1), and a specific realization or sample (interpretation 2). This prac-
tice is in accord with our conventions on random variables as set out in Sec. C.2.1 of
App. C. Occasionally a specific realization will have to be designated, and in those
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cases we shall either reinstate ζ or use primes, subscripts or other typographical
devices. Finally, the variable r will be understood to be a general q-dimensional
position vector unless otherwise stated.

Square-integrable random processes We shall say that a random process lies in some
Hilbert space if all sample functions [i.e., f(r, ζ) as a function of r for all ζ] lie in
that space. In particular, we shall often be concerned with random processes in
L2(Rq) where each sample function is square-integrable.

In many physical problems, |f(r)|2 can be interpreted as an energy density
(energy per unit area or volume). For example, that interpretation works when
f(r) is an electric field or the amplitude of an acoustic wave. In those cases, the
integral of |f(r)|2 is the total energy, and a square-integrable function is one with
finite energy. This terminology is used more broadly, and any square-integrable
function can be called a finite-energy function without regard to interpretation as
a physical energy.

Finite-power random processes For temporal random processes, however, the as-
sumption of finite energy is frequently not warranted. Consider, for example, the
thermal noise produced by a resistor. The duration of this noise is completely in-
definite. So long as the resistor exists, there will be a fluctuating voltage across it.
In this example, ζ designates a particular resistor and f(t, ζ) is the noise voltage,
and there is no reason to assume that the integral of |f(t, ζ)|2 over −∞ < t < ∞
is finite. We could get around this problem by imposing some artificial boundary
conditions, e.g., the resistor is manufactured at t = −T and destroyed at t = T, but
we are not really interested in when the resistor was manufactured.

A more natural approach is just to give up on the restriction to finite en-
ergy. The noise voltage across a resistor has finite power (energy per unit time).
Mathematically, we can state this condition for the random process f(t, ζ) as

0 < lim
T→∞

1

2T

∫ T

−T
dt |f(t, ζ)|2 < ∞ for all ζ . (8.70)

A random process for which this condition is satisfied will be called a finite-power
random process. Note that a finite-energy (or L2) random process cannot simul-
taneously be a finite-power one because of the left-hand inequality. If the function
is in L2, then the integral is finite as T → ∞, but the factor of 1/2T drives the
product to zero. It is only when the integral is asymptotically linear in T that (8.70)
is satisfied. As we shall see, finite-energy and finite-power random processes require
rather different mathematical treatments.

Generalized random processes We shall also have occasion to use random processes
constructed with delta functions or other generalized functions. Such constructs
are mathematically very convenient, even though no physical process is exactly de-
scribed by them. We shall refer to random processes where the sample functions are
generalized functions as (not surprisingly) generalized random processes (Kanwal,
1983). These processes are not in L2 but instead define a space of tempered distri-
butions (see Chap. 2). If the generalized function in question is a delta function,
the generalized random process has neither finite energy nor finite power.
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8.2.2 Averages of random processes

We consider here a scalar random process f(r) that is a function of position vector
r. The generalization to a vector random process is straightforward using mul-
tivariate PDFs. The random process may in principle be either continuous- or
discrete-valued, but we shall illustrate the concepts with continuous-valued random
processes. The discrete-valued case proceeds via a parallel approach but with sums
over discrete values replacing integrals over continuous values.

For fixed r, f(r) is simply a random variable (interpretation 3), and its ex-
pectation is defined just as for any other random variable. As before, we use the
notations E{·}, 〈·〉 and overbar interchangeably to indicate an expectation, and we
can write

E{f(r)} = 〈f(r)〉 = f(r) =

∫ ∞

−∞
df(r) f(r) pr[f(r)] . (8.71)

Computation of this expectation requires only the univariate PDF pr[f(r)]. Note
carefully that the integral is over f(r), not r, so E{f(r)} can be (and usually will
be) a function of r.

Moments and variance Moments of f(r) are defined easily. For example, the jth

moment is given by [cf. (C.38)]

〈
[f(r)]j

〉
=

∫ ∞

−∞
df(r) [f(r)]j pr[f(r)] . (8.72)

The resultant,
〈
[f(r)]j

〉
, can still be a function of r; again, the integral is over f(r),

not over r.
Having defined moments, we can also define the variance of a random process.

In the general complex case, the variance is given by

Var{f(r)} = E
{
|f(r)|− |E {f(r)} |2

}
= E

{
|f(r)|2

}
− |E {f(r)} |2

=

∫ ∞

−∞
df(r) |f(r)|2 pr[f(r)]−

∣∣∣∣

∫ ∞

−∞
df(r) f(r) pr[f(r)]

∣∣∣∣

2

. (8.73)

Note that this definition works equally for finite-energy and finite-power processes.
It is possible for a random process to have a finite variance at all points, yet not be
square-integrable.

Multiple-point expectations We are often interested in two-point expectations or
joint second moments of the form E{f(r1)f(r2)}. The usual definitions for joint
expectations stand us in good stead here, and we can write

E{f(r1)f(r2)} =

∫ ∞

−∞
df(r1)

∫ ∞

−∞
df(r2) f(r1) f(r2) pr[f(r1), f(r2)] . (8.74)

Here, f(r1) and f(r2) must be regarded as two distinct random variables and
pr[f(r1), f(r2)] is their joint density. Only in very special circumstances will it be
possible to write pr[f(r1), f(r2)] as pr[f(r1)] pr[f(r2)].

A general two-point moment is defined by

E
{
[f(r1)]

m [f(r2)]
n
}
=

∫ ∞

−∞
df(r1)

∫ ∞

−∞
df(r2) [f(r1)]

m [f(r2)]
n pr[f(r1), f(r2)] .

(8.75)
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Moments involving more points are defined similarly. Any moment involving the K
points r1, r2, ..., rK can be computed if pr[f(r1), f(r2), ..., f(rK)] is known. If this
K-fold joint density is known for all values of each of the rk, the process is said to
be fully characterized to order K (Snyder and Miller, 1991).

Density of the process Expressing N -fold joint densities using notation of the form
pr[f(r1), f(r2), ..., f(rN )] is cumbersome at best and quite inadequate when we want
to define expectations of general functionals Φ{f(r)}, which can depend on f(r) at
all points r. We now introduce an alternative approach, which works at least for
finite-energy random processes (or vectors in L2). Our objective is to give meaning
to an expression like pr(f ), where f is the Hilbert-space vector corresponding to
f(r). We saw in Chap. 1 that L2 is a separable Hilbert space, which means simply
that it is spanned by a denumerably infinite set of basis functions. Each sample
function of a random process in L2(Rq) can be written as

f(r, ζ) =
∞∑

j=1

αj(ζ)ψj(r) , (8.76)

where the set {ψj(r)} is any orthonormal basis for the space. We can also express
this same concept as

f(r) = lim
J→∞

J∑

j=1

αjψj(r) . (8.77)

We have dropped the index ζ with the understanding that the equation holds for
any f(r, ζ) so long as the corresponding expansion coefficients αj(ζ) are used on the
right. The convergence of (8.77) is in the sense of L2(Rq) (see Sec. 3.2.2); if we use
the truncated series in place of the original function f(r), the L2 norm of the error
converges to zero as J → ∞. The expansion of the sample function f(r) given in
(8.77) is exactly the same form that was used in (7.8) to represent a deterministic
object.

Expansion (8.77) provides a convenient way of defining averages involving ran-
dom processes. Each coefficient αj is a random variable, and the set of them
{αj , j = 1, ..., J} can be regarded as a random vector α

J
with J components. In

the limit J → ∞, the vector α
J
completely defines f(r), and averaging over f(r) is

equivalent to averaging over all components of α. For finite J, the requisite density
can be written as pr(α

J
) or pr(α1,α2, ...,αJ

). In the limit,

pr(α) = lim
J→∞

pr(α
J
) , (8.78)

and this density is operationally equivalent to pr(f ).
When f(r) is approximated by the truncated series, any functional Φ{f(r)} is

also a function of α
J
; call it ΦJ (αJ

). If the functional is continuous, in the sense
defined in Sec. 1.3.2, then the limit of the functional is the functional of the limit,
and we have

Φ{f(r)} = lim
J→∞

ΦJ (αJ
) . (8.79)

Moreover, expectation is also a continuous functional, so we can write

E{Φ[f(r)]} = lim
J→∞

E{ΦJ(αJ
)} = lim

J→∞

∫

∞
dJα ΦJ(αJ

) pr(α
J
) . (8.80)
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For notational convenience, we write this expectation as

E{Φ[f(r)]} =

∫

L2

df Φ[f(r)] pr(f ) . (8.81)

Here f is f(r) regarded as a vector in the Hilbert space, and the integral is really
a denumerably infinite multiple integral2 over all basis functions in the space; in
other words, (8.81) must be realized operationally by (8.80).

Example: Linear functionals To clarify how (8.81) works in practice, consider a
linear functional that depends on f(r) at K points:

Φ{f(r1), ..., f(rK)} ≡
K∑

k=1

βkf(rk) = lim
J→∞

K∑

k=1

βk

J∑

j=1

αjψj(rk) . (8.82)

The random variables here are the coefficients {αj}. Using (8.80) and invoking the
linearity of the expectation operator, we find

E{Φ[f(r1), ..., f(rK)]} = lim
J→∞

K∑

k=1

βk

J∑

j=1

ψj(rk)

∫

∞
dJα αj pr(αJ

) . (8.83)

In the J-fold multiple integral, we can immediately integrate out all of the variables
except αj . By (C.75), the result is the marginal density on αj , so

E{Φ[f(r1), ..., f(rK)]} = lim
J→∞

K∑

k=1

βk

J∑

j=1

ψj(rk)

∫ ∞

−∞
dαj αj pr(αj)

= lim
J→∞

K∑

k=1

βk

J∑

j=1

ψj(rk) E{αj} . (8.84)

Thus, for a linear functional of the form (8.82), and by extension any linear func-
tional,

〈Φ{f }〉 = Φ{〈f 〉} . (8.85)

Integrals of random processes An integral of a random process f(x), sometimes
called a stochastic integral, is another random process, the realizations of which
are obtained by integrating corresponding realizations of f(x). For example, the
statement

g(x) =

∫ ∞

−∞
dx′ f(x′)h(x, x′) (8.86)

means that

g(x, ζ) =

∫ ∞

−∞
dx′ f(x′, ζ) h(x, x′) (8.87)

2We have customarily denoted volume elements by italics rather than boldface, e.g., d3r rather
than dr, on the theory that volume elements are scalars. To preserve a distinction between integrals
over Euclidean spaces and ones over Hilbert spaces, however, we use df (along with the subscript
L2) to indicate a multiple integral with an infinite number of dimensions.
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for all ζ and some fixed kernel h(x, x′). A similar definition holds for derivatives of
a random process.

Since g(x) is a functional of f(x′), its average at any fixed x can be computed
by (8.81) as

〈g(x)〉 =
∫

L2

df g(x) pr(f ) =

∫

L2

df

∫ ∞

−∞
dx′ f(x′)h(x, x′) pr(f ) . (8.88)

It is often useful to interchange the order of these two integrals, but most books
gloss over issues of the validity of this step. Middleton (1960) puts it thus: “The
condition on the interchangeability of integration and expectation is, of course, the
existence of the resulting integral” (emphasis added).

When the interchange can be justified, (8.88) becomes

〈g(x)〉 =
∫ ∞

−∞
dx′ h(x, x′)

∫

L2

df f(x′) pr(f ) =

∫ ∞

−∞
dx′ h(x, x′) 〈f(x′)〉 . (8.89)

In other words, the average of a linear integral transform of a random process is
the same linear transform of the average of the random process (but only under
conditions that we haven’t yet stated clearly).

When is the interchange legal? The classical theorem that states when interchange
of the order of two integrals is allowed is Fubini’s theorem (Lang, 1993). In essence,
this theorem tells us that
∫ ∞

−∞
du

∫ ∞

−∞
dv k(u, v) =

∫ ∞

−∞
du

[∫ ∞

−∞
dv k(u, v)

]
=

∫ ∞

−∞
dv

[∫ ∞

−∞
du k(u, v)

]

(8.90)
provided |k(u, v)| is integrable over the product space, here the u-v plane.

There are two difficulties in directly applying Fubini to (8.88). First, we often
want to assume that the integrand is in L2 rather than in L1, and we know from
Sec. 3.3.2 that a function in L2 need not be in L1 (the prime example being sinc x).
One way around this problem is to consider only random processes where all sample
functions are absolutely integrable as well as square-integrable. Another way is to
consider a finite interval, say − 1

2X < x ≤ 1
2X. This allows use of Fubini with L2

functions since L2(− 1
2X, 12X) is a subspace of L1(−1

2X, 1
2X).

The second difficulty is that Fubini’s theorem can be extended to higher-
dimensional multiple integrals, but (8.88) in its most general form requires an
infinite nested set of integrals. Fubini’s theorem can still be used in this case,
but it must be justified with advanced measure-theoretic arguments (Lipster and
Shiryayev, 1977). A more elementary argument can be given by using the theory
of distributions.

Retreat to distributions Much of the discussion above has hinged on the assumption
that the random process lies in a separable Hilbert space. For finite-power processes,
we do not have this luxury, and even with L2 processes, we ran into some problems
justifying the interchange of integration and expectation. The solution to these
difficulties is the theory of distributions3 as outlined in Chap. 2. The thing we have

3At least three distinctly different meanings attach to the word distribution in connection with
random processes. A probability distribution is, loosely speaking, any probability law, such as the
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going for us is that sample functions of a random process may be badly behaved
but kernel functions in integral transforms like (8.86) are usually good functions.

Let t(x) denote a good function and f(x, ζ) be a sample function of a random
process. This random process defines a distribution,

Φf {t(x)} =

∫ ∞

−∞
dx t(x) f(x, ζ) ≡ φ(ζ) . (8.91)

Note that φ(ζ) is a random variable. It is proved by Kanwal (1983) that this random
variable has finite variance if f(x, ζ) is continuous (in the sense that f(x + ε, ζ) →
f(x, ζ) in the limit that ε → 0) and has finite variance at all x. With these mild
restrictions, any random process defines a distribution mapping good functions to
finite-variance random variables.

By the Schwarz inequality, the finite variance of φ(ζ) implies that φ(ζ) has
finite mean. The expectation E{φ(ζ)} is defined conventionally by

E{φ(ζ)} = E{Φf [t(x)]} =

∫ ∞

−∞
dφ φpr(φ) . (8.92)

But this is just a linear combination of distributions, which by (2.15) is another
distribution. Thus

E{Φf [t(x)]} = ΦEf{t(x)} =

∫ ∞

−∞
dx t(x) E{f(x, ζ)} , (8.93)

where ΦEf{t(x)} is a distribution defined by using E{f(x, ζ)} as the generalized
function. Equation (8.93) is just what one would obtain by interchanging the ex-
pectation operation and the integration over x.

Thus the issue of interchangeability is resolved once we have established that
the random process defines a distribution (in the Schwartz sense), and Kanwal did
this for us with mild restrictions.

8.2.3 Characteristic functionals

Characteristic functions for scalar random variables were introduced in App. C and
extended to random vectors in Sec. 8.1.4. Now we shall extend the concept further
to random processes. In a formal sense, the extension is straightforward; all we
have to do is to pay attention to the dimensionality of the vectors involved.

As defined in (8.26), the characteristic function of an MD random vector is a
function of an MD frequency vector ξ. In the case of a random process, each sample
function corresponds to a vector f in an infinite-dimensional Hilbert space, so the
frequency vector ξ in (8.26) must be replaced by an infinite-dimensional vector s

in the same Hilbert space as f. That means that s describes a function s(r), so the
characteristic function becomes a characteristic functional Ψf {s(r)} or Ψf (s) for
short. It is defined by

Ψf (s) = 〈exp[−2πi(s, f )]〉 , (8.94)

Poisson distribution. The distribution function refers specifically to the cumulative probability
distribution function defined in Sec. C.2.3. In the present context the word is used in the Schwartz
sense defined in Chap. 2.
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where (s, f ) is the usual L2 scalar product. Note that we use Ψ( · ) for characteristic
functional and ψ( · ) for characteristic function.

The characteristic functional of a random process can be related to the char-
acteristic function of any random vector derived from the random process by a
linear operator; the calculation is a simple generalization of one performed in Sec.
8.1.5. For example, if g = Hf, where H is a continuous-to-discrete (CD) operator
as discussed in Secs. 1.2.4 and 7.3, then (8.26) becomes

ψg(ξ) = 〈exp[−2πi(ξ,Hf )]〉 = 〈exp[−2πi(H†ξ, f )]〉 , (8.95)

where the second step follows from the definition of the adjoint, (1.39). Comparison
of (8.94) and (8.95) shows that

ψg(ξ) = Ψf (H
†ξ) , (8.96)

which is the generalization of (8.43) to random processes.
Thus, if we know the characteristic functional for f, we immediately have the

characteristic function for Hf. We shall exploit this relation in Sec. 8.3.5 when we
discuss normal random processes.

8.2.4 Correlation analysis

The autocorrelation function R(r1, r2) of a random process f(r) is defined by

R(r1, r2) = 〈f(r1) f∗(r2)〉 , (8.97)

which is the two-point expectation defined in (8.74), with the minor modification
of the complex conjugate on the second factor [ irrelevant if f(r) is real ].

The autocovariance function K(r1, r2) is defined by

K(r1, r2) = 〈[f(r1)− 〈f(r1)〉] [f∗(r2)− 〈f∗(r2)〉]〉

= R(r1, r2)− f(r1) f
∗
(r2) . (8.98)

The autocovariance function is thus the two-point moment that is the generalization
of the variance; it reduces to the variance when r2 = r1 = r, i.e.,

K(r, r) = R(r, r)− |f(r)|2 = Var{f(r)} (8.99)

from (8.73).
When two or more random processes occur in the same problem, their auto-

correlation and autocovariance functions will be distinguished with subscripts, e.g.,
Rf (r1, r2). It is frequently convenient to define zero-mean random processes such
as

∆f(r) ≡ f(r)− f(r) . (8.100)

With this definition, 〈∆f(r)〉 = 0 and

R∆f (r1, r2) = Kf (r1, r2) . (8.101)

The autocorrelation and autocovariance functions play a fundamental role in
the theory of random processes since they specify how far apart two points must be
for their fluctuations to be uncorrelated. If Kf (r1, r2) is zero, the random variables
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f(r1) and f(r2) do not covary; colloquially, they are said to be uncorrelated, though
in fact the autocorrelation function Rf (r1, r2) may be nonzero because of the mean
values.

Cross-correlation and cross-covariance functions can also be defined. Consider
two functions f(r) and g(r′), where r and r′ are not necessarily in the same space.
The cross-correlation or mutual correlation function is defined by

Rfg(r, r
′) = 〈f(r) g∗(r′)〉 . (8.102)

Similarly, the cross-covariance function is

Kfg(r, r
′) = 〈[f(r)− 〈f(r)〉] [g∗(r′)− 〈g∗(r′)〉]〉 = Rfg(r, r

′)− f(r) g∗(r′) . (8.103)

Two random processes f(r) and g(r′) are said to be uncorrelated if Rfg(r, r′) =
f(r) g(r′) for all r and r′. They are orthogonal if, for all r and r′, Rfg(r, r′) = 0.

Properties of the autocorrelation function From the definition (8.98), we obtain the
symmetry property

R(r1, r2) = R∗(r2, r1) . (8.104)

In particular, for r1 = r2 = r, (8.104) shows that R(r, r) or Var{f(r)} is real.
It follows from the Schwarz inequality that

|R(r1, r2)|2 ≤ R(r1, r1)R(r2, r2) . (8.105)

It can also be shown (Mandel and Wolf, 1995) that R(r1, r2) is positive-
semidefinite, meaning that [cf. (8.22)]

∫

∞
dqr1 w

∗(r1)

∫

∞
dqr2 R(r1, r2)w(r2) ≥ 0 , (8.106)

for all functions w(r). We shall exploit this property in Sec. 8.2.7 when we discuss
the Karhunen-Loève expansion of random processes.

Another way to think about R(r1, r2) is that it is the kernel of an integral
operator R. With this view, the inner integral of (8.106) is recognized as the
function [Rw](r1), and the double integral is the scalar w†Rw. An autocovariance
operator K can be defined similarly, with the autocovariance function as the kernel.

Temporal stationarity Temporal random processes often have a statistical character
that is independent of time, even though any individual realization is a randomly
fluctuating function of time. An example is a steady beam of white light, where
the electric field fluctuates rapidly, yet there is no preferred origin in time as far
as the statistics are concerned. Such processes are said to be stationary. Glauber
(1965) has phrased it this way: “The term ‘stationary’ does not mean that nothing
is happening. On the contrary, the field is ordinarily oscillating quite rapidly. It
means that our knowledge of the field does not change in time.”

A temporal random process f(t) is said to be stationary in the strict sense if,
for any K, its K-point PDF pr[f(t1), · · ·, f(tK)] is such that

pr[f(t1), · · ·, f(tK)] = pr[f(t1 + τ ), · · ·, f(tK + τ)] (8.107)

for any τ . In particular, this requires that the single-point density function be
independent of time,

pr[f(t)] = pr[f(t+ τ )] , (8.108)
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and therefore the mean of the random process is also independent of time,

〈f(t)〉 = 〈f(t+ τ )〉 . (8.109)

Similarly, the two-point density function must be independent of time,

pr[f(t1), f(t2)] = pr[f(t1 + τ ), f(t2 + τ )] , (8.110)

and so the autocorrelation function R(t1, t2), is also independent of time,

R(t1, t2) = 〈f(t1) f∗(t2)〉 = 〈f(t1 + τ ) f∗(t2 + τ )〉 . (8.111)

The only way (8.111) can be satisfied for all t1 and t2 is if R(t1, t2) is really a
function of only t1 − t2. We shall denote this function by R(t1 − t2), but the reader
is cautioned that R(t1 − t2) is not the same function as R(t1, t2); it could not be
since the latter has two arguments and the former has only one. With this notation,
we have (for a stationary random process),

R(t1, t2) = R(t1 − t2) = R(∆t) , (8.112)

where ∆t ≡ t1 − t2. The shift ∆t is frequently called the lag of the autocorrelation
function.

Continuing on in this way, we see that strict stationarity requires that all K-
point moments of the process be independent of absolute time. A process is said to
be stationary to order M if (8.107) is true only for K ≤ M.

A process is said to be weakly stationary, or stationary in the wide sense, if its
expected value does not depend on absolute time t and its autocorrelation depends
only on ∆t:

〈f(t)〉 = const , 〈f(t+∆t) f∗(t)〉 = R(∆t) . (8.113)

If a process is stationary to second order, then it is wide-sense stationary; how-
ever, a wide-sense stationary process is not necessarily stationary to second order
because the former involves only the first two moments while the latter involves
the entire PDF. One case where we can make a more definitive statement is with
normal or Gaussian random processes, to be discussed in Sec. 8.3.5. If a process is
normal and stationary in the wide sense, then it is also stationary in the strict sense
since the statistical description of a normal process is completely specified once its
mean and autocorrelation are specified.

Stationarity is closely connected to the concept of a finite-power random pro-
cess, introduced in Sec. 8.2.1, but the distinctions should not be overlooked. The
finite-power designation applies to individual sample functions of the random pro-
cess, while stationarity applies to averages. A stationary random process might
not have finite power, since it is conceivable (though pathological) that an individ-
ual realization could diverge but the average not. Of more practical importance,
a process can have finite power yet not be stationary; examples of this situation
are discussed below. On the other hand, a nontrivial stationary temporal random
process certainly cannot have finite energy.

Properties of the stationary autocorrelation function The general properties of auto-
correlations given above specialize in the stationary case as follows: The symmetry
property of (8.104) becomes

R(∆t) = R∗(−∆t) . (8.114)
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In particular, for ∆t = 0, (8.114) shows that R(0) is real.
The Schwarz inequality shows that

|R(∆t)| ≤ R(0) . (8.115)

The condition that R(∆t) is positive-semidefinite now means that

∫ ∞

−∞
dt

∫ ∞

−∞
dt′ w∗(t)R(t− t′)w(t′) ≥ 0 , (8.116)

for all functions w(t).

Spatial stationarity The spatial counterpart of the wide-sense stationarity condition
(8.112) is

R(r1, r2) = R(r1 − r2) = R(∆r) , (8.117)

where ∆r ≡ r1 − r2.
This condition cannot be exactly satisfied4 by spatial processes representing

real objects or images since they have finite support, but it might be a useful
mathematical description within a certain boundary. That is, we might be able
to assume that R(r1, r2) = R(∆r) provided r1 and r2 lie inside the borders of an
image. An example would be a piece of x-ray film with a uniform exposure, where
the only deviation from stationarity comes from the finite size of the film.

If f(r) vanishes outside the boundary, this kind of stationarity is expressed
mathematically by

R(r1, r2) = R(∆r)W (r1)W (r2) , (8.118)

where W (r) is a window function that is unity for r inside the boundary, zero
outside.

Quasistationarity In optics and imaging we often encounter spatial random pro-
cesses whose autocorrelation function can be approximated as a product of two
factors—a slowly varying contribution due to slow variations in overall intensity
and a short-range function describing correlation between neighboring points. As
a simple example, consider a ground glass illuminated nonuniformly with a laser
beam. If the statistical character of the ground glass is the same at all points, then
we can describe the complex amplitude (see Chap. 9) of the wave emerging from
the ground glass by a spatial autocorrelation function of the form,

R(r1, r2) = a(∆r) b(r0) , (8.119)

where
r0 = 1

2 (r1 + r2) , ∆r = r1 − r2 . (8.120)

We shall refer to r0 as the center coordinate (analogous to center of mass) and ∆r

as the relative coordinate or difference coordinate. Since the transformation from
(r1, r2) to (r0,∆r) is unique and invertible (with Jacobian = unity), we always have
a choice of which coordinate system to use for any function of two variables, but we

4The stationarity condition cannot be exactly satisfied by real temporal processes either. The
difference is that we usually do not observe the beginning and end of a temporal process; we
almost always observe the boundaries of an object or image.
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won’t always find that the function can be factored as in (8.119). The factorization
is particularly useful if b(r0) is slowly varying, in which case the random process is
said to be quasistationary. If b(r0) is a constant and the mean is also constant,
the process is wide-sense stationary.

The short-range contribution, a(∆r), is usually normalized to be unity at zero
shift or lag (∆r = 0).

Time averages and ergodicity We have seen that statistical descriptors of a random
process, like the mean and autocorrelation function, are determined by averaging
over the ensemble of realizations. Knowledge of the ensemble is equivalent to knowl-
edge of the full PDF that describes the random process. However, suppose we are
presented with data derived from a single realization of a temporal random process.
It is natural to ask how this single data realization might be related to the statisti-
cal descriptors of the random process from which it was drawn. The answer to this
question rests in the theory of ergodicity, a subject that traces its origins to classi-
cal statistical mechanics and the works of such luminaries as Maxwell, Boltzmann,
Clausius and Gibbs (Ter Haar, 1955).

A random process is said to be ergodic if each realization of the process carries
the same statistical information as every other realization. The practical ramifica-
tion of this feature is that when a process is ergodic it becomes possible to derive
statistical information about the entire ensemble based on knowledge of a single
realization.

In order for a random process to be ergodic, it must first be stationary. The
degree of stationarity of the process influences the degree to which the process is
ergodic. For example, only wide-sense stationarity is necessary (though not suffi-
cient) for a process to be ergodic in its mean and autocorrelation.

We now present criteria for a random process to be ergodic with respect to
its mean and autocorrelation. A more complete development can be found in Pa-
poulis (1965). Let f(t, ζ0) denote a particular realization of a random process. Its
finite-time average is then given by

〈f(t, ζ0)〉T =
1

T

∫ 1
2T

− 1
2T

dt f(t, ζ0) , (8.121)

where 〈 〉T denotes a finite-time average over period T. In general this finite-time
average is itself a random variable that depends on the particular realization under
consideration as well as the interval T.

The time average of the sample function f(t, ζ0) is found by taking the limit
of (8.121) as T → ∞:

〈f(t, ζ0)〉∞ = lim
T→∞

1

T

∫ 1
2T

− 1
2T

dt f(t, ζ0) . (8.122)

The result in (8.122) is independent of time but depends in general on the realization
ζ0. Thus the notational distinction that this average refers to realization ζ0 must
be maintained.

A process is said to be ergodic in the mean if the time average of a single
realization equals the ensemble average 〈f(t)〉. We already know that a stationary
process has a mean that is independent of time. It can be shown (Papoulis, 1965)



388 STOCHASTIC DESCRIPTIONS OF OBJECTS AND IMAGES

that 〈f(t, ζ0)〉T approaches this same constant as T → ∞ if and only if

lim
T→∞

1

T

∫ 1
2T

− 1
2T

d∆t R(∆t) = 〈f(t)〉2 , (8.123)

where R(∆t) is the ensemble autocorrelation function of the stationary random
process [cf. (8.112)]. In words, (8.123) states that ergodicity in the mean requires
the time average of the autocorrelation function of f(t) to be equal to the square
of the ensemble mean. When this is true, the variance of the random variable that
is the outcome of (8.121) approaches zero as the period T goes to infinity.

As Khinchin (1949) and others have noted, ergodicity in the mean is equivalent
to the law of large numbers. In his discussion of ergodicity in statistical mechanics,
Khinchin defines an ergodic process as: “On average, a system, whose evolution
in time is governed by the equations of motion, remains in different parts of a
given manifold of constant energy for fractions of the total time interval which are
proportional to the volumes of these parts. Therefore, if we observe any physical
quantity associated with a given system over a definite time interval, the arithmetic
average of the results of a sufficiently large number of measurements will, as a rule,
be close to the (theoretical) statistical average.” He goes on to say that it is “hard to
prove ergodicity in classical systems and impossible in principle to do so in quantum
mechanics.”

Multiple-point expectations of one realization of a temporal random process
(see Sec. 8.2.2) can also be considered. For example, the finite-time autocorrelation
function of one realization with itself is given by

RT (∆t, ζ0) =
1

T

∫ 1
2T

− 1
2T

dt f(t+∆t, ζ0) f
∗(t, ζ0) . (8.124)

A random process is said to be ergodic in autocorrelation if RT (∆t, ζ0) ap-
proaches the ensemble quantity R(∆t) as T → ∞. We can see that the ensemble
average of the sample quantity RT (∆t, ζ0) is equal to the ensemble autocorrelation
function:

E{RT (∆t, ζ0)} =
1

T

∫ 1
2T

− 1
2T

dt E{f(t+∆t, ζ0) f
∗(t, ζ0)} = R(∆t) , (8.125)

where the last step follows since R(∆t) is independent of the integration time T. It
is more difficult to demonstrate that the temporal average of RT (∆t, ζ0) approaches
R(∆t) in the limit as T becomes infinite. While a test for ergodicity of the mean
requires knowledge of the ensemble mean and autocorrelation function, Papoulis
demonstrates that knowledge of fourth-order moments is required to test for ergo-
dicity of the autocorrelation function.

In general, demonstration of higher levels of ergodicity requires increasing
knowledge of the density function that describes the random process. One ex-
ception, however, is the special case of the Gaussian random process. We shall see
in Sec. 8.3.5 that in that case a straightforward criterion for complete ergodicity
can be stated.

Ergodicity comes into play in optics when we consider the output of a detector
sensing a rapidly fluctuating optical field. The period of integration in the finite-
time average (8.121) is directly analogous to the detector response time. If the field
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fluctuates rapidly enough that fluctuations in the random process are not evident in
the detector output, the random process can be said to be ergodic, and the detector
can be assumed to sense an ensemble average.

We have deliberately discussed ergodicity in terms of temporal rather than
spatial random processes. Remember that the first condition for ergodicity is that
the random process be stationary, but as we stated earlier in this section, the phys-
ical boundaries of objects and images make spatial stationarity rarely a plausible
assumption. Nevertheless, ergodicity is often assumed in the image-processing com-
munity to determine, for example, noise statistics at a single location in an image
(an ensemble quantity) based on the characteristics of the fluctuations in a spatial
region of that single image.

8.2.5 Spectral analysis

The Fourier transform is an important tool in the analysis of signals in general,
and random signals are no exception. The Fourier transform of one sample func-
tion of a random process is defined just as for any other function, and all of the
properties given in Chap. 3 are applicable. In some cases, particularly finite-power
random processes, it may be necessary to consider the sample function as a gener-
alized function and compute its Fourier transform by use of the theory of tempered
distributions, but this presents no essential difficulty. With the background on gen-
eralized functions presented in Chaps. 2 and 3, we should have no qualms about
issues of existence of the transform.

On the other hand, the Fourier transform of a random process is another ran-
dom process, and we are usually more interested in averages than in properties of
individual samples. In particular, with finite-power processes, we often want to
know how the average power is distributed as a function of frequency. The branch
of stochastic theory that addresses this question is called spectral analysis, and a
frequency-domain description of the average power is known as a spectrum, power
spectrum or power spectral density.

We shall give a brief overview of the historical development of spectral analysis
and then give two equivalent definitions of power spectral density. Initially the dis-
cussion will consider stationary processes in the time domain, but then we make the
transition to the space domain as we see how the theory can be applied to processes
that are not exactly stationary.

A brief history of spectra The early history of spectral analysis was motivated by
a desire to understand white light (Gouy, 1886; Rayleigh, 1903; Schuster, 1894,
1904, 1906). Gouy’s work was based on the Fourier series, while Lord Rayleigh
used the newly developed Plancherel (L2) interpretation of the Fourier transform.
Wiener (1930) marvels (though not without a touch of irony) at these forays: “In
both cases one is astonished by the skill with which the authors use clumsy and
unsuitable tools to obtain the right results, and one is led to admire the unfailing
heuristic insight of the true physicist.”

Wiener’s own pioneering treatise, Generalized Harmonic Analysis
(Wiener, 1930), was built on the work of Sir Arthur Schuster. Schuster used a
windowed or truncated function defined by

fT (t) = f(t) rect(t/T ) , (8.126)
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with a Fourier transform defined by

FT (ν) =

∫ 1
2T

− 1
2T

dt f(t) exp(−2πiνt) . (8.127)

Schuster proposed specifying the spectrum of f(t) by the periodogram, defined
by

Sp(ν) = lim
T→∞

1

T
|FT (ν)|2 . (8.128)

By (3.135), |FT (ν)|2 is the Fourier transform of the deterministic autocorrelation
integral (not to be confused with the statistical autocorrelation function) of fT (t).
Thus (8.128) is equivalent to

Sp(ν) = lim
T→∞

1

T
F {[fT - f∗

T ] (x)} , (8.129)

where F is the Fourier operator and, by (3.115),

[fT - f
∗
T ] (t) =

∫ ∞

−∞
dt′ fT (t+ t′) f∗

T (t
′) . (8.130)

Wiener’s approach was slightly different. He defined

RW,T (t) =
1

T

∫ 1
2T

− 1
2T

dt′ f(t+ t′) f∗(t′) , (8.131)

which differs from (8.130) mainly in the fact that the truncation is on the limits
rather than on both functions separately; there is also a factor of 1/T built into the
definition.

The only requirement placed on the function f(t) is that RW,T (t) < ∞ for all
t, but this turns out to be a very useful mathematical condition (Champeney, 1987).
The special case t = 0 shows that these functions must be finite-power functions as
defined in (8.70). For such functions, Wiener defined a spectrum by

SW (ν) = lim
T→∞

F{RW,T (t)} . (8.132)

Note that neither Sp nor SW involves any statistical average; both Wiener and
Schuster took a functional or deterministic viewpoint and did not invoke ensembles
of any kind. Thus their spectra apply to a single realization of the random process,
albeit one of infinite length. For any function for which SW is finite, SW and Sp

are identical (Champeney, 1987).

Convergence issues In practice, one might think that a reasonable approximation
of Sp or SW could be obtained by using a single periodogram of finite length and
just omitting the limit T → ∞ in (8.128) or (8.132). It might also be expected that
this approximation would get better as T gets larger. In fact, however, the Fourier
transform of a single sample function of a random process is a very poor spectral
measure.
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Fig. 8.1 Three sample functions of a random process (top) and their peri-
odograms (bottom). The random process was created by calling a uniform
random-number generator independently at each of 1024 sample points, then
performing a discrete convolution with a Gaussian to produce a random pro-
cess with a Gaussian power spectrum. The sample functions were windowed as
shown, and the periodograms were computed by discrete Fourier transforms.

This point is illustrated in Fig. 8.1, which shows three sample functions of
different length of a stationary random process, along with the corresponding finite-
length periodograms. Note that the periodograms do not smoothly approach a limit
as T → ∞ but instead oscillate ever more rapidly.

One way to deal with the rapid oscillation is to average the periodogram by
convolution with some smooth function. In fact, this average can be built in by
windowing the samples with the Fourier transform of the smoothing function. This
approach smooths out any fine details that might be present in the spectrum but
provides better convergence as T gets large. Some additional approaches to this
problem will be discussed briefly in Sec. 8.4.4.

Power spectra as statistical averages Another way to fix the convergence problems
associated with Sp and SW is to use not one but many independent realizations
of the random process and to average the resulting periodograms. In the limit of
an infinite number of realizations, this approach, pioneered by Khinchin, amounts
to incorporating a statistical average in the definition of the spectrum. Khinchin’s
definition was

Sac(ν) = F{R(∆t)} =

∫ ∞

−∞
d∆t 〈f(t+∆t) f∗(t)〉 exp(−2πiν∆t) , (8.133)

where the subscript ac indicates that this version of the spectrum is derived from
the autocorrelation function R(∆t) of a stationary random process. The spectrum
defined this way is well behaved mathematically and universally used. Equation
(8.133) is often referred to as the Wiener-Khinchin theorem, though it is really a
definition rather than a theorem.

Expected periodogram Another way to incorporate an ensemble average into the
definition of the spectrum is to take the expectation of the periodogram,

Sep(ν) = lim
T→∞

1

T

〈
|FT (ν)|2

〉
. (8.134)
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Unlike Sac(ν), Sep(ν) is defined for nonstationary as well as stationary random
processes, though they have to be finite-power processes for Sep to be nonzero. For
stationary processes, however, Sep(ν) is equivalent to Sac(ν), as we shall now show.

From the definition of FT (ν), we can write

Sep(ν) = lim
T→∞

1

T

∫ ∞

−∞
dt

∫ ∞

−∞
dt′ 〈f(t) f∗(t′)〉 rect

(
t

T

)
rect

(
t′

T

)
exp[2πi(t′ − t)ν] .

(8.135)
Now we make the change of variables (t, t′) → (t,∆t), where ∆t = t− t′. With the
assumption that 〈f(t) f∗(t′)〉 = R(∆t) and a little algebra, we find

Sep(ν) = lim
T→∞

∫ ∞

−∞
d∆t R(∆t) tri

(
∆t

T

)
exp(−2πiν∆t) , (8.136)

where the function tri(·) is defined in (3.139).
We can now use the convolution theorem (3.132) along with (3.142) to write

Sep(ν) = lim
T→∞

Sac(ν) ∗ T sinc2(Tν) . (8.137)

But we know from (2.87) that T sinc2(Tν) is a valid limiting representation of δ(ν).
From Sec. 3.3.6 we also know that convolution of Sac(ν) with δ(ν) reproduces Sac(ν)
if that function is either a good function (defined in Sec. 2.1.2) or a generalized
function of compact support (defined in Sec. 3.3.6). The support can be chosen
arbitrarily large, or we can argue as in Sec. 2.3.1 that any generalized function can
be approximated arbitrarily closely by a good function.

Thus, with essentially no restrictions beyond stationarity, we have

Sep(ν) = Sac(ν) . (8.138)

Because of this equivalence, we shall delete the subscripts henceforth and denote
the power spectral density simply by S(ν). Either definition, (8.133) or (8.134), will
be used as convenient.

Spatial power spectra Stationary spatial random processes were discussed in Sec.
8.2.4. If this model is used, the spatial version of the Wiener-Khinchin theorem,
(8.133), is

S(ρ) =

∫

∞
dq∆r R(∆r) exp(−2πiρ ·∆r) . (8.139)

Stochastic Wigner distribution function A general way of applying Fourier analy-
sis to nonstationary random processes is to make use of the Wigner distribution
function, defined in Sec. 5.2.1. For a spatial random process f(r), we define the
stochastic Wigner function by [cf. (5.54)]

Wf (r0,ρ) =

∫

∞
dq∆r

〈
f(r0 +

1
2∆r) f∗(r0 − 1

2∆r)
〉
exp(−2πiρ ·∆r) . (8.140)

This expression should be compared to the Wiener-Khinchin theorem for a station-
ary random process, (8.139), which can be written in symmetrized form as
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S(ρ) =

∫

∞
dq∆r 〈f(r+∆r) f∗(r)〉 exp(−2πiρ ·∆r)

=

∫

∞
dq∆r

〈
f(r0 +

1
2∆r) f∗(r0 − 1

2∆r)
〉
exp(−2πiρ ·∆r) , (8.141)

where the second equality follows since the autocorrelation function is independent
of shifts of the coordinate system for a stationary process. Thus, if the process is
stationary, the stochastic Wigner function is independent of r0 and is precisely the
power spectral density.

For nonstationary processes, however, Wf (r0,ρ) is a function of r0 as well as
ρ; it can be interpreted as the spectral content associated with point r0. This
interpretation is reinforced by examining the quasistationary case. From (8.119)
and (8.140) we can write

Wf (r0,ρ) = b(r0)

∫

∞
dq∆r a(∆r) exp(−2πiρ ·∆r) = b(r0)A(ρ) . (8.142)

Here the Wigner distribution function is just the Fourier transform of the short-
range part of the autocorrelation function, modulated by the shift-variant strength
of the slowly varying component at r0.

8.2.6 Linear filtering of random processes

We now derive the autocorrelation function of the output process that results from
linear filtering of a given random process. We shall consider stationary and nonsta-
tionary random processes and shift-invariant and shift-variant filters.

Nonstationary process, shift-variant filter We first consider the case where a random
process g(r) is generated as the output of the transformation of an input random
process f(r) by a linear shift-variant filter whose impulse response is denoted h(r, r′).
The output of the filter at positions r and r+∆r can be written, respectively, as

g(r) =

∫

∞
dqr′ h(r, r′) f(r′) , (8.143)

g(r+∆r) =

∫

∞
dqr′ h(r+∆r, r′) f(r′) . (8.144)

By direct substitution of these expressions into the definition, (8.97), we obtain for
the autocorrelation of the output process at positions r and r+∆r:

Rg(r+∆r, r) = 〈g(r+∆r) g∗(r)〉

=

〈∫

∞
dqr′ h(r+∆r, r′) f(r′)

∫

∞
dqr′′ h∗(r, r′′) f∗(r′′)

〉

=

∫

∞
dqr′

∫

∞
dqr′′ h(r+∆r, r′)Rf (r

′, r′′)h∗(r, r′′) . (8.145)
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The corresponding expression for the autocovariance is

Kg(r+∆r, r) = Rg(r+∆r, r)− 〈g(r+∆r)〉 〈g∗(r)〉

=

∫

∞
dqr′

∫

∞
dqr′′ h(r+∆r, r′)Kf (r

′, r′′)h∗(r, r′′) . (8.146)

This is the most general form for the autocovariance after linear filtering. It is the
continuous analog of the discrete result given in (8.50), as one can see by rewriting
it in operator form:

Kg = HKf H
† , (8.147)

where Kf is the autocovariance operator, i.e., the integral operator with kernel
Kf (r, r′), and similarly for Kg, while H describes the filter. There are no restric-
tions on H in this equation, except that it must be a linear operator. It even applies
to linear CD operators, though in that case the left-hand side is a covariance matrix
rather than an autocovariance operator.

Nonstationary process, shift-invariant filter We consider next the case where the
random process g(r) is generated as the output of the transformation of a general
input random process f(r) by a linear shift-invariant filter with impulse response
h(r). The processes g(r) and f(r) are now related by convolution:

g(r) =

∫

∞
dqr′ h(r− r′) f(r′) = h(r) ∗ f(r) , (8.148)

where the notation of Sec. 3.3.6 has been used.
We can obtain the autocorrelation of the output process g(r) from that of the

input process f(r) by substituting (8.148) into (8.145):

Rg(r+∆r, r) = 〈g(r+∆r) g∗(r)〉

=

〈∫

∞
dqr′ h(r+∆r− r′) f(r′)

∫

∞
dqr′′ h∗(r− r′′) f∗(r′′)

〉
. (8.149)

Alternatively, we have

Rg(r+∆r, r) =

〈∫

∞
dqr′ h(r′) f(r+∆r− r′)

∫

∞
dqr′′ h∗(r′′) f∗(r− r′′)

〉

=

∫

∞
dqr′ h(r′)

∫

∞
dqr′′ h∗(r′′)Rf (r+∆r− r′, r− r′′) . (8.150)

We can use convolution shorthand to write this equation as

Rg(r+∆r, r) = h(r+∆r) ∗Rf (r+∆r, r) ∗ h∗(r) , (8.151)

where the notation indicates that the first convolution is evaluated at the position
r+∆r and the second is evaluated at the position r.
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Stationary random process, shift-invariant filter For the special case of a stationary
input process, the input correlation function in (8.150) can be written solely in
terms of the difference vector as

Rf (r+∆r− r′, r− r′′) = 〈f(r+∆r− r′) f∗(r− r′′)〉 = Rf (∆r− r′ + r′′) . (8.152)

Then (8.150) can be written

Rg(∆r) =

∫

∞
dqr′ h(r′)

∫

∞
dqr′′ h∗(r′′)Rf (∆r− r′ + r′′) . (8.153)

This equation is often written in a shorthand notation as (Papoulis, 1965)

Rg(∆r) = 〈g(r+∆r) g∗(r)〉 = h(∆r) ∗Rf (∆r) ∗ h∗(−∆r) . (8.154)

This notation refers to the fact that the first operation is an ordinary convolution,
but the second is actually a correlation. In this shorthand a correlation is written
using the convolution notation with a change of sign of the argument. Alternatively,
one can use - to represent the correlation integral:

Rg(∆r) = 〈g(r+∆r) g∗(r)〉 = [h ∗Rf - h
∗] (∆r) . (8.155)

Fourier transformation of (8.155) yields the important formula

Sg(ρ) = Sf (ρ) |H(ρ)|2 , (8.156)

where H(ρ) = Fq{h(r)}. Thus, when a stationary random process is filtered by
a linear shift-invariant filter, the power spectral density on the output of the filter
is the power spectral density on the input times the squared modulus of the filter
transfer function. This result should be compared to the familiar result for shift-
invariant filtering of a deterministic signal. From (3.132) we know that

G(ρ) = H(ρ)F (ρ) . (8.157)

In the context of stationary random processes, (8.157) applies to individual sample
functions while (8.156) applies to the power spectral densities.

Filtering of delta-correlated processes We are often concerned with random processes
where the correlation has such short range that R∆f (r, r′) can be approximated by
b(r) δ(r − r′). A prime example, the Poisson random process, will be discussed in
detail in Chap. 11. Another example is white noise, a stationary process that has
a flat power spectrum and hence a delta-function correlation. We now investigate
the effect of linear filtering on delta-correlated processes.

With delta correlation, the general space-variant filter equation, (8.144), leads
to

R∆g(r+∆r, r) =

∫

∞
dqr′ h(r+∆r, r′)

∫

∞
dqr′′ b(r′) δ(r′ − r′′)h∗(r, r′′)

∫

∞
dqr′ h(r+∆r, r′) b(r′)h∗(r, r′) . (8.158)
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For shift-invariant filters, where h(r, r′) = h(r− r′), this equation reduces to

R∆g(r+∆r, r) =

∫

∞
dqr′ h(r+∆r− r′) b(r′)h∗(r− r′)

= b(r) ∗ [h(r+∆r)h∗(r)] . (8.159)

The shorthand here requires a brief comment. For purposes of the convolution, the
function [h(r + ∆r) h∗(r)] is to be regarded as a function of r for fixed ∆r. As
shown by the integral in (8.158), this product function is then convolved with b(r),
and the convolution is repeated for different ∆r to get the full dependence of the
nonstationary autocorrelation R∆g(r+∆r, r).

Even though f(r) is uncorrelated for any finite lag, the filtering results in a
correlation on g(r). Suppose h(r) has a width w in each dimension, i.e., h(r) drops
to zero if the magnitude of any component of r exceeds 1

2w. Then [h(r+∆r)h∗(r)]
drops to zero for all r if the magnitude of any component of ∆r exceeds w. The
correlation in g(r) thus has a width in ∆r determined by the width of the point
spread function.

If b(r) is the constant b0, so that R∆f (r−r′) = b0 δ(r−r′), then we are dealing
with stationary white noise and a frequency-domain description is appropriate. The
power spectral density of ∆f(r) is just the constant b0, and by (8.156) that of ∆g(r)
is given by

S∆g(ρ) = b0|H(ρ)|2 . (8.160)

The corresponding autocorrelation function is obtained by inverse Fourier
transformation:

R∆g(∆r) = b0[h - h
∗](∆r) . (8.161)

Thus the statistical autocorrelation function for filtered white noise is proportional
to the deterministic autocorrelation integral of the impulse response.

8.2.7 Eigenanalysis of the autocorrelation operator

In Sec. 8.1.6, we discussed the eigenvectors and eigenvalues of a covariance matrix.
In particular, we showed how a random vector could be expanded in a series with
uncorrelated coefficients by using eigenvectors of the covariance matrix as basis
vectors. This expansion was called the Karhunen-Loève or KL expansion.

In this section we carry out a similar analysis for a random process, substituting
the continuous autocovariance or autocorrelation function for the discrete covariance
matrix. One result will be a continuous version of the KL expansion—a linear
transformation that will render a correlated process uncorrelated for any finite shift.

To maintain parallelism with Sec. 8.1.6, we restrict attention initially to finite-
energy random processes (thus ruling out stationarity), but later we extend the
analysis to finite-power processes and in particular to wide-sense stationary ones.
In that case we shall find that KL expansion is just Fourier analysis.

Autocorrelation operator It is arbitrary whether we develop KL analysis based on
the autocorrelation or autocovariance function; from (8.98) we can easily convert
between them. We choose the autocorrelation since we shall eventually make con-
tact with the Wiener-Khinchin theorem (8.133) or (8.139), which defines the power
spectral density as the Fourier transform of the autocorrelation function.
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For a general, nonstationary, spatial random process f(r), where r is a qD po-
sition vector, the autocorrelation function R(r, r′) is defined by (8.97). For now we
restrict attention to square-integrable random processes, so we can regard R(r, r′)
as the kernel of an integral operator R that maps L2(Rq) to itself. Operating on
an arbitrary square-integrable function t(r), the operator R has the form

[Rt ] (r) =

∫

∞
dqr′ R(r, r′) t(r′) . (8.162)

Inspection of (8.97) shows that [R(r, r′)]∗ = R(r′, r), so R is Hermitian (see Sec.
1.3.5).

Moreover, as we shall now show, R is compact. By the discussion in Sec. 1.3.3,
an integral operator is compact if its kernel satisfies the Hilbert-Schmidt condition
(1.33), which in the present multidimensional case generalizes to

∫

∞
dqr

∫

∞
dqr′ |R(r, r′)|2 < ∞ . (8.163)

Denoting this integral by IHS and inserting (8.97), we can rewrite this condition as

IHS =

∫

∞
dqr

∫

∞
dqr′ | 〈f(r) f∗(r′)〉 |2 < ∞ . (8.164)

Now, for any random variable x we know from App. C that | 〈x〉 |2 ≤
〈
|x|2
〉
. With

x = f(r′) f∗(r′), this implies that

IHS ≤
∫

∞
dqr

∫

∞
dqr′

〈
| [f(r) f∗(r′)] |2

〉
. (8.165)

As discussed in Sec. 8.2.2, we can interchange expectation and integration, yielding

IHS ≤
〈∫

∞
dqr |f(r)|2

∫

∞
dqr′ |f(r′)|2

〉
. (8.166)

Every sample function f(r) is assumed to be square-integrable, so each integral in
(8.166) is finite. The output of the expectation operation is therefore finite and
IHS ≤ ∞. Thus we have shown that R satisfies the Hilbert-Schmidt condition and
is therefore compact.

As discussed in Sec. 1.4.4, a compact Hermitian operator has a denumerable
set of eigenfunctions and real eigenvalues. Thus R satisfies an eigenvalue equation
of the form

Rφn(r) = µnφn(r) . (8.167)

We noted in (8.106) that R is nonnegative-definite, so µn ≥ 0. It is convenient to
order the eigenvalues by decreasing value:

µ1 ≥ µ2 ≥ µ3 ≥ · · · ≥ 0 . (8.168)

Except in very special cases, none of these eigenvalues will be zero, so R has infinite
rank.



398 STOCHASTIC DESCRIPTIONS OF OBJECTS AND IMAGES

Karhunen-Loève expansions Since the eigenfunctions of a Hermitian operator can
be chosen to form an orthonormal basis, any function f(r) in the domain of R, i.e.,
L2(Rq), can be expanded in the form

f(r) =
∞∑

n=1

αnφn(r) , (8.169)

where the coefficients are given by scalar products of the form

αn = (φn(r), f(r)) . (8.170)

If f(r) is a sample function of a random process, then the coefficients αn are
random variables. If f(r) is drawn from the ensemble described by R, then these
coefficients are uncorrelated, as we shall now demonstrate. The cross-correlation of
two coefficients, αn and αm, is given by

〈αnα
∗
m〉 = 〈(φn(r), f(r)) (φm(r′), f(r′))∗〉 . (8.171)

Writing out the scalar products as integrals and again interchanging integration and
expectation, we find

〈αnα
∗
m〉 =

∫

∞
dqr

∫

∞
dqr′ φ∗n(r)φm(r′) 〈f(r) f∗(r′)〉 . (8.172)

By (8.97) and (8.167), we have

〈αnα
∗
m〉 = µm

∫

∞
dqr φ∗

n(r)φm(r) , (8.173)

and the orthonormality of the eigenfunctions yields, finally,

〈αnα
∗
m〉 = µn δnm . (8.174)

Thus the expansion in (8.169) generalizes the Karhunen-Loève expansion of random
vectors, as discussed in Sec. 8.1.6, to random processes.

Stationary random processes The derivation above of the KL expansion is not di-
rectly applicable to stationary random processes since their sample functions are
not square-integrable. Hence the autocorrelation operator is not compact and its
eigenvalues are not denumerable.

Since the discrete index n on φn(r) and µn is no longer appropriate, we shall
leave off any index until we discover what to use. The eigenvalue equation for a
stationary random process is then

∫

∞
dqr′ R(r− r′)φ(r′) = µφ(r) . (8.175)

A simple change of variables yields
∫

∞
dqr′ R(r′)φ(r− r′) = µφ(r) . (8.176)
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Direct substitution shows that the solution of this equation is

φ(r) = exp(2πiρ · r) , (8.177)

µ =

∫

∞
dqr′ R(r′) exp(−2πiρ · r′) = Fq

{
R(r)

}
= S(ρ) , (8.178)

where S(ρ) is the power spectral density as defined in (8.139). Thus, for a stationary
random process, the eigenfunctions of the autocorrelation operator are Fourier basis
functions (or plane waves), and the eigenvalues are given by the power spectral
density. The problem is mathematically equivalent to singular-value decomposition
of a linear, shift-invariant system as discussed in Sec. 7.2.5

The eigenfunctions and eigenvalues are distinguished by a continuous vector
index ρ (the spatial frequency), rather than by a discrete index n. Thus we denote
the eigenfunction in (8.177) as φρ(r) and the eigenvalue as µρ. With this notation,
the KL expansion (8.169) becomes

f(r) =

∫

∞
dqρ F (ρ)φρ(r) =

∫

∞
dqρ F (ρ) exp(2πiρ · r) . (8.179)

By analogy with (8.170), the expansion coefficients F (ρ) are given by

F (ρ) =

∫

∞
dqr f(r) exp(−2πiρ · r) . (8.180)

Formally, (8.179) states that the KL expansion is simply the representation of a
sample function of the stationary random process by its inverse Fourier transform,
while (8.180) says that the expansion coefficient is the Fourier transform of the
sample function. In this sense, KL expansion reduces to Fourier analysis in the
stationary case. In a strict mathematical sense, however, this interpretation raises
some problems. If f(r) is a sample function from a stationary random process, it
must have the same mean value at all points in the infinite domain Rq. Hence it
is not square-integrable or absolutely integrable, and the classical Fourier existence
and convergence theorems do not apply.

We can fix these problems in one of two ways. One approach is to presume
that each sample function is truncated by a window function of finite size, and then
let this size go to infinity as in Sec. 8.2.5. A neater approach is simply to regard
f(r) as a generalized function related to a tempered distribution. This requires only
that the sample function be integrable when multiplied by a good function such as
a Gaussian, which is an easy condition to satisfy. From the discussion in Sec. 3.3.4,
we know that F (ρ) is also a generalized function in that case. For example, if f(r)
has a nonzero mean f (which must be independent of r because of the stationarity),
then F (ρ) must contain a term f δ(ρ).

From the viewpoint of generalized functions, we can now discuss the correlation
properties of the expansion coefficients F (ρ). A derivation paralleling the one that
led to (8.173) shows that

〈F (ρ)F ∗(ρ′)〉 = S(ρ) δ(ρ− ρ′) . (8.181)

Just as in (8.173), the KL expansion coefficients are orthogonal for a stationary
random process, but now orthogonality is defined with a Dirac delta rather than
a Kronecker delta. Thus Fourier transformation of a stationary random process
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results in a delta-correlated random process. We shall make use of this result in the
next chapter on Poisson random processes.

Another important conclusion from (8.181) is that the second moment
〈
|F (ρ)|2

〉

is infinite for a stationary random process. Since the mean of the Fourier transform,
〈F (ρ)〉, is the same as the Fourier transform of the mean, F{〈f(r)〉}, we would not
expect | 〈F (ρ)〉 |2 to be infinite (except possibly for ρ = 0), so (8.181) implies that
the variance of the Fourier transform of a stationary random process is also infinite.

8.2.8 Discrete random processes

As we discussed in Chap. 7, digital images are discrete vectors, and it is often useful
to model actual, physical objects as discrete vectors also. When we analyze the
stochastic properties of digital images or discrete object models, then, they become
random vectors. The general treatment of random vectors from Sec. 8.1 is applicable
here, but there is also an additional structure we can exploit. If a random vector
g represents an image and each component of the vector represents a pixel, we are
interested above all in the relationship between the values at different pixels. If we
shuffled the pixels into a different arrangement, they would not represent the same
image.

A similar situation occurs in discussing random temporal signals, where the
temporal ordering of the signal values is key. For example, if a random analog
waveform f(t) is sampled at regular time points for further digital processing, the
sequence of values {f(tn)} constitutes a random vector in which the order of the
elements must be maintained.

We shall use the term discrete random process5 to mean a random vector in
which crucial information is contained in the temporal or spatial arrangement of the
component values. Loosely, a discrete random process is a random vector endowed
with a topology. For temporal processes, the term random sequence is often used,
and some books adopt this term for the spatial case as well.

Discrete stationarity in 1D Suppose the sequence {fn} is obtained by sampling a
stationary temporal random process f(t) at regular intervals t = tn = n∆t. The
sampling could be simple point sampling where fn = f(tn), but a more general
form is

fn =

∫ ∞

−∞
dt f(t) s(tn − t) . (8.182)

The sampling function s(t) is a delta function for point sampling, but in general it
is unrestricted in what follows. Note that (8.182) is in the form of a convolution,
so fn consists of point samples of the random process [f ∗ s](t).

If f(t) is wide-sense stationary, so is [f ∗ s](t). It then follows that the
covariance matrix of the samples {fn} satisfies [cf. (8.112)]

Knn′ = kn−n′ . (8.183)

Note that the left-hand side of this equation has two indices but the right-hand side
has just one; if there are N elements in the sequence {fn}, there are N2 elements

5Note that the elements of the random vector need not be discrete random variables; the term
discrete here refers to the temporal or spatial variable.
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in the matrix K but only N independent ones. Each row of the matrix is a shifted
version of every other row. Matrices with this structure are said to be Toeplitz.

Circulant covariance matrices We encountered Toeplitz matrices in a deterministic
context in Chap. 7. Specifically, we saw in Sec. 7.4.4 that a considerable mathe-
matical simplification resulted if we could approximate the Toeplitz matrix by a
circulant one, where the difference n− n′ in (8.183) is interpreted modulo N, with
N being the total number of samples. For example, if n and n′ run from 0 to 255,
then the pairs (n = 10, n′ = 5) and (n = 2, n′ = 253) have the same value for n−n′

modulo 256 and hence the same correlation if K is a 256 × 256 circulant matrix.
Physically, of course, this makes no sense; elements 5 and 10 of the sequence are
close together and might be expected to be correlated, but elements 2 and 253 are
widely separated, and there is no reason to believe that they should have the same
correlation as elements 5 and 10.

Nevertheless, the circulant approximation to a Toeplitz covariance matrix is
often used, just as is the circulant approximation to a discrete convolution [see Sec.
7.4.4, especially (7.344)]. The error might be tolerable if the kernel (kn−n′ in the
stochastic problem or hm−n in the deterministic problem) is compact and our in-
terest does not extend to the extreme elements in the sequence. Some vigilance is
required to be sure that we do not fall into a trap when we assume that a Toeplitz
matrix is approximately circulant.

The reason we might want to make this approximation was laid out in Sec.
7.4.4: a circulant matrix is diagonalized by a DFT [see (7.352)]. For the deter-
ministic DD problem considered in Sec. 7.4.4, that meant that the DFT basis was
essentially the SVD basis when the system was described by a circulant H matrix.
In the stochastic context of this chapter, the DFT basis is the KL basis when we
can use the circulant form for the covariance.

Discrete spatial stationarity Circulant stationarity is even more suspect than contin-
uous stationarity in imaging applications, but for completeness we state the math-
ematical results explicitly. If we consider an image g to be a qD discrete random
process, then the elements of the image can be denoted by gm, where m is a qD
multi-index as introduced in Sec. 3.4.6. If each component mi of m runs from 0 to
M−1, then circulant stationarity means that [Kg]mm′ depends on mi−m′

i modulo
M for all i. In that case, as discussed in Sec. 7.4.4, the circulant covariance matrix
is diagonalized by a qD DFT, and the basis vectors in this transform comprise the
KL basis.

The cyclic character of the covariance matrix becomes less objectionable as
the array gets larger if the correlation length is constant. In the limit as M → ∞,
the distinction between Toeplitz and circulant vanishes. In that case, the
Toeplitz/circulant matrix is diagonalized by the discrete-space Fourier transform
(DSFT) introduced in Sec. 3.6.4, and the KL basis vectors form a continuous basis
indexed by the spatial-frequency vector ρ. To use this basis, however, we must
now make two unphysical assumptions: an infinite amount of data and discrete
stationarity over an infinite domain.
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8.3 NORMAL RANDOM VECTORS AND PROCESSES

Among the many probability laws for continuous random variables, the normal prob-
ability law is certainly the most commonly encountered. The fundamental reason
for this is that when statistically independent random variables are added together,
their sum asymptotically follows the normal distribution. (We shall provide a more
rigorous treatment of this principle later in this section.) The second reason for
the popularity of the normal law is that, as we shall soon see, its structure leads
to straightforward and well-understood manipulations. The third reason follows
from the first two: a great collection of practically useful statistical tools develop
as elaborations upon the normal probability law.

The normal law is frequently named for C. F. Gauss (1777–1855), whose The-
ory of the Combination of Observations (1823) has earned him this eponymity.
We shall use the terms normal and Gaussian interchangeably.

8.3.1 Probability density functions

For simplicity we consider here only real random variables and vectors, but the
complex case is treated in Sec. 8.3.6. The PDF of a real normal random variable g
is given (see App. C) by

pr(g) =

[
1

2πσ2

] 1
2

exp

[
− (g − g)2

2σ2

]
, (8.184)

where g is the mean of the random variable and σ2 is its variance. To indicate that
a random variable g is drawn from a normal distribution with parameters g and σ2,
we write g ∼ N (g,σ2).

A multivariate normal random vector is a straightforward generalization of the
univariate or scalar case. If each component of an MD random vector g is a normal
random variable, the full probability law on g is a multivariate normal PDF pr(g),
given by

pr(g) =
[
(2π)M det(K)

]−1/2
exp

[
− 1

2 (g− g)t K−1(g− g)
]
, (8.185)

where g is the mean vector and K is the covariance matrix of g as defined in Sec.
8.1.3. As shown in that section, K is an M × M, positive-semidefinite Hermitian
matrix. The diagonal element Kmm of the covariance matrix is the variance of the
mth component of g, and the off-diagonal elements of K are related by Knm = Kmn

for real vectors. We denote an M × 1 random vector drawn from a multivariate
normal distribution with parameters g and K by g ∼ NM (g,K). Its density func-
tion is seen from (8.185) to be the exponential of a quadratic form in the random
vector.

Diagonalization of the covariance matrix of a Gaussian random vector In Sec. 8.1.6
we showed how the KL expansion of a random vector in terms of the eigenvectors
of its covariance matrix results in uncorrelated components. We now revisit the KL
expansion procedure for the particular case of Gaussian random vectors. We shall
show that, for a multivariate normal, the KL transformation yields a vector with
uncorrelated components that are also statistically independent.



NORMAL RANDOM VECTORS AND PROCESSES 403

From (8.64) we know we can express the inverse of the covariance matrix K
as

K−1 = ΦM−1Φ† , (8.186)

where again Φ is the matrix formed from the eigenvectors φm of K, and M is a
diagonal matrix with the mth diagonal element equal to the eigenvalue µm. We can
use (8.186) to rewrite the quadratic form of (8.185) as

(g− g)tK−1(g− g) = (g− g)tΦM−1Φ†(g− g)

=
[
Φ†(g− g)

]†
M−1

[
Φ†(g− g)

]
, (8.187)

where we have used the unitarity of Φ. We define the random vector ∆β by [cf.
(8.60)]

∆β = Φ†(g− g) . (8.188)

Combining (8.187) and (8.188), we obtain

[
Φ†(g− g)

]†
M−1

[
Φ†(g− g)

]
= ∆β†M−1 ∆β =

M∑

m=1

∆β2
m/µm . (8.189)

From (A.73) in App. A, we know that the determinant of K is the product of
its eigenvalues. Using this fact and (8.189), we can rewrite (8.185) as

pr(g) = (2π)−M/2

[
M∏

m=1

µm

]−1/2

exp

(

−1

2

M∑

m=1

∆β2
m

µm

)

=
M∏

m=1

(2πµm)−1/2 exp

(
−1

2

∆β2
m

µm

)
= pr(β) , (8.190)

where the last step is valid since the transformation from g to β is unitary and
hence the Jacobian is unity.

Thus, when the quadratic form is diagonalized, the Gaussian multivariate PDF
can be written as a product of univariate PDFs, which means that the new variables,
∆βm, are statistically independent. While the components of the random vector
g may covary (as represented by the elements of the covariance matrix K), the
components of the random vector ∆β are uncorrelated, with diagonal covariance
matrix M, and statistically independent. The mean of each component ∆βm is 0
and its variance is simply µm. The product form of the PDF in (8.190) also makes
the normalization of the multivariate Gaussian density readily verifiable.
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Fig. 8.2 Contours of constant probability density for a multivariate normal,
before and after diagonalization.

Figure 8.2 depicts contours of constant probability for the multivariate normal
PDF before and after the diagonalization of K. Following the diagonalization oper-
ation the surfaces are found to be ellipsoids whose axes have lengths proportional to
the square root of the corresponding eigenvalues µm. The diagonalization operation
rotates the coordinate axes to coincide with the eigenvectors of K.

When does uncorrelated imply independent? We have just seen that a normal ran-
dom vector with uncorrelated components also has statistically independent com-
ponents. The converse always holds— statistically independent components must
be uncorrelated—but it is only the normal law for which uncorrelated components
are statistically independent.

8.3.2 Characteristic function

The diagonalized form of the PDF given in Sec. 8.3.1 provides an easy way to derive
the characteristic function of a multivariate normal random vector. From (8.188)
and the unitarity of Φ, we can write g as

g = Φ∆β + g . (8.191)

Thus the characteristic function for g is given by

ψg(ξ) =
〈
exp

[
−2πiξt(Φ∆β + g)

]〉
= exp(−2πiξtg)

〈
exp

[
−2πi(Φ†ξ)t∆β

]〉
,

(8.192)
where we removed a constant factor from the expectation and used the definition
of adjoint, (1.39), to get the last form. Using (8.190) for the PDF and writing out
the expectation in detail, we find
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ψg(ξ) =
M∏

m=1

(2πµm)−1/2 exp(−2πiξmgm)

×
∫ ∞

−∞
d∆βm exp

(
−1

2

∆β2
m

µm

)
exp

[
−2πi(Φ†ξ)m∆βm

]
. (8.193)

Now we have a product of 1D integrals, each of which is just the Fourier transform
of a Gaussian; by (3.180) we have

ψg(ξ) =
M∏

m=1

exp(−2πiξmgm) exp
[
−2π2µm(Φ†ξ)2m

]
. (8.194)

From (8.186) we can see that

M∑

m=1

µm(Φ†ξ)2m = ξtKξ , (8.195)

so we have, finally,

ψg(ξ) = exp(−2πiξtg) exp
(
−2π2ξtKξ

)
. (8.196)

For g = 0, we obtain exp(−2π2ξtKξ), which is easy to remember since it is
Gaussian in the Fourier domain with spread inverse to that in the domain of the
random variable (i.e., K occurs in place of K−1). The complete form, (8.196), may
then be recalled by invoking the Fourier shift theorem (3.108).

Moments We can use the characteristic function given in (8.196) to determine the
moments of a multivariate normal random vector. If we apply (8.30) and (8.31) to
(8.196), we obtain 〈g〉 = g and 〈ggt〉 = K + ggt. If g = 0, then 〈ggt〉 = K. By
continuing along this path we find that all odd moments of this distribution are
zero for g = 0, and all even moments are expressible in terms of K.

We shall find that we frequently need fourth moments of the form 〈gigjgkgl〉,
where the gi, etc., are components of a four-dimensional vector g distributed as
N4(0,K). We can obtain the desired result, referred to as the Gaussian moment
theorem, by using the rules for differentiation with respect to a real vector given in
Sec. A.9.2. We find that

〈gigjgkgl〉 =
(

∂4ψg(ξ)

∂ξl∂ξk∂ξj∂ξi

)

ξ=0

= KijKkl +KjkKil +KikKjl . (8.197)

For the case where i = j = k = l, we find
〈
g4i
〉
= 3σ4

i , which is a familiar result for
univariate normals given in (C.112).

8.3.3 Marginal densities and linear transformations

In this section we derive various descriptors of the behavior of subsets and transfor-
mations of the components of a multivariate Gaussian random vector. We start by
analyzing the behavior of a single component, regardless of the behavior of the other
components, as described by the marginal PDF. We then discuss the behavior of a
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random vector obtained from linear transformation of a Gaussian random vector.
According to (8.5), the marginal PDF on component gi of an MD vector g is

obtained by integrating the multivariate PDF over all gm except for m = i. From
the central-ordinate theorem of Fourier analysis, (3.104), we know that integrat-
ing a function over (−∞,∞) is equivalent to setting the frequency to zero in its
Fourier transform. Thus the univariate characteristic function for gi is related to
the multivariate characteristic function for g by

ψgi(ξi) = ψg(0, 0, ..., ξi, ..., 0) . (8.198)

With (8.196), we have

ψgi
(ξi) = exp(−2πiξigi) exp(−2π2Kiiξ

2
i ) . (8.199)

This is just the characteristic function for a univariate normal with mean gi and
variance Kii. Perhaps surprisingly, the form of the marginal on gi does not depend
on Kim for i (= m, even though gi may be correlated with the other components.

Similarly, the bivariate characteristic function for gi and gj is given by

ψgi,gj (ξi, ξj) = ψg(0, 0, ..., ξi, ..., ξj , ..., 0)

= exp
(
−2πiξ̃

t
g̃
)
exp

[
−2π2ξ̃

t
K̃ξ̃
]
, (8.200)

where ξ̃
t
= (ξi, ξj), g̃ = (gi, gj)

t and

K̃ =

[
Kii Kij

Kij Kjj

]
. (8.201)

Inverse Fourier transformation of (8.200) yields a bivariate normal PDF with the ex-
pected mean and covariance. Again, we do not need to know covariance components
other than the ones represented in the marginal of interest.

Other linear transformations of normal random vectors Computation of a marginal
is equivalent to finding the PDF for the output of a linear transformation of a
random vector. For example, the component gi can be singled out by computing
the scalar product of g with an 1 ×M row vector having a one in the ith column
and a zero in all others. Similarly, the 2D vector (gi, gj) results from applying a
2×M matrix operator with ones in positions (1, i) and (2, j) and zeros in all other
locations. We now compute the PDF for a random vector formed from a general
linear transformation.

Consider the random vector y = Og, where y is a K × 1 vector, O is a real
K ×M matrix and g ∼ NM (g ,K). The characteristic function for y follows from
(8.43) and (8.196):

ψy(ξ) = ψg(O
tξ) = exp(−2πiξtOg) exp

(
−2π2ξtOKOtξ

)
. (8.202)

By inspection, then, y ∼ NK(Og,OKOt). Thus any linear transformation of a
normal random vector leaves it normal.

In fact, the converse of (8.202) also holds: An M×1 random vector is normal if
and only if its scalar products with all M ×1 vectors are univariate normal (Mardia
et al., 1979).
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8.3.4 Central-limit theorem

In this section we show that the sum of a large number of random variables tends
to be normally distributed. This property, known as the central-limit theorem, is
one of the reasons for the prominence of the Gaussian law in probability theory.

We shall introduce the central-limit theorem in stages. Initially we consider
i.i.d. (independent and identically distributed) scalar random variables, where all
moments are finite. These assumptions allow an elementary derivation, though one
with restricted validity. Next we discuss the case of i.i.d. random variables where
some of the higher moments may be infinite. Then we allow the variables to have
different variances and some degree of statistical dependence. Finally we comment
briefly on the vector case.

Independent and identically distributed random variables Consider a set of J i.i.d.
random variables uj , 1 ≤ j ≤ J, with means u and variances σ2. First we define
standardized (zero-mean, unit-variance) random variables by

xj =
uj − u

σ
. (8.203)

Then we construct a new random variable z, defined by

z =
1√
J

J∑

j=1

xj . (8.204)

Because the variance of a sum of J i.i.d. random variables is J times the individual
variances, and the variance of xj/

√
J is 1/J , z has unit variance. Moreover, since

z is a sum of zero-mean random variables, it also has zero mean. We want to show
that as J → ∞ the PDF on z tends toward a standard normal distribution, from
which it follows readily that the sum of the uj is normal with mean Ju and variance
Jσ2.

The derivation proceeds most easily with the aid of characteristic functions.
We shall denote the characteristic function of xj as ψx(ξ); no index j is needed
since the characteristic function has the same form for all of the xj . If we assume
initially that all moments of xj are finite, we can expand ψx(ξ), in a Taylor series:

ψx(ξ) = 〈exp(−2πiξxj)〉 = 1− 2πiξ〈xj〉 −
4π2

2!
ξ2
〈
x2
j

〉
+ ...

= 1− 4π2

2!
ξ2 + ... , (8.205)

where the second line follows since 〈xj〉 = 0 and
〈
x2
j

〉
= 1.

The characteristic function of z is given by

ψz(ξ) = 〈exp (−2πiξz)〉 =
〈

exp



−2πi

(
ξ√
J

) J∑

j=1

xj




〉

=
J∏

j=1

〈
exp

[
−2πi

(
ξ√
J

)
xj

]〉
=

J∏

j=1

ψx

(
ξ√
J

)
=

[
ψx

(
ξ√
J

)]J
, (8.206)
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where the independence of the xj has been invoked on the second line to write the
expectation of a product as the product of the expectations, and the fact that the
xj are identically distributed is the key to the last step.

We can now insert the Taylor expansion (8.205) into (8.206), yielding

ψz(ξ) =

[
1− 2π2ξ2

J
+RJ(ξ)

]J
, (8.207)

where RJ(ξ) is the remainder if the Taylor expansion is truncated with the quadratic
term. By Taylor’s theorem (Rade and Westgren, 1990), RJ(ξ) tends to zero (for any
fixed ξ) at least as fast as J−3/2 when J → ∞. Thus, in spite of the J th power, these
higher terms vanish in the limit. The quadratic term must be retained, however, so
that

lim
J→∞

ψz(ξ) = lim
J→∞

(
1− 2π2ξ2

J

)J
= exp(−2π2ξ2) , (8.208)

which is the characteristic function of a standard-normal random variable. It then
follows from the celebrated continuity theorem of Paul Lévy (see Loève, 1963) that
z ∼ N (0, 1).6

It is straightforward to go from (8.208) to the probability law for the sum of
the original random variables uj . Defining

sJ =
J∑

j=1

uj , (8.209)

the reader may show that sJ ∼ N (Ju, Jσ2)
We have therefore seen that an infinite sum of independent, identically dis-

tributed random variables follows a normal distribution, at least when the individ-
ual characteristic functions admit of a Taylor expansion. It must be emphasized,
however, that the central-limit theorem guarantees normality only asymptotically;
it might not be a good approximation for large but finite J. Often the convergence
to normality is rapid, requiring as few as perhaps 5 – 10 terms, but we should be
cautious about finite sums of skewed or otherwise long-tailed PDFs. An extreme
example is the case of sums of log-normal distributions, which converge very slowly
to the central limit (Barakat, 1976).

Infinite moments There are common PDFs where some of the higher moments
are infinite. In Sec. C.5.10, we encountered the Lévy family of distributions, and
we noted that the mean was zero but the variance was infinite. A special case
of the Lévy distribution is the Cauchy distribution, where pr(x) ∝ (a2 + x2)−1, a
well-known and broadly useful PDF of infinite variance. On the other hand, if we
consider pr(x) ∝ (a2 + x2)−2, then the variance is finite but the fourth moment is
infinite. The common feature of these examples is that the characteristic function
is not differentiable to all orders and hence cannot be expanded in a Taylor series.
Therefore we need to inquire whether it is possible to derive a central-limit theorem.

6Thanks to Jack Denny for calling our attention to this theorem.
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The key is a theorem proved in Shiryayev (1984). If 〈|x|n〉 exists for some

n ≥ 1, then the kth derivative of ψx(ξ), denoted ψ
(k)
x (ξ), exists for every k ≤ n, and

ψx(ξ) =
n∑

k=0

(2πiξ)k

k!

〈
xk
〉
+

(2πiξ)n

n!
εn(ξ) , (8.210)

where |εn(ξ)| ≤ 3 〈|x|n〉 and εn(ξ) → 0 as ξ → 0. So long as
〈
|xj |3

〉
is finite,

this theorem justifies the steps from (8.205) to (8.208), even when the full Taylor
expansion for ψx(ξ) does not exist.

For the examples given above,
〈
|xj |3

〉
is infinite for the Lévy and Cauchy PDFs,

so the limiting PDF is not normal; in fact, a sum of any number of Lévy random
variables is still a Lévy random variable. For pr(x) ∝ (a2 + x2)−2, however,

〈
|xj|3

〉

is finite and there is a normal central limit.7

Independent but not identically distributed random variables Now suppose that the
random variables uj are independent but have different means and variances. Let
the mean of uj be denoted by uj and the variance by σ2

j , and define

xjJ =
uj − uj√∑J

j=1 σ
2
j

. (8.211)

The extra subscript is needed since the denominator depends on J. Note that

〈xjJ 〉 = 0 and
J∑

j=1

Var(xjJ) = 1 . (8.212)

Now we can define a standardized random variable z by

z =
J∑

j=0

xjJ . (8.213)

If the means and variances are independent of j, this definition of z reduces to
(8.204).

Shiryayev (1984) discusses various sufficient conditions under which z will tend
to a standard normal as J → ∞. They all amount to saying that the variables xjJ

are asymptotically infinitesimal, in the sense that
〈
x2
jJ

〉
→ 0 as J → ∞, or

equivalently that, for every ε,

Pr(|xjJ | > ε) → 0 as J → ∞ . (8.214)

This condition is plausible in most practical circumstances because of the denomi-
nator in (8.211); so long as the variances σ2

j do not themselves tend to zero rapidly
as j gets large, the sum of the variances will increase as the number of terms in-
creases, so xjJ , which is normalized by this sum, must get smaller in virtually any
sense.

Thus the central-limit theorem states that a sum of asymptotically infinitesi-
mal, zero-mean random variables tends to a standard normal, so long as the sum

7We thank Dana Clarke for helpful discussions on these examples.
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of their variances is normalized to unity (Shiryayev, 1984). From this statement,
it is again straightforward to show that the sum of the original variables uj is
also asymptotically normal. Specifically, as J → ∞, sJ becomes distributed as
NJ [

∑
j uj ,

∑
j Var(uj)].

Sums of dependent random variables Though the central-limit theorem is usually
stated for sums of independent random variables, strict independence is not re-
quired. For a detailed discussion, see Shiryayev (1984).

Sums of i.i.d. random vectors Central-limit theorems can also be stated for random
vectors. We mention here only the simplest case of i.i.d. random vectors where all
moments exist.

Let uj be an M × 1 random vector with mean u and covariance Ku, both
independent of j, and assume that uj is independent of uk for j (= k. Also let

sJ =
J∑

j=1

uj . (8.215)

Then, as J → ∞, sJ ∼ NM (Ju, JKu). The proof of this statement involves
multivariate characteristic functions and the multivariate Taylor expansion (A.179).
With this hint, the reader should be able to retrace the steps leading up to (8.208).

8.3.5 Normal random processes

As we shall see in more detail in Sec. 8.4.3, we can sometimes apply the central-limit
theorem and argue that the random process representing an object or image is nor-
mal. In preparation for that discussion, we examine here some of the mathematical
properties of normal random processes. We initially adopt a rather unconventional
starting point and define normal random processes in terms of characteristic func-
tionals, but then we shall show that this definition is equivalent to a more common
one.

Characteristic functional and linear operators The general form of the characteristic
function of a normal random vector is given in (8.196); it can be extended to random
processes by use of the characteristic functional, as introduced in Sec. 8.2.3. By
analogy to (8.196), we define a real-valued normal random process by requiring
that its characteristic functional be given by

Ψf (s) = exp(−2πis†f ) exp(−2π2s†Kf s) , (8.216)

where Kf is the autocovariance operator, i.e., the integral operator with kernel
Kf (r, r′).

From (8.216) and (8.96) we can readily show that all linear functionals of a
normal random process are normal. If we let g = Hf, where H is a linear CD
mapping (see Sec. 7.3) defined by

gm =

∫

∞
dqr hm(r) f(r) , m = 1, ...,M , (8.217)

then (8.96) becomes

ψg(ξ) = exp(−2πis†Hf ) exp(−2π2s†HKfH
†s) . (8.218)
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By comparison with (8.196), we see that g is an MD random vector with mean Hf
and covariance HKfH

†.
Exactly the same conclusion holds when H is an integral operator. Linear

filtering of a normal random process yields another normal random process. Since
normal processes are fully determined by their mean and autocovariance (or auto-
correlation) function, the formulas given in Sec. 8.2.6 are all we need for a complete
statistical description of the output of a linear filter if we know that the input is a
normal process.

Multipoint densities and autocovariance functions One way of defining a normal
random vector is to require that all of its marginals must be normal (Sec. 8.3.3).
Similarly, a normal random process can be defined as one for which all univariate
or multivariate marginals are normal. In that approach, a random process f(r) is
normal if allM -point PDFs, pr[f(r1), f(r2), ..., f(rM )] for allM, are normal. We can
use (8.218) to show that defining a normal random process by (8.216) is equivalent
to requiring that all multipoint densities be normal. Evaluating the random process
at the M points {rm,m = 1, ...,M} is a CD mapping with

hm(r) = δ(r− rm) . (8.219)

Thus gm = f(rm), and it follows at once from (8.218) that pr[f(r1), f(r2), ..., f(rM )]
is an MD normal density. An explicit form for this density can be stated most
compactly by defining an M × 1 vector fM with mth component given by f(rm).
For simplicity we assume that f(r) is real. Then the M -point PDF is given by

pr[f(r1), f(r2), ..., f(rM )] = pr(fM )

= (2π)−
1
2M | detKM |− 1

2 exp
[
−1

2 (fM − fM )t K−1
M (fM − fM )

]
, (8.220)

where fM is the M × 1 mean vector, with components 〈f(rm)〉, and KM is the
M ×M covariance matrix, with components given by

[KM ]mn = 〈[f(rm)− 〈f(rm)〉] [f(rn)− 〈f(rn)〉]〉 . (8.221)

Comparison with (8.98) shows that

[KM ]mn = Kf (rm, rn) . (8.222)

Thus the covariance matrix in an M -point PDF for a normal random process is
fully determined by the autocovariance function of the process. Knowledge of this
function and 〈f(r)〉 is therefore sufficient to specify all M -point densities and hence
to fully characterize a normal process.

For completeness, we next show that (8.222) also follows from the transforma-
tion rule, Kg = HKfH

†. With Kg = KM , and the kernel of H as given by (8.219),
we can write

[KM ]mn =
[
HKfH

†
]

mn

=

∫

∞
dqr

∫

∞
dqr′ δ(r− rm)Kf (r, r

′) δ(r′ − rn) = Kf (rm, rn) , (8.223)

where the last step has used the sifting property of delta functions.
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Ergodicity and stationarity Stationarity is defined for normal random processes just
as for any other random process. A useful simplification, however, is that we do
not have to distinguish wide-sense and narrow-sense stationarity in the normal case.
Since the full statistics are inherent in the mean and autocovariance function, wide-
sense stationarity (stationary mean and autocovariance) implies narrow-sense or
strict stationarity (Papoulis, 1965).

For stationary Gaussian random processes, a straightforward criterion for er-
godicity can be stated. Cornfield et al. (1982) show that such a process is ergodic if
and only if its power spectral density is continuous. From (3.107) and the Wiener-
Khinchin theorem (8.133), an equivalent statement is that a stationary Gaussian
random process is ergodic if and only if its autocorrelation function vanishes at
infinity. Since many physical processes are Gaussian as a result of the central-limit
theorem, we can quite often invoke ergodicity on the basis of this theorem.

8.3.6 Complex Gaussian random fields

It is often useful to describe a wave by its complex amplitude. If the wave is regarded
as random, perhaps because it has been scattered from a random object, then the
wave amplitude u(r1) at any point r1 is a complex random variable. Similarly, the
set of amplitudes at K different points, {u(rk), k = 1, ...,K}, is a KD complex
vector, and u(r) itself is a complex random process. Moreover, a wave amplitude
is usually computed as a diffraction integral or some other linear superposition. If
different elements of this superposition are linearly independent random variables,
then the central-limit theorem will lead to normal distributions, so we often en-
counter complex Gaussian random fields.

In one sense, there is nothing new about complex Gaussian random fields; we
can describe them with the tools already developed for real Gaussian fields just by
considering the real and imaginary parts separately. For example, a K × 1 complex
vector can also be written as a 2K × 1 real vector, where the first K components
are the real parts and the second K are the imaginary parts. The covariance matrix
in the first case is a K ×K Hermitian matrix with complex off-diagonal elements,
and in the second case it is a 2K × 2K real, symmetric matrix.

Random phase If the complex variables result from random waves, the physics
of wave propagation may allow us to impose some additional restrictions, thereby
simplifying the mathematics. The phase of a wave relates to the total optical path-
length from a radiation source to the point at which the phase is measured. The
natural unit of this pathlength is the wavelength, and typically the paths are very
long compared to a wavelength. That means that if we alter the pathlength by a
small fraction in absolute terms, it may nevertheless change by several wavelengths,
and each change of one wavelength alters the phase by 2π. Now, the pathlength
(in units of wavelength) may be random for many reasons: we may consider an
ensemble of objects with different positions and different rough surfaces, or we may
interpose random phase-altering elements such as diffuse reflectors or ground-glass
screens, or we may consider a broad spectrum of wavelengths. The result is that
it is frequently an excellent approximation to assume that the phase is completely
random.

To state this approximation more mathematically, we denote the wave am-
plitude (at some unspecified point) by u = Aeiφ = x + iy, where x = Re(u) and
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y = Im(u) and A is a real number. We do not need to consider phase angles φ
outside the range [0, 2π) since eiφ is periodic. The phase randomness implies that
the PDF on φ is constant in this range. The constant can be fixed since the PDF
must be normalized to unity, and we can write

pr(φ) =
1

2π
, 0 ≤ φ < 2π . (8.224)

We assume that this PDF on φ is valid for all A, so pr(φ|A) = pr(φ), and φ and A
are statistically independent.

We can use this density to deduce some important properties of u even without
specifying the statistics of A. Since the real and imaginary parts of u are given by

x = A cosφ , y = A sinφ , (8.225)

we see that (8.224) implies

〈x〉 = 〈A cosφ〉 = 0, 〈y〉 = 〈A sinφ〉 = 0 . (8.226)

Thus x and y are both zero-mean, and hence so is the complex u.
The variances of x and y must be equal since

〈
x2
〉
=
〈
A2 cos2 φ

〉
= 1

2

〈
A2
〉
,

〈
y2
〉
=
〈
A2 sin2 φ

〉
= 1

2

〈
A2
〉
. (8.227)

The marginal PDFs on x and y must also be the same, regardless of the PDF of
A, since sin φ and cosφ have the same PDFs if φ is uniform. (As an exercise, the
reader can determine what this PDF is.) Moreover, x and y are uncorrelated since

〈xy〉 =
〈
A2 cosφ sinφ

〉
= 0 . (8.228)

We can summarize the last two equations in complex form by writing

〈
u2
〉
=
〈
u∗2
〉
= 0 , 〈uu∗〉 = 〈u∗u〉 =

〈
A2
〉
(= 0 . (8.229)

Invocation of the central-limit theorem If we now assume that the wave amplitude
at any point is the sum of contributions from many independent sources (perhaps
points on an illuminated rough surface), then the real and imaginary parts are nor-
mal by the central-limit theorem. That means that x and y are not only uncorrelated
but also statistically independent; we say that x and y are i.i.d. (independently and
identically distributed). Their joint density is given by

pr(x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
, (8.230)

where σ2 is the common variance of x and y. Contours of constant PDF in the x-y
plane are circles (see Fig. 8.3), so u is referred to as a circular Gaussian random
variable.
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Fig. 8.3 Surfaces of constant probability density for a circular Gaussian ran-
dom variable.

Other useful PDFs Since A =
√

x2 + y2 and φ = tan−1(y/x), we can convert
pr(x, y) in (8.230) to pr(A,φ) by means of (C.104). The result is the Rayleigh
distribution, given in (C.140) as

pr(A,φ) =
A

2πσ2
exp

(
− A2

2σ2

)
. (8.231)

We shall see in Chap. 11 that the irradiance I = |u|2 plays a key role in
photodetection and photon counting. If pr(x, y) is given by (8.230), the PDF on I
and φ is

pr(I,φ) =
1

2πI
exp

(
−I

I

)
, (8.232)

where I = 2σ2. The PDF on I alone, obtained by omitting the 2π in (8.232), is a
chi-squared PDF with two degrees of freedom (see Sec. C.5.5). In general, a chi-
squared random variable with N degrees of freedom is the sum of the squares of N
i.i.d. normal random variables; here N = 2 since I = x2 + y2.

Two-point densities for circular Gaussians Next we examine two-point PDFs involv-
ing a complex circular Gaussian random process u(r) at points r = r1 and r = r2.
For notational simplicity, we write u(r1) = u1 = x1 + iy1 = A1 exp(iφ1), and
similarly for u(r2). One way we could specify the two-point density would be to
construct the real 4D vector U = (x1, x2, y1, y2)t and give the 4D PDF for it. If u(r)
is to be circular Gaussian, this PDF has to satisfy some constraints. For one thing,
if we want u1 and u2 to be individual circular Gaussians, the marginals on (x1, y1)
and (x2, y2) must both satisfy (8.230), possibly with different variances. In addition,
the joint density on all four variables must be consistent with the autocovariance
function of the process,

Ku(r1, r2) = 〈u1u
∗
2〉 ≡ k = k′ + ik′′ . (8.233)

These conditions lead to

〈x1x2〉 = 〈y1y2〉 = 1
2k

′ , −〈x1y2〉 = 〈y1x2〉 = 1
2k

′′ 〈x1y1〉 = 〈x2y2〉 = 0 .
(8.234)
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All of these conditions are satisfied if U ∼ N4(0,KU), where

KU =






σ2
1

1
2k

′ 0 −1
2k

′′

1
2k

′ σ2
2

1
2k

′′ 0

0 1
2k

′′ σ2
1

1
2k

′

− 1
2k

′′ 0 1
2k

′ σ2
2






. (8.235)

The redundancy in the elements of this matrix should be noted. A general 4 × 4
covariance matrix would have 10 independent elements, but only four real numbers
(σ2

1 ,σ
2
2 , k

′ and k′′) are required to specify KU. This redundancy is required in order
to represent a circular Gaussian as opposed to a more general complex Gaussian
random vector.

Two-dimensional formulation To go from the covariance in (8.235) to the PDF for
U requires inverting KU and computing the quadratic form UtK−1

U U. The algebra
is not terrible, but a simpler approach, and one that extends more readily to higher
dimensions, is to use a 2D complex vector rather than a 4D real one. If we define
a 2D vector u with complex components u1 and u2, its covariance matrix is

Ku =




2σ2

1 k

k∗ 2σ2
2



 . (8.236)

The inverse covariance, which is what we need in the PDF, is given by

K−1
u =

1

4σ2
1σ

2
2 − |k|2




2σ2

2 −k

−k∗ 2σ2
1



 . (8.237)

The quadratic form in the PDF is thus

u†K−1
u u =

2σ2
2 |u1|2 + 2σ2

1 |u2|2 − ku∗
1u2 − k∗u∗

2u1

4σ2
1σ

2
2 − |k|2 , (8.238)

and the corresponding PDF is given by (Neeser and Massey, 1993; Mandel and
Wolf, 1995)

pr(u) =
1

π2 det(Ku)
exp

(
−u†K−1

u u
)
. (8.239)

The reader might have expected a factor of 1
2 in the exponent and a different

normalizing factor [cf. (8.185)], but (8.239) is correct as written. One way to make
it plausible is to assume there is no correlation, so k = 0, so that (8.237) becomes

K−1
u =






1
2σ2

1
0

0 1
2σ2

2




 . (8.240)

Hence, (8.239) becomes

pr(u) =
1

4π2σ2
1 σ

2
2

exp

[
−x2

1 + y21
2σ2

1

− x2
2 + y22
2σ2

2

]
, (8.241)
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which is just what one would get with the 4D real formulation, using (8.235) with
k = 0 and (8.185). The reader may check that the 2D complex and 4D real for-
mulations also agree when k (= 0. (The 4D determinant must be evaluated by
minors.)

Complex Gaussian vectors Most authors use the 2ND real formulation to deal with
ND complex random vectors, but there is a significant literature on the complex
formulation. The classic text by Doob (1953) discusses the problem, and Wooding
(1956) first derived a form like (8.239).

Later authors, however, recognized some surprising features of the complex
case (Reed, 1962; Goodman, 1963; Neeser and Massey, 1993). For example, we
must revisit the familiar statement that the PDF for a Gaussian random vector
is fully determined by its covariance matrix. For a complex random vector, the
covariance is defined by Ku = 〈(u − u)(u − u)†〉, but the most general PDF for
a Gaussian random vector also involves the pseudocovariance 〈(u − u)(u − u)t〉,
with a transpose in place of the adjoint.

As defined by Neeser and Massey (1993), a complex random vector is said to be
proper if its pseudocovariance vanishes identically. Any subvector of a proper ran-
dom vector is proper, but two individually proper random vectors are not necessarily
jointly proper. These authors also show that any linear or affine transformation of
a proper random vector is another proper random vector, and that a real random
vector can be proper if and only if it is a constant.

The condition that the pseudocovariance of a complex vector vanish can be
restated in terms its real and imaginary components. If we write u = x+ iy, then
u is proper if and only if

〈(x−x)(x−x)t〉 = 〈(y−y)(y−y)t〉 and 〈(x−x)(y−y)t〉 = −〈(x−x)(y−y)t〉t .
(8.242)

Thus x and ymust have identical autocovariance matrices, and their cross-covariance
matrix must be skew-symmetric.

For optical applications, we are often interested in zero-mean proper Gaussian
random vectors and processes, for which the term circular Gaussian is commonly
used. To be explicit, an ND complex vector u will be said to obey a circular
Gaussian law if all marginals are normal, all components have zero mean and the
conditions in (8.242) hold; these conditions can be stated in complex form as

〈unum〉 = 〈u∗
nu

∗
m〉 = 0 , 1 ≤ n, m ≤ N (8.243)

and

〈unu
∗
m〉 = 〈umu∗

n〉
∗ = Knm . (8.244)

The intuition behind (8.243) is that un can be written as |un| exp(iφn), where
φn is uniformly distributed over (0, 2π) but possibly correlated with φm for n (= m.
The expectation 〈unum〉 is zero because exp[i(φn+φm)] takes any value on the unit
circle with equal probability. One can think of choosing a φn from the conditional
density pr(φn|φm) and then choosing φm from the uniform density; no matter what
φn is chosen in the first step, the second choice means that φn + φm (modulo 2π)
is equally likely to be anywhere in (0, 2π). On the other hand, 〈unu∗

m〉 depends
on exp[i(φn − φm)], and this average is not zero if φn and φm tend to fluctuate
together; the second choice tends to undo the first.
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The PDF of an ND circular Gaussian random vector is a generalization of
(8.239):

pr(u) =
1

πN det(Ku)
exp

(
−u†K−1

u u
)
. (8.245)

Thus the only change in going from 2D to ND is the power of π. It is proven in
Bellman (1995) that this density is properly normalized, and the reader can check
it by considering the basis in which Ku is diagonal.

The characteristic function for complex random vectors is defined in (8.33);
for an ND circular Gaussian it is given by

ψu(ξ) = exp(−π2ξ†Kuξ) , (8.246)

where ξ is an ND complex vector. Note the absence of a factor of 2 in the exponent
when compared to the corresponding expression (8.196) for a real Gaussian random
vector.

Moments The characteristic function can be used to derive all moments of a ran-
dom vector. For complex random vectors, the rules for complex differentiation given
in Sec. A.9.5 must be used. The reader may use these rules to verify that (8.246)
is consistent with the second moments stated in (8.243) and (8.244).

Higher moments are also of interest in many problems. For circular Gaussians,
all odd moments vanish, as do all even moments where the number of factors with-
out the complex conjugate is not equal to the number with the conjugate. All other
even moments can be expressed in terms of components of the covariance matrix
via the complex Gaussian moment theorem, first derived by Reed (1962) and
discussed by Goodman (1985) in terms of real components and by Osche (2002) in
complex form. Osche’s statement of the theorem is

〈un1 un2 · · · unt
u∗
m1

u∗
m2

· · · u∗
mt

〉 =
∑

π

〈un1 u
∗
mπ(1)

〉〈un2 u
∗
mπ(2)

〉 · · · 〈unt
u∗
mπ(t)

〉 ,

(8.247)
where π( · ) is a permutation of the set of integers {1, 2, · · ·, t}, and the sum is over
all possible permutations. Some useful special cases are:

〈|ui|2n〉 = n! 〈|ui|2〉n = n!σ2n
i ; (8.248)

〈(uiu
∗
j )

n〉 = n! 〈uiu
∗
j 〉n = n!Kn

ij ; (8.249)

〈uiuju
∗
ku

∗
$ 〉 = 〈uiu

∗
k〉〈uju

∗
$ 〉+ 〈uju

∗
k〉〈uiu

∗
$ 〉 = KikKj$ +KjkKi$ . (8.250)

This latter equation should be compared to the corresponding real result in
(8.197); the complex expression has a sum of two covariances while the real expres-
sion has three. We see that

〈
|ui|4

〉
= 2σ4

i , but for a real, zero-mean, Gaussian ran-
dom variable,

〈
g4i
〉
= 3σ4

i . The reader can verify this result by writing ui = xi+ iyi
and using the real Gaussian moment theorem.

Circular Gaussian random processes A complex random process u(r) will be said to
be circular Gaussian if all N -point PDFs are multivariate circular Gaussian random
vectors. We can specify this process, as in Sec. 8.3.5, by its characteristic functional,
given by [cf. (8.216)]

Ψu(s) = exp(−π2s†Kus) , (8.251)
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where s is a square-integrable function and Kf is the autocovariance operator, i.e.,
the integral operator with kernel Ku(r, r′) = 〈u(r)u∗(r′)〉. We shall make good use
of (8.251) in Chap. 18 when we discuss speckle.

8.4 STOCHASTIC MODELS FOR OBJECTS

We argued in Chap. 7 that an object was best described by a function f(r) (where r
is usually a position vector); now we shall regard this function as a sample function
of a random process. The random process is the collection of all possible objects of
a given category that might be presented to the imaging system. For example, in
computed tomography of the brain, a particular object f(r) is one patient’s brain
at the time of one imaging procedure, but we can imagine an infinite ensemble of
brains from which this one object is drawn. Ideally we would like to specify the
full, infinite-dimensional, probability density function (PDF) of the process. As we
shall see in Sec. 8.4.1, however, a full PDF is seldom possible, even in principle, and
we must make do with less complete models.

The literature on stochastic models in image science is rich and varied, but of-
ten the distinction between an object model and an image model is not clear. Many
papers claim to address the statistics of images but leave out any consideration of
measurement noise or system blur. Moreover, these papers often treat the image as
a function of continuous spatial coordinates rather than as a discrete array. Thus
they really apply more to objects than to real-world images. On the other hand,
if we want to verify our theories by measurements, all we have access to is images,
and there is a gap in the current literature on how one can verify stochastic models
of objects from observations on noisy, blurred, discrete images.

Another confusing aspect of much of the literature has to do with the meaning
of probability. First, there is an unfortunate emphasis on ergodic models where it is
assumed, often tacitly, that probabilistic statements can be made for a single object
or image. Thus a gray-level histogram of a single image is treated as a probability
distribution for pixel values. At best the histogram is an estimate of the probability
law for an ensemble of similar images, and then only if ergodicity and hence station-
arity are assumed. Except for relatively contrived situations, stationarity is unlikely
to hold over the full expanse of an object or image (though local stationarity may
be more defensible).

Closely associated with the emphasis on stationarity is the use of loosely de-
fined Fourier measures called power spectra. Often this term refers to nothing
more than the square modulus of the Fourier transform of a single image. With an
assumption of ergodicity this quantity is an estimate of the power spectral density,
defined in Sec. 8.2.5 as the Fourier transform of the statistical autocorrelation func-
tion. We know from Fig. 8.1, however, that the estimate is poor, and in any case
the implicit statistical ensemble is seldom specified, and the underlying stationarity
assumption is almost never justified.

Another issue is the conflict between Bayesian and frequentist interpretations
of probability, introduced in the Prologue. For many purposes, we want models that
emulate reality, in the sense that the model predictions can be verified in principle
by measurements on real objects, so we are using a frequentist interpretation of
probability. Bayesian interpretations of probability are often useful, however, espe-
cially in drawing inferences from images when we have some degree of prior belief
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about the structure of the object but the frequentist information is incomplete (as it
always is). The use of Bayesian priors will be explored further in Chaps. 13 and 15,
but the emphasis in this section is descriptive: What can we say about collections
of real objects?

In practice, even the very concept of a real object must often be expanded.
Computer simulations are becoming ever more realistic and ever more essential in
image science, and we do not rule out collections of simulations as the ensemble of
objects for which we seek a stochastic model.

To state clearly the focus of this section, then, we are considering an ensemble
interpretation of probability as applied to objects regarded as sample functions of
a random process. The sample function can, in principle, be an actual object f(r),
but in practice it may be some approximate representation fa(r) as introduced in
Sec. 7.1.3, and the object can be simulated rather than real.

We begin in Sec. 8.4.1 with a general discussion of just what we mean by the
probability density function for an object class and how we might approach the
problem experimentally. Included in this section is an introduction to the impor-
tant concept of independent components.

In Sec. 8.4.2 we revisit the discussion from Sec. 8.2.2 on multipoint densities,
but now specifically for objects. Again the focus is on experimental determination
of stochastic models.

In Sec. 8.4.3 we do what all statisticians do when problems get difficult: we as-
sume normality. Some implications of the central-limit theorem are discussed, and
Gaussian mixture models are introduced. Surprisingly, Gaussian mixture models
turn out to account for the highly non-Gaussian character of many filtered images.

In Sec. 8.4.4 we turn to the widely studied but loosely defined topic of texture.
For purposes of this section, a texture is regarded as any random field with some
degree of stationarity. We discuss here ways of synthesizing sample textures as well
as mathematical models for the PDFs.

Sec. 8.4.5 is prelude to the discussion of signal detection in Chap. 13. We
make a distinction between signals and backgrounds, and we look at how various
assumptions about the signal affect the overall object PDF.

8.4.1 Probability density functions in Hilbert space

To develop a Hilbert-space PDF for objects, we assume that a function f(r) repre-
senting a particular object is square-integrable and therefore corresponds to a vector
f in L2(Sf ), where Sf is a support region that will cover all object functions under
consideration. Then f can be expanded as in (8.76):

f =
∞∑

n=1

αnψn , (8.252)

where the set {ψn} is some convenient basis for L2(Sf ). The coefficients {αn}
are the components of f in this basis. If the basis is orthonormal, the infinite-
dimensional vector of coefficients, denoted α, is a unitary transformation of f.

Intuitively, f corresponds to a single point in the space (or a vector from the
origin to the point), and the density pr(f ) is a measure of how these points cluster
in the Hilbert space. The density pr(α) describes this same clustering in terms of
specific basis vectors ψn.
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A graphical depiction of this clustering is shown in Fig. 8.4. The two axes
shown can be construed as any two components {αn,αm} out of the infinite set.

Fig. 8.4 Graphical depiction of the clustering of an object PDF. Two axes out
of an infinite-dimensional Hilbert space are shown, and each point corresponds
to a different object.

Subspaces We can never hope to know the full PDF in an infinite-dimensional space
(and we wouldn’t know what to do with it if we had it), but our ultimate goal is
always to obtain a PDF pr(g) for images (see Sec. 8.5). Since the data are insensitive
to null functions of the imaging operator H, and all real measurement operators
have finite rank R, we can always get by with a finite-dimensional subspace of the
object space U. As we know from Sec. 7.4.3, we can use the singular vectors of H
as the expansion functions and truncate the expansion at n = R; this truncation
produces no error in the data and hence no error in pr(g).

Another way to restrict the dimensionality is to construct an approximate
representation of f, just as we did in Chap. 7, and then consider the PDF of the
approximate vector fa. This procedure can lead to an error in pr(g), but it will be
small if the image error defined in Sec. 7.4.3 is small for all objects in the ensemble.
In fact, the image error will be zero if we use natural pixels as the expansion
functions (see Sec. 7.4.3).

Experimental determination of the object density We can imagine obtaining infor-
mation about the object density by examining a large number of typical object
functions. There are several ways we could know the object function. For example,
we might use a computer program that can simulate sample functions f(r), and for
each sample function we could obtain components αn by computing scalar products
with the corresponding basis functions ψn(r). (In fact, if a set of components is
chosen in advance, the computer program could advantageously generate the sam-
ple functions in this basis in the first place.)

Alternatively, we may want to construct a stochastic model useful for one par-
ticular imaging system, say a relatively low-resolution, noisy one, but we might
have available images from another system with better resolution and less noise.
We could then treat the images from the better system as good representations of
objects for the poorer system.

Finally, we might have some physical model, known as a phantom in the
medical-imaging literature. If the phantom can be reconfigured into different ob-
jects by moving components around in a controllable fashion, it can generate a set
of known sample objects.

With any of these sources of sample objects, a histogram estimate of, say,
pr(αn,αm) could be obtained by a frequentist interpretation of the PDF. By a
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multivariate generalization of (C.21), we can write8

pr(αn,αm)(αnk,αmk)

≡ lim
∆α→0

1

(∆α)2
Pr(αnk− 1

2∆α ≤ αn < αnk+
1
2∆α,αmk− 1

2∆α ≤ αm < αmk+
1
2∆α) .

(8.253)
The histogram estimate is obtained by considering finite bins of width ∆α (hence
omitting the limit) and approximating the probabilities on the right with observed
frequencies of occurrence in a finite number of sample objects. Thus we approximate
the density as

p̂r(αn,αm)(αnk,αmk) ≡
1

(∆α)2
J(αnk,αmk)

J
, (8.254)

where J(αnk,αmk) is the number of times (out of J sample objects) that the com-
puted value of (αn,αm) falls in a square of size (∆α)2 centered on point (αnk,αmk).
This estimate can, in principle, be extended to an arbitrary number of dimensions.

The problem with this scenario is that the required number of samples may
be impractical. As a numerical example, suppose the objects can be adequately
specified by 104 terms in (8.252), so we are seeking to construct a histogram ap-
proximation to a PDF in a ten-thousand-dimensional space. If we choose to use just
10 bins along each axis in the space, then there are 1010,000 total bins to fill. This
is an immense9 number, and there is no hope of filling the bins with experimental
samples. Even with a drastically truncated set of components, pr(α) cannot be
interpreted in frequentist terms.

Independent components The number of samples required for a histogram estimate
would be much smaller if the components were statistically independent. In that
case, for an ND representation, we would have

pr(α) =
N∏

n=1

pr(αn) , (8.255)

so we would need only a set of N univariate densities instead of an N -dimensional
multivariate one.

In contrast to pr(α), the univariate density pr(αn) does admit of a frequentist
interpretation and a histogram estimate. Suppose, as above, that we have some
source of object functions f(r), perhaps a computer simulation code. For each
sample function we can evaluate αn by the usual scalar product, and the histogram
estimate of pr(αn) is defined by [cf. (8.254)]

p̂rαn
(αnk) =

1

∆α

Jnk
J

, (8.256)

8Recall our notational convention that subscripts on PDFs are deleted where they are redundant
with the argument. Thus pr(x) and pr

x
(x) mean the same thing but the subscript is reinstated

on pr
x
(x0), which means pr

x
(x) evaluated at x = x0.

9We use the term immense here in its literal sense: incapable of mensuration, immeasurable.
Certainly any number exceeding the number of atoms in the universe (of order 1080) qualifies as
immense.
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where αnk is the specific value of αn centered on the kth bin, and Jnk is the number
of times αn falls in that bin.

The number Jnk is a random variable; if the experiment is repeated many
times with different sample objects, Jnk will be binomially distributed, and the full
set of Jnk values will be multinomially distributed (see Secs. C.6.1. and 11.2.1).
The mean value of Jnk will be J times the probability that αn falls in bin k, or

〈Jnk〉 ≈ J prαn
(αnk)∆α . (8.257)

If the number of bins is large, the probability that αn will fall in one particular
bin is small, and any reasonable experiment will use a large value for J , so we are
dealing with rare events (see Sec. 11.1.2) where the binomial law on Jnk is well
approximated by a Poisson.

As a practical example, suppose we want to construct a 100-bin histogram.
By the Poisson statistics, a relative error (standard deviation divided by mean) of
10% in the value estimated for the kth bin requires 〈Jnk〉 = 100, and a relative
error of 1% requires 〈Jnk〉 = 104. To relate these numbers to the required number
of images, we must make some assumptions about the underlying distribution of
αn. If we assume that pr(αn) is relatively flat over the range from 0 to αmax,
then each 〈Jnk〉 is approximately J divided by the number of bins, or 0.01J in our
example. Thus we require J = 104 for 10% accuracy and 106 for 1% accuracy
in a 100-bin histogram. These numbers are large but not immense; they are well
within the capabilities of modern computers if the sample objects are simulated.
Moreover, each simulated object can be used to evaluate each αn, so we get the full
multivariate PDF for this amount of simulation effort, but only if the components
are independent.

Finding the independent components One approach to finding approximately in-
dependent components is the Karhunen-Loève (KL) expansion, introduced in Sec.
7.2.4. In Sec. 8.2.7 we showed that the KL expansion yields uncorrelated coefficients,
and if we can argue that the process is Gaussian (see Sec. 8.4.3), then uncorrelated
implies independent.

To use this argument, we must know the KL expansion. For stationary ran-
dom processes, as discussed in Sec. 8.2.4, KL expansion is Fourier analysis, but with
nonstationary models it can be difficult to determine the autocorrelation function,
much less to diagonalize it and find the KL basis. As we shall see in Sec. 8.4.5, some
authors argue that wavelet coefficients are approximately uncorrelated for natural
scenes, so a wavelet transformation is approximately a KL transformation. Even
when this argument can be justified, however, it is still necessary to show that the
wavelet coefficients are Gaussian random variables if we want to use (8.255), and
we shall present an argument in Sec. 8.4.3 showing why this is not the case for a
wide class of natural scenes.

When the process is not Gaussian or when we do not know the KL expansion,
it may nevertheless be possible to find a transformation that makes the expansion
coefficients approximately independent. To make this statement more precise, we
need some definition of degree of dependence.

One way to define degree of dependence is in terms of the distance, in some
sense, between the multivariate density and the product of its marginals. One dis-
tance measure used for this purpose is the Kullback-Leibler distance, known also
as the cross-entropy ormutual information. If we consider an N×1 vector β with
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density pr(β), the Kullback-Leibler distance between this density and the product
of its marginals is defined by (Comon, 1994)

I(β) =

∫

∞
dNβ pr(β) ln

{
pr(β)

∏N
n=1 pr(βn)

}

. (8.258)

Note that I(β) is not a true distance, as defined in Sec. 1.1.2, since it is not sym-
metric in interchange of pr(β) and

∏N
n=1 pr(βn). It does, however, vanish when

these two densities are equal, since the argument of the logarithm is unity in that
case, and it follows from the convexity of the logarithm that I(β) ≥ 0 (Kendall and
Stuart, 1979). Thus independent components can be sought by attempting to find
a basis that minimizes I(β).

Many other measures of degree of dependence are discussed by Comon (1994).
In particular, he uses an Edgeworth approximation to argue that independent com-
ponents will have marginals with large kurtoses, as defined in (C.41). He therefore
suggests maximizing the sum of the squares of the marginal kurtoses as as a way
of finding approximately independent components. We refer the reader to Comon
(1994) for a full justification of this approach.

Independent components analysis A structured approach to minimizing some mea-
sure of statistical dependence is independent components analysis or ICA. ICA
is a refinement of principal components analysis or PCA, which we shall discuss
first.

Though the terms PCA and KL are often used interchangeably in the litera-
ture, we make the distinction that PCA is diagonalization of the sample covariance
matrix and KL is based on the ensemble covariance. Thus PCA approaches KL
analysis as the number of samples goes to infinity.

Suppose we are given J samples of a random vector α, denoting the jth sample
by α(j). The sample covariance matrix K̂α is defined by

K̂α =
1

J

J∑

j=1

[
∆α(j)

] [
∆α(j)

]†
, (8.259)

where ∆α(j) is α(j) minus the sample mean. PCA seeks to find a matrix M such
that the transformed sample vectors,

β(j) = Mα(j) , (8.260)

are uncorrelated and hence the transformed sample covariance matrix K̂β is diag-

onal. By retracing the discussion in Sec. 8.1.6 but with K̂ in place of K, we can
see that this diagonalization is accomplished by using the eigenvectors of K̂α as the
columns of M.

ICA also uses a transformation of the form (8.260), but now the goal is to min-
imize some measure of statistical dependence as discussed above or in much more
detail in Comon (1994) and subsequent literature. Since statistically independent
components are necessarily uncorrelated, ICA usually proceeds by first computing
the PCA, so that the spectral decomposition of K̂α is known, and then applying
a prewhitening transformation as in (8.67). At this point we have a set of sample
vectors such that the sample covariance matrix is the unit matrix, and all further
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unitary transformations preserve this property. We thus decompose the matrix M
as

M = UK̂
− 1

2
α , (8.261)

where U is unitary. ICA amounts to choosing U so as to minimize the chosen
measure of statistical dependence.

When ICA is carried out on training sets of natural scenes, the results are quite
striking (see Bell and Sejnowski, 1997; Field, 1987; Olshausen and Field, 1996). The
columns of M turn out to be localized, bandpass functions similar to wavelets or
to the channels in the human visual system (a topic to be treated in more detail in
Chap. 14), suggesting that humans may have evolved in such a way as to process
natural scenes through statistically independent channels (see also Barlow, 1989).

One practical implication of the observation that the independent components
are localized is that we can treat small pieces of the same object (or image) as
independent samples. Bell and Sejnowski (1997), for example, consider 12×12 seg-
ments of an image as the samples on which they perform ICA. The resulting ICA
filters are smaller than 12 pixels, even though the corresponding PCA filters tend
to fill the 12 × 12 region. The authors note, however, that the restriction to such
a small region may be an unrealistic feature of their approach. In addition, pixels
themselves are unrealistic if we wish to draw conclusions about “natural scenes.”

We shall revisit ICA in the context of texture analysis in Sec. 8.4.4. In that ap-
plication, ICA is considerably simplified because textures are at least approximately
stationary.

8.4.2 Multipoint densities

As we saw in Sec. 8.2.2, another kind of PDF for a random process is a collection
of P -point densities of the form pr[f(r1), f(r2), ..., f(rP )]. In principle one needs
densities like this for all P to completely characterize the process, but often we must
be content with P = 1 and 2.

In a sense, multipoint densities are just special cases of the Hilbert-space den-
sities discussed above. If we use delta functions as basis functions for the space (see
Sec. 2.2.6), then f(rp) is the coefficient αp associated with basis function δ(r− rp),
and pr[f(r1), f(r2), ..., f(rP )] is a P -dimensional marginal of a Hilbert-space den-
sity. This marginal is, however, a function of P spatial variables, so it is a richer
description of the statistics of the random process than pr(α1,α2, ...,αP ) would be
with preselected basis functions.

If we have a means of computing pr[f(r1), f(r2), ..., f(rP )], we can in princi-
ple do it for all values of each of the spatial arguments, but a less ambitious goal
is to sample the function on a regular spatial grid, making it a discrete random
process. If r is a qD vector and we sample each component to L values, then f is
specified by N = Lq numbers, and the full density is defined in an ND space. In
this sampled case, therefore, all of the P -fold multipoint densities can be computed
from the ND density on f. Nevertheless, it may be computationally or conceptually
simpler to compute the multipoint densities directly rather than as marginals of a
high-dimensional multivariate density.

Pointwise evaluation of random functions Before analyzing multipoint densities in
more detail, we have to deal with one mathematical subtlety. So far we have assumed
only that each sample function f(r) is in an L2 space, but we noted in Sec. 1.8 that
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not all functions in L2 are defined pointwise. If we want an expression like f(r1)
to be rigorously defined, we must assume that f(r) lies in a reproducing-kernel
Hilbert space (RKHS), which might be a subspace of L2. For imaging purposes,
this restriction entails no loss of generality; we saw in Chap. 7 that the imaging
operator H

†
H is a nonnegative-definite Hermitian operator, and we know from

Sec. 1.8.2 that such an operator can be used to define an RKHS. Assuming that
f(r) lies in that particular RKHS is equivalent to saying that we are discussing
the statistics of the measurement component of the object, and that component is
necessarily in an RKHS and hence defined pointwise.

The same conclusion can be reached by assuming that we are not interested in
the statistics of an actual f(r) but rather those of some linear approximation to it,
such as the functions fa(r) or ft(r) discussed in Sec. 7.1.3. As we saw there, these
functions lie in an RKHS called representation space, so they too can be defined
pointwise. For example, we might construct a linear approximation by use of pixel
functions, so fa(r1) would refer to the gray level10 of a pixel centered at r = r1.

In what follows we shall use the notation f(r) but always with the implicit
assumption that the function corresponds to a vector in an RKHS. Thus we might
really mean fmeas(r) or fa(r), but we shall omit subscripts for convenience. As a
practical matter, essentially the only thing we rule out with this assumption is that
f(r) is white noise or some other generalized, infinite-energy random process.

Single-point PDFs For P = 1 and a fixed choice of r, pr[f(r)] is a univariate PDF
for the gray level f(r) at point r. This density can be represented as an ordinary
1D function as in Fig. 8.5. Of course, this function may depend in general on the
choice of evaluation point r, so it can also be plotted as a function of the Cartesian
coordinates of r, as shown in Fig. 8.6.

Fig. 8.5 Univariate PDF pr[f(r)] plotted as a function of f (r) for fixed r.

10Even though we are talking about pixels and gray levels here—terms often associated with
images— we emphasize that we are discussing object models.
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Fig. 8.6 Same PDF as in Fig. 8.5 but now plotted as a function of both f(r)
and r.

Since it is univariate, pr[f(r)] admits of a frequentist interpretation and a
histogram estimate. The considerations are essentially the same as for the univariate
density pr(αn); if we have a source of object functions f(r), such as a computer
simulation code, we can evaluate each sample function at any chosen point, say
r = r1, and define a histogram estimate analogous to (8.256):

p̂rf(r)[fk(r1)] =
1

∆f

J
[
fk(r1)− 1

2∆f ≤ f(r1) < fk(r1) +
1
2∆f

]

J
, (8.262)

where the numerator is the number of sample objects for which the value f(r1) falls
in an interval of width ∆f centered on the chosen value fk(r1), and J is the total
number of samples. The number of bins in this histogram is just fmax/∆f , where
fmax is the maximum value of f(r). The kth bin is centered on the point fk(r1) if

k =
fk(r1)

∆f
. (8.263)

For notational simplicity, we denote the numerator in (8.262) as Jk, which is just
the observed number of samples in bin k, but we must keep in mind that the his-
togram is specific to the point r1.

The same statistical considerations apply here as in the last section. If the
experiment is repeated many times with different sample objects, Jk will be ap-
proximately a Poisson random variable. The mean value of Jk will be J times the
probability that the gray level will fall in bin k, or

〈Jk〉 = J Pr
[
fk(r1)− 1

2∆f ≤ f(r1) < fk(r1) +
1
2∆f

]
≈ prf(r)[fk(r1)]∆f . (8.264)

As in the previous section, we can construct a 100-bin histogram with a relative
error of 10% in the value estimated for the kth bin if 〈Jk〉 = 100; a relative error of
1% requires 〈Jk〉 = 104. If we assume that pr[f(r)] is relatively flat over the range
from 0 to fmax, then we require J = 104 for 10% accuracy and 106 for 1% accuracy
in a 100-bin. Again, these numbers are within the capabilities of modern computers
if the sample objects are simulated.

One might think that we are far from characterizing the object random process
even to order P = 1 since we have fixed the evaluation point at r = r1 in the
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discussion above. In fact, however, once we have a source of sample objects f(r), we
can evaluate them at as many points as we please, and we can construct histogram
estimates of pr[f(r)] on a grid of spatial points with very little increased effort.
A 100 × 100 grid for a 2D object, for example, requires that we construct 10,000
histograms. If k ranges from 1 to 100 for each sample r and the observed value of Jk
does not exceed 255, then we can store the results in just 1 Megabyte of memory.

As a semantic point, each of the histograms discussed above is a histogram
of gray levels; it is not, however, what is usually called a gray-level histogram in
the image-processing community. In that community, it is common to compute
a histogram of the gray levels at all points within a single image for purposes
of display manipulation or data compression. The histograms we are discussing
here describe the distribution of gray levels at a single point in an ensemble of
images. Where confusion may result, we shall distinguish between single-image
histograms and single-point or ensemble histograms.

For stationary, ergodic random processes, the single-image histogram can be
used in place of the ensemble histogram as an estimator of the single-point PDF, but
these two histograms should not be equated in general. The single-image histogram
can give a very biased estimate of the PDF if there is even a slight deviation from
stationarity across the image. Consider, for example, the common situation where
the mean gray level varies slowly across the image; in that case the single-image
histogram can be much broader than the ensemble histogram at a fixed point and
hence a fixed mean gray level.

Two-point PDFs For fixed r1 and r2, the two-point density pr[f(r1), f(r2)] is a
bivariate density on the two scalar random variables f(r1) and f(r2). This density
can be represented by a 2D plot, where the axes are f(r1) and f(r2). A full char-
acterization to order P = 2 requires evaluation of such bivariate densities for all r1
and r2 in Sf .

The two-point density can also be interpreted in frequentist terms, though
more sample objects are required than in the single-point case. If we again choose
fmax/∆f = 100, then there are 10,000 bins in a histogram representing
pr[f(r1), f(r2)]. A calculation similar to the one above shows that J must be about
106 for 10% accuracy and 108 for 1% accuracy if the underlying PDF is relatively
flat. Moreover, 108 such histograms would be required if r is 2D and both r1 and
r2 are sampled on 100×100 spatial grids, and 10 GB of storage would be needed to
hold the results. In short, full experimental characterization of the random process
to order P becomes rapidly more difficult as P increases.

The histogram approximation to the bivariate density pr[f(r1), f(r2)] is related
to, but not identical to, the co-occurrence matrix used in image processing and
pattern recognition (Pratt, 1991). The distinction is the same as the one between
single-point and single-image histograms. The co-occurrence matrix is a random
matrix characteristic of a single image or a smaller region within a single image.
It is a histogram of the joint occurrence of binned or quantized gray levels in that
image. It is independent of absolute position within the region or image but it does
depend on the relative position r2 − r1. The density pr[f(r1), f(r2)], on the other
hand, is a nonrandom characteristic of the ensemble and a function of two position
vectors. A histogram approximation to pr[f(r1), f(r2)] is also random since it is
formed from a finite number of samples, but this randomness can in principle be
reduced arbitrarily by letting the number of samples grow.
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If each sample function is drawn from an ergodic random process (see Sec.
8.2.4), then the co-occurrence matrix computed from one sample function is also an
estimator of pr[f(r1), f(r2)].

Local models If r1 and r2 are far apart in an object, f(r1) and f(r2) might be
statistically independent, or nearly so. For example, in a computed-tomography
scan of the chest, the gray level at a point in the lungs would be expected to be
independent of the gray level at a point in the spine. Two nearby points in the
same lung would, however, be expected to be dependent. A stochastic model that
takes account of this property is called a local model.

To see the structure of a local model, let us first consider two well-separated
points. If the gray levels at these two points are statistically independent, the
two-point PDFs are determined uniquely from the single-point ones:

pr[f(r1), f(r2)] = pr[f(r1)] pr[f(r2)] . (8.265)

As discussed in Sec. C.1.6, the independence condition in (8.265) can also be written
as

pr[f(r1)|f(r2)] = pr[f(r1)] . (8.266)

Now consider a countable set of points, say on a regular lattice in object space.
The gray level at some particular point rk will often depend on the values at other
points ri provided they are close to the chosen point rk, but it could be statistically
independent of the values at more distant points. We define the neighborhood Nk

of the point rk as the set of points close to rk in this sense, and we denote the
complete set of points in the object support as S. Then a local statistical model is
one for which [cf. (8.266)]

pr[f(rk)|{f(ri), ri ∈ S, i (= k}] = pr[f(rk)|{f(ri), ri ∈ Nk}] , (8.267)

where ri ∈ Nk is read “point ri is an element of the set Nk,” or somewhat more
colloquially, “ri is a neighbor of rk.” As we see from (8.267), the form of the
marginal density on f(rk) in a local model is determined fully by the values in
the neighborhood Nk, and points outside this neighborhood can be neglected for
purposes of describing the statistics at rk.

A local model defined on a discrete lattice as in (8.267) is called a Markov
random field or MRF. Developed by Besag (1973) and Cross and Jain (1983)
for describing textures, MRFs have received considerable attention as Bayesian
priors in image reconstruction (see Sec. 15.3.3), but relatively little effort has been
expended on establishing their validity as empirical distributions in a frequentist
sense. One exception is Herman and Chan (1995), who discussed so-called image-
modeling MRFs where a sample drawn from the MRF density would have the
same neighborhood statistics as the image (object) being modeled.

Regional models and mixture models Often objects can be divided into distinct re-
gions with different statistical properties. In a chest radiograph, for example, the
lungs are in more or less the same place for all patients, and the heart is generally
situated below the left lung. Before seeing a particular patient’s radiograph, we can
define a region that is likely to contain lung and another that is likely to contain
heart. Of course, this definition is not absolute; a collapsed lung or an enlarged
heart, or simply normal variations in patient size and positioning, could mean that
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the a priori region assignment is incorrect. Various strategies are available for re-
fining the region assignments, including image recentering and warping and various
segmentation algorithms. None of these methods is perfect, however, and the best
we can do is to assess the probability that a particular point is associated with a
given region.

If we denote by Si the set of points associated with region i, the univariate
PDF on the gray level at point r is given by

pr[f(r)] =
∑

i

pr[f(r)|r ∈ Si] Pr(r ∈ Si) . (8.268)

An analogous expression can be given for the two-point PDF:

pr[f(r1), f(r2)] =
∑

i

∑

k

pr[f(r1), f(r2)|r1 ∈ Si, r2 ∈ Sk] Pr(r1 ∈ Si, r2 ∈ Sk) .

(8.269)
If gray levels in different regions are statistically independent, this equation becomes

pr[f(r1), f(r2)]

=
∑

i

∑

k

(1− δik) pr[f(r1)|r1 ∈ Si] pr[f(r2)|r2 ∈ Sk] Pr(r1 ∈ Si, r2 ∈ Sk)

+
∑

i

pr[f(r1), f(r2)|r1 ∈ Si, r2 ∈ Si] Pr(r1 ∈ Si, r2 ∈ Si) . (8.270)

Another special case is a piecewise-constant model where all points within a
given region have the same gray level in each sample function of the random process,
though that value (as well as the borders of the region) can vary randomly from
one sample function to the next. In that case,

pr[f(r1), f(r2)|r1 ∈ Si, r2 ∈ Si] = δ[f(r1)− f(r2)] pr[f(r1)|r1 ∈ Si] . (8.271)

The density in (8.268) is an example of a mixture model where the random
quantity is divided into classes, and the overall density is a weighted sum of the
densities for different classes. In (8.268), a class is identified with a spatial region,
but other kinds of classes are important in imaging as well. In medical imaging,
for example, different disease states are (we hope) described by different PDFs.
Similarly, in aerial photography, crops, cities, oceans and forests would require
different statistical models.

In such cases, the general form of the object PDF is

pr(f ) =
∑

i

pr[ f |class i ] Pr(class i) . (8.272)

The key difference between (8.268) and (8.272) is that the former applies to a
univariate density at a specific point r, while the latter is a general statement
applying to the entire density of the process.

Specifically, if we represent f by an N × 1 coefficient vector α, the mixture
density (8.272) takes the form

pr(α) =
∑

i

pr(α|class i) Pr(class i) , (8.273)
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and the marginal on a single component of α is

pr(αn) =
∑

i

pr(αn|class i) Pr(class i) . (8.274)

8.4.3 Normal models

The basic properties of normal random processes and random vectors were intro-
duced in Sec. 8.3. Here we revisit normal models with the goal of understanding
when and how they apply specifically to the statistical description of objects.

When it is possible to use normal models in imaging, a considerable mathe-
matical simplification results. As we saw in Sec. 8.3, the PDF for a normal random
vector is fully determined by the mean vector and the covariance matrix. More-
over, any linear transformation of a normal random vector leaves it normal, so a
full analysis of the effect of a linear operator requires only that we transform the
mean and covariance, using simple formulas developed in Sec. 8.1.5.

These properties of normal random vectors extend readily to normal random
processes. The full PDF of any random process is infinite-dimensional, but in
the normal case we can take advantage of the fact that any marginal or condi-
tional density derived from a normal PDF, even an infinite-dimensional one, is
also normal. Thus if we choose to describe a normal random process by Hilbert-
space marginal densities of the form pr(α1,α2, ...,αP ) or by multipoint densities like
pr[f(r1), f(r2), ..., f(rP )], we can be assured that these densities will all be normal.

Central limits To establish the validity of a normal model, we must usually ar-
gue that the central-limit theorem applies, as it does when independent random
variables or vectors are added together. One way this can happen is when a pixel
or voxel representation is used for the object, and subregions of the pixel or voxel
are statistically independent. As an example, consider an airborne optical camera
viewing a meadow. The camera does not resolve individual blades of grass, and an
adequate 2D object representation can use a pixel that covers many blades. It is
reasonable to argue that the blades reflect light independently, so the total reflected
light in one pixel tends to a normal distribution, at least when we consider only
meadows and do not include, say, forests or beaches.

A somewhat more subtle example is nuclear medicine imaging of perfusion
patterns in the lungs. In this technique, radioactive albumin particles are injected
into a vein and get trapped in the alveoli (the functional units of the lungs where
blood becomes oxygenated). The distribution of the trapped tracer is indicative of
the perfusion of the lung, and it is this distribution that we regard as the object.
Since nuclear medicine systems have very poor spatial resolution compared to the
size of alveoli, we can choose a voxel size that contains many alveoli, and the voxel
value is the sum of the activities in many alveoli. It is reasonable to presume that
these activities are statistically independent, at least when one particular patient is
considered. If we were to consider an ensemble of patients, some would have higher
perfusion in a particular region than others, and all alveoli in this region would tend
to fluctuate together; we avoid this kind of dependence by conditioning the PDF on
a particular patient and hence a particular perfusion pattern. In a frequentist sense,
this conditional PDF describes the hypothetical distribution that would result from
making many different injections of albumin particles into a single patient.
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Gaussian mixture models In the two examples just given to justify use of the central-
limit theorem, we had to be careful to restrict the ensemble of objects under consid-
eration. In the aerial photography example, we had to consider only meadows and
not forests or beaches, and in the nuclear medicine example we had to consider re-
peated injections into one patient rather than a more realistic ensemble of patients.

To analyze a broader ensemble, we do not necessarily have to abandon the
central-limit theorem; instead, we can divide the different objects (or different re-
gions of the same object) into classes and use a mixture density as in (8.272). If we
can argue that a normal PDF applies to each component of the mixture, then the
resulting model is called a Gaussian mixture model.

If α is conditionally multivariate normal for each class, then αn is conditionally
univariate normal, so pr(αn|class i) in (8.274) is fully specified by the conditional
mean αni and the conditional variance σ2

ni:

pr(αn) =
∑

i

1
√

2πσ2
ni

exp

[
−(αn − αni)2

2σ2
ni

]
Pr(class i) . (8.275)

If we must use a large number of classes in order to justify the normal law for each
class, it might be better to consider a continuum of classes and write

pr(αn) =

∫ ∞

−∞
dαn

∫ ∞

0
dσ2

n pr(αn,σ
2
n)

1
√
2πσ2

n

exp

[
− (αn − αn)2

2σ2
n

]
. (8.276)

Similarly, the multivariate density on α for a discrete set of classes is

pr(α) =
∑

i

1
√

(2π)N det(Ki)
exp

[
−1

2 (α−αi)
tK−1

i (α−αi)
]
Pr(class i) ,

(8.277)
where αi and Ki are, respectively, the mean vector and covariance matrix for α
under class i. For a continuum of classes, we can write

pr(α) =

∫

∞
dNα

∫

∞
dK

1
√

(2π)N det(Ki)
exp

[
−1

2 (α−α)tK−1(α−α)
]
,

(8.278)
where dK is a shorthand for the differential of all components of K.

No matter which of these mixture formulas we use, we do not expect the
resulting PDF to be normal. For example, in the simple case of the univariate
expression (8.275) with just two classes, we would get a bimodal PDF with one
Gaussian peak for each class.

High-pass and band-pass filters There are many circumstances where we either pass
an image through a high-pass or band-pass spatial filter or consider an object to
consist of a superposition of such components. For example, edges in an image are
often detected with some sort of derivative filter, and derivatives suppress the DC
component11 of the image. Other examples of filters with zero DC response include

11The common jargon, DC component, does not, of course refer to direct current. Instead it
implies zero spatial frequency, by analogy to the zero temporal frequency of a steady current. In
coherent optical processing, the Fourier transform of an object is displayed as an optical amplitude
distribution centered on the optical axis of a lens system, and in that case it has been suggested
that DC stands for dot in the center.
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wavelets (see Sec. 5.3), channels in the human visual system (see Sec. 14.2) and
filters used to extract discrete cosine transforms (except, of course, the DC term
in the transform). Continuous objects can be represented by zero-DC components,
for example in the Fourier-series basis of (7.13), a wavelet basis or a basis of Gabor
functions (see Sec. 5.1.4). As we noted in Sec. 8.4.1, approximately independent
components can be obtained by filtering with localized band-pass filters.

In all of these cases, an expansion coefficient is computed by forming a scalar
product of the object function with a zero-DC function. For both objects and
images, therefore, it is of considerable interest to have a stochastic model for the
output of a high-pass filter.

In Sec. 8.3.3 we showed that linear filtering of a Gaussian random process
yields a Gaussian random process, so if the input to a filter is Gaussian, the output
must be also. It has been observed empirically, however, many images have a
decidedly non-Gaussian distribution results after high-pass or band-pass filtering.
As seen in the example in Fig. 8.7, the gray-level histograms are typically sharply
peaked around zero and display long tails (Heine et al., 1999; Bell and Sejnowski,
1997). In statistical lingo, these histograms have a large kurtosis. As defined in
(C.41), the kurtosis for a Gaussian is 3 (though many books subtract off the 3 and
make the kurtosis of a Gaussian 0), and gray-level histograms following high-pass
filtering often have kurtosis substantially larger than 3. Statistical pedants refer to
such distributions as leptokurtic (Greek lepto, thin or fine); the opposite condition,
kurtosis less than that of a Gaussian, is referred to as platykurtic (Greek platys,
broad or flat—behold the platypus!).

Fig. 8.7 Top: A typical image before and after high-pass filtering. Bottom:
Gray-level histogram of the high-pass filtered image (note that the right plot
is vs. log frequency of occurrence).

Filtering of Gaussian mixtures Heine et al. (1999) offered an explanation for high
kurtosis after wavelet filtering, but it made assumptions about scale-invariance that
were specific to wavelets. Lam and Goodman (2000) derived the PDF of the coeffi-
cients in a discrete cosine transform from a Gaussian mixture model. Clarkson and
Barrett (2001) extended that argument and showed that kurtotic distributions were
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an inevitable consequence of high-pass or band-pass filtering of Gaussian mixtures;
we shall sketch here the derivation given by Clarkson and Barrett.

If we think of high-pass filtering as a convolution, then the output is a scalar
product of the shifted kernel function with the input. If the kernel contains both
positive and negative components, we can suppress the shift variable and write the
output for one position of the kernel as

z = u− v , (8.279)

where u arises from the positive part of the filter and v from the negative part. This
equation applies whether we think of the input to the filter as a random process or
a random vector in a pixel representation. Moreover, it applies also to computation
of an expansion coefficient in a representation where the expansion function has
positive and negative parts.

We expect u and v to be highly correlated since they come from the same
region of the input, but it is reasonable to assume that they have the same mean if
the filter has zero DC response. This conclusion follows rigorously if we can assume
that all points within the region spanned by the kernel (at a specific shift) have the
same mean, and it may also be a good approximation even with a space-variant
mean since it requires only that the spatial average of the mean over the positive
regions of the kernel equal that over the negative regions. (Consider a difference-
of-Gaussians filter, where a positive central peak is surrounded by a negative ring;
the means of u and v will be equal if the spatial average of the input mean in
the negative ring is the same as the spatial average in the central peak.) Thus we
assume

u = v ; z = 0 . (8.280)

Note that the overbar here implies an ensemble mean; it has nothing to do with
spatial averages. We make no assumptions about stationarity or ergodicity, and
there is no implication that ensemble averages can be approximated by spatial
ones.

Now let us assume that u and v are drawn from a Gaussian mixture. To see
the essential results, we assume first that u and v are conditionally uncorrelated,
for any one component of the mixture, so that the entire correlation between the
two variables results from averaging over components in the mixture. Similarly,
we assume that u and v have the same conditional variances, so in fact they are
conditionally i.i.d. These assumptions may not always be justified, and they will
be relaxed below; for now, we write

pr(u, v|σ,m) =
1

2πσ2
exp

[
− (u−m)2 + (v −m)2

2σ2

]
, (8.281)

where m is the common mean of u and v, and σ is the common standard deviation.
The corresponding conditional density on z is given by

pr(z|σ,m) =

∫ ∞

−∞
du pr(u, u − z|σ,m) . (8.282)
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Fig. 8.8 Illustration of the integral encountered in analyzing Gaussian mixture
models.

As illustrated in Fig. 8.8, this integral can be interpreted as a 1D projection or
Radon transform (see Sec. 4.4) of the 2D function pr(u, v|σ,m). We see graphically
that the result is independent of m, and by completing the square we obtain

pr(z|σ) = 1

2πσ2

∫ ∞

−∞
du exp

[
−u2 + (u− z)2

2σ2

]
=

1

2σ
√
π
exp

(
− z2

4σ2

)
. (8.283)

Note that we have written this density as conditional on the standard deviation
σ rather than the variance σ2. We are free to choose either, but the standard
deviation is convenient when we write out the overall density on z. Since the
conditional mean does not influence the statistics of z, the mixture can be specified
by a univariate prior on σ, and we find

pr(z) =
1

2
√
π

∫ ∞

0

dσ

σ
exp

(
− z2

4σ2

)
pr(σ) . (8.284)

By comparison with (4.85), we recognize (8.284) as a Mellin convolution, and many
interesting properties of pr(z) follow from this observation. Since Mellin transforms
convert Mellin convolutions into products, and since Mellin transforms can be inter-
preted as moments (see Sec. 4.2.2), it follows that moments of z are related simply
to moments of σ; from Clarkson and Barrett (2001), the relation is

〈zk〉 =
2kΓ

(
k+1
2

)

√
π

〈σk〉 , (8.285)

where Γ(·) is the gamma function.
From this moment relation and a little algebra, we find

〈z4〉 − 3〈z2〉2 = 12[〈σ4〉 − 〈σ2〉2] . (8.286)

The kurtosis, defined as 〈z4〉/〈z2〉2, is 3 for a Gaussian, so the left-hand side of this
expression would be zero for a Gaussian. By the Schwarz inequality, however, the
right-hand side is ≥ 0, so z always has a kurtosis greater than or equal to that of a
Gaussian, with equality if and only if pr(σ) is a delta function. In short, leptokurtic
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distributions are inevitable when a Gaussian mixture is filtered with a high-pass or
band-pass filter. Moreover, the resulting densities for z often take simple, symmetric
forms, quite robust to the detailed assumptions about pr(σ).

Several different analytical forms have been suggested as empirical descriptions
of long-tailed densities like those shown in Fig. 8.8. When there is a sharp cusp at
the origin, a natural choice is the Laplace or double-exponential density. A family
of densities intermediate between Laplace and Gaussian can also be defined with
pr(z) ∝ exp(−a|z|p), so p = 1 is the Laplace density and p = 2 is the Gaussian. The
parameters p and a can be adjusted to fit empirical densities. Another option is the
Lévy family, defined not by the density but by the characteristic function, which
has the form ψ(ξ) = exp(−b|ξ|q). The corresponding densities cannot be stated as
simple analytic functions except when q = 2, which is the Gaussian, and q = 1,
which is the Cauchy density (see Sec. C.5.10). Again, q and b can be treated as
adjustable parameters.

Mixtures of correlated Gaussians So far we have considered only a specific Gaussian
mixture where u and v were i.i.d. normal, but the result can readily be generalized.
Suppose u and v are bivariate normal with a covariance matrix of the form

Kuv =

[
a b
b c

]
. (8.287)

As the reader may show, (8.284) is still valid with this model, only now σ2 is not
a univariate variance but rather 1

2 (a + c − 2b) (see Clarkson and Barrett, 2001).
Thus the initial assumption that u and v are i.i.d. has no essential effect on the
conclusions.

Normals and entropy It is not always necessary to invoke the central-limit theorem
in order to arrive at a normal probability law. It occurs also in a Bayesian context
when one has partial information about a distribution and wishes to complete the
description as noncommittally as possible. One way to do this is to use the principle
of maximum entropy. A critique of this approach in the context of image recon-
struction is given in Sec. 15.3.3, but here we can be content to paraphrase Zhu et
al. (1998): Entropy is a measure of randomness, and we should choose the density
that is as random as possible in all unobserved dimensions and does not attempt
to represent information that we do not have.

If we know the mean and variance of a random variable (or mean vector and
covariance matrix of a random vector), these moments serve as constraints on the
density, and we would like to find the density of maximum entropy consistent with
these constraints. We shall carry through the calculation in the univariate case and
simply state the multivariate result.

Consider a random variable x and suppose we know that its mean is x and
its variance is σ2. According to the principle of maximum entropy, we must choose
pr(x) to maximize

∫∞
−∞ dx pr(x) ln pr(x), subject to the constraints

∫ ∞

−∞
dx pr(x) = 1 ;

∫ ∞

−∞
dx x pr(x) = x ;

∫ ∞

−∞
dx x2 pr(x) = σ2 + x2 .

(8.288)
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The maximization can be performed by the method of Lagrange multipliers. We
require that the Lagrangian functional,

L{pr(x)} ≡
∫ ∞

−∞
dx pr(x) ln pr(x) + α

[∫ ∞

−∞
dx pr(x)− 1

]

+β

[∫ ∞

−∞
dx x pr(x)− x

]
+ γ

[∫ ∞

−∞
dx x2 pr(x)− (σ2 + x2)

]
, (8.289)

be unchanged by small perturbations of pr(x). Here, α, β and γ are the Lagrange
multipliers, to be fixed by the constraint equations. If we perturb pr(x) by a small
amount η(x), and retain only terms linear in the perturbation, we find

L{pr(x) + η(x)}− L{pr(x)} =

∫ ∞

−∞
dx η(x)

{
1 + ln pr(x) + α+ βx+ γx2

}
= 0 .

(8.290)
Since η(x) is arbitrary, this equation can hold only if the quantity in braces in the
integrand is zero, so pr(x) must take the form

pr(x) = exp
(
−1− α− βx− γx2

)
. (8.291)

Both this form and the constraints are satisfied if

pr(x) =
1√
2πσ2

exp

[
−
(x− x)2

2σ2

]
. (8.292)

Thus, if all we know about a random variable is its mean and variance, the
maximum-entropy choice for its density is a normal. A similar calculation shows
that if all we know about a random vector is its mean vector and covariance matrix,
the maximum-entropy density is multivariate normal.

Positivity Appealing though normal distributions may be, they have one serious
deficiency in many imaging applications. If the random variable or vector in ques-
tion is inherently nonnegative, as physical objects often are, then the normal law
cannot be strictly correct; it always predicts some finite probability of negative val-
ues. We shall now discuss several possible fixes for this problem.

One simple fix is just to consider situations where the standard deviation of
the random variable is small compared to its mean; then the probability of getting
a negative value is small and can perhaps be neglected without serious error. For
the normal law to represent a nonnegative object, in particular, we must consider
low-contrast scenes where the variation we are trying to describe is small compared
to some spatial-average value. Such situations arise often in medical imaging or
other applications involving a faint object on a bright background. They can be
particularly useful for local statistical descriptions where the background may vary
substantially over the whole scene but relatively little over a region of interest.

Another approach is to use a truncated Gaussian which is not allowed to go
negative. Perhaps surprisingly, this is the maximum-entropy choice if we know
the mean and variance of a random variable and also know that it is nonnegative.
Retracing the calculation above, we see that (8.290) still holds with the simple mod-
ification of setting the lower limit of integration to zero, and (8.291) holds without
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modification. A more substantial modification does occur in (8.292), which can now
be written as

pr(x) = N exp

[
−
(x− x0)2

2v2

]
step(x) , (8.293)

where N is a normalizing constant, x0 is not the mean and v2 is not the variance.
Instead these quantities must be determined by numerically solving constraint equa-
tions like (8.288) but with a lower integration limit of 0.

Similarly, if we know the mean and covariance of a nonnegative random vector,
a truncated multivariate normal is the maximum-entropy density. Again, however,
the known mean and covariance cannot simply be plugged into the standard mul-
tivariate normal form.

Log-normals Another solution to the positivity problem is to use log-normals rather
than normals. Since a log-normal is a density for a random variable whose log is
normal, it is defined for any nonnegative variable, and the density is taken to be
zero for negative values of the variable.

The density for a univariate log-normal is given in Sec. C.5.9 of App. C; the
corresponding multivariate form is

pr(f ) =

[
∏

i

1√
2πfi

]
1

√
det(K)

exp
{
− 1

2 [ln(f )− µ]t K−1 [ln(f )− µ]
}
, (8.294)

where the logarithm is to be interpreted componentwise, and µ and K are the
mean vector and covariance matrix of the Gaussian random vector ln f , not f itself.
The reader may test her understanding of transformations of random variables by
showing that the log of f is indeed a multivariate normal.

Often we can argue on physical grounds that the PDF for an object or image
should tend to a log-normal. Consider, for example, transmission x-ray imaging of
a thick, inhomogeneous 3D object. The 3D object can be divided into slabs, and
the overall transmission of the object is the product of the slab transmissions. If the
transmission of each slab is a random process, then the log of the product of the slab
transmissions is also a random process, and if the individual slabs are statistically
independent, then the log of the product is the sum of logarithms of independent
random processes. Thus, regardless of the statistics of the slab log-transmissions,
the overall log-transmission tends to a normal by the central-limit theorem, and
hence the overall transmission itself tends to a log-normal.

In other situations as well, we can decompose the object function into a product
of independent random variables. For example, in nuclear medicine we might inject
a radioactive tracer into the blood stream and watch its migration through the
circulatory system to some target organ. At each branching of the blood vessels,
a tracer molecule can go in one of two directions, and if we consider a point in
the vasculature after many branchings, then the number of molecules arriving there
is the injected number times a product of a large number of random variables,
one for each branch. The central-limit theorem suggests that the log of the tracer
concentration at this point is normally distributed, so the concentration itself is
log-normal.

There is an essential difference between log-normals and truncated normals
as densities for nonnegative random variables or vectors. As the examples above
suggest, we can expect the log-normal to be experimentally verifiable, in principle,
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so it can be interpreted in a frequentist sense. If the variable of interest is a product
of many independent random variables, and each experiment results in different
values for the individual variables, we can repeat the experiment many times, and
the resulting histogram estimate of the density for the product variable will tend to
a log-normal, and indeed this distribution is frequently observed experimentally.12

There is, in fact, a frequentist rationale for maximum entropy, and it will
be sketched in Sec. 15.3.3, but it conceives of the object being constructed by
throwing imaginary grains or blobs of gray level; it definitely does not suggest a
concrete physical experiment. Thus, even though the truncated normal might be a
maximum-entropy density, we should not expect to encounter it as the limit of an
experimental histogram. Maximum entropy, as we used it above, is merely a way
of going from known moments to a noncommittal PDF.

8.4.4 Texture models

A significant portion of the image-science literature deals with analysis, synthesis,
recognition and segmentation of textures, defined loosely as spatial random fields
with some degree of stationarity. Sometimes the stationarity is periodic, with basic
repeating elements such as bricks in a wall or fibers in a woven13 fabric. Sometimes
it is continuous, as with a stucco wall rather than a brick one or the surface of the
ocean, where the light reflected from the object can be described as a stationary
random process. Sometimes the stationarity is only approximate, in one of the
senses discussed in Sec. 8.2.4; the correlation properties might vary slowly, or they
might be stationary only within some region boundaries. Sometimes, in fact, the
stationarity is purely visual; two regions are said to be the same texture simply
because a human observer cannot tell them apart.

Since textures are essentially stationary random processes, Fourier analysis is
an important tool for analyzing them. We shall therefore start this section with a
discussion of the role of Fourier analysis and power spectral densities, and then we
shall briefly discuss methods for estimating power spectra.

Even when stationarity is a good approximation, an autocorrelation function or
power spectral density may not capture all of the essential properties of a texture
field. It may be necessary to specify also some aspects of the multivariate PDF
in order to adequately describe a texture, and we shall describe several means of
doing so.

Throughout this section we shall discuss not only methods of characterizing
texture as a random process, but also methods for generating sample functions of
the random process. An excellent general reference on methods of constructing
sample functions with specified correlation properties and marginal distributions is
Johnson (1994).

12Above we presented an argument that the total amount of tracer in a voxel should tend to a
normal, and here we argue that the concentration at a point should be log-normal. These two
arguments are not necessarily inconsistent, since a sum of log-normals can converge to a normal,
but in fact this convergence is very slow (Barakat, 1976). Which distribution is actually observed
is best resolved empirically.
13Texture comes from the Latin texere, to weave, so a fabric is the prototype of a texture.
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Fourier Phase and magnitude Any spatial pattern, whether regarded as a determin-
istic function or as a sample function of a random process, is completely specified
by its Fourier transform. This (continuous or discrete) Fourier transform is com-
plex, but the modulus and phase convey essentially different information about the
object. Fourier phase tells you where things are— if the position of an object is
shifted, the phase changes but the modulus does not. Fourier modulus, on the
other hand, tells you only how strongly different spatial frequencies contribute to
the object.

In many cases, Fourier phase is more important than Fourier modulus in con-
veying the essence of an object. In a famous experiment, Oppenheim and Lim
(1981) Fourier-transformed two images, one of the television news anchor Walter
Cronkite and one of a clock. They then interchanged the Fourier phases, putting
Walter’s phase with the clock modulus and vice versa. After inverse transformation,
the image with Walter’s Fourier phase still looked like Walter, and the one with the
phase of a clock looked like a clock.

With textures, on the other hand, the situation can be reversed. In a station-
ary random process we do not care where things are. One location is as good as
another, at least statistically, so Fourier phase is much less important than Fourier
modulus. Two stationary random processes with the same modulus but different
phases are recognized as sample functions of the same texture. One common way
of synthesizing sample textures, therefore, is to generate samples of white noise and
pass them through a linear filter.

As an example, Bochud et al. (1999b) examined the relative importance of
Fourier amplitude and phase in describing coronary angiograms (x-ray images of
blood vessels after injection of an x-ray-absorbing material into the blood stream).
In agreement with the remarks above, they found that the phase was important for
describing the vessel, but not for the random anatomical background against which
the vessel was seen. Though the background was not rigorously stationary, they
showed that realistic images could be simulated by filtering white noise through a
space-variant filter.

Estimation of power spectra or autocorrelation functions of images Suppose we have
one or more sample images, and we want to generate additional images with simi-
lar texture by filtering white noise. To the extent that the texture is a stationary
random process, we need to know the power spectral density or the stationary auto-
correlation function. There is a large literature on estimating these quantities from
sample images, and we confine ourselves here to a few general observations.

In Sec. 8.2.5 we mentioned—and dismissed—an apparently obvious approach
to spectral estimation, the periodogram of a single sample image. Figure 8.1 illus-
trates the difficulty with this approach. Mallat (1999) refers to periodogram analysis
as “naive spectral estimation;” one meaning of naive is “lacking information, un-
informed” and the periodogram is naive in the sense that it does not incorporate
prior information or beliefs into the spectral estimate. We certainly do not believe
that the rapid fluctuations seen in Fig. 8.1 are meaningful features of the power
spectrum (or if we did, we would need only to repeat the experiment to change our
belief system). The situation is very similar to image reconstruction, discussed in
much more detail in Chap. 15, where naive attempts at inverse filtering yield large
fluctuations in the reconstructed image.
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The Bayesian approach to this problem, in both image reconstruction and
spectral estimation, is to define a prior probability on the function being estimated
and then to seek an estimate consistent with both the data and this prior. In the
Bayesian community, a preferred prior is the entropy, and maximum-entropy recon-
structions do indeed eliminate the rapid fluctuations and yield smooth estimates.
The details of this procedure, in the context of image reconstruction, are given in
Sec. 15.3.3.

As we shall also see in Chap. 15, there are many other approaches, referred to
collectively as regularization, that can be used to suppress fluctuations in recon-
structed images, and each of these methods has its analog in spectral estimation.
Many of these methods can also be described as Bayesian, but with priors other
than entropy (see Sec. 15.3.3); all of them attempt to enforce our prior belief that
the function being reconstructed (power spectrum or image) is smooth in some
sense.

One way to enforce smoothness in spectral estimation is to model the spectrum
as a smooth function with unknown parameters and then to estimate the param-
eters. For example, we could model the spectrum as a Gaussian and estimate its
width, or as a Gaussian times a polynomial and estimate the polynomial coefficients
also. One popular model, especially for time-series analysis, is the autoregressive,
moving average or ARMA model where the spectrum is modeled as a ratio of
polynomials (Oppenheim and Schafer, 1989).

Another model is to assume that the power spectrum varies as a power law,
ρ−β, and then to estimate the exponent β. Many images exhibit this behavior in
practice (even when there is no reason to assume stationarity), and β is a useful
phenomenological descriptor. Physical mechanisms that lead to power-law power
spectra in the context of electrical noise are surveyed in Sec. 12.2.3.

Which regularization method is chosen depends on what one wants to do with
the spectral estimate. If we want to simulate images that appear realistic to a
human observer, we can use one of the psychophysical tests detailed in Sec. 14.2.3
to measure how well the observer can distinguish real texture images from white
noise filtered with the estimated spectrum. If the real and simulated images are
indistinguishable, it means that the estimated spectrum is good enough for this
purpose; on the other hand, if they are readily distinguishable, it may mean that
the spectral estimate is poor, or it may mean that the texture is more complicated
than just filtered noise.

For many purposes, however, we need more than just visual realism. In texture
recognition or discrimination, for example, we need a stochastic model in order to
design an optimal discriminant function (see Sec. 13.2.12). If we use a Gaussian
model, we need to know the inverse of the covariance matrix, and if we also assume
stationarity, that means we need to know the reciprocal of the power spectrum.
Even if the spectral estimate accurately represents the actual spectrum for the spa-
tial frequencies where the spectrum is large, it may be a poor estimate in the tails
and hence a poor estimate of the reciprocal spectrum. The best spectral estimate in
this case is the one that leads to the best discrimination performance for a discrim-
inant function based on the estimated spectrum (but tested on real images—not
ones simulated from the estimated spectrum!).

As another example, we shall see in Chaps. 13 and 14 that some important
measures of image quality are expressed in terms of the image power spectrum. If
we do not know the actual spectrum, we must estimate it, and the adequacy of the
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spectral estimate must be judged by the accuracy of the corresponding estimates of
figures of merit for image quality.

Estimation of power spectra or autocorrelation functions of objects Above we stated
our goal as estimation of the power spectral density or autocorrelation function of
a set of images. Often, however, what we really want to know is the power spectral
density or autocorrelation function of the objects that formed the images.

Suppose we have a set of sample images {gj , j = 1, ..., J}, where the jth image
is related to an object fj by gj = Hfj + nj . We must assume that fj is a sample
function of a stationary (or at least quasistationary) random process in order to
define an object power spectral density Sf (ρ), and we need knowledge of H and of
the noise statistics in order to estimate Sf (ρ).

As a simple example, suppose the imaging system is well approximated as
a convolution (a CC LSIV system in the language of Sec. 7.2.3). Then gj is a
sample function of a stationary random process, and its power spectrum is denoted
by Sg(ρ). If we also assume that nj is a sample function of a stationary random
process, with power spectrum Sn(ρ), then use of (8.156) shows that the image power
spectrum is given by

Sg(ρ) = |H(ρ)|2 Sf (ρ) + Sn(ρ) . (8.295)

The image spectrum Sg(ρ) can be estimated by any of the methods suggested

above, and the result can be denoted as Ŝg(ρ). If we know the noise spectrum
Sn(ρ) independently from the physics of the imaging problem, then one reasonable
estimate of the object spectrum is

Ŝf (ρ) =
Ŝg(ρ)− Sn(ρ)

|H(ρ)|2
. (8.296)

This method gives little information about Sf (ρ) at frequencies for which H(ρ) is

small, and large errors in Sf (ρ) can result from small errors in either Sn(ρ) or Ŝg(ρ).
Moreover, the whole approach depends on modeling the system as CC LSIV and
the noise as stationary.

A better approach is to use some parametric description of the object power
spectrum, perhaps one that allows quasistationarity, and then to estimate the pa-
rameters from the data. This way, the system operator H can be a general CD
mapping and the noise can have an arbitrary covariance matrix Kn, so long as both
of these quantities are known. Methods of parameter estimation to be developed
in Chap. 13 can then be used to estimate the spectral parameters. Thus a station-
ary or quasistationary texture field can be imaged through a shift-variant imaging
system and have nonstationary noise added to it, yet the parameters describing the
spectrum of the texture field can still be estimated.

Gray-level statistics When the correlation properties are not sufficient to charac-
terize a texture, we can also use the single-point PDF pr[f(r)]. For a stationary
texture, this density is independent of r, and we might want to generate samples of
the texture with this density and some specified autocorrelation function or power
spectral density. We shall sketch an iterative algorithm for this purpose.

The algorithm begins by filtering white noise to obtain several samples with the
requisite power spectrum. It is probably valid to invoke the central-limit theorem
on the filter output since the filter will serve to add up many independent samples of
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the white noise, so the single-point PDF on the filter output is probably Gaussian,
but in any case we can estimate the PDF from the average gray-level histogram of
the samples. At this stage we can perform a process known as histogram equaliza-
tion, a pointwise nonlinear transformation that changes the gray-level distribution
as described in Sec. C.3.1, and the form of the transformation can be chosen to
yield the required PDF. This transformation changes the power spectrum in a com-
plicated way, and it is necessary to estimate the new spectrum from the samples.
From the new spectrum, we can devise a new filter to match the current spectrum to
the required one, but this changes the PDF so a new histogram-equalization step is
needed. The process is then repeated iteratively. Each iteration is a projection onto
convex sets, as discussed in detail in Sec. 15.4.5, and convergence can be proven by
use of a theorem quoted there. The result is a set of samples that have both the
specified power spectrum and the specified single-point PDF.

Texture synthesis with wavelet channels It has been found (Bergen and Adelson,
1991; Chubb and Landy, 1991) that textures that give similar gray-level histograms
through a series of wavelet filters appear similar to a human observer. Heeger and
Bergen (1995) and Rolland and co-workers (Rolland and Strickland, 1997; Rolland
et al., 1998; Rolland, 2000) have used this observation to develop algorithms for
synthesizing textures.

The Rolland group uses a digital image of a reference texture and synthesizes
additional sample textures of similar visual appearance. The reference texture is
decomposed into subbands by means of a discrete wavelet transform (see Sec. 5.3.3).
This transform is invertible, so the original reference texture can be recovered by
the inverse transform. The stochastic model, however, is that the texture can
be characterized by means of gray-level histograms for each subband, basically a
histogram estimate of the univariate PDFs for the output of each wavelet filter. In
principle, multiple reference images could be used to improve this estimate, but the
Rolland algorithm uses just one and implicitly assumes ergodicity.

To synthesize a sample texture, a discrete white noise field is generated, and
it is also passed through the same discrete wavelet transform. The histogram of
each filter output is computed, just as for the reference texture. A nonlinear point
operation is applied in each subband to convert the histograms of the transformed
white noise to histograms that match those of the reference texture. An inverse
wavelet transform then yields the synthesized texture. The visual correspondence
between the reference texture and the synthesized textures is striking, yet all of the
synthesized textures are statistically independent since independent noise fields are
used.

Multiple filters and maximum entropy The method of Heeger and Bergen permits
the synthesis of textures from one or more training images, but it does not give
a probability model for the synthesized images. This gap was filled by Zhu et al.
(1998), whose work can be seen as a combination of wavelet-based texture synthesis
and independent components analysis. Rather than restricting attention to some
chosen set of wavelets, as in Heeger’s method, Zhu et al. use a large library of linear
filters and compute marginal histograms of the filter outputs for some training set
of images (which may consist of just a single image plus an ergodicity assumption).
They then use the principle of maximum entropy to construct a multivariate distri-
bution that agrees with the marginals estimated from training data.
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The rationale for maximum entropy is the one mentioned in Sec. 8.4.3:
maximum-entropy densities are maximally noncommittal and do not attempt to
represent information not available empirically. According to Zhu, the maximum-
entropy density is the “purest fusion” of the empirical marginals.

Suppose we have a set of linear operators L(j) in object space, with the output
of the jth operator given by q(j)(r) = [L(j)f ](r). In the abstract notation of Sec.
8.2.2, the single-point marginal density on the output can be written as

pr
[
q(j)(r)

]
=

∫
df pr

[
q(j)(r)

∣∣f
]
pr(f ) . (8.297)

But the linear operator is deterministic, so q(j)(r) is known exactly once f is speci-
fied, and we can write

pr
[
q(j)(r)

]
=

∫
df δ

{
q(j)(r)− [L(j)f ](r)

}
pr(f ) , (8.298)

where δ{q(j)(r) − [L(j)f ](r)} is simply a 1D delta function. Comparing this ex-
pression to (4.173), we see that the single-point marginal on the filter output is a
Radon-transform projection of the object density pr(f ), where f here corresponds to
the position vector r in (4.173), and choice of the linear operator here corresponds
to the projection direction n̂ in (4.173).

Now suppose we have a set of training “objects” (either good computer sim-
ulations or images from a high-resolution, low-noise imaging system as discussed
in Sec. 8.4.1) from which we can form a histogram estimate of pr

[
q(j)(r)

]
. If we

denote this histogram, defined as in (8.262), by p̂rq(j)(r)

[
q(j)(r)

]
, then we can pose

the maximum-entropy density-estimation problem as

−
∫

df pr(f ) ln[pr(f )] = max , (8.299)

subject to the constraints of normalization,

∫
df pr(f ) = 1 , (8.300)

and agreement with the empirical histograms,

p̂rq(j)(r)(z) =

∫
df δ

{
z − [L(j)f ](r)

}
pr(f ) . (8.301)

If we assume stationarity, at least over some restricted region, then the histogram
should be the same for all positions, and we can drop the argument r on the sub-
script, but we still have to satisfy the constraint at all r. In practice, the matching
will be done for a discrete set of points ri, usually on a pixel grid.

This problem can be solved by the method of Lagrange multipliers, just as in
(8.288) ff., but now we have an infinite number of constraints! For each operator
L(j), we must satisfy (8.301) for all r and all z. We thus have a continuum of un-
known Lagrange multipliers, which we can express as an unknown function Φ(j){z}.
With this view, the general form of the maximum-entropy object density turns out
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to be [see Zhu et al. (1998) for details]

pr(f ) =
1

Z
exp

{
−
∑

i

∑

j

∫
dz Φ(j){z} δ

{
z −

[
L
(j)f

]
(ri)

}}

=
1

Z
exp

{
−
∑

i

∑

j

Φ(j)
([

L
(j)f

]
(ri)

)}
, (8.302)

where Z is a normalizing constant.
The problem is not yet solved since we still have to find the functionals Φ(j)

such that the constraints are satisfied. Zhu et al. propose an iterative algorithm for
this purpose.

One remaining question is how to choose the operators L(j) in the first place.
Since stationarity is probably required to make this whole approach computationally
feasible, it is natural to choose the operators as LSIV filters, but another consider-
ation is independence. The maximum-entropy estimate in (8.302) shows that the
filter outputs are statistically independent, even if this is not the case in reality. Zhu
et al. propose use of a large library of filters and an iterative algorithm to select
a subset of them that optimize a measure of independence, as in ICA, and Zhang
(2001) suggests a Metropolis algorithm.

Parametric descriptions of the marginals The filters chosen in the Zhu approach (or
discovered in ICA) are mostly band-pass filters (though Zhu includes a low-pass
filter as well). As discussed in Sec. 8.4.3 and illustrated in Fig. 8.7, the outputs
of band-pass filters tend to have simple cuspy shapes with long, kurtotic tails.
Empirically, we can describe these marginals by simple analytical forms such as
Laplacian or Levy densities, with only one or two free parameters per filter output.

This observation suggests an alternative to the Zhu method: instead of trying
to choose the functions Φ(j){z} to match the empirical marginal histograms, we can
directly estimate the free parameters in the assumed analytical densities (Kupinski
et al., 2003c).

Lumpy backgrounds Another way to generate images (or simulated objects) with
specified correlation properties and controllable gray-level statistics is the lumpy
background , introduced by Rolland and Barrett (1992). In this method, spatial
elements, called lumps and denoted l(r), are randomly distributed over some area,
so the distribution has the form

f(r) =
N∑

n=1

l(r− rn) . (8.303)

A common choice for l(r) is a Gaussian spatial distribution,

l(r) = A exp

(
−

r2

2s2

)
. (8.304)

The positions rn and possibly also the total number of lumps N are random vari-
ables.

One important special case is where N is a Poisson random variable; the math-
ematical tools for analyzing this case will be developed in Sec. 11.3.9, and the char-
acteristic functional for the random process (8.303) will be derived in Sec. 11.3.10.
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As we shall see there, f(r) is a stationary random process if the positions rn are
uniformly distributed over some area, and the statistical autocorrelation function
turns out to be just the autocorrelation integral of the lump profile [see (11.140)].

If N is large and the lump positions are statistically independent, the single-
point PDF of a lumpy background approaches a Gaussian by the central-limit the-
orem. In this limit, the details of the lump profile are irrelevant, and the resulting
functions are indistinguishable from ones obtained by filtering white, Gaussian noise.
If N is small, on the other hand, then the lump profile controls the single-point PDF
as well as the correlation properties; for more details, see Sec. 11.3.10.

More general lumpy backgrounds As originally defined by Rolland, the lump profile
l(r) in (8.303) is a nonrandom function; the only randomness is in the lump location
rn. To allow more freedom in synthesizing lumpy backgrounds, we can let the lump
profile also be random. For example, the amplitude or the width of each blob could
vary according to some specified probability law.

One very useful variant of the simple lumpy background is the clustered lumpy
background, suggested by Bochud et al. (1999a), where a cluster of identical blobs
forms a superblob, and the final model is a superposition of superblobs. With this
scheme, (8.303) becomes

f(r) =
Ns∑

k=1

Nk∑

n=1

lk(r− rnk −Rk) , (8.305)

where Ns is the number of superblobs, Nk is the number of blobs within the kth

superblob, Rk is the center of the kth superblob, rnk is the center of the nth blob
within the kth superblob, and lk(r) is the random lump profile associated with that
superblob. It is useful to make Nk and Ns Poisson random variables, so we must
wait until Chap. 11 to analyze the statistics of (8.305).

Bochud et al. chose elongated Gaussians for the lump profiles and used their
orientation as the random parameter in lk(r). With this simple model they were
able to synthesize images strikingly similar to clinical mammograms.

Two-point densities As we discussed in Sec. 8.4.2, two-point PDFs of the form
pr[f(r1), f(r2)] can be an important part of the stochastic description of objects
in general, and they are particularly attractive for stationary random processes
such as textures. For purposes of stochastic modeling, we can estimate the two-
point PDF from the empirical co-occurrence statistics of one or a few images if we
assume ergodicity. It was suggested by Julesz (1962) that textures with similar
co-occurrence statistics would appear similar, though psychophysical studies have
shown that higher-order statistics do have at least some effect on human texture
perception (Diaconis and Freedman, 1981).

The use of co-occurrence statistics for synthesis of realistic textures should be
distinguished from their use in texture discrimination or segmentation. In the latter
application, the goal is to describe the texture pattern within a spatial region by
a few features with good discriminatory power, and it is common to reduce pixel
values in the region to a co-occurrence matrix and to derive the features from that
matrix. There is no need to make any argument about ergodicity or stationarity in
this application; if the features are useful in discriminating one region from another
or classifying regions, that is justification enough.
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Quasistationary textures Most of the discussion above has concentrated on textures
as stationary random processes. If exact stationarity is not a good assumption, we
may want to model a texture as quasistationary, and in this case the stochastic
Wigner distribution function defined in Sec. 8.2.5 is a useful tool. In particular,
if the quasistationary form (8.142) is valid, we can estimate the two factors b(r0)
and A(ρ) separately from samples. If we want to generate sample textures with a
stochastic Wigner distribution specified by (8.142), we can use a lumpy background
with a spatially variable lump density (mean number of lumps per unit area) given
by b(r0). For more discussion on the statistics of lumpy backgrounds, see Sec.
11.3.10.

Sometimes the pattern we want to synthesize is stationary within prespecified
boundaries. For example, we may want to simulate statistically independent sample
functions of an abdominal section of the body in order to study image quality in
computed tomography (CT). We can start with a good anatomical model, obtained
perhaps by manual or automated segmentation of a single reference CT image, and
we can identify specific organs such as liver and spleen within this image (Zubal et
al., 1994). Then any of the methods described above can be used to characterize
the texture within each organ and to generate sample functions consistent with this
characterization. These sample functions can then be placed within the specified
organ boundaries, and the procedure can be repeated as many times as needed to
get a large number of simulated abdomens. These simulations can be regarded as
object representations rather than images since the organ boundaries will be sharp
and the textures may contain very high spatial frequencies.

Random shapes In addition to simulating random textures within a region, we may
wish to make the shape itself random. Simulating a shape usually means adopting
some parameterized description of the shape and choosing the parameters. Some
simple approaches to describing shapes mathematically were discussed briefly in
Sec. 7.1.6. One approach, used for example by Cargill (1989) to describe the hu-
man liver, is to specify the distance R from some internal reference point to the
boundary as a function of polar angles θ and φ. If the surface of the object is
smooth, an expansion of R(θ,φ) in spherical harmonics can be terminated with
relatively few terms (∼ 100 in Cargill’s work), and the coefficients in this expansion
are the desired parametric representation of the liver. This general approach is ap-
plicable to any 3D shape in which a reference point can be found for which R(θ,φ)
is unique; it is not necessary that the shape be convex, though convexity avoids the
necessity of searching for a suitable reference point.

Another general approach, also mentioned briefly in Sec. 7.1.6, is to express the
shape as a geometric transformation of a given reference shape. Affine or non-affine
transformations can be used, and the parameters of the transformation are then the
shape descriptors.

After establishing a parametric description of shape, the next step in shape
simulation is to find the PDF on the parameters, for example by analyzing real
shapes. One common approach is to compute a sample mean and sample covari-
ance matrix on a set of measured parameters and, in effect, to assume that the
PDF is multivariate normal with this mean and covariance. If there are many pa-
rameters, it can be advantageous to use principal components analysis or PCA (see
Sec. 8.4.1) and retain only components corresponding to a few of the eigenvectors
of the sample covariance with the largest eigenvalues. The eigenvectors themselves
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are sets of shape parameters, and the shapes associated with them are often called
eigenshapes. It must be kept in mind, however, that these eigenshapes are char-
acteristics of both the particular shape description used and the experimental data
set from which the parameters were derived.

However the PDF on the shape parameters is formulated, samples drawn from
it can be used to synthesize new shapes consistent with the estimated PDF, and
these random shapes can then be used in image-quality studies and many other
investigations. For an example of these procedures, see Duta et al. (1999), and
for general mathematical treatments of statistical shape analysis, see Small (1996),
Dryden and Mardia (1998) and Kendall et al. (1999).

8.4.5 Signals and backgrounds

In many imaging situations, we do not have equal interest in all parts of the scene.
In aerial reconnaissance, for example, we are relatively uninterested in trees and
bushes, but we would be extraordinarily interested in a military vehicle that might
be hiding in the bushes. Similarly, in an abdominal MRI scan, we have little interest
in the myriad features of normal anatomy, but we are much more interested in a
small nodule that might turn out to be malignant. As a very general term, we
can call an object of interest, that may or may not be present in a given scene, a
signal. The remainder of the scene can be called background or (especially in the
radar literature) clutter. In Chap. 13 we shall discuss in detail methods of detecting
signals, or distinguishing between different signals, but here we introduce the topic
by discussing stochastic models for objects with and without signals.

Additive signals Perhaps surprisingly, it entails no loss of generality to decompose
an object into a simple sum of signal and background components:

f(r) = fs(r) + fb(r) . (8.306)

Once we have defined the portion of the object that we regard as signal and denoted
it as fs(r), then the background fb(r) is just defined as f(r)− fs(r).

This does not say that fb(r) is the same as f(r) would be in the absence of
the signal, though in fact it may be. In nuclear medicine for example, a tumor is
often manifest by an increased uptake of some tumor-seeking radiopharmaceutical,
so it is natural to simply add the tumor distribution fs(r) to the distribution fb(r)
in normal tissue. If both fs(r) and fb(r) are sample functions of random processes,
then it may be reasonable to take the two processes as statistically independent.

In optical imaging, on the other hand, objects are opaque, so a signal of interest
may obscure the background behind it. For purposes of describing the response of an
imaging system, the object f(r) is either fb(r) or fs(r), not their sum. Nevertheless,
we can still use an additive model if the statistical dependence of the two processes
is taken into account.

Nonrandom signals The simplest model for a signal on a background is one where
the signal function is completely specified and the only randomness is whether or
not it is present. This model is often called SKE (signal known exactly). As we
shall see in Chap. 13, it is an excellent starting point for discussing signal detection
and image quality.
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If we adopt the SKE model and assume that the signal is just added to the
background rather than obscuring it, then the signal and background are statisti-
cally independent. With or without a signal, the PDF on f(r) is fully determined
by the PDF on fb(r) since that is the only random process in the problem. In the
absence of a signal, we can write the univariate density on f(r) as

pr[f(r)|signal absent] = prb[fb(r)] . (8.307)

We have added the subscript b to indicate that prb[fb(r)] is specifically the PDF
on the background; the notation is redundant here since the same information is
conveyed by the subscript on fb(r), but its usefulness will become apparent in a
moment.

Because of the assumed statistical independence, the form of the PDF for fb(r)
is still the same with a signal present, but to relate it to the PDF on f(r) we must
rewrite (8.306) as

fb(r) = f(r)− fs(r) . (8.308)

We then have

pr[f(r)|signal present] = prb[f(r)− fs(r)] . (8.309)

Now we see the need for the subscript: the 1D PDF prb[fb(r)] is merely shifted along
the axis by the presence of a nonrandom signal (see Fig. 8.9), and the functional
form is unchanged.

Fig. 8.9 Effect on the univariate PDF of adding a nonrandom signal to a
random background.
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This discussion has specifically dealt with univariate densities at a single point,
but it is easy to extend it to an arbitrary number of points or to general Hilbert-
space vectors representing object, signal and background. Abstractly, we can write

pr(f |signal absent) = prb(fb) ; (8.310)

pr(f |signal present) = prb(f − fs) . (8.311)

These densities can be interpreted as PDFs on coefficient vectors like α or as multi-
point densities. In fact, (8.308) and (8.309) follow from (8.310) and (8.311) just by
regarding f(r) as a component of f (and similarly for fb and fs) and taking marginals
on both sides of (8.310) and (8.311). Whatever space we are working in, addition
of a nonrandom signal merely shifts the background PDF.

Parametric signal models Sometimes a signal is not known exactly but can be de-
scribed by a function with a small number of unknown parameters. For example, in
nuclear medicine a tumor might be well modeled as a sphere with random location,
size and uptake of a radiopharmaceutical. Similarly, in astronomy a pulsar could
be modeled as a time-varying point source, where the random parameters are its
coordinates in the sky and the amplitude and period of the pulsation.

In these cases we do not need an infinite-dimensional PDF like pr(fs) to de-
scribe the signal; if the signal is fully specified by L parameters {θs$, 3 = 1, ..., L},
all we need is the L-variate PDF pr({θs$}). The signal parameters can also be
arranged into an L × 1 vector θs, so we need the PDF pr(θs) in order to describe
the signal fully.

With a signal described parametrically, the object PDF is given by

pr(f |signal present) =
∫

∞
dLθ pr(f | signal present, θs) pr(θs) . (8.312)

The conditional density pr(f | signal present, θs) is just the density for an SKE prob-
lem; if we condition on a set of parameters that completely specify the signal, then
the signal is known exactly. If the signal and background are statistically indepen-
dent, then this conditional density is given by (8.311), and we have

pr(f |signal present) =
∫

∞
dLθs prb [f − fs(θs)] pr(θs) . (8.313)

The object PDF is now a weighted average of shifted background PDFs.

Obscuring signals If point r lies within the signal and the signal obscures the back-
ground, then fb(r) can take on only the value zero at this point. Since f(r) is then
identical to fs(r), the univariate density on f(r) for a nonrandom signal is given by

pr[f(r)|signal present at r] = δ[f(r)− fs(r)] . (8.314)

If the signal is absent, or if it is present in the object but not at point r, then (8.307)
still holds.

Multipoint densities can be formulated similarly. For example, if a nonrandom
signal is present at r1 but not at r2, the two-point conditional PDF is

pr[f(r1), f(r2)|signal present at r1, absent at r2 ] = δ[f(r1)− fs(r1)] prb[f(r2)] .
(8.315)
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The univariate marginals of (8.315) are consistent with (8.314) and (8.307).
The PDFs specified by (8.314) and (8.315) can be difficult to work with, es-

pecially when we extend the discussion to random signals. It is often preferable to
work in terms of the expansion coefficients {αn}. Consider a nonrandom, obscuring
signal with support Ss; that is, the signal obscures the background for all points r
in the region Ss. For an orthonormal basis, the coefficient αn is given by

αn =

∫

Sf

dqr ψ∗
n(r) f(r) , (8.316)

where Sf is the overall support of the object. When a signal is present, this integral
can be written as

αn =

∫

Ss

dqr ψ∗
n(r) fs(r) +

∫

Ssc

dqr ψ∗
n(r) fb(r) , (8.317)

where Ssc is the complement of Ss, i.e., the set of points in Sf but not in Ss.
We can think of the first integral in (8.317) as the nth component of an infinite

vector αs describing the signal in the basis {ψn}; since the signal is nonrandom,
αs is nonrandom. The second integral would be the nth expansion coefficient for
the background except that we have excluded the region Ss from the range of
integration. Nevertheless, we can think of that integral as the nth component of a
random vector which we can denote asαb, and we can write, without approximation,

α = αs +αb , (signal present) . (8.318)

If the signal is absent, then the support of the background is the same as the
object support, and we can write

α = αb , (signal absent) , (8.319)

where αb is now computed via integration over all of Sf .
Because of the different regions of integration, the statistics of αb will, in

general, depend on whether or not the signal is present. There is, however, one
interesting situation in which we might assume that αb is independent of the signal.
Suppose we have a spatially compact signal but a spatially extended basis function,
such as a Fourier basis function (see Sec. 7.1.2). In that case, deletion of a small
region may not change the value of the integral very much, so it might be a good
approximation to say that αb is the same with and without the obscuring signal.
If that assumption is valid, then we are back to an additive model with a signal-
independent background, at least in this basis. If, on the other hand, deletion of the
signal support does change the integral significantly, we can still use the additive
form (8.318), but we have to use a different PDF on αb for signal present and signal
absent.

8.5 STOCHASTIC MODELS FOR IMAGES

Having just discussed various stochastic models for objects, we turn now to images.
In keeping with our emphasis on digital imaging, we consider only CD systems here,
and for simplicity we assume they are linear. Our objective will be to characterize
an ensemble of such images by its mean vector and covariance matrix and, where
possible, a multivariate probability density function.
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8.5.1 Linear systems

In the absence of noise, we defined a linear imaging system as one for which the
image was a linear functional of the object; with noise, a linear imaging system
can be defined as one for which the average image, obtained after many repeated
images of the same object, is a linear functional of the object. If we denote this
mean image by g(f ), then for any linear system we can write

g(f ) = Hf , (8.320)

where H is a linear operator acting on the object f.
Specifically for the case of digital imaging of an object function, we know from

Sec. 7.3.1 that the most general way to write the linear mapping is

gm(f ) =

∫

Sf

dqr hm(r)f(r) , m = 1, ...,M . (8.321)

Except for the overbar and the explicit argument f, this equation is identical to
(7.225). We emphasize that the average implied by this overbar is for repeated
images of a single object.

To get an expression for the actual random image, we can define an M × 1
noise vector n by

n ≡ g− g(f ) = g−Hf . (8.322)

Thus, we have
g = Hf + n . (8.323)

This is the fundamental equation describing noisy, digital imaging of real objects.
Now we must understand the statistical properties of g, both for a particular object
f and when a random ensemble of objects is considered.

8.5.2 Conditional statistics for a single object

Conditional density If each component of g is a continuous random variable, we
can denote the conditional probability density function (for a particular object) by
pr(g|f ). If each component of g can take on only discrete values, we should use the
conditional probability Pr(g|f ), but to avoid considering these two cases in parallel,
we shall use the lower-case pr(g|f ) in both cases, understanding it as a probability
density function or probability as needed. Specific forms for pr(g|f ) will be given
later, especially in Chaps. 11 and 12. As we shall see there, independent Poisson
models are usually valid when photon-counting detectors are used, and multivariate
normal models are valid with most other detectors.

Even without specific models for the detector statistics, we can make some
general statements about pr(g|f ). For one thing, we know that f affects the data
only through the system operator H, so

pr(g|f ) = pr(g|Hf ) = pr(g|Hfmeas) . (8.324)

Thus only the measurement component of the object affects the statistics of the
image.

Furthermore, for a given f, Hf is not a random variable, so

pr(g|f ) = prn(g−Hf |Hf ) , (8.325)
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where prn(n|g) is the PDF on the noise vector14 given some mean value for the
detector output. If this density is independent of g, then we say that the noise is
object-independent and write

pr(g|f ) = prn(g−Hf ) . (8.326)

In this case, therefore, the conditional density on g is just a displaced version of the
density on the noise. As we shall see in more detail in later chapters, this object-
independent model is often valid for electronic and other excess noise in detectors.

A related approximation is that the noise is object-dependent but signal-
independent. When we divide an object into signal and background, as in (8.306),
it may turn out that the signal is weak compared to the background, and sometimes
we can write pr(g|f ) = pr(g|fb + fs) ≈ pr(g|fb). This may be a good approximation
with photon-counting detectors in low-contrast situations where all components of
Hf are approximately equal.

Another assumption that is often justified in practice is that the components of
n are statistically independent for a fixed object. With discrete arrays of photodi-
odes, for example, the electronic noise in one element is often statistically indepen-
dent of noise in all other elements, and we shall see in Chap. 11 that photon-counting
detectors viewing a Poisson source almost always yield statistically independent
measurements. When this assumption is valid, we have

pr(g|f ) =
M
∏

m=1

pr(gm|f ) . (8.327)

Conditional mean and covariance We can also make some general statements about
conditional means and covariances. We know already that the conditional mean of
g is

E{g|f } ≡ g = Hf , (8.328)

from which it follows at once that

E{n|f } = 0 . (8.329)

Thus we can always regard the noise vector as zero-mean.
Since we are conditioning on f and hence Hf is not a random variable, the

conditional covariance of g is the same as the covariance of n; notationally, we
write

Kg|f = Kn , (8.330)

but we must allow for the possibility that Kn depends on f (in the Poisson case, for
example).

8.5.3 Effects of object randomness

Next we examine the image statistics in the case where the object is random. In
frequentist terms, we can consider a large number of images, each with a different
object drawn from some ensemble. Our knowledge of the object statistics is given
by a stochastic model such as those considered in Sec. 8.4.

14Recall that we add subscripts to PDFs only when the random variable is not obvious from the
argument.
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Overall density Formally, we can write the overall probability density as

pr(g) =

∫

U

df pr(g|f ) pr(f ) . (8.331)

In principle, this integral runs over the entire infinite-dimensional object space, but
from (8.324) we know that only the measurement subspace contributes. The di-
mensionality of this subspace is R, the rank of the operator H, so really only R
components are important. If we expand fmeas in some suitable basis for measure-
ment space as in (7.251), with an R × 1 coefficient vector α, then the integral can
be written as

pr(g) =

∫

∞
dRα pr(g|α) pr(α) . (8.332)

Depending on the choice of basis for measurement space, there is some matrix
H0 that exactly maps the coefficients α to Hf (see Sec. 7.4.3), so we can write

pr(g) =

∫

∞
dRα pr(g|H0α) pr(α) . (8.333)

Derivation of the form of H0 for the specific case of expansion in natural pixels
(Sec. 7.4.3) is an interesting exercise for the reader.

For object-independent noise as in (8.326), (8.333) takes the appealing form,

pr(g) =

∫

∞
dRα prn(g−H0α) pr(α) . (8.334)

This equation is not quite a convolution, but nevertheless it can be usefully trans-
formed by Fourier methods. With characteristic functions as defined in (8.27) and
some algebra similar to that used in obtaining (8.43), we can show that

ψg(ξ) = ψn(ξ)ψα(H
t
0ξ) . (8.335)

Increasing the noise level decreases the width of ψn(ξ) in this Fourier domain, and
increasing the degree of object randomness decreases the width of ψα(Ht

0ξ); either
measure decreases the width of ψg(ξ) and hence increases the spread of pr(g).

For Poisson noise (8.334) and (8.335) are not valid; instead, (8.334) must be
written as15

Pr(g) =

∫

∞
dRα Pr(g|H0α) pr(α) . (8.336)

Note that we have written Pr(g) instead of pr(g) since Poisson random variables are
discrete. The probability (not density) Pr(g|H0α) is just a product of univariate
Poisson probabilities, where the mean of gm is [H0α]m.

The transformation of the characteristic function in the Poisson case was de-
rived by Clarkson et al. (2002). They show that (8.336) is equivalent to

ψg(ξ) = ψα[H
t
0 Γ(ξ)] , (8.337)

15We could also have written Pr(g|H0α ) in (8.336) as Pr(g|α ) since H0α is fully determined by
α , but the former version is more useful when we want to write the probability as a product of
Poissons; the probability for gm is specified by a single component of H0α , but all components of
α may be required because of the matrix multiplication.
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where Γ is an operator that acts independently on each component of its vector
operand; it is defined such that

[Γ(ξ)]m =
−1 + exp(−2πi ξm)

−2πi
. (8.338)

Clarkson et al. (2002) show also that this transformation law applies when H0

is replaced by a CD operator H and the full infinite-dimensional vector f is used in
place of the finite-dimensional α. In that case the characteristic function for g is
related to the characteristic functional for f by

ψg(ξ) = Ψf [H
† Γ(ξ)] . (8.339)

Overall mean We shall use the notation of (8.331), recognizing that the integral
will be realized by expanding the measurement component of f in some basis and
integrating over the coefficients. With this convention, we can write the overall
mean image as

E(g) =

∫

∞
dMg gpr(g) =

∫

∞
dMg g

∫

U

df pr(g|f ) pr(f ) . (8.340)

Shuffling the integrals, we see that

E(g) =

∫

U

df pr(f )

∫

∞
dMg gpr(g|f ) . (8.341)

The inner integral is the average of g with respect to the conditional density, which
is precisely what we called g(f ) previously, so

E(g) =

∫

U

df pr(f )g(f ) . (8.342)

Another notation that means the same thing is

〈g 〉 =
〈〈

g
〉

n|f

〉

f
. (8.343)

Yet another notation denotes this overall average as g, with the double overbar
indicating that we have averaged over both the measurement noise and the object
variability. This double average can also be seen directly in (8.340) when we recall
that pr(g|f ) pr(f ) is also the joint density, pr(g, f ).

Overall covariance When both measurement noise and object variability are taken
into account, the covariance matrix on g is defined (for real g) by

Kg =
〈〈 [

g− g
] [

g− g
]t 〉

n|f

〉

f
. (8.344)

Adding and subtracting g(f ) in each factor gives

Kg =
〈〈 [

g− g(f ) + g(f )− g
] [

g− g(f ) + g(f )− g
]t 〉

n|f

〉

f
. (8.345)

Noting that g(f )− g does not involve n (since it has been averaged out) and that
〈

[g− g(f )]
〉

n|f
= 0, we see that

Kg =
〈〈

[g− g(f )][g− g(f )]t
〉

n|f

〉

f
+
〈 [

g(f )− g
] [

g(f )− g
]t 〉

f
. (8.346)
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The first term in this expression is just the noise covariance matrix Kn averaged
over f (though this average is superfluous in the case of object-independent noise);
we can denote this term as Kn. The second term has nothing to do with n but
rather reflects the object variability as seen in the mean image; we can denote this
term as Kg. With this notation, we have

Kg = Kn +Kg . (8.347)

This division of the overall covariance into two terms, one representing the
average noise covariance and the other representing the variation in the conditional
mean, is exact and does not require any assumptions about the form of either pr(g|f )
or pr(f ). In particular, it does not require that the noise be object-independent,
and it does not require that either the noise or the object be Gaussian.

Other expressions for the object-variability term There are several alternative ways
of expressing Kg. First, since the object f(r) is a sample function of a random
process, we can use the autocovariance operator Kf, i.e., the integral operator with
kernel Kf (r, r′). Since g is a linear transformation of f by (8.320), it follows that
[cf. (8.50) and (8.145)]

Kg = HKfH
† . (8.348)

Similarly, if we know that fmeas = H0α as in (8.333), and if we know the
covariance matrix Kα, then we have

Kg = H0 Kα Ht
0 . (8.349)

Finally, if we have some approximate object representation as in (7.301) and
a system matrix H as defined in (7.304), and we know a covariance matrix for the
coefficients θ, then we can approximate Kg by

Kg ≈ HKθ H
t . (8.350)

This approximation will be accurate if the image error defined in (7.329) is small
for all objects in the ensemble (and, of course, if Kθ is accurate).

Sample averages We have written formal expressions for the overall mean and
covariance as if we know the densities needed to perform the averages. In practice,
we will usually know the conditional density pr(g|f ), since it follows from the physics
of the measurement process; as we have noted, this conditional density will usually
be Gaussian or Poisson. The average over objects is much more problematical in
practice. In Sec. 8.4 we discussed a variety of statistical models for objects, but
we saw that there were many circumstances where we could generate samples of f
but could not develop an analytical expression for pr(f ). In these circumstances we
have no choice but to approximate the analytical averages with sample averages;
more details on how this is done in practice will be forthcoming in Chap. 14.

8.5.4 Signals and backgrounds in image space

In Sec. 8.4.5, we divided the object into signal and background parts as in (8.306),
which we can also write as

f = fs + fb . (8.351)

Now we shall look at how this division affects the image statistics.
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Conditional statistics The conditional mean, for a fixed object, is still given by
(8.328), but because of the assumed linearity of the operator, we can write separately
that

gs = Hfs , gb = Hfb , (8.352)

The conditional covariance is still given by (8.330), but for signal-dependent
noise we have to assume in general that the noise covariance matrix depends on both
the signal and the background. In many problems, however, we can assume that the
signal is weak compared to the background, so Kn is approximately independent
of fs.

The conditional density is still given by (8.325), which we can now write as

pr(g|f ) = prn(g−Hfs −Hfb|Hf ) (8.353)

or, for object-independent noise,

pr(g|f ) = prn(g−Hfs −Hfb) . (8.354)

For noise that is object-dependent but signal-independent, this expression would
become pr(g|f ) = prn(g−Hfs −Hfb|Hfb).

Random background When the background fb is random but the signal is not, then
the overall probability density function in (8.331) becomes

pr(g) =

∫

U

dfb pr(g|fb, fs) pr(fb) (8.355)

or, for object-independent noise,

pr(g) =

∫

U

dfb prn(g−Hfb −Hfs) pr(fb) . (8.356)

For a nonrandom signal, the overall covariance matrix is almost unchanged
from before; from (8.347) and (8.348), we have

Kg = Kn +HKfb
H

† . (8.357)

Essentially the only change here is the subscript on K.

Random signals If both signal and background are random but they are statistically
independent, the overall density on the data is given by [cf. (8.355)]

pr(g) =

∫

U

dfs

∫

U

dfb pr(g|fb, fs) pr(fb) pr(fs) . (8.358)

The overall covariance matrix in this case is given by

Kg = Kn +HKfsH
† +HKfb

H
† . (8.359)

If fs and fb are not statistically independent, we can write pr(fb) pr(fs) =
pr(fb|fs) pr(fs) and do a nested average as in (8.344); the result will be that Kfb
acquires an overbar indicating that it is to be averaged over signals.



9
Diffraction Theory

and Imaging

In Chapter 7 we looked at various ways of describing imaging systems as mathemat-
ical operators. Now we begin to connect these operators with physical phenomena
and specific imaging systems. In particular, in this chapter we consider the broad
category of imaging via wave propagation. The waves in question can be light
waves, other electromagnetic waves such as microwaves, sound waves as in medical
ultrasound, or even matter waves as in electron microscopy.

To analyze such systems, we need a thorough understanding of wave propaga-
tion and diffraction theory, and much of this chapter is devoted to those topics. The
story begins with first principles, which for electromagnetic waves is Maxwell’s equa-
tions. In Sec. 9.1 we use Maxwell’s equations to derive the general time-dependent
wave equation, and then we specialize to the case of monochromatic or single-
frequency waves. Two important special solutions of the wave equation are plane
waves and spherical waves, both discussed in Sec. 9.2.

In Sec. 9.3 we develop an important tool called Green’s functions for solving
the wave equations. Green’s functions will prove to be familiar from Chap. 7 since
they are the point response functions if we think of the wave equation as a linear
system.

Waves passing through a finite aperture or radiating from a finite source prop-
agate in complicated ways, giving rise to beautiful and highly useful patterns. In
Secs. 9.4 and 9.5 we develop the essential mathematical techniques needed to cal-
culate these patterns. These techniques are referred to collectively as diffraction
theory, though they could equally well be called radiation theory. As we shall see,
they also fit nicely into the theory of linear shift-invariant systems developed in
Chap. 7.

In Sec. 9.6 we start to apply diffraction theory to imaging. We introduce a
mathematical description for an ideal lens and then analyze how it forms an image
of a monochromatic point object. Then deviations from ideal behavior, called aber-
rations, are discussed from a diffraction-theory viewpoint.

457
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The imaging of extended planar objects is discussed in Sec. 9.7. Included in
Sec. 9.7 is an introduction to the concept of coherence, needed when the radiation
source is random. This development builds on the discussion of random processes
in Chap. 8.

The treatment of diffraction and imaging in Secs. 9.4 – 9.7 is essentially two-
dimensional; objects are described as planar apertures or transparencies, and the
resulting fields are computed on planes. In Sec. 9.8, however, we extend the discus-
sion to volume objects and fields computed at general points in a 3D space.

9.1 WAVE EQUATIONS

In this section we derive the basic equations that describe wave propagation. The
treatment here is for electromagnetic waves, but the resulting theory is valid, with
minor modifications, for acoustic waves as well. The key difference is that an elec-
tromagnetic wave consists of vector fields (such as the electric and magnetic fields),
while an acoustic wave consists of more complicated fields (the stress and strain)
called tensors. In practice, however, we usually reduce both the electromagnetic
and acoustic wave equations to an equation describing a scalar field, and at that
point the mathematical distinction between electromagnetics and acoustics largely
disappears. Moreover, the scalar theory is also applicable to electron imaging when
the electrons are regarded as waves (Reimer, 1985).

9.1.1 Maxwell’s equations

A vector field is a vector, each component of which is a function of spatial position
and time. Spatial position is given by a 3D vector which we shall denote by the
boldface gothic r. Later in this chapter, we shall also deal with 2D position vectors,
which will be denoted by r. In Cartesian coordinates,

r = (x, y, z) , r = (x, y) . (9.1)

A 3D vector field has three Cartesian components, each a function of r and time
t. Electromagnetic waves are described by four such vector fields: (1) the electric
field e(r, t), (2) the electric flux density or displacement d(r, t), (3) the magnetic
field h(r, t) and (4) the magnetic flux density b(r, t). These fields are produced by
a current density (current per unit area) j(r, t) and a charge density (charge per
unit volume) q(r, t). This notation is nonstandard in that it uses lower-case letters
where most books use capitals, and in the use of q for charge density instead of the
usual ρ, which we want to reserve for spatial frequency. A potential confusion is
that q is often used for charge, but here it is charge per unit volume.

The field quantities obey Maxwell’s equations, a set of four coupled first-order
partial differential equations. In the International System of Units (SI), Maxwell’s
equations are given by

∇× e(r, t) = −
∂

∂t
b(r, t) , (9.2a)

∇× h(r, t) = j(r, t) +
∂

∂t
d(r, t) , (9.2b)

∇ · d(r, t) = q(r, t) , (9.2c)
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∇ · b(r, t) = 0 . (9.2d)

In these equations, ∇· and ∇× are the divergence and curl operators, respectively.
They can be expressed in terms of the vector operator ∇, specified in Cartesian
coordinates as

(

∂
∂x ,

∂
∂y ,

∂
∂z

)

. The divergence of a vector field such as b(r, t) is a
scalar field obtained formally by performing a 3D scalar or dot product between ∇
and b(r, t), so that

∇ · b(r, t) =
∂bx(r, t)

∂x
+
∂by(r, t)

∂y
+
∂bz(r, t)

∂z
. (9.3)

The curl is computed similarly except that a vector cross product is used. The curl
of a vector field is thus another vector field, with components given by

[∇× b(r, t)]i =
∂bj(r, t)

∂xk
−
∂bk(r, t)

∂xj
, (9.4)

where (i, j, k) is a cyclic permutation of (1, 2, 3).
We shall often consider free space where there are no material media, no cur-

rents and no charges. In free space, q(r, t) = 0, j(r, t) = 0, and the following
relations connect d(r, t) to e(r, t) and b(r, t) to h(r, t):

d(r, t) = ε0e(r, t) , b(r, t) = µ0h(r, t) , (9.5)

where ε0 and µ0 are the permittivity and permeability, respectively, of free space.
These equations are called constitutive relations. More complicated constitutive
relations, to be discussed in Sec. 9.1.3, apply in material media.

In free space, Maxwell’s equations can be written entirely in terms of e(r, t)
and h(r, t):

∇× e(r, t) = −µ0
∂

∂t
h(r, t) , (9.6a)

∇× h(r, t) = ε0
∂

∂t
e(r, t) , (9.6b)

∇ · e(r, t) = 0 , (9.6c)

∇ · h(r, t) = 0 . (9.6d)

9.1.2 Maxwell’s equations in the Fourier domain

By straightforward Fourier analysis, e(r, t) can be represented as

e(r, t) =

∫

∞
d3σ

∫ ∞

−∞
dν E(σ, ν) exp[2πi(σ · r − νt)] , (9.7)

with the inverse relation

E(σ, ν) =

∫

∞
d3r

∫ ∞

−∞
dt e(r, t) exp[−2πi(σ · r − νt)] . (9.8)

Note that we use σ for the 3D spatial-frequency vector here, reserving ρ for the 2D
frequency later on.
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We shall refer to E(σ, ν) as the 4D Fourier transform of e(r, t) even though
it does not conform to the sign conventions for Fourier transforms introduced in
Chap. 3. By those conventions, E(σ, ν) is a 3D spatial Fourier transform and a 1D
inverse Fourier transform of e(r, t). The convention employed in (9.7) and (9.8)
has the advantage that a component with positive ν represents a wave travelling in
the +σ direction. With the understanding that the usual Fourier sign convention
is reversed for temporal transforms, we write

E(σ, ν) = F4{e(r, t)} . (9.9)

The Fourier transform of a vector is another vector, obtained by transforming
each Cartesian component of the first. In other words, Ex{σ, ν} = F4{ex(r, t)}, and
similarly for y and z components. Note also that that the vectors being transformed
are 3D but the transform operations are 4D; the argument of the 3D vector field
e(r, t) can be regarded as a 4D vector with components (x, y, z, t).

From (3.234) we can establish that

F4

{

∂
∂te(r, t)

}

= −2πiνE(σ, ν) , (9.10)

F4

{

∇ · e(r, t)
}

= 2πiσ ·E(σ, ν) , (9.11)

F4

{

∇× e(r, t)
}

= 2πiσ ×E(σ, ν) . (9.12)

With similar Fourier representations for the other fields, Maxwell’s equations can
be transformed into

σ ×E(σ, ν) = νB(σ, ν) , (9.13a)

2πiσ ×H(σ, ν) = J(σ, ν)− 2πiνD(σ, ν) , (9.13b)

2πiσ ·D(σ, ν) = Q(σ, ν) , (9.13c)

σ ·B(σ, ν) = 0 . (9.13d)

Fourier transformation has converted the coupled differential equations into coupled
algebraic equations.

Note that it is not legal to set J and Q to zero and then claim that equations
(9.13) are valid in free space. Equations (9.6) are valid in any region of space where
j and q are zero since the differential operators in (9.6) are local, relating fields at
a point to sources at the same point, but Fourier transformation is not local. The
Fourier transforms J and Q would be zero for all σ and ν only if j and q were zero
everywhere, which is a physically uninteresting case.

SVD of Maxwell’s equations In Chap. 7, one of our primary tools for describing
linear systems was singular-value decomposition or SVD. The value of SVD is that
it reduces complicated linear operators to simple multiplications. Since Maxwell’s
equations are linear, they should also be amenable to SVD analysis.

In fact, equations (9.13) can be regarded as Maxwell’s equations in SVD form.
We saw in Sec. 2.4.5 that the vector derivatives that occur in Maxwell’s equations
can all be expressed in terms of convolutions with corresponding derivatives of
delta functions. We also know from Sec. 7.2.3 that Fourier analysis is equivalent
to SVD for convolution operators, so the multiplicative forms in (9.13) should not
be surprising. A differential equation with constant coefficients is a linear, shift-
invariant system.
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9.1.3 Material media

Equations (9.6a-d) or (9.13a-d) will form the basis for our discussion of electromag-
netic waves, but before proceeding we take a look at how they must be modified
if the wave is in a material medium rather than free space. The main thing we
have to re-examine is the constitutive relations, (9.5). The electric field and electric
displacement in a material medium are related by

d(r, t) = ε0e(r, t) + p(r, t) , (9.14)

where p(r, t) is the polarization of the medium, defined as the electric dipole mo-
ment per unit volume averaged over a volume large compared to an atom. A useful
physical picture of polarization is that it results from distortion of a charge dis-
tribution. A symmetric distribution of charge for which q(r, t) = q(−r, t) has no
dipole moment and hence no polarization. As an example, an isolated atom in any
stationary state (any definite energy level) has no dipole moment because the elec-
tronic charge cloud is symmetrically disposed about the nucleus, so a collection of
such atoms has no polarization.

Except for certain materials called ferroelectrics, there is no permanent po-
larization; p(r, t) is induced by the applied electric field. For example, an electric
field exerts a force on the electron cloud around an atom, distorting it and creating
a polarization. If the electric field is strong, the polarization can be a nonlinear
function of the electric field, but for weak fields the distortion is proportional to
the force, so p(r, t) is a linear function of e(r, t). Except for a few places where
we mention nonlinear optics, we shall assume linear media in this sense throughout
this book.

The most general linear model would allow p(r, t) to be influenced by e(r′, t′)
for all r

′ and for all t′ ≤ t. The latter restriction is imposed since the response
(polarization) at time t has no way of anticipating the stimulus (electric field) at a
later time; the response must be causal (see Sec. 7.2.3). Since any Cartesian com-
ponent of the vector p(r, t) can, in general, be affected by any component of e(r, t),
the most general linear relation between p(r, t) and the electric field that induces
it has the form

p(r, t) =

∫

∞
d3r′

∫ t

−∞
dt′ M(r, t; r′, t′) e(r′, t′) , (9.15)

where M(r, t; r′, t′) is a 3×3 response matrix, each element of which is a function of
two spatial variables, r and r

′, and two temporal variables, t and t′. If the medium is
isotropic, the polarization must be parallel to the electric field by symmetry; there
is no preferred direction in the problem except that of the electric field. The math-
ematical statement of isotropy is that M is some function m(r, t; r′, t′) times the
3× 3 unit matrix. With this form, each Cartesian component of the polarization is
affected only by the corresponding component of the electric field.

Two additional assumptions will simplify the formulation further. First, since
polarization is the result of the force exerted by an electric field on a charge distri-
bution, we assume that it is local, which means that the polarization at some point
r is influenced only by the field at that same point r. In addition, if the proper-
ties of the medium are not themselves time-dependent, the system is temporally
shift-invariant (see Sec. 7.2.3). We express these assumptions mathematically by
writing m(r, t; r′, t′) = δ(r − r

′)w(r, t − t′). To ensure causality, we assume that
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w(r, t− t′) = 0 if t < t′. With these assumptions, (9.15) becomes

p(r, t) =

∫ ∞

−∞
dt′ w(r, t− t′) e(r, t′) , (9.16)

which is now in the form of a 1D temporal convolution for each spatial position and
each Cartesian component. It is necessary to retain the temporal convolution if we
wish to consider electric fields with arbitrary temporal dependence.

If the medium is homogeneous, so that its response is independent of position,
we can write

w(r, t) = w(t) = F−1
1 {W (ν)} . (9.17)

With this assumption, a 1D temporal Fourier transform of (9.16) followed by a 3D
spatial Fourier transform yields

P(σ, ν) = W (ν)E(σ, ν) , (9.18)

where P(σ, ν) = F4{p(r, t)} and W (ν) = F1{w(t)}.
If we also assume that E(σ, ν) is concentrated in a narrow band of frequencies

centered around ν = ν0, it may sometimes be valid to assume that P(σ, ν) ≈
W (ν0)E(σ, ν) for frequencies in this band. In these circumstances, it is customary
to define W (ν0) = ε0χ(ν0), where χ(ν) is the frequency-dependent susceptibility.
With this definition we have

P(σ, ν) ≈ ε0χ(ν0)E(σ, ν) , p(r, t) ≈ ε0χ(ν0) e(r, t) . (9.19)

Plugging this result into (9.14), we find

d(r, t) = ε0[1 + χ(ν0)]e(r, t) ≡ ε(ν0) e(r, t) . (9.20)

Thus, if the long string of assumptions made in this section is valid, all we have
to do to use the constitutive relation d = ε0e in a material medium is to replace ε0
with ε(ν0). It is worth recounting the assumptions that go into this result, however.
We must assume that the medium is linear, isotropic and homogeneous, that its
response is local (which means that p(r, t) is determined by e(r, t) at that same r),
that e(r, t) is narrowband or quasimonochromatic in the sense that its temporal
Fourier transform spans a narrow range of frequencies, and that the response of the
medium is approximately independent of the temporal frequency over this range. If
all of these assumptions hold, we can use (9.20), but it is incumbent on us to check
them in particular problems.

One might think that we would have to go through a similar discussion to find
a generalization of the magnetic constitutive relation, b(r, t) = µ0h(r, t), but in
optical problems we have a great simplification. Unlike electric dipoles, magnetic
dipoles do not respond at optical frequencies, so magnetization (magnetic dipole
moment per unit volume) is independent of the applied field. Thus we can use the
free-space magnetic constitutive relation with impunity in a material medium.

The punchline of this section is that we can often get away with (9.6) simply by
replacing ε0 with ε(ν0). Media for which this approximation is valid will be called
nondispersive, meaning that ε(ν) does not vary much over the relevant temporal
bandwidth. To simplify the notation we shall use ε for ε(ν0), but the requirements
for narrowband radiation and nondispersive media should be kept in mind.
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9.1.4 Time-dependent wave equations

Though Maxwell’s equations are a complete description of electromagnetic waves,
it is more convenient to work with wave equations, which are second-order partial
differential equations.

Consider a region of space where there are no material media, but where there
may be charges and currents to generate the field. In this region, the constitutive
relations of (9.5) hold. The wave equation for the electric field in this region is
obtained by taking the curl of (9.2a) and using the other Maxwell’s equations, the
constitutive relations and the following identity from vector calculus:

∇× (∇× e) = ∇(∇ · e)−∇2e , (9.21)

where ∇2 is the Laplacian operator ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . The result of these manipu-
lations is

(

∇2 − µ0ε0
∂2

∂t2

)

e(r, t) = µ0
∂

∂t
j(r, t) +

1

ε0
∇q(r, t) . (9.22)

The advantage of using a second-order equation is now apparent: (9.22) is an equa-
tion for e(r, t) alone, uncoupled from the other field quantities. If j(r, t) and q(r, t)
are specified, we can solve directly for e(r, t) (and we shall do so in Sec. 9.3.4).

Note also that (9.22) is really three equations, one for each of the three Carte-
sian components of e(r, t), but these equations are uncoupled as well. We can solve
for ex(r, t) knowing only the x component of the right-hand side of (9.22) and with-
out having to solve for the y and z components of e(r, t).

Similar wave equations can be obtained for other field quantities of interest.
For example, the wave equation for h(r, t) has exactly the same differential operator
on the left-hand side as in (9.22), but with a different driving term on the right.
No matter what field quantity we consider, we arrive at the time-dependent in-
homogeneous scalar wave equation, the general form of which is (Jackson, 1998;
Arfken and Weber, 1995)

(

∇2 −
1

c2m

∂2

∂t2

)

u(r, t) = s(r, t) , (9.23)

where u(r, t) is some scalar field and s(r, t) is a corresponding scalar source term
related in some way to charges and currents. The field u(r, t) may, for example,
be a Cartesian component of the electric or magnetic field, or it may be the scalar
potential or a Cartesian component of the vector potential. Each choice for u(r, t)
has associated with it an appropriate s(r, t), the form of which can be derived
from Maxwell’s equations. If s(r, t) = 0, (9.23) reduces to the homogeneous time-
dependent wave equation.

The constant cm in (9.23) has dimensions of speed, and we shall see in Sec.
9.2 that it can be interpreted as the speed of wave propagation in the medium
(hence the subscript). Different media and different kinds of waves require differ-
ent choices for cm. For electromagnetic waves in vacuum, c2m = (µ0ε0)−1 = c2,
where c is the speed of light. In a material satisfying the assumptions of Sec. 9.1.3,
c2m = 1/µ0ε ≡ c2/n2, where n is the index of refraction of the medium. For homo-
geneous media, cm is a constant, but in general it can be a function of position and
time.

The scalar wave equation (9.23) applies to other kinds of waves as well. For
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example, with proper choice of cm, u(r, t) and s(r, t), it applies to acoustic waves.
For the remainder of this chapter, we shall work directly with (9.23) and not worry
about the physical interpretation of u(r, t) and s(r, t).

The Fourier transform of the time-dependent scalar wave equation is

−4π2

(

σ2 −
ν2

c2m

)

U(σ, ν) = S(σ, ν) , (9.24)

where U(σ, ν) and S(σ, ν) denote 4D Fourier transforms of u(r, t) and s(r, t), re-
spectively. Once again, Fourier transformation has converted a partial differential
equation to an algebraic one.

9.1.5 Time-independent wave equations

An important special case of the scalar wave equation arises when the source oscil-
lates at a single frequency, so we can write

s(r, t) = s(r) exp(−2πiν0t) . (9.25)

Of course, s(r, t) must be real, so the real part of the complex exponential is un-
derstood (see Sec. 7.1.1). Because of the linearity of the wave equation, we can use
complex notation for source and field and separate real and imaginary parts at the
end of the calculation. We allow s(r) to be complex, so the magnitude and phase
of the oscillation can vary arbitrarily with position.

The Fourier representation of the source in (9.25) is

S(σ, ν) = S(σ) δ(ν − ν0) . (9.26)

A source that satisfies (9.25), and hence (9.26), is said to be monochromatic (the
light has a single color). Inserting (9.26) into (9.24) yields

−4π2

(

σ2 −
ν2

c2m

)

U(σ, ν) = S(σ) δ(ν − ν0) , (9.27)

which can be satisfied only if

U(σ, ν) = U(σ) δ(ν − ν0) , (9.28)

or, in the space domain,

u(r, t) = u(r) exp(−2πiν0t) . (9.29)

In other words, the field must have the same monochromatic time dependence as
the source, though possibly with a phase shift since u(r) can be complex. Had
we chosen some other time dependence for the source, other than the complex
exponential, the time dependence of the field would not have been the same as that
of the source. The wave equation describes a temporal linear shift-invariant system,
and the complex exponential exp(−2πiν0t) is an eigenfunction of it.

With a monochromatic source, the Fourier transform of the wave amplitude
must satisfy

−4π2

(

σ2 −
ν20
c2m

)

U(σ) = S(σ) . (9.30)
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Transforming back to the space domain yields
(

∇2 + k2
)

u(r) = s(r) , (9.31)

where k = 2πν0/cm. This equation is known as the time-independent scalar wave
equation or the Helmholtz equation. If s(r) = 0, (9.31) is called the homogeneous
Helmholtz equation.

Poisson and Laplace equations If the source is independent of time (ν0 = 0), then
k = 0 and the Helmholtz equation reduces to the Poisson equation, given by

∇2u(r) = s(r) . (9.32)

The homogeneous Poisson equation is called the Laplace equation. The Poisson
and Laplace equations are fundamental in electrostatics and magnetostatics.

9.2 PLANE WAVES AND SPHERICAL WAVES

In later sections we shall determine the general forms of solutions to the time-
dependent and time-independent wave equations, but first we examine two impor-
tant special solutions, plane waves and spherical waves, in order to assemble some
notation, terminology and mathematical tools that will be needed later. We con-
sider here only homogeneous, source-free media.

9.2.1 Plane waves

A monochromatic plane wave of wavevector k and frequency ν0 has the form

u(r, t) ∝ exp(ik · r − 2πiν0t) . (9.33)

In the direction parallel to k, this function is periodic with period 2π/k (where
k = |k|), so we can define a period or wavelength by λ = 2π/k.

The 3D wavevector k can be expressed in terms of its Cartesian components
by k = (kx, ky, kz), but it is convenient to use the 3D spatial frequency σ and define

k = 2πσ = (2πξ, 2πη, 2πζ) , (9.34)

where ξ = kx/2π, etc. In order for this plane wave to be a solution of the homoge-
neous wave equation, (9.23) with s(r, t) = 0, we require

(

∇2 −
1

c2m

∂2

∂t2

)

exp[2πi(σ · r − ν0t)]

= −4π2

(

ξ2 + η2 + ζ2 −
ν20
c2m

)

exp[2πi(σ · r − ν0t)] = 0 , (9.35)

or

σ2 = ξ2 + η2 + ζ2 =
ν20
c2m

. (9.36)

Since σ = 2πk and k = 2π/λ, we can also write

ξ2 + η2 + ζ2 =
1

λ2
. (9.37)
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It also follows that the frequency and wavevector must be related by

k =
2πν0
cm

. (9.38)

An important conclusion from (9.37) is that the three components of σ are
not independent. If, for example, ξ and η are given (and it is known that we are
discussing a simple plane wave of wavelength λ), ζ can be found from (9.37) as

ζ = ±
√

1

λ2
− ξ2 − η2 . (9.39)

The only ambiguity is the sign, but if we are dealing with waves propagating gen-
erally in the +z direction, we must take the + sign.

Speed of propagation An instructive way to write a monochromatic plane wave is

u(r, t) = exp[ik(κ̂ · r − cmt)] , (9.40)

where κ̂ is a unit vector in the direction of k (i.e., k = kκ̂) and we have used
(9.38). This form shows immediately that cm can indeed be interpreted as the
speed of propagation in the medium; the wave has a constant value on the plane
κ̂ · r = cmt, and this plane moves in direction κ̂ with speed cm.

Other mathematical descriptions of plane waves The spatial-frequency components
ξ, η and ζ can be related back to the direction of propagation of the plane wave.
If α, β and γ denote the direction cosines of σ (or equivalently, of k or κ̂) with
respect to the x, y and z axes, respectively, we have

kx = 2πα/λ , ky = 2πβ/λ , kz = 2πγ/λ , (9.41)

ξ = α/λ , η = β/λ , ζ = γ/λ . (9.42)

The direction cosines obey the constraint

α2 + β2 + γ2 = 1 , (9.43)

which is equivalent to (9.37).
In the paraxial approximation, when σ is nearly parallel to the z axis and α

and β are both near zero, it is convenient to work with angles measured from the z
axis. Suppose the projection of σ onto the x-z plane makes an angle θx with the z
axis and the projection onto the y-z plane makes an angle θy with the z axis. Then,

sin θx =
ξ

√

ξ2 + ζ2
, sin θy =

η
√

η2 + ζ2
, (9.44)

but if these angles are small, then γ ≈ 1, ζ ≈ 1/λ, and

sin θx ≈ θx ≈ ξλ , sin θy ≈ θy ≈ ηλ . (9.45)

Thus, paraxially, ξ and η can be interpreted as angles divided by wavelength, i.e.,
ξ = θx/λ, η = θy/λ.

In summary, we can specify a plane wave by giving any of the following pairs
of numbers: (kx, ky), (ξ, η), (α,β) or (θx, θy). The missing third component can
always be determined by a constraint equation such as (9.37) or (9.43), which must
be satisfied if the plane wave is to be a solution to the wave equation.
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9.2.2 Spherical waves

A monochromatic spherical wave has the form

u(r, t) =
1

|r − r0|
exp(ik|r − r0|− 2πiν0t) . (9.46)

By inspection, this function is spherically symmetric about the point r0, and it has
a monochromatic time dependence with frequency ν0. At this stage, k is just a
constant, but we shall demonstrate that it must be given by (9.38).

To show that (9.46) is a solution to the wave equation, we need to take its
Laplacian. For this purpose, we make a change of variables,

R ≡ r − r0 . (9.47)

In spherical coordinates centered on r0, the 3D vectorR has components (R, θR,φR),
but u(r, t) is independent of the angles. Therefore the Laplacian is given by

∇2

[

eikR

R

]

=
1

R

∂2

∂R2

[

R
eikR

R

]

= −k2
eikR

R
, (9.48)

provided R (= 0, or r (= r0. The behavior at the point r = r0 will be discussed in
Sec. 9.3.

From (9.48) and (9.23), we see that the spherical wave of (9.46) satisfies the
homogeneous wave equation provided k = 2πν0/cm. Exactly this condition was
encountered in (9.38) for plane waves, and in fact it is a general condition. We can
decompose an arbitrary solution of the homogeneous wave equation into monochro-
matic plane waves or spherical waves, and for each component we can define a
wavelength λ and an associated k = 2π/λ. For propagation in a source-free ho-
mogeneous medium, we must always have k = 2πν0/cm. If sources are present,
however, the condition can be violated since the source imposes its own spatial and
temporal dependence, which may not be constrained by k = 2πν0/cm.

9.3 GREEN’S FUNCTIONS

Each of the three inhomogeneous wave equations, (9.23), (9.31) and (9.32), has the
form Lu = s, where L is a linear differential operator, u is an unknown scalar field1

and s is the source that generates it. In this section we develop methods to solve
such equations.

The basic approach is one we exploited in Chap. 7. We first consider a point
source and compute the field produced by it, and then we invoke linear superposition
to compute the field due to an arbitrary source. In the imaging literature, the field
produced by a point source would be called a point response function (or point
spread function in the shift-invariant case), but in electromagnetism it is more
commonly called a Green’s function.2 As we shall see, the same Green’s function

1We use boldface for the source and field here since we want to think of them as vectors in a
Hilbert space. In the remainder of the chapter, the convention of using non-boldface characters
for operators will be followed.
2Modern books often drop the possessive and say Green function for consistency with Bessel
function. We make no claim to modernity or consistency.
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will allow us to solve problems where there is no source in the region of interest but
the field on the boundary of the region is specified.

9.3.1 Differential equations for the Green’s functions

We begin with the time-dependent scalar wave equation, (9.23). The equation for
the Green’s function is obtained simply by replacing the general source s(r, t) with
a point source. The point is an impulse in both space and time, so it is a 4D delta
function, δ(r − r

′) δ(t− t′), which is a source that is zero except at position r
′ and

time t′. The Green’s function p(r, t; r′, t′) is the field at space-time point (r, t) due to
the impulsive source at (r′, t′). The notation p(·) suggests that a Green’s function
is really a point response function.

In a homogeneous medium, the Green’s function must satisfy the time-dependent
wave equation with the impulsive source term:

[

∇2 −
1

c2m

∂2

∂t2

]

p(r, t; r′, t′) = δ(r − r
′) δ(t− t′) . (9.49)

In free space, cm can be replaced by the vacuum speed of light c, but we shall retain
the subscript for generality. Since cm = c/n, the medium is homogeneous if the
refractive index is independent of position.

Similarly, the Green’s function for the Helmholtz equation must satisfy
(

∇2 + k2
)

p(r; r′) = δ(r − r
′) , (9.50)

where k = 2πν0/cm = 2πnν0/c.

9.3.2 Time-dependent Green’s function

To solve any differential equation, we must specify boundary conditions. The effect
of physical boundaries will be taken up in Sec. 9.4, but here we seek solutions to
(9.49) and (9.50) in a homogeneous medium without boundaries. The solutions for
the Green’s functions must be causal and decay as the observation point recedes to
an infinite distance from the source, but otherwise there are no boundary conditions.

The absence of boundaries makes the problem shift-invariant. For the time-
dependent wave equation, this means that p(r, t; r′, t′) is a function only of r − r

′

and t− t′. A useful change of variables is thus

R = r − r
′ , τ = t− t′ , (9.51)

so we can write3

p(r, t; r′, t′) = p(R, τ ) . (9.52)

Similarly, for the Helmholtz equation, we can write p(r; r′) = p(R).
Explicit forms for the Green’s functions can be obtained in the Fourier domain.

The 4D Fourier transform of (9.49) is

−4π2

(

σ2 −
ν2

c2m

)

P (σ, ν) = 1 , (9.53)

3Do not confuse p(R, τ) with the polarization, which we denoted as p(r, t) in Sec. 9.1.3. We shall
have no further use for polarization in this chapter.
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where P (σ, ν) is the 4D Fourier transform of p(R, τ). From (9.53) we get

P (σ, ν) = −
1

4π2

1
(

σ2 − ν2

c2
m

) . (9.54)

The inverse 4D Fourier transform of P (σ, ν) consists of a 3D spatial part and a
1D temporal part. The spatial part has rotational symmetry, so it is given by
(3.250). The temporal part is straightforward, but we must remember the sign
convention used in this chapter: the temporal inverse transform has a minus sign
in the exponent of the Fourier kernel. We thus have

p(R, τ) = 4π

∫ ∞

0
σ2dσ sinc(2σR)

∫ ∞

−∞
dν exp(−2πiντ )P (σ, ν)

=
c2m
π

∫ ∞

0
σ2dσ sinc(2σR)

∫ ∞

−∞
dν

exp(−2πiντ )

(ν + cmσ)(ν − cmσ)
, (9.55)

where R = |R|. The integral over ν can be performed by contour integration in the
complex-ν plane if we can interpret the singularities on the real axis at ν = ±σc. As
discussed in App. B (Sec. B.3.8), the options are to deform the contour slightly so
that it passes over the pole (or, equivalently, displace the pole downward), deform
the contour so it passes under the pole, or take the Cauchy principal value. We
cannot decide among these three options purely mathematically; instead, we must
choose the one that makes physical sense. In particular, in order for the system to
be causal, we must impose the condition

p(R, τ ) = 0 if τ < 0 . (9.56)

Fig. 9.1 Illustration of the contours needed for calculation of the Green’s
function for the time-dependent wave equation.

This condition will be satisfied if we indent the contour above the singularities as
shown in Fig. 9.1. To see why this contour implies (9.56), note that, for τ < 0,
exp(−2πiντ ) vanishes on an infinite semicircle in the upper half-plane, so the con-
tour can be closed by this semicircle without changing the value of the integral.
The poles will then lie outside the contour, and (9.56) follows from the Cauchy
integral formula. For τ > 0, the contour must be closed by a semicircle in the lower
half-plane, so both poles are enclosed and Cauchy’s formula yields
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p(R, τ ) = 2cm

∫ ∞

0
σdσ sinc(2σR) sin(2πcmτσ)

= −
cm
8πR

∫ ∞

−∞
dσ [exp(2πiσR)− exp(−2πiσR)] [exp(2πiσcmτ )− exp(−2πiσcmτ )] .

(9.57)
When we multiply it out, the integrand contains four terms of the form

exp[2πiσ(±R±cmτ )]. By (3.151), a function of this form integrates to δ(±R±cmτ ),
but we must recall that both R and τ are positive, so the delta function is nonzero
only if we take opposite signs. Also, δ(R− cmτ) = δ(−R+cmτ ) = c−1

m δ(τ −R/cm),
so

p(R, τ) = −
1

4πR
δ

(

τ −
R

cm

)

, (9.58)

or, with the original variables,

p(r, t; r′, t′) = −
1

4π|r − r′|
δ

(

t− t′ −
|r − r

′|
cm

)

. (9.59)

Note that the delta function here is one-dimensional; it describes a function that
is zero unless R = cmτ , which is the equation for a sphere of radius cτ in 3D
space. The Green’s function p(r, t; r′, t′) is a spherical shell of field, zero except on
the sphere of radius cτ (see Fig. 9.2). The sphere expands outwards at the speed
of light in the medium, cm, so a disturbance originating at some point r

′ reaches
another point r in a time given exactly by |r − r

′|/cm.

Fig. 9.2 (a) Plot of the Green’s function for the time-dependent wave equation
as a function of time. (b) Plot of the Green’s function for the time-dependent
wave equation in the x-y plane.

The Green’s function diminishes in amplitude as 1/R, which is a consequence
of conservation of energy. As discussed in Sec. 10.1, the energy flux (power per unit
area) is proportional to field squared, and the Green’s function is the field produced
by a point source. Thus the flux varies as 1/R2 while the total area of a sphere of
radius R varies as R2, so the total energy passing through any sphere surrounding
the point source is independent of R.
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9.3.3 Green’s functions for the Helmholtz and Poisson equations

In the absence of physical boundaries, the Helmholtz equation is spatially shift-
invariant, so its Green’s function can be written as p(r, r′) = p(R), where again
R = r − r

′. This Green’s function can be computed by a Fourier method similar
to the one used above, except that there is no temporal transform. The 3D Fourier
transform of (9.50) yields

P (σ) =
1

−4π2σ2 + k2
(9.60)

and the inverse transform is given by (3.250) as

p(R) = 4π

∫ ∞

0
σ2dσ sinc(2σR)

1

−4π2σ2 + k2
. (9.61)

Again we have poles on the real axis, and again we must appeal to causality for
guidance in dealing with them. Depending on which poles are enclosed, contour
integration of (9.61) yields terms proportional to exp(±ikR). Either sign would be
mathematically acceptable, but we must recall that p(R) is a field and has associ-
ated with it a time dependence given by (9.29). Since k was defined as 2πν0/cm,
exp(±ikR) exp(−2πiν0t) = exp[ik(±R−cmt)]. This exponential represents a spher-
ical wave; it is constant on a sphere of radius R = ±cmt about the source. Causality
dictates that we take the plus sign so that the spherical wave will be expanding out-
ward from the source instead of converging inward toward it. We can ensure that
only this sign occurs by proper choice of the contour of integration in (9.61).

Thus the causal Green’s function for the Helmholtz equation in a homogeneous
medium is given by

p(R) = −
1

4π

exp(ikR)

R
. (9.62)

This function, illustrated in Fig. 9.3, satisfies

[

∇2 + k2
] exp(ikR)

R
= −4π δ(R) . (9.63)

This result is consistent with the discussion of spherical waves in Sec. 9.2.2, where
we showed that exp(ikR)/R is a solution of the homogeneous wave equation except
at the point r = 0; if R (= 0, δ(R) = 0 and (9.63) is the homogeneous4 Helmholtz
equation.

The Helmholtz equation reduces to the Poisson equation as k → 0, so the
Green’s function for the Poisson equation is simply −1/(4πR), which satisfies

∇2 1

R
= −4π δ(R) . (9.64)

4Do not confuse the two meanings of the word homogeneous. In the context of linear differential
equations, it means that there is no source term (a term independent of the unknown function),
but in physics it refers to a medium with all properties independent of position.
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Fig. 9.3 (a) Plot of the Green’s function for the Helmholtz equation as a
function of radius. (b) Contour plot of the Green’s function for the Helmholtz
equation in the x-y plane.

9.3.4 Defined-source problems

We now know the Green’s functions for the three wave equations in a homogeneous
medium. In each case, the Green’s function is the field produced by a unit point
source. For any other specified source distribution, the total field can be obtained
by linear superposition. For example, for the time-dependent wave equation, we
have

u(r, t) =

∫ ∞

−∞
dt′
∫

∞
d3r′ p(r, t; r′, t′) s(r′, t′)

= −
1

4π

∫ t

−∞
dt′
∫

∞
d3r′

1

|r − r′|
δ

(

t− t′ −
|r − r

′|
cm

)

s(r′, t′) . (9.65)

We can verify that this field is indeed a solution of the time-dependent wave equation
by operating on both sides of the equation with the operator ∇2 − 1

c2
m

∂2

∂t2 , taking

the operator under the integrals on the right, and using (9.49).
An instructive alternative form of (9.65) is obtained by using the 1D delta

function to perform the 1D integral over t′. The result is

u(r, t) = −
1

4π

∫

∞
d3r′

1

|r − r′|
s

(

r
′, t−

|r − r
′|

cm

)

. (9.66)

This form shows that the field at (r, t) is influenced by the source at point r
′ at an

earlier time t−|r−r
′|/cm, called the retarded time. The time delay accounts for the

finite speed of propagation of the wave from the source point r
′ to the observation

point r.

Optical path Since we know from Sec. 9.1.4 that cm = c/n, where n is the index
of refraction, the retarded time can be written as t− n|r − r

′|/c. The effect of the
medium is that the actual physical distance |r − r

′| between source and observa-
tion point is replaced by the distance times the index of refraction. Index-weighted
distances, called optical path lengths, play a key role in optics, especially in the
geometrical-optics approximation. So far, we have treated the index as a constant,
so the difference between actual path length and optical path length is just a con-
stant, but in many formulations of optics n is allowed to be a general function of
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position. Indeed, most of classical optics is derived from Fermat’s principle, which
asserts that light follows a path that minimizes the optical path length, or equiva-
lently the propagation time from source to observation point. We shall have more
to say about optical path length in Sec. 9.7.4.

Helmholtz equation The time-independent solution of the Helmholtz equation can
be found in several ways. Linear superposition gives at once

u(r) = −
1

4π

∫

∞
d3r′

exp(ik|r − r
′|)

|r − r′|
s(r′) = −

1

4π

∫

∞
d3r′

exp(ikR)

R
s(r′) . (9.67)

We can verify that this field is a solution of the Helmholtz equation by operating
on both sides with (∇2 + k2) and using (9.63).

An alternative derivation of (9.67) uses (9.66), which is general enough to
allow any time dependence, including the monochromatic exp(−2πiν0t) of (9.25).
Evaluating this function at the retarded time, as required by (9.66), yields

exp

[

−2πiν0

(

t−
|r − r

′|
cm

)]

= exp(−2πiν0t) exp(ik|r − r
′|) . (9.68)

Plugging this result into (9.66), we find u(r, t) = u(r) exp(−2πiν0t), with u(r) given
by (9.67). The factor exp(ikR) in the Helmholtz Green’s function thus arises from
retardation of the source time dependence for a monochromatic source. The 1/R
factor is again a consequence of conservation of energy.

The field produced by a static source can be obtained from (9.67) simply by
setting k = 0 [or exp(ikR) = 1].

Relation to operator theory We can restate the key results of this section in operator
form. We have already noted that the inhomogeneous wave equations have the form
Lu = s, where L is the appropriate linear differential operator. We can also define
an integral operator G whose kernel is the Green’s function, and we recall from
Chap. 1 [see (1.64)] that the delta function is the kernel of the unit operator I in
the domain of L. Thus (9.49) and (9.50) state that LG = I, and hence G is a
right inverse of L [see (1.37)]. With this right inverse, the solution of the original
equation for a specified source is u = G s, which is the abstract form of (9.65) or
(9.67).

9.3.5 Boundary-value problems

The problems treated in Sec. 9.3.4 require knowledge of the source throughout space;
in practice we seldom have such complete knowledge. A more common scenario is
that we do not know the details of the source but can describe the field it produces
on some surface. The objective is then to calculate the field at points not on this
surface. Problems of this type, called boundary-value problems, are the subject of
this section.

Types of boundary conditions Possible boundary conditions are Dirichlet condi-
tions, in which the field is specified on the surface, Neumann conditions, in which
the normal derivative of the field is specified, and Cauchy conditions in which both
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the field and its normal derivative are specified. Each type can be homogeneous,5

where the specified quantity is zero, or inhomogeneous, where it is nonzero. For
example, with homogeneous Dirichlet boundary conditions, the field must be zero
over the surface.

The surfaces themselves can be either open or closed. This distinction is intu-
itive for purely spatial surfaces—a closed surface is one that completely surrounds
a finite volume, dividing space uniquely into interior and exterior points such that
there is no path connecting an interior point to an exterior one. In discussing the
time-dependent wave equation, however, we shall encounter surfaces in 4D where
one of the coordinates is time. The situation is best illustrated in 2D, in the x-t
plane. The lines x = const for all t or t = const for all x would be open surfaces.
Similarly, in 4D, a spatial volume at one time is an open boundary. To construct
a closed surface in the x-t plane, we could consider two open surfaces such as the x
axis at time t1 and the x axis at time t2 and connect them at x = ±∞.

The type of equation determines what boundary conditions can be used in its
solution. Second-order partial differential equations can be classified as hyperbolic,
elliptic or parabolic equations. We do not need to go into the reasons for these des-
ignations, but we note that the time-dependent scalar wave equation is hyperbolic
while the Helmholtz and Poisson equations are elliptic. An example of a parabolic
equation, which we shall not discuss here, is the diffusion equation.

For elliptic equations, such as the Helmholtz equation, there exists a unique,
stable solution for Dirichlet or Neumann boundary conditions6 on a closed surface
(Morse and Feshbach, 1953, Chap. 6). Since either Dirichlet or Neumann conditions
alone lead to a solution, Cauchy conditions in general are an overspecification. If
we were to place independent requirements on both the field and its normal deriva-
tive, without requiring that they were consistent with each other, there would be
no solution compatible with both conditions and with the differential equation. Of
course, any real physical problem leads to some values of the field and its derivative
on the surface, and if we could specify those actual physical values, a solution would
exist, but we usually cannot do so.

The situation is different with a hyperbolic equation such as the time-dependent
wave equation. In that case, a unique, stable solution is determined by Cauchy
boundary conditions on an open surface (Morse and Feshbach, 1953). To illustrate
this statement, consider the homogeneous time-dependent wave equation in one
spatial dimension,

(

∂2

∂x2
−

1

c2
∂2

∂t2

)

u(x, t) = 0 , (9.69)

which might describe the free vibrations of a string. If the string has infinite length,
a suitable open boundary is the line t = 0 between x = −∞ and x = ∞. Cauchy
boundary conditions on this boundary, i.e., specification of the displacement and
velocity of the string at all points for t = 0, are sufficient to determine the motion
for all later times. On the other hand, if we were to specify displacement and
velocity over only a portion of the string, say a < x < b, we would not be able to
determine the motion at all points at all later times. In fact, we could not even

5This is yet another meaning of homogeneous; see footnote 4.
6For Neumann conditions, there is an additional constraint that the integral of the gradient over
the surface must vanish; see Morse and Feshbach (1953), p. 698.
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determine the motion in a < x < b at all later times since disturbances outside
that region could propagate into it later. Thus Cauchy boundary conditions are
sufficient on an infinite open surface, but not on a finite one.7 Similarly, for the
time-dependent wave equation in three spatial dimensions, a spatial volume at one
time is an open boundary as noted above. Specification of the field and its time
derivative at t = 0 at all points in the volume leads to a unique, stable solution for
all points at any later time. Another possible open surface is the plane z = 0 for
all t. Specification of the field and its z derivative on this plane for all x, y and t
are acceptable boundary conditions for the time-dependent wave equation. A finite
region of the plane z = 0 does not suffice in general.

In summary, unique, stable solutions to the Helmholtz and Poisson equations
are obtained by specifying either the field or its normal derivative (but not both)
on a closed surface. Unique, stable solutions to the time-dependent wave equation
result from specifying both the field and its normal derivative on a spatio-temporal
open surface, an example of which is the entire spatial volume for one time.

Green’s theorem To incorporate boundary conditions into the solution of the
Helmholtz equation, we use Green’s theorem, an important theorem from vector
calculus which states that
∫

V
d3r

[

ψ(r)∇2φ(r)− φ(r)∇2ψ(r)
]

=

∫

S
da

[

ψ(r)
∂

∂n
φ(r)− φ(r)

∂

∂n
ψ(r)

]

,

(9.70)
where ψ(r) and φ(r) are scalar fields, S is a closed surface enclosing volume V, da
is an area element on S, and the notation ∂

∂n means

∂ψ(r)

∂n
= n̂ ·∇ψ(r0)

∣

∣

S
, (9.71)

where n̂ is the outward unit normal to S. For example, if S includes the plane
z = 0 and V is the right half-space, then ∂ψ(r)/∂n = −∂ψ(r)/∂z on that plane,
the minus sign arising since the outward normal points in the −z direction.

To apply Green’s theorem to the problem at hand, change the variable of in-
tegration in (9.70) from r to r0 and let φ(r0) be the field u(r0) and ψ(r0) be the
Green’s function p(r, r0). The differential operators ∇ and ∂

∂n now imply differen-
tiation with respect to r0 and will accordingly be denoted ∇0 and ∂

∂n0
, respectively.

The Green’s function must satisfy (9.50), which in the present notation be-
comes

(

∇2
0 + k2

)

p(r, r0) = δ(r − r0) , r and r0 in V . (9.72)

The Green’s function is the field at r0 produced by a point source at r plus
other sources outside V needed to satisfy the boundary conditions. Suppose, for
example, that the field on the boundary is produced by a point source at r1 outside
V . By analogy to (9.50), one might think that we would have to include a term
δ(r0 − r1) on the right-hand side of (9.72), but we do not need such a term since

7A precise statement of the requirements on the boundary uses the concept of characteristics,
discussed in Morse and Feshbach (1953) or Sokolnikoff and Redheffer (1958), for example. For the
1D wave equation, the characteristics are two families of curves, x + ct = constant and x − ct =
constant. Specification of Cauchy conditions on an open surface determines the solution uniquely
in a region bounded by those characteristics that intersect the open surface.
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δ(r0 − r1) is identically zero if r0 is inside V and r1 is outside. Of course, sources
outside V can produce fields inside, so the Green’s function is no longer given by
(9.62). In fact, it is no longer shift invariant since the absolute position of r and r0

with respect to the boundary is important.
Inserting (9.72) into (9.70) and using the Helmholtz equation (9.31) and the

sifting property of the delta function, we find

u(r) =

∫

V
d3r0 p(r, r0) s(r0) +

∫

S
da

[

u(r0)
∂p(r, r0)

∂n0
− p(r, r0)

∂u(r0)

∂n0

]

. (9.73)

Comparing this result to (9.67), we see that the volume integral has been modified
since it now includes only sources inside V , but the new surface integral accounts
for sources outside V through their effect on the boundary conditions.

Equation (9.73) will be our primary tool for calculating fields in a closed volume
when we are given knowledge of the fields on the boundary and the sources (if any)
inside the volume. In the next section we shall apply this tool to diffraction by an
aperture.

9.4 DIFFRACTION BY A PLANAR APERTURE

A common situation in optics and imaging involves an open aperture in an otherwise
opaque screen, as shown in Fig. 9.4. It is customary to take the screen as the plane
z = 0. The standard diffraction problem is to assume some wave incident on the
screen from the left and to calculate the resulting field for all points to the right
of the screen. Thus the volume V in Green’s theorem is the right half-space. In
order to bound this volume with a closed surface S, we can construct a hemisphere
of radius Ra centered on the aperture and let Ra → ∞. Equation (9.73) provides
a way of determining the field in V if we know the sources in V and the boundary
conditions on the surface. Here we shall assume that there are no sources in V , so
only the surface integral in (9.73) is needed. In Sec. 9.4.1, we argue that the infinite
hemispherical surface is irrelevant, so the only important part of S is the plane
z = 0. In Sec. 9.4.2, we discuss an approximate way of expressing the field on this
plane, and in Sec. 9.4.3 we derive an explicit formula for the field at an arbitrary
point in V.

Fig. 9.4 Geometry for diffraction by a planar aperture.
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9.4.1 Surface at infinity

For the time-dependent wave equation, we can dispense with the infinite hemi-
sphere. If the field incident on the aperture is turned on at some starting time ts,
rather than existing from t = −∞, then there is no way the boundary condition on
the infinite hemisphere can influence the field a finite distance from the aperture at
a finite time, and the hemisphere can be safely ignored.

This argument can also be applied, to a good approximation, to a monochro-
matic source. Strictly speaking, such a source has a time dependence of exp(−2πiν0t)
for all t, but if the source is switched on at a finite time, the field has a time depen-
dence given by exp(−2πiν0t) step(t− ts). If t− ts is finite but sufficiently large that
all transient effects from the step function have died out, then the field at a finite
distance from the aperture is described adequately by the Helmholtz equation, but
the surface at infinity plays no role since the disturbance has not had time to get
there.

Next we shall compute how long one must wait for this approximation to be
valid. From (9.66), we know that the field at (r, t) is influenced by the source at
point r

′ at the earlier time t− |r− r
′|/c. If Rmax is the maximum distance between

the observation point r and any point on the screen where the field or its derivative
is nonzero, then all we have to do is make t− ts > Rmax/c, and there will be no way
to discern when the field was switched on. At later times, the field will be described
by the Helmholtz equation, yet the surface at infinity will make no contribution.

Another approach, which we shall not describe here, is to write down formally
the effect of the infinite hemisphere on the field at a point in V and to show that
it consists of two integrals which cancel one another as Ra → ∞ as a result of
the Sommerfeld radiation condition; for details on this approach, see Goodman
(1968).

9.4.2 Kirchhoff boundary conditions

Having disposed of the surface at infinity, we turn next to the plane z = 0+. To
describe the field in this plane, we introduce the Kirchhoff boundary condition
or Kirchhoff approximation, which assumes that the field in the clear aperture is
exactly what it would be if there were no screen. This is a reasonable approximation
if the opening is large compared to a wavelength, but we should expect it to break
down for small apertures. For large apertures it is also reasonable to assume that
the field is zero for any point just to the right of the opaque screen.

For a monochromatic source, all fields have the same time dependence
exp(−2πiν0t), so the Kirchhoff boundary condition can be expressed in terms of
the time-independent field amplitude. We refer to the field that would exist in the
plane z = 0 in the absence of the screen as the incident wave and denote it by
uinc(r). The Kirchhoff boundary condition states that the actual field in the plane
z = 0 is given by

u(r)|z=0 =

{

uinc(r) if r lies in the clear aperture
0 if r is behind the opaque screen ,

(9.74)

where r is the 2D vector obtained from r by setting the z component to zero.
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9.4.3 Application of Green’s theorem

Using the scalar Kirchhoff boundary condition in (9.73) and assuming there are no
sources in V , we find

u(r) =

∫

ap
d2r0

[

uinc(r0)
∂p(r, r0)

∂n0
− p(r, r0)

∂uinc(r0)

∂n0

]

, (9.75)

where the integral is over the clear aperture only.
Several forms of diffraction theory follow from (9.75) depending on what one

assumes for the Green’s function, p(r, r0) (see Goodman, 1968). We shall not
explore all of these options here, but restrict ourselves to the generally accepted
Rayleigh-Sommerfeld diffraction theory. Rayleigh and Sommerfeld recognized
that specifying both u(r0) and ∂u(r0)/∂n0 independently on the boundary (Cauchy
boundary conditions) would be an overspecification for the Helmholtz equation. To
avoid this difficulty, they suggested choosing the Green’s function p(r, r0) to be zero
on the aperture plane so that ∂uinc/∂n0 is not needed.

We can construct a Green’s function that satisfies this condition by recalling
that we are free to add sources in the defining equation for the Green’s function,
(9.72), so long as they lie outside V . To make p(r, r0) vanish when r0 lies on the
plane z0 = 0, we add a negative point source at the point rm = (x, y,−z) which is
the mirror image of r in the aperture plane. Thus p(r, r0) is the field at r0 due to
a positive point source at r and a negative one at rm. Explicitly,

p(r, r0) = −
1

4π

[

exp(ikR)

R
−

exp(ikRm)

Rm

]

, (9.76)

where

R =
√

|r− r0|2 + (z − z0)2 , Rm =
√

|r− r0|2 + (−z − z0)2 , (9.77)

and
|r− r0|2 = (x− x0)

2 + (y − y0)
2 . (9.78)

Note that Rm = R if z0 = 0.
Even though the Green’s function is zero on the aperture plane, its normal

derivative is not. Differentiation of (9.76) with respect to z0 yields

∂p(r, r0)

∂n0
= −

∂p(r, r0)

∂z0

∣

∣

∣

z0=0
= −

1

2π

(

ik −
1

R

)

exp(ikR)

R
cos θ , (9.79)

where θ is the angle between r − r0 and the z axis, so that

cos θ =
z

√

|r− r0|2 + z2
. (9.80)

Collecting results, we have a general expression for the diffracted field in V:

u(r) = −
1

2π

∫

ap
d2r0 uinc(r0)

(

ik −
1

R

)

cos θ
exp(ikR)

R
. (9.81)

Note that the z component of r0 is zero, so a point in the aperture is specified
equally by the 2D vector r0 or the 3D vector r0.
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9.4.4 Diffraction as a 2D linear filter

Equation (9.81) can be evaluated for the field at any (x, y, z), so u(r) is a 3D
function. If we evaluate it for all (x, y) on a plane of fixed z, however, it is a 2D
function which we can denote by uz(r). Using a similar 2D notation for uinc, we
can rewrite (9.81) as

uz(r) = u(r) = −
1

2π

∫

∞
d2r0 uinc(r0) tap(r0)

(

ik −
1

R

)

cos θ
exp(ikR)

R
, (9.82)

where tap(r) is the amplitude transmittance of the aperture, defined by [cf. (9.74)]

tap(r) ≡
{

1 if r lies in the clear aperture
0 if r is behind the opaque screen .

(9.83)

Since R and cos θ are both functions of r− r0, as shown by (9.77) and (9.80),
respectively, we recognize (9.82) as a 2D convolution. Thus we can write symboli-
cally

uz(r) = [uinc(r) tap(r)] ∗ pz(r) , (9.84)

where pz(r) is the 2D point spread function8 (PSF) for propagation, given by

pz(r) = −
1

2π

(

ik −
1√

r2 + z2

)

z√
r2 + z2

exp
(

ik
√
r2 + z2

)

√
r2 + z2

, (9.85)

with r = |r|. As a 2D mapping from the aperture plane to a parallel plane a distance
z away, diffraction is a shift-invariant operation. If uinc, tap and the observation
point are all shifted together parallel to the aperture plane, nothing is changed.

Since the product uinc(r) tap(r) is the input to the convolution, it will be useful
to write

uinc(r) tap(r) = u0(r) , (9.86)

where u0(r) is to be interpreted as the incident field as modified by the aperture.
As an exercise, the reader can show that pz(r) → δ(r) as z → 0, so

uz(r) → u0(r), as it should.

9.4.5 Some useful approximations

As it stands, (9.85) is a rather complicated expression from which it is difficult to
get any insight. Several approximations are possible, all based on expanding various
pieces of pz(r) in powers of 1/z and retaining only the leading terms.

Radiation and paraxial approximations Consider first the factor ik − (r2 + z2)−
1
2

in (9.85). If z is large, we can neglect (r2 + z2)−
1
2 compared to ik. Since

k = 2πν0/c = 2π/λ, where λ is the wavelength of the radiation, this approximation
is valid when z - λ, which it almost always is in optical diffraction problems. This
approximation is called the radiation approximation.9 It shows that the radiation

8Do not confuse the 2D PSF pz(r) with the Green’s function p(r, r0; by (9.79) the former is the
z derivative of the latter.
9The radiation approximation is a bit tricky since we are neglecting a real term compared to a

pure imaginary one. It can be stated more precisely by noting that ik − (r2 + z2)−
1
2 approaches

a complex number with magnitude k and phase π/2 as z → ∞.
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field falls off asymptotically as 1/z, as required by conservation of energy, but near
the aperture it can have a more complicated dependence on z.

With the radiation approximation, (9.82) becomes

uz(r) =
1

iλ

∫

∞
d2r0 u0(r0) cos θ

exp(ikR)

R
(9.87)

and (9.85) becomes

pz(r) =
1

iλ

z√
r2 + z2

exp
(

ik
√
r2 + z2

)

√
r2 + z2

, (9.88)

where we have used k = 2π/λ.
Equation (9.87) is a formal statement of Huygens’ Principle, enunciated by

the Dutch mathematician, astronomer and physicist Christiaan Huygens (1629–
1695). Huygens is acknowledged as the founder of the wave theory of light and was
one of the first to produce practical lenses, including a nearly perfect achromatic
eyepiece. He is even credited in some books (Matteuci, 1970) with the invention of
the internal combustion engine. (He proposed gunpowder as the fuel.) Huygens’
principle says that every point on a wavefront acts as a source of a secondary
spherical wave called a Huygens’ wavelet. As Huygens knew, the wavelet has a
90◦ phase shift (relative to the incident wave), and this phase shift is seen in (9.87)
as the factor of 1/i. In (9.87), there is also an angular factor of cos θ, apparently
unknown to Huygens. Since cos θ is also the angular dependence of dipole radiation,
(9.87) states that the wavefront is equivalent to a fictitious layer of dipoles radiating
90◦ out of phase with the wave.

The next approximation to consider is the paraxial approximation, which is
useful if we consider only points that are close to the z-axis (which is assumed to
run through the clear aperture). With this approximation, cos θ ≈ 1. With the
radiation and paraxial approximations together, (9.85) becomes

pz(r) ≈
1

iλz
exp

(

ik
√

r2 + z2
)

. (9.89)

Note that we have not yet approximated (r2 + z2)
1
2 in the exponent. Since k is

potentially a very large number, of order 105 cm−1 at optical wavelengths, we must
be very careful in making approximations in the exponent. We shall pursue this
point below.

With (9.89), the field in plane z is given by

uz(r) ≈
1

iλz

∫

∞
d2r0 u0(r0) exp

(

ik
√

|r− r0|2 + z2
)

. (9.90)

The exponential factor, illustrated in Fig. 9.5, represents a spherical wave (the
Huygens’ wavelet) emanating from the point r0 in the plane z = 0 and observed at
point r in plane z.
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Fig. 9.5 Illustration of the function exp(ik
√

|r − r0|2 + z2).

9.4.6 Fresnel diffraction

Next we investigate approximations to the exponential factor in (9.90). A binomial
expansion for z > |r− r0| gives

R =
√

|r− r0|2 + z2 = z +
|r− r0|2

2z
−

|r− r0|4

8z3
+ · · · , (9.91)

so we can write the exponential as

exp
(

ik
√

|r− r0|2 + z2
)

= exp(ikz) exp

(

ik
|r− r0|2

2z

)

exp

(

−ik
|r− r0|4

8z3

)

· · · .

(9.92)
One of the terms in (9.91) can be neglected only if the corresponding factor in

(9.92) is approximately unity. It does not suffice if a term in (9.91) is small relative
to the previous term; it must be small compared to, say, π/4 in an absolute sense.
The quartic term is negligible if

k|r− r0|4

8z3
.

π

4
or |r− r0|4 . λz3 . (9.93)

If z is large enough for this condition to hold, then the quartic term and all higher
terms in (9.91) can be neglected, and (9.90) becomes

uz(r) ≈
exp(ikz)

iλz

∫

∞
d2r0 u0(r0) exp

(

iπ
|r− r0|2

λz

)

= u0(r) ∗ pz(r) , (9.94)

where now the 2D PSF is given by

pz(r) ≈
exp(ikz)

iλz
exp

(

iπ
r2

λz

)

. (9.95)

In this form, called the Fresnel approximation, the PSF is a constant (inde-
pendent of r) times the quadratic phase factor exp(iπr2/λz). Once again, this factor
represents a spherical wave as observed on a plane, but now the spherical wavefronts
are approximated by paraboloids. To see the full space-time behavior of the waves,
it must be recalled that there is an associated time dependence exp(−2πiν0t). Fig-
ure 9.6 displays the behavior of exp(iπr2/λz − 2πiν0t) as a function of r, z and t.
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Fig. 9.6 (a) The real part of the time-dependent quadratic phase factor

exp(iπ r2

λz
− 2πiν0t) as a function of r for different t. (b) The same function

plotted as a function of r for different z.

As discussed in Sec. 4.3, a quadratic phase factor is also called a chirp, and
convolution with a chirp is the same as computing a Fresnel transform. Within the
Fresnel approximation, uz(r) is the Fresnel transform of u0(r), with the parameter
β in (4.122) given by 1/λz. The properties of Fresnel transforms and chirps given
in Sec. 4.3 are very useful in diffraction problems.

In particular, the Fourier implementation of the Fresnel transform discussed in
Sec. 4.3 can be used to derive an alternative form for the Fresnel diffraction formula.
All we have to do is to extend the 1D argument that led up to (4.138) to 2D. To
this end, note that

|r− r0|2 = r2 + r20 − 2r · r0 . (9.96)

Substituting this form into (9.94), we find

uz(r) =
exp(ikz)

iλz
exp

(

iπ
r2

λz

)
∫

∞
d2r0 u0(r0) exp

(

iπ
r20
λz

)

exp
(

−2πi
r · r0
λz

)

.

(9.97)
This integral can be recognized as the 2D Fourier transform of the product
u0(r0) exp(iπr20/λz), but the role of the spatial-frequency vector is played by r/λz.
We can thus write

uz(r) =
exp(ikz)

iλz
exp

(

iπ
r2

λz

)

F2

{

u0(r0) exp

(

iπ
r20
λz

)}

ρ=r/λz

. (9.98)

In spite of the transform, this equation relates the input u0(r) to the output uz(r)
in the space domain; the substitution ρ = r/λz gets us back from the frequency
domain to the space domain, and the Fourier transform is just a convenient way
of performing the spatial convolution with the quadratic phase factor (9.95). The
resulting expression, (9.98), is mathematically equivalent to (9.94) and is thus an
equally valid formula for Fresnel diffraction.
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9.4.7 Fraunhofer diffraction

The next approximation takes advantage of the limited support of tap(r). Suppose
the clear aperture fits into a circle of radius a, so that r0 < a for all r0 in the range
of integration in (9.97). Then, if z - a2/λ, we can approximate exp(iπr20/λz) by
unity inside the Fourier transform in (9.98), and we have

uz(r) ≈
exp(ikz)

iλz
exp

(

iπ
r2

λz

)

F2{u0(r0)}ρ=r/λz , z - a2/λ . (9.99)

Under this Fraunhofer approximation, uz(r) has a factor proportional to the
Fourier transform of u0(r), rescaled by the substitution ρ = r/λz. There is also
a factor exp(iπr2/λz), which is not a constant since it depends on position in the
observation plane. This factor can be interpreted as a spherical wave emanating
from a point on the z axis, so (9.99) shows that, for z sufficiently large, uz(r)
approaches a simple spherical wave modulated by the rescaled Fourier transform of
u0(r). The region where z - a2/λ is called the Fraunhofer zone or the far field.

Irradiance in the Fraunhofer pattern Colloquially, the term diffraction pattern
refers to the optical power per unit area incident on a surface, which is called
the irradiance and denoted I(r). It will be shown in Chap. 10 that, under certain
broad assumptions, the irradiance is proportional to |u(r)|2, with the constant of
proportionality dependent on the physical interpretation of u(r). In this chapter
we dispense with the constants and set I(r) = |u(r)|2. When the field is random,
we shall define the mean irradiance I(r) as the statistical expectation 〈|u(r)|2〉.

When we compute the irradiance, the leading factor of exp(iπr2/λz) in (9.99)
disappears, and we have

|uz(r)|2 ≈
1

λ2z2

∣

∣

∣

∣

∫

∞
d2r0 exp(−2πir · r0/λz)u0(r0)

∣

∣

∣

∣

2

=
1

λ2z2

∣

∣

∣
U0

( r

λz

)
∣

∣

∣

2
,

(9.100)
where U0(ρ) is the 2D Fourier transform of u0(r). In the Fraunhofer approximation,
therefore, the diffraction pattern is proportional to the squared modulus of the
Fourier transform of the input field. If uinc(r) is a plane wave normally incident on
the aperture plane, then u0(r) is proportional to tap(r), and we can say that the
Fraunhofer pattern is the squared modulus of the Fourier transform of the aperture
transmittance.

Fraunhofer diffraction without the paraxial approximation The expressions (9.99) and
(9.100) were obtained by first applying the paraxial approximation (or considering
observation points near the axis), then taking advantage of the limited support of
tap(r). We can get another useful expression by leaving out the paraxial approx-
imation. We expand R not in powers of 1/z as in (9.91) but in powers of 1/|r|,
obtaining

R = |r − r0| =
√

|r|2 − 2r · r0 + |r|20 = |r|−
r0 · r
|r|

+
|r|20
2|r|

+ · · · . (9.101)

If the aperture restricts |r|0 to sufficiently small values that k|r|20 . |r|, then only
the first two terms in this series must be retained, and (9.81) becomes

u(r) =
1

iλ
cos θ

exp(ik|r|)
|r|

∫

∞
d2r0 u0(r0) exp

[

−ik
r0 · r
|r|

]

. (9.102)
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Note that cos θ is independent of r0 in this approximation.
Since r0 = (r0, 0) and r = (r, z), the 3D scalar product r0 ·r is the same as the

2D one, r0 · r. Thus we can write the integral in (9.102) as a 2D Fourier transform,

u(r) =
1

iλ
cos θ

exp(ik|r|)
|r|

∫

∞
d2r0 u0(r0) exp(−2πir0 ·ρ) =

1

iλ
cos θ

exp(ik|r|)
|r|

U0(ρ) ,

(9.103)
where the 2D spatial frequency vector is now given by

ρ =
r

λ|r|
. (9.104)

The two expressions for ρ, r/λz in (9.99) and r/λ|r| in (9.104), agree if cos θ ≈ 1,
but the latter is more general.

As in (9.99), there is a factor in (9.103) representing a spherical wave, only
now it is an exact spherical wave centered on the origin, not just the Fresnel ap-
proximation to such a wave. In both of these equations, however, the interesting
factor is the Fourier integral. The amplitude of the field at an observation point is
determined by a single component in the 2D Fourier transform of the field in the
plane z = 0, so Fraunhofer diffraction gives us a way of probing the Fourier domain.
Note that the components of the 2D vector r/|r| in (9.104) are direction cosines of
the unit vector pointing from the center of the aperture to the observation point,
so this direction serves to pick out the Fourier component of interest. Figure 9.7
provides a graphical way of understanding this result.

Fig. 9.7 Illustration showing why the Fraunhofer diffraction pattern picks
out a single spatial frequency. The Green’s function can be interpreted as a
spherical wave centered on the observation point, and this spherical wave acts
as a weighting function for points in the aperture in the diffraction integral.
If the Fraunhofer condition is satisfied, this spherical wave is approximately a
plane wave over the aperture.

9.5 DIFFRACTION IN THE FREQUENCY DOMAIN

As we saw in Sec. 9.4.7, Fraunhofer diffraction singles out a particular Fourier com-
ponent of the field and maps it to a point in the Fraunhofer region, but the role of
Fourier analysis in diffraction theory is not limited to the Fraunhofer approxima-
tion. Fourier transforms arise naturally in all propagation and diffraction problems
because free space (or any homogeneous medium) is a linear shift-invariant system,
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and plane waves (or Fourier kernels) are eigenfunctions of such systems. When we
write a field in terms of its Fourier transform, we are expanding it in the eigenfunc-
tion basis, so useful new insights and mathematical formulas can be expected.

In Sec. 9.5.1, we essentially start over and rederive diffraction theory from a
Fourier viewpoint. The Fresnel and Fraunhofer approximations are revisited from
this new viewpoint in Sec. 9.5.2. In Sec. 9.5.3 we illustrate the usefulness of this
formalism by considering beam propagation. Finally, in Sec. 9.5.4 we apply the
concept of angular spectrum to obtain the laws governing reflection and refraction
of light from an interface between two different material media.

9.5.1 Angular spectrum

As in Sec. 9.4, consider diffraction from a planar aperture in the plane z = 0 and
assume that the field u0(r) in this plane can be specified by the Kirchhoff bound-
ary condition. This field can be represented in terms of its 2D Fourier transform
U0(ρ) as

u0(r) =

∫

∞
d2ρ U0(ρ) exp(2πiρ · r) =

∫ ∞

−∞
dξ

∫ ∞

−∞
dη U0(ξ, η) exp[2πi(ξx+ ηy)] .

(9.105)
We can interpret exp(2πiρ · r) as a general plane wave (with the time dependence
suppressed) evaluated on the plane z = 0, that is,

exp[2πi(ξx+ ηy)] = exp[2πi(ξx+ ηy + ζz)]
∣

∣

z=0
, (9.106)

or, in vector form,
exp(2πiρ · r) = exp(2πiσ · r)

∣

∣

z=0
, (9.107)

The integral in (9.105) expresses the wave on z = 0 as a superposition of plane
waves travelling in different directions. This superposition is known as the angular
spectrum of the wave. Each plane wave will continue to propagate in the same
direction, without coupling to any other plane wave, so all we have to do to get
an expression for the field at an arbitrary z is to put back the dependence of the
plane wave on z. We can do so since the missing z component of σ is determined
by (9.39). Taking the + sign in (9.39) since the incident wave propagates in the +z
direction, we can construct a solution valid for all z as follows:

uz(r) =

∫

∞
d2ρ U0(ρ) exp

[

2πi

(

ρ · r+ z

√

1

λ2
− ρ2

)]

=

∫ ∞

−∞
dξ

∫ ∞

−∞
dη U0(ξ, η) exp

[

2πi

(

ξx+ ηy + z

√

1

λ2
− ξ2 − η2

)]

. (9.108)

This form agrees with the boundary condition (9.105) if z = 0, and it satisfies
the homogeneous wave equation by construction. Since the Dirichlet boundary
condition uniquely determines a solution in V, (9.108) must be that solution.

Transfer function Comparing (9.105) and (9.108), we see that the 2D transform of
the field in plane z has the form

Uz(ρ) = U0(ρ)Pz(ρ) , (9.109)
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where Pz(ρ) is the 2D transfer function for propagation from the plane z = 0 to a
parallel plane a distance z away. It is given by

Pz(ρ) = exp

(

2πiz

√

1

λ2
− ρ2

)

= exp

(

2πiz

√

1

λ2
− ξ2 − η2

)

. (9.110)

Note that Pz(ρ) → 1 as z → 0, which corresponds to the statement that pz(r) → δ(r).
Another way to derive the transfer function is to Fourier-transform the point

spread function. Before any approximations, pz(r) is given by (9.85), so

Pz(ρ) = F2{pz(r)} = −
1

2π
F2

{(

ik −
1

R

)

exp(ikR)

R
cos θ

}

, (9.111)

where R =
√
r2 + z2, cos θ = z/R and k = 2π/λ.

To evaluate the Fourier integral, recall that we obtained the form (9.85) for
pz(r) in the first place by performing a derivative with respect to z in (9.79). There-
fore we can write

pz(r) = −
1

2π

∂

∂z

[

exp(ik
√
r2 + z2)√

r2 + z2

]

. (9.112)

The expression in brackets is a rotationally symmetric 2D function; taking its
Fourier transform by means of (3.248), we find

Pz(ρ) = −
∂

∂z

∫ ∞

0
r dr J0(2πρr)

[

exp(ik
√
r2 + z2)√

r2 + z2

]

. (9.113)

A change of variables yields

Pz(ρ) = −
∂

∂z

∫ ∞

z
dt J0

(

2πρ
√

t2 − z2
)

eikt . (9.114)

This integral is tabulated in a standard source (Gradshteyn and Ryzhik, 1980, p.
736), and we obtain

Pz(ρ) = −i
∂

∂z

exp(iz
√

k2 − 4π2ρ2)
√

k2 − 4π2ρ2
, (9.115)

from which differentiation and the substitution k = 2π/λ gives (9.110) again.

Interpretation of the transfer function We see from (9.110) that the transfer function
Pz(ρ) is a pure phase factor for ρ < 1/λ. Hence the modulus of the transform is
unchanged by propagation:

|Pz(ρ)| = |P0(ρ)| , ρ <
1

λ
. (9.116)

As required by conservation of energy, no plane waves are either increased or de-
creased in amplitude as they propagate. All of the wondrous patterns of diffraction
are produced by subtle changes of phase among the constituent plane waves in a
field.
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For ρ > 1/λ, on the other hand, the complex exponential becomes a real one,
and

exp

(

2πiz

√

1

λ2
− ρ2

)

= exp

(

−2πz

√

ρ2 −
1

λ2

)

, ρ >
1

λ
. (9.117)

Waves with ρ > 1/λ decay exponentially as they propagate, so they contribute
very little to the resulting field if z is more than a few wavelengths. For this
reason they are called evanescent waves. This exponential decay does not violate
conservation of energy since it can be shown that there is no energy flux associated
with evanescent waves.

One might wonder whether evanescent waves can even exist. From (9.42), the
condition ρ > 1/λ implies that the direction cosines α or β have to exceed one, which
is unphysical. On the other hand, if we are to represent an arbitrary wave u0(r) by
a Fourier expansion like (9.105), the limits must run over the entire ξ-η plane, not
just over a circle of radius 1/λ. In fact, there are several physical ways in which one
can create structures with very high spatial frequency in the plane z = 0. A simple
way is to place a very fine grating with sub-wavelength spacing over the aperture.
To correctly describe the field emerging from the aperture requires ρ > 1/λ in
(9.105), but (9.117) shows that these frequency components die off very quickly as
z increases and may safely be ignored in most problems.

As soon as we make the paraxial approximation, we are implicitly ignoring
evanescent waves. Paraxial waves propagate nearly parallel to the z axis and hence
have ρ. 1/λ by (9.105).

9.5.2 Fresnel and Fraunhofer approximations

Fresnel To derive the Fresnel approximation for Pz(ρ), we assume ρ . 1/λ and
expand the exponent in (9.110). We find

Pz(ρ) = exp

[

2πiz

√

1

λ2
− ρ2

]

≈ exp(ikz) exp(−iπλzρ2) . (9.118)

This is the expected result since it follows from (3.263) that

F−1
2

{

exp(ikz) exp(−iπλzρ2)
}

=
exp(ikz)

iλz
exp(iπr2/λz) , (9.119)

in agreement with (9.95). Thus, in the Fresnel approximation, the angular spectrum
propagates according to

Uz(ρ) = U0(ρ)Pz(ρ) ≈ U0(ρ) exp(ikz) exp(−iπλzρ2) , (9.120)

which is just the 2D Fourier transform of (9.94).

Fraunhofer The general angular-spectrum formula (9.108) expresses the field at a
single point r or (r, z) as a superposition of Fourier components U0(ρ), but the
Fraunhofer formula (9.104) shows that only a single frequency contributes, namely
ρ = r/λr. How do we get from an integral over plane-wave components to just one
component?
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To answer this question, we must recognize that a field u0(r) contained en-
tirely within an aperture of radius a has a Fourier transform of width ∼ 1/a or
greater by the Fourier uncertainty relation (5.10). If a is small, U0(ρ) is broad
and slowly varying. In (9.108), this broad function is multiplied by the phase factor

exp iΦ(ρ; r), where Φ(ρ; r) = 2πρ·r+2πz
√

1
λ2 − ρ2. Regions of the frequency plane

where Φ(ρ; r) is a rapidly varying function of ρ do not make much contribution to
the integral. Instead, the main contribution comes from the points of stationary
phase ρ = ρ0, defined by

∇ρΦ(ρ; r) = 0 at ρ = ρ0 . (9.121)

Straightforward differentiation shows that

ρ0 =
1

λ

r√
r2 + z2

=
r

λ|r|
. (9.122)

If U0(ρ) is slowly varying in the vicinity of ρ0, (9.108) becomes

uz(r) = U0

(

r

λ|r|

)
∫

∞
d2ρ exp

[

2πi

(

ρ · r+ z

√

1

λ2
− ρ2

)]

. (9.123)

But the integral is now simply the inverse Fourier transform of the transfer function
Pz(ρ) defined in (9.110), so we have the simple and elegant formula,

uz(r) = U0

(

r

λ|r|

)

pz(r) , (9.124)

where the point spread function pz(r) is given explicitly by (9.85). Thus the wave
in the Fraunhofer region is the z-derivative of a spherical wave. The strength of this
wave is determined by the Fourier transform of the wave in the aperture evaluated at
the single frequency ρ0. This frequency has a simple interpretation; it corresponds
to the plane wave with wave vector directed from the center of the aperture towards
the observation point, which is just the plane-wave approximation to the spherical
wave shown in Fig. 9.7.

9.5.3 Beams

To illustrate the use of the angular spectrum, we examine some optical fields that
can be described as beams since they propagate predominantly in a single direction.

Gaussian beams Consider a mask with an amplitude transmittance given by

tmask(r) = exp(−πr2/a2) . (9.125)

The constant a specifies the halfwidth of the transmittance function at the e−π

points.
If this mask is illuminated with a normally incident plane wave of unit ampli-

tude, the field emerging from the mask is also given by tmask(r), and the Fourier
transform of that field is

U0(ρ) = a2 exp(−πa2ρ2) . (9.126)
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Within the Fresnel approximation, the Fourier transform of the field at plane z is
given by (9.120) as

Uz(ρ) = a2 exp(ikz) exp(−iπλzρ2 − πa2ρ2) . (9.127)

Fourier transforms of Gaussians and chirps were discussed in Sec. 3.4.5. To
find the field uz(r) in the present problem, we require the inverse transform of a
Gaussian times a chirp. The requisite formula is (3.263); the validity of that formula
for complex β is justified simply by deleting the limit in the argument given in the
vicinity of (3.181) – (3.185). With a little algebra, we find

uz(r) =
a2 exp(ikz)

a2 + iλz
exp

(

−π
r2

a2 + iλz

)

. (9.128)

This form shows that the beam profile is unaltered so long as a2 - λz. Eventually,
however, for sufficiently large z, it is necessary to consider the beam spread. The
general behavior can be seen by rewriting (9.128) as

uz(r) =
a2 exp(ikz)

a2 + iλz
exp

(

iπ
λzr2

a4 + λ2z2

)

exp

(

−π
a2r2

a4 + λ2z2

)

. (9.129)

In plane z, the halfwidth of the beam (at the e−π point) is given by

az =
1

a

√

a4 + λ2z2 . (9.130)

For small z, az ≈ a, while for large z, az ≈ λz/a, as might be anticipated from the
Fraunhofer formula (9.99).

The treatment above can be modified for the case where the Gaussian mask
is illuminated by a converging spherical wave rather than a plane wave. For an
interesting discussion of this case, see Gaskill (1978).

Exact Gaussian-like beams The discussion of Gaussian beams above was based on
the Fresnel approximation. Without this approximation, a Gaussian beam does not
satisfy the Helmholtz equation, as the reader can verify by direct differentiation.
It is possible, however, to construct an exact solution to the Helmholtz equation
that has many of the characteristics of Gaussian beams (Landesman and Barrett,
1988). This solution is most readily expressed in oblate spheroidal coordinates, one
of the orthogonal coordinates systems in which the Helmholtz equation is separa-
ble. Solutions to the separated equations, called oblate spheroidal wavefunctions,
have been known for many years; they are discussed in detail by Flammer (1957).
Landesman’s solution, on the other hand is fundamentally different in that it is not
separable. In an appropriate paraxial limit (equivalent to taking a large), it reduces
to the simple Gaussian beam, but it remains an exact solution for all values of the
parameters.

Moreover, Landesman showed that the Gaussian-like exact solution was just
one member of a complete family of solutions; the other members are analogs of
Hermite-Gauss beams often used to model laser modes (Kogelnik and Li, 1966; Fox
and Li, 1961).

From Gaussian beams to rays Geometric optics deals with thin pencils of light called
rays. The theory of Gaussian beams just developed provides one way of conceptu-
alizing rays.
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Geometric optics ignores diffraction effects; to turn off diffraction, we can
formally take the limit of very short wavelengths. Then (9.129) becomes

lim
λ→0

uz(r) = exp

(

−π
r2

a2

)

. (9.131)

Thus the form of the beam is independent of z in this limit, and we can identify
the beam with a geometric ray.

Bessel beams Now suppose we have a mask with an amplitude transmittance given
by

tBessel(r) = J0(2πρ0r) , (9.132)

where ρ0 is a positive real constant and J0(·) is the zero-order Bessel function of
the first kind. Note that this transmittance, unlike that of the Gaussian mask, can
assume negative values. One way to implement such a mask would be to place thin
glass plates over the negative regions and adjust the thickness so that the glass
shifts the phase of the light by π relative to light that passes through the positive
regions.

Again we assume that the mask is illuminated with a normally incident plane
wave of unit amplitude, so the field u0(r) is also given by tmask(r). It can be verified
from (3.248) that the Fourier transform of u0(r) is given by

U0(ρ) =
1

2πρ0
δ(ρ− ρ0) . (9.133)

Note that the delta function here is 1D; it vanishes except on a ring of radius ρ0 in
the 2D Fourier plane.

In angular-spectrum terms, the ring-delta function selects out plane waves that
make a specific angle to the z axis. That is, the wavevectors k form a cone around
the z axis. We could have anticipated this interpretation simply by examining the
integral by which we defined the J0 Bessel function in Chap. 3; from (3.247) with a
change of variables, we can write

J0(2πρ0r) =
1

2π

∫ 2π

0
dθρ e2πiρ0r cos θρ . (9.134)

If we let r = (r, 0) and ρ = (ρ0, θρ) in polar coordinates, we see from (9.134) that
J0(2πρ0r) is a superposition of plane waves for which ρ0 is constant and θρ takes on
all values in 2π.

To propagate the angular spectrum specified in (9.133), we use (9.109) and
(9.110) and obtain

Uz(ρ) =
1

2πρ0
δ(ρ− ρ0) exp

(

2πiz

√

1

λ2
− ρ2

)

. (9.135)

By (2.25), however, we can replace ρ with ρ0 in any function that multiplies δ(ρ−ρ0),
so

Uz(ρ) =
1

2πρ0
δ(ρ− ρ0) exp

(

2πiz

√

1

λ2
− ρ20

)

≡
eiφ

2πρ0
δ(ρ− ρ0) . (9.136)
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In other words, except for the constant eiφ, Uz(ρ) is identical to U0(ρ), and
hence uz(r) = const · u0(r). For this reason, the J0 Bessel function is sometimes
called a diffraction-free beam, in spite of the fact that diffraction theory is used
to show that its form is unchanged by propagation. A more accurate statement is
that it is an eigenfunction of free-space propagation.

More general diffraction-free beams Even the characterization of the Bessel beam
as an eigenfunction might be surprising since we have previously noted that plane
waves are the eigenfunctions of free space. We have seen that free-space propagation
can be regarded as a 2D linear shift-invariant system, so the plane wave exp(2πiρ·r)
is an eigenfunction and the transfer function Pz(ρ) is the eigenvalue. The key point,
however, is that Pz(ρ) depends solely on the magnitude of ρ, so free space is a rota-
tionally symmetric LSIV system. As we discussed in Sec. 7.2.9, such systems have
infinite degeneracy. All plane waves making a specific angle to the z axis have the
same eigenvalue (transfer function), and any linear combination of eigenfunctions
with the same eigenvalue is another eigenfunction with that eigenvalue.

This observation allows us to synthesize more general beams that are also in-
variant with propagation. Since the eigenvalues are independent of θρ, we can use
any weighting function A(θρ) that we choose. Hence, the most general form of a
so-called diffraction-free beam is (Nieto-Vesperinas, 1991)

u0(r) =

∫ 2π

0
dθρ A(θρ) e

2πiρ0r cos θρ . (9.137)

The J0 Bessel function corresponds to A(θρ) =
1
2π .

Practical issues In the 1980s there was considerable interest in directed-energy
applications of high-power lasers. The goal was to apply a large energy per unit area
on a distant target, and diffraction spreading was the chief obstacle to achieving this
goal. Diffraction-free beams were touted as a way of overcoming this obstacle, but it
was immediately recognized that it was not possible to synthesize a true Bessel beam
since that would require an optical system with an infinite aperture. Durnin (1987)
investigated the diffraction patterns of beams of the form J0(2πρ0r) cyl(r/Ra) and
showed that they maintain a tightly concentrated central peak up to a critical
distance determined by the aperture radius Ra.

It does not follow from this observation, however, that it is advantageous to
place a Bessel mask over a given lens aperture. From (9.97), the irradiance on the
optic axis is proportional to

|uz(0)|2 =
1

λz2

∣

∣

∣

∣

∫

ap
d2r0 u0(r0) exp(iπr

2
0/λz)

∣

∣

∣

∣

2

, (9.138)

where the integral is over an aperture of radius Ra. We know that u0(r0) =
uinctap(r0), where uinc is the amplitude of a plane wave normally incident on the
aperture, and the amplitude transmittance in the aperture must satisfy |tap(r0)| ≤ 1.
Then the irradiance is maximized by choosing tap(r0) = exp(−iπr20/λz). As we shall
see in Sec. 9.6.1, this function describes a lens that focuses the beam on the target
at distance z; any other function in the aperture can only reduce the irradiance on
target.
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Bessel beams may be more useful in optical metrology than in directed-energy
applications. In surveying, for example, it can be useful to have a fine pencil of
light to define a line in space. A Gaussian laser beam may not allow sufficiently
precise definition of the center of the pencil, and Durnin’s results suggest that a
Bessel beam could be advantageous. Even here, however, there are some interest-
ing alternatives, which in fact were well known long before coinage of the term
diffraction-free. One such is an axial prism called an axicon. This device is simply
a conical piece of glass, and it also produces a fine pencil that maintains its form
over a substantial distance.

9.5.4 Reflection and refraction of light

The law of reflection of light by a mirror was apparently known to Euclid, but the
law of refraction when light passes from one medium to another is of more recent
origin. This law is attributed to the Dutch mathematician Willebrord Snell van
Royen (1591–1626), but his manuscript on the topic was apparently destroyed by
fire; Descartes’ Dioptrique (1637) is the first extant written account of the law of
refraction (Herzberger, 1980).

In this section we shall see how the laws of reflection and refraction can be
derived from the angular spectrum. Along the way, we shall acquire some insight
into the connection between 2D spatial frequency and 3D direction of propagation.

Consider a plane wave of the form (9.33) incident on a planar interface between
two different media, and assume for now that the interface is the plane z = 0. The
normal to the interface and the incident k vector define another plane, called the
plane of incidence; we assume that the plane of incidence is the x-z plane, so
that ky = 0. As in Fig. 9.4, we can draw the z axis horizontal and the interface
plane vertical, but now there is no physical aperture in this plane. Assume that the
medium to the left of the interface plane is homogeneous and has refractive index
n or, equivalently, speed of light cm = c/n. Similarly, the homogeneous medium
to the right of the plane is assumed to have refractive index n′ and speed of light
c′m = c/n′.

The incident field in the plane z = 0 is described by the 2D function,

uinc(r, t) = Ainc exp(2πiρ · r− 2πiν0t) , (9.139)

where Ainc is a constant amplitude, ρ = (ξ, 0) in the chosen coordinate system,
and we have included the time dependence for clarity. We see from (9.139) that
uinc(r, t) oscillates with frequency ν0 and phase 2πρ·r at point r. It is this temporal
oscillation that determines the nature of the reflected and refracted waves emanating
from the interface.

Snell’s law Let us look first at the wave propagating to the right of the interface.
We already know the form of the temporal oscillation at each point in the interface,
so we can write

utr(r, t) = Atr exp(2πiρ · r− 2πiν0t) , (9.140)

where the subscript tr stands for transmitted. Some additional considerations
would be needed to determine the amplitude Atr, but we won’t need it in what
follows. Comparison of (9.139) and (9.140) shows that the incident and transmitted
waves have exactly the same dependence on r and t in the interface plane, and
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in particular, exactly the same spatial frequency ρ. It does not follow, however,
that they describe identical waves in the two media; we need to be careful about
converting 2D spatial frequency to 3D direction of propagation.

Since η = 0 in both (9.139) and (9.140), it follows from (9.41) and (9.42) that
the y component of the transmitted wavevector ktr is zero. Another way to state
this result is that ktr lies in the plane of incidence, but we must still determine its
angle in this plane.

From (9.44) and (9.39) with η = 0, we can express the angle θinc between the
incident k vector and the z axis as10

sin θinc =
ξ

√

ξ2 + ζ2
= λξ . (9.141)

The angle θtr between the z axis and ktr is given by a similar expression, but ζ and
λ must be replaced by the values appropriate to the medium; by (9.36) and (9.39)
we have

ζ′ =

√

1

λ′2
− ξ2 =

√

(

n′ν0
c

)2

− ξ2 . (9.142)

Thus

sin θtr =
ξ

√

ξ2 + ζ ′2
= λ′ξ . (9.143)

Since ξ is the same in (9.141) and (9.143), and since λn = λ′n′, we see that

n sin θinc = n′ sin θtr . (9.144)

This is the usual scalar formulation of Snell’s law.

Vector form of Snell’s law Equation (9.144) is specific to the coordinate system in
which the plane of incidence is the x-z plane and the interface is normal to the z axis.
A simple vector form of Snell’s law without any reference to specific coordinates is

n(κ̂inc × n̂) = n′(κ̂tr × n̂) , (9.145)

where n̂ is the unit vector normal to the interface and κ̂inc and κ̂tr are unit vectors
parallel to the incident and transmitted wavevectors, respectively.

A useful alternative form of Snell’s law can be found by constructing an or-
thonormal basis for the plane of incidence. The vectors n̂ and κ̂inc are linearly
independent (except in the case of normal incidence), so they form a basis for the
plane of incidence, but they are not orthonormal. An orthonormal basis, obtained
by applying Gram-Schmidt orthogonalization as outlined in Sec. A.4.3 of App. A,
consists of n̂ plus an orthogonal unit vector defined by

n̂⊥ =
κ̂inc − (κ̂inc · n̂)n̂
√

1− (κ̂inc · n̂)2
. (9.146)

The subscript ⊥ indicates that n̂⊥ is normal to n̂, which in turn is normal to the
interface; hence n̂⊥ lies in the interface plane, in fact along the intersection of the

10Note that θinc in this equation is the same as θx in (9.44); since we have chosen ky = 0 there is
no need to consider the projection of k onto the x-z plane.
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interface plane and the plane of incidence. The reader can verify that n̂ · n̂⊥ = 0
and |n̂⊥| = 1.

In terms of these unit vectors, ρ = (2π)−1(kinc · n̂⊥)n̂⊥ = (2π)−1(ktr · n̂⊥)n̂⊥,
and Snell’s law is:

n(κ̂inc · n̂⊥) = n′(κ̂tr · n̂⊥) . (9.147)

The condition that both κ̂inc and κ̂tr lie in the plane of incidence is:

(n̂⊥ × n̂) · κ̂inc = (n̂⊥ × n̂) · κ̂tr = 0 . (9.148)

An explicit expression for κ̂tr that satisfies both of these conditions is

κ̂tr =
n

n′
(κ̂inc · n̂⊥)n̂⊥ +

[

√

1−
( n

n′

)2
(κ̂inc · n̂⊥)2

]

n̂ . (9.149)

Reflected plane waves In the interface plane, the reflected wave has the same 2D
structure as the incident and transmitted waves, namely (9.139) or (9.140). Once
again, however, we have to figure out what this means in 3D terms.

We can use the vector form (9.149) for the reflected wave by making two simple
modifications. First, since the incident and reflected waves propagate in the same
medium, we must set n′ = n. Second, we must account for the sign ambiguity seen
in (9.39) when we convert from 2D spatial frequencies to 3D ones. For the reflected
wave we must take the minus sign since the z component of k or κ̂ is reversed.
Thus, by comparison to (9.149), the unit vector in the direction of the reflected
wavevector is given by

κ̂refl = (κ̂inc · n̂⊥)n̂⊥ −
[

√

1− (κ̂inc · n̂⊥)2
]

n̂

= (κ̂inc · n̂⊥)n̂⊥ − (κ̂inc · n̂)n̂ . (9.150)

This equation formalizes the usual law of mirror reflection: the angle of reflection
equals the angle of incidence.

Reflection and refraction of beams The results obtained above also apply, at least
approximately, to collimated beams rather than infinite plane waves. As in Sec.
9.5.3, we can consider a beam with, say, a Gaussian amplitude profile propagating
in direction κ̂inc. For simplicity, we take the Gaussian to be circularly symmetric
on the aperture, which means that it is oval on a plane normal to κ̂inc.

For this beam, the field in the interface plane is given by [cf. (9.139)]

uinc(r, t) = A0 exp(−πr2/a2) exp(2πiρ0 · r− 2πiν0t) , (9.151)

and this form applies also to the transmitted and reflected waves. The effect of the
Gaussian is that the incident wave no longer consists of a single spatial frequency
(or equivalently, a single wavevector). Instead, the 2D angular spectrum (with the
time dependence deleted) is given via (3.237) and (3.262) as

Uinc(ρ) = A0 a
2 exp(−πa2|ρ− ρ0|2) . (9.152)

If aρ0 - 1, then this spectrum is concentrated around the frequency ρ0 which
corresponds to the average incident wavevector. Under this approximation, we can
assume that all wavevectors undergo approximately the same refraction, and Snell’s
law applies to the beam as well as to a plane wave. The reader is invited to fill in
the details.
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Reflection and refraction of rays Though we derived the laws of refraction and reflec-
tion by considering first plane waves and then beams, we note that the wavelength
does not appear explicitly in the final result. For example, (9.145) and (9.150) are
written entirely in terms of unit vectors κ̂ rather than wavevectors k. That means
that they are still valid as the wavelength goes to zero. We noted in Sec. 9.5.3 that
Gaussian beams in free space behave as geometric rays in this limit. Now we see
that geometric rays defined this way obey the same laws of reflection and refraction
as plane waves.

9.6 IMAGING OF POINT OBJECTS

We have now laid most of the groundwork needed to analyze imaging systems based
on wave propagation, but we must still introduce image-forming elements such as
lenses. There are many ways of introducing these elements, including approaches
based on Snell’s law or Fermat’s principle, but the approach taken here is to regard
a lens as a device for transforming a wave field.

Several other physical entities are the functional equivalent of lenses, in the
sense that they can form images or otherwise alter light beams in a manner anal-
ogous to lenses. Included in this category are convex and concave mirrors, holo-
graphic optical elements and diffractive optics. In this chapter, however, we shall
consider only lenses per se.

9.6.1 Ideal thin lens

An ideal lens is one that produces an image point that is as compact as it can
be according to the laws of physical optics. Hence an ideal lens is also called a
diffraction-limited lens. Any imperfection in a lens that causes spreading of the
light is referred to as an aberration.

It is often useful to consider an idealization called the thin lens. An operational
definition of a thin lens is obtained by constructing two parallel planes as close to
the physical lens as possible. In geometrical optics terms, the lens is thin if a
ray incident on the first plane undergoes negligible lateral displacement as it goes
through the lens to the second plane. In physical-optics terms, a light source to the
left of the lens produces an irradiance pattern on the first plane, and the lens is thin
if essentially the same irradiance pattern appears on the second plane, no matter
what source is used. Since the irradiance is proportional to the squared modulus
of the complex field, a thin lens can be defined as one that alters the phase of the
field but not its modulus.

Amplitude transmittance In Sec. 9.4 we considered diffraction from an open aper-
ture in the plane z = 0. We used the Kirchhoff boundary condition to express the
wave in this aperture as the incident field multiplied by a zero-one function tap(r),
where r is a 2D vector in the plane z = 0. We now introduce a similar notation to
express the field emerging from a thin lens. We write

u+(r) = u−(r) tlens(r) , (9.153)

where u+(r) is the field just after the lens, u−(r) is the field incident on the lens,
and tlens(r) is called the amplitude transmittance of the lens. Consistent with the
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assumption of a thin lens, u+(r), u−(r) and tlens(r) are all assumed to be measured
in the plane z = 0. We assume that the lens is centered on the z-axis, which is
called the optical axis. If the lens is rotationally symmetric, then the optical axis
is also an axis of symmetry; otherwise it is just a convenient line running through
the lens.

Equation (9.153) is already an idealization since it assumes that tlens(r) is
independent of the form of the incident wave, even though it is well known that
the effect of a lens on an incident wave depends on the angle of incidence. We shall
return to this point in Sec. 9.6.3.

Since we have defined a thin lens as one that alters only the phase of the
incident field, leaving its modulus unchanged, we can write

tlens(r) = exp[iΦlens(r)] tap(r) , (9.154)

where tap(r) is unity inside the aperture of the lens and zero outside, and Φlens(r) is
the phase shift induced at point r by the lens. Within the lens aperture, |u+(r)| =
|u−(r)|.

To elucidate the meaning of tlens(r), consider the incident field to be a unit-
amplitude plane wave travelling parallel to the z axis. Then

u−(r) = exp(ikz)|z=0 = 1 , (9.155)

where k = 2π/λ, with λ being the wavelength of the light. With (9.155), (9.153)
becomes

u+(r) = tlens(r) . (9.156)

Thus tlens(r) is the field emerging from a lens when it is illuminated with a plane
wave travelling parallel to the z axis.

Amplitude transmittance of an ideal lens An ideal thin lens will convert the incident
plane wave into a spherical wave converging toward a point on the optical axis at a
distance z = f, where f is the focal length of the lens. The wavefront is a portion
of the Gaussian sphere, a sphere of radius f centered on the focal point. For an
ideal lens, we thus have

tlens(r) = tideal(r) = exp(−ikRf ) tap(r) , (9.157)

where k = 2π/λ, and Rf is the distance from point r in the lens plane to the focal
point, given by

Rf =
√

r2 + f2 , (9.158)

where r = |r|. Note the minus sign in the exponent in (9.157). Since we use the
convention that a wave u(r) has associated with it a time dependence exp(−2πiν0t),
the spatial factor exp(−ikRf ) represents a converging spherical wave. Thus a
positive lens (one with a positive focal length) produces a converging spherical
wave when illuminated with a plane wave. Conversely, a negative lens produces a
diverging spherical wave. A negative lens is also described by (9.157) simply by
allowing f to be negative.

Fresnel approximation In the Fresnel approximation, the spherical surface defined
by (9.158) is approximated by a paraboloid, so we can write

tideal(r) ≈ exp

(

−iπ
r2

λf

)

tap(r) , (9.159)
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where we have dropped a constant phase factor exp(−ikf). This factor affects only
the overall phase of the field emerging from the lens, which is almost always irrel-
evant since it can be observed only by interferometric methods. We retain factors
that influence the spatial variation of the phase, but we do not need to consider a
constant overall phase.

Fig. 9.8 (a) Illustration of a plano-convex lens used for calculation of tlens(r).
(b) Field at point r on the output plane arises from points in a small neigh-
borhood of point r on the input plane.

Another way to understand (9.159) is to consider specifically a plano-convex
lens as illustrated in Fig. 9.8a (Goodman, 1968). We assume that a plane wave
is normally incident on the planar side, and we want to compute the field u+(r)
as a function of radius r on a plane tangent to the convex surface as shown. To
compute u+(r) rigorously by diffraction theory, we would have to integrate over the
entire planar input surface, but if the lens is thin, the main contribution to u+(r)
at point r comes from a small neighborhood of the point r on the input surface (see
Fig. 9.8b). Light from each of these points undergoes very nearly the same phase
shift in propagating through the lens and air gap, so the sum over all points in the
neighborhood undergoes that phase shift. Thus, determining tlens(r) amounts to
determining the phase shift along a horizontal straight line displaced from the
axis by r. We do not need to consider explicitly refraction at the interface since the
lens is thin.

The phase shift on this line can be computed from the speeds of light in the
two media and the thicknesses of the media. The speed of light in air is essentially
c, the speed of light in vacuum, while the speed in glass is c/n, where n is the
refractive index. The thickness of air along the line is wa = Rc(1 − cos θ) and the
thickness of glass is wg = wL−Rc(1− cos θ), where Rc is the radius of curvature of
the convex surface and wL is the overall thickness of the lens (see Fig. 9.8a). The
total time τ (r) required to traverse the horizontal line at radius r is

τ(r) =
wa

c
+

nwg

c
. (9.160)

In time τ (r), the light traversing the lens undergoes a phase retardation of

Φlens(r) = −2πν0τ(r) = −
2π

λ
(wa + nwg) , (9.161)
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where λ is the wavelength of the light in free space. We assume the angle θ (see
Fig. 9.8) is small, so that

1− cos θ ≈ 1
2θ

2 ≈
r2

2R2
c

. (9.162)

With this approximation, (9.161) becomes

Φlens(r) = −
2π

λ

[

r2

2Rc
+ n

(

wL −
r2

2Rc

)]

=
π

λ
(n− 1)

r2

Rc
+ const . (9.163)

An elementary result from geometrical optics (Longhurst, 1973) relates the
radius of curvature to the focal length of a plano-convex lens by

1

f
=

n− 1

Rc
, (9.164)

so (9.163) agrees with (9.159). A similar analysis applies to double-convex and other
kinds of lenses.

9.6.2 Imaging a monochromatic point source

We derived (9.159) by assuming that the incident wave was a plane wave travelling
parallel to the z axis. Now consider what happens when the incident wave is pro-
duced by a monochromatic point source on the optical axis at z = −p. The incident
wave measured in the lens plane (z = 0) is the diverging spherical wave given by

u−(r) = A
exp ikRp

Rp
, (9.165)

where A specifies the strength of the source and

Rp =
√

r2 + p2 = p+
r2

2p
+ ... . (9.166)

As in the discussion of the Fresnel approximation in Sec. 9.4.5, we retain the first
two terms in this expansion in the exponent of (9.165), but only the first term in
the denominator. From (9.153) and (9.159), we find

u+(r) = A
exp(ikp)

p
exp

(

iπ
r2

λp

)

exp

(

−iπ
r2

λf

)

tap(r) . (9.167)

But this equation can be rewritten as

u+(r) = const · exp
(

−iπ
r2

λq

)

tap(r) , (9.168)

where q is given by the imaging condition,

1

p
+

1

q
=

1

f
. (9.169)

If p > f, then q is a positive number and u+(r) represents a converging spherical
wave, with the spherical wavefronts centered on a point on the optical axis at z = q.
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Similarly, if p < f, then q is negative and u+(r) represents a diverging spherical wave
radiating from a point on the optical axis at z = −|q|. In familiar geometrical-optics
terms, the image of the point source is always located at z = q, and the image is
real if q is positive and virtual if q is negative (see Fig. 9.9). The case of an incident
plane wave can be recovered by letting p → ∞, in which case q = f.

Fig. 9.9 (a) Illustration of a simple lens producing a real image. The arcs are
surfaces of constant phase, also called wavefronts, and the straight lines are
constructed to be normal to the wavefronts. (b) The same lens producing a
virtual image. (c) The same lens imaging a point at infinity.

Field distribution The above discussion is sufficient for determining the center of
curvature of the spherical wavefront, also known as the Gaussian image of the
point source. To determine the field distribution in this image, we must invoke
diffraction theory. From (9.98), we can write the field in the image plane (z = q) as

uim(r) =
exp(ikq)

iλq
exp

(

iπ
r2

λq

)[

F2

{

exp

(

iπ
r′2

λq

)

u+(r
′)

}]

ρ=r/λq

. (9.170)

Note that the quadratic phase factor inside the Fourier transform is exactly cancelled
by its complex conjugate, which appears in (9.168). We thus find

uim(r) = A
exp[ik(p+ q)]

iλpq
exp

(

iπ
r2

λq

)

Tap

(

r

λq

)

, (9.171)

where Tap(ρ) is the 2D Fourier transform of tap(r).
We are often able to approximate the factor exp(iπr2/λq) in (9.171) by unity.

For example, if tap(r) is a clear aperture of diameter D, its Fourier transform Tap(ρ)
has its first zero at ρ = 1.22/D (see (3.260) and Fig. 3.5). Thus the spatial func-
tion Tap(r/λq) has its first zero at r = 1.22λq/D. At this radius, the argument
of exp(iπr2/λq) is iπ(1.22)2λq/D2, which can also be written as iπ(1.22)2F 2λ/q,
where F = q/D is called the effective F-number of the lens.11 Typically, F is in
the range 1 – 10 and λ/q is of order 10−4 or less, so it is an excellent approximation
to set exp(iπr2/λq) ≈ 1 for values of r such that Tap(r/λq) is appreciable.

With this approximation, the field in the plane z = q is given by a scaled
version of the Fourier transform of the aperture function:

uim(r) =
A

λqp
Tap

(

r

λq

)

, (9.172)

where we have dropped constant phase factors (including a factor of i).

11The F -number of a lens is usually defined as f/D, which is identical to q/D if p = ∞.
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Off-axis points The point source considered above was on the optical axis; we now
generalize the calculation to a point source at a position specified by 2D vector r0
in the plane z = −p. The field incident on the lens is given by a translated version
of (9.165), which in the Fresnel approximation becomes

u−(r) =
A

p
exp

(

iπ
|r− r0|2

λp

)

, (9.173)

where we have again dropped an irrelevant constant phase factor. If the lens is
ideal, the field emerging from it is

u+(r) = u−(r) tideal(r) =
A

p
exp

(

iπ
|r− r0|2

λp

)

exp

(

−iπ
r2

λf

)

tap(r) . (9.174)

Expanding the exponent, we find

u+(r) =
A

p
exp

[

iπ
(r2 + r20 − 2r · r0)

λp

]

exp

(

−iπ
r2

λf

)

tap(r)

=
A

p
exp

[

iπ
(r20 − 2r · r0)

λp

]

exp

(

−iπ
r2

λq

)

tap(r) , (9.175)

where the last step made use of (9.169). The field in the image plane is obtained
by use of (9.170). Again there is a cancellation of quadratic phase factors inside
the Fourier transform, and again constant phase factors can be dropped. If the
quadratic phase factors outside the transform can be approximated by unity, we
are left with

uim(r) =
A

λqp

[

F2

{

exp

(

−2πi
r′ · r0
λp

)

tap(r
′)

}]

ρ=r/λq

=
A

λqp
Tap

(

r

λq
+

r0

λp

)

. (9.176)

This result is most easily compared to (9.172) by rewriting it as

uim(r) =
A

λqp
Tap

[

1

λq
(r−mr0)

]

, (9.177)

where m is the lateral magnification, given just as in geometrical optics by

m = −
q

p
. (9.178)

Note that m = −1 if p = q = 2f.

9.6.3 Transmittance of an aberrated lens

So far we have considered only ideal thin lenses. Such lenses can be described
fully by the transmittance of (9.157) or, in the Fresnel approximation, (9.159). In
essence, these equations say that an ideal lens produces an ideal spherical wavefront,
so the temporal phase of the wave is the same at all points on a spherical cap, i.e.,
a spherical surface truncated by the lens aperture. An aberrated lens, on the other
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hand, produces a wavefront that is not exactly spherical. The phase difference
between the desired spherical wave and the actual wave emerging from the lens is
called the wavefront error and is commonly denoted by kW (r), where k = 2π/λ as
usual. Thus W (r) has units of length and can be interpreted as the spatial distance,
along a line parallel to the z axis, between the desired spherical wave and the actual
wavefront at vector distance r from the z axis (see Fig. 9.10). For the moment we
assume that W (r) is independent of the wave incident on the lens, but we shall
soon remove this restriction.

Fig. 9.10 Illustration of an aberrated wavefront.

If we express the phase transformation of the lens by (9.154), then

Φlens(r) = Φideal(r) + kW (r) (9.179)

and

tlens(r) = exp[iΦlens(r)] tap(r) = exp[−ikRf + ikW (r)] tap(r) . (9.180)

Another way to express this same result is in terms of the pupil function. For a
thin lens with the aperture stop at the lens, the pupil function is defined by

tpupil(r) = exp[ikW (r)] tap(r) . (9.181)

Hence
tlens(r) = exp(−ikRf ) tpupil(r) . (9.182)

In the Fresnel approximation, we have (apart from a constant phase factor),

tlens(r) ≈ exp

(

−iπ
r2

λf

)

tpupil(r) . (9.183)

The pupil function thus describes the aberrations and the overall aperture of the
lens, but not the phase transformation characteristic of an ideal lens.

The wavefront error can also depend on the nature of the wave incident on the
lens. Suppose that wave is a spherical wave emanating from point r0 in the plane
z = −p. In the lens plane (z = 0), this wave is expressed by

u−(r) = A
exp ikRp

Rp
, (9.184)
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where

Rp =
√

|r− r0|2 + p2 = p+
|r− r0|2

2p
+ ... . (9.185)

The wave emerging from the lens is

u+(r) =
A

R p
exp [ikRp + iΦlens(r; r0)] tap(r) , (9.186)

where the dependence of Φlens on the source location is now shown explicitly. We
can again define a wavefront error, now denoted kW (r; r0), by

Φlens(r; r0) = Φideal(r) + kW (r; r0) . (9.187)

In the Fresnel approximation, this equation becomes

Φlens(r; r0) = −π
r2

λf
+ kW (r; r0) . (9.188)

Without making assumptions about the nature of the lens, this is as far as we can
go.

9.6.4 Rotationally symmetric lenses

Almost all lenses used in practice are rotationally symmetric. We learned in Sec.
7.2.9 how to analyze rotationally symmetric linear systems; to apply that theory
here, we need to define a suitable system. A convenient approach is to consider
the mapping between the 2D field distribution in plane z = −p and the 2D field
distribution emerging from the lens. If we denote this mapping by the operator H,
we have two choices in defining its symmetry properties. As in Sec. 7.2.9, we could
construct the operator H†H and require that H†HRφ = RφH

†H, where Rφ is
the operator for rotation by angle φ about the z axis. Alternatively, since the range
and domain of H are both 2D function spaces, we can require that HRφ = RφH.
The latter condition is the stronger one, but it is satisfied for practical lenses if they
are properly centered on the axis.

With this assumption, it follows from the discussion in Sec. 7.2.9 that the
kernel of H can be a function of the lengths of the vectors r and r0 and of the angle
θ − θ0 between them, but it cannot depend on the absolute orientation of r and
r0. Since the kernel is fully determined by W (r; r0), the same conclusion applies to
that function too. Moreover, practical lenses also have mirror symmetry,12 which
implies that W (r; r0) must be an even function of θ − θ0 (see Sec. 7.2.9).

Aberration expansion The conclusion from the discussion above is that W (r; r0) is
a function of r, r0 and θ− θ0, and it is an even function of the angular difference if
the lens has mirror symmetry. Of course, it must also be periodic with period 2π
in the angular difference if it is to represent a physically realizable, single-valued
function on the plane.

12It is possible to concoct systems with rotational symmetry but no mirror symmetry. An image
rotator such as a Dove prism, for example, is rotationally symmetric but lacks mirror symmetry.
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One way to express a function with these properties is through a power series
of the form (Born and Wolf, 1999),

W (r; r0) =
∑

αβγ

Cαβγr
2α
0 r2β(r · r0)γ . (9.189)

The order of a term in this expansion is α + β + γ. A more conventional way to
express the same expansion is

W (r; r0) =
∑

lmn

wlmnr
l
0r

m [cos(θ − θ0)]
n , (9.190)

where l = 2α + γ, m = 2β + γ and n = γ. The coefficients in either expansion
depend on p and the nature of the lens, but they are independent of r and r0. In
addition, W (r; r0) may also depend on the wavelength of the light, but we consider
only monochromatic sources here.

The zero-order term (α = β = γ = 0) is uninteresting since it just signifies a
constant phase. Of the three possible first-order terms, we need to consider only
one. The term α = 1, β = γ = 0, can be dismissed since it corresponds to a phase
that depends on source location but is constant over the lens aperture. The term
α = β = 0, γ = 1 cannot occur if the lens surface is a second-order surface, such as
a sphere or paraboloid, centered on the optic axis.

The remaining first-order term, α = γ = 0, β = 1, corresponding to the
coefficient w020, will now be discussed. If only this term is present, (9.188) becomes

Φlens(r; r0) = −π
r2

λf
+ kw020r

2 = −π
r2

λf ′
, (9.191)

where (since k = 2π/λ)
1

f ′
=

1

f
− 2w020 . (9.192)

This aberration thus causes the lens to behave as an ideal thin lens with a different
focal length. The lens will form a sharp image but not at z = q, and the aberration
is called defocus.

The possible second-order terms are listed below, with their common names
and mathematical forms:

Field curvature or Petzval13 curvature: w220r20r
2;

Distortion: w311r30r cos(θ − θ0) = w311r20(r · r0);

Primary spherical aberration: w040r4;

Coma: w131r0r3 cos(θ − θ0) = w131r2(r · r0);

13Born and Wolf (1999) credit the Hungarian mathematician J. Petzval with the earliest inves-
tigation of deviations from the Gaussian image formulas. They comment that his manuscript
was stolen by thieves, and that much of what we know about his work comes from semi-popular
reports.
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Astigmatism: w222r20r
2[cos(θ − θ0)]2 = w222(r · r0)2.

These second-order terms are known variously as primary aberrations, Seidel
aberrations or (perversely) third-order aberrations. The latter designation re-
lates not to the order of a term in the wavefront expansion (9.189) but to the
nature of the ray aberrations, a topic covered briefly in Sec. 9.6.6. For clear dia-
grams illustrating these aberrations, see Gaskill (1978) or Hecht (1987).

Note that spherical aberration, like defocus, is independent of r0, which is the
position of the object point in the field of view; for this reason, defocus and spherical
aberration are called field-independent aberrations. The other Seidel aberrations
are field dependent, varying as some power of r0. For source points on or near the
optical axis, the field-dependent aberrations can be ignored.

9.6.5 Field curvature and distortion

If field curvature is the only aberration present, Φlens takes the form,

Φlens(r; r0) = −
πr2

λf
+ kw220r

2
0r

2 ≡ −
πr2

λfeff (r0)
, (9.193)

where
1

feff (r0)
=

1

f
− 2w220r

2
0 . (9.194)

The effective focal length feff (r0) thus varies with position of the source point.
A point described by the 2D vector r0 in the plane z = −p forms an image at
z = q(r0), where q(r0) is given by a slightly modified (9.169):

1

p
+

1

q(r0)
=

1

feff (r0)
. (9.195)

Since the z coordinate of the image point depends on r0, the image surface is not a
plane, hence the name field curvature.

To understand distortion, we make use of (9.176), replacing Tap by Tpupil to
allow for the aberration. If distortion is the only aberration present, we have

tpupil(r; r0) = tap(r) exp[ikw311r
2
0(r · r0)] . (9.196)

Note the second argument in Tpupil(ρ; r0), indicating that the Fourier transform of
the pupil function depends on the spatial location of the source point in general.

We see from (9.196) that distortion is described by a linear phase factor in
the pupil function (linear in r), so it produces a shift in the Fourier domain. The
Fourier transform of the pupil function is obtained via (3.237) as

Tpupil(ρ; r0) = Tap

(

ρ−
w311r20r0

λ

)

, (9.197)

and the field in the image, from (9.176), is given by

uim(r) = const · Tap

(

r

λq
+

r0

λp
−

w311r20r0
λ

)

. (9.198)



IMAGING OF POINT OBJECTS 505

By analogy to (9.177), we can rewrite this result as

uim(r) = const · Tap

[

1

λq
(r−meffr0)

]

, (9.199)

where the effective lateral magnification meff is given by

meff = −q

(

1

p
− w311r

2
0

)

. (9.200)

Since the lateral magnification depends on source location, the image is distorted.

9.6.6 Probing the pupil

To understand the other aberrations, it is useful to imagine placing masks over the
lens so we can determine where light from different regions of the pupil is directed.
The trick is to choose the size of the mask small enough so that the phase of the wave
can be approximated by a linear function of position in the pupil, yet large enough
that diffraction from the mask is negligible. As we shall see, the mathematics is
essentially the same as that developed in Sec. 5.1 for local spectral analysis.

The starting point is (9.170), which gives the field in the image plane for an
arbitrary field in the lens plane. The field u+(r′) in that formula, now interpreted
as the field emerging from the mask, is given in the Fresnel approximation by
[cf. (9.174)]

u+(r
′) = const · exp

(

iπ
|r′ − r0|2

λp

)

exp

(

−iπ
r′2

λf

)

exp[ikW (r′; r0)] tmask(r
′) ,

(9.201)
where tmask is the transmittance of the mask. The Fourier integral in (9.170) now
takes the form
[

F2

{

exp

(

iπ
r′2

λq

)

u+(r
′)

}]

ρ=r/λq

=

∫

mask
d2r′ exp[iΦ(r′; r0)] exp

(

−2π
ir · r′

λq

)

,

(9.202)
where

Φ(r′; r0) =
π|r′ − r0|2

λp
−
πr′2

λf
+ kW (r′; r0) +

πr′2

λq
. (9.203)

The four terms in (9.203) come from, respectively, the wave incident on the lens,
the phase transformation of an ideal lens, the phase distortion due to aberrations
and the quadratic phase factor in the Fresnel formula. To recapitulate the meaning
of the various 2D position vectors, r0 is the source position in plane z = −p, r is
the observation point in the plane z = q, and r′ is a dummy variable of integration.

If we now apply the imaging condition (9.169), all of the terms quadratic in r′

cancel, and we find

Φ(r′; r0) = −2π
r′ · r0
λp

+ kW (r′; r0) +
πr20
λq

. (9.204)

Except for the last term, which is an irrelevant constant, Φ(r′; r0) now describes a
tilted plane wave (with tilt dependent on the object location) plus the wavefront
error.
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If the mask is a small circular opening of radius b centered at rm and Φ(r′; r0)
varies sufficiently slowly over this opening, we can express it as a truncated Taylor
series of the form

Φ(r′; r0) ≈ Φ(rm; r0) + (r′ − rm) ·∇Φ(rm; r0) , (9.205)

where ∇Φ(r; r0) denotes the gradient of Φ(r; r0) with respect to the first argument.
By analogy to (5.35), we can define

∇Φ(rm; r0) ≡ 2πρloc(rm) , (9.206)

where ρloc(rm) is a local frequency vector.
The requisite Fourier transform can now be performed by means of (3.237)

and (3.259), with the result

uim(r) ∝
[

F2

{

exp

(

iπ
r′2

λq

)

u+(r
′)

}]

ρ=r/λq

= πb2 besinc

{

2b

[

r

λq
−

∇Φ(rm; r0)

2π

]}

.

(9.207)
In the image plane (z = q), the light diffracted from the mask is a besinc function
centered at the point r = rc where the argument of the besinc vanishes. Specifically,

rc =
λq

2π
∇Φ(rm; r0) = λqρloc(rm) . (9.208)

Within the small-angle approximation, this expression is consistent with (9.113).
The x component of λρloc(rm) is the deviation angle with respect to the x axis, and
when multiplied by q it gives the corresponding lateral deflection in the x direction
(and similarly for y). This deflection arises for two reasons: the source is displaced
from the axis and the lens is aberrated.

The width of the besinc function in (9.207), measured from peak to first zero, is
1.22λq/2b, which is the diffraction-limited spot size for a circular aperture of radius
b. If we can choose b relatively large without invalidating (9.205), we can think of
the besinc as a small spot, almost a point, and investigate how it moves around as
we explore the pupil with the mask.

To see how (9.208) works, consider first an unaberrated lens, where
W (r′; r0) = 0. In that case,

rc =
λq

2π

∇(−2πr · r0)
λp

= −
q

p
r0 . (9.209)

Thus rc is independent of the mask location rm, so all segments of the lens direct
their light to the same spot. This spot is centered at mr0, where again the lateral
magnification m is given by −q/p.

If aberrations are present, on the other hand, the field distribution in the plane
z = q is centered at

rc = q∇W (rm; r0)−
q

p
r0 . (9.210)

This equation provides another interpretation of W (r; r0). In the paraxial approxi-
mation, ∇W (rm; r0) is the angle by which the centroid of the light passing through
the mask is deflected (see Fig. 9.11). When this angle is multiplied by the distance
q, the displacement of rc specified by the first term in (9.210) is seen.
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Fig. 9.11 Illustration of an aberrated lens with a mask over the pupil.

9.6.7 Interpretation of the other Seidel aberrations

If spherical aberration is the only aberration present, Φlens takes the form

Φlens(r; r0) = −π
r2

λf
+ kw040r

4 . (9.211)

Since Φlens is now independent of r0, we may as well consider an on-axis point
source and take r0 = 0.

From (9.208), light from a mask at rm produces a diffraction pattern centered
at

rc = z

(

1

p
−

1

f
+

1

z
+ 4w040r

2
m

)

rm . (9.212)

Since we are considering an on-axis point source, we would hope that rc = 0, but
this does not occur in the paraxial focal plane z = q. Instead, rc = 0 when

1

z
=

1

f
−

1

p
− 4w040r

2
m . (9.213)

Since this distance depends on rm, but not on the orientation of the vector rm, light
passing through different annular zones in the lens focuses at different distances from
the lens, as illustrated in Fig. 9.12. If we observe the light in the plane z = q without
the mask, the zones near the center of the lens form a sharp focus, but the outer
zones are defocused in this plane.

Fig. 9.12 Illustration of spherical aberration.
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Fig. 9.13 Illustration of coma. (a) A single off-axis point in the object plane.
(b) Locus of a probing mask that traverses a circle around the optical axis in
the pupil plane. (c) Locus of image points as the mask traverses the pupil-
plane path shown in (b). (d) Loci of points in the image plane for several
circles of different diameter in the pupil plane.

Next consider coma. If coma is the only aberration present, then

Φlens(r; r0) = −π
r2

λf
+ kw131r

2(r · r0) . (9.214)

By writing the vectors out in Cartesian coordinates, we can show that

∇
[

r2(r · r0)
]

= r2r0 + 2(r0 · r)r . (9.215)

Now the light from the mask at rm yields a diffraction pattern centered at rc in the
plane z = q, where

rc = −
q

p
r0 + qw131

[

r2mr0 + 2(rm · r0)rm
]

. (9.216)

The first term is the Gaussian image, mr0, while the terms proportional to w131

specify the lateral displacement of the spot away from the Gaussian image. There
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are two components to this displacement, one in the direction of r0 and one in the
direction of rm; both of these components increase linearly with r0 and quadrat-
ically with rm. If we explore the pupil by rotating the mask in a circle around
the optical axis (constant rm), then the image spot also describes a circle (see Fig.
9.13). Increasing rm increases the radius of this circle and also shifts its center.
If we remove the mask, the resulting superposition of circles of various sizes and
center positions resembles a comet, whence the term coma.

A similar analysis can be applied to astigmatism. To describe the results of
this analysis, we define two orthogonal planes. The tangential or meridional plane
contains the off-axis point and the optical axis (and the Gaussian image point). The
sagittal plane is perpendicular to the tangential plane and contains the chief ray
(defined as the ray from the object point that passes through the center of the
pupil). Exploring the pupil with a mask shows that the lens has different focal
lengths for the two planes. Details can be worked out by the reader as an exercise;
since different focal planes are involved, it is necessary to allow both astigmatism
and defocus in the pupil function.

Thick lenses and lens systems: Pupil planes and principal planes Our treatment of
aberrations to this point has been confined to thin lenses with the stop at the lens.
We have made no distinction between the lens plane, entrance and exit pupil planes
and front and rear principal planes; all were assumed to be the single plane z = 0.
Real optical systems, however, consist of lenses with finite thicknesses and usually
multiple lens elements, and we can no longer think of the system as confined to
a plane. Here we briefly consider how the thin-lens theory must be modified to
accommodate more realistic optical systems.

Fig. 9.14 Illustration of the pupil planes of an optical system.

It is usually assumed that there is a single limiting aperture, called the stop,
in an optical system. The plane where this stop is physically located is called the
stop plane or aperture plane. As shown in Fig. 9.14, the image of the stop on the
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object side of the system is called the entrance pupil, and the image of the stop
on the image side is called the exit pupil. Thus the entrance pupil, the stop and
the exit pupil lie in conjugate planes (i.e., each plane is an image of the other two
through the intervening optics).

To compute the field in the image plane, we can write the field in the exit pupil
as a spherical wave converging on the Gaussian image point times two factors: a
phase factor of the form exp[ikW (r)] representing the aberrations and a binary-
valued factor analogous to tap(r) representing the stop as imaged to the exit pupil.
The pupil function is the product of these two factors as in (9.181), but both W (r)
and tap(r) now refer to the exit pupil rather than the physical aperture. All of the
effects of the optical elements are included in the field in the exit pupil (spherical
wave times pupil function), and only free-space propagation is needed to get to the
image plane. Since the spherical wave converges on the Gaussian image plane, the
field in this plane is given by the Fourier transform of the pupil function, and the
formalism developed above for thin lenses is still applicable.

The other significant planes in practical optical systems are the front and rear
principal planes (see Fig. 9.15). In paraxial optics the principal planes are defined
as conjugate planes with unit transverse magnification. Thus a ray that passes the
front principal plane at height h passes the rear principal plane at height h also,
by definition, so long as h is small (compared to the focal length). For first-order
analysis, one can treat a complicated optical system as a thin lens if distances
are measured from the principal planes. For example, the basic imaging equation,
p−1 + q−1 = f−1, still works and the magnification is still given by m = −q/p
so long as p and q are defined from object to front principal plane and from rear
principal plane to image, respectively.

Fig. 9.15 Illustration of the principal planes of an optical system.

Abbe sine condition There is an important condition, known as the Abbe sine
condition, that guarantees images free of spherical aberration and coma. In brief,
this happy condition occurs when any ray leaving an axial object point at angle θ
to the optical axis arrives at the image plane at an angle θ′ such that sin θ/ sin θ′ is



IMAGING OF POINT OBJECTS 511

Fig. 9.16 Illustration of the Abbe sine condition.

constant. Remarkably, this condition has to apply only to the rays from a point on
the optical axis, even though coma is an off-axis aberration.

There are several ways to understand the Abbe sine condition. A simple argu-
ment (Lipson et al., 1995) regards the angles θ and θ′ as specifying the directions
of plane waves rather than rays. From Sec. 9.2.1 we know that sin θ/λ is a spatial
frequency, so the sine condition says that all spatial frequencies are scaled by the
same magnification in going from object to image.

Another viewpoint, illustrated with lucid graphics, is provided by Mansuripur
(2002). This treatment starts with the recognition that the front and rear principal
planes are conjugate only paraxially, where sin θ ≈ tan θ ≈ θ. When this approxi-
mation does not hold, it is useful to consider spherical surfaces rather than principal
planes. Specifically, for an object point on the optical axis and a distance p from
the front principal plane, Mansuripur constructs a sphere of radius p centered on
the object point and hence tangent to the principal plane. In a geometrical op-
tics view (see Fig. 9.16), he then defines the height h of a ray by the point where
the ray strikes the sphere rather than by where it strikes the principal plane; thus
h(θ) = sin θ/p. If the image plane is a distance q from the rear focal plane, a similar
sphere of radius q is constructed in image space, centered on the Gaussian image
point and hence tangent to the rear principal plane. The sine condition is then
stated as sin θ/p = sin θ′/q, rather than tan θ/p = tan θ′/q as would apply if h were
the height on the principal planes.

Mansuripur goes on to explain the sine condition in wave-optical terms. He
considers an object point a small distance r0 from the optical axis and shows that
the wave emerging from the rear principal plane is a perfect spherical wave converg-
ing to the Gaussian image point if the sine condition is satisfied, but not otherwise.
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Though the argument is valid only to first order in r0, this is sufficient to show that
coma and spherical aberration vanish.

9.7 IMAGING OF EXTENDED PLANAR OBJECTS

Section 9.6 discussed the images of point objects in considerable detail. In the lan-
guage of Chap. 7, these images are point response functions14 (PRFs). To complete
the story, we must now show how the PRFs are superimposed to give images of ex-
tended objects. In this section we consider specifically planar or 2D object. Volume
objects and 3D imaging are treated in Sec. 9.8.

The reader who has studied Chap. 7 might think that the transition from a
point image to the image of an extended object is just a matter of computing an
integral, and in one sense that is correct. If we know the object field and the PRF
for an arbitrary point in the object, we can simply add up PRFs to get the image;
details of this procedure are given in Secs. 9.7.1 – 9.7.3 for various imaging systems.

In many cases, however, we do not—and cannot—know the object field since
it is a rapidly oscillating random process. In those cases, we must be content with
computing the average irradiance in the image, which is the average of the squared
modulus of the field. The averaging process requires that we make some statement
about the statistical properties of the source, and coherence theory, the topic of
Sec. 9.7.4 provides the language for doing so. The effects of coherence on imaging
with quasimonochromatic light will be discussed in detail in Sec. 9.7.5.

Formation of the squared modulus of a complex field is a nonlinear process,
but nevertheless, as we shall see in Sec. 9.7.6, there is one important limit (spatial
incoherence) in which it is possible to salvage the machinery of linear superposition
and define a new PRF for this situation. We shall explore this important case in
detail in Secs. 9.7.6 and 9.7.7. In Sec. 9.7.8, however, we shall finally encounter a
case—partial spatial coherence—where linear systems theory fails us.

9.7.1 Monochromatic objects and a simple lens

We have discussed in some detail the imaging of a single monochromatic point source
with a thin lens. To apply these results to a continuous object, we decompose the
object amplitude distribution into delta functions by means of the sifting relation,

uobj(r) =

∫

∞
d2r0 uobj(r0) δ(r− r0) . (9.217)

The field in the image plane produced by each delta function was calculated in Sec.
9.6.2, except that we have to get the amplitude A correct. We know from (9.94) that
a delta function in plane z = −p produces a spherical wave with amplitude 1/(iλp)
in the plane z = 0. Comparison with (9.173) shows that we should set A = 1/(iλ)
(though we can again delete the i since constant phase factors are irrelevant). With
this substitution, the field in the image plane is given by (9.177), with Tap replaced

14As discussed in Chap. 7, we use the term point response function or PRF to denote the general
shift-variant image of a point, reserving the more common term point spread function or PSF
specifically for the shift-invariant case.
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by Tpupil for generality:

u(δ)
im(r) =

1

λ2qp
Tpupil

[

1

λq
(r−mr0); r0

]

, (9.218)

where the superscript (δ) indicates that this is the field due to δ(r− r0) only.
By linear superposition, the total image-plane field is

uim(r) =
1

λ2qp

∫

∞
d2r0 uobj(r0)Tpupil

[

1

λq
(r−mr0); r0

]

. (9.219)

This integral describes a magnifier with possibly shift-variant blur; it is not a con-
volution because of the magnification factor m and also because the pupil function
itself depends on r0 if the lens has off-axis aberrations. Systems of this form were
discussed in general terms in Sec. 7.2.7, and the concepts introduced there will now
be applied to (9.219).

Reduction to a convolution For the moment, neglect field-dependent aberrations
so that Tpupil(ρ; r0) is independent of r0 and we can drop the second argument.
In that case we can force (9.219) to look like a convolution by defining a rescaled
image, the same size as the object, by

u(s)
im(r) = muim(mr) , (9.220)

where the superscript s indicates the scaling.
From (9.219), the scaled image field is related to the object field by

u(s)
im(r) =

m

λ2qp

∫

∞
d2r0 uobj(r0) Tpupil

[

m

λq
(r− r0)

]

≡ uobj(r) ∗ pcoh(r) , (9.221)

where the PSF pcoh(r) is given by

pcoh(r) =
m

λ2qp
Tpupil

(

m
r

λq

)

. (9.222)

The subscript coh stands for coherent, a designation that will become clearer in
Sec. 9.7.4 when we introduce incoherent fields and objects.

The key conclusion from this discussion is that the coherent PSF is a scaled
version of the Fourier transform of the pupil. Note that the scaling factors lead
to dimensionally correct expressions. The space-domain pupil function tpupil(r) is
dimensionless, so its Fourier transform Tpupil(ρ) has dimensions of L2 (from the
d2r in the Fourier integral). The substitutions in the argument do not alter the
dimensions of Tpupil, and the factors out front have net dimensions of L−4. Thus
pcoh has dimensions of L−2, as it must if (9.221) is to be dimensionally correct.

Since m = −q/p we can also write (9.222) as

pcoh(r) =
−1

(λp)2
Tpupil

(

−
r

λp

)

. (9.223)

This form shows that the PSF, as we have defined it, is really independent of the
magnification; we have scaled the image to match the scale of the object, so only the
object-to-lens distance p affects the PSF. Recall, however, that we are considering
only a simple thin lens with the aperture stop at the lens. For more complicated
systems the key distance is from the object to the entrance pupil.
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Effect of aberrations If field-dependent aberrations are present, the integral in
(9.221) is not a convolution since Tpupil is a function of r0. With field-dependent
aberrations, the system is shift variant, and the point response function must de-
pend on two arguments.

To show the field dependence explicitly, we write

tpupil(r; r0) = exp[ikW (r; r0)] tap(r) . (9.224)

The Fourier transform of this function with respect to the r variable is

Tpupil(ρ; r0) = F2{tpupil(r; r0)} . (9.225)

The counterpart of (9.221) is

u(s)
im(r) =

m

λ2qp

∫

∞
d2r0 uobj(r0)Tpupil

[

m

λq
(r− r0; r0)

]

≡
∫

∞
d2r0 uobj(r0) pcoh(r− r0; r0) , (9.226).

where now the shift-variant point response function pcoh(r; r0) is given by

pcoh(r; r0) =
m

λ2qp
Tpupil

(

m

λq
r; r0

)

= −
1

(λp)2
Tpupil

(

−
r

λp
; r0

)

. (9.227)

A useful approximation is to consider a small region of the object plane over
which tpupil(r, r0) does not vary much with r0. If we let r0c denote the center of
this so-called isoplanatic patch, we can set

pcoh(r− r0; r0) ≈ pcoh(r− r0; r0c) . (9.228)

If the object lies entirely within the isoplanatic patch, the image is approximately
a convolution. For more discussion of approximately shift-invariant systems, see
Sec. 7.2.8.

Coherent transfer function In the shift-invariant case, we can define the coherent
transfer function as the Fourier transform of pcoh(r):

Pcoh(ρ) = F2{pcoh(r)} =
1

(λp)2
F2

{

Tpupil

(

−
r

λp

)}

. (9.229)

From (3.113) and (3.239),

Pcoh(ρ) = tpupil(λpρ) . (9.230)

An extra factor of −1 occurs in (9.230) since F2F2{f(−r)} = f(r).
Thus the coherent transfer function is the pupil function itself, suitably

scaled. Object Fourier components for which λpρ lies outside the lens aperture are
not passed by the system.
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9.7.2 4f imaging system

Even in the absence of aberrations, a thin lens is not exactly shift invariant; to
get convolutions in Sec. 9.7.1, we had to drop quadratic phase factors at several
junctures. A somewhat more complicated imaging system that avoids the need
for this approximation (but requires some others) is illustrated in Fig. 9.17. We
introduce this system here both as an interesting exercise in the application of
diffraction theory to imaging and also because it will provide insights into coherence
and 3D imaging when we get to those topics.

Fig. 9.17 A 4f imaging system. The object is a photographic transparency
placed in the plane z = 0, and the illumination is a monochromatic plane
wave normally incident on the transparency.

The focal length of both lenses is f, and the object to be imaged is located
a distance f from the first lens. The object plane is called the front focal plane
of the first lens. The spacing between the lenses is 2f, and an aperture stop or
other mask is placed midway between them, in the back focal plane of the first lens
and the front focal plane of the second one. The image is formed in the back focal
plane of the second lens, so the total distance from object to image is 4f, and this
configuration of lenses is often referred to as a 4f system.

For this analysis, we shall ignore lens aberrations and treat the lenses as thin.
We shall assume also that the object is a thin photographic transparency, and that it
is illuminated with a monochromatic plane wave propagating along the z axis. The
incident wave is thus a constant in the plane of the object, and the wave emerging
from the object is this constant (call it A) times the amplitude transmittance of
the object transparency. If the plane of the object is z = 0, we can write the field
emerging from the object as

u0+(r) = Atobj(r) , (9.231)

where the 0+ subscript indicates the field just to the right of z = 0.
As we know from Sec. 9.5.1, this wave can be decomposed into plane-wave com-

ponents, each of which propagates independently to the lens. To get a qualitative
understanding of the action of this imaging system, consider one such plane wave.
An ideal lens of focal length f converts an incident plane wave into a spherical wave
with radius of curvature f. This wave comes to a focus in the back focal plane, pro-
ducing a bright spot at a position determined by the direction cosines of the plane
wave (see Fig. 9.18). Since these direction cosines correspond to spatial-frequency
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components by (9.42), the field distribution in the back focal plane of the first lens
is the Fourier transform of the object field. For this reason, the back focal plane in
this system is often referred to as the Fourier plane.

Fig. 9.18 Illustration of one diffracted plane wave emerging from the object
and forming a focus in the back focal plane of a lens.

The field in the Fourier plane, incident on the aperture stop, is multiplied by
the transmittance of the aperture and then propagates through the second lens to
the image plane. Since the second half of the system is identical to the first, it also
takes a Fourier transform of the field in its front focal plane. The overall imaging
system thus has the following action: it takes the Fourier transform of the input,
multiplies it by an aperture stop, and then takes a second Fourier transform.

If the second transform were an inverse Fourier transform, this action would
immediately constitute a linear, shift-invariant imaging system, with a transfer
function given by the transmittance of the aperture stop. The distinction between
forward and inverse transforms, however, is rather trivial. Since exp(−2πiρ · r)
= exp[2πiρ · (−r)], a forward transform followed by a coordinate inversion is the
same as an inverse transform. In the 4f system, the image is inverted (magnification
= −1), but otherwise it is the expected shift-invariant system.

Fresnel-diffraction analysis Now we look more quantitatively at the 4f system, using
the framework of Fresnel diffraction theory. If we use the Fresnel diffraction formula
(9.98) to propagate the object field to the lens (i.e., to a plane just to the left of
z = f), the result is

uf−(r) =
exp(ikf)

iλf
exp

(

iπ
r2

λf

)

F2

{

u0+(r0) exp

(

iπ
r20
λf

)}

ρ=r/λf

. (9.232)

The field emerging from the lens is obtained by multiplying this expression by the
lens transmittance, given in the Fresnel approximation by (9.159), so

uf+(r) = uf−(r) exp

(

−iπ
r2

λf

)

tap(r)

=
exp(ikf)

iλf
tap(r)F2

{

u0+(r0) exp

(

iπ
r20
λf

)}

ρ=r/λf

. (9.233)
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Note that the quadratic phase factor exp(iπr2/λf) in (9.232) has been cancelled by
the quadratic phase factor in the lens transmittance.

Next we assume that the lens diameter Dlens is large enough that tap(r) does
not substantially truncate the field incident on it. There are two components to
this assumption. It requires that the size of the object transparency be small com-
pared to the lens diameter, but it also requires that tobj not contain fine structures
that would diffract light substantially out of the geometric shadow of the object.
Roughly speaking, if ρmax is the highest spatial frequency in the object, it will
diffract light at an angle given by sin θmax ≈ λρmax, and the lens aperture is unim-
portant if f tan θmax is less than about 1

2Dlens. This is the major assumption of
this analysis: in contrast to the single lens, the lens aperture plays essentially no
role in determining the characteristics of a 4f system. All of the light is assumed
to get through the lens, and the imaging characteristics are set by the stop between
the lenses, not by the lens apertures.

If we set tap(r) = 1, then (9.233) becomes

uf+(r) = const ·F2

{

u0+(r0) exp

(

iπ
r20
λf

)}

ρ=r/λf

. (9.234)

A Fourier transformation yields the angular-spectrum representation:

Uf+(ρ)

= const ·
∫

∞
d2r exp(−2πiρ · r)

∫

∞
d2r0 u0+(r0) exp

(

iπ
r20
λf

)

exp

(

−2πi
r · r0
λf

)

= const ·
∫

∞
d2r0 u0+(r0) exp

(

iπ
r20
λf

)

δ

(

ρ+
r0

λf

)

= const · u0+(−λfρ) exp(iπλfρ2) . (9.235)

In the plane immediately after the lens, therefore, the Fourier transform of
the field is a scaled version of the object field times a quadratic phase factor. To
propagate this field to the back focal plane of the lens, we multiply (9.235) by the
transfer function for free-space propagation, given in the Fresnel approximation by
(9.118); the quadratic phase factors cancel, so

U2f−(ρ) = const · u0+(−λfρ) , (9.236)

where the subscript 2f− indicates a plane just to the left of z = 2f, or immediately
before the aperture stop. An inverse Fourier transform of (9.236) yields

u2f−(r) = const · U0+

(

r

λf

)

, (9.237)

which confirms the conclusion that we reached qualitatively by considering Fig.
9.18: The space-domain field in the back focal plane is proportional to the Fourier
transform of the object field.
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Relation to Fraunhofer diffraction The relation of (9.237) to Fraunhofer diffraction
theory should not be overlooked. Except for a quadratic phase factor, (9.237) is
identical to the Fraunhofer formula (9.99), yet nowhere in this section have we made
a Fraunhofer approximation. For (9.99) to be valid, the observation distance z has
to be large, but no similar requirement applies to the focal length f.

We can understand this result by realizing that the Fraunhofer approximation
becomes exact as the distance z goes to infinity. With the lens in the system,
however, a plane at infinity is imaged to z = f. Thus (9.237) is a Fraunhofer field
imaged to the back focal plane of the first lens.

Propagation to the image plane The field at z = 2f+ is found by multiplying
u2f−(r) by the amplitude transmittance of the aperture stop. If we denote this
transmittance by tpupil(r), then

u2f+(r) = tpupil(r)u2f−(r) = const · tpupil(r)U0+

(

r

λf

)

. (9.238)

We can now use (9.236) to propagate the field from z = 2f+ to the image
plane, z = 4f ; the result is

U4f (ρ) = const · u2f+(−λfρ) = const · tpupil(−λfρ)U0+(−ρ) . (9.239)

The constant in this equation turns out just to be the phase factor exp(4ikf). That
the modulus of the constant is unity follows from conservation of energy; we have
assumed that the diffracted light all goes through the aperture of the first lens, and
if tpupil(r) = 1, there is no light loss at all.

The minus signs in the arguments in (9.239) imply that the image is inverted.
As in Sec. 9.7.1, we can define a scaled function that removes the uninteresting
magnification factors. In the present case, the scaling amounts to removing a minus
sign, so that

U (s)
im (ρ) ≡ U4f (−ρ) = exp(4ikf) tpupil(λfρ)Uobj(ρ) , (9.240)

where Uobj(ρ) = U0+(−ρ) is the Fourier transform of the object field but plotted
on inverted axes.

The form of (9.240) shows that the 4f system is a linear, shift-invariant map-
ping from the object field to the (scaled) image field. In the frequency domain, this
mapping is the simple multiplication shown in (9.239), and in the space domain it
is a convolution. By inspection of (9.240), the coherent transfer function for a 4f
system is

Pcoh(ρ) = exp(4ikf) tpupil(λfρ) . (9.241)

If we neglect the constant phase factor exp(4ikf), (9.241) is essentially the same as
the transfer function (9.230) for a simple lens, only now the pupil is interpreted as
the transmittance of the aperture stop, and f appears rather than p.

To appreciate the form of (9.241), suppose that the pupil is a square aperture
of side L centered on the optic axis, so that tpupil(r) = rect(x/L) rect(y/L), where
x and y are the Cartesian components of r. Consider an object with an amplitude
transmittance of exp(2πiξ0x). This object can be realized as a thin prism, but it
can also be regarded as one Fourier component of a more general object. With
either interpretation, the field emerging from the object (for a normally incident
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plane-wave illumination) is a plane wave propagating in the x-z plane at an angle
θx to the z axis, where, in the small-angle approximation, θx ≈ ξ0λ.

An elementary function of a lens is to focus a plane wave into a point in the
back focal plane. For the plane wave emerging from our test object, this point is
located (in the small-angle approximation) at coordinates (fθx, 0). Thus the focal
point is at (λfξ0, 0), which is precisely the argument of tpupil in (9.241) for the
frequency under discussion. If this focal spot lies outside the clear aperture, i.e., if
λf |ξ0| > 1

2L, then the spot is blocked by the aperture and makes no contribution
to the image field. If λf |ξ0| < 1

2L, on the other hand, the focused wave travels
unimpeded past the focal spot, producing an expanding spherical wave of radius of
curvature f incident on the next lens. This lens converts the spherical wave into
another tilted plane wave (this time with θx = −ξ0λ), which reproduces the object
wave. Thus the aperture transmittance directly controls the transfer function of
the system.

9.7.3 More complicated lens systems

In geometrical optics, the action of a lens system is described by specifying what
it does to rays. Often we consider all of the rays crossing some input plane Pin

(commonly, but not necessarily, the object plane) and trace them through to some
output plane Pout (commonly the image plane). If we know what happens to all
such rays, we have completely specified the mapping operation from Pin to Pout

so far as geometric optics goes. In this section we shall see that this geometric-
optics description also tells us a good deal about the physical-optics properties of
the system.

Paraxial ray optics As discussed in Sec. 7.2.10, we often consider systems with a
well-defined optical axis (perhaps an axis of rotational symmetry), which we can
call the z-axis. For such systems it is natural to construct the planes Pin and Pout

perpendicular to the z-axis. The rays are then described by their x-y coordinates
on the plane and their direction cosines relative to the x and y axes. For the output
plane Pout, we shall denote the coordinates of a particular ray as simply x and y,
with the corresponding direction cosines α and β. For Pin we shall use x′, y′, α′

and β′.
Elementary geometric optics often considers only paraxial rays for which α

and β are small, and it restricts the input field of view sufficiently that the system
is shift-invariant. It may then be a good approximation to describe the mapping
from Pin to Pout as a simple matrix multiplication. If the system has rotational
symmetry, the mapping is separable, in the sense that the mapping of x′ and α′ to
x and α is independent of y′ and β′, and we can write

[

x
α

]

=

[

A B
C D

] [

x′

α′

]

, (9.242)

with a similar expression for the y coordinates.15

15If the paraxial approximation does not hold, (9.242) can still be used, but the matrix elements
must be functions of x′ and α′.
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For example, if the input and output planes are separated by a distance z
in free space, then the ABCD matrix is given by

Mz =

[

1 z
0 1

]

. (9.243)

The transformation action of this segment of free space is thus

Mz

[

x′

α′

]

=

[

x′ + α′z
α′

]

. (9.244)

We see that the angle of the ray remains constant as z is varied but that the ray is
displaced parallel to the x-axis by an amount α′z.

To describe a thin lens in the paraxial approximation, we take the input and
output planes to be immediately adjacent to the lens; thus Pin and Pout are effec-
tively the same plane since the lens is thin. The matrix that describes a thin lens
of focal length f with this choice of planes is

Mlens =

[

1 0
− 1

f 1

]

, (9.245)

and the transformation is

Mlens

[

x′

α′

]

=

[

x′

−x′

f + α′

]

. (9.246)

Thus the position of the ray is unaltered (which is the operational definition of a
thin optical element), but the angle is deviated by an amount proportional to x′.

Concatenation of matrices We can construct matrix representations for more com-
plicated systems from the building blocks Mz and Mlens. For example, if we con-
sider free-space propagation over distance p, followed by a thin lens of focal length f
and then propagation over q, where p, q and f are related by the imaging equation
(9.169), then the overall matrix is

MqMlensMp =

[

1 q
0 1

] [

1 0
− 1

f 1

] [

1 p
0 1

]

=

[

m 0
− 1

f
1
m

]

, (9.247)

where m is the magnification, −q/p.
The overall transformation from input to output for this example is

[

m 0
− 1

f
1
m

] [

x′

α′

]

=

[

mx′

α′

m − x′

f

]

. (9.248)

As expected, x = mx′ since m is the magnification. If we define an angular mag-
nification as mang = dα

dα′ , then we see that mang = m−1, so systems that magnify
the image demagnify the angles. The angular offset −x′/f can be understood by
considering the ray with α′ = 0; this ray must pass through the focal point in image
space and hence makes an angle −x′/f with the axis.

As an exercise, the reader may show that the ABCD matrix for the 4f system
of Fig. 9.17 is just −I, where I is the 2×2 unit matrix. Thus the lateral and angular
magnifications are both −1.
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Lens group All matrices considered so far in this section have determinant = 1,
that is, AD−BC = 1. In fact, this is a general rule: whenever an optical system can
be described geometrically by a 2 × 2 ABCD matrix, that matrix must have unit
determinant (Stavroudis, 1972). We know from Sec. 6.5.2 that the group of all such
matrices is the special linear group SL(2), which we can now regard as the group of
all realizable optical systems that can be described by 2×2 ABCD matrices. (Recall
that this description requires the paraxial and shift-invariant approximations and
that it applies only to rotationally symmetric or other separable systems where the
x and y variables transform independently.)

We know also from Chap. 6 that a set of operators constitutes a group only
if the inverse of every operator is in the group. That condition is satisfied for this
lens group. For example, the inverse of propagation over distance z is propagation
over −z, and the inverse of a positive lens of focal length f is a negative lens of
focal length −f.

Generalized diffraction integral The Fresnel diffraction integral for a rotationally
symmetric optical system was first written in terms of matrix optics by Collins
(1970) and further explored by Nazarathy and colleagues (Nazarathy and Shamir,
1982a, 1982b) For textbook treatments see Saleh and Teich (1981) and Siegman
(1986).

The main result of these discussions is that, when the mapping from Pin to
Pout is described geometrically by a 2×2 ABCD matrix, the field is mapped in the
Fresnel approximation according to

uout(x, y) = −
i

Bλ

∫ ∞

−∞
dx0

∫ ∞

−∞
dy0 uin(x0, y0)

× exp

{

iπ

λB

[

A
(

x2
0 + y20

)

+D
(

x2 + y2
)

− 2(xx0 + yy0)
]

}

, (9.249)

or, in our usual vector notation,

uout(r) = −
i

Bλ

∫

∞
d2r0 uin(r0) exp

[

iπ

λB

(

Ar20 +Dr2 − 2r · r0
)

]

. (9.250)

One special case of this result is already known from earlier in this chapter.
For free-space propagation over distance z, A = 1, B = z, C = 0 and D = 1, so
(9.250) reproduces (9.97) except for the irrelevant constant exp(ikz).

ABCD matrices for systems without rotational symmetry The use of a 2× 2 ABCD
matrix presumes that the x and y variables can be transformed independently, as
they can for systems with rotational symmetry. More generally, however, we can
use a 4× 4 matrix and write the transformation as









M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

















x′

y′

α′

β′









=









x
y
α
β









. (9.251)

This expression still assumes shift-invariance, and it applies only to paraxial rays,
but it does not require separability in x and y.
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It is convenient to define a 2× 1 vector r = (x, y)t (which is just our usual 2D
position vector written in column-vector form) and similarly to define a 2×1 vector
of direction cosines by θ = (α,β)t. With this notation, (9.251) can be written in
the form

[

A B

C D

] [

r′

θ′

]

=

[

r

θ

]

, (9.252)

where A, B, C and D are all 2×2 matrices. We shall refer to matrices in this form
as ABCD matrices rather than ABCD matrices.

Note that (9.252) is equivalent to (9.242) (plus the similar equation for the y
direction) if A = AI, and similarly for B, C and D.

Symplectic group Stavroudis (1972) shows that theABCDmatrix for all realizable
optical systems must satisfy the symplectic condition,

MtJM = J , (9.253)

where

J =









0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0









=

[

0 I
−I 0

]

, (9.254)

with I being the 2 × 2 identity matrix and 0 being the 2 × 2 matrix of all zeros.
The importance of the symplectic condition is indicated by the fact that Stavroudis
calls it the lens equation.

The group of all matrices that satisfy the symplectic condition is called the
symplectic group and denoted Sp2. All ABCD matrices for realizable optical
systems are in this group, but the converse does not hold. Since the determinant of
a product is the product of the determinants, and since the determinant of J is 1,
it follows from (9.253) that all matrices in the symplectic group have determinant
±1, and in fact the plus sign is required for optical systems. Moreover, more than
one optical system may have the same symplectic matrix.

Diffraction integral further generalized When the full 4×4ABCDmatrix is required
rather than two 2× 2 ABCD matrices, the field propagation from input to output
plane is described in the Fresnel approximation by (Siegman, 1986)

uout(r)= −
i

λ
√
detB

∫

∞
d2r0 uin(r0) exp

[

iπ

λ

(

rt0B
−1Ar0 + rtDB−1r− 2rt0B

−1r
)

]

.

(9.255)
Note that (9.255) reduces to (9.250) if A = AI, and similarly for B, C and D.

9.7.4 Random fields and coherence

So far in this chapter we have concentrated on perfectly monochromatic radiation,
and we have expressed the scalar optical field at a point specified by the 3D vector
r as Re{u(r) exp(−2πiν0t)}. For random but narrowband fields, it is natural to
write the field as Re{ũ(r, t) exp(−2πiνt)}, where ν is the center frequency of the
spectral band and ũ(r, t) is a random complex amplitude that varies with spatial
position and time. If the field is random but not narrowband, it can be written as
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the real part of the analytic signal (see Sec. 4.2.4), but there is no loss of generality
in writing this signal as ũ(r, t) exp(2πiνt) for some convenient frequency ν. In either
case, ũ(r, t) is a spatio-temporal random process, and we must specify its statistical
properties before we can understand how the randomness affects imaging properties.
The basics of random processes were presented in Sec. 8.2.

Statistical description of natural light sources For chaotic light sources, such as incan-
descent bulbs and fluorescent lights, the complex field is a phasor that is randomly
oriented in the complex plane. Since all angles in this plane are equally probable,

〈ũ(r, t)〉 = 0 . (9.256)

The angular brackets here denote an ensemble average, but the assumption of er-
godicity (see Sec. 8.2.5) allows us to interpret them as time averages as well. If the
light were perfectly monochromatic, ũ(r, t) would be independent of t and the time
average would not be zero, but for chaotic light with a finite spectral bandwidth,
the random time-varying phase of ũ(r, t) makes the complex field average to zero.

The complex spatio-temporal autocorrelation function of this random process
is defined by

Rũ(r, t; r
′, t′) ≡ 〈ũ(r, t) ũ∗(r′, t′)〉 . (9.257)

It is often useful to assume that the process is temporally stationary (though not
necessarily spatially stationary), so that Ru(r, t; r′, t′) is a function of t− t′ and not
t and t′ individually. This assumption will be valid if parameters of the light source,
such as the temperature of a blackbody radiator, are not themselves functions of
time. Under this assumption, we define the mutual coherence function Γ(r, r′, τ )
as

Γ(r, r′, τ ) ≡ Rũ(r, t+ τ ; r′, t) = 〈ũ(r, t+ τ ) ũ∗(r′, t)〉 . (9.258)

A common alternative notation is Γ12(τ) ≡ Γ(r1, r2, τ ), but in imaging applica-
tions it is convenient to show the spatial variables explicitly. Note that we define
Γ(r, r′, τ ) as the autocorrelation of the envelope ũ(r, t) rather than the total com-
plex field u(r, t); the latter definition is more common in the literature but ours
avoids uninteresting factors of exp(−2πiνt) when we consider narrowband light,
and it entails no loss of generality in the broadband case.

Coherence as interferability A normalized version of Γ(r, r′, τ), called the complex
degree of coherence, is defined by

γ(r, r′, τ) ≡
Γ(r, r′, τ )

√

〈|ũ(r, t)|2〉〈|ũ(r′, t)|2〉
. (9.259)

The complex degree of coherence tells us the degree to which light from the space-
time point (r, t) is capable of interfering with light from point (r′, t′). An inter-
ferometer is basically a device for bringing together light from these two points
and superimposing them at a third space-time point (r′′, t′′). When we do so,
|γ(r, r′, t − t′)| gives the relative strength of the interference term, and the phase
tells us about the position of the fringes.

As a simple example, consider the double-pinhole experiment shown in Fig.
9.19. Two identical small pinholes at points r and r

′ are illuminated by a field of
arbitrary coherence. The irradiance distribution on an observation screen will show
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interference fringes if the light arriving there from the two pinholes is capable of
interfering.

Fig. 9.19 Double-pinhole experiment for measuring the complex degree of
coherence.

If we denote the complex field on the screen at (r′′, t′′) resulting from light
coming through pinhole 1 as u1(r′′, t′′), and similarly for light from pinhole 2, then
the time-averaged mean irradiance at r

′′ is given by

I(r′′) = 〈|u1(r
′′, t′′) + u2(r

′′, t′′)|2〉

= 〈|u1(r
′′, t′′)|2〉+ 〈|u2(r

′′, t′′)|2〉+ 2Re〈u1(r
′′, t′′)u∗

2(r
′′, t′′)〉 . (9.260)

If we think of the pinholes as effective sources, we know from (9.66) that the field at
the observation point is determined by the field at the pinhole at a retarded time,

so u1(r′′, t′′) ∝ u
(

r, t′′ − |r′′−r|
c

)

. A similar expression holds for u2(r′′, t′′), and we

can write

〈u1(r′′, t′′)u∗
2(r

′′, t′′)〉
√

I1(r′′) I2(r′′)
=

〈

u
(

r, t′′ − |r′′−r|
c

)

u∗
(

r
′, t′′ − |r′′−r

′|
c

)〉

√

I(r) I(r′)
, (9.261)

where all factors of proportionality have been normalized away. (Note carefully
that I(r) is the mean irradiance emerging from the pinhole at r, while I1(r′′) ≡
〈|u1(r′′, t′′)|2〉 is the mean irradiance that would appear at the observation point if
that pinhole alone were open.)

Since u(r, t) = ũ(r, t) exp(−2πiνt), the right-hand side of (9.261) simplifies to
〈

u
(

r, t′′ − |r′′−r|
c

)

u∗
(

r
′, t′′ − |r′′−r

′|
c

)〉

√

I(r) I(r′)
= γ(r, r′, τ) exp(−2πiντ) , (9.262)

where we have invoked temporal stationarity and defined

τ =
1

c
|r′′ − r

′|−
1

c
|r′′ − r| . (9.263)

Thus τ is the difference in propagation times from the two pinholes to the observa-
tion point.
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If we write γ(r, r′, τ) as |γ(r, r′, τ )| exp[iΦγ(r, r′, τ )], we obtain

I(r′′) = I1(r
′′) + I2(r

′′) + 2|γ(r, r′, τ)|
√

I1(r′′) I2(r′′) cos[2πντ − Φγ(r, r
′, τ)] .

(9.264)
Though it is hidden somewhat by our notation, τ is a function of the observation
point r

′′ as well as the pinhole locations r and r
′. For fixed pinholes, the dependence

of τ on r
′′ makes the cosine a spatially oscillating function on the observation plane,

i.e., a fringe pattern. The modulation of these fringes is reduced by the factor
|γ(r, r′, τ )|, and the fringes are shifted by Φγ(r, r′, τ ) from what we would observe
in the fully coherent case of γ(r, r′, τ ) = 1. Thus the modulus of the complex degree
of coherence tells us the fringe visibility, and the phase gives us fringe position.

We have carried along the arguments in γ(r, r′, τ ) to emphasize that it refers to
the coherence between the fields at the two pinhole locations. The observation point
appears only in that it determines the time delay τ. To probe the dependence of
γ(r, r′, τ ) on τ, we could move the point r laterally as shown in Fig. 9.19 or otherwise
introduce a time delay between the two paths, but to probe the dependence on the
spatial arguments, we have to move the pinholes.

Summary measures of temporal and spatial coherence The state of coherence of a
radiation field is fully specified by the complex degree of coherence γ(r, r′, τ ), a
function of seven variables in all. It is often useful to summarize this complicated
function by one or two scalar measures, much as we summarize a point response
function by some measure of its width (see Sec. 7.2.1).

If we adopt a measure of width, such as full width at half maximum, then the
width of a plot of γ(r, r′, τ ) vs. τ will be called the coherence time and denoted
τc. The distance cτc, where c is the speed of light, is the coherence length. For
natural light sources τc is approximately the reciprocal of the spectral bandwidth
∆ν of the light, so we can control τc simply by using narrowband spectral filters to
control the bandwidth of the light.

If τc is long compared to any relevant time differences in a problem, the light is
said to be quasimonochromatic. In an interferometer, for example, two beams may
travel along different paths, requiring different propagation times. If the difference
in path lengths is small compared to the coherence length (or, equivalently, the
difference in propagation times is small compared to the coherence time), the light
can be treated as if it were monochromatic. The implications of this condition for
imaging will be taken up in Sec. 9.7.5.

For temporally stationary light, the mutual coherence function at equal time
(τ = 0) will be denoted

Γ(r, r′) ≡ Γ(r, r′, 0) . (9.265)

This quantity is referred to variously as the spatial coherence function, themutual
intensity or the mutual optical intensity. Since the word intensity has a different
meaning in radiometry (see Sec. 10.2), we shall adopt the first of these designations.

The mean irradiance of the field at point r, denoted I(r), is related to the
spatial coherence function by

I(r) =
〈

|ũ(r, t)|2
〉

= Γ(r, r) . (9.266)
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The complex degree of coherence at τ = 0 is given by

γ(r, r′) ≡
Γ(r, r′)

√

Γ(r, r)Γ(r′, r′)
=

Γ(r, r′)
√

I(r) I(r′)
. (9.267)

From (9.258) and (9.259), we see that

γ(r, r) = 1 . (9.268)

Any of the resolution measures discussed in Sec. 7.2.1 can be used to specify
the width of γ(r, r′) or Γ(r, r′). Without attempting to be very precise at this stage,
we shall denote this width as Lc and refer to it as the correlation length (not to
be confused with the coherence length defined above).

An incoherent assumption For many natural light sources, γ(r, r′) is a sharply
peaked function of r − r

′, and it is convenient mathematically to approximate it
with a delta function. When this approximation is valid, we refer to the field as
spatially incoherent, or incoherent for short. Conversely, if γ(r, r′) ≈ 1 for two
points of interest, then the field is said to be spatially coherent between these points.

In many imaging applications, we are interested in the case where r and r
′ lie

on a specified plane. If, as usual, we call that plane z = 0, then we can charac-
terize the field by the function γ(r, r′), where r and r′ are 2D vectors. Then the
incoherent-field approximation is

γ(r, r′) ≈ Ac δ(r− r′) , (9.269)

where Ac is a constant with units of area needed for dimensional consistency and
proper normalization. We shall refer to Ac as the coherence area. Roughly speak-
ing, Ac ≈ L2

c , but the exact relation depends on the particular definition of Lc and
the functional form of γ(r, r′).

Note that (9.269) does not satisfy (9.268), so it cannot be interpreted point-
wise; instead, (9.269) makes sense only when it is used in an integral where the
other factors in the integrand are slowly varying in comparison to γ(r, r′).

The closest we can come to justifying (9.269) is with Lambertian sources (see
Sec. 10.2.1), of which blackbodies are an important example. As we shall see in Sec.
10.2.7, γ(r, r′) = sin(k|r − r′|)/(k|r − r′|) for a quasimonochromatic Lambertian.
In this expression, k = 2π/λ, so γ(r, r′) has a width (peak to first zero) of λ/2.
If λ/2 is small compared to the width of the system PSF, then it may be valid to
approximate the sinc function with a delta function, but the approximation is not
entirely justified with high-resolution imaging systems that can resolve details on
the order of a wavelength. For further discussion, see Sec. 9.7.7.

9.7.5 Quasimonochromatic imaging

In Sec. 9.7.4, we presented the vocabulary needed for discussing spatial and temporal
coherence, and we introduced two useful single-parameter descriptions needed to
speak in qualitative terms about degree of coherence. For spatial coherence, the
relevant parameter is the correlation length Lc, and for temporal coherence the
parameter is the coherence time τc or the coherence length cτc. We noted that τc
is approximately the reciprocal of the spectral bandwidth ∆ν.
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A common situation in imaging is when τc is relatively long, in a sense to be
defined below, but Lc is very short. When both of these conditions are satisfied
for the field emerging from the source, it is common in the literature to speak
of quasimonochromatic, incoherent imaging, but this terminology is potentially
confusing. When the word incoherent is used without a clarifying modifier, it
usually refers to spatial coherence, and that is the only possible interpretation if
the modifier quasimonochromatic is included; a nearly monochromatic source has
a small spectral bandwidth, hence a large coherence time, and is essentially coherent
in a temporal sense whatever its spatial properties.

In this section we shall discuss the effects on imaging systems of using light
with a small but finite spectral bandwidth without making any assumptions about
spatial coherence. In Sec. 9.7.5, we shall add the assumption that the source is
spatially incoherent as well as quasimonochromatic. Later, in Secs. 9.7.6 and 9.7.7,
we shall return to polychromatic imaging and partial spatial coherence.

Temporal Fourier analysis In Sec. 9.7.1 we discussed coherent, monochromatic imag-
ing by a simple lens, and in Sec. 9.7.2 we extended the discussion to a 4f system.
For a nonmonochromatic light source we can perform a temporal Fourier analysis
to resolve the object field into monochromatic components, and each component
can be analyzed by the formalism we have developed. Linear superposition then
yields the total image field.

Recalling from Sec. 9.1.2 that the usual Fourier sign convention is reversed for
temporal transforms, we represent a general object field uobj(r, t) as16

uobj(r, t) =

∫ ∞

−∞
dν Uobj(r, ν) exp(−2πiνt) . (9.270)

For narrowband light, Uobj(r, ν) will be appreciable only for ν in the vicinity of
some center frequency ν.

After rescaling to account for magnification, we can write the image field as

u(s)
im(r, t) =

∫ ∞

−∞
dν exp(−2πiνt)

∫

∞
d2r0 Uobj(r0, ν) pcoh(r− r0; r0; ν) , (9.271)

where we have added an argument ν to the coherent point response function since
it can depend on frequency. For all systems we have studied thus far, this PRF has
the form [cf. (9.227)]

pcoh(r− r0; r0; ν) =
1

λ2qp
exp[ikw(r, r0)]

∣

∣

∣

∣

Tpupil

(

m

λq
(r− r0); r0

)
∣

∣

∣

∣

, (9.272)

where exp[ikw(r, r0)] accounts for the phase of Tpupil as well as various phase factors
that we somewhat cavalierly dropped in the monochromatic case. For the ideal 4f
system, for example, w(r, r0) = 4f, but for a simple lens w(r, r0) also includes terms
quadratic in r and r0, even if there are no aberrations.

The frequency dependence is hidden in several places in (9.272); the wave-
number k is given by 2πν/c and the wavelength λ is c/ν. (Note that c rather than

16Do not confuse Uobj(r, ν) with Uobj(ρ ) used earlier; the former is a temporal Fourier transform
of the object field, the latter a spatial transform.
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cm appears here since we assume that the object and image planes are in air, where
cm is the same as c to an excellent approximation.) In the quasimonochromatic
approximation, we replace ν with ν (or equivalently, λ with λ) in the constant in
front of the integral and in the scale factor in the argument of |Tpupil|. In the factor
exp[ikw(r, r0)], however, we must retain the original form since w(r, r0) may vary
by several wavelengths as r and r0 vary. With (9.271) and (9.272), we then obtain

u(s)
im(r, t) =

m

λ
2
qp

∫ ∞

−∞
dν exp(−2πiνt)

∫

∞
d2r0 Uobj(r0, ν)

× exp

(

2πiν
w(r, r0)

c

)
∣

∣

∣

∣

Tpupil

(

m

λq
(r− r0); r0

)
∣

∣

∣

∣

. (9.273)

The integral over ν is an inverse Fourier transform of Uobj(r0, ν) with a shift:

∫ ∞

−∞
dν exp(−2πiνt)Uobj(r0, ν) exp

(

2πiν
w(r, r0)

c

)

= uobj

(

r0, t−
w(r, r0)

c

)

,

(9.274)
so

u(s)
im(r, t) =

m

λ
2
qp

∫

∞
d2r0 uobj

(

r0, t−
w(r, r0)

c

)
∣

∣

∣

∣

Tpupil

(

m

λq
(r− r0); r0

)
∣

∣

∣

∣

.

(9.275)
As in Sec. 9.7.4, we can write the general object field uobj(r0, t) as the product

ũobj(r, t) exp(2πiνt), where the envelope ũ(r, t) is slowly varying for narrowband
light. With a similar representation for the scaled image field, (9.275) becomes

ũ(s)
im(r, t) =

m

λ
2
qp

∫

∞
d2r0 ũobj

(

r0, t−
w(r, r0)

c

)

× exp
[

ik w(r, r0)
]

∣

∣

∣

∣

Tpupil

(

m

λq
(r− r0); r0

)
∣

∣

∣

∣

, (9.276)

where k = 2πν/c, and a common factor of exp(2πiνt) on both sides has been
cancelled. From (9.272), we recognize the product of the last two factors in the
integrand as the coherent PRF at the mean frequency, yielding finally,

ũ(s)
im(r, t) =

∫

∞
d2r0 ũobj

(

r0, t−
w(r, r0)

c

)

pcoh(r− r0; r0; ν) . (9.277)

Optical path retrod Equations (9.276) and (9.277) are reminiscent of (9.66), where
the field at an observation point at time t is related to the source at other points at
the retarded time t − τp, where τp is a propagation time. In (9.66), however, τp is
the straight-line distance R from source point to observation point divided by the
speed of light in the medium, cm. Since cm = c/n, where n is the refractive index,
τp is also the optical path nR divided by c.

The simple identification of an optical path in (9.66) came about because the
system to which that equation applies was just a homogeneous medium. The dis-
cussion leading up to (9.276) and (9.277), however, allowed a rather complicated
optical system, with inhomogeneous index distributions (i.e., lenses) interposed be-
tween regions of free-space propagation. Nevertheless, we are able to identify an
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optical path from r0 to r without appealing to Fermat’s principle or any other con-
struct from geometrical optics. Any time we can write the monochromatic coherent
PRF in the form exp[2πiνw(r, r0)/c] times a slowly varying function of ν, we obtain
a retarded-time expression with the phase delay τp given by the coefficient of 2πiν
in the phase, and we can define cτp as the optical path. In this way we can define
optical path in a physical-optics framework without having to say that the light
follows that path (which, of course, waves are reluctant to do).

How nearly monochromatic is quasi? From (9.277), we see that light emitted from a
particular source point r0 arrives at the image point r after a time delay τp(r, r0) =
w(r, r0)/c. In the fully monochromatic case, this delay did not appear (mainly
because we consistently dropped phase factors). The remaining question is: When
are we justified in ignoring this delay, or equivalently, when can we drop the phase
factors that give rise to the delay?

To answer this question, recall that we always observe the mean image irradi-
ance, given by

I
(s)
im(r) =

〈[

ũ(s)
im(r)

] [

ũ(s)
im(r)

]∗〉

. (9.278)

Inserting (9.277) for each appearance of ũ(s)
im (with a different dummy variable for

each integral), we obtain

I
(s)
im(r) =

〈

∫

∞
d2r′ ũobj [r

′, t− τp(r, r
′)] pcoh(r− r′; r′; ν)

·

∫

∞
d2r′′ ũ∗

obj [r
′′, t− τp(r, r

′′)] p∗coh(r− r′′; r′′; ν)
〉

. (9.279)

Under broad conditions discussed in Sec. 8.2.2, it is valid to interchange the order
of integration and statistical averaging, which yields

I
(s)
im(r) =

∫

∞
d2r′

∫

∞
d2r′′

〈

ũobj [r
′, t− τp(r, r

′)] ũ∗
obj [r

′′, t− τp(r, r
′′)]

〉

× pcoh(r− r′; r′; ν) p∗coh(r− r′′; r′′; ν) . (9.280)

The average is now recognized as the spatio-temporal autocorrelation function of
the object field as defined in (9.257). Under the assumption of temporal stationarity,
this autocorrelation function reduces to the mutual coherence function defined in
(9.258), and we have

〈

ũobj [r
′, t− τp(r, r

′)] ũ∗
obj [r

′′, t− τp(r, r
′′)]

〉

= Γobj [r
′, r′′,∆τ (r, r′, r′′)] , (9.281)

where ∆τ (r, r′, r′′) is the difference in propagation delays to point r from points r′

and r′′, that is,
∆τ(r, r′, r′′) = τp(r, r

′)− τp(r, r
′′) . (9.282)

In principle, this difference in delays could be arbitrarily large since r and
r′ range independently over the infinite plane. Remember, however, that we are
considering an imaging system, where a design goal is to make the PRF spatially
compact. If we achieve this goal to any reasonable degree, then pcoh(r− r′; r′; ν) is
zero if r is more than a resolution length from r′, and similarly pcoh(r− r′′; r′′; ν) is
zero unless r is near r′′ in this sense. One should not jump to the conclusion that the
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propagation delays themselves are small, since the point referred to as r is actually
quite far from the one referred to as r′, even if the 2D vectors r and r′ are exactly
equal; these vectors refer to physical points in different planes. Nevertheless, the
condition that r′ and r′′ are both close to r (in a 2D sense) does mean that the
two physical points are close together three-dimensionally since r′ and r′′ are in the
same plane, namely, the object plane.

Thus the very fact that we are dealing with an imaging system will tend to
make ∆τ (r, r′, r′′) small. The essence of the quasimonochromatic approximation is
that this difference in delays is so small that we can replace Γobj [r′, r′′,∆τ (r, r′, r′′)]
with Γobj(r′, r′′, 0), which is the spatial coherence function Γobj(r′, r′′). We can do
this with negligible error if ∆τ(r, r′, r′′) ( τc, where τc is the coherence time, for all
points r′ and r′′ that contribute to the image at point r. We know from Sec. 9.7.4
that τc is approximately 1/∆ν, where ∆ν is the spectral bandwidth of the light, so
a sufficiently narrowband source will always allow us to make this approximation.

When the spectral bandwidth is small enough, we can write the image irradi-
ance as

I
(s)
im(r) =

∫

∞
d2r′

∫

∞
d2r′′ Γobj(r

′; r′′) p∗coh(r− r′; r′; ν) pcoh(r− r′′; r′′; ν)

=

∫

∞
d2r′

∫

∞
d2r′′ γobj(r

′; r′′)
√

Iobj(r′) Iobj(r′′) p
∗
coh(r− r′; r′; ν) pcoh(r− r′′; r′′; ν) ,

(9.283)
where Iobj(r′) ≡

〈

|ũobj(r′)|2
〉

.

It would be tempting to refer to Iobj(r′) as a mean irradiance, since it is defined
analogously to Iim(r′). Both quantities are proportional to an optical power per
unit area, but Iobj(r′) represents power leaving the object surface while Iim(r′)
represents power arriving at the detector; for this reason Iobj(r′) is called the
mean radiant exitance. For more discussion of these quantities, see Chap. 10.

Implications of the general expression (9.283) will be explored further in Sec.
9.7.7, but now we turn to the special case of spatial incoherence.

9.7.6 Spatially incoherent, quasimonochromatic imaging

In Sec. 9.7.4 we defined the complex degree of coherence γ(r′, r′′) as a normal-
ized measure of spatial coherence for quasimonochromatic light. In this section
we assume that γ(r′, r′′) is sharply peaked compared to the width of the coherent
PRF, so that we can use the incoherent-object approximation of (9.269), whereby
γ(r′, r′′) = Ac δ(r′ − r′′). Inserting this delta function into (9.283) and performing
an elementary integral yields

I
(s)
im(r) = Ac

∫

∞
d2r′ Iobj(r

′) |pcoh(r− r′; r′; ν)|2 . (9.284)

If the system is shift-invariant, pcoh(r−r′; r′; ν) is a function of r−r′ only, and
we can drop the second spatial argument. Also dropping the frequency argument
for simplicity, we write the coherent PSF as just pcoh(r− r′), as we did in the fully
monochromatic, shift-invariant case. With this notation, (9.284) reduces to

I
(s)
im(r) = Ac

∫

∞
d2r′ Iobj(r

′) |pcoh(r− r′)|2 . (9.285)
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This is a key result; the mean irradiance in the image is proportional to the mean ex-
itance of the incoherent object convolved with the squared modulus of the coherent
PSF. We can thus define an incoherent PSF by

pincoh(r) = Ac|pcoh(r)|
2 =

Ac

(λp)4

∣

∣

∣

∣

Tpupil

(

−
r

λp

)
∣

∣

∣

∣

2

, (9.286)

where we have used (9.223). With this PSF, we can rewrite (9.285) as

I
(s)
im(r) = Iobj(r) ∗ pincoh(r) . (9.287)

If aberrations are present, this result, like its coherent counterpart, is valid
only if the object is confined to an isoplanatic patch, but (9.284) provides the
analogous expression for general shift-variant incoherent imaging. In every case,
the incoherent PRF is proportional to the squared modulus of the coherent one if
the object is completely spatially incoherent in the sense defined by (9.269).

The important conclusion from this discussion is that linear superposition is
still valid in incoherent imaging if we take the input as the radiant exitance of the
object and the output as the image-plane irradiance.

Optical transfer function A linear, shift-invariant system can be specified by its
transfer function as well as by its PSF. In the case of shift-invariant incoherent
imaging, the transfer function is the Fourier transform of the incoherent PSF, given
by

Pincoh(ρ) = F2{pincoh(r)} = AcF2

{

|pcoh(r)|
2
}

. (9.288)

From (9.288), (9.222) and (3.245), we have

Pincoh(ρ) =
Ac

(λp)2
[tpupil 4 t

∗
pupil](λpρ) , (9.289)

where 4 denotes correlation. Thus the incoherent transfer function is a scaled
version of the complex autocorrelation of the pupil function.

Since the support of the autocorrelation of a function is twice as large (in linear
dimension) as the support of the function itself, the spatial-frequency cutoff of the
incoherent transfer function is twice that of the coherent transfer function.

It is often convenient to normalize the transfer function Pincoh(ρ) to its value
at ρ = 0. We define the optical transfer function or OTF by

OTF(ρ) =
Pincoh(ρ)

Pincoh(0)
=

[tpupil 4 t∗pupil](λpρ)

[tpupil 4 t∗pupil](0)
. (9.290)

The modulation transfer function or MTF is the modulus of the OTF. (See
Sec. 7.2.6 for a discussion of the significance of the MTF.) For incoherent imaging
systems, the MTF is related to the pupil function by

MTF(ρ) = |OTF(ρ)| =
|Pincoh(ρ)|

Pincoh(0)
. (9.291)

Note that it is not necessary to write |Pincoh(0)| in the denominator since Pincoh(0)
is necessarily real. Fig. 9.20 illustrates the PSF and OTF for square and circular
apertures.
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Fig. 9.20 PSF and OTF for incoherent imaging with square and circular
pupils.

Incoherent illumination in a 4f system To gain more insight into the statement that
the incoherent transfer function is the autocorrelation of the pupil function, we shall
revisit the 4f system introduced in Sec. 9.7.2. In that section, we assumed that the
object transparency was illuminated by a monochromatic plane wave, but we did
not say where the plane wave came from. We can create a good approximation to
a plane wave by placing a point source in the back focal plane of a condenser lens,
as shown in Fig. 9.21a. This setup fits the analysis of Sec. 9.7.2. In the language of
coherence theory, the mutual coherence function of the field incident on the object
transparency is, to a good approximation, a constant. The system then performs a
linear mapping from the object field to the image field, which is what we mean by
coherent imaging.

To convert the system into an incoherent one, we can replace the point source
by an extended incoherent source as shown in Fig. 9.21b. As seen from Fig. 9.21c,
each point on the source produces a plane wave, so the illumination incident on the
object transparency consists of many plane waves with random phases. Because dif-
ferent source points radiate independently, the mean irradiance in the image arising
from many source points is the sum of the irradiances from the points individually;
interference terms average to zero. To compute the total image irradiance, we sim-
ply compute it for a single source point and then integrate over the source.

The Fresnel-diffraction analysis presented in Sec. 9.7.2 shows that the field
incident on the object is the Fourier transform of the instantaneous field in the
object plane, at least to the extent that diffraction from the lens aperture can be
neglected. It follows from (9.237) that a point source at rs produces a plane wave
with amplitude proportional to exp(−2πir · rs/λf) at point r in the object plane.
This plane wave is multiplied by the object transmittance tobj(r) to produce the
field u0+(r) presented to the 4f system. The field in the Fourier plane (z = 2f) is
then proportional to

F2

{

exp

(

−2πi
r · rs
λf

)

tobj(r)

}

= Tobj

(

ρ+
rs

λf

)

. (9.292)
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Fig. 9.21 Extension of the diagram of Fig. 9.17, showing the light source
explicitly. (a) Illumination with a plane wave created by an on-axis point
source and a condenser lens. (b) Illumination with an extended incoherent
source. (c) Illumination with a tilted plane wave created by an off-axis point
source, which might be one point on the extended source.

Thus the field in the Fourier plane is the Fourier transform of the object shifted
laterally by an amount determined by the location of the source point. Math-
ematically, this result comes from the shift theorem of Fourier analysis, (3.237).
Physically, it means that the object Fourier transform is centered on the image of
the source point.

Another way to state this conclusion is that the coherent transfer function for
a single source point at rs is given by

Pcoh(ρ; rs) = tpupil(λfρ+ rs) . (9.293)

A formal way of proceeding from here would be to use this transfer function to
filter the object field distribution, take the squared modulus to get the contribution
from source point rs to the image irradiance and then integrate this result over
rs. As the reader may demonstrate, this procedure would reproduce our previous
analysis of incoherent imaging. Perhaps more insight will be obtained, however, if
we consider the effect of this procedure on a particular object.
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In Sec. 9.7.2 the test object was one with an amplitude transmittance given
by exp(2πiξ0x), but this choice will not work in a discussion of incoherent imaging
since | exp(2πiξ0x)|2 = 1, hence no spatial modulation can be seen with incoherent
illumination. Instead we choose

tobj(r) = 1 + exp(2πiξ0x) = 1 + exp(2πiρ0 · r) , (9.294)

where ρ0 = (ξ0, 0) for purposes of illustration. An ideal incoherent image of this
object would have an image-plane irradiance proportional to

|tobj(r)| = 2 + exp(4πiξ0x) + exp(−4πiξ0x) = 2 + 2 cos(2ρ0 · r) , (9.295)

which is a fringe pattern with 100% modulation and a spatial frequency vector twice
that of the amplitude pattern.

The shifted transform in (9.292) is given by

Tobj

(

ρ+
rs

λf

)

= δ

(

ρ+
rs

λf

)

+ δ

(

ρ− ρ0 +
rs

λf

)

. (9.296)

Hence, for a point source at rs, the field distribution in the Fourier plane (imme-
diately before the aperture stop) consists of two spots, one at r = −rs and one at
r = ρ0λf − rs. If only one of these spots passes the stop, it produces an expanding
spherical wave which is converted to a plane wave by the final lens. This wave
produces a uniform irradiance in the image plane, with no modulation and hence
no information about the object.

If both of the spots pass unimpeded through the aperture, however, two plane
waves are produced, and the resulting interference pattern has an image irradiance
in the ideal form (9.295). Note that this pattern is independent of the source lo-
cation, so long as both spots get through. The shift rs/λf in (9.296) produces a
rigid lateral translation of the field pattern in the stop, hence a linear phase factor
in its Fourier transform (the image field). This phase factor does not affect the
image-plane irradiance.

Now consider an extended incoherent source that is larger than the aperture
stop. Each source point produces two spots, and if both get through the aperture
they still interfere and produce a fringe pattern; these spots are coherent with each
other since they derive from the same source point, even though spots associated
with two different source points do not interfere. The overall image irradiance thus
contains two contributions, one from source points where both spots get through
and one from source points where just one of them does. If we assume that the
radiant exitance of the source is spatially uniform, the mean image irradiance has
the form

Iim(r) ∝ A1(ρ0) +A2(ρ0) [2 + 2 cos(4πρ0 · r)] , (9.297)

where A1(ρ0) is the source area such that one spot gets through and A2(ρ0) is the
source area where both do.
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Fig. 9.22 Diagrams for the computation of relevant areas of the source. (a)
Image of a test object consisting of zero spatial frequency plus a single complex
exponential of frequency ξ0 as in (9.294). The rays are drawn from a single
point on the source in such a way that both plane-wave components pass
through the pupil. (b) The pupil function as it is imaged in the source plane,
plus a replica of the pupil shifted by ξ0λf . For a point on the source in the
area marked A2, both plane waves pass through the pupil; for points in A1

only a single wave passes the pupil, and for other source points no light at all
passes.

If we consider a square aperture of side L, these areas are easy to compute,
especially for our example where ρ0 is directed along the x axis (parallel to a side
of the aperture). From Fig. 9.22, we see that

A1(ρ0) = 2L|ξ0|λf , A2(ρ0) = L(L− |ξ0|λf) , (|ξ0|λf < L) . (9.298)

The image irradiance now has the form

Iim(r) ∝ 2L2 + 2L(L− |ξ0|λf) cos(4πξ0x) . (9.299)

From (7.157) we see that this pattern has a modulation given by

Mim =
L− |ξ0|λf

L
, (|ξ0|λf < L) . (9.300)

Since the object has 100% modulation, Mim is also the system MTF (see Sec. 7.2.6).
The MTF thus decreases linearly from unity at ξ0 = 0 to zero at ξ0 = ±L/λf. Pre-
cisely this form will be found by autocorrelating the pupil.
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As an exercise, the reader may want to repeat this analysis for tobj(r) =
cos(2πξ0x).

9.7.7 Polychromatic, incoherent imaging

So far we have discussed only monochromatic or quasimonochromatic sources, but
the results can be extended to broadband (polychromatic) sources. The key physical
intuition is that a wave of temporal frequency ν does not interfere with one of
frequency ν′ if ν *= ν ′. There are several ways to justify this point. One way is to
consider two plane waves of different frequency superimposed on the surface of some
optical detector. The total irradiance is then the sum of the individual irradiances
of the plane waves plus an interference term that oscillates at frequency ν − ν′; if
this difference frequency is large compared to the reciprocal of the response time
of the detector, its time average is zero and the detector output can be computed
without consideration of the interference. This viewpoint is developed more fully
in Sec. 10.1.5, where we address the question: What do real detectors detect?

A more formal statistical approach is based on properties of stationary random
processes. We showed in Sec. 8.2.5 that the Fourier transform of a stationary
random process is a delta-correlated process. That is, if u(t) is a sample function
of a temporally stationary random process, and we define its Fourier transform (a
generalized function) as

U(ν) =

∫ ∞

−∞
dt u(t) exp(−2πiνt) , (9.301)

then, by the temporal counterpart of (8.181),

〈U(ν)U∗(ν′)〉 = Su(ν) δ(ν − ν′) . (9.302)

In this expression, Su(ν) is the power spectral density, given by the Wiener-
Khinchin theorem (8.133) as

Su(ν) =

∫ ∞

−∞
dτ 〈u(t+ τ )u∗(t)〉 exp(−2πiντ ) . (9.303)

To apply (9.302) to imaging, we must include the spatial variables, replacing
the temporal random process u(t) by the spatio-temporal one, ũ(r, t). The temporal
stationarity leads to an expression analogous to (9.302):

〈

Ũ(r, ν) Ũ∗(r′, ν ′)
〉

= W (r, r′, ν) δ(ν − ν′) . (9.304)

Here, Ũ(r, ν) is the temporal Fourier transform of ũ(r, t), and W (r, r′, ν) is called
the cross-spectral density; by a generalization of the Wiener-Khinchin theorem, it
is given by

W (r, r′, ν) =

∫ ∞

−∞
dτ 〈ũ(r, t+ τ ) ũ∗(r′, t)〉 exp(−2πiντ )

=

∫ ∞

−∞
dτ Γ(r, r′, τ) exp(−2πiντ ) . (9.305)
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We can incorporate the cross-spectral density into our imaging theory by
rewriting (9.280) as

I
(s)
im(r) =

∫

∞
d2r′

∫

∞
d2r′′

∫ ∞

−∞
dν

∫ ∞

−∞
dν ′

〈

Ũ(r′, ν) Ũ∗(r′′, ν ′)
〉

exp[2πi(ν−ν′)(t−τp)]

× p∗coh(r− r′; ν) pcoh(r− r′′; ν ′) . (9.306)

As in Sec. 9.7.4, we have added an argument ν to pcoh(r, ν) since the coherent
PSF depends on the wavelength. We have also specialized (9.280) to the spatially
stationary case for simplicity.

If we now insert (9.304) (adding a subscript obj to denote the object plane)
and use the delta function to perform the ν′ integral, we obtain

I
(s)
im(r) =

∫

∞
d2r′

∫

∞
d2r′′

∫ ∞

−∞
dν Wobj(r

′, r′′, ν) [pcoh(r− r′; ν)]
∗
pcoh(r− r′′; ν) .

(9.307)
This expression is identical to (9.283) except that the cross-spectral density takes the
place of the spatial coherence function, and the result is integrated over frequency.

The spatially incoherent limit is obtained by assuming that

Wobj(r
′, r′′, ν) = AcIobj(r

′, ν) δ(r′ − r′′) , (9.308)

where Iobj(r′, ν) is called the spectral radiant exitance (see Chap. 10). We then
have

I
(s)
im(r) = Ac

∫ ∞

−∞
dν

∫

∞
d2r′ Iobj(r

′, ν) |pcoh(r− r′; ν)|2 . (9.309)

Comparison with (9.285) shows that the polychromatic image is obtained merely by
integrating the quasimonochromatic one over frequency. This mathematical result
codifies the statement made at the beginning of this section that waves of different
frequency do not interfere.

9.7.8 Partially coherent imaging

We have studied 2D imaging in the coherent and incoherent limits. In the com-
pletely coherent case, the field emerging from the object is essentially nonrandom,
so we just calculated the field in the image plane and showed (basically from the
linearity of Maxwell’s equations) that the system is a linear mapping from the com-
plex object field to the complex image field. As we have noted (and shall show in
more detail in Chap. 10), an image detector responds to the time-averaged squared
modulus of the complex field, so the overall imaging system, from object field to
detector output, is a nonlinear mapping, but linear systems theory is still sufficient
for analyzing a coherent imaging system. The detector is a simple point nonlinear-
ity (see Sec. 7.5.1) applied to the output of a linear system.

With real radiation sources, we argued that the object field is a spatio-temporal
random process, and some assumptions were needed to make progress on the anal-
ysis. In Sec. 9.7.4 we assumed that the field was a stationary random process tem-
porally and that it was quasimonochromatic. With these assumptions, we argued
that it was sufficient to consider the equal-time correlation function 〈ũ(r, t) ũ∗(r′, t)〉,
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which is the spatial coherence function Γ(r, r′). The fully incoherent limit corre-
sponds to assuming further that Γ(r, r′) ∝ δ(r−r′). With that assumption we were
able to show that the system is a linear mapping from the object radiant exitance
to the image irradiance. Since detectors often respond linearly to irradiance, we
then have a linear description of the overall system, now including the detector.

In this section we look briefly at what happens when we consider a tempo-
rally stationary, quasimonochromatic source but do not assume that the correlation
function is a spatial delta function. There are two main motivations for studying
this case. The first is that actual radiation sources are never delta-correlated. As
noted in Sec. 9.7.4, Lambertian sources are correlated over about a wavelength, and
many high-resolution imaging systems are sensitive to details on this scale.

The second motivation for avoiding the delta-correlated model is that we often
want to cascade linear systems. In imaging, the output of one imaging stage is often
the input to a second one. Even if we can regard the input to the first stage as
delta-correlated, the output of that stage is correlated over a distance comparable
to the width of its PSF, so the assumption fails for analyzing the second stage unless
it blurs the image much more than the first one does.

Propagation of spatial coherence Consider a quasimonochromatic but not necessar-
ily spatially incoherent source imaged by an arbitrary system with coherent PRF
pcoh(r, r0). By a straightforward generalization of the algebra that led to (9.283),
we find that the spatial coherence function of the field in the image plane is

Γim(r, r′) =

∫

∞
d2r′′

∫

∞
d2r′′′ Γobj(r

′′, r′′′) pcoh(r, r
′′) p∗coh(r

′, r′′′) . (9.310)

Note that we are not assuming here that the system is shift-invariant, and we are
not using scaled variables.

We see from (9.310) that the spatial coherence function is transferred linearly
through the system, no matter the functional form of the input. The linear mapping
takes place in a 4D space, where one function of two 2D vectors is mapped into
another such function. We can then use the output of this mapping, Γim(r, r′),
as the input to a second stage described similarly. If pcoh(r, r′′) is shift invariant
in a 2D sense, i.e., pcoh(r, r′′) = pcoh(r − r′′), then the mapping (9.310) is shift
invariant in a 4D sense, and cascading of shift-invariant systems involves successive
4D convolutions.

At the end of this process, however, we do not observe Γim(r, r′); instead,
the final detector responds to Iim(r), which by (9.266) is Γim(r, r). Moreover, we
are rarely interested in the mapping of the spatial coherence function. It is more
natural to specify the object in terms of its radiant exitance and the image in terms
of irradiance, and this mapping is not linear except in the incoherent limit.

If we know a priori the complex degree of coherence in the object, we can
cast the mapping from radiant exitance to irradiance into the form of a bilinear
transform, as discussed in Sec. 7.5.2. For example, suppose we know that the
object is Lambertian so that γ(r, r′) = sin(k|r − r′|)/(k|r − r′|) (see Sec. 10.2.7).
Then we can write

Iim(r) =

∫

∞
d2r′

∫

∞
d2r′′

√

Iobj(r′)
√

Iobj(r′′) γobj(r
′, r′′) [pcoh(r, r

′)]
∗
pcoh(r

′, r′′) .

(9.311)
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If we denote
√

Iobj(r′) as f(r′) and Iim(r) as g(r), we see that the form of (9.311)

agrees with the general bilinear transform (7.366):

g(r) =

∫

∞
d2r′

∫

∞
d2r′′ f(r′) f(r′′) h(r; r′, r′′) . (9.312)

Note that γobj(r′, r′′) is now lumped into the description of the system rather than
the object. As with the examples discussed in Sec. 7.5.3, it is not altogether obvious
what properties of the thing being imaged should be considered object and what
properties are part of the system. The key determinant is what we want to map to
the output. In the present discussion, we are not interested in mapping γobj(r′, r′′)
since we assume it is known a priori.

van Cittert-Zernike theorem An important application of (9.310) is when the system
described by pcoh(r, r′) isn’t really imaging but rather free-space propagation over
a distance z. From the discussion of Fresnel diffraction in Sec. 9.4.6, we know that
the PSF for this system is the quadratic phase factor given in (9.95). The product
of PSFs that appears in (9.310) is then

p∗coh(r, r
′′) pcoh(r

′, r′′′) =
1

λ2z2
exp

(

−iπ
|r− r′′|2

λz

)

exp

(

iπ
|r′ − r′′′|2

λz

)

. (9.313)

Now let us assume that the source is incoherent, in the sense discussed in Sec.
9.7.4, so that the source is described by [cf. (9.267) and (9.269)]

Γ(r′′, r′′′) ≈ Ac δ(r
′′ − r′′′)

√

Is(r′′) Is(r′′′) = Ac δ(r
′′ − r′′′) Is(r

′′) , (9.314)

where the last step follows from (2.120).
We can now insert (9.313) and (9.314) into (9.310) and use the delta function

to perform one integral. The result is the spatial coherence function in a plane at
distance z from the source, given by

Γz(r, r
′) =

Ac

λ2z2

∫

∞
d2r′′ Is(r

′′) exp

(

−iπ
|r− r′′|2

λz

)

exp

(

iπ
|r′ − r′′|2

λz

)

. (9.315)

In the first exponential, |r − r′′|2 = r2 + r′′2 − 2r · r′′ and in the second one,
|r′ − r′′|2 = r′2 + r′′2 − 2r′ · r′′, so

Γz(r, r
′) =

Ac

λ2z2
exp

(

iπ
r′2 − r′′2

λz

)
∫

∞
d2r′′ Is(r

′′) exp

[

−2πi
(r− r′) · r′′

λz

]

.

(9.316)
The integral is recognized as the Fourier transform of the radiant exitance of

the source, with the spatial frequency given by the vector distance r−r′ normalized
by λz. If Is is broad and structureless, this transform is peaked near zero frequency,
which means that the distance between the points r and r′ in the image plane must
be small for Γz(r, r′) to be appreciable. It is then usually a good approximation
to replace the remaining quadratic phase factor by unity (though this assumption
must be checked in specific cases), yielding, finally,

Γz(r, r
′) =

Ac

λ2z2
F2

{

Is(r
′′)
}

|ρ=(r−r
′)/λz . (9.317)
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In short, the spatial coherence function is the Fourier transform of the source
distribution. This result, known as the van Cittert-Zernike theorem, depends
critically on the assumption that the source is fully incoherent (delta-correlated).
It also requires the Fresnel approximation but, in spite of the appearance of a Fourier
transform, it does not require the Fraunhofer approximation.

Note that (9.317) shows that the image field is a stationary random process
since Γz(r, r′) is a function of r − r′ only, but this condition would break down
without the paraxial assumptions.

A rule of thumb Consider a uniform, circular, incoherent source of diameter D.
The Fourier transform of I(r′′) is a besinc function with full width at half maximum
approximately 1/D. That means that Γz(r, r′) is near unity if |r − r′| is less than
about λz/D, so the correlation length Lc in plane z is about λz/D. Another way
to state this conclusion is to note that D/z is the angular width ∆θ of the source
as seen from the observation plane, so Lc ≈ λ/∆θ. We can square both sides and

identify L2
c with the coherence area A(obs)

c in the observation plane. A rule of thumb
worth remembering is then

A(obs)
c ≈

λ2

∆Ω
, (9.318)

where, if we neglect factors of order unity, ∆Ω ≈ (∆θ)2 is the solid angle subtended
by the source at the observation plane. The source must be fully incoherent and
have a uniform exitance for this rule to hold.

Partial coherence in a 4f system A simple way of generating a partially coherent field
is to place a spatially incoherent, quasimonochromatic source with radiant exitance
Is(rs) in the source plane of a 4f system (see Fig. 9.21b). The derivation above of
the van Cittert-Zernike theorem is easily modified to permit the propagation of the
spatial coherence function through the condenser lens to the object plane; all that is
required is to replace z with f and to quit fretting about dropping quadratic phase
factors. The field in the object plane is multiplied pointwise by the transmittance
tobj(r), and the spatial coherence function of the emerging field is

Γobj(r, r
′) =

Ac

λ2f2
tobj(r) t

∗
obj(r

′)F2

{

Is(rs)
}

|ρ=(r−r
′)/λf . (9.319)

We can use (9.310) to propagate to the image plane (primes proliferating in the
process), with the result

Γim(r, r′) =
Ac

λ2f2

∫

∞
d2r′′

∫

∞
d2r′′′ tobj(r

′′) t∗obj(r
′′′) pcoh(r, r

′′) p∗coh(r
′, r′′′)

×

∫

∞
d2rs Is(rs) exp

[

2πi

λf
(r′′ − r′′′) · rs

]

. (9.320)

Since the 4f system is shift-invariant to a good approximation, we can replace
pcoh(r, r′′) by pcoh(r − r′′). Then we recognize the integral over r′′ as a windowed
Fourier transform [cf. (5.1)], where the coherent PSF serves as the window function
and −rs/λf is the frequency variable. If we denote this transform as

g(rs; r) ≡

∫

∞
d2r′′ tobj(r

′′) exp

[

2πi

λf
r′′ · rs

]

pcoh(r− r′′) , (9.321)
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then the image irradiance is given by

Iim(r) = Γim(r, r) =
Ac

λ2f2

∫

∞
d2rs Is(rs) |g(rs; r)|

2 . (9.322)

In Sec. 5.1.3 we referred to the squared modulus of a local Fourier transform as
a local spectrogram; here we see that the image-plane irradiance for an arbitrary
source (hence arbitrary illumination coherence) is a weighted sum of local spectro-
grams.

The coherent and incoherent limits of (9.322) are instructive. The coherent
case corresponds to a point source, so that Is(rs) ∝ δ(rs). Then the integral over rs
can be performed, and we find

Iim(r) ∝ |g(0; r)|2 = |tobj ∗ pcoh(r)|
2 . (9.323)

As expected, in the coherent limit we simply convolve the object function with the
coherent PSF and take the squared modulus of the result to get the image-plane
irradiance.

Complete incoherence, for this system, corresponds to constant Is(rs), so

Iim(r) ∝

∫

∞
d2rs |g(rs; r)|

2

=

∫

∞
d2r′′

∫

∞
d2r′′′ tobj(r

′′) t∗obj(r
′′′) pcoh(r− r′′) p∗coh(r− r′′′)

×

∫

∞
d2rs exp

[

2πi

λf
(r′′ − r′′′) · rs

]

. (9.324)

The integral over rs yields a delta function, with which we can perform the integral
on r′′′. The result is

Iim(r) ∝

∫

∞
d2r′′ |tobj(r

′′)|2 |pcoh(r− r′′)|2 , (9.325)

which is just what we expect; the system now responds linearly to the object radiant
exitance (proportional to |tobj(r)|2), and the incoherent PSF is the squared modulus
of the incoherent one.

As an exercise, the reader may show that the result in (9.325) can be obtained
even without assuming that Is(rs) is constant over all space. It suffices if the source
is uniform over the area of the pupil (into which it is imaged). Colloquially, the
system is incoherent if the source fills the pupil.

9.8 VOLUME DIFFRACTION AND 3D IMAGING

So far in this chapter we have considered diffraction from planar apertures or imag-
ing systems that map one plane to another. Now we examine scattering from a
volume and imaging systems that map one volume to another. Scattering and 3D
imaging are closely related, since both boil down to volume diffraction. The differ-
ence between scattering and diffraction is merely semantics (see Sec. 10.2.3), and
we have seen in this chapter how diffraction theory is the foundation of imaging
with waves.
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In many scattering problems a spatially compact object is illuminated by some
external beam such as a plane wave. The object scatters (diffracts) the incident
beam, and one goal is to compute the resulting field at a large distance from the
object. Ultimately, we may want to deduce some properties of the object from the
scattered field or irradiance, but that is an inverse problem to be solved by methods
discussed in Chap. 15; here we concentrate on the forward problem.

Three-dimensional imaging may involve a similar setup, where a volumetric
object is illuminated with some known field and the objective is to compute the
field at distant points. In this view, the only essential difference between scattering
experiments and imaging systems is that lenses or other image-forming elements
are interposed in the latter case.

Often, however, we shall be interested in self-luminous volume objects that
serve simultaneously as radiation source and object to be imaged. It will simplify
the treatment considerably if we can assume that the object does not absorb the
radiation. In this case the object is described by a real index of refraction n(r) that
depends on position. Some approaches to analyzing imaging systems with absorb-
ing objects will be discussed in Chap. 10, but we ignore absorption here.

As a first step in developing a theory of volume diffraction and imaging, we
must find a counterpart to the Kirchhoff boundary condition. There are two com-
mon ways to do this— the Born approximation discussed in Sec. 9.8.1 and the Rytov
approximation discussed in Sec. 9.8.2. It will turn out that these two approxima-
tions lead to basically the same equation, with a slight difference in interpretation.
This equation will be applied to scattering in Sec. 9.8.3 and imaging in Sec. 9.8.4.

9.8.1 Born approximation

In a source-free region of a non-absorbing medium, the Helmholtz equation (9.31)
can be written as

(

∇2 + n2k20
)

u(r) = 0 , (9.326)

where the wavenumber k, defined in Sec. 9.2.1 by 2πν0/cm, has been rewritten as
k = nk0, where k0 ≡ 2πν0/c, and n = c/cm is the refractive index. This form of the
Helmholtz equation is valid even if the index is a function of position, n = n(r).

A simple algebraic manipulation on (9.326) yields
(

∇2 + k20
)

u(r) = V (r)u(r) , (9.327)

where V (r), which can be called the scattering potential, is defined by

V (r) ≡ k20
[

1− n2(r)
]

. (9.328)

We define uinc(r) as the field that would exist at point r in the absence of the
inhomogeneous index distribution. Specifically, uinc(r) is the solution to

(

∇2 + k20
)

uinc(r) = 0 . (9.329)

The total field can then be written as

u(r) = uinc(r) + usc(r) , (9.330)

where usc(r) ≡ u(r)− uinc(r) can be interpreted as the field scattered by the index
inhomogeneities. With these definitions, (9.327) becomes

(

∇2 + k20
)

usc(r) = V (r) u(r) . (9.331)



VOLUME DIFFRACTION AND 3D IMAGING 543

The right-hand side of this equation is an effective source, though an unknown one
since it depends on the total field u(r). Nevertheless, we can use (9.67) to write

usc(r) = −
1

4π

∫

∞
d3r0

exp(ik0|r − r0|)

|r − r0|
V (r0)[uinc(r0) + usc(r0)] . (9.332)

This integral equation for usc(r) is completely equivalent to the Helmholtz equation.
If n(r) is close to one everywhere, then the scattering is weak, and we expect

to have |usc(r0)| * |uinc(r0)| in the region where V (r0) is nonzero. Thus it may be
a good approximation to neglect usc(r) inside the integral of (9.332) and write

usc(r) ≈ −
1

4π

∫

∞
d3r0

exp(ik0|r − r0|)

|r − r0|
V (r0) uinc(r0) . (9.333)

This step, known as the first Born approximation, is the 3D counterpart of the
Kirchhoff approximation introduced in Sec. 9.4.2. If this approximation is valid and
the index distribution and the incident field are specified, the scattered field can be
found by performing the integral (numerically if necessary).

Born series If the first Born approximation is inadequate, an improved result can
be obtained by iteration. If we denote the integral operator defined in (9.332) by
L, we can rewrite that equation abstractly as

usc = Lu = L(uinc + usc) , (9.334)

or
(I−L)usc = Luinc . (9.335)

We can obtain a formal solution of this equation by use of the Neumann series
introduced in Sec. A.3.4. From (A.59),

usc = (I−L)−1Luinc =
∞
∑

j=0

Lj+1uinc . (9.336)

The first Born approximation corresponds to retaining only the j = 0 term in
this expansion. This approximation is equivalent to assuming that the radiation
field interacts with the medium just once, producing a scattered field that then
propagates as if in free space. The second Born approximation allows the scattered
field to be scattered again, and so forth.

9.8.2 Rytov approximation

The first Born approximation is valid when n(r) is close to unity everywhere, so
it would hold for a tenuous medium such as fog. A slight reformulation of the
theory in Sec. 9.8.1 would allow n(r) to be close to some mean value n so long as
the variations n(r)− n were small, and in that case it could apply to weak volume
phase gratings such as acousto-optic devices where small variations in refractive
index are produced by acoustic waves. The Rytov approximation is fundamentally
different; it places restrictions on the gradient of the refractive index instead of its
value. Large variations are allowed so long as they occur slowly on the scale of the
wavelength.
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Reformulation of the wave equation To set the stage for the Rytov approximation,
we first represent the total field as

u(r) = uinc(r) exp[iΨ(r)] . (9.337)

If we allow Ψ(r) to be complex, this representation can be used without approxima-
tion in any region where uinc(r) is nonzero. For example, if we take uinc(r) to be
a plane wave, the representation will apply in all space. If, however, we illuminate
a scattering object with a beam of finite cross-section, then (9.337) applies only in
the region that would be covered by the beam in the absence of the scatterer.

Next we substitute (9.337) into the wave equation (9.327). With the identity
∇2fg = f∇2g + g∇2f + 2∇f ·∇g, we can write

[

∇2 + k20
]

u(r)

= [−|∇Ψ(r)|2 + i∇2Ψ(r)]uinc(r) exp[iΨ(r)] + 2i exp[iΨ(r)]∇uinc(r) ·∇Ψ(r)

= V (r)uinc(r) exp[iΨ(r)] , (9.338)

where we have made use of (9.329) to cancel two terms. Using the above identity
again, we see that

∇2[Ψ(r)uinc(r)] = Ψ(r)∇2uinc(r) + uinc(r)∇
2Ψ(r) + 2∇Ψ(r) ·∇uinc(r)

= −k20Ψ(r)uinc(r) + uinc(r)∇
2Ψ(r) + 2∇Ψ(r) ·∇uinc(r) , (9.339)

where the second line has used (9.329). Thus (9.338) becomes
(

∇2 + k20
)

[Ψ(r)uinc(r)] = −i V (r)uinc(r)− i|∇Ψ(r)|2uinc(r) . (9.340)

Now we have an inhomogeneous Helmholtz equation with the unknown Ψ(r)
appearing in the source term on the right. As in Sec. 9.8.1, we can use the Green’s
function to convert the differential equation to an integral equation [cf. (9.332)]:

Ψ(r)uinc(r)=
i

4π

∫

∞
d3r0

exp(ik0|r − r0|)

|r − r0|

[

V (r0) + |∇Ψ(r0)|
2
]

uinc(r0). (9.341)

To this point we have made no approximations, and (9.341) is equivalent to the
original wave equation (9.326).

Rytov approximation The Rytov approximation consists of neglecting |∇Ψ(r0)|2

compared to V (r0) in the integrand of (9.341). Recall that the scattering potential
V (r0) is defined in (9.328) with a factor of k20 , so it gets larger as the wavelength gets
shorter. Thus the Rytov approximation is valid in the geometrical-optics or short-
wavelength limit. It does not apply when abrupt changes in index such as air-glass
interfaces are present or for scatterers that are small compared to the wavelength.
For more discussion of the validity of the Rytov approximation, see Fiddy (1992).

Within the Rytov approximation, the complex phase Ψ(r) is given by

Ψ(r) =
i

4πuinc(r)

∫

∞
d3r0

exp(ik0|r − r0|)

|r − r0|
V (r0) uinc(r0) . (9.342)

Since uinc(r) is known and presumed nonzero, there is no difficulty in dividing
through by it. Except for this factor, then, the integral in the Rytov approximation
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has exactly the same form as in the first Born approximation. The only difference is
the interpretation; in the Born approximation, the integral gives the scattered wave
directly, while in the Rytov approximation it gives Ψ(r)uinc(r), and the scattered
field must be constructed from

usc(r) = u(r)− uinc(r) = uinc(r) {exp[iΨ(r)]− 1} . (9.343)

The basic problem in scattering or 3D imaging is thus the same within either ap-
proximation: evaluate the diffraction integral.

Eikonal equation Closely related to the Rytov approximation is an important re-
lation known as the eikonal equation. The eikonal (Greek eikon, likeness, image)
is a function known also as the characteristic function or point characteristic.
Many theoretical developments of geometrical optics are built on this function.

The starting point for deriving the eikonal equation is a representation of the
total field in the form

u(r) = A(r) exp[ik0W (r)] , (9.344)

where W (r) is the eikonal. The key difference between this form and the Rytov
form (9.337) is that A(r) is not the incident field and might be slowly varying.

The Laplacian of (9.344) is

∇2u(r) =
[

∇2A(r) + 2ik0∇W (r) ·∇A(r)−k20A(r) |∇W (r)|2

+ ik0A(r)∇
2W (r) exp[ik0W (r)] . (9.345)

In the short-wavelength limit, k0 → ∞, and we can neglect the term linear in k0
compared to the quadratic one, so that

∇2u(r) → −k20 |∇W (r)|2A(r) exp[ik0W (r)] = −k20 |∇W (r)|2u(r) . (9.346)

In this same limit, the Helmholtz equation (9.326) becomes
[

−k20 |∇W (r)|2 + n2k20
]

u(r) = 0 , (9.347)

from which we immediately obtain the eikonal equation,

|∇W (r)|2 = [n(r)]2 . (9.348)

This equation is a nonlinear partial differential equation for W (r). Solution is
often difficult except for a few textbook problems, but in principle it contains all of
geometrical optics. The familiar ray direction in geometric optics is interpreted as
∇W (r) in this approach; we shall see why in Sec. 10.2.7.

9.8.3 Fraunhofer diffraction from volume objects

In the Fraunhofer approximation, we expand |r−r0| as in (9.101), retaining only the
leading term in the denominator of the Green’s function but also the term r0 · r/|r|
in the exponent. With this approximation, the scattered field in the first Born
approximation, (9.333), can be written as

usc(r) ≈ −
exp(ik0|r|)

4π|r|

∫

∞
d3r0 V (r0)uinc(r0) exp

(

−2πi
r0 · r

λ0|r|

)

. (9.349)
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This result should be compared to its 2D counterpart, (9.103). In both cases, the
integral is a Fourier transform, but here it is the 3D transform of the effective field
V (r0) uinc(r0), and the 3D spatial frequency that contributes to the scattered field
is given by [cf. (9.104)]

σsc =
r

λ0|r|
. (9.350)

Since r/|r| is the unit vector n̂ from the origin of coordinates to the observation
point, radiation scattered in direction n̂ results from the spatial frequency σsc =
n̂/λ0 in the Fourier transform of the effective field.

Ewald sphere An important special case of (9.349) is when the illumination is a
plane wave, so that

uinc(r0) = A exp(ikinc · r0) . (9.351)

In order to satisfy the wave equation, the magnitude of kinc must be 2π/λ0. If we
define σinc = kinc/2π, then (9.349) becomes

usc(r) ≈ −A
exp(ik0|r|)

4π|r|

∫

∞
d3r0 V (r0) exp[−2πi(σsc − σinc) · r0] . (9.352)

Now we see explicitly that the scattered field is proportional to the 3D Fourier
transform of the scattering potential evaluated at the spatial frequency σsc − σinc.

In many scattering experiments, we fix the illumination direction and observe
the scattered radiation over a range of points in the far field simultaneously, for
example with a viewing screen or a detector array. Since σsc is related to the obser-
vation point by (9.350), that means we should consider σsc as a variable but σinc

as a constant in (9.352). As shown in Fig. 9.23, σsc − σinc traces out a spherical
cap in the 3D Fourier space as the viewing direction n̂ is varied. This sphere, called
the Ewald sphere in x-ray crystallography, defines the region of the object Fourier
transform that contributes to the scattered radiation in this geometry.

Fig. 9.23 The Ewald sphere.

Crystals are periodic structures, and we know from (3.275) that such struc-
tures contain only spatial frequencies that lie on the reciprocal lattice in Fourier
space. Thus diffraction occurs in x-ray crystallography only when the Ewald sphere
intersects a reciprocal lattice point. This requirement is called the Bragg condition
or Bragg matching.
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The Ewald sphere is also an important concept when we are concerned with
the inverse problem of reconstructing a scattering potential from measurements in
the far field. Since the Ewald sphere is a 2D manifold in a 3D space, we cannot
expect to be able to learn very much about the potential with a fixed illumination
direction. Some variation of the direction and/or magnitude of kinc is required.

9.8.4 Coherent 3D imaging

A coherent 3D imaging system is one in which a 3D scattering or reflecting object
is illuminated by a coherent monochromatic wave. If the object is transparent and
the first Born approximation is applicable, then each point in the object produces
a scattered wave proportional to the scattering potential defined in (9.328), and
that potential can be regarded as the input to the imaging system. In the Rytov
approximation the input can still be regarded as the scattering potential, but there
is a more complicated nonlinear relation between this potential and the diffracted
field. For a reflecting object, we can consider the system input to be the complex
amplitude reflectance defined at every point on the object surface.

In each of these cases, the wave emerging from the object is determined by
both the object characteristics and the illumination. This wave is passed through
some assembly of lenses, mirrors or other focusing elements to an image space.
Though we may eventually observe the wave on a planar image detector in image
space, the interest in this section will be on computation of the wave at all points
within some volume in this image space. Our goal is thus to analyze the mapping
from the object scattering potential or reflectance to the wave in a 3D image space.
Since the scattered or reflected field at each object point is a simple product of
the illuminating field and an object property, all we really have to do is study the
mapping from one 3D field to another.

Coherent imaging with an ideal thin lens Consider a transparent object defined by
the scattering potential V (r) lying entirely in the space z < 0. An ideal thin lens is
placed in the plane z = 0, and we want to find an expression for the resulting field
in the space z > 0. Methods developed in Sec. 9.6 can be adapted for this purpose.

In the first Born approximation, the field at a point just to the left of the
lens can be obtained from (9.333) by setting r = (r, 0−), where r = (x, y, z) and
r = (x, y). If the object is spatially compact and far enough from the lens, we can
also make a Fresnel approximation; noting that z0 is a negative number, we can
then write [cf. (9.94)]

u−(r) ≈ −
1

4π

∫

∞
d3r0

exp(−ik0z0)

z0
exp

(

−iπ
|r− r0|2

λ0z0

)

V (r0)uinc(r0) , (9.353)

where we have used k0 = 2π/λ0.
The field emerging from the lens (i.e., in the plane z = 0+) is given by (9.153)

and (9.159) as

u+(r) = u−(r) tlens(r)

=−
1

4π
exp

(

−iπ
r2

λ0f

)

tap(r)

∫

∞
d3r0

exp(−ik0z0)

z0
exp

(

−iπ
|r− r0|2

λ0z0

)

V (r0)uinc(r0) .

(9.354)
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Since we have now specified the field on a plane, we can use ordinary Fresnel diffrac-
tion theory to propagate it to an arbitrary point in the space z > 0. From (9.97),

u(r) = −
exp(ik0z)

4πiλ0z
exp

(

iπ
r2

λ0z

)

×

∫

∞
d2r′ exp

(

−iπ
r′2

λ0f

)

tap(r
′) exp

(

iπ
r′2

λ0z

)

exp

(

−2πi
r · r′

λ0z

)

×

∫

∞
d3r0

exp(−ik0z0)

z0
exp

(

−iπ
|r′ − r0|2

λ0z0

)

V (r0)uinc(r0) , (9.355)

where u(r) means the same thing as uz(r).

Point response function To understand the meaning of the complicated expression
(9.355), we write

u(r) =

∫

∞
d3r0 hcoh(r, r0)V (r0) , (9.356)

where the PRF is given by

hcoh(r, r0) = −uinc(r0)
exp[ik0(z − z0)]

4πiλ0zz0
exp

[

iπ

λ0

(

r2

z
−

r20
z0

)]

×

∫

∞
d2r′ tap(r

′) exp(iπβr′2) exp(−2πiρ · r′) , (9.357)

with

β =
1

λ0

(

1

z
−

1

z0
−

1

f

)

; (9.358)

ρ =
1

λ0

(

r

z
−

r0

z0

)

. (9.359)

Note that β vanishes if plane z0 is imaged onto plane z since p = −z0 and q = z
in that case, and p, q and f are then related by the imaging condition (9.169). The
two planes are said to be conjugate (one is imaged onto the other) if β = 0.

When β = 0, the integral in (9.357) is just the Fourier transform of the aperture
transmittance evaluated at the spatial frequency given in (9.359). Since the Fourier
transform of a clear aperture is maximum at zero frequency, the maximum value
of hcoh(r, r0) when r and r0 define conjugate planes is determined by setting ρ to
zero. This procedure shows that r = mtr0, where the transverse magnification mt

is z/z0. (Recall that z0 is negative, so the image is inverted.)
For nonzero β, comparison with (9.97) shows that the integral in (9.357) has

the same structure as the Fresnel diffraction pattern of the aperture, but with
different constants. In (9.97) β is just 1/λ0z, so large values of β correspond to small
distances from the aperture, and the Fresnel diffraction pattern is approximately a
geometrical shadow of the aperture in this case. Note that β is also proportional to
1/λ0, so for fixed z (not in a conjugate plane), β increases as the wavelength gets
shorter. In the geometric-optics limit (λ0 → 0), the diffraction pattern is exactly
the geometric shadow of the aperture except at the focus.

To see where this shadow is located and how big it is, we can use the principle
of stationary phase. If we define

Φ(r′) = πβr′2 − 2πρ · r′ , (9.360)
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then the exponential factor in the integrand in (9.357) is rapidly oscillating except
in the vicinity of the point where ∇Φ(r′) = 0, or where ρ ≈ βr′. For large β, only a
small region in the vicinity of r = ρ/β will contribute to the integral. If this point
lies in the domain of integration as set by tap(r′), we can write

∫

∞
d2r′ tap(r

′) exp(iπβr′2) exp(−2πiρ · r′)

≈ tap(ρ/β)

∫

∞
d2r′ exp(iπβr′2) exp(−2πiρ · r′) = β−1tap(ρ/β) exp(−iπρ2/β) ,

(9.361)
where the last step follows from (3.263).

The factor tap(ρ/β) in (9.361) is the geometric shadow of the aperture. It is
centered at the point where ρ/β = 0, or r = (z/z0)r0. The size of the shadow is
determined by β as well as ρ. If we consider a circular lens aperture of radius Rap,
then the radius of the shadow Rshad is obtained by setting the magnitude of the
vector ρ/β to Rap ; the result is

Rshad = Rap

(

1−
z

z0
−

z

f

)

. (9.362)

When z = 0, Rshad = Rap as expected, and Rshad decreases linearly with z as we
move toward the plane conjugate to z0. In geometrical-optics terms, the shadow is
centered on the chief ray, which in this problem is a line drawn from the point r0

through the center of the lens and extended into the image space. The 3D PRF is a
cone of light centered on the chief ray and converging to the geometrical focus (see
Fig. 9.24).

Fig. 9.24 Illustration of the 3D PRF of an ideal lens. The geometric-optics
approximation corresponds to the cone shown.

In this large-β or geometric-optics approximation, the full coherent PRF
(9.357) becomes (after some messy algebra)

hcoh(r, r0) ≈ −uinc(r0)
exp[ik0(z − z0)]

4πiλ0βzz0
tap(ρ/β) exp

[

−
iπ

λ0

|r− (q0/z0)r0|2

q0 − z

]

,

(9.363)
where q0 is the distance from the lens plane to the plane where the source point is
in focus:

1

q0
=

1

f
+

1

z0
. (9.364)

The phase factor in (9.363) represents (in the Fresnel approximation) a spherical
wave converging toward the geometric focal point. The factor tap(ρ/β) indicates
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(unphysically) that the spherical wave is truncated abruptly at the edge of the cone
shown in Fig. 9.24. The approximate expression (9.363) must break down near the
focus since it requires large β. The inset in the figure was computed numerically
from (9.357).



10
Energy Transport

and Photons

Imaging requires some form of radiation. Objects can emit their own radiation, or
they can transmit, reflect or scatter radiation from an external source. The goal of
the imaging system is to probe these emission, transmission, reflection or scattering
characteristics of the object. The detector in an imaging system responds to the
energy in the radiation, so imaging is ultimately about how energy is transported
from the object to the detector.

This chapter is about the transport and measurement of radiant energy. In
Sec. 10.1 we survey some basic concepts of energy flow specifically for electromag-
netic radiation; both classical and quantum-mechanical viewpoints are presented.
The concept of irradiance, already alluded to in previous chapters, is elucidated in
more detail here and related to detector response, and the concept of a photon is
discussed. The reader who is well versed in the basic physics of electromagnetic
fields, or one who simply wants to move directly to a more phenomenological de-
scription, can skip to Sec. 10.2 without loss of continuity.

In Sec. 10.2 we introduce a variety of quantities that have been used to de-
scribe energy flow. Included are the constructs of classical radiometry, as well as a
phase-space distribution function more familiar from statistical mechanics.

Section 10.3 deals with the Boltzmann equation, an integro-differential equa-
tion that describes radiative energy transport, and in Sec. 10.4 we relate the Boltz-
mann equation to imaging.

10.1 ELECTROMAGNETIC ENERGY FLOW AND DETECTION

Our main goal in this section is to introduce the word photon and show why it
is a useful way of thinking about energy transport in imaging systems. We start,
however, with a short survey of energy concepts in classical electromagnetic theory.

551
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10.1.1 Energy flow in classical electrodynamics

An important result in electromagnetic theory is Poynting’s theorem. This the-
orem, derived by consideration of the work done on a system of charges by an
electromagnetic field (see, e.g., Jackson, 1998), states that

∇ ·Π(r, t) +
∂

∂t
U(r, t) = −j(r, t) · e(r, t) , (10.1)

where Π(r, t) is the Poynting vector, defined by

Π(r, t) ≡ e(r, t)× h(r, t) , (10.2)

and U(r, t) is the energy density, defined as

U(r, t) ≡ 1
2e(r, t) · d(r, t) +

1
2b(r, t) · h(r, t) . (10.3)

In these equations, r is a 3D position vector, and the field quantities are defined in
Sec. 9.1.1. (The notation is more or less standard, the main exception being that
lower-case letters replace the usual capitals for fields.)

The Poynting vector has dimensions of power per unit area (watts/m2 in SI
units), and it provides a measure of energy flow. As the name implies, the energy
density has dimensions of energy per unit volume (Joules/m3); it describes the
energy stored in the electric and magnetic fields.

These interpretations are reinforced by considering a region of space where
there are no charges, so that the current density j(r, t) = 0. We denote this region
by V and its boundary surface by S. If we integrate both sides of (10.1) over V and
use the divergence theorem, we obtain

∫

S
da n̂ ·Π(r, t) = −

∂

∂t

∫

V
d3r U(r, t) , (10.4)

where n̂ is an outwardly directed unit vector normal to S. If U(r, t) is the energy
per unit volume, then the volume integral on the right represents the total energy
stored in V. Since no work is done in V if there are no charges there, the surface
integral on the left must represent the energy per unit time transported across S.
Energy per unit time is power, but in radiometry it is called energy flux or radiant
flux; thus we can interpret n̂ ·Π(r, t)da as the energy flux through the differential
area da.

10.1.2 Plane waves

As discussed in Sec. 9.2.1, monochromatic plane waves have the structure
Re{A exp[i(k · r − 2πν0t)]}, where A is a (possibly complex) amplitude and Re{·}
denotes the real part. For plane electromagnetic waves, this structure applies (with
different amplitudes) to each Cartesian component of each vector field. For example,
we can represent the electric field in a plane wave by

e(r, t) = Re{E exp[i(k · r − 2πν0t)]} , (10.5)

where Cartesian component En (where n = x, y, z) of the vector E is the amplitude
associated with the field component en(r, t); similar representations apply to h(r, t)
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and the other fields. We use capital letters for the amplitudes since they are, in
effect, in the Fourier domain. Specifically, the 4D Fourier transform of ej(r, t) is Ej

times a 4D delta function. We shall customarily delete the designator Re with the
convention that the real part of all complex quantities is understood.

By Maxwell’s equations, the fields in a source-free region must satisfy ∇ ·d = 0
and ∇ · b = 0. In terms of the amplitudes, these equations imply that k · D = 0
and k ·B = 0, so D and B are both perpendicular to the wavevector k.

If we assume an isotropic, homogeneous medium, as discussed in Sec. 9.1.3,
then the constitutive relations are b(r, t) = µ0h(r, t) and d(r, t) = εe(r, t). These
relations imply that H is parallel to B and E is parallel to D, so E and H are also
perpendicular to k. Since ∇× e = −∂b/∂t, we also require

ik×E = −2πiν0B . (10.6)

Hence E and B are perpendicular to each other as well as to k. It follows, then,
that the Poynting vector Π is parallel to k. The energy flow for a plane wave in an
isotropic, homogeneous medium is in the direction of the wavevector.

Another consequence of (10.6) is that the amplitudes are related by

|E|
|B|

=
E

B
=

2πν0
k

= cm , (10.7)

where cm is the speed of light in the medium, given in Sec. 9.1.4 as cm = 1/
√
µ0ε,

and we have used (9.38). The notation |E| in (10.7) implies both the norm of the
vector and the modulus of the complex quantity:

|E| =
√
E · E∗ =

√√√√
3∑

j=1

|Ej |2 . (10.8)

Time averages The Poynting vector is a product of factors that oscillate at fre-
quency ν0, so it consists of a static term and a term that oscillates at 2ν0. As we
shall discuss in more detail in Sec. 10.1.5, optical detectors are time-averaging de-
vices, so we are not interested in the rapidly oscillating part, and we must therefore
compute the time-averaged Poynting vector. If we choose to average over one cycle
of the oscillation, we can employ the cycle-average theorem: If a(t) and b(t) are
two complex quantities that both vary as exp(−2πiν0t), then

〈Re(a) Re(b)〉T = 1
2 Re(ab

∗) , (10.9)

where 〈 〉T denotes a time average over one cycle of period T = 1/ν0. To prove this
theorem, one writes Re(a) = 1

2 (a + a∗), and similarly for b, and recognizes that
〈a2〉T = 〈b2〉T = 0 and that ab∗ and a∗b are independent of time.

Applying (10.9) to the energy density for a plane wave in a homogeneous
medium, we find

〈U〉T = 1
4ε|E|2 + 1

4µ0|H|2 = 1
2ε|E|2 , (10.10)

where the last form follows from (10.7) and the constitutive relation B = µ0H.
Similarly, the average Poynting vector for a plane wave is given by

〈Π〉T = 1
2 Re(E×H∗) = 1

2ε cm|E|2κ̂ , (10.11)
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where κ̂ is a unit vector in the direction of k, and we have used (10.6) and the
constitutive relations.

Since 1
2ε|E|2 is the time-averaged energy density, (10.11) has a simple geometric

interpretation: If we consider a rectangular volume of dimensions Lx × Ly × Lz

and take the z axis to be parallel to k, then 1
2ε|E|2LxLyLz is the average stored

energy. This energy flows through the face of the volume perpendicular to the
z axis in a time τ = Lz/cm, so the average power per unit area through this
face is 1

2ε|E|
2LxLyLz/LxLyτ , or simply 〈Π〉T , the magnitude of the time-averaged

Poynting vector.

Terminology and notation The magnitude of the time-averaged Poynting vector is
frequently called the intensity of the wave, but this term is at variance with the
strict radiometric definitions given in Sec. 10.2. In the radiometry community, the
term intensity (or radiant intensity) means power per unit solid angle, while the
power per unit area incident on some surface is called irradiance.

On the other hand, the magnitude of the time-averaged Poynting vector,
though it has units of power per unit area, is not necessarily irradiance; irradiance
is a property of the surface as well as the wave. Consider a collimated Gaussian
beam propagating along the z axis (see Sec. 9.5.3). The irradiance on a surface
normal to the z axis is 〈|Π|〉, but if we tip the surface so that its normal n̂ makes
an angle θ with the axis, then the irradiance is reduced by a factor of cos θ since the
same amount of power is spread over a larger area, but 〈|Π|〉 is unchanged. Since
〈|Π|〉 is the irradiance on a surface normal to the Poynting vector, we shall refer to
it as the normal irradiance and denote it as I0.

We caution the reader that our notation for irradiance is not standard in the ra-
diometry literature, where irradiance is denoted by E, from the French éclairement.
The letter E gets used for many other purposes (Big Bird, 1969). We use E (in
script form) for the photon energy and for the Fourier transform of the electric field,
and the photography community uses it for exposure, which is irradiance times ex-
posure time. To avoid wasting E on an application where it has no mnemonic value
(except to Francophones), we denote the irradiance by I.

10.1.3 Photons

So far our discussion of energy transport in an electromagnetic field has been cast
in terms of classical fields and energies, but it is very useful to picture energy
transport in terms of radiation quanta called photons. A complete understanding
of photons, and more generally quantum states of the radiation field, requires the
use of quantum electrodynamics (QED). We present here a brief introduction to
QED, including a simplified treatment of field quantization, photon-number states
and photodetection.

For this section, the reader is presumed to be familiar with the basic principles
of quantum mechanics, including the concept of a state vector. Dirac notation is
used freely.

Modes A useful starting point for QED is the classical Fourier series. If we consider
a cube of side L in free space (where L can eventually be allowed to approach
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infinity), the real electric field in this region can be expressed as [cf. (10.5)]

e(r, t) = 1
2

∑

j

γj [Ej exp(ikj · r − iωjt) +E∗
j exp(−ikj · r + iωjt)] . (10.12)

Each term in (10.12), called a mode, is characterized by its wavevector kj , polar-
ization direction1 γj and radian frequency ωj = 2πνj . The vectors kj fall on the
reciprocal lattice (see Sec. 3.4.6), which in this problem is a cubic lattice of spacing
2π/L. For each kj there are two orthogonal directions for the electric field, hence
two unit vectors γj . The radian frequency associated with mode j is ωj = ckj ,
where c is the speed of light and kj = |kj |.

It will prove convenient to define time-dependent amplitudes aj(t) by

Ej exp(−iωjt) = 2iNjaj(t) , Nj =

√
!ωj

ε0L3
, (10.13)

where ! is Planck’s constant divided by 2π and Nj is a constant with dimensions of
electric field. With these definitions,

e(r, t) = i
∑

j

γjNj [exp(ikj · r) aj(t)− exp(−ikj · r) a∗j (t)] . (10.14)

A similar expansion can be used for the magnetic field, and the coefficients
in the two expansions can be related to each other by (10.6). When the resulting
expansions are plugged into (10.3), the energy density in the field is found to be

U =
1

L3

∑

j

1
2!ωj [a

∗
jaj + aja

∗
j ] . (10.15)

Details of this calculation can be found in Cohen-Tannoudji et al. (1989).
The expression in (10.15) can be cast into a more familiar form by defining

two other amplitudes:

qj =

√
!

2ωj
(a∗j + aj) , pj = i

√
!ωj

2
(a∗j − aj) . (10.16)

We can also define a total energy or Hamiltonian H = L3U ; in terms of the new
variables qj and pj , the Hamiltonian is given by

H = 1
2

∑

j

[
p2j + ω2

j q
2
j

]
. (10.17)

Both pj and qj are functions of time. Specifically, if Ej is a complex constant
|Ej | exp(iφj), then

ωjqj =

√
!ωj

2

|Ej |
Nj

cos(ωjt− φj) , (10.18a)

1The vector γj is a unit vector but we leave off the usual caret since we shall shortly need that
ornament for another purpose. Also, the word polarization is ambiguous; here it refers to the
direction of the electric field, not to dipole moment per unit volume.
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pj =

√
!ωj

2

|Ej |
Nj

sin(ωjt− φj) . (10.18b)

Since the amplitudes of these two oscillations are the same, a plot of pj vs. ωjqj
traces out a circle during one period of the oscillation. The energy, on the other
hand, remains constant.

Each term in the sum in (10.17) has the same form as for a classical particle of
unit mass executing simple harmonic motion in a quadratic potential. If we think
of pj as the momentum of the oscillating particle and qj as its displacement, the
kinetic energy is given by 1

2p
2
j and the potential energy is given by 1

2ω
2
j q

2
j .

The formal analogy to a mechanical harmonic oscillator is useful, but we should
not lose sight of the fact that we are merely choosing different representations for
the amplitude of the electric field in each mode. Choice of pj and qj leads to a real
representation, while choice of aj and a∗j leads to a complex representation. In all
cases, the final expression for the field e(r, t) is real.

Field quantization A simple heuristic way to get a quantized field theory is just to
replace the field amplitudes by quantum-mechanical operators. More sophisticated
approaches based on the Hamiltonian or Lagrangian formulation of continuum me-
chanics can also be invoked (Cohen-Tannoudji et al., 1989), but in the end they
lead to the same results, so we shall jump immediately to the heuristic method.2

We shall denote quantum-mechanical operators with a caret. Thus Ĥ is the
total Hamiltonian operator, P̂j is the momentum operator associated with mode j,
and Q̂j is the corresponding position operator. For a single mode, these operators
act in the Hilbert space L2(R). In Dirac notation, a general vector in this space will
be denoted |ψ〉, analogous to the abstract vector f we have used in previous chap-
ters to represent a square-integrable function f(x). Since Ĥ, P̂j and Q̂j all represent
physical observables, we know from the basic axioms of quantum mechanics that
they are Hermitian operators. See Sec. 1.4.4 for important background information
on Hermitian operators.

In spite of the mechanical terminology, Q̂j and P̂j represent field amplitudes,
but we shall assume (heuristically) that they obey the same rules as for mechanical
position and momentum operators. Specifically, Q̂j and P̂j do not commute; instead
they satisfy [

Q̂j , P̂j
]
≡ Q̂jP̂j − P̂jQ̂j = i! , (10.19)

where the square brackets denote a commutator. Any operator commutes with
itself, so [Q̂j , Q̂j ] = [P̂j , P̂j ] = 0. Moreover, operators associated with different field
modes commute, so [Q̂j , P̂j′ ] = 0 if j (= j′.

Two useful non-Hermitian operators are the operator equivalents of aj and a∗j ,

which we shall call âj and â†j , respectively. The dagger (†) denotes an adjoint, and
quantum-mechanical adjoints are defined just as in classical linear algebra (see Sec.
1.3.5). For reasons that will emerge below, âj is called an annihilation operator

and â†j is called a creation operator. From (10.19) and the operator counterparts

2One meaning of heuristic is that it refers to a method of teaching or discovery based on experi-
mentation or trial and error. That meaning applies here since we cannot know if the procedure of
replacing amplitudes by operators will have any physical meaning until we perform many experi-
ments. To date, all such experiments have been spectacularly successful.
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of (10.16), we can show that [
âj , â

†
j′

]
= δjj′ . (10.20)

In terms of the creation and annihilation operators, the Hamiltonian can be
written as

Ĥ =
∑

j

1
2!ωj(â

†
j âj + âj âj) =

∑

j

!ωj(â
†
j âj +

1
2 ) , (10.21)

where the equivalence of the two forms follows from (10.20). In either form, we can
identify a single term as the partial Hamiltonian for the jth mode and denote it as
Ĥj .

The operator for the total electric field is given by [cf. (10.14)]

ê(r, t) = i
∑

j

γjNj

[
exp(ikj · r) âj − exp(−ikj · r) â†j

]
. (10.22)

In quantum optics it is often useful to label the individual terms in the sum (10.22)
according to whether they involve positive or negative frequencies. We know from
(10.13) that the classical amplitude aj(t) varies as exp(−iωjt) for positive ωj , and in
fact the same is true for the operator âj . We can therefore refer to iγjNj exp(ikj ·r)âj
as the positive-frequency part of the field in mode j and denote it as ê+j (r, t), and

similarly for the negative-frequency part.3 Thus we write

ê(r, t) = ê+(r, t) + ê−(r, t) =
∑

j

[
ê+j (r, t) + ê−j (r, t)

]
. (10.23)

Note that ê+ contains all the annihilation operators and ê− contains all the creation
operators. The usefulness of this decomposition in the analysis of optical detectors
will be seen in Sec. 10.1.4.

Quantum harmonic oscillator The properties of quantum-mechanical harmonic os-
cillators are discussed in detail in virtually every book on quantum mechanics; some
key points are listed here for reference.

An important difference between classical and quantum-mechanical harmonic
oscillators is in the allowed energies. The total energy of a classical oscillator of
resonant frequency νj can be any positive number since the amplitude can have any
value. A quantum oscillator with the same resonant frequency, however, can take
on only the energies Ejnj

which are eigenvalues of the Hamiltonian. An eigenvector

of Ĥj will be denoted |nj〉, and the eigenvalue equation is

Ĥj |nj〉 = Ejnj
|nj〉 . (10.24)

For the harmonic oscillator, this equation will have a solution if and only if

Ejnj
= (nj +

1
2 )!ωj , nj = 0, 1, .... . (10.25)

Thus the nonnegative integer nj specifies the number of quanta of excitation of the
oscillator, and each quantum has energy ωj . If the oscillator describes the jth mode

3The reader should not confuse the plus superscript with a pseudoinverse.
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of the radiation field, we say that the mode contains nj photons. The minimum
energy 1

2ωj is called the zero-point energy; in quantum mechanics each mode of
the radiation field contains some energy even if no photons are present.

Since Ĥj = !ωj(â
†
j âj +

1
2 ) by (10.21), and since any vector is an eigenvector of

an operator that simply multiplies the vector by a constant, we can see that |nj〉 is
also an eigenvector of â†j âj :

â†j âj|nj〉 = nj |nj〉 . (10.26)

As a result of this equation, â†j âj is called the number operator ; its eigenvalue is
the number of photons in the state described by vector |nj〉. This state is known
variously as a number state, Fock state, energy eigenstate or stationary state.

Though |nj〉 is an eigenstate of â†j âj , it is not an eigenstate of â†j or âj sepa-
rately. Instead, these operators have the following effect on number states:

â†j |nj〉 =
√

nj + 1 |nj + 1〉 , (10.27a)

âj |nj〉 =
√
nj |nj − 1〉 . (10.27b)

Thus the creation operator acting on a number state increases the number of photons
by one and the annihilation operator decreases the number by one—whence the
names.

Other quantum states So far we have discussed only number states. A more general
state of the jth mode is a linear superposition of number states, expressed by

|ψj〉 =
∞∑

nj=0

cjnj
|nj〉 . (10.28)

The coefficients in this expansion are the probability amplitudes for the individual
states. In terms of these (generally complex) amplitudes, the actual probability of
observing an eigenenergy Ejnj

is |cjnj
|2. According to the basic tenets of quantum

mechanics, only an eigenenergy can ever be observed, even in this superposition
state.

As an example, the so-called coherent states (Glauber, 1963) are the best
quantum approximation to a classical nonrandom wave. They have probabilities
given by the Poisson distribution,

|cjnj
|2 = exp

(
−|αj |2

) |αj |2n

n!
, (10.29)

where αj is a complex number designating a particular coherent state for mode j.
Thus the probability of observing n photons in mode j obeys a Poisson law with
mean |αj |2 if the mode is excited to a coherent state. We shall discuss coherent
states in more detail in Chap. 11 when we analyze photon-counting experiments.

Many other quantum states of the field are possible, some with no classical
analog (see Sec. 11.5), but all can be expressed as linear superpositions of states with
definite numbers of photons. Regardless of the amplitudes cjnj

, however, the spatio-
temporal character of the radiation in a single mode is that of a monochromatic
plane wave.
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Multimode states and localized photons Strictly speaking, photons are defined as
quanta of excitation of a single mode of the radiation field, but colloquially we often
speak as though photons were localized bundles of energy. Since all excitations of a
single mode are monochromatic plane waves, a photon must strictly be uniformly
distributed over the cavity, and the only way we can construct localized excitations
is by considering multiple modes.

A multimode number state can be denoted |{nj}〉; it is simultaneously an
eigenstate of all of the single-mode number operators, i.e.,

â†i âi| {nj}〉 = ni|{nj}〉 , (10.30)

where {nj} denotes an infinite set of nonnegative integers. The state |{nj}〉 is also
an eigenstate of the total number operator

∑
i â

†
i âi, so the total number of photons

in all modes is precisely
∑

j nj . A special case of |{nj}〉 is the state with one photon
in mode i and zero in all other modes; we shall denote this state as |1i, {0}j %=i〉.

A straightforward approach to constructing a localized one-photon state uses
an analogy to classical wave packets (Mandel and Wolf, 1995). Suppose we define
a multimode state |ψ〉 by

|ψ〉 =
∑

i

ci|1i, {0}j %=i〉 . (10.31)

No matter what we choose for the coefficients ci, this state is an eigenstate of the
total number operator with eigenvalue 1:

[
∑

m

â†mâm

]

|ψ〉 =
∑

i

ci
∑

m

â†mâm|1i, {0}j %=i〉 =
∑

i

ci|1i, {0}j %=i〉 = 1 · |ψ〉 .

(10.32)
As an example, we can choose ci such that the only wavevectors included in the
sum are those with |ki| ) ω0/c, thus creating a quasimonochromatic state, and we
can further apply a Gaussian weighting on directions around some chosen vector
k0. More precisely, we can set ci = 0 if |ki − ω0/c| > δ and, within this range,

ci = C exp

[
−
|ki − k0|2

2σ2

]
, (10.33)

where C is a suitable normalizing constant. With these conditions, |ψ〉 represents a
Gaussian beam (see Sec. 9.5.3) with mean wavevector k0 and some spread around
this direction, but all spatially dependent operators such as ê(r, t) are confined lat-
erally (in a sense that will be clarified in Sec. 10.1.4) in the plane perpendicular
to k0, just as a classical Gaussian beam would be. We can say that the state is
localized to this beam, yet it contains precisely one photon.

Another way to associate photons with particular positions is through an op-
erator corresponding to the energy density:

Û(r, t) ≡ ε0ê
−(r, t) · ê+(r, t) . (10.34)

Like the classical energy density, this operator has dimensions of energy per unit
volume. To get the total energy, we can integrate Û(r, t) over the cavity volume and
make use of the orthogonality of the cavity modes along with (10.22) and (10.23);
the result is ∫

cav
d3r Û(r, t) =

∑

j

!ωj â
†
j âj , (10.35)
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which is the same as the Hamiltonian operator except that there are no zero-point
terms.

Integration of Û(r, t) over a smaller volume yields an operator related to the
energy in that volume. For quasimonochromatic radiation of frequency ω0, the
operator

1

!ω0

∫

V
d3r Û(r, t) (10.36)

corresponds to a local photon number, and its expectation in any quantum state
can be interpreted as the average number of photons in the volume V for that state.

Similarly, for quasimonochromatic radiation with all wavevectors nearly par-
allel, we can define an operator Îp(r, t) by

Îp(r, t) =
c

ω0
Û(r, t) =

cε0
ω0

ê−(r, t) · ê+(r, t) . (10.37)

In the quantum-optics literature, Îp(r, t) is called the photon intensity operator,
but in our terminology ω0Îp(r, t) corresponds to the classical normal irradiance I0,
or magnitude of the Poynting vector.

Though the operators Îp(r, t) and Û(r, t) have an appealing analogy to the
corresponding classical quantities, they must be used with caution. For exam-
ple, Îp(r, t) and Îp(r′, t′) do not commute in general, and theories making use of
Îp(r, t) are often restricted in the kinds of fields for which they apply. Many books
simply dismiss the issue by saying that it is impossible to define a strict photon-
position operator. Nevertheless, as we shall see in Sec. 10.1.4, the basic operator
ê−(r, t) · ê+(r, t) used in the definition of Îp(r, t) and Û(r, t) is of fundamental im-
portance in describing photon absorption by a small detector located at point r,
and in this sense at least we can speak of localized photons.

Mandel and Wolf (1995) give a detailed discussion of issues associated with
photon localization. They conclude that localized photons can be defined, at least
approximately, provided we do not try to localize them to a scale comparable to or
smaller than a wavelength. The problem was also analyzed in detail by Bialynicki-
Birula (1998) who concluded that localization with exponential falloff in energy
density and photodetection rates was possible.

These results provide some impetus for the intuitive notion of a photon as a
fuzzy blob, but there are some well-known situations where this intuition can fail us.
In an interferometer, for example, any attempt to localize the photon to one arm
will necessarily destroy the fringes. We shall revisit the issue of photon localization
in Sec. 10.1.4 after developing some background on photodetection.

10.1.4 Physics of photodetection

There are many kinds of detectors of electromagnetic radiation (Dereniak and
Crowe, 1984; Kingston, 1995). They are often classified as either thermal or photo-
electric, but in fact even thermal detectors start by absorbing the radiation through
a photoelectric interaction. The distinction is whether the photoelectron is observed
directly as a current or it produces heat, which in turn alters some other property
of the material such as its conductivity. Basically, all detectors of electromagnetic
radiation are photoelectric.
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In this section we briefly discuss the photoelectric interaction process, first by
use of QED and then from a semiclassical perspective in which the atom is treated
quantum mechanically but the field is assumed to be classical. Excellent references
for both approaches include Loudon (1973), Sargent et al. (1974), Meystre and
Sargent (1990), Cohen-Tannoudji et al. (1989) and Mandel and Wolf (1995).

Quantum-mechanical perspective Electromagnetic fields interact with matter pre-
dominantly through electric-dipole interactions. Considered as a point charge −e,
an electron bound to an atom has a classical electrical dipole moment given by −er,
where r is the position of the electron. The energy of the electron in an external
electric field e(r, t) is er · e(r, t). To get the corresponding quantum-mechanical
interaction Hamiltonian, we replace the classical field by the operator defined in
(10.23) and the classical electron position by the operator r̂. The r in the argument
of e(r, t), on the other hand, specifies the center-of-mass position of the atom, which
we do not usually quantize. To distinguish these two positions, we simply omit the
caret on the atom’s center-of-mass position and denote it as r, which we regard as
a classical parameter. Then the interaction Hamiltonian has the form

Ĥint = er̂ · ê(r, t) = er̂ ·
[
ê+(r, t) + ê−(r, t)

]
. (10.38)

We now want to use this Hamiltonian to compute the transition rate Ri→f for
transitions from some specified initial state |i〉 to any final state |f〉. A well-known
result, called Fermi’s Golden Rule, states that this rate is given by

Ri→f =
2π

!

∑

f

|〈f |Ĥint|i〉|2 δ(Ef − Ei) , (10.39)

where in principle the sum is over all possible final states, but the delta function
picks out only transitions for which the total energy (atom plus field) in the initial
state, denoted Ei, is the same as in the final state, Ef . For photodetection problems
we are interested only in final states where the electron is free and can be detected
somehow, so the sum is over free-electron states. Moreover, if we assume that
the transition is from the ground state of the atom to some excited state, it must
involve absorption of energy from the field, so only photon annihilation operators
contribute. These operators are contained in the term er̂ · ê+ in the interaction
Hamiltonian, and matrix elements of er̂ · ê− can be dropped.

For simplicity, we now assume that the light is linearly polarized, which means
that all modes present have the same polarization unit vector γj and the index

j is superfluous. Then the important term in Ĥint is the product of two scalar
operators, eγ · r̂ and a scalar operator ê+. The first of these factors involves only
the atomic operators and the second involves only the field operators; therefore the
interaction matrix element factors as

〈f |Ĥint|i〉 = 〈fat|eγ · r̂|iat〉〈frad|ê+|irad〉 , (10.40)

where |irad〉 and |frad〉 are the initial and final states of the radiation field and |iat〉
and |fat〉 are those of the atom. The summation over final states factors similarly,
and we can write

Ri→f =
2π

!

∑

frad

|〈frad|ê+|irad〉|2
∑

fat

|〈fat|eγ · r̂|iat〉|2 δ(Ef − Ei) . (10.41)
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For quasimonochromatic radiation of radian frequency ω0, the initial and final
energies of the field will differ by !ω0 since eγ ·r̂ involves only annihilation operators.
Then the delta function in (10.41) can be written as δ(Ef,at − Ei,at − !ω0), which
does not depend explicitly on the states of the field. Thus the sum over final atomic
states can be performed independently of the one over final field states.

To proceed in detail, we would convert the sum over atomic states in (10.41)
into an integral over Ef,at with an appropriate density of states. The essential points
can be seen, however, simply by defining an atomic property C(ω0) by

C(ω0) ≡
2π

!

∑

fat

|〈fat|eγ · r̂|iat〉|2 δ(Ef,at − Ei,at − !ω0) . (10.42)

With this definition, we have

Ri→f = C(ω0)
∑

frad

|〈frad|ê+|irad〉|2 . (10.43)

A further simplification follows by realizing that ê− is the adjoint of ê+, so

Ri→f = C(ω0)
∑

frad

〈irad|ê−|frad〉〈frad|ê+|irad〉 = C(ω0)〈irad|ê−ê+|irad〉 , (10.44)

where we have used the closure relation (see Sec. 1.3.7),
∑

frad

|frad〉〈frad| = Îrad , (10.45)

with Îrad being the unit operator in the state space of the field (not to be confused
with the photon intensity operator). The final form for the transition rate can be
written most simply as

Ri→f = C(ω0)〈ê−ê+〉 , (10.46)

where 〈 〉 denotes a quantum-mechanical expectation value, in this case an expec-
tation of the field operator ê−ê+ in the initial state of the field. We encountered
this same operator in Sec. 10.1.3 and saw that it could be identified with the square
of the classical field. Moreover, within a constant, ê−ê+ is the same as the photon
intensity operator or normal irradiance [see (10.37)]. Thus (10.46) shows that the
photoelectric detection rate is proportional to the expectation of the square of the
field or to the expectation of the normal irradiance.

Semiclassical perspective Perhaps surprisingly, photodetection can also be analyzed
successfully (in most cases) with a semiclassical model in which the atom is treated
quantum mechanically but the field is assumed to be classical, obeying Maxwell’s
equations. For a nonrandom, quasimonochromatic classical field e(r, t), the inter-
action Hamiltonian has the same form as in (10.38) but with no caret on e. The
sum over final states now includes only the atomic states (since the field is not
quantized), and (10.46) becomes

Ri→f = C(ω0)〈[e(r, t)]2〉T , (10.47)

where now the averaging is just a time average over one cycle.
The important conclusion here is that photoelectric transition rates are pro-

portional to the average of the square of the electric field. Basically the same
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conclusion was reached quantum-mechanically, but there the square of the field is
an operator, and the average must be interpreted as the expectation in a quantum
state describing the incident light. Semiclassically, the square of the field has its
natural interpretation, and the average is over time. In both cases, the important
quantity is a mean-square field.

The great utility of the semiclassical result is that one can do completely clas-
sical calculations of electrical fields and, at the end, simply compute a classical
mean-square field. This quantity then gives directly the rate of photoelectric tran-
sitions.

In almost all cases of importance in imaging, the semiclassical procedure will
give essentially the same result as a fully quantum-electrodynamical calculation, but
with much less effort. If one works very hard, it is possible to devise experiments
in which the semiclassical and quantum approaches predict different results, and in
those cases QED invariably turns out to be correct. We shall pursue these issues
further in Chap. 11.

Who needs localized photons? The discussion above shows that calculation of photon-
counting rates, either semiclassically or quantum-electrodynamically, boils down to
computation of a mean-square field. There is never any need to think of photons
falling on a detector. Indeed, the quantum purist would insist that such a statement
is meaningless since photons are single-mode quanta and hence extend throughout
all space. The localized event, in this view, is the photoelectric interaction, which
involves the collapse of the wavefunction; the wavefunction itself is not localized,
and does not have to be.

In practice, however, computation of a mean-square field may be very difficult.
Consider, for example, a small source of short-wavelength radiation such as x rays
or gamma rays and a small detector some distance away. We know from practical
experience that if we place an opaque obstacle, such as a piece of lead, between the
source and detector, we get no photocounts, but it is not straightforward to reach
this obvious conclusion by computing a mean-square field. We might, for example,
model the source as an ideal point, say it emits a spherical wave and compute the
field classically behind the obstacle at the detector location. If this field is zero,
there will be no counts on the semiclassical detection model. The problem is that
the conclusion—no counts— is far more general than the point-source calculation
would suggest. It holds for any spatial and temporal distribution of the source and
any state of coherence, so long as the line of sight is blocked and diffraction around
the obstacle can be neglected. We may not know these details of the source, and
we probably do not care. All we know, or need to know, is that the line of sight is
blocked.

In this problem, and many others of practical importance in imaging, it serves
our computational needs better to think of the source as emitting localized wavepack-
ets, which we shall call photons for want of a better term, and to think of these
packets as travelling in a straight line from the source to the detector. If all relevant
dimensions in the problem are large compared to a wavelength, then we can ignore
diffraction in the classical perspective, and we can ignore the mathematical issues,
raised in Sec. 10.1.3, associated with defining localized photon states.

This approach has much in common with the usual description of electron
transport in semiconductors. Elementary solid-state physics tells us that an elec-
tron wavefunction in an ideal crystal is a modulated plane wave (called a Bloch
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function), so the electron, like the photon, extends throughout the medium. To
think clearly about diodes and transistors, however, it is essential to assign a degree
of localization to the electron and to imagine a fuzzy bundle of charge being swept
through a P-N junction. The bundle is formed, as in (10.31), by superimposing
pure electron wavefunctions with different wavevectors. So long as all states in the
superposition respond to external forces in essentially the same way, it is legitimate
to think of the localized packet as responding this way.

Another way to think about the issue of localization is to inquire why the
plane-wave descriptions of electrons or photons are used in the first place. Why,
for example, did we start in (10.12) with a Fourier series or plane-wave expansion
for the field? The answer was given in Chap. 7, where we emphasized the role of
Fourier analysis in analyzing linear shift-invariant (LSIV) systems. An electric field
in free space, or in a cavity that will be allowed to become infinite, is governed by
linear equations with no preferred origin of coordinates, so these equations describe
an LSIV system. Similarly, the Schrödinger equation for an electron in an ideal
crystal has discrete translational symmetry. In both cases, the eigenfunctions (nor-
mal modes) are essentially plane waves.

When we break the translational symmetry, for example with a P-N junction or
an opaque obstacle, the normal modes are no longer plane waves, and we probably
cannot calculate exactly what they are. Instead, in the localized approach, we use
the plane waves as basis functions to construct approximate normal modes in much
the same way as we used local Fourier transforms to analyze weakly shift-variant
systems in Sec. 7.2.8. So long as we do not attempt to localize too finely and we
can neglect interference effects, no significant error results.

10.1.5 What do real detectors detect?

The results in Sec. 10.1.4 were obtained by considering an isolated single atom as
the detector. Real detectors consist of many atoms, and the processes that occur
after the initial photoelectric interaction can be quite complicated.

One complication is that the response of the detector to a photon will usu-
ally depend to some degree on where in the detector material the photoelectron
is produced. For example, photoelectrons generated at different depths within the
photocathode of a photomultiplier will have different probabilities of escaping the
cathode and starting a cascade of secondary electrons. Similarly, in a photodiode,
there is a region of high electric field (the depletion region, for readers familiar
with P-N junctions), and photoelectrons produced in this region are much more
likely to contribute to the external current than those produced outside the region.

In addition, the squared electric field itself can vary over the volume of the
detector, and it can depend in a complicated way on the time t. Moreover, the
response produced by radiation of frequency ω is a complicated function of ω; this
latter issue is discussed at the end of this section, but initially we consider quasi-
monochromatic radiation.

The mean detector output for quasimonochromatic radiation can be defined
as

gout(ω0) = natC(ω0)

∫ τ

0
dt

∫

det
d3r S(r) 〈|e(r, t)|2〉 , (10.48)

where nat is the number of absorbing atoms per unit volume in the detector, e(r, t)
is the electric field at point r inside the detector at time t, τ is the exposure time,
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and S(r) is the probability that an interaction at point r will contribute to the
detector output. Thus gout(ω0) is the mean number of contributing interactions
within the detector volume during the exposure time τ.

Note that (10.48) works equally well from a classical or quantum-mechanical
perspective, depending on how we interpret the field and the average. Various
special cases of this formula will now be discussed.

Fig. 10.1 Illustration of a photodetector illuminated with a plane wave. Note
that the coordinate system is fixed to the detector.

Response to a plane wave Consider a photodetector of dimensions L × L × d illu-
minated with a monochromatic plane wave tipped at angle θ as shown in Fig. 10.1.
For simplicity, we imagine that the detector is immersed in an index-matching fluid
so we do not have to consider Snell’s law. We assume for now that S(r) is a constant
and focus attention on the r dependence of the electric field.

Since the radiation is absorbed, the wave is exponentially attenuated in the
detector, but because of the tip angle the beam has traversed a thickness z/cos θ
when it is at depth z in the detector (see Fig. 10.1). Thus, in a coordinate system
fixed to the detector, (10.48) becomes

gout(ω0) = natC(ω0)|E0|2τ
∫ 1

2
L

− 1

2
L
dx

∫ 1

2
L

− 1

2
L
dy

∫ d

0
dz exp

(
−

µz

cos θ

)

= natC(ω0)|E0|2τL2 cos θ

µ

[
1− exp

(
−

µd

cos θ

)]
, (10.49)

where µ is the attenuation coefficient of the light in the detector material and E0

is the field amplitude just inside the detector. Note that E0 is nonrandom for now,
so 〈·〉 is not required.

An important limit of (10.49) is when µd * 1. In the optical wavelength
range, µ is about 106 m−1 in typical semiconductor detector materials, so this limit
prevails when d is at least a few µm. In this case,4

gout(ω0) = natC(ω0)|E0|2τ L2 cos θ

µ
. (10.50)

4The factor of 1/µ in (10.50) may be puzzling since it seems to imply that we get a smaller response
by using a more absorbing material, even though all of the energy is absorbed when µd ! 1, but
in fact C(ω0) is also proportional to µ. This issue is discussed further below under the heading
Broadband polychromatic radiation.
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Comparing (10.50) with (10.4) and (10.11) and noting that cos θ = κ̂ · n̂, we see
that

gout(ω0) ∝
∫

S
da n̂ ·Π(r, t) . (10.51)

The integral in this limit is the energy flux (total power transmitted across the
detector face) or, equivalently, the integral of the irradiance over the detector face.
Because of the factor of τ, the detector senses the total energy transmitted across
the face in the measurement time.

In the limit of an optically thin detector, however, where µd/cos θ , 1, (10.49)
becomes

gout(ω0) = natC(ω0)|E0|2τL2d . (10.52)

In this case the detector senses the square of the field, not the energy flux. The power
intercepted by the detector varies as cos θ but the fraction absorbed is µd/cos θ, so
the total absorbed power is independent of θ. An optically thick detector absorbs all
of the energy of a beam and gives a response proportional to the energy flux, while
an optically thin detector measures the square of the field. For normal incidence,
the difference is only in the constant of proportionality, but thin and thick detectors
behave differently as the angle of incidence is changed.

Photocathodes In a popular type of photomultiplier, light is incident on one side
of the photocathode and electrons are emitted from the opposite side. These pho-
tocathodes cannot be made optically thick since then the electrons would have to
traverse a large thickness of the material, and their probability of escape would be
reduced. To develop a simplified model of such cathodes, assume that the electrons
are exponentially attenuated with an attenuation coefficient µe, so that an electron
produced at depth z has a probability exp[−µe(d−z)] of escaping. This probability
is the factor S(r) in (10.48), so (10.49) is modified to

gout(ω0) = natC(ω0)|E0|2τ
∫ 1

2
L

− 1

2
L
dx

∫ 1

2
L

− 1

2
L
dy

∫ d

0
dz exp

[
−

µz

cos θ
− µe(d− z)

]

= natC(ω0)|E0|2τL2e−µed
[ µ

cos θ
− µe

]−1 {
1− exp

[
−
( µ

cos θ
− µe

)
d
]}

. (10.53)

This expression approaches zero as either d → 0 or d → ∞, so some intermediate
thickness must be chosen. Then the detector is neither optically thin nor optically
thick, so it measures neither field squared nor energy flux.

Multiple plane waves Now consider two plane waves of the same frequency and
phase, with parallel electric field amplitudes E1 and E2. For simplicity we again
assume that the detector is immersed in an index-matching fluid so there is no need
to worry about reflection or refraction effects. We assume also that µd * 1 and
that S(r) is constant.

With these assumptions, the total amplitude E at an arbitrary point r is

E2 = E2
1 + E2

2 + 2E1E2 cos[(k2 − k1) · r] , (10.54)
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and (10.48) becomes

gout(ω0)=natC(ω0)
τL2

µ

[
|E1|2+ |E2|2

]
+
τ

µ
2E1E2

∫ 1

2
L

− 1

2
L
dx

∫ 1

2
L

− 1

2
L
dy cos[(k2 − k1) · r]

= natC(ω0)
τL2

µ

[
|E1|2 + |E2|2 + 2E1E2 sincL∆ξ sincL∆η

]
, (10.55)

where ∆ξ is the x component of (k2−k1)/2π and ∆η is the y component. The sinc
functions are small if L∆ξ or L∆η is greater than about one. From the discussion
in Sec. 9.2.1, we can relate these conditions to the angle ∆θ between the two waves.
From (9.45), we can see that L∆ξ > 1 or L∆η > 1 is equivalent to L∆θ/λ > 1,
and the term proportional to E1E2 can be neglected if this condition is satisfied.
Since L/λ is usually * 1 with practical detectors, this condition can be satisfied
even if ∆θ is quite small. Physically, the interference term does not contribute
to the mean detector response if there are one or more fringes across the width
of the detector. Under these conditions, the detector again measures total flux,
proportional to |E1|2 + |E2|2. The fact that the waves can interfere with each other
does not affect the detector reading unless the detector is smaller than a fringe.

This argument extends to any number of plane waves and hence to general
noncollimated radiation. We can ignore interference fringes that are not spatially
resolved by the detector.

Narrowband polychromatic radiation Now consider two plane waves of slightly dif-
ferent frequencies but parallel E. At time t there is an instantaneous phase difference
between the waves given by ∆φ = 2π∆νt, where ∆ν is the difference in frequencies.
For simplicity assume that the two wave vectors are parallel to each other and to
the z axis. Then the interesting part of (10.48) is the time integral, and we find

gout(ω0) = natC(ω0)
L2

µ

∫ τ

0
dt

{
E2

1 + E2
2 + 2E1E2 cos(2π∆νt)

}
. (10.56)

The cosine term integrates to approximately zero if ∆ντ * 1, a condition that is
quite easy to satisfy. For example, the frequency difference ∆ν between the two
sodium D lines is about 5× 1011 Hz, and between two adjacent modes in a typical
helium-neon laser, ∆ν is about 5 × 107 Hz. With a 1 µsec integration time, the
cosine would make no significant contribution to the response in either of these
cases.

The conclusion is that the response is proportional to the total flux in the two
beams, and once again the interference effects can be safely ignored. Instantaneous
fringes are indeed produced, but many fringes move through the detector volume in
the measurement time τ, so they have no measurable effect. As in the spatial case,
we can extend the argument to many different frequencies. Any two frequencies ν
and ν ′ for which (ν − ν ′)τ * 1 are detected independently.

Broadband polychromatic radiation To extend the discussion above to broadband
radiation, one obvious factor that must be considered is C(ω), defined in (10.42).
Most detectors have a threshold photon energy below which there is no response,
simply because there are no energy-conserving transitions. In semiconductor detec-
tors, this minimum energy is the bandgap energy, and in photomultipliers, it is the
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workfunction of the photocathode. Thus C(ω) = 0 for ω < ωthr, where !ωthr is the
minimum or threshold energy.

For ω > ωthr, C(ω) has two effects: it relates the photoelectric transition rate
to field squared [see (10.46) and (10.47)], and it controls the absorption coefficient
µ of the radiation in the detector material. Suppose we increase C(ω), either by
changing ω or by changing the material properties. Then the transition rate is in-
creased and more energy per unit time is extracted from the beam as it propagates,
and µ is increased proportionally. Thus the factor C(ω)/µ in (10.50) is a constant,
independent of both frequency and material properties.

The only residual effect of C(ω) is that it determines the field distribution
within the detector through the factor exp[−µz/cos θ] in (10.49) or (10.53). For
optically thick detectors, this factor influences the response only when S(r) varies
over the detector volume, as it does in (10.53) but not in (10.49).

One other issue that we need to discuss with broadband radiation is the precise
meaning of the word response. As defined in (10.48), the response has units of total
observable photoelectric transitions during the exposure time. In many detectors,
each interaction yields either zero or one observable electron in an external circuit,
with probability S(r). In that case the total charge produced by narrowband ra-
diation in time τ is just egout(ω0), where e is the charge on the electron. To get
the corresponding expression for broadband radiation, we must integrate against
a radiation spectrum defined in terms of the photon flux per unit energy; precise
ways of defining such spectra are given in Sec. 10.2. To the extent that gout(ω) is a
slowly varying function of ω, the detector output is then proportional to the total
number of photons with energy above !ωthr.

Some detectors, on the other hand, have a response that depends on the energy
of each photon, not just on the number of photons absorbed. Consider, for example,
an x-ray scintillation detector where the initial photoelectric interaction produces
a high-energy electron, but the electron energy is quickly converted into optical
photons. Each photoelectron in this case can produce many optical photons, and
the mean number of optical photons is approximately proportional to the energy of
the original x ray.

A similar situation occurs with certain infrared detectors in which the ini-
tial photoelectric interaction excites a free electron from an impurity atom. If the
photon energy is larger than the binding energy of the impurity electron, then the
photoelectron will have sufficient energy to excite lattice vibrations called phonons.
Since lattice vibrations are basically the same thing as thermal energy, the photo-
electron heats the medium, and the amount of heating is proportional to the photon
energy. If we observe the heating with a temperature sensor or through its effect on
the conductivity of the medium, then the observed response is related to the total
absorbed energy, not the total number of photons.

When the response to an individual photon is proportional to the energy of the
photon, as in the x-ray and infrared examples, then the response must be integrated
against a spectrum defined in terms of energy flux per unit energy to get the total
response to broadband radiation. When the response to an individual photon is
approximately independent of its energy (at least above the threshold), as in pho-
todiodes and photomultipliers, then the relevant spectrum involves the photon flux
per unit energy.

In the remainder of this chapter we shall learn how these fluxes are specified
precisely and how they move about in an imaging system.
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10.2 RADIOMETRIC QUANTITIES AND UNITS

Classical radiometry describes the energy in a radiation field but ignores many other
characteristics, including coherence, the wave nature of light, the fact that light is
a vector field and all aspects of quantum electrodynamics. The main justification
for this seemingly egregious oversimplification is the point made at the end of Sec.
10.1: practical detectors often respond rather simply to the energy deposited in
them. Hence the most important thing we need to know is how much energy gets
to the detector.

In this section we focus on ways of describing the energy content of a radiation
field as a function of spatial and angular coordinates. The culmination of the
discussion will be the definition of a quantity called the distribution function from
which many other radiometric quantities can be derived. In defining this function,
we use the language of photons, regarded as localized particles, but there is nothing
quantum mechanical about the treatment. In Sec. 10.2.7, however, we shall return
to the foundations of radiometry and explore further how the quantities defined in
this section relate to both classical and quantum electrodynamics.

10.2.1 Self-luminous surface objects

We begin with self-luminous or emissive objects, but we need to distinguish surface
emitters, considered here, from volume emitters, to be considered in Sec. 10.2.2. A
surface emitter is one where the radiation originates on or very near the surface,
and structures within the volume of the object do not substantially influence the
radiation received by the imaging system. In a volume emitter, by contrast, the
internal structure does influence the radiation received by the imaging system, and it
is usually the goal of the system to image this internal, three-dimensional, structure.

If a surface emitter is planar, we can choose the coordinate system so that the
surface lies in the plane z = 0. Hence, any measure of the strength of the emitted
radiation will be a 2D function f(x, y). Small deviations from a planar surface can
often be accommodated by writing the z coordinate of a point on the surface as a
function of x and y, so that the object function becomes f(x, y, z(x, y)), which is
still a 2D function. This quasiplanar description is useful only in situations such as
that illustrated in Fig. 10.2a where, from the vantage point of the imaging system,
two coordinates are sufficient to determine uniquely a point on the surface; more
convoluted surfaces as in Fig. 10.2b cannot be described fully this way. Most of
the optics literature implicitly assumes a planar or quasiplanar surface object, and
we shall also adopt that assumption for the remainder of Sec. 10.2.1. Points in the
plane z = 0 will be denoted by a 2D vector r = (x, y).

Basic radiometric quantities We still have to specify just what physical entity is
described by the function f(r). Intuitively, f(r) corresponds to the strength of the
object, but we need a more precise definition. To arrive at such a definition, we
begin with the concept of radiant energy.

Radiant energy Q is simply the total energy emitted by a source (over some
specified time). The SI units of radiant energy are joules, abbreviated J. In many
imaging applications, radiant energy per unit area is an important quantity. In
photography, this quantity is called the exposure, and in radiological imaging it
is called the energy fluence. We shall use the latter terminology and define the
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energy fluence Ψ by

Ψ =
∂Q

∂A
, (10.57)

where A denotes area. SI units of Ψ are J/m2.
There is still an ambiguity in this definition since it depends on how the area is

specified. In radiology, fluence is defined by using a small sphere of cross-sectional
area ∆A and dividing the energy intercepted by this sphere by ∆A. Though this
device has some advantages when considering energy flow in a volume, we do not
adopt it here; instead the area should be regarded as a small portion of a surface,
so the fluence can, in general, depend on the orientation of the surface.

Fig. 10.2 (a) Illustration of a quasiplanar self-luminous object and an imaging
system for viewing it. (b) Illustration of a more convoluted surface that, for
the imaging system shown, cannot be described as quasiplanar.

The radiant flux Φ was already introduced in Sec. 10.1.1; it is the power, or
rate of emission of radiant energy, with SI units of J/sec or watts, W. Thus

Φ =
∂Q

∂t
. (10.58)

A simple and broadly applicable description of a surface emitter is the radiant
exitance M, defined as the radiant flux per unit area emitted by a surface, or

M =
∂Φ

∂A
=
∂Ψ

∂t
=

∂2Q

∂t∂A
. (10.59)

SI units of radiant exitance are W/m2. If the object is time varying, the energy
emission can be expressed by M(r, t).

A radiometric quantity closely related to radiant exitance is the irradiance I,
which we discussed in some detail in Sec. 10.1. In the notation of the present sec-
tion, I = ∂Φ/∂A, which is (10.59) except that the flux in question is incident on a
surface rather than emitted by it. Thus irradiance is flux per unit area in an image
and exitance is flux per unit area emitted from a self-luminous object.

Directional properties of the energy flux can be expressed by the radiant in-
tensity5 Υ, defined as the radiant flux per unit solid angle, or

Υ =
∂Φ

∂Ω
=

∂2Q

∂t∂Ω
. (10.60)

5The letter Υ (upsilon) for radiant intensity is definitely not standard in the literature, but perhaps
it suggests an angular spreading.
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Solid angle is measured in steradians (ster), so the SI units of radiant intensity
are W/ster. (Strictly speaking, angles are dimensionless, but it is handy to carry
along the units of radians or steradians in order to check the consistency of various
formulas.)

Fig. 10.3 Apparatus for measuring the radiant intensity of a small source.
The solid angle ∆Ω, determined by the distance r and the detector area, is
constant for all detector positions.

Radiant intensity is particularly useful when a source is observed from distances
large compared to its size. Then the source is effectively a point, but it does not
necessarily radiate uniformly in all directions. A practical measurement setup for
observing the radiant intensity is shown in Fig. 10.3, where the directionality of the
source is observed by swinging a detector on an arc about the source. As we shall
see in Sec. 10.2.7, this directionality is related to the correlation properties of the
source considered as a random process, so the intensity Υ cannot, in general, be
determined from knowledge of the exitance M.

Fig. 10.4 Geometry for interpreting the concept of radiance. An infinitesimal
area dA on a surface emits power dΦ into a differential solid angle dΩ in
a direction making an angle θ to the surface normal. The radiance is the
power per unit solid angle per unit projected area, where the projected area
dAproj = cos θ dA.

Radiance If we wish to specify both the spatial and angular dependence of energy
flux, we can use the radiance L, which gives the radiant flux per unit area per unit
solid angle. SI units of L are W/(m2· ster). One quirk in the definition of radiance
is that the area involved is not the actual area of an element of the source but rather
that area projected onto the direction of the flux as shown in Fig. 10.4. An element
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of projected area dAproj is related to an element of actual area by

dAproj = cos θ dA = ŝ · dA , (10.61)

where θ is the angle between the direction of interest ŝ and the surface normal, and
dA is a vector surface element with magnitude dA and orientation parallel to the
surface normal. The definition of radiance is thus

L =
∂2Φ

∂Ω∂Aproj
=

1

cos θ

∂2Φ

∂Ω∂A
. (10.62)

Radiance can depend on position on the surface r and direction of the flux as
specified by the unit vector ŝ, so it will be denoted L(r, ŝ). A time argument will
also be included when needed.

Radiance is equally applicable to flux incident on a surface or emitted from
it; all that changes is the direction ŝ. The irradiance/exitance dichotomy does not
arise.

Lambertian surfaces One advantage of using projected area in the definition of
radiance is that many natural surfaces then have a radiance that is approximately
independent of θ. A surface emitter or reflector with L completely independent
of direction ŝ is called a Lambertian surface. Another common term applied to a
Lambertian emitter is isotropic (Chandrasekhar, 1960), implying that the radiance
is independent of direction. We shall explore this designation further in Sec. 10.2.6.

A semantic confusion often arises because a Lambertian surface is said to
obey Lambert’s cosine law of emission. This statement does not imply a cosine
dependence of radiance; rather, it refers to the radiant intensity. Comparison of
(10.60) and (10.62) shows that a Lambertian surface has a radiant intensity that
varies as cos θ.

For a Lambertian surface emitter, the relation between exitance and radiance
is simple. Integrating L cos θ (where the cosine comes from converting projected
area to actual area) over 2π ster, we find (for a Lambertian)

M =

∫

2π
L cos θ dΩ =

∫ 2π

0
dφ

∫ π/2

0
sin θ dθ L cos θ = πL , (10.63)

where θ and φ are the polar angles of the unit vector ŝ, with θ measured from the
surface normal.

Spectral dependence To specify the radiation completely, it may also be necessary
to give its spectral distribution. If the source emits a range of wavelengths λ, each
of the radiometric quantities defined above can be generalized to a function of λ.
For example, the spectral exitance Mλ, defined by

Mλ =
∂2Φ

∂A∂λ
, (10.64)

gives the emitted power per unit area per unit wavelength. If λ is measured in
nanometers (nm), units of Mλ are W/(m2 · nm). Similarly, spectral radiance Lλ

has units of units of W/(m2 · ster · nm), being defined by

Lλ =
1

cos θ

∂3Φ

∂Ω∂A∂λ
. (10.65)
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Spectral quantities can also be specified in energy or frequency units. For
quantized electromagnetic radiation in some medium, the energy per photon is
E = hν = hcm/λ, where h is Planck’s constant, ν is the frequency of the radiation
and cm is the speed of light at frequency ν in the medium. Spectral radiance in
frequency units (i.e., radiance per unit frequency) is given by

Lν =
1

cos θ

∂3Φ

∂Ω∂A∂ν
= Lλ

∣∣∣∣
dλ

dν

∣∣∣∣ = Lλ
cm
ν2

, (10.66)

with SI units W/(m2 · ster ·Hz). In the older literature, e.g., Chandrasekhar (1960),
Lν is called the specific intensity or often just intensity, but this risks confusion
with the radiant intensity Υ or even with the irradiance, which is called intensity
in many parts of the optics literature.

Spectral radiance per unit energy is defined by

LE =
1

cos θ

∂3Φ

∂Ω∂A∂E
= Lν

∣∣∣∣
dν

dE

∣∣∣∣ =
1

h
Lν . (10.67)

Units of LE depend, of course, on the units chosen for E. The SI units would be
joules, but photon energy is virtually never expressed in joules. If electron volts
(eV) are used, units of LE are W/(m2 · ster · eV).

The spectral descriptions are more complete than the original functions. From
spectral exitance, for example, we can compute exitance via

M =

∫ ∞

0
dλ Mλ , (10.68)

but without additional knowledge we cannot go in the opposite direction.

Photon radiometry Sometimes it is more convenient to describe the radiation in
terms of photon flux rather than energy flux. If we consider a monochromatic
source emitting photons of energy E (see Secs. 10.1.3. and 10.1.4), the photon flux
Φp is related to the energy flux Φ by

Φp =
Φ

E
. (10.69)

Units of photon flux are photons per second or simply sec−1. Similarly, photon exi-
tance and photon radiance are defined by Mp = M/E and Lp = L/E, with SI units
sec−1m−2 and sec−1m−2 · ster−1, respectively. If the radiation consists of particles,
such as neutrons, the word ‘particle’ can be substituted for ‘photon’ throughout.

Spectral counterparts of these photon quantities can also be defined. For ex-
ample, the spectral photon radiance (per unit wavelength) is given by

Lp,λ =
λ

hc cos θ

∂3Φ

∂Ω∂A∂λ
. (10.70)

Spectral photon radiance is closely related to brightness (sometimes called bril-
liance) as used in the laser and synchrotron communities. Papers in those fields
may omit the factor of 1/cos θ in defining brightness, and they may mean spectral
photon radiance per unit energy rather than per unit wavelength depending on the
application. We prefer to avoid the term brightness.
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All of these source-strength functions can depend on the 2D position vector
r and on the time t. Radiance and spectral radiance also depend on direction ŝ,
and the spectral quantities depend on wavelength or energy. The most complete
description we have discussed so far is thus Lλ(r, ŝ,λ, t). If needed, further argu-
ments for state of polarization of the radiation can be added.

It is not necessary to specify all of these attributes of the source in all cir-
cumstances. We need only include those attributes that influence the response of
the imaging system. For example, if the system is insensitive to wavelength, the
spectral functions are not needed.

10.2.2 Self-luminous volume objects

Next we consider objects where the radiant energy is produced throughout a 3D
volume. Position in the volume is specified by a 3D vector r with components
(x, y, z). Initially we assume that the object is transparent to its own radiation; the
effects of internal absorption and scattering will be taken up later.

As with surface emitters, the discussion begins with radiant energyQ or radiant
flux Φ. The volumetric counterpart of radiant exitance is the emitted radiant flux
per unit volume, denoted S and defined by

S =
∂Φ

∂V
, (10.71)

with units of W/m3. There is no generally accepted term for S; we shall call it
simply the emission density.

If the radiation consists of photons of energy E, the emitted photon flux per
unit volume, denoted Sp, is given by

Sp =
S

E
=

1

E
∂Φ

∂V
. (10.72)

We shall refer to Sp as the photon emission density. Units are photons/(sec ·m3)
or equivalently sec−1m−3.

If the volume emitter is a radioactive source, a conventional descriptor is its
activity, which is the total number of radioactive decays per second. SI units of
activity are Becquerels,6 abbreviated Bq, and 1 Bq = 1 sec−1. The number of
decays per second per unit volume of the source is its specific activity. If every
radioactive decay resulted in exactly one photon, specific activity would be identical
to Sp, but that is not usually the case.

Directional and spectral dependence To specify the directional dependence of the
emitted radiation, we need to know the emitted flux per unit volume per unit solid
angle (or, equivalently, emitted radiance per unit path length). We shall denote
this quantity as Ξ and define it by

Ξ =
∂2Φ

∂Ω∂V
. (10.73)

6In the older literature activity was specified in curies, abbreviated Ci and defined as the activity
of one gram of radium-226. The SI system abolished the curie, the only common unit named for
a woman, and replaced it with one named for Henri Becquerel, Marie Curie’s mentor.
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Again, there is no accepted name for this quantity, though a few books use the
obscure and nondescriptive term sterisent (Spiro et al., 1965). We shall call Ξ
simply the source distribution.

Many natural volume emitters are isotropic, emitting radiation uniformly into
4π ster. For such sources, ∂/∂Ω can be replaced by 1/4π wherever it occurs, so

Ξ =
1

4π

∂Φ

∂V
=

S

4π
. (10.74)

If the source emits radiation with a range of wavelengths or energies, spectral
source distributions Ξλ and ΞE can be defined by

Ξλ =
∂3Φ

∂Ω∂V ∂λ
, ΞE =

∂3Φ

∂Ω∂V ∂E
. (10.75)

Photon counterparts of these functions are given by

Ξp,λ =

(
λ

hcm

)
Ξλ , Ξp,E =

1

E
ΞE . (10.76)

10.2.3 Surface reflection and scattering

Objects to be imaged need not generate their own radiation; they can also reflect
or scatter radiation from external sources. Though etymologically distinct,7 the
terms reflection and scattering as used in optics are virtually synonymous, both
referring to a redirection of incident radiation. In practice, scattering is more likely
to be used for interaction of radiation with small particles within a volume, while
reflection is used for surfaces.

The directionality of the redirected radiation is not the crucial determinant of
which word is used. Surface reflection can be either specular or diffuse. Specular
reflection (from Latin speculum, mirror) occurs when the surface is smooth on the
scale of the wavelength of the radiation. In that case a highly directional beam of
radiation remains highly directional, and the angle of reflection (measured from the
surface normal) equals the angle of incidence. If the surface is rough, however, each
element of the surface redirects radiation in a different direction, a phenomenon
that can be called either diffuse reflection or surface scattering.

In fact, both specular and diffuse scattering are just manifestations of diffrac-
tion. As we saw in Sec. 9.5.4, the diffracted radiation from different surface el-
ements on a smooth surface adds coherently to produce a highly directional re-
flected/scattered beam. In this view surface roughness imparts a random phase
shift to the radiation, destroying its directionality.

Throughout this section we shall assume that the reflective object is planar and
lies in the plane z = 0. Small deviations from the plane are easily accommodated
if the surface can be approximated as locally planar. Very convoluted surfaces as
in Fig. 10.2b are more difficult to analyze since one portion of the surface can ob-
struct either the radiation incident on or reflected from another portion. Analysis of
such obstructions is central to computer graphics, image understanding and scene
analysis, but will not be treated further here.

7Reflect comes from Latin flectere, to bend, and scatter comes from Middle English scatere (related
to the Dutch schateren), to burst out laughing.
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Reflectance and BRDF The officially sanctioned measure of strength of reflection
from a surface is the reflectance, defined fundamentally as the ratio of reflected
radiant flux to incident radiant flux (Palmer, 1995). We shall call this quantity
Rtot. For imaging purposes, however, Rtot conveys little information since it refers
to the total flux and not its spatial variation. A more useful quantity is the position-
dependent reflectance R(r), defined as the ratio of radiant exitance to irradiance.
The two definitions coincide for a uniform surface where R(r) is independent of
position, but such objects are rather uninteresting from an imaging perspective.

We can quantify the diffusive properties of a reflective surface by use of the
bidirectional reflectivity distribution function or BRDF, defined as the ratio of
reflected radiance to radiant incidence (Palmer, 1995; Nicodemus, 1963a, b, 1973).
Radiant incidence, with units of W/m2, is the irradiance of a highly collimated beam
travelling in direction ŝ, and hence BRDF specifies the reflected radiance produced
by such a beam.

By its definition, BRDF has units ster−1, suggesting that it can be used in
an integral over solid angle. In fact, BRDF is the kernel in an integral transform
relating reflected radiance to incident radiance. Since BRDF can depend on position
r on the surface as well as the two directions, we write

Lrefl(r, ŝ) =

∫

2π
dΩ′ BRDF(r, ŝ, ŝ′)Linc(r, ŝ

′) cos θ′ , (10.77)

where the angular integral covers the hemisphere of unit vectors ŝ′ directed towards
the surface, and ŝ lies in the opposite hemisphere. The factor of cos θ′ in the
integrand is necessary since BRDF is defined in terms of radiant incidence, which
depends on the actual surface area illuminated by a beam, not the projected area.

For a Lambertian surface, the reflected radiance must be independent of both ŝ

and the details of incident radiance; only the total irradiance matters. Conservation
of energy requires (for a Lambertian) that

Lrefl(r, ŝ) =
1

π
R(r) I(r) , (10.78)

where I(r) is the surface irradiance, R(r)I(r) is thus the radiant exitance, and the
factor 1/π converts exitance to radiance according to (10.63). The irradiance I(r)
is obtained by integrating Linc cos θ over solid angle, so

I(r) =

∫

2π
dΩ′ Linc(r, ŝ

′) cos θ′ . (10.79)

Inserting (10.79) into (10.78) and comparing the result to (10.77) shows that the
BRDF of a Lambertian surface is

BRDFLamb(r, ŝ, ŝ
′) =

1

π
R(r) . (10.80)

A perfect Lambertian surface is one that absorbs no energy, so that R(r) = 1 and
BRDF = 1/π.

Spectral dependence None of the reflectance descriptors used so far takes any ac-
count of the spectral distribution of the radiation. If there is no wavelength shift on
reflection, we can still use (10.77) but with a spectral BRDF defined as the ratio of
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reflected spectral radiance to spectral radiant incidence. This new BRDF(r, ŝ, ŝ′,λ)
still has units of ster−1. The original BRDF(r, ŝ, ŝ′) is not obtained by integrating
BRDF(r, ŝ, ŝ′,λ) over λ. Instead,

BRDF(r, ŝ, ŝ′) =

∫∞
0 Lλ(r, ŝ,λ) dλ∫∞
0 Iλ(r, ŝ′,λ) dλ

, (10.81)

where Iλ(r, ŝ,λ) is the spectral radiant incidence of a beam in direction ŝ.
If inelastic processes such as Raman or Compton scattering can occur (see Sec.

10.2.5), BRDF has to be generalized to a function of r, ŝ, ŝ′, λ and λ′, with units of
ster−1nm−1 if λ is measured in nm. Equation (10.77) then generalizes to

Lλ,refl(r, ŝ,λ) =

∫ ∞

0
dλ′

∫

2π
dΩ′ BRDF(r, ŝ, ŝ′,λ,λ′)Lλ,inc(r, ŝ

′,λ′) cos θ′ .

(10.82)

10.2.4 Transmissive objects

For transmissive objects, we must distinguish between thin objects and thick ones.
A thin object is one in which there is little lateral spread of the radiation as it
passes through the object. If a transmissive object is a slab of thickness L with flat,
parallel faces, it can be placed so that light is incident on it in the plane z = 0 and
emerges from the plane z = L. Position on both the input face and the output face
can be specified by the 2D vector r = (x, y). The object is considered thin if the
exitance M at point r in the exit plane is determined to a good approximation by
the irradiance I at that same 2D point in the entrance plane. By direct analogy
with the reflectance, the transmittance of such an object is a dimensionless quantity
defined by

T (r) =
M(r)

I(r)
. (10.83)

Another common measure of transmission, especially for photographic film, is
the optical density D(r), defined by

D(r) = − log10[T (r)] . (10.84)

With either T or D, we can express the radiant exitance from a thin object as a
simple multiplicative factor times the irradiance. For a thick object, by contrast,
an integral is required, so we write

M(r) =

∫

∞
d2r T (r, r′) I(r′) , (10.85)

where T (r, r′) has SI units of m−2.

Directional properties Transmission, like reflection, can be either diffuse or specular.
A general descriptor of the directional properties of thin transmissive objects is the
bidirectional transmission distribution function or BTDF, defined by analogy
to BRDF as the ratio of transmitted radiance Ltrans to radiant incidence. The
counterpart of (10.77) is

Ltrans(r, ŝ) =

∫

2π
dΩ′ BTDF(r, ŝ, ŝ′)Linc(r, ŝ

′) cos θ′ . (10.86)
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For thick transmissive objects, we can construct two parallel reference planes z = 0
and z = L and specify two coordinates and two angles on each plane. The general
linear input-output relation between these planes is

Ltrans(r, ŝ) =

∫

∞
d2r′

∫

2π
dΩ′ T (r, ŝ; r′, ŝ′)Linc(r

′, ŝ′) , (10.87)

where Linc is measured in the plane z = 0, Ltrans is measured in the plane z = L,
and T (r, ŝ; r′, ŝ′) is a generalized transmittance function.

10.2.5 Cross sections

BRDF and BTDF describe absorption and scattering on a macroscopic scale, but
often it is useful to relate these functions to elementary interaction processes on
a microscopic scale. These processes are conveniently discussed in terms of cross
sections, quantities with dimensions of area that specify the relative strengths of
various physical interactions. As we shall see, cross sections can be defined for both
absorption and scattering.

Scattering Scattering can be either elastic or inelastic. In terms of photons, elas-
tic scattering is when the scattered photon has the same energy as the incident
photon, while inelastic scattering involves a change in energy (usually a loss).

A classical view of elastic scattering is that an incident electric field of fre-
quency ν induces dipole oscillations in the scattering object, and the dipoles then
radiate at the same frequency. When this kind of scattering occurs in an atom or
molecule, it is referred to as Thomson or Rayleigh scattering, and if it occurs in
a larger object, such as a dielectric sphere, it is called Mie scattering.

Another form of elastic scattering is resonant fluorescence where an atom
absorbs a photon of energy hν from the field by a resonant transition and then
emits a photon of the same energy by spontaneous emission.

Inelastic scattering involves a transfer of energy to some other particle or ele-
mentary excitation. In Compton scattering, important for x rays and gamma rays,
the incident photon transfers part of its energy (and momentum) to an electron,
producing a scattered photon of lower energy in a different direction.

Raman scattering is similar to Compton scattering except that the energy is
transferred to a vibrational mode in a molecule or solid. One difference in prac-
tice between the Compton and Raman effects is that the vibrational modes have
relatively low energy and hence have appreciable thermal excitation at room tem-
perature. In addition to imparting energy to the molecule or solid, the photon can
also absorb energy from these thermal vibrations, so the scattered photon can have
either higher or lower energy than the incident photon. Brillouin scattering is
a form of Raman scattering where the energy exchange is with vibrational waves
called acoustic phonons in a solid.

Definitions of cross sections Scattering cross sections are defined for discrete entities
such as atoms, molecules or dielectric spheres. In the radar literature, cross sections
are even defined for airplanes and missiles. In all of these cases, a beam of radiation
incident on the entity yields a certain scattered flux, and the scattering cross section
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σsc is a measure of flux per unit irradiance. Specifically, for elastic processes,

σsc =
Φ

I0
=

scattered flux

normal irradiance
. (10.88)

The term normal irradiance was introduced and explained in Sec. 10.1.2.
For inelastic scattering, we must recognize that the incident and scattered

photons have different energies. We can define the scattering cross section by

σsc =
Φp

I0,p
=

scattered photon flux

normal photon irradiance
, (10.89)

where normal photon irradiance is normal irradiance divided by the incident photon
energy, while scattered photon flux is scattered flux divided by the scattered photon
energy.

A cross section for absorption can be defined similarly, except that it makes
little sense to talk about absorbed flux; after the absorption, there is no flux. Instead
we back up to a basic definition, (10.58), and relate the rate of energy absorption by
the atom (which, by conservation of energy, is also the rate of energy loss from the
field) to the normal irradiance. We saw in (10.46) and (10.47) that the transition
rate is linear in field squared or normal irradiance, so we can write

∂Qatom

∂t
= σabsI0 , (10.90)

where σabs is the absorption cross section. Thus the basic definition is

σabs =
∂Qatom/∂t

I0
=

rate of energy absorption

normal irradiance
. (10.91)

As the term implies, a cross section is dimensionally an area. Since flux is
measured in watts and irradiance in watts per m2, SI units of cross section are m2.
A common unit for cross section is the barn, defined as 10−24m2. The implication
of this designation is that 1 barn is a very large cross section, a statement that is
true in nuclear physics but not in optics. If an optical beam induces a resonant
transition between energy levels in an atom, the cross section is8 λ20/2π, where λ0 is
the resonant wavelength (Loudon, 1973). In the visible region, λ0 is around 500 nm,
so optical absorption cross sections are of order 4 × 10−14m2.

If we think in terms of photons, the cross section has a simple geometric inter-
pretation. The normal photon irradiance is the mean number of incident photons
per second per unit area (where area is measured in a plane normal to the beam
direction), and the mean number of photons per second scattered or absorbed is
given by the average number per second passing through area σ.

8This formula holds when the incident radiation is exactly resonant and the only energy broadening
of the transition results from the natural lifetime. It may be surprising that no dipole moment,
oscillator strength or other quantity related to strength of the interaction between the atom and
the radiation field enters into the cross section. Basically, this comes about since the linewidth
(reciprocal of the lifetime) and the integral of the absorption over the line both scale as oscillator
strength; thus the peak value exactly on resonance is independent of oscillator strength.
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Differential scattering cross section Often we need to know not only the total scat-
tered flux but also its angular distribution. For this purpose we use the differential
scattering cross section ∂σsc/∂Ω, defined as the ratio of scattered photon intensity
to the normal photon irradiance, so

Υp =
∂σsc
∂Ω

I0,p , (10.92)

where the photon intensity Υp is the photon flux per unit solid angle.
For elastic scattering, we can multiply both sides of this equation by the com-

mon photon energy and get

Υ =
∂Φ

∂Ω
=
∂σsc
∂Ω

I0 . (10.93)

This expression does not work for inelastic scattering where I0 refers to a stream of
photons of one energy, and Υ refers to a stream of photons of a different (usually
lower) energy.

It is evident from the definition that the solid angle Ω that appears in ∂σsc/∂Ω
refers to the direction of the scattered radiation, but the differential cross section
can also depend on the incident direction. In fact, unless we take heroic measures,
the scattering centers will have random orientation. Averaged over orientations,
∂σsc/∂Ω can be a function of only the deflection angle θ, defined by

cos θ = ŝ · ŝ′ , (10.94)

where ŝ′ is the direction of the incident radiation and ŝ is the direction of the
scattered radiation. Therefore we can fully specify the directional character of the
scattering by fixing the incident direction, say along the z axis in polar coordinates,
and plotting the radiant intensity as a function of the polar angle θ. We shall denote
this function as [∂σsc/∂Ω](θ).

Differential scattering cross sections often depend strongly on the energy of the
incident radiation. To describe this dependence, we need the differential scattering
cross section per unit energy, ∂2σ/∂Ω∂E, where E here refers to the incident
energy.

10.2.6 Distribution function

Radiometric quantities such as exitance, irradiance and radiant intensity are defined
in two-dimensional terms, but often we need to consider in more detail the three-
dimensional structure of an object being imaged. For example, if an imaging system
is viewing a self-luminous object and the emitted radiation can be scattered or
absorbed within the object, knowledge of the emission density is not sufficient to
compute the image. Regions of the object that contain no emitter can scatter
radiation and act as secondary sources, and radiation from the main source can be
absorbed and not get out of the object. Similarly, if we want to compute the BTDF
or the generalized transmittance of a transmissive object, we must account for the
internal scattering and absorption.

To describe these effects more fully, we can use the phase-space distribution
function (or simply distribution function for short). This function is denoted
w(r, ŝ,E , t) and defined by

w =
1

E
∂3Q

∂V ∂Ω∂E
. (10.95)
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In terms of localized photons, w(r, ŝ, E , t)∆V∆Ω∆E can be interpreted loosely as
the number of photons contained in volume ∆V centered on point r, travelling in
solid angle ∆Ω about direction ŝ, and having energies between E and E + ∆E at
time t. All of the other radiometric quantities can be derived from the distribution
function.

Units of w are m−3(ster)−1(eV)−1 if energies are expressed in eV. If the emis-
sion density and the absorption and scattering properties of the medium are known,
the distribution function can be found (inside and outside the medium) by solving
the Boltzmann transport equation, as discussed in detail in Sec. 10.3.

Fig. 10.5 Geometry for computing the radiance at an arbitrary plane when
the distribution function w(r,%s, E , t) is known. Photons within the shaded
parallelepiped and travelling in the direction %s will pass through the area
element ∆A in time ∆t.

Relation to radiance The distribution function w differs from the other radiometric
quantities defined above in that it is a derivative of the radiant energy rather than
of the radiant flux. In other words, w is not defined on a per-unit-time basis. There
is, however, a simple relation between the distribution function and the flux-based
quantities such as radiance. To deduce this relation, consider Fig. 10.5. A small
area ∆A on an arbitrary plane inside or outside the object forms one face of a
parallelepiped. The sides of the parallelepiped are parallel to ŝ, and the length of
these sides is cm∆t as shown, where cm is the speed of light in the medium (possibly
a function of r) and ∆t is some small time interval. During this interval, all photons
within the parallelepiped and travelling in a small solid angle ∆Ω around direction ŝ

will pass through the area ∆A. By the definition of w, the number of such photons
is w∆V∆Ω∆E . Here ∆V is the volume of the parallelepiped, given by

∆V = cm∆t∆A cos θ = cm∆t∆Aproj , (10.96)

where θ is the angle between ŝ and the surface normal, and we have used (10.62) to
relate area to projected area. The photon flux through the face ∆A in solid angle
∆Ω and energy range ∆E is thus

∆Φp = w∆V∆Ω∆E/∆t = cmw∆Ω∆E∆Aproj . (10.97)

From the definition of spectral photon radiance (per unit energy), we now have

Lp,E(r, ŝ, E , t) =
∆Φp

∆Ω∆E∆Aproj
= cm(r)w(r, ŝ, E , t) . (10.98)
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Thus the distribution function times the photon speed is identically the spectral
photon radiance.

One subtlety here is that radiance, originally defined for a 2D emitter, is now
related to the distribution function, which has a 3D vector r in its argument. The
2D vector r in L specifies a point on a plane passing through the point r in the 3D
volume. The above derivation shows that it is quite irrelevant just how the plane
is chosen; the flux per unit projected area is independent of the orientation of the
surface through which the flux passes. Radiance is a property of the position r in
the volume and the direction of the radiation.

The directional dependence of the radiance is determined entirely by the direc-
tional properties of w(r, ŝ, E , t). If w(r, ŝ, E , t) is independent of ŝ, the radiance on
any plane passing through point r is independent of ŝ also. This observation explains
why Lambertian surfaces are so common; all that is required to obtain a Lambertian
is a physical mechanism that thoroughly randomizes the photon directions. Strong
scattering as in a thick layer of paint or opal glass is one such mechanism. Also, a
blackbody cavity in thermal equilibrium necessarily has w(r, ŝ, E , t) independent of
ŝ, so both of these situations give rise to a radiance that is independent of direc-
tion. For this reason, isotropic and Lambertian are often used synonymously in
radiometric parlance.

10.2.7 Radiance in physical optics and quantum optics

As presented above, the distribution function rests heavily on the corpuscular view
of light; neither the classical vector-wave characteristics nor the quantum properties
of light were considered. For completeness, we now look briefly at the meaning of the
distribution function and radiance in classical scalar wave theory, electromagnetic
theory and quantum electrodynamics.

Walther’s generalized radiance In a pioneering paper, Adriaan Walther (1968) sug-
gested a connection between radiance and the correlation structure of a scalar op-
tical field. His general approach starts with the spatio-temporal autocorrelation
function of the field (see Sec. 9.7.4), performs a temporal Fourier transform to get
a correlation function involving the spatial variables and the temporal frequency ν,
and then uses this quantity to define radiance. We can see the essential features of
the problem, however, by assuming quasimonochromatic light at the outset.

For quasimonochromatic light of wavelength λ, Walther (1968) defined the
generalized spectral radiance at a point r

′ on plane P by

Lν(r
′, ŝ, ν) =

cos θ

λ2

∫

P
d2r′′ 〈u(r′ + 1

2r
′′)u∗(r′ − 1

2r
′′)〉 exp(−ik ŝ · r′′) , (10.99)

where θ is the angle between ŝ and the normal to the plane, k = 2π/λ = 2πν/cm,
u(r) is any suitable scalar field (see Chap. 9) and r

′ and r
′′ are 3D position vectors

(but confined to the plane). If we take plane P to be z = 0, then r
′ = (x′, y′, 0),

r
′′ = (x′′, y′′, 0) and d2r′′ = dx′′dy′′.

As Walther noted, this definition is closely related to the Wigner distribution
function. In fact, the integral in (10.99) is identical to the expectation value of
the Wigner distribution function of the field [cf. (5.54)]. This expectation, called
the stochastic Wigner distribution function, was introduced in Sec. 8.2.5. The
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connection between radiance and the Wigner distribution was explored in detail by
Bastiaans (1978, 1979a, 1979b).

Generalized radiance and wavefronts There are many situations where it is conve-
nient to represent a monochromatic optical field in the form

u(r) = A(r) exp[ikW (r)] , (10.100)

where W (r) is real and A(r) might be slowly varying compared to the exponential
factor. In an imaging context, the function W (r) is called the eikonal (see Sec.
9.8.2), and the surface W (r) = constant is called the wavefront.

Plane waves and spherical waves fit the description in (10.100), as do many of
the coherent point response functions discussed in Sec. 9.6. In Sec. 9.8.2 we derived
the eikonal equation from (10.100) with the assumption that k is very large (or λ
very small). We shall now investigate the generalized radiance with (10.100).

If we assume that the wave is perfectly monochromatic and nonrandom, then
the expectation in (10.99) is not needed, and we have

Lν(r
′, ŝ, ν)

=
cos θ

λ2

∫

P
d2r′′ A(r′+ 1

2r
′′)A∗(r′− 1

2r
′′) exp{ik[W (r′+ 1

2r
′′)−W (r′− 1

2r
′′)− ŝ ·r′′]} .

(10.101)
If W (r) is sufficiently slowly varying in the vicinity of the point r

′, then we can
expand W (r′ ± 1

2r
′′) in a Taylor series about this point and retain only terms up

to second order in r
′′ (i.e., make the Fresnel approximation). The constant and

second-order terms cancel, and we have

W (r′ + 1
2r

′′)−W (r′ − 1
2r

′′) ) r
′′ ·∇W (r′) . (10.102)

If, in addition, k is large, then the exponential factor is rapidly varying, and only
the vicinity of the point r

′′ = 0 contributes significantly to the integral. To a good
approximation, then,

Lν(r
′, ŝ, ν) =

cos θ

λ2
|A(r′)|2

∫

P
d2r′′ exp{ik[r′′ ·∇W (r′)− ŝ · r′′]} . (10.103)

To evaluate this integral, we must relate the 3D vectors in the integrand to
their 2D counterparts needed for the integration. Taking the plane of integration
as z = 0 as usual, we write r as (r′′, 0) = (x′′, y′′, 0). Similarly, if ŝ = (α,β, γ), then
we can define a 2D vector s⊥ as (α,β). Since ŝ is a unit vector, α2 + β2 + γ2 = 1,
but α2 + β2 (= 1 in general, and s⊥ is not a unit vector. Since ∇ = ( ∂

∂x ,
∂
∂y ,

∂
∂z ), we

define a transverse gradient operator by ∇⊥ = ( ∂
∂x ,

∂
∂y ). Finally, we denote W (r)

on the plane z = 0 as W0(r).
With this notation and (3.217), we have

Lν(r
′, ŝ, ν) =

cos θ

λ2
|A(r′)|2

∫

∞
d2r′′ exp{ik[r′′ ·∇⊥W0(r

′)− s⊥ · r′′]}

=
cos θ

λ2
|A(r′)|2 δ

{
k

2π
[∇⊥W0(r

′)− s⊥]

}
, (10.104)
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where the delta function is 2D. Since k = 2π/λ, the scaling property of the delta
function, (2.1201), allows us to write

Lν(r
′, ŝ, ν) = cos θ |A(r′)|2 δ[∇⊥W0(r

′)− s⊥] . (10.105)

The delta function is zero except where ∇⊥W0(r′) = s⊥. If we consider the short-
wavelength limit (k → ∞), however, we know from the eikonal equation (9.348)
that |∇W (r′)| = 1 in free space, so ∇W (r′) is a 3D unit vector and ∇⊥W0(r′) is
its component in plane P. Thus the 2D vector relation ∇⊥W0(r′) = s⊥ implies
the 3D one, ∇W (r′) = ŝ. It is an interesting exercise in delta functions to show
that cos θ δ[∇⊥W0(r′) − s⊥] = δ[∇W (r′) − ŝ], where the latter is the angular delta
function discussed in Sec. 2.4.7.

With this observation, we have, finally,

Lν(r
′, ŝ, ν) = |A(r′)|2 δ[∇W (r′)− ŝ] , (10.106)

so the radiance is zero (in the short-wavelength limit) except in the direction normal
to the wavefront. Note that (10.106) is a pure vector relation, with no reference to
the plane P remaining. This is as it should be, since radiance is defined at a point.
The quantity |A(r′)|2 is then the normal irradiance (a property of the field alone)
and not the irradiance (which depends also on the plane chosen).

Radiant intensity and generalized radiance To further motivate Walther’s definition,
we shall now compute the radiant intensity from the generalized radiance and then
compare the result to what would be obtained from scalar diffraction theory. A
more complete treatment of this problem is given by Marchand and Wolf (1974a).

It follows from (10.60) and (10.62) that the radiant intensity is related to
radiance by

Υ(ŝ) = cos θ

∫

∞
d2r′ L(r′, ŝ) , (10.107)

where θ is the angle between ŝ and the normal to the plane of integration. We
noted earlier that radiant intensity is particularly useful when a source is observed
from distances large compared to its size as in Fig. 10.3. In that case, ŝ is the unit
vector from anywhere on the source to a small, distant detector.

If the radiance is given by (10.99), then the intensity is

Υ(ŝ) =
cos2 θ

λ2

∫

∞
d2r′

∫

∞
d2r′′ 〈u(r′ + 1

2r
′′)u∗(r′ − 1

2r
′′)〉 exp(−ik ŝ · r′′) . (10.108)

The radiant flux on the detector in Fig. 10.3 is Υ(ŝ) times the solid angle subtended
by the detector, or Υ(ŝ)Ad/r2, where Ad is the detector area and r is its distance
from the small source. Thus the detector response will be determined by Υ(ŝ),
which in turn is determined by the stochastic Wigner distribution function of the
field.

The experimental arrangement in Fig. 10.3 was analyzed in Sec. 9.4.7 by
Fraunhofer diffraction theory, and we shall now show how that theory also pre-
dicts (10.108). If we identify 〈|u(r)|2〉 as the irradiance on the detector, then the
radiant flux Υ(ŝ)Ad/r2 is equal to 〈|u(r)|2〉Ad. By use of (9.102) we can write
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Υ(ŝ) = r
2〈|u(r)|2〉

=
cos2 θ

λ2

∫

∞
d2r0

∫

∞
d2r1 〈u(r0)u∗(r1)〉 exp

[
−ik

(r0 − r1) · r
r

]
. (10.109)

A change of variables and the recognition that r/r = ŝ then reproduces (10.108).

Lambertians We know from Sec. 10.2.1 that a Lambertian source has a radiant
intensity that varies as cos θ, but (10.108) has a leading factor of cos2 θ, so the
integral in that equation must somehow provide a factor of 1/ cos θ for a Lambertian.

As noted by Walther (1968), the correlation function of a quasimonochromatic
Lambertian source must have the form

〈u(r + 1
2r

′)u∗(r − 1
2r

′)〉 ∝ sinc(kr′) , (10.110)

whenever r + 1
2r

′ and r − 1
2r

′ both lie within the source region. Since k = 2π/λ,
the sinc function in (10.110) has a width of approximately λ. If the source region
is large compared to λ, so that we need not fret much over limits, then the integral
in (10.108) is approximately

∫

∞
d2r

∫

∞
d2r′ 〈u(r + 1

2r
′)u∗(r − 1

2r
′)〉 exp(−ik ŝ · r′)

) As

∫

∞
d2r′

sin(kr′)

kr′
exp(−ik ŝ · r′) , (10.111)

where As is the area of the source.
Since the integral is over the plane z = 0, we can replace r

′ with its 2D
counterpart r′ and write the scalar product ŝ ·r′ as s⊥ ·r′, where s⊥ is the projection
of ŝ onto the plane. Specifically, if θ and φ are the spherical polar coordinates of ŝ
(with the z axis being the polar axis), then s⊥ = (sin θ cosφ, sin θ sinφ). Hence s⊥
is not a unit vector.

With these notational changes, the integral is the 2D Fourier transform of a
rotationally symmetric function, so it can be written with the aid of (3.248) as

∫

∞
d2r′

sin(kr′)

kr′
exp(−ik ŝ · r′) = 2π

∫ ∞

0
r′dr′

sin(kr′)

kr′
J0(kr

′s⊥) , (10.112)

where s⊥ = |s⊥| = sin θ. A tabulated integral (6.671(7) in Gradshteyn and Ryzhik,
1980) then shows that

∫ ∞

0
r′dr′

sin(kr′)

kr′
J0(kr

′s⊥) =
1

k2
√
1− s2⊥

=
1

k2 cos θ
. (10.113)

Thus the sinc-function correlation of (10.110) indeed implies a Lambertian charac-
ter. Sarfatt (1963) showed that (10.110) is applicable to blackbodies, so blackbodies
are Lambertian (see also Mandel and Wolf, 1976).

In fact, the sinc correlation is equivalent to saying that the radiation is com-
pletely randomized in direction. As an exercise, the reader can start with the mode
expansion (10.12) and assume that the amplitudes are uncorrelated random vari-
ables and that every direction κ̂j is equally probable. If it is assumed further that
the source is observed through a narrowband filter so that only a small range of
values for kj contribute, then the sinc form (10.110) will be obtained.
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Propagation through paraxial optical systems In Sec. 9.7.3 we discussed the Fresnel
propagation of the scalar wave field through optical systems that can be described
in geometrical optics by a 2× 2 or 4× 4 matrix. The key results cited there are the
generalized Fresnel diffraction integral (9.255) and its special case, (9.250), which
holds for systems with rotational symmetry.

Friberg (1991) computed the generalized radiance associated with the output
field as given in (9.250), and the theory can be extended to make use of (9.255). The
result is most neatly stated if we use 2D vectors as the arguments of the radiance
and write

Lν(r, ŝ, ν) = L

([
r
s⊥

])
, (10.114)

where we have dropped the ν argument and subscript, but a spectral radiance is
still implied. With this notation, we can now append subscripts to distinguish the
radiances associated with input and output fields for some optical system described
by an ABCD matrix denoted M. As Friberg showed, these radiances are related
by

Lout

([
r
s⊥

])
= Lin

(
M

[
r
s⊥

])
. (10.115)

Thus the radiance is constant along the ray defined by geometrical optics. The
same conclusion was reached by Walther (1978) by a stationary-phase approxima-
tion, valid asymptotically in the limit of zero wavelength. Friberg’s derivation does
not require this limit (though it does use the Fresnel approximation), and it is valid
for any state of coherence of the fields. Moreover, since it holds for all ν, (10.115)
works for the overall radiance as well as the spectral radiance.

Some mathematical issues As noted in Sec. 5.2.1, the Wigner distribution function
can take on negative values. Radiance, however, is defined in (10.62) in terms of
nonnegative quantities, so the negative values of the generalized radiance are un-
physical.

On the other hand, we know from (5.57) and (5.59) that an integral of the
Wigner distribution function over either variable is nonnegative. In a radiometric
context, the integral of L(r, ŝ) cos θ over angles in a hemisphere is the radiant ex-
itance (or irradiance), and the integral of the same quantity over area is radiant
intensity. Fortunately, both of these integrals can be shown to be nonnegative, so
the negative values of the generalized radiance do not affect the more directly mea-
surable radiometric quantities (Marchand and Wolf, 1974b). In addition, Mandel
and Wolf (1995) demonstrate that the generalized radiance itself turns out to be
nonnegative for quasistationary9 sources, as defined in Sec. 8.2.4. This category
includes thermal sources, diffuse reflectors and many other sources with short-range
correlations.

Just as a bivariate probability density function (PDF) is not determined
uniquely by its two marginals, neither is the radiance fully determined by the exi-
tance and radiant intensity. As a result, several different definitions of generalized
radiance have been proposed. Walther himself noted some conceptual problems
with the Wigner definition and proposed an alternative (Walther, 1973; Baltes et

9The term quasihomogeneous, often used in the literature on radiometry and coherence, is syn-
onymous with quasistationary, at least when spatial stationarity is being discussed.



BOLTZMANN TRANSPORT EQUATION 587

al., 1978; Marchand and Wolf, 1974b). Since all of these definitions lead to the
same expressions for exitance and intensity, and none avoids the negativity problem
inherent in Walther’s original approach, there is little reason to choose an alterna-
tive. Moreover, for quasistationary sources, the various definitions are equivalent
(Mandel and Wolf, 1995).

Radiometry and Maxwell’s equations Emil Wolf and his co-workers have developed
an extensive and rigorous electromagnetic theory of radiative transfer in free space.
(See Wolf, 1976; Wolf, 1978; Zubairy and Wolf, 1977; and Mandel and Wolf, 1995.)
Fante (1981) extended the theory to inhomogeneous dielectric media and discussed
the connection between Maxwell’s equations and classical radiometry. Fante con-
cludes that the generalized radiance, though it can go negative, satisfies the other
postulates of classical radiative transfer if the source is either quasistationary or
highly directional; the fluctuations in index of refraction are small and nearly sta-
tionary, and the longitudinal components of the field (components of E parallel to
k) are small.

Quantum electrodynamics A fully quantum-mechanical definition of radiance can
be given by an extension of ideas introduced in Sec. 10.1.3. A straightforward
generalization of (10.99) is

Lν(r, ŝ, ν) =
cos θ

λ2

∫

∞
d2r′ 〈ê−(r + 1

2r
′) · ê+(r′ − 1

2r
′)〉 exp(−ik ŝ · r′) , (10.116)

where the operators are defined below (10.22) and the angle brackets now denote
a quantum-mechanical expectation. The other radiometric quantities can then be
computed just as in the classical case. E.g., radiant intensity is given by (10.107).

In most imaging applications, neither the classical electromagnetic approach
nor the fully quantum-mechanical approach adds much to the more intuitive concept
of photon, which we shall use throughout the remainder of this chapter.

10.3 BOLTZMANN TRANSPORT EQUATION

In Sec. 10.2 we introduced a menagerie of radiometric quantities, including the dis-
tribution function from which all of the other quantities can be derived. Now we
shall derive an important equation that governs the spatio-temporal behavior of the
distribution function.

This equation is known by various names in the literature. In statistical me-
chanics and neutron-transport theory, it is called the Boltzmann equation, and
we shall adopt that terminology here. In optics, it is often called the radiative
transport equation, or simply, the transport equation. In the quantum-optics lit-
erature, one often encounters the term Fokker-Planck equation, which describes
a wide variety of equations for various distribution functions (Risken, 1984). For
example, if we focus on the distribution of photon directions and energies, then
we need the distribution function that is obtained from w(r, ŝ, E , t) by integrating
out the spatial dependence. The resulting reduced distribution function satisfies a
certain Fokker-Planck equation. In this sense, the Boltzmann equation is the most
general Fokker-Planck equation. Finally, one form of the Liouville equation is the
Boltzmann equation without absorption or scattering terms.
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We shall stick with the name Boltzmann equation in honor of the seminal
contributions of Ludwig Boltzmann (1844–1906) in mechanics, statistics, radiation
and thermodynamics. Boltzmann’s scientific vision had a large impact not only on
these many fields but also on his own mental health, leading eventually to his tragic
suicide; for a fascinating biography, see Cercignani (1998) .

The Boltzmann equation has many applications in imaging. In medical imag-
ing it can be used to analyze the distribution of x rays in chest radiography and
computed tomography, gamma rays in nuclear medicine, or infrared photons in
breast imaging. In optical imaging it can be used to discuss scattering by the at-
mosphere or ocean.

Though a useful tool in all of these areas, the Boltzmann equation is not a com-
plete description since it ignores the wave aspects of the radiation. When applied to
optics, the Boltzmann equation treats light as if it were made up of localized pho-
tons. Interference and diffraction effects are not accounted for, and the photons are
assumed to travel in straight lines in homogeneous media. In this sense, transport
theory and the Boltzmann equation make the same approximations as in geometric
optics.

10.3.1 Derivation of the Boltzmann equation

The Boltzmann equation is an equation for the time derivative of w(r, ŝ, E , t), or w
for short. This derivative has contributions from the physical processes of absorp-
tion, emission, propagation and scattering of radiation, so we have

dw

dt
=

[
∂w

∂t

]

abs

+

[
∂w

∂t

]

em

+

[
∂w

∂t

]

prop

+

[
∂w

∂t

]

sc

, (10.117)

where the subscripts have the obvious meanings. We examine each of these terms
in succession.

Absorption Suppose we have ∆N identical atoms in a small volume ∆V in a
medium where the distribution function is w. If we consider only photons trav-
elling in a small solid angle ∆Ω around direction ŝ and having energies in a narrow
range (E , E + ∆E), then the irradiance on the atoms in a plane normal to ŝ is
I0 = cmEw∆E∆Ω. We assume that the atoms absorb radiation independently of
each other.

From (10.91), the total energy absorbed by this group of atoms in time ∆t
is ∆NσabsI0∆t = cmE∆Nσabsw∆E∆Ω∆t. From the definition of w, (10.95), the
corresponding change in w is given by

∆w = −
cmE∆Nσabsw∆E∆Ω∆t

E∆E∆V∆Ω
= −

∆Ncmσabsw∆t

∆V
. (10.118)

If we divide through by ∆t and let all small quantities tend to zero, we find
[
∂w

∂t

]

abs

= −cmµabsw , (10.119)

where µabs is the absorption coefficient, defined by

µabs = nabsσabs , (10.120)
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and nabs = ∆N/∆V is the number of absorbing atoms per unit volume. Since
nabs has units of reciprocal volume and σabs is an area, µabs has units of reciprocal
length. The interpretation of that length will be seen in Sec. 10.3.3.

If there are several different kinds of atoms or other absorbing particles inter-
spersed in the same volume, then we define

µabs =
∑

j

nabs,j σabs,j , (10.121)

where subscript j identifies a particular species. With this definition, (10.119)
still holds if each species absorbs radiation independently of the others, a valid as-
sumption for x-ray or gamma-ray absorption and for optical absorption by isolated
impurities in solids.

Note that both µabs and cm can depend on wavelength or energy of the radi-
ation, position in the medium and time. In addition, cm depends on direction of
propagation in anisotropic media. (Anisotropic absorption can also occur, but is
rare.)

Emission To determine the effect of emission of radiation on w, we need the quan-
tities Ξp,E and Sp,E defined in Sec. 10.2.2. It follows immediately from these defini-
tions, along with the definition of w in (10.95), that

[
∂w

∂t

]

em

= Ξp,E =
1

4π
Sp,E , (10.122)

where the second form holds for an isotropic emitter. Recall that Sp,E(r, E)∆V∆E
is the total number of photons per second emitted from volume ∆V in energy range
∆E, while Ξp,E(r, ŝ, E)∆V∆E∆Ω is the total number of photons per second emitted
from volume ∆V in energy range ∆E and solid angle ∆Ω about direction ŝ. The
dimensions in (10.122) are consistent if the factor of 1/4π is assigned dimensions of
inverse steradians.

If the emission is monoenergetic at photon energy E0, we have
[
∂w

∂t

]

em

= Ξp δ(E − E0) =
1

4π
Sp δ(E − E0) . (10.123)

Again, the second form is only for an isotropic emitter; it applies, for example, to
a radioactive source.

Propagation in a homogeneous medium In a homogeneous medium where the speed
of light cm is a constant, it is straightforward to compute the propagation term in
the Boltzmann equation. In a short time interval ∆t, photons at point r travelling
in direction ŝ move to point r + cm∆t ŝ, so

w(r, ŝ, E , t) = w(r + cm∆t ŝ, ŝ, E , t+∆t) . (10.124)

Expanding the right-hand side in a Taylor series yields

w(r, ŝ, E , t)= w(r, ŝ, E , t) + cm∆t ŝ ·∇w(r, ŝ, E , t) +∆t

[
∂

∂t
w(r, ŝ, E , t)

]

prop

.

(10.125)
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The time derivative in the last term is the desired [∂w/∂t]prop, so we have

[
∂w

∂t

]

prop

= −cmŝ ·∇w . (10.126)

Propagation in inhomogeneous media The form of the propagation term in (10.126)
assumes that the speed of light in the medium, cm, is a constant, but there are
many situations where we need to consider a variable speed of light. We saw in
Sec. 9.1.4 that cm = c/n, where n is the index of refraction of the medium, and
in general we should write the index as a function of position n(r). We need to
distinguish three distinct kinds of spatial variations of the refractive index: slow
variations, point variations and abrupt changes at interfaces.

The index variations can be considered slow if n(r) is approximately
the same at two points one wavelength apart. Mathematically, the condition is
k|∇n(r)| , 1, where, as usual, k = 2π/λ. Slow variations may be introduced de-
liberately as in gradient-index (GRIN) optics in order to focus the light, or they
may be random as in propagation of light through the atmosphere. The effect of
such variations is that the light follows a complicated curved path, which can be
determined by solving the eikonal equation (9.348) or by including an additional
term in the Boltzmann equation (Ferwerda, 1999).

Point variations are ones for which n(r) is a constant except over a discrete
set of regions which are all small compared to a wavelength. For example, small
(subwavelength) bubbles in glass or dust particles in the atmosphere might be well
modeled as point variations. The effect of point variations is to scatter the radia-
tion, so these effects are best described by a scattering cross section (see Sec. 10.2.5)
rather than in terms of a position-dependent refractive index. Point scatterers can
be treated by including a scattering term in the Boltzmann equation.

An important kind of inhomogeneity occurs at the interface between two dif-
ferent homogeneous media, for example at a glass-air interface on the surface of
a lens. We do not need a separate term in the Boltzmann equation to account
for such interfaces since we can solve the equation separately in each homogeneous
medium and then match boundary conditions to get the full solution. Interfaces
are discussed in more detail in Sec. 10.3.2.

Scattering Scattering has two effects on the distribution function. Consider pho-
tons in a small volume element ∆V travelling in a small solid angle ∆Ω and having
energies in a narrow range (E , E +∆E). The mean number of photons in this group
is w∆Ω∆E∆V. Scattering processes occurring in the volume element can either in-
crease or decrease the number of photons in this group. The decrease comes about
because photons in the group can change direction, energy or both as a result of
scattering. On the other hand, photons not in the group under consideration can
scatter into the angular range ∆Ω and the energy band ∆E.

Scattering out of the group is described by exactly the same mathematics as in
the absorption case; as far as removal from the group is concerned, there is no dis-
tinction between absorption and scattering. Thus we can write at once, by analogy
to (10.119),

[
∂w

∂t

]

out

= −cmµscw , (10.127)
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where µsc, called the scattering coefficient or linear attenuation coefficient for
scattering, is defined by

µsc = nscσsc , (10.128)

and nsc is the number of scatterers per unit volume. As in the absorption term, µsc

can depend on position, time, photon energy and possibly direction ŝ.
Scattering into the group under consideration is more complicated. It has to

involve integrals over energy and direction since photons of any energy or direction
can, in principle, scatter into the group. On the other hand, no integral over po-
sition or time is needed since the scattering processes occur at a definite location
and definite time. Thus we are looking for an integral transform that connects
w(r, ŝ,E , t) to w(r, ŝ′, E ′, t) for all other ŝ′ and E ′.

At this point an important distinction between optics and statistical
mechanics arises. In the latter field, the dominant scattering occurs between
molecules, so the probability of scattering depends on a product of the form
w(r, ŝ,E , t)w(r, ŝ′, E ′, t), which makes the scattering term in the Boltzmann equa-
tion a nonlinear function of w. In optics and radiology, however, the distribution
of scattering centers has nothing to do with w; the scattering characteristics are
determined by electrons, atoms and molecules in the medium, while w relates to
the distribution of photons. Since photons do not scatter off other photons, the
Boltzmann equation is linear.10

The general form of the term that describes scattering into the group of interest
is thus

[
∂

∂t
w(r, ŝ, E , t)

]

in

=

∫

4π
dΩ′

∫ ∞

0
dE ′ K(ŝ, E ; ŝ′, E ′|r, t)w(r, ŝ′, E ′, t) . (10.129)

The kernel K(ŝ,E ; ŝ′,E ′|r, t) can depend on both the initial and final energy and
direction, and it can also depend on position r in the medium and, for time-varying
media, on the time t. Since it is reasonable to assume that the scatterers are
randomly oriented, the dependence on ŝ and ŝ′ is through the scalar product ŝ · ŝ′.

If we think of the scattering centers as mathematical points, then the kernel
K(ŝ, E ; ŝ′, E ′|r, t) should be written as a sum of spatial delta functions with weights
dependent on the other variables. This kind of description, called a point process,
is discussed in detail in Chap. 11. In practice, however, we would rarely have enough
knowledge of the medium to specify the location of these points. Usually the best we
can do is specify an average density of scatterers nsc(r), defined such that nsc(r)∆V
is the mean number of scattering centers in a small (but not infinitesimal) volume
∆V centered on r.

We can assume that each scatterer is described by a differential scattering cross
section per unit energy ∂2σsc/∂Ω∂E as discussed in Sec. 10.2.5. Then, by arguments
similar to those used earlier (really little more than dimensional analysis), we find
that

K(ŝ, E ; ŝ′, E ′|r, t) = cmnsc
∂2σsc
∂Ω∂E

. (10.130)

10Nonlinear optical processes do, of course, occur, but only at high intensities and in carefully
controlled experimental geometries. Unless one sets out to do a nonlinear optical experiment, it
is probably safe to ignore nonlinear effects.
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To simplify the notation, we denote the operator defined by (10.129) and (10.130)
as K and write

[
∂w

∂t

]

scat

=

[
∂w

∂t

]

in

+

[
∂w

∂t

]

out

= Kw − cmµscw . (10.131)

Complete equation Collecting together (10.119), (10.122), (10.126) and (10.131),
we get the following form for the Boltzmann equation:

dw

dt
= −cmµtotw + Ξp,E +Kw − cmŝ ·∇w , (10.132)

where µtot is the total attenuation coefficient, given by

µtot = µsc + µabs = nscσsc + nabsσabs . (10.133)

In (10.132), w, Ξp,E and µtot can depend, in general, on r, E, ŝ and t. Similarly, the
kernel of the operator K can depend on r and t, and it couples w at one ŝ and E,
in general, to w at all other ŝ and E. On the other hand, our derivations considered
the speed of light cm just to be a constant; point variations in refractive index are
included in the scattering term, but we postpone any discussion of slow variations
in index or interfaces between media with different indices.

10.3.2 Steady-state solutions in non-absorbing media

In many problems we are interested in steady-state solutions to the Boltzmann
equation, where dw/dt = 0. For example, in medical applications with either light or
x rays, the transit time of photons across the body is only a few nanoseconds. If the
radiation source is independent of time, or at least slowly varying on the nanosecond
scale, then the distribution function reaches its steady-state value very quickly.
Only when the source or the medium is varying rapidly do we need the full time-
dependent Boltzmann equation. When it is necessary to include the arguments, we
shall denote a steady-state solution by w(r, ŝ, E), without a time argument.

Emission and propagation terms In a medium with no absorption or scattering, the
Boltzmann equation consists of just the source term and the propagation term; the
steady-state equation is then

cmŝ ·∇w = Ξp,E . (10.134)

To solve this equation, we choose a Cartesian coordinate system such that the z axis
is parallel to ŝ. Then ŝ · ∇ = ∂

∂z , and (10.134) reduces to an ordinary differential
equation in z, which integrates to

w(x, y, z, ŝ, E) =
1

cm

∫ z

−∞
dz′ Ξp,E(x, y, z

′, ŝ, E) . (10.135)

No constant of integration is needed if there is no radiation source other than Ξp,E .
Defining 2 = z − z′ and reverting to a general vector notation, we have

w(r, ŝ, E) =
1

cm

∫ ∞

0
d2 Ξp,E(r − ŝ2, ŝ, E) . (10.136)
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The interpretation of this equation is that w(r, ŝ, E) is obtained by integrating the
source distribution along a line parallel to ŝ and passing through the point r. Only
photons originating along this line can contribute to the distribution function with
the specified r and ŝ, and of those originating along the line, only those travelling
in direction ŝ contribute. Only positive values of 2 are needed since photons origi-
nating at a point r + ŝ|2| propagate away from the observation point r.

Equation (10.136) defines an integral transform, known as the x-ray trans-
form,11 which maps a function of r and ŝ to another function of r and ŝ. We shall
denote this operator as X and write (10.136) symbolically as

w = X Ξp,E . (10.137)

Note that we are now including the factor 1/cm in the definition of X, so the
operator is dimensionally a time. This factor will be dropped in Chap. 16 when we
discuss actual x-ray applications of the x-ray transform.

Optical case Many problems in optics involve propagation of radiation in a homo-
geneous, source-free medium with no absorption or scattering. In that case, the
steady-state Boltzmann equation is just

ŝ ·∇w = 0 . (10.138)

This form implies that w is constant in direction ŝ.
Recall from (10.98) that Lp,E(r, ŝ, E , t) = cm(r)w(r, ŝ, E , t). Since cm is a con-

stant in a homogeneous medium, (10.138) shows that Lp,E(r, ŝ, E , t) is also constant
along ŝ. This conclusion is true for all E, and we can drop the t dependence in
steady-state situations, so the total radiance L(r, ŝ) is constant. We can move an
arbitrary distance in direction ŝ and L(r, ŝ) does not change. In the optics liter-
ature, this result is often capsulized by saying that radiance is constant along the
ray.

Constant radiance, however, does not imply constant irradiance on a detector
or other surface. To illustrate this point, we consider a uniform volume radiator in
the form of a disc of diameter D and thickness a (see Fig. 10.6). At a point along
the positive z axis (which is the axis of the disc), the spectral photon radiance in
the z direction is given by (10.98) and (10.136) as

Lp,E(r, ẑ) =
a

4π
S0 , (10.139)

where the factor of a results from the line integral through the disc and S0 is the
value of Sp,E(r) inside the disc. Thus Lp,E(r, ẑ) remains constant as we move along
the z axis, in direction ẑ. If we consider a general direction ŝ, however, Lp,E(r, ŝ)
will be zero unless we can draw a line from point r backwards in the direction −ŝ

to the source. If this line misses the source, the line integral in (10.136) is zero.
Thus, the radiance at point r is zero except for a range of directions ŝ defined by
the angular subtense of the source at the point.

11The name of this transform comes about since it was originally defined in the radiology literature,
but there is nothing in the mathematics specific to x rays. Moreover, some authors in radiology
would call (10.136) the cone-beam transform in general, reserving the term x-ray transform for the
special case where all rays are parallel. For more details on cone-beam tomography, see Chap. 17.



594 ENERGY TRANSPORT AND PHOTONS

Fig. 10.6 Diagram for illustrating the relation between radiance and irradi-
ance.

The spectral photon irradiance is obtained by integrating the corresponding
radiance over angles [cf. (10.79)]:

Ip,E =

∫

2π
dΩ Lp,E(r, ŝ) cos θ . (10.140)

If the point r is on the z axis and z * D, then the source subtends a solid angle of
∆Ω = πD2/4z2, and the radiance is given by (10.139) for all ŝ in this range. Since
cos θ ) 1 with these assumptions, we have

Ip,E =
D2

16z2
aS0 . (10.141)

Now we see the familiar inverse-square law; the irradiance varies inversely as the
square of the distance from the source, so long as that distance is sufficiently large
that all cosine factors can be approximated by unity. The radiance, on the other
hand, is power per unit (projected) area per unit solid angle, so it varies as I /∆Ω,
and both I and ∆Ω vary as 1/z2, leaving the radiance independent of z.

Fig. 10.7 Diagram illustrating the change of radiance at a smooth interface.
(a) Normal incidence. (b) Oblique incidence.

Interfaces From the discussion of Snell’s law in Chap. 9, we know what happens
to light at a smooth interface between media with different refractive indices. In
particular, (9.148) gives an explicit expression for the direction ŝtr of the transmitted
light when the incident direction ŝinc and the indices are known, and (9.149) is a
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similar expression for the reflected direction. Now we need to determine what
happens to the radiance across this interface.

The interface plane is defined as z = 0, and the index of refraction is n for
z < 0 and n′ for z > 0. As in Sec. 9.2.1, the projection of ŝinc onto the x-z plane
makes an angle θx with the z axis and the projection onto the y-z plane makes an
angle θy with the z axis. Similarly, ŝtr is defined by angles θ′x and θ′y. Snell’s law
shows that

n sin θx = n′ sin θ′x ; n sin θy = n′ sin θ′y . (10.142)

As seen in Fig. 10.7, Snell’s law causes the light to diverge at the interface upon
entering a medium with smaller index. Differentiating (10.142), we find

n∆θx cos θx = n′∆θ′x cos θ
′
x ; n∆θy cos θy = n′∆θ′y cos θ

′
y . (10.143)

At normal incidence, all of the cosines are one, so n2∆Ω = n′2∆Ω′, where
∆Ω = ∆θx∆θy and ∆Ω′ = ∆θ′x∆θ

′
y. In this case, the total flux incident on a small

area ∆A on the interface is given by L∆A∆Ω. By conservation of energy, exactly
the same flux must emerge from the area, part of it in the reflected beam and part
in the transmitted beam. Therefore, at normal incidence, we must have

Linc∆Ω = Lrefl∆Ω+ Ltr∆Ω′ . (10.144)

If we denote by R the fraction of the energy reflected and by T ≡ 1−R the fraction
transmitted, then the transmitted radiance must satisfy

1

n′2
Ltr =

T

n2
Linc . (10.145)

For a glass-air interface, R ) 0.04 and T ) 0.96, and it is common to approxi-
mate T as unity. With that approximation, (10.145) shows that L/n2 is conserved
across the interface. To be explicit, L here refers to L(r, n̂), where n̂ is normal to
the interface and r is any point on the interface.

The calculation is similar for oblique incidence, but we must remember that
radiance is defined in terms of projected area. If we consider ŝinc in the x-z plane,
then we can still take cos θy ) cos θ′y ) 1, but we must retain the cosines in the x
direction. Now the projected area is ∆A cos θx and the total flux incident on ∆A is
given by L∆A∆Ω cos θx. The solid angle ∆Ω is still ∆θx∆θy, and a little algebra
shows that (10.145) still holds. Explicitly,

1

n′2
Ltr(r, ŝtr) =

T

n2
Linc(r, ŝinc) , (10.146)

where ŝtr is related to ŝinc and n̂ by (9.148). Up to reflection losses, then, L/n2 is
conserved along a ray direction defined by Snell’s law.

10.3.3 Steady-state solutions in absorbing media

Now we can add absorption to the treatment above. With the absorption term and
a general volume source, the steady-state Boltzmann equation is

ŝ ·∇w =
1

cm
Ξp,E − µabsw . (10.147)
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In a Cartesian coordinate system with the z axis parallel to ŝ, (10.147) is again an
ordinary differential equation in z, as it was in Sec. 10.3.2, but now the coefficients
are not constant. In particular, µabs is a function of z, in general, so we incorporate
an integrating factor by defining

w̃(z) = w(x, y, z, ŝ, E) exp
[∫ z

−∞
dz′′ µabs(x, y, z

′′, E)
]
, (10.148)

where we show all of the arguments on the right for clarity but focus on the z
dependence on the left. Of course, w̃ is still a function of the other variables.

With this substitution, the equation for w̃ is

∂w̃

∂z
=

1

cm
Ξp,E(z) exp

[∫ z

−∞
dz′′ µabs(z

′′)

]
. (10.149)

The solution for w̃ is obtained by simple integration, and then the original w is
given by

w = exp

[
−
∫ z

−∞
dz′′ µabs(z

′′)

]
1

cm

∫ z

−∞
dz′ Ξp,E(z

′) exp

[∫ z′

−∞
dz′′ µabs(z

′′)

]

=
1

cm

∫ z

−∞
dz′ Ξp,E(z

′) exp

[
−
∫ z

z′

dz′′ µabs(z
′′)

]
. (10.150)

In a vector notation analogous to (10.136) (and with all of the variables reinstated),
we can write

w(r, ŝ, E) =
1

cm

∫ ∞

0
d2 Ξp,E(r − ŝ2, ŝ, E) exp

[

−
∫ &

0
d2′ µabs(r − ŝ2′, E)

]

. (10.151)

As in (10.136), w(r, ŝ, E) is still found by integrating the source distribution along
a line parallel to ŝ and passing through the point r, but more distant points along
this line contribute less because of the exponential attenuation factor.

We can now see the interpretation of µabs; if it is independent of r, then
radiation traversing a distance 2 is attenuated by a factor of exp(−µabs2 ), so µabs

is the reciprocal of the distance required for attenuation by 1/e. If µabs depends on
position, however, the attenuation is determined by a line integral of µabs.

The integral in (10.151) defines the attenuated x-ray transform Xµ. Like the
x-ray transform, Xµ maps a function of r and ŝ to another function of r and ŝ. In
terms of this operator, (10.151) is

w = XµΞp,E . (10.152)

As we shall see in Chap. 16, this transform is fundamental to emission-imaging
modalities such as nuclear medicine and fluorescence microscopy in which the object
is the radiation source but there is significant self-absorption of the radiation in the
object.

Point sources In many kinds of imaging, including transmission microscopy and
radiography with x rays, we are interested in the attenuating properties of the
medium rather than the properties of the source. In these cases we can choose the
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form of the source in order to facilitate probing of the attenuation distribution. A
common choice is a very small source, approximating a mathematical point. In
radiography, for example, x rays are generated by focusing a beam of electrons on
a metal target, and it is desirable to make the focal spot as small as possible.

An ideal point source at point r0 is described by

Ξp,E(r, ŝ, E) = A δ(r − r0) . (10.153)

The strength A of the delta function can, in general, depend on energy E, but to
focus on the spatial structure we treat A as a constant and drop the E argument in
µabs.

When we insert (10.153) into (10.151), the result is

w(r, ŝ, E) =
A

cm

∫ ∞

0
d2 δ(r − r0 − ŝ2 ) exp

[

−
∫ &

0
d2′ µabs(r − ŝ2′)

]

. (10.154)

The argument of the delta function vanishes when r− r0 = ŝ2, which requires that

ŝ =
r − r0

|r − r0|
(10.155)

and
2 = |r − r0| . (10.156)

If we substitute (10.156) for 2 in the upper limit of the integral over 2′ in
(10.154), we can write

w(r, ŝ, E) =
A

cm
exp

[

−
∫ |r−r0|

0
d2′ µabs(r − ŝ2′)

]∫ ∞

0
d2 δ(r − r0 − ŝ2 ) . (10.157)

The remaining integral is a representation of an angular delta function, enforcing
the condition (10.155). Before continuing with the discussion of (10.157), we must
derive a new representation of such delta functions.

Digression: Angular delta functions An angular delta function was defined in Sec.
2.4.7 by requiring that

∫

4π
dΩs δ(ŝ− ŝ0) t(ŝ) = t(ŝ0) , (10.158)

where dΩs is the element of solid angle associated with ŝ, and t(ŝ) is a test function
in the angular variables.

With this notation, we shall now show that

|r − r0|2
∫ ∞

0
d2 δ(r − r0 − ŝ2 ) = δ

(
ŝ−

r − r0

|r − r0|

)
. (10.159)

To demonstrate that this equation is correct, we multiply both sides by an arbitrary
angular test function t(ŝ) and integrate over solid angle. The integral on the left-
hand side becomes

|r − r0|2
∫

4π
dΩs t(ŝ)

∫ ∞

0
d2 δ(r − r0 − ŝ2 ) =

∫

4π
dΩs

∫ ∞

0
22 d2 t(ŝ) δ(r − r0 − ŝ2 ) ,

(10.160)
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where we have moved |r− r0|2 inside the integral and replaced it with 22 by use of
(10.156). Now we can define a 3D vector rs = ŝ2 and recognize that d3rs = 22d2 dΩs.
This substitution puts the integral into the correct form for applying the familiar
3D sifting property, and we obtain

|r−r0|2
∫

4π
dΩs t(ŝ)

∫ ∞

0
d2 δ(r−r0−ŝ2 ) =

∫

∞
d3rs t(ŝ) δ(r−r0−rs) = t

(
r − r0

|r − r0|

)
.

(10.161)
Exactly the same result would be obtained with the right-hand side of (10.159) and
the angular sifting property (10.158), so (10.161) proves the validity of (10.159).

Return With (10.159), (10.157) becomes

w(r, ŝ, E) =
A

cm
exp

[

−
∫ |r−r0|

0
d2′ µabs(r − ŝ2′)

]
δ
(
ŝ− r−r0

|r−r0|

)

|r − r0|2
. (10.162)

The inverse-square factor might surprise the reader, but it is consistent with our
previous conclusions. In the absence of attenuation, we showed that the radiance
(and hence w) was constant along the direction ŝ, with no inverse-square factor.
From (10.162), we see only that w is infinite for all distances when ŝ is directed
precisely away from the source, and it is zero for all distances for any other ŝ. The
inverse-square factor is evident only when one performs an angular integral as in
(10.140) to get irradiance. This integral can be performed via (10.158), and the
resulting spectral photon irradiance (measured at point r on a surface normal to
the line of sight to the source) is

Ip,E =
A

|r − r0|2
exp

[

−
∫ |r−r0|

0
d2′ µabs

(
r −

r − r0

|r − r0|
2′
)]

. (10.163)

As expected, the irradiance diminishes as the inverse square of the distance from the
source, and it is further attenuated by an exponential factor involving the integral
of the total attenuation coefficient along the path.

For fixed locations of the source and observation point, (10.163) shows that
the log of the irradiance is linearly related to the line integral of the attenuation
coefficient. We shall have much more to say about this relation in Chap. 16 when
we discuss x-ray imaging.

10.3.4 Scattering effects

Now we consider the full steady-state Boltzmann equation with the scattering term:

ŝ ·∇w =
1

cm
Ξp,E − µtotw +

1

cm
Kw . (10.164)

Because of the scattering term, this equation cannot be solved by simple integration,
but an integral along ŝ is nevertheless useful. It transforms (10.164) to
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w(r, ŝ, E) =
1

cm

∫ ∞

0
d2 Ξp,E(r − ŝ2, ŝ, E) exp

[

−
∫ &

0
d2′ µtot(r − ŝ2′)

]

+
1

cm

∫ ∞

0
d2 [Kw](r − ŝ2, ŝ, E) exp

[

−
∫ &

0
d2′ µtot(r − ŝ2′)

]

. (10.165)

This equation is not a solution since the unknown w still appears in the second
integral. With the operators defined above, (10.165) can be written as

w = XµΞp,E +XµKw , (10.166)

or

[ I−XµK]w = XµΞp,E , (10.167)

where I is the identity operator. Since Xµ and K are integral operators, (10.167) is
really an integral equation for w.

A formal solution of (10.167) is given by the Neumann series (introduced in
App. A and discussed in more detail in Chap. 1). From (A.59) and (10.167), we
can write

w = [ I−XµK]−1
XµΞp,E

= XµΞp,E +XµKXµΞp,E +XµKXµKXµΞp,E + ... . (10.168)

Convergence conditions for this series are discussed in Sec. 1.7.6.
The series in (10.168) can be interpreted as the attenuated x-ray transform of

an effective source distribution Ξeff , i.e.,

w = XµΞeff , (10.169)

where

Ξeff = Ξp,E +KXµΞp,E +KXµKXµΞp,E + ... . (10.170)

Successive terms in this series represent successively more scattering; photons that
have scattered n times contribute the term [KXµ]nΞp,E to Ξeff .

A useful tool for dealing with scatter problems is an expansion in spherical
harmonics, as discussed immediately below. Other useful techniques are treated in
Secs. 10.3.6 and 10.3.7.

10.3.5 Spherical harmonics

Most scatter problems have an important symmetry that we can exploit. For
randomly oriented scatterers, as noted below (10.129), the scatter kernel
K(ŝ, E ; ŝ′, E ′|r, t) depends on ŝ and ŝ′ only through the scalar product ŝ · ŝ′. That
means that the operator K is invariant to arbitrary rotations of the coordinate sys-
tem used to express the directions ŝ and ŝ′. In the language of group theory (see Sec.
6.7), the symmetry group of K is SO(3). As we discussed in Sec. 6.7.7, the spherical
harmonics are basis functions for irreducible representations of SO(3). Since K is
invariant to this group, the scatter kernel will take a simple diagonal form in this
basis.
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Transformation of the distribution function We can expand the angular dependence
of the distribution function in spherical harmonics as

w(r, ŝ, E , t) =
∞∑

&=0

&∑

m=−&

W&m(r, E , t)Y&m(ŝ) , (10.171)

where Y&m(ŝ) means the same thing as Y&m(θ,φ). Note carefully that θ and φ are
the spherical coordinates of ŝ, not r.

From the orthogonality relation (4.37), the coefficients are given by

W&m(r, E , t) =
∫

4π
dΩ Y ∗

&m(ŝ)w(r, ŝ, E , t) . (10.172)

This equation defines a CD operator Y that maps a function of direction ŝ (or
equivalently, polar angles θ and φ) to its spherical-harmonic coefficients, i.e.,

[Yw(r, ŝ, E , t)]&m = W&m(r, E , t) . (10.173)

If we consider the coefficients to be components of an infinite-dimensional vector
W, then we can express this operator relation even more abstractly as

Yw = W , (10.174)

where the boldface is used since we now want to think of w as a vector in a Hilbert
space. Since the spherical harmonics are orthonormal [see (4.37)], the operator Y
is unitary.

Transformation of the source Like the distribution function w, the source distribu-
tion Ξp,E is a function of r, ŝ, E and t, and its angular dependence (if any) can also
be transformed to spherical harmonics. That is, we can define an infinite vector
ξ = YΞp,E , with components ξ&m given by

ξ&m(r, E , t) =
∫

4π
dΩ Y&m(ŝ)Ξp,E(r, ŝ, E , t) . (10.175)

For an isotropic source this vector has just one nonzero element (ξ00), but it is
useful to be more general.

Steady-state Boltzmann equation We now assume steady-state conditions, so that
the source and distribution function are independent of time. To get the steady-
state Boltzmann equation in spherical-harmonic form, we make the substitutions
w = Y−1W and Ξp,E = Y−1ξ in (10.132) and then operate from the left with Y,
obtaining

µtotW−
1

cm
ξ −

1

cm
YKY−1W+Y (ŝ ·∇)Y−1W . (10.176)

This equation, where the unknown is the infinite vector W, is equivalent to the
steady-state Boltzmann equation. To solve it, we need to learn how to compute the
scatter term YKY−1W and the propagation term Y (ŝ · ∇)Y−1W. It will turn
out that the scatter term is diagonal, but the propagation term is complicated. We
shall discuss both terms below.
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Another way of expressing the steady-state Boltzmann equation is by the in-
tegral equation (10.166), and it is useful to transform this equation to spherical-
harmonic form also. By applying Y to (10.166) and inserting Y−1Y judiciously, we
find

W = YXµY
−1

[
ξ +YKY−1W

]
. (10.177)

The scatter term Y (ŝ ·∇)Y−1W from (10.176) appears here as an effective source
term. The overall source is then operated on by the attenuated x-ray transform,
expressed in the spherical-harmonic representation as YXµY

−1. Ways of imple-
menting this operator are discussed below.

Transformation of the scatter operator We look first at the scattering termYKY−1W

which appears in (10.176) and (10.177). In component form, this term is

[
YKY−1W

]
&m

=
∞∑

&′=0

&′∑

m′=−&′

[
YKY−1

]
&m,&′m′

W&′m′ . (10.178)

Now we make use of the fact that the scatter kernel is a function of ŝ · ŝ′, which
is just the cosine of the angle between the incoming and scattered photons. As
we noted in Sec. 4.1.4, Legendre polynomials are particularly useful for expanding
functions of the cosine of an angle, so we expand the scatter kernel as

K(ŝ · ŝ′) =
∞∑

&′′=0

k&′′P&′′(ŝ · ŝ′) =
∞∑

&′′=0

k&′′
4π

22′′ + 1

&′′∑

m′′=−&′′

Y&′′m′′(ŝ)Y ∗
&′′m′′(ŝ′) ,

(10.179)
where we have used the addition theorem (4.38) to get the second form. The
notation here may be somewhat misleading since k&′′ looks like a constant but
can be substantially more complicated. For elastic scattering in an inhomogeneous
medium, k&′′ is a function of r, and for inelastic scattering it is an integral operator
with respect to the energy variable; it transforms a function of E ′ to a function of E.

With this expansion, the matrix elements in (10.178) are given by

[
YKY−1

]
&m,&′m′

=
∞∑

&′′=0

k&′′
4π

22′′ + 1

&′′∑

m′′=−&′′

∫

4π
dΩ Y&′′m′′(ŝ)Y ∗

&m(ŝ)

∫

4π
dΩ′ Y ∗

&′′m′′(ŝ′)Y&′m′(ŝ′)

=
4π

22+ 1
k& δ&&′ δmm′ , (10.180)

where the final form has made use of the orthogonality of the spherical harmonics,
(4.37).

It follows from (10.180) that the spherical harmonics are eigenfunctions of the
angular part of K. (The full operator K still requires an integral over energy if
the scattering is inelastic.) As a practical matter, (10.180) shows that the angular
integral in K can be implemented in the spherical-harmonic domain, where it cor-
responds to multiplication by a diagonal matrix.

For notational ease, we define

D= YKY−1 , (10.181)
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where the letter D suggests that the operator is diagonal with respect to the
spherical-harmonic indices. For inelastic scattering, D is still an operator on the
energy variables, and the matrix elements can depend on both position and energy.

Propagation term Unfortunately, the spherical-harmonic expansion does not diago-
nalize the full Boltzmann equation. In particular, the propagation term in (10.176)
is not diagonalized.

In detail, this term takes the form

[Y (ŝ ·∇)Y−1W]&m(r, E) =
∫

4π
dΩ Y ∗

&m(ŝ) ŝ ·∇w(r, ŝ, E)

=
∑

&′m′

∫

4π
dΩ Y ∗

&m(ŝ)Y&′m′(ŝ) ŝ ·∇W&′m′(r, E) . (10.182)

Since ŝ = (sin θ cosφ, sin θ sinφ, cos θ) in Cartesian coordinates, we can also write

[Y (ŝ ·∇)Y−1W]&m(r, E) =
∑

&′m′

∂W&′m′(r, E)
∂x

∫

4π
dΩ Y ∗

&m(ŝ)Y&′m′(ŝ) sin θ cosφ

+
∑

&′m′

∂W&′m′(r,E)
∂y

∫

4π
dΩ Y ∗

&m(ŝ)Y&′m′(ŝ) sin θ sinφ

+
∑

&′m′

∂W&′m′(r, E)
∂z

∫

4π
dΩ Y ∗

&m(ŝ)Y&′m′(ŝ) cos θ , (10.183)

where we have used (10.171).
This relation can be written more compactly if we define an infinite-dimensional,

vector-valued matrix C, where each element is a 3D vector given by

C&m,&′m′ =

∫

4π
dΩ Y ∗

&m(ŝ)Y&′m′(ŝ) ŝ . (10.184)

In terms of C, (10.182) is

[
∂W

∂t

]

prop

= −cmC ·∇W . (10.185)

Full equation With the forms derived above for the scattering and propagation
terms, the steady-state Boltzmann equation in the spherical-harmonic representa-
tion, (10.176), becomes

C ·∇W =
1

cm
ξ − µtotW−

1

cm
DW , (10.186)

Attenuated x-ray transform Next we look at the operator YXµY
−1 that appears

in (10.177). This operator maps an infinite vector in the spherical-harmonic space
to another such infinite vector, but the mapping is not local.

To see the nonlocal character, consider a general vector V(r) with components
V&m(r). If we let Y−1{V(r)} = v(r, ŝ), then the equation

U = YXµY
−1V (10.187)
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means that
U&m(r) = [YXµv]&m (r)

=
1

cm

∫

4π
dΩ Y ∗

&m(ŝ)

∫ ∞

0
dt v(r − ŝt, ŝ) exp

[
−
∫ t

0
dt′ µtot(r − ŝt′)

]
. (10.188)

From (10.171) and the unitarity of Y, the function v(r, ŝ) is related to the compo-
nents of V(r) by

v(r, ŝ) =
∑

&′m′

V&′m′(r)Y&′m′(ŝ) . (10.189)

By a change of variables,

v(r − ŝt, ŝ) =
∑

&′m′

V&′m′(r− ŝt)Y&′m′(ŝ) , (10.190)

so (10.188) becomes
U&m(r) =

1

cm

∑

&′m′

∫

4π
dΩ Y ∗

&m(ŝ)

∫ ∞

0
dt V&′m′(r− ŝt)Y&′m′(ŝ) exp

[
−
∫ t

0
dt′ µtot(r − ŝt′)

]
.

(10.191)
If we define r

′ = r − ŝt and recognize that t2dt dΩ = d3r′ and t = |r − r
′|, then

U&m(r) =
1

cm

∑

&′m′

∫

∞
d3r′

Y ∗
&m

(
r−r

′

|r−r′|

)
Y&′m′

(
r−r

′

|r−r′|

)

|r − r′|2
V&′m′(r′)

× exp

[

−
∫ |r−r

′|

0
dt′ µtot

(
r − t′

r − r
′

|r − r′|

)]

. (10.192)

This equation shows in detail the action of the operator YXµY
−1.

We can simplify the notation by defining

A= YXµY
−1 . (10.193)

The letter A here indicates that the operator is the spherical-harmonic transform
of the attenuated x-ray transform. From (10.192) we see that A is a combination
of a matrix operator and an integral operator,

[AV]&m (r) =
∑

&′m′

∫

∞
d3r′ A&m,&′m′(r, r′)V&′m′(r′) , (10.194)

with an element/kernel given by

A&m,&′m′(r, r′) =
1

cm

1

|r − r′|2
Y ∗
&m

(
r − r

′

|r − r′|

)
Y&′m′

(
r − r

′

|r − r′|

)

× exp

[

−
∫ |r−r

′|

0
dt′ µtot

(
r − t′

r − r
′

|r − r′|

)]

. (10.195)

If the attenuation coefficient is a constant, independent of position, then the expo-
nential factor becomes exp[−µtot|r − r

′|], and in this case the spatial part of the
operator is shift-invariant.
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Scattered distribution in spherical harmonics We now know the effect of each of the
operators in (10.177), and we can use that equation to construct an equation for
the scattered distribution in spherical harmonics. In the present notation, (10.177)
reads

W = A[ ξ +DW ] , (10.196)

where A is the attenuated x-ray transform in spherical-harmonic space, and the
operator D, which is a diagonal matrix for elastic scattering, is in general the
transform of the scatter operator K.

It is useful to divide W into contributions arising from primary (unscattered)
and scattered radiation:

W = Wpri +Wsc , (10.197)

where

Wpri ≡ Aξ . (10.198)

With this division, (10.196) leads to

Wsc = AD[Aξ +Wsc] , (10.199)

or

[ I−AD]Wsc = ADAξ . (10.200)

The right-hand side of this equation represents an effective source distribution pro-
duced by the attenuated primary photons plus singly scattered photons. Neverthe-
less, because of the operator on the left, the equation still accounts for multiple
scatters of all orders. No approximations have yet been made.

Solution methods A formal solution to (10.200) is

Wsc = [ I−AD]−1
ADAξ , (10.201)

and a numerical solution can, in principle, be implemented with a Neumann series
like (10.168). As discussed below, three practical ways to solve (10.200) are (1) the
weak-scattering approximation, (2) the diffusion approximation (Ishimaru, 1978)
and (3) trickle-down theory (Barrett et al., 1998d).

The weak-scattering limit of (10.201), which amounts to neglecting multiple
scatters, is

Wsc ) ADAξ . (10.202)

This approximation is valid if the dimensions of the scattering medium are all small
compared to 1/µsc, so that a photon will probably escape the medium before scat-
tering more than once.

The diffusion approximation, discussed in Sec. 10.3.6, is the opposite extreme
from the weak-scattering approximation; it is appropriate with strong elastic scat-
tering where the dimensions of the medium are all much greater than 1/µsc.

The trickle-down approach is useful with inelastic scattering, such as Compton
scattering, where the photon loses energy in each scatter event. In that case, the
distribution at one energy is influenced by the distribution at all higher energies
but not that at lower energies. This approach is developed in Sec. 10.3.7.
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10.3.6 Elastic scattering and diffusion

Elastic scattering is the dominant scattering mechanism for optical or infrared pho-
tons propagating in a turbid medium such as breast tissue or sea water. Even
Compton scattering of x rays and gamma rays is approximately elastic if the pho-
ton energy is very small compared to the rest-mass energy of the electron (511 keV).

If many elastic scattering events can occur before a photon is absorbed or es-
capes the medium, the effect of elastic scattering is to thoroughly randomize the
photon directions. In that case only a few low-order terms in the spherical-harmonic
expansion of the distribution function are needed to describe the scattered radia-
tion. As we shall see, the result of this approximation is to reduce the Boltzmann
equation to the diffusion equation.

Since elastic scattering does not change the photon energy, we can consider
each energy group individually, or equivalently just drop the energy argument and
denote the distribution function as w(r, ŝ).

Diffusion approximation As in (10.197), we split the distribution function into con-
tributions arising from primary and scattered radiation,

w(r, ŝ) = wpri(r, ŝ) + wsc(r, ŝ) , (10.203)

where wpri = Y−1Wpri and wsc = Y−1Wsc. The Boltzmann equation now splits
into two equations,

ŝ ·∇wpri =
1

cm
ξp,E − µtot w

pri ; (10.204)

ŝ ·∇wsc = −µtot w
sc +

1

cm
K(wsc + wpri) . (10.205)

These equations are coupled since both wpri and wsc appear in the last term of
(10.205).

The diffusion approximation consists of retaining only the terms corresponding
to 2 = 0 and 2 = 1 in the spherical-harmonic expansion of wsc, thus writing

wsc(r, ŝ) ) W sc
00 (r)Y00(ŝ) +

1∑

m=−1

W sc
1m(r)Y1m(ŝ) . (10.206)

Since Y00(ŝ) is the constant 1/
√
4π, the first term represents an isotropic distribution

of photons. Specifically, with the use of (10.172),

W sc
00 (r)Y00(ŝ) =

1

4π

∫

4π
dΩ′ wsc(r, ŝ′) . (10.207)

From the definition of the distribution function, the integral in (10.207) can be
interpreted as a spatial density of scattered photons, which we denote as usc(r) and
define by

usc(r) ≡
∫

4π
dΩ′ wsc(r, ŝ′) . (10.208)
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To see the meaning of the second term in (10.206), we use (10.172) again to
write

1∑

m=−1

W sc
1m(r)Y1m(ŝ) =

1∑

m=−1

Y1m(ŝ)

∫

4π
dΩ′ Y ∗

1m(ŝ′)wsc(r, ŝ′)

=
3

4π

∫

4π
dΩ′ P1(ŝ · ŝ′)wsc(r, ŝ′) =

3

4π
ŝ ·

∫

4π
dΩ′ ŝ′wsc(r, ŝ′) , (10.209)

where the second line has used the addition theorem (4.38) and the fact that
P1(x) = x. We now define a vector quantity Jsc(r) by

Jsc(r) = cm

∫

4π
dΩ′ ŝ′wsc(r, ŝ′) . (10.210)

If wsc(r, ŝ′) is isotropic, then the integral vanishes since the integrand is an odd
function of ŝ. Thus Jsc(r) measures the magnitude and direction of the residual
anisotropy. Moreover, since cmŝ is the photon velocity, Jsc(r) can be thought of as
the average of the velocity of the photons at point r times their density. Units of
Jsc are photons per second per unit area per unit energy, but for elastic scattering
we ignore the energy dependence (we could integrate over energy) and think of Jsc

as photons per second per unit area. Then Jsc(r) · n̂ gives the rate at which photons
traverse unit area on a surface normal to n̂, so we can think of Jsc as a photon
current density. In terms of the radiometric quantities introduced in Sec. 10.2,
Jsc(r) · n̂ is the spectral photon irradiance.

Putting the pieces together, we see that

wsc(r, ŝ) )
1

4π
usc(r) +

3

4πcm
ŝ · Jsc(r) (10.211)

in the diffusion approximation. This equation involves both usc and Jsc, but these
quantities are not independent. As we shall now show, we can eliminate Jsc and
derive the diffusion equation, a partial differential equation for usc alone. The
derivation given here follows Ishimaru (1978).

If we integrate both sides of (10.205) over ŝ and use (10.208), the result is

∫

4π
dΩ ŝ ·∇wsc = −µtotu

sc +
1

cm

∫

4π
dΩ K(wsc + wpri) . (10.212)

Since ŝ is a constant so far as the ∇ operator is concerned,

ŝ ·∇wsc = ∇ · (ŝwsc) , (10.213)

which, with (10.210), shows that the left-hand side of (10.212) is ∇ · Jsc.
The term in (10.212) involving K also simplifies considerably. Since the kernel

of K for elastic scattering and randomly oriented scatterers is just K(ŝ · ŝ′|r), we
have ∫

4π
dΩ Kwsc =

∫

4π
dΩ

∫

4π
dΩ′ K(ŝ · ŝ′|r)wsc(r, ŝ′)

= cmµsc(r)

∫

4π
dΩ′ wsc(r, ŝ′) = cmµsc(r)u

sc(r) , (10.214)
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where we have used (10.128) and an integral of (10.130) to relate the scatter kernel
to the attenuation coefficient. A similar result holds for the term involving Kwpri,
and (10.212) becomes simply

∇ · Jsc = −cmµtotu
sc + cmµsc(u

sc + upri) . (10.215)

This equation connects the two unknown quantities usc and Jsc. To get another
equation in these unknowns, we substitute (10.211) into (10.205) to yield

1

4π
ŝ ·∇usc +

3

4πcm
ŝ ·∇(ŝ · Jsc)

= −µtot

(
1

4π
usc +

3

4πcm
ŝ · Jsc

)
+

1

cm
K

(
wpri +

1

4π
usc +

3

4πcm
ŝ · Jsc

)
. (10.216)

The goal now is to find simultaneous solutions for usc and Jsc satisfying
(10.215) and (10.216). The general procedure will be to multiply both sides of
(10.216) by ŝ, integrate over ŝ, use all of the symmetries we can, and plug the result
back into (10.215).

The following identities (Dorn, 1997; Ishimaru, 1978) are useful:

(a)
∫
4π dΩ = 4π ;

(b)
∫
4π dΩ ŝ = 0 ;

(c)
∫
4π dΩ ŝ ·A = 0 ;

(d)
∫
4π dΩ ŝ (ŝ ·A) = 4π

3 A ;

(e)
∫
4π dΩ (ŝ ·A) (ŝ ·B) = 4π

3 A ·B ;

(f )
∫
4π dΩ ŝ (ŝ ·A) (ŝ ·B) = 0 .

In these relations, A and B are any vectors that are independent of ŝ, including the
vector operator ∇. The relations with 0 on the right-hand side follow immediately
from symmetry since the integrands are odd functions of ŝ. The others can be
derived by writing out the integrands in component form.

Anisotropic scattering Let us look first at the term K(ŝ ·Jsc) in (10.216). This term
can be simplified by taking advantage of the form of the kernel of K as in (10.214);
by using polar coordinates with ŝ as the polar axis, we can show that

K(ŝ · Jsc) =

∫

4π
dΩ K(ŝ · ŝ′) ŝ′ · Jsc = ŝ · Jsc

∫

4π
dΩ K(ŝ · ŝ′) ŝ · ŝ′ ≡ cm µscγ ŝ · Jsc ,

(10.217)
where γ (often called g in the literature) is defined by

γ ≡
∫
4π dΩ K(ŝ · ŝ′) ŝ · ŝ′∫

4π dΩ K(ŝ · ŝ′)
= 〈cos θsc〉 , (10.218)
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where cos θsc = ŝ · ŝ′ is the cosine of the scattering angle. Note that the denominator
here equals cmµsc as in (10.214).

The integral in the numerator of (10.218) is a measure of the difference in
cross section for forward and backward scattering. In many situations, including
optical scattering from small (subwavelength) particles and Compton scattering of
low-energy x rays, forward and backward scattering are almost equally probable
and γ ≈ 0 For optical scattering in biological tissue, however, it turns out that
γ ≈ 0.8− 0.9, so the scattering is forward-peaked.

Messy manipulations, minimally mentioned As advertised, we now multiply both
sides of (10.216) by ŝ and integrate over ŝ. The result is

1
3∇usc +

3

4πcm

∫

4π
dΩ (ŝ ·∇) (ŝ · Jsc) ŝ

= −
µtot

cm

∫

4π
dΩ ŝusc −

µabs + (1− γ)µsc

cm
Jsc +

1

cm

∫

4π
dΩ ŝK

(
wpri +

1

4π
usc

)
,

(10.219)
where we have used identity (d) above.

Several of the integrals in (10.219) vanish by symmetry. The integral
∫
4π dΩ ŝusc

vanishes by identity (b) since usc is independent of ŝ. Similarly,
∫
4π dΩ ŝKusc van-

ishes, again by identity (b), since Kusc is also independent of ŝ. Finally, the first
integral in (10.218) vanishes by identity (f ) with A = ∇. We are left with

1
3∇usc = −

µabs + (1− γ)µsc

cm
Jsc +

1

cm

∫

4π
dΩ ŝKwpri . (10.220)

Fick’s law and diffusion coefficient In a very strongly scattering medium, the pri-
mary flux may make a small contribution to w, so we can approximate wpri by 0.
In that case, (10.220) expresses Fick’s law (Fick, 1855), which says that the photon
current is proportional to the gradient of the photon density:

Jsc = −D∇usc , (10.221)

where D is the diffusion coefficient,

D ≡
cm

3[µabs + (1− γ)µsc]
≡

cm
3µtr

. (10.222)

The quantity µtr ≡ µabs + (1 − γ)µsc is an effective total attenuation coefficient
for transport problems; it reduces to µtot for isotropic scattering. Though we have
suppressed the arguments in our shorthand notation, D and µtr depend in general
on position r and energy E .

Slightly different forms for D are also found in the literature. If γ ≈ 0, we
see that D ≈ cm/(3µtot), a form often used for scattering from subwavelength
particles. In the context of neutron transport, Weinberg and Wigner (1958) give
D = cmµsc/(3µ2

tot), but diffusion theory depends on the assumption that the parti-
cle undergoes many scatter events before it is absorbed, so µabs , µsc, µsc ≈ µtot,
and cmµsc/(3µ2

tot) ≈ cm/(3µtot).
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More messy manipulations Now we return to (10.220), without approximating the
last term by zero. If we multiply that equation by 3D, take the divergence of both
sides, solve for ∇ · Jsc and substitute the result into (10.215), we find

∇ · (D∇usc)− cmµabsu
sc = −cmµscu

pri +
3

cm
∇ ·

[
D

∫

4π
dΩ ŝKwpri

]
. (10.223)

If µsc and µabs are independent of position, this formula reduces to

(∇2 − κ2)usc = −3µtrµscu
pri +

3

cm
∇ ·

∫

4π
dΩ ŝKwpri , (10.224)

where
κ2 ≡ 3µtrµabs = 3[µabs + (1− γ)µsc]µabs . (10.225)

Discussion The right-hand side of (10.224) is a source term that can be found by
solving the scatter-free Boltzmann equation (10.204), using methods developed in
Sec. 10.3.3. With that source, usc can be found by solving (10.224), Jsc can be
found from (10.220), and the scatter distribution function in the diffusion approxi-
mation follows from (10.211).

An interesting result of this analysis is that κ is
√
3 times the geometric mean

of µabs and µtr. If there is no absorption, κ = 0 in spite of the strong attenuation
due to scattering. In that case the diffusion equation reduces to the Poisson equa-
tion discussed in Sec. 9.1.5. With absorption, the diffusion equation resembles the
Helmholtz equation, but ∇2 + k2 is replaced by ∇2 − κ2, where k and κ are both
real. Thus the Helmholtz equation admits of wave-like solutions proportional to
exp(ik ·r), but the time-independent diffusion equation has only damped solutions.

10.3.7 Inelastic (Compton) scattering

Compton scattering is often the dominant interaction mechanism for low-energy
x rays or gamma rays, especially in media with low atomic number such as air,
water or human tissue. In Compton scattering, the incident photon interacts with
an electron in the medium. The photon changes direction and the electron recoils,
gaining some energy and momentum from the photon in the process.

If we assume that the electron is initially at rest, its energy after the interac-
tion must equal the loss in energy of the photon. By conservation of energy and
momentum, it can be shown (see, for example, Krane, 1983) that the scattered
photon has an energy E given by

1

E
=

1

E0
+

1

mc2
(1− cos θs) , (10.226)

where θs is the scattering angle, E0 is the energy of the incident photon, m is the
rest mass of the electron and c is the speed of light. Thus mc2 is the rest-mass
energy of the electron, numerically equal to 511 keV. For example, 45◦ scattering
of a 140 keV photon gives a scattered photon of energy 129.6 keV, 90◦ scattering
gives 109.9 keV and 180◦ scattering gives 90.4 keV.

Form of the scattering kernel To get an explicit form for the kernel of K with
Compton scattering, we make use of the differential scattering cross section defined
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in Sec. 10.2.5. If the scatterers (electrons in the Compton problem) act indepen-
dently, the scattering kernel must be proportional to the density of scatterers, nsc,
times ∂σsc/∂Ω. Moreover, since it is reasonable to assume that the scatterers are
randomly oriented, the dependence on ŝ and ŝ′ is through the scalar product ŝ · ŝ′,
which is the same as cos θs in (10.226).

The dependence of the kernel on energy must take account of the conservation
rule (10.226) and must therefore involve a delta function. Since (10.226) shows
that the initial energy E ′ is determined if the final energy E and cos θs are specified,
we have the choice of including a delta function of the form δ[E − γ1(E ′, cos θs)],
δ[E ′−γ2(E , cos θs)] or δ[cos θs−γ3(E , E ′)], where the functions γj(·) are determined
by solving (10.226). These delta functions all impose the constraint (10.226), but
they differ from each other by Jacobians. As we shall demonstrate in a moment,
for the first delta function listed, the kernel has the structure,

K(ŝ, E ; ŝ′, E ′|r) = cnsc
∂σsc
∂Ω

δ

{

E −
[
1

E ′
+

1

mc2
(1− cos θs)

]−1
}

. (10.227)

By the usual rule for transforming delta functions, an equivalent form is

K(ŝ,E ; ŝ′,E ′|r) = cnsc
mc2

E2

∂σsc
∂Ω

δ

[
cos θs − 1 +mc2

(
1

E
−

1

E

′)]
. (10.228)

The first form is useful when we wish to use the delta function to perform an integral
over energy, while the second form is used in angular integrals.

To show that (10.227) is correct, consider a collimated beam of monoenergetic
photons for which

w(r, ŝ′, E ′) = A δ(ŝ′ − ŝ0) δ(E ′ − E0) , (10.229)

where A is a constant and δ(ŝ′−ŝ0) is an angular delta function, with sifting property
given by (10.158). As discussed in Chap. 2, the sifting property can be extended
to situations where t(ŝ) is a generalized function rather than a test function or a
good function by noting that a generalized function can be approximated arbitrarily
closely by a sequence of good functions.

With these considerations, (10.227) and (10.229) yield

[Kw] (r, ŝ, E , t) = cAnsc
∂σsc
∂Ω

δ

{

E −
[
1

E0
+

1

mc2
(1 − cos θs0)

]−1
}

, (10.230)

where cos θs0 = ŝ · ŝ0. If ∂σsc/∂Ω depends on energy, it must be evaluated at energy
E0 as a result of the second delta function in (10.229).

The delta function in (10.230) shows that the photons have the correct energy,
depending on the scatter angle θs0 from the original beam direction. The right-
hand side of (10.230) is also consistent with the definitions of ∂σsc/∂Ω and w;
from the definition of w, the incident photon irradiance is cA, so cA∂σsc/∂Ω is
the scattered intensity per scatterer. The total scattered intensity can also be
obtained by integrating Kw over a volume ∆V and over all energies, so it is given
by cANsc∂σsc/∂Ω, where Nsc = nsc∆V is the total number of scatterers in ∆V.
Since this result is just what we would have obtained directly from the definition
of ∂σsc/∂Ω without going through the integrals, it verifies that the form (10.227) is
correct.
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Trickle-down theory Since the photon loses energy on each scattering event, the
distribution function at energy E is influenced by higher energies, E ′ > E, but it is
insensitive to lower energies. If we start with a monoenergetic source, as we usually
do in nuclear medicine, we can solve the Boltzmann equation one energy at a time.

To show the trickle-down of photon energy explicitly, we use discrete energy
bins and define

wk(r, ŝ) = w(r, ŝ, E0 − k∆E) , k = 0, ..., kmax , (10.231)

where ∆E ≡ E0/kmax is the width of the energy bin.
The steady-state Boltzmann equation now takes the form

−cµtotwk + Ξk +∆E
k−1∑

j=0

Kkjwj − c ŝ ·∇wk = 0 , (10.232)

where Ξk(r) is the source distribution for the kth energy bin, and Kkj is the angular
part of the operator K with its kernel sampled at E = E0−k∆E and E ′ = E0− j∆E,
i.e.,

[Kkjwj ] (r, ŝ) =

∫

4π
dΩ′ K(ŝ, E0 − k∆E ; ŝ′, E0 − j∆E|r)wj(r, ŝ

′) . (10.233)

Note that the kernel still depends on position r and that there is still an implicit
delta function in it. The trickle-down aspect of (10.232) is contained in the sum-
mation limits; with discrete energy bins as we have defined them, the requirement
E ′ > E translates to j < k.

Consider a monoenergetic source, in which case

Ξk(r) =
f(r)

4π∆E
δk0 . (10.234)

We have already obtained the solution to (10.232) for k = 0, which is the only bin
with a real source in it. For this bin, the scattering term makes no contribution,
and (10.152) shows that

w0 = XµΞ0 . (10.235)

Next look at k = 1, where there is no true source term but the summation over
j in (10.232) contains the single term K10w0, which acts as an effective source of
photons of energy E0 −∆E. We then have

w1 = XµK10w0 = XµK10XµΞ0 . (10.236)

In the next bin, k = 2, we have two effective source terms since photons of energy
E0 − 2∆E can be generated by scattering photons of energy E0 or E0 −∆E. Thus,

w2 = Xµ [K20w0 +K21w1] . (10.237)

In general, we can compute wk by the iteration rule,

wk = Xµ

k−1∑

j=0

Kkjwj . (10.238)

Note that this series is fundamentally different from the Neumann series used in
(10.168), where each term represents the contribution at all energies from a partic-
ular order of scattering. In (10.238), by contrast, each term gives the contribution
at a particular energy from all orders of scatter.
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10.4 TRANSPORT THEORY AND IMAGING

Transport theory gives us a way of determining the spatial, spectral and angular
distribution of energy in any region of space, but we still need to relate this in-
formation to what we measure in an imaging system. In this section we treat the
imaging system as a continuous-to-discrete (CD) mapping from the source strength,
which is a function of spatial position r, to a set of discrete measurements. The
Boltzmann equation maps the source strength to the distribution function, so we
must now learn how to map the distribution function to the mean detector outputs.

In Sec. 10.4.1, we begin the discussion of the Boltzmann equation in imaging
by deriving a general equation applicable to all linear CD imaging systems in which
diffraction and polarization effects can be ignored. As we shall see, all such systems
measure linear functionals of the distribution function (or, equivalently, of the ra-
diance). Examples of the use of this equation are given in Secs. 10.4.1, where we
discuss pinhole imaging or x rays or gamma rays, and 10.4.3, where we treat optical
imaging of a planar source.

Some practical computational issues that arise when the Boltzmann equation
is applied to imaging are discussed in Secs. 10.4.4 and 10.4.5. We show in Sec. 10.4.4
how the adjoint of the Boltzmann operator can be put to good use. In Sec. 10.4.5
we introduce the important computational technique of Monte Carlo integration
and show how it can be applied to solving the Boltzmann equation.

10.4.1 General imaging equation

To get a general expression for gm, we need only two simple assumptions. First, we
assume that that the detector responds linearly to the energy incident on it. Second,
we assume that the radiation source and the detector are spatially separated so that
we can set up a reference plane P somewhere between them. Then, if we know the
distribution function on this plane we can compute the mean output12 of each
detector element as a linear functional of w. By the Riesz representation theorem,
this functional must have the form,

gm =

∫

P
d2r

∫ ∞

0
dE

∫

2π
dΩ

∫ τ

0
dt dm(r, ŝ, E , t)w(r, ŝ,E , t) , (10.239)

where τ is the exposure time and r is a general 3D vector, but the spatial integral
is over the two variables needed to specify points in the plane. If we take the plane
to be z = 0, then r = (x, y, z) but d2r = dxdy. We shall frequently jump back
and forth between 2D and 3D notation in this section, with the convention that r

and r specify the same point.13 Note that the integral over solid angle in (10.239)
covers only 2π ster since photons on the plane but directed away from the detector
do not contribute to the output. Usually the properties of the detector system will
be independent of time, so we can drop the t argument in dm. If we consider only
steady-state sources, w is independent of t also, so the t-integral simply gives a

12To be specific, the mean output gm considered in this section is the expectation of gm conditioned
on a particular source. The averaging implied by the overbar is thus over measurement noise, not
over object randomness.
13A different convention was used in Chap. 9, where r could refer to the same x-y coordinates in
two different planes.
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factor of τ . The function dm(r, ŝ, E) in (10.239) is called the detector response
function since it specifies how the mth detector element responds to photons at
point r travelling in direction ŝ and having energy E. The detector system must
necessarily include imaging elements such as lenses, collimators or pinholes so that
information about the source distribution can be captured in the image, and the
effect of these elements is contained in dm. Specific examples will be given in Secs.
10.4.2 and 10.4.3.

Imaging equation in the absence of scatter In operator form, (10.239) can be written
as

g = Mw , (10.240)

where M is called the measurement operator. If there is no scatter and the source
is isotropic, then w is given by (10.152), so

g =
1

4π
MXµSp,E . (10.241)

We would like to put this expression into the same form as the standard imaging
equation in Chap. 7, g = Hf, but to do so we must be more precise about what
f means. If we consider emission imaging, where the object to be imaged is the
radiation source, and assume that the emission is isotropic, we might think that f
would be synonymous with Sp,E. Usually, however, we are more interested in the
spatial properties of the source than in the spectral properties, so we want f to
correspond to a function of r alone. On the other hand, the response of a detector
system is inevitably a function of E, so we need the full Sp,E(r,E) to compute g.

In some problems it is valid to assume that the spectral properties of the
source are independent of position. This assumption holds, for example, in nuclear
medicine if a single isotope is used and in fluorescence microscopy with a single
fluorophore. On the other hand, almost any other emissive or reflective optical
source would have a spectrum dependent on position, so a full description of the
source is necessarily a spatio-spectral function.

When the spectral properties of the source are independent of position, we can
write

Sp,E(r, E) = f(r)N(E) , (10.242)

where N(E) is a normalized source spectrum, defined such that

∫ ∞

0
dE N(E) = 1 . (10.243)

With this definition, f(r) is identical to the photon emission density Sp. Units of
f are thus photons/(sec ·m3).

Since Sp,E is linearly related to f(r), it must be possible to find a linear operator
H such that

g = Hf , (10.244)

or, as an integral,

gm =

∫

∞
d3r′ f(r′)hm(r′) = [Hf ]m . (10.245)

The remaining problem is to determine the kernel hm(r′).
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Explicit form of the kernel The overall mapping from f to g is found by substituting
(10.151) and (10.242) into (10.239); the result is

gm =
τ

4πcm

∫

P
d2r

∫ ∞

0
dE N(E)

∫

2π
dΩ dm(r, ŝ, E)

×
∫ ∞

0
d2 f(r − ŝ2 ) exp

[

−
∫ &

0
d2′ µabs(r − ŝ2′)

]

. (10.246)

To identify the kernel hm(r′), we use a manipulation similar to the one that led to
(10.192): we define r

′ = r − ŝ2 and recognize that 2 2d2dΩ = d3r′ and 2 = |r − r
′|.

Then (10.246) becomes

gm=
τ

4πcm

∫

∞
d3r′ f(r′)

∫

P
d2r

dm(r, ŝ)

|r − r′|2
exp

{

−
∫ |r−r

′|

0
d2′ µabs

[
r −

(
r − r

′

|r − r′|

)
2′
]}

,

(10.247)
where

dm(r, ŝ) =

∫ ∞

0
dE dm(r, ŝ, E)N(E) . (10.248)

By comparing (10.245) and (10.247), we see that

hm(r′) =
τ

4πcm

∫

P
d2r

dm(r, ŝ)

|r − r′|2
exp

{

−
∫ |r−r

′|

0
d2′ µabs

[
r −

(
r − r

′

|r − r′|

)
2′
]}

.

(10.249)
The factor 1/|r − r

′|2 arose from the change of variables r
′ = r − ŝ2, but it has

an important physical interpretation; at the source point r, an area element d2r
subtends a solid angle cos θd2r/|r − r

′|2, where θ is the angle between ŝ and the
normal to plane P. As we shall see in more detail in Sec. 10.4.2, the cosine is hidden
in dm(r, ŝ), but the inverse-square factor appears explicitly.

Imaging equation with weak scatter If we substitute the Neumann series (10.168)
into (10.240), we have

g = M[ I−XµK ]−1
XµΞp,E = MXµ

∞∑

j=0

(KXµ)
jΞp,E . (10.250)

If the object being imaged is the source distribution and we assume monoenergetic,
isotropic emission, we can write Ξp,E(r, E) = f(r) δ(E − E0)/4π.

The single-scatter term (j = 1) in (10.250) has the same structure as the no-
scatter term except that MXµ operates on KXµS rather than on S directly. We

can therefore compute the single-scatter kernel h(1)
m (r) in two steps, considering first

the operator KXµ and then MXµ. From (10.129) and (10.151), the first of these
operators has the form,

[KXµS](r, ŝ, E) =
∫

∞
d3r′ K

(
ŝ, E ;

r − r
′

|r − r′|
, E0

∣∣∣ r
)

×
f(r′)

4πc|r − r′|2
exp

{

−
∫ |r−r

′|

0
d2′ µtot

[
r −

(
r − r

′

|r − r′|

)
2 ′
]}

, (10.251)
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where we have used the delta function in Ξp,E(r, E) to good end, and we have also
made a change of variables, r

′ = r − ŝ′2 ′.
The interpretation of (10.251) is straightforward. Photons of energy E0 orig-

inate at r
′ and travel to r, diminishing in number per unit area because of the

inverse-square factor and the attenuation factor. At r, they scatter into direction ŝ

with energy E.
Now we can apply the operator MXµ to propagate these photons to the plane

P where they are measured by the imaging system. The operator Xµ has the effect
of replacing r with r − ŝ2 everywhere, inserting another exponential factor and a
1/c, and integrating over 2. The measurement operator M is implemented by mul-
tiplication by dm and integration over the plane P, energy E and solid angle Ω. The
overall kernel is thus

h(1)
m (r′) = τ

∫

P
d2r

∫ ∞

0
dE

∫

2π
dΩ dm(r, ŝ, E)

∫ ∞

0
d2 K

(
ŝ, E ;

r − ŝ2− r
′

|r − ŝ2− r′|
, E0

∣∣r − ŝ2

)

×
1

4πc2|r − ŝ2− r′|2
exp

{

−
∫ |r−!s&−r

′|

0
d2′µtot

[
r − ŝ2−

(
r − ŝ2− r

′

|r − ŝ2− r′|

)
2′
]}

× exp

[

−
∫ &

0
d2′ µtot(r − ŝ2′)

]

. (10.252)

When integrated against a source distribution, this complicated expression gives
the contribution to gm of photons that have scattered exactly once. If patience
suffices, higher-order terms can be computed similarly.

10.4.2 Pinhole imaging

To illustrate the formalism developed in Sec. 10.4.1, we consider a circular pinhole
imaging system of the kind that might be used to image a gamma-ray source in
nuclear medicine. For short-wavelength radiation such as gamma rays, diffraction
can be neglected and transport theory should give accurate answers.

The imaging geometry is illustrated in Fig. 10.8. We consider a circular pinhole
of diameter Dph in a thin sheet of highly absorbing material such as lead. The origin
of coordinates is taken as the center of the pinhole, and the aperture plane is z = 0.
The detectors are assumed to lie in the plane z = −s, hence parallel to the aperture
plate and a distance s away. Two different choices for the reference plane P will be
discussed below.

Fig. 10.8 Pinhole imager viewing a volume source.
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Source model The source is assumed to be time-independent, monoenergetic and
isotropic, so that

Ξp,E(r, ŝ, E) =
1

4π
f(r) δ(E − E0) . (10.253)

For simplicity, we assume that there is no absorption or scattering in the object
itself, but we may still need to consider the absorption term in the Boltzmann
equation, depending on where the reference plane P is with respect to the aperture
plate.

Detector model The detector system is assumed to be a regular array of square
detector elements of size ε× ε, with the mth element centered at position rm in the
plane z = −s. We assume that ε , Dph and that the detectors respond uniformly
to photons that strike them. That is, the mth detector element measures an integral
of the spectral photon irradiance in the detector plane:

gm = τ

∫ ∞

0
dE η(E)

∫

∞
d2r rect

[
r− rm

ε

]
Ip,E(r, E) , (10.254)

where η(E), called the quantum efficiency of the detector, is the probability that
a photon of energy E incident on the detector will, in fact, be detected.

The spectral photon irradiance is related to the spectral photon radiance by
(10.140), and the radiance is related in turn to the distribution function by a factor
of cm [cf. (10.98)], so

gm = τcm

∫ ∞

0
dE η(E)

∫

∞
d2r rect

[
r− rm

ε

] ∫

2π
dΩ w(r, ŝ) n̂ · ŝ , (10.255)

where n̂ is the unit vector normal to the detector plane (hence parallel to the z
axis).

Reference plane coincident with detector plane Suppose initially that the reference
plane coincides with the detector plane. Comparison of (10.255) with (10.239) shows
immediately that

dm(r, ŝ,E) = τη(E) cm rect

[
r− rm

ε

]
n̂ · ŝ , (10.256)

where r and rm are the 2D vectors in the image plane specifying points r and rm,
respectively. Since the detector plane is z = −s, rm = (rm,−s).

For small detectors such that w(r, ŝ) ) w(rm, ŝ) within the mth detector, we
can write

gm ) ε2τcm

∫ ∞

0
dE η(E)

∫

2π
dΩ w(rm, ŝ,E) n̂ · ŝ . (10.257)

Now we can make use of (10.151) along with the source model (10.253) to obtain

gm =
ε2τη(E0)

4π

∫

2π
dΩ

∫ ∞

0
d2 f(rm − ŝ2 ) n̂ · ŝ exp

[

−
∫ &

0
d2′ µabs(rm − ŝ2 ′)

]

.

(10.258)
As we have done several times in this chapter, we make a change of variables

by defining r = rm − ŝ2, noting that the minus sign reverses the direction of the
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hemisphere of integration. Whenever f(r) = 0 between the reference plane and the
detector, we can extend the integral to the full sphere. In this case the reference
plane is the detector plane, so (10.258) becomes

gm =

∫

∞
d3r f(r)hm(r) , (10.259)

where

hm(r) =
ε2τη(E0)

4π

n̂ · (rm − r)

|rm − r|3
exp

[

−
∫ |rm−r|

0
d2′ µabs

(
rm −

rm − r

|rm − r|
2′
)]

.

(10.260)
Since we are neglecting attenuation in the object, µabs refers only to the aperture. If
we assume that µabs is very high for the aperture material, the exponential factor is
nearly zero if the line rm − ŝ2 passes through the absorbing portion of the aperture
plate. Thus, for a small, point-like detector element, hm(r) is nearly zero except
over a cone-shaped region of object space as shown in Fig. 10.9. If the detector
element cannot be approximated by a point, the cone has fuzzy edges.

Fig. 10.9 Illustration of the detector response function for a pinhole imager.

The weighting within this conical region is just what we would calculate by ele-
mentary geometrical considerations. If we consider a unit-strength isotropic emitter
at point r0, then this source emits, on average, one photon per second or τ photons
during the integration time. The mth detector element subtends a solid angle Ωm

given by

Ωm =
ε2

|rm − r0|2
n̂ ·

rm − r0

|rm − r0|
, (10.261)

where the scalar product is simply the cosine of the angle between the detector
normal and the line of sight from r0 to the detector. If this line of sight passes
through the open part of the pinhole, then the exponential is unity, otherwise it
is near zero. The interpretation of (10.260) is then straightforward: the mean
response of the mth detector to a point equals the mean number of photons emitted
by that point times the fractional solid angle Ωm/4π times the probability η(E0)
that a photon reaching the detector will be detected times a 0–1 function indicating
whether the photon is blocked by the aperture.

Reference plane coincident with aperture plane The reference plane P need not co-
incide with the detector plane; it can be placed anywhere between the source and



618 ENERGY TRANSPORT AND PHOTONS

the detector. If it is immediately after the aperture plane, then dm(r, ŝ, E) is near
zero unless r lies in the open portion of the pinhole, so dm includes a factor of
cyl(r/Dph). The cylinder function is defined in (3.257).

For a point within the pinhole, however, the mth detector element responds
only to radiation directed from this point to the detector. If the detector size ε is
small, as we have assumed above, then this angular selectivity can be described by
a delta function of the form

ε2
cos θ

|rm − r|2
δ

(
ŝ−

rm − r

|rm − r|2

)
= ε2

n̂ · (rm − r)

|rm − r|3
δ

(
ŝ−

rm − r

|rm − r|2

)
, (10.262)

where ε2 cos θ is the area of the detector element projected onto the direction from
point r in the open aperture to the detector. The unit vector here looks much like
the one in (10.261), but there is an essential difference: the vector r here specifies
a point in the aperture plane, not a point in the object, and the weight of the delta
function is independent of location in the object.

The spectral photon radiance at point r in the aperture plane is cmw, and we
recall from Sec. 10.2.1 that radiance is radiant flux per unit solid angle per unit
projected area [see (10.62)]. To get the total photon flux from an area element d2r
into the direction defined by (10.262), we must multiply cmw by the projected area
cos θd2r. With respect to the line from r to rm, both the aperture plane and the
detector plane are tipped by an angle θ, so we need two cosine factors. In addition,
the response is proportional to the quantum efficiency η(E) and the exposure time
τ, so we now have

dm(r, ŝ, E) = ε2cmτη(E)
cos2 θ

|rm − r|2
cyl

(
r

Dph

)
δ

(
ŝ−

rm − r

|rm − r|2

)
. (10.263)

With this response function, the detector output is given by

gm = ε2cmτ

∫ ∞

0
dE η(E)

∫

∞
d2r

cos2 θ

|rm − r|2
cyl

(
r

Dph

)
w

(
r,

rm − r

|rm − r|
, E

)
.

(10.264)
With (10.151) and (10.253), we find

gm =
ε2τη(E0)

4π

∫ ∞

0
d2

∫

∞
d2r

cos2 θ

|rm − r|2
cyl

(
r

Dph

)
f

(
r − 2

rm − r

|rm − r|

)
. (10.265)

There is now no exponential factor since we are assuming that the object is
non-absorbing. Nevertheless, the integral is over the conical region depicted in
Fig. 10.9 since the cylinder function selects out lines in that region. Moreover,
d2r cos θ/|rm − r|2 is the solid angle subtended by d2r from the detector, so we can
replace that expression by dΩ, and (10.258) is then recovered.

Thus the two choices for reference plane lead to the same expression for gm
and hence for hm(r).

10.4.3 Optical imaging of a planar source

In the last section we discussed pinhole imaging of a volume source, such as a
radioisotope distribution in nuclear medicine. In optics, however, we are more often
concerned with surface emitters, and we can use lenses and mirrors rather than
simple apertures such as pinholes. In this section we shall see how the general
imaging equation (10.239) can be applied in this case.
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Source description Consider a source confined to the plane z = 0. If the source is
independent of time and if its spectral and directional properties are independent
of position, then we can express the source distribution as

Ξp,E(r, ŝ,E) = A(ŝ)N(E) f(r) δ(z) , (10.266)

where A(ŝ) describes the angular dependence, f(r) describes the dependence on
position in the plane, and N(E) gives the spectral dependence. We shall generalize
this source description below and allow different points on the object plane to have
different spectral characteristics.

When we discussed isotropic volume sources, the angular factor A(ŝ) was as-
sumed to be a constant [cf. (10.242)], but in the case of Lambertian surface emitters,
it must contain a cosine factor. To see why, let us use (10.136) to compute the dis-
tribution function w in the plane z = 0+, just to the right of the source. Since
cmw is the spectral photon radiance, and since a Lambertian source has constant
radiance in the source plane, this calculation must give w independent of ŝ. With
a general A(ŝ), however, (10.136) shows that

cmw(r, z, ŝ, E) = A(ŝ)N(E)
∫ ∞

0
d2 .f(x− sx2 , y − sy2 ) δ(z − sz2 ) , (10.267)

where ŝ = (sx, sy, sz) and of course f(x, y) = f(r). With the help of (2.28), we find

cmw(r, z, ŝ, E) = A(ŝ)N(E) f
(
x−

sx
sz

z, y −
sy
sz

z

)
1

sz
. (10.268)

In order for this expression to be independent of ŝ as z → 0+, we must have A(ŝ) ∝
sz, which is just the cosine of the angle between ŝ and the z-axis (or surface normal).

To summarize and generalize, a planar Lambertian source lying in the plane
r · n̂ = p is described by the source distribution14

Ξp,E(r, ŝ, E) = (ŝ · n̂)N(E) f(r) δ(p− r · n̂) , (10.269)

provided the spatial and spectral properties are independent. The spectral photon
radiance immediately adjacent to this source is given by

Lp,E(r, ŝ, E , t) = cmw(r, ŝ, E , t) = N(E) f(r) . (10.270)

Imaging with a simple lens Consider a planar Lambertian source lying in the plane
z = −p, a thin lens of focal length f and diameter Dlens in the plane z = 0, and
a discrete detector array in the plane z = q, where p, q and f are related by the
imaging equation p−1 + q−1 = f−1. In terms of paraxial geometrical optics, this
system is described by the ABCD matrix (9.247):

M =

[
m 0
− 1

f
1
m

]
, (10.271)

where m = −p/q.

14The reader should not lose sight of our convention that r and r refer to the same point on the
plane.
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We can use this matrix in (10.115) to determine the radiance in the detector
plane when the input radiance is specified by (10.270). If there were no aperture
on the lens, the result would be N(E)f(mr), but the radiance in the detector plane
cannot be independent of angle if only a finite range of ray angles emerges from
the lens; radiance is constant along a ray only if that ray is not interrupted by an
aperture. If we neglect diffraction from the aperture, we can write

Lp,E(r, ŝ,E , t) = N(E) f(mr) I(r, ŝ) , (z = q) , (10.272)

where I(r, ŝ) is an indicator function that takes on the value 1 when a ray from
point r in the detector plane extended backward along ŝ passes through the lens
aperture, and I(r, ŝ) is 0 otherwise.

Detector response The simplest model for the response of a detector is that it
integrates the irradiance over its active area and is independent of incidence angle
or photon energy. With this model, the output of the jth detector has the form [cf.
(10.257)]

gj ∝
∫ ∞

0
dE N(E)

∫

P
d2r f(mr) rect

[
r− rj

ε

]∫

2π
dΩ I(r, ŝ) n̂ · ŝ , (10.273)

where plane P coincides with the detector.
A common approximation at this stage is to consider a lens with a large F -

number so that q * Dlens and to assume that the pixel size ε is much smaller than
Dlens. Then the factor n̂ · ŝ can be approximated by the cosine of the angle θj from
the jth detector pixel to the center of the lens and removed from the integral. Sim-
ilarly, the indicator function I(r, ŝ) can be approximated by I(rj , ŝ). The integral
over dΩ is then just the solid angle subtended by the lens from the point rj ; within
the approximation we are making, this solid angle is given explicitly by

Ωlens(rj) ≡
∫

2π
dΩ I(rj , ŝ) )

πD2
lens

4R2
j

cos θj =
πD2

lens

4q2
cos3 θj , (10.274)

where Rj ≡ q/ cos θj is the distance from the detector element to the center of the
lens. Thus we have

gj ∝ cos4 θj

∫

P
d2r f(mr) rect

[
r− rj

ε

]
. (10.275)

With the current approximations, therefore, the detector output is the integral of
the magnified object weighted with a factor cos4 θj. (One cosine factor comes from
converting projected area to area on the detector, and the other three factors come
from the solid angle of the lens.) This result shows that the image of a uniform
object (the flood image discussed in Sec. 7.2.1) will not be uniform.

To reiterate the approximations made in deriving (10.275), we assumed that
the system could be described by a simple ABCD matrix and that diffraction from
the lens aperture could be neglected; that the lens F -number was large and that the
detector element was small; that the source was Lambertian with spectral proper-
ties independent of position; and that the detector simply integrated the irradiance
without regard for spectral or angular properties of the radiation. It is straightfor-
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ward to avoid these approximations and to allow more complicated detector models,
but numerical evaluation will usually be required.15

Spatio-spectral sources The source description of (10.266) is seldom valid in optics.
It might hold in fluorescence microscopy with a single fluorophore, but most emissive
or reflective objects have different spectral properties at different locations. For such
objects, a better description for a planar source is

Ξp,E(r, ŝ, E) = A(ŝ) f(r, E) δ(z) . (10.276)

This form allows a general spatio-spectral function but it still assumes that the
angular properties are independent of location and energy; for example, this model
would hold for Lambertian objects.

Without further assumptions, we would now have to consider f(r, E) as a 3D
object function, even though it is only 2D spatially. If we can assume, however,
that the spectral response of the detector is independent of position and angle, then
a simplification results. Suppose the detector response can be written as

dj(r, ŝ, E) ∝ D(E) rect
[
r− rj

ε

]
, (10.277)

where D(E) is a normalized spectral response function. Then retracing the steps
leading up to (10.275) shows that

gj ∝ cos4 θj

∫

P
d2r feff (mr) rect

[
r− rj

ε

]
, (10.278)

where feff (r) is an effective 2D object function defined by

feff (r) =

∫ ∞

0
dE D(E) f(r, E) . (10.279)

Thus the conventional view of the lens system as a 2D-to-2D mapping is preserved
with this detector model. If neither the object nor the detector has spectral prop-
erties independent of position, however, we have to use a 3D-to-2D mapping, with
the third dimension being photon energy or wavelength.

10.4.4 Adjoint methods

So far we have derived a general imaging equation and applied it to pinhole imag-
ing and optical imaging. In these simple problems, we were able to obtain useful
results completely analytically. In more complicated problems, however, numerical
methods will be needed. This section and the next introduce important practical
techniques for the numerical computation of images. In particular, here we show
the role of adjoint operators.

15The reader may well question the consistency of these approximations. Since we used an ABCD
matrix derived in the last chapter under paraxial conditions, should we not have set cos θj to
unity throughout? The answer might be yes for a simple lens, but for well-designed lenses with
low distortion and low field curvature, the ABCD matrix of (10.271) will be valid at much larger
angles than ones for which cos4 θj " 1.
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Linear CD systems To introduce adjoint methods, let us reexamine the discussion in
Sec. 7.2.1 on linear CD systems that can be decomposed into a CC system followed
by a detector array modeled as a linear CD mapping. From (7.227) and (7.229), we
know that the mean image produced by such a system can be described by

g = DaHCCf ≡ Hf , (10.280)

or in component form as

gm =

∫

Sg

dsrd am(rd)

∫

Sf

dqr h(rd, r) f(r) , (10.281)

where am(rd) is the response function of the mth detector. This response function
can, for example, take the value 1 inside the aperture of the detector and 0 outside.
Recall that r is a position vector of dimensionality q in the object domain, and rd
is a position vector of dimensionality s on the detector plane, before sampling by
the discrete detector array.

This last equation can be rewritten in two equivalent forms,

gm = (am,HCCf ) = (H†
CC am, f ) , (10.282)

where am is the Hilbert-space vector corresponding to the function am(rd). The
first scalar product is thus in the continuous data space (variable rd), and the sec-
ond scalar product is in the continuous object space (variable r). In the first version
we map the object through HCC onto the detector response function, and in the
second version we map the detector response function through H

†
CC onto the ob-

ject.
Though the two versions of (10.282) are mathematically equivalent, the second

or adjoint version may have considerable computational benefit in simulation stud-
ies. To implement the first version for a particular object, we have to transform the
object through the operator HCC ; if this operator is represented by a matrix with
K sample points for each dimension, then altogether it is a Ks× Kq matrix, and
for realistic choices of K, this size may be completely impractical. In the second
version, we have a matrix of the same size but need only apply it to a compact
vector, most elements of which are zero. For example, it often suffices to use a
3 × 3 or 5 × 5 array of sampling points across a 2D detector element, and in that
case am(rd) is represented by just 9 or 25 nonzero samples. The operation H

†
CCam

thus becomes feasible, and the result is represented as Kq points in the discretized
object space. Many of these points may be near zero, but the scalar product with
any given object vector requires at most Kq multiplies. In addition, the calculation
of H†

CCam does not have to be repeated for each new object.

In some problems H
†
CCam can be computed completely analytically without

any matrix representations. For example, in diffraction-limited optical systems,
H

†
CCam is determined by the diffraction pattern of the detector aperture, which

can be expressed analytically in terms of Fresnel integrals for Fresnel diffraction
(see Sec. 9.4.6) or as the Fourier transform of am(rd) for Fraunhofer diffraction (see
Sec. 9.4.7).16 When such analytic calculations are possible, discretization is needed

16For incoherent optical systems, one must take the squared modulus of the amplitude of these
diffraction patterns, but the system is nevertheless linear when the input and output are stated in
terms of irradiance.
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only for the final scalar product in the second version of (10.282). The first version,
on the other hand, is nearly useless for analytic purposes since the object is not
expressed analytically in the first place, and even if it was, its analytic diffraction
pattern would almost never be calculable.

Adjoint methods for transport calculations Adjoint methods are also useful for the
Boltzmann equation. To illustrate, consider the steady-state Boltzmann equation
(10.164) for photons, which can be written in simplified form as

v ŝ ·∇w + vµtotw −Kw = Ξ , (10.283)

where v is the speed of light in the medium (denoted cm earlier in this chapter,
but we now need the subscript m for something else) and Ξ is the spectral photon
distribution function of the source (denoted Ξp,E earlier), K is the scattering oper-
ator and w denotes the distribution function w(r, ŝ, E). In general, Ξ depends on
direction ŝ, photon energy E and 3D position r, but it may be valid to assume that
the directional and energy dependences are independent of position, and then the
source description is reduced to a purely spatial function like our familiar f(r) (see
Sec. 10.4.2).

We can also regard the distribution function as a vector in a Hilbert space
of square-integrable functions of 3D position, direction and energy. We shall call
this new Hilbert space distribution space and denote it as D, and the distribution
function itself, regarded as a vector in this space, will be denoted as w. We can
then express the Boltzmann equation in operator form as

Bw = Ξ , (10.284)

where B is an operator given by

B= v ŝ ·∇+ vµtot −K . (10.285)

In the absence of scattering, B is a first-order partial differential operator, and in
free space where both the absorption and scattering vanish, B= v ŝ ·∇. In all cases,
B is a local operator; the scattering operator K mixes angles and energies but maps
a distribution function at one spatial location to another distribution function at
the same location.

If there are no radiation sources outside some volume V , the operator B has
a left inverse, which simply means that the distribution function w in V is fully
determined by the source Ξ within V . Denoting this left inverse as L, we can write

w = LΞ . (10.286)

When the source is describable by its spatial dependence alone, we can go a step
further and write

w = Lf f . (10.287)

Expressions for L and Lf are given for various cases in Sec. 10.3; with scattering it
is difficult to express them analytically except by an infinite series such as (10.168).

Of course, the distribution function w is not an image, but in many cases
a (noise-free) digital image consists of a set of linear functionals of w (see Sec.
10.4.1). Specifically, if the detector is linear and its response function for the mth
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measurement is denoted dm(r, ŝ, E), then the mean of the measurement is given
under steady-state conditions by [cf. (10.239)]

gm = τ

∫

P
d2r

∫ ∞

0
dE

∫

2π
dΩ dm(r, ŝ, E)w(r, ŝ, E) , (10.288)

where τ is the exposure time. As we discussed in Sec. 10.4.1, r is a general 3D vector,
but the spatial integral is over the two variables needed to specify a reference plane
P somewhere between the source and detector. If we denote that plane as z = 0
and assume that only photons with sz ≥ 0 are directed towards the detector, we
can redefine the detector response function in 3D by letting

pm(r, ŝ, E) ≡ τ dm(r, ŝ, E) δ(z) step(sz) , (10.289)

and (10.288) becomes

gm =

∫

V
d3r

∫ ∞

0
dE

∫

4π
dΩ pm(r, ŝ, E)w(r, ŝ, E) . (10.290)

We can regard this expression as a scalar product17:

gm = (pm,w)
D
. (10.291)

We can also define adjoints of the operators B, Land Lf ; note that the first two
of these operators map D to itself, but the third maps L2(Rq) to D. The usefulness
of L† and L

†
f is that we can write, analogously to (10.282),

gm = (L†pm,Ξ)D = (L†
fpm, f )L2(Rq) . (10.292)

The latter form in particular is useful computationally since L
†
f maps the detector

response from a 6D space to a 2D or 3D one. Also, as in the discussion of adjoint
methods above, the difficult calculation L

†
fpm does not need to be repeated for each

f , and in some problems (usually without scatter) it can be performed analytically.

Adjoint Boltzmann equation The adjoint of B plays a rather different role than the
adjoints of L and Lf . It is not used with solutions of the Boltzmann equation itself,
but rather with solutions of the adjoint Boltzmann equation:

B†w̃m = pm . (10.293)

In this equation, w̃m is a function in D but not the photon distribution produced by
the actual source. To understand its significance, let us temporarily ignore scatter
so that B becomes a differential operator,

B= v ŝ ·∇+ vµabs . (10.294)

Adjoints of differential operators were discussed in Sec. 4.1.3. Integration by parts
[cf. (4.16)] shows that

B† = −v ŝ ·∇+ vµabs , (10.295)

17A technical difficulty here is that pm(r, $s, E) is not a square-integrable function because of the
factor δ(z), but this problem can be handled by a limiting argument. The problem would not arise
in the first place if we considered the finite thickness of the detector.
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provided the boundary terms vanish.18 Thus the forward operator B describes
particles moving at speed v in direction ŝ, while the adjoint B† describes particles
moving at the same speed in direction −ŝ. The adjoint distribution function w̃m

can be viewed as the distribution function in the object domain that would result
if the detector response function pm were a source of these backward-travelling
photons.

Without scatter, the ordinary Boltzmann equation is solved by the attenuated
x-ray transform (10.151). For the adjoint Boltzmann equation without scatter,
(10.151) is again the solution provided we replace the actual source Ξ with the
effective source pm and also let ŝ → −ŝ.

When the scatter term is reinstated, the adjoint operator becomes

B† = −v ŝ ·∇+ vµtot −K† . (10.296)

The kernel for the forward scatter operator K is defined by (10.129), and the reader
should be able to construct the kernel for K† by taking a little care with the primes
on the energy variables. Actually solving the adjoint Boltzmann equation with
scatter usually requires Monte Carlo methods, to be discussed in Sec. 10.4.5.

If we have solved the adjoint Boltzmann equation, the mean image can be
computed by combining (10.291) and (10.293) as follows:

gm = (pm,w) =
(
B†w̃m,w

)
= (w̃m,Bw) = (w̃m,Ξ) , (10.297)

where the last step has used (10.284). Thus the scalar product between the adjoint
distribution function and the source is the same as that between the actual physical
distribution function and the detector response, namely the desired mean data gm.

10.4.5 Monte Carlo methods

The term stochastic simulation refers to a broad class of methods in which some
quantity is estimated by performing random experiments, either physically or in
a computer, in such a way that the mean value of the experimental outcome is
the quantity of interest. The quantities being estimated are often naturally inter-
pretable as probabilities, but many applications of stochastic simulation have no
relation to probability except as a computational tool.

Historically, stochastic simulation substantially predates computers. For ex-
ample, the eighteenth-century French polymath Georges-Louis Leclerc De Buffon19

(1707–1768) posed the question: If a needle of length L is thrown randomly onto a
grid of parallel lines of spacing L, what is the probability that the needle will overlap
one of the lines? The answer turns out to be 2/π, and throughout the nineteenth
and twentieth century many people used either experiments with real needles or
simulations as a way of estimating π.

Similarly, W. S. Gosset (“Student”) used numerical experiments to verify his
analytic form for the celebrated t distribution. Lord Rayleigh and A. N. Kolmogorov
showed the connection between random walks and differential equations.

18In fact, the boundary terms vanish if it is possible, as we have assumed, to set up a reference
plane completely separating the source and detector; see Lewis and Miller (1984).
19It was also Buffon who in 1748 suggested what we now call Fresnel lenses. Fresnel’s contribution
was applying them to the construction of lighthouse lenses (Encyclopedia Brittanica, 2001).
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The real power of stochastic simulation, however, emerged with the advent of
computers, and the application that sparked widespread interest was simulation of
neutron transport in connection with the Manhattan Project during World War
II. Key figures in this development included John von Neumann, Edward Teller,
Nicolas Metropolis, Herman Kahn and Stanislaw Ulam.

When one person is singled out as the originator of this method, it is usually
Stanislaw Ulam (1909–1984). Ulam obtained his Ph.D. in 1933 from the Polytechnic
Institute in Lemberg, Poland (now Lvov, Ukraine), where he studied under Banach
and drank coffee at the Scottish Cafe. In 1935 he was invited by von Neumann
to spend a few months at the Institute for Advanced Studies of Princeton, and in
1940 he emigrated permanently to the U.S. In 1943 he received a second invitation
from von Neumann, this time to participate in secret wartime research. It was ap-
parently Ulam who suggested the colorful term Monte Carlo for the general class
of methods that relies on computer-generated random numbers. Von Neumann, on
the other hand, remained skeptical; in 1951 he said, “Anyone who considers arith-
metical methods of producing random digits is, of course, in a state of sin.”

An important practical advantage of Monte Carlo methods in general is that
they are inherently well suited to parallel computation (with either many peasants
throwing needles or many computers computing particle trajectories). Since the
events are independent, the processing speed grows linearly with the number of
processing units.

We shall introduce Monte Carlo methods here with a brief discussion of their
use in performing definite integrals, but then we shall return to their use in transport
calculations and image simulation.

Monte Carlo integration Consider an integral of the form

I =

∫ b

a
dx f(x) p(x) , (10.298)

where p(x) is a PDF on (a, b) [i.e., p(x) ≥ 0 and
∫ b
a dx p(x) = 1]. Thus I is the

expectation of f(x) with respect to this PDF. If we can draw a set of samples {xi}
from p(x), say by one of the methods discussed in Sec. C.7, then we can construct
a random point process u(x) defined by

u(x) =
1

N

N∑

i=1

δ(x− xi) . (10.299)

We can then estimate I by

ÎN ≡
∫ b

a
dx f(x)u(x) =

1

N

N∑

i=1

f(xi) . (10.300)

This viewpoint of a Monte Carlo estimate as a scalar product with a random point
process will prove useful below.

A full treatment of random point processes will be given in Chap. 11, but we
anticipate a few simple results here. As we shall show in (11.81), 〈u(x)〉 = p(x), so
it follows that 〈ÎN 〉 = I. It can also be shown that

lim
N→∞

ÎN = I , Var{ÎN} ∝
1

N
. (10.301)
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Thus the estimate of I is unbiased and consistent.
The basic idea of Monte Carlo integration extends readily to multidimensional

integrals, and in fact the Monte Carlo approach becomes increasingly advantageous
as the dimension increases. If we want to perform a qD integral by sampling on a

regular grid with a total of N function evaluations, then we have N
1

q samples in
each dimension, and the precision of the result (expressed as RMS error) varies as

N− 1

2q . For Monte Carlo estimation, again with N function evaluations, the variance
of the estimate varies as 1/N for all q, so the precision (standard deviation of the
estimate) varies as N− 1

2 . For large q, convergence is therefore much faster with
Monte Carlo.

Monte Carlo transport calculations For simulating imaging systems (as opposed to
bombs), the essence of a Monte Carlo transport calculation is simply to track pho-
tons in a computer from a source towards a detector. The initial photon directions
and the locations and outcomes of all scattering and absorption events are assigned
by calling suitable random-number generators, mimicking the actual physical pro-
cesses. Each photon is tracked until it is either absorbed, reaches the reference plane
P between the source and the detector, or escapes from the system altogether. We
repeat the procedure for a total of N initial photons and denote the number that
make it to P as NP .

At this stage, we know the photon coordinates {ri, ŝi, Ei, i = 1, ..., NP }, and
we can define a random point process analogous to (10.299) by

u(r, ŝ, E) =
1

NP

NP∑

i=1

δ(r − ri) δ(ŝ− ŝi) δ(E − Ei) . (10.302)

The mean measurement gm is defined in (10.291), and it can be estimated by
analogy to (10.300) as

ĝm =
Nem NP

Nτ
(pm,u)

D
=

Nem

N

NP∑

i=1

dm(ri, ŝi,Ei) , (10.303)

where N is the number of initial photons used in the Monte Carlo simulation and
Nem is the mean number of photons emitted during the exposure time when an ac-
tual physical source is used. (In most Monte Carlo problems, Nem can be computed
directly from the original object description and does not have to be estimated.)
The reader may demonstrate her virtuosity with point processes by showing that
this estimator is unbiased, at least to the extent that the Monte Carlo simulation
accurately models the real physical processes that would occur with the physical
source.

Mechanics of Monte Carlo We shall illustrate some of the practical aspects of Monte
Carlo simulation by describing how to simulate the image of a self-luminous object
that both absorbs and scatters its own radiation. This description is motivated by
single-photon emission computed tomography or SPECT (see Chap. 17), but it is
applicable also to fluorescence microscopy, solar imaging and studies of flames, for
example.

The first step is to choose the emission point for the photon. If the ob-
ject is specified in a voxel representation, one approach is to step systematically
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through the voxels and to let each voxel emit a random number of photons, Poisson-
distributed about a mean proportional to the coefficient θn associated with that
voxel. This approach amounts to assuming that the object is the mean of a Poisson
random process (see Sec. 11.3).

When the object is specified geometrically, for example in terms of geometric
shapes, a variant on the rejection method of Sec. C.7.1 can be used. First the ob-
ject is normalized by defining f0(r) ≡ f(r)/max{f(r)}. Then a point r is chosen
randomly from a PDF that is uniform over the object support, and a photon is
assumed to be emitted from this point if f0(r) > t, where t is a uniform random
number on (0, 1). This method amounts to assuming that the object is the mean
of a random process but not necessarily a Poisson one.

Having chosen the emission point, the next step is to launch a photon from
that point in a random direction, taking care to get the proper angular distribution.
For example, if the source is an isotropic emitter, we must ensure that all emission
directions are equally probable. If the direction is specified by the usual polar an-
gles θ and φ, it is not correct to choose values for these angles by calling a uniform
random-number generator. The problem is that the differential solid angle is given
by dΩ = sin θ dθ dφ, so a uniform distribution of θ and φ does not correspond to a
constant number of photons per unit solid angle (or constant radiant intensity). A
simple fix is to choose cos θ from a uniform distribution over (−1, 1), then to com-
pute θ itself by taking an arccosine. Since dΩ = d(cos θ) dφ, this procedure gives a
source radiant intensity independent of direction. On the other hand, if we wish to
simulate a Lambertian surface emitter, we must make the radiant intensity vary as
cos θ, where this angle is measured from the surface normal (see Sec. 10.2.1). We
can do this by drawing cos θ from pr(cos θ) = cos θ, (−1 < cos θ < 1).

The next step is to decide whether the photon escapes from the object with-
out interacting, or instead undergoes an absorption or scattering process at some
point. For this purpose it is necessary to specify the spatial distribution of the
total attenuation coefficient µtot(r, E). We shall use the medical terminology here
and refer to this distribution as the body, thereby distinguishing it from the object,
which refers to the distribution of the radiation source. The simplest assumption is
that µtot(r, E) is the constant µtot, independent of position and energy within the
boundaries of a convex body. Under these assumptions, the probability of the pho-
ton escaping from the body without interacting is given by Pesc = exp [−µtotL(r, ŝ)],
where L(r, ŝ) is the total length of attenuating medium between point r and the de-
tector in direction ŝ. If the attenuation is not uniform, numerical integration must
be used to compute Pesc. To decide whether the particular photon being simulated
escapes, we can draw a random number t1 uniformly from (0, 1); if t1 < Pesc, the
photon escapes.

If the photon does not escape, we must decide where it interacts, whether the
interaction is absorption or scattering, and in the latter case the direction of the
scattered photon. For x rays or gamma rays, we must also decide whether the
scattering is elastic or inelastic (Compton). Each of these decisions can be made by
drawing suitably distributed random numbers. As an example, to decide where the
interaction takes place, we must draw a random number from the density pr(2 ) on
interaction at distance 2 from the source. For uniform attenuation, source location
r and propagation direction ŝ, this density is given by

pr&(2 ) =
µtot exp (−µtot2 )

1− exp [−µtotL(r, ŝ)]
, 0 ≤ 2 ≤ L(r, ŝ) . (10.304)
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The corresponding cumulative distribution function is

F&(2 ) =

∫ &

0
d2′ pr&(2

′) =
1− exp (−µtot2 )

1− exp [−µtotL(r, ŝ)]
. (10.305)

Following the procedure of Sec. C.7.2, we draw a random variable t2 uniformly from
(0, 1) and solve the equation t2 = F&(2 ); the result is

2 = −
1

µtot
ln {1− t2 + t2 exp [−µtotL(r, ŝ)]} . (10.306)

The variables generated this way will follow the PDF of (10.304). A similar proce-
dure can be used for nonuniform attenuation, but the equation t2 = F&(2 ) must be
solved numerically in that case.

To decide whether the interaction after traversing distance 2 is absorption or
scattering, we draw another random number t3 uniformly from (0, 1) and choose
the absorption interaction if t3 < µpe/µtot. If the interaction is an absorption, the
photon is terminated, but if it is scattering it is necessary to choose a direction for
the scattered photon. This step is accomplished by the methods of Sec. C.7.2 along
with knowledge of the differential scattering cross section (see Sec. 10.2.5). For
Compton scattering, the energy of the scattered photon is then determined from
the scattering angle and (10.226). The process is repeated until the photon either
undergoes an absorption or escapes the body.

When the photon escapes the body, we have several options, depending on
how we choose the reference plane separating the source and detector. As we saw
by example in Sec. 10.4.2, we can choose this plane such that the photons do not
encounter any apertures or image-forming elements before reaching the plane, or
we can choose it immediately adjacent to the detector, or anywhere in between. If
there are no obstacles between the source and the reference plane, a photon escaping
the body can be propagated along a straight line until it strikes the reference plane.
If, on the other hand, we choose the reference plane after some image-forming ele-
ments (lenses, pinholes, collimators, ...), then we can continue tracing the photon
through these elements to the plane. In either case, if we know the response func-
tion dm(r, ŝ, E) analytically, we can use the photon coordinates on P to compute
the contribution of that photon to gm. If we do not know the response analytically,
we can continue the Monte Carlo simulation inside the detector. This entire process
is repeated for many photons until the desired accuracy in the estimate is obtained.

Adjoint Monte Carlo and forced detection A major drawback of Monte Carlo meth-
ods as described so far is that many simulated photons—possibly a great major-
ity—will be absorbed either in the body or in apertures outside the body and never
reach the detector. Far more photons must be launched than are eventually incor-
porated in the simulated data set, and there will be large Poisson fluctuations in
the estimated image.

One way around this problem is the adjoint Monte Carlo method. A Monte
Carlo simulation begins with a source distribution and transports it to a detector;
adjoint Monte Carlo begins with a detector response function and transports it back
to all source points; thus it implements the adjoint Boltzmann equation. As a prac-
tical matter, most Monte Carlo simulation codes can be run either in the normal
or adjoint mode; it does not matter to the code what one considers as source and
what as detector.
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Another technique for more efficiently using the simulated photons is forced
detection. Like many other variance-reduction methods described in the literature,
forced detection does not regard photons as physically indivisible but rather assigns
weights to the various fates that can befall them. In straightforward Monte Carlo
as described above, a scattered photon can go in an arbitrary direction, and only a
small portion of these directions will lead it through the image-forming elements to
the detector. In forced detection, the probability that the photon will head towards
the detector and escape the body from that scattering point is computed, and then
this photon is assumed to contribute to the point process on plane P weighted with
this probability. Then, however, the photon is allowed to scatter in an arbitrary
direction, and a similar weighted contribution is computed from the next scattering
site. Thus many more terms appear in the point process, yet the weights keep the
estimate of gm unbiased.

We must note, however, that these methods are intended for accurate and ef-
ficient estimation of mean images, not for generating sample images with realistic
statistical properties. Thus variance-reduction techniques are profitable in estimat-
ing the mean image g, but they should be avoided if the objective is to simulate g
itself.



11
Poisson Statistics

and Photon Counting

This chapter deals with photon-counting detectors, though this term is somewhat
of a misnomer since what such detectors count is actually photoelectrons or pho-
toelectric interactions, not photons. As we discussed in Chap. 10, it is usually not
necessary to consider a quantized description of the radiation field at all. Photon-
counting experiments can often be analyzed successfully with a semiclassical theory
in which matter is treated quantum mechanically but electromagnetic radiation is
assumed to obey Maxwell’s equations.

Nevertheless, as we argued in Sec. 10.1, it can be very useful, both concep-
tually and computationally, to think of electromagnetic radiation as transported
by localized excitations which, for want of a better term, we call photons. This
viewpoint can be justified through quantum electrodynamics if we define localized
(multi-mode) states of the radiation field and localized operators that correspond
to classical concepts like irradiance and energy density. With the background from
Chap. 10, therefore, we adopt the language of photons throughout most of this
chapter, returning to quantum electrodynamics only in the last section.

In photon counting and many other problems, the most important probability
law is the Poisson distribution. The eminent statistician Sir Ronald Fisher made
this point forcefully, saying that, “Among discontinuous distributions, the Poisson
series is of first importance” (Haight, 1967). There are two main reasons for this
preeminence. First, the Poisson distribution arises as an almost inevitable conse-
quence of statistical independence in counting problems. This statement is made
more precise in Sec. 11.1.1 by stating three fundamental postulates from which the
Poisson law can be derived. Somewhat colloquially, these postulates say merely
that we are counting statistically independent events. It is not much of a stretch to
say that if events are independent, the number of them in any fixed time interval
must be a Poisson random variable. Conversely, when a counting distribution is
determined not to be Poisson, we can usually discover a reason why the events are
not independent. One of the authors of this book goes so far as to tell his students
that Poisson is French for independent.

631
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The second reason for the importance of the Poisson distribution is that it
also occurs in spite of statistical dependence when the events in question are rare,
in a sense to be discussed below. This result, sometimes called the law of small
numbers, was derived by S. D. Poisson in 1837 in the course of research on the
probability of judgments in civil and criminal trials.1

When electromagnetic radiation falls on a photon-counting detector, the result-
ing pattern of photoelectric interactions is a spatio-temporal random process. That
is, each sample function depends on both spatial and temporal variables. Which of
these variables we are interested in depends on what the detector measures. In Sec.
11.1, we assume that the detector reports only the total number of accumulated
counts, so the concern is with a single random variable, which under many circum-
stances will turn out to be Poisson distributed. In Sec. 11.2 we discuss discrete
arrays of detectors where the outputs can be considered as random vectors, often
described by the multivariate Poisson law. These two sections provide the basis
for discussing digital imaging systems that are noise-free except for the inevitable
limits imposed by counting statistics. We refer to such systems as photon-limited
or quantum-noise-limited; they are the imaging counterparts of electronic systems
that are limited by shot noise, which arises from the discrete nature of electrons.

Section 11.3 moves on to random point processes, which can be used to de-
scribe detector outputs more fully than by total counts. If the temporal waveform
of the detector output is observed without regard to the spatial coordinates of the
interactions, then the proper description is a temporal random process. On the
other hand, if a detector (such as film) records spatial locations without regard to
time of interaction, then the relevant random process is a spatial one. In both cases,
we shall encounter Poisson random processes if the postulates are satisfied.

Section 11.4 deals with devices such as photomultipliers and image intensifiers
where one input event initiates a random number of output events. Since many
output events arise from each input event, the independence is lost and the output
random process is usually not Poisson. Nevertheless, the principles developed ear-
lier in the chapter for Poisson processes will be put to good use.

In Sec. 11.5 we look at photon counting from a quantum-mechanical perspec-
tive. Here, too, we shall see that the Poisson distribution plays a fundamental role,
and that for certain kinds of light a Poisson distribution of photocounts will be
observed. In fact, in most cases the classical results of the previous sections will
turn out to be valid also in quantum-mechanical terms. We shall see, however, that
there are also some purely quantum-mechanical forms of light for which the classical
results do not hold.

Excellent general references on Poisson statistics include Haight (1967), John-
son and Kotz (1969), Feller (1968) and the Encyclopedia of Statistical Sciences
(Kotz et al., 1982). An exhaustive bibliography up to 1966 is given by Haight
(1967). Discussions relevant to optics and imaging are given in Metz (1969), Bar-
rett and Swindell (1981, 1996), Goodman (1985), Frieden (1983) and Snyder and
Miller (1991). A comprehensive book that covers many of the topics in this chapter
is Saleh (1978).

1While the Poisson probability law is alive and well today, perhaps the more important part of
that research—the stochastic nature of judicial proceedings— is seldom acknowledged.
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11.1 POISSON RANDOM VARIABLES

In this section we focus on individual Poisson random variables, but we make use of
Poisson random processes as a way of elucidating the properties of the variables. We
look first at two basic principles, independence and rarity, from which the Poisson
probability law can be derived.

11.1.1 Poisson and independence

The fundamental postulates that lead to the Poisson probability law are discussed
by many authors, for example Davenport and Root (1958), Barrett and Swindell
(1981, 1996) and Goodman (1985). Our treatment will rely heavily on these previous
works.

We could state the postulates in abstract form, but it will help to develop
mental imagery if we consider a specific experimental setup. Imagine a beam of
radiation falling on a detector and producing photoelectrons. Each photoelectron
will produce an impulse of current in an external circuit, and we assume that the
circuit includes a counter that will tally the total number N of impulses produced
in some time interval of duration T. The probability of N photoelectrons in this
interval is denoted Pr(N in T ). Since each photoelectron causes a current impulse
and thus a change in counter reading, Pr(N in T ) can also be interpreted as the
probability law for the number of current impulses in time T or for the change in
counter reading during time T. In the jargon of nuclear physics and radiology, each
impulse is referred to as a count, and N is then the number of counts in time T.
If we further assume that each photoelectron is produced by absorption of a single
photon (see Sec. 10.1.4), then N is also the number of detected photons. More
generally, of course, N is simply the number of events of an unspecified nature in
time T, and we shall refer to the events here as counts.

Poisson postulates The postulates that will lead to the Poisson law are:

(a) The number of counts in any time interval t1 < t ≤ t2 is statistically
independent of the number in any other nonoverlapping interval t3 < t ≤ t4,
where t1 < t2 ≤ t3 < t4.

(b) If we consider a very small time interval of duration ∆T, the probabil-
ity of a single count in this interval approaches some constant a times ∆T, i.e., up
through terms linear in ∆T,

Pr(1 in ∆T ) = a∆T . (11.1)

(c) The probability of more than one count in a vanishingly small interval ∆T
is zero. Thus, again through terms linear in ∆T,

Pr(1 in ∆T ) + Pr(0 in ∆T ) = 1 . (11.2)

Discussion of the postulates Postulate (a) is a clear statement of the independence
of the counts; no matter how many counts are observed in (t1, t2), that number has
no influence on the number observed in (t3, t4). Postulate (c) also requires that the
counts be independent; if, for example, counts always came in pairs, postulate (c)
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would not hold since then Pr(2 in ∆T ) would be linear in ∆T and Pr(1 in ∆T )
would be zero.

Postulate (b) goes beyond statistical independence. As stated here, it also
requires that Pr(1 in ∆T ) be independent of the absolute time; if the small interval
∆T is defined as T < t ≤ T + ∆T, the probability depends only on ∆T and is
independent of T. As we shall see in more detail in Sec. 11.2, this condition implies
that we are dealing with a stationary random process. A more general form of
postulate (b) would allow Pr(1 in ∆T ) to have the form a(t)∆T , in which case
we would be dealing with a nonstationary random process. Later in this section
we shall consider the case where a(t) is a nonrandom function of time, and in Secs.
11.1.4 and 11.3.7 we shall allow a(t) to be random. For now we treat a as a constant
and hence concentrate on the stationary case. In this case the parameter a is the
average rate of counts. From (11.1) it can be seen that a has dimensions of reciprocal
time since probabilities are dimensionless.

Bernoulli trials and independence Another familiar situation involving independent
events is Bernoulli trials, such as successive flips of a coin. (See Sec. C.6.1 in App.
C.) The common assumption in this problem is that the trials are statistically
independent, but the result is the binomial law, not the Poisson. It is easy to see
that our postulates are not satisfied for Bernoulli trials. If we think of coins being
flipped at a regular pace, say once per second, then the numbers of heads in two
different time intervals are not statistically independent. If we consider a half-second
interval containing a flip, then the number of heads in the next half second is fully
determined; it can only be zero since no flip takes place. Moreover, the number
of heads in N flips (where N is nonrandom) is not statistically independent of the
number of tails. Since the total is N, the number of tails is fully determined by the
number of heads. Thus, even though the individual flips are independent, Bernoulli
trials have a degree of statistical regularity not consistent with the postulates and
not characteristic of Poisson processes.

Derivation of the Poisson law As a first step toward computing Pr(N in T ), we
consider an interval of duration T +∆T and compute the probability of getting no
counts in this interval. This probability is denoted Pr(0 in T +∆T ). The only way
we can find no counts in (0, T +∆T ) is to find none in (0, T ) and also none in the
subsequent interval of (T, T+∆T ). Since the intervals are statistically independent,
we have

Pr(0 in T +∆T ) = Pr(0 in T ) Pr(0 in ∆T ) = Pr(0 in T ) (1− a∆T ) , (11.3)

where the last step makes use of (11.1) and (11.2). Some simple algebra gives

Pr(0 in T +∆T )− Pr(0 in T ) = −a∆T Pr(0 in T ) . (11.4)

Dividing through by ∆T and passing to the limit, we find

d

dT
Pr(0 in T ) = −aPr(0 in T ) . (11.5)

The solution of this elementary differential equation, with the boundary con-
dition Pr(0 in 0) = 1, is

Pr(0 in T ) = exp(−aT ) . (11.6)
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Thus the probability of getting no counts decays exponentially with the length of
the interval.

Next consider the event where exactly one count occurs in T + ∆T. There
are two mutually exclusive ways in which this can happen: one count in the first
interval of T and none in the subsequent interval of ∆T ; or none in T and one in
∆T. The probability of one count in the overall interval is thus

Pr(1 in T +∆T ) = Pr(1 in T ) Pr(0 in ∆T ) + Pr(0 in T ) Pr(1 in ∆T ) . (11.7)

With (11.1), (11.2), (11.6) and a smidgen of algebra, we find

Pr(1 in T +∆T )− Pr(1 in T ) = −a∆T Pr(1 in T ) + a∆T exp(−aT ) . (11.8)

Again dividing through by ∆T and passing to the limit, we find

d

dT
Pr(1 in T ) = −aPr(1 in T ) + a exp(−aT ) . (11.9)

With the boundary condition Pr(1 in 0) = 0, the solution to this differential
equation is

Pr(1 in T ) = aT exp(−aT ) . (11.10)

Now consider the general situation. What is the probability of getting exactly
N counts in T +∆T? Again, there are two ways in which this event can occur: N
counts in T followed by 0 in ∆T ; or N − 1 in T followed by 1 in ∆T. By the third
postulate, there is vanishingly small probability as (∆T → 0) of getting more than
one count in ∆T. Since the two outcomes that lead to N counts in T + ∆T are
mutually exclusive, and since the counts in the two time intervals are statistically
independent, we have

Pr(N in T +∆T ) = Pr(N in T ) Pr(0 in ∆T ) + Pr(N − 1 in T ) Pr(1 in ∆T )

= Pr(N in T ) (1− a∆T ) + Pr(N − 1 in T )a∆T . (11.11)

If we presume Pr(N − 1 in T ) is known, we obtain the recursion relation

d

dT
Pr(N in T ) = −aPr(N in T ) + aPr(N − 1 in T ) . (11.12)

It can be verified by substitution (or induction) that the solution is

Pr(N in T ) =
(aT )N

N !
exp(−aT ) . (11.13)

Equations (11.6) and (11.10) are special cases of (11.13) for N = 0 and 1, respec-
tively. (Note that 0! ≡ 1.)

From the discussion in Sec. C.6.2 of App. C, (11.13) is recognized as the Pois-
son probability law with parameter aT. As shown in the appendix, the parameter
is also the mean of a Poisson distribution. That the mean number of counts in time
T is aT should come as no surprise; from (11.1) a is the mean rate, and mean rate
times total time is the mean total number of counts.
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Time-dependent rate There are many circumstances in which the number of counts
in a small interval (t, t +∆T ) depends on t as well as ∆T. One simple example is
radioactive decay, where the mean rate a(t) decays as 2−t/τ, where τ is the half-life.
A fundamentally different example is an unstable light source, where a(t) fluctuates
randomly. The random case is considered briefly in Sec. 11.1.4 and in more detail
in Sec. 11.3.7, but we investigate here the case where a(t) is a prescribed function
of time, such as an exponential decay. The derivation parallels the one just given
for a = constant, but now a more elaborate notation is required. The probability
of getting N counts in a time interval (t, t+ T ) will be denoted Pr[N in (t, t+ T )].

If a(t) is a nonrandom function of time, (11.3) becomes

Pr[0 in (t, t+ T +∆T )] = Pr[0 in (t, t+ T )] Pr[0 in (t+ T, t+ T +∆T )]

= Pr[0 in (t, t+ T )] [1− a(t+ T )∆T ] . (11.14)

Thus the differential equation (11.5) becomes

d

dT
Pr[0 in (t, t+ T )] = −a(t+ T ) Pr[0 in (t, t+ T )] , (11.15)

with the solution

Pr[0 in (t, t+ T )] = exp

[

−
∫ t+T

t
dt′ a(t′)

]

. (11.16)

To verify that (11.16) solves (11.15), one uses Leibniz’ rule, according to which

d

dT

∫ t+T

t
dt′ a(t′) = a(t+ T ) . (11.17)

Equation (11.16) differs from (11.6) in that the product of the mean rate and
the elapsed time has been replaced by the time-integral of the rate. If a(t) is
constant, (11.6) is recovered easily. The remainder of the derivation follows the
derivation for the stationary case (a = constant) with similar modifications. The
final result is

Pr[N in (t, t+ T )] =
N

N

N !
exp(−N) , (11.18)

where now N is a function of time given by

N =

∫ t+T

t
dt′ a(t′) . (11.19)

The key point is that a Poisson law for the number of counts is obtained even
if the mean rate is a function of time; all that is required is that the expected
number of counts be computed by integrating the rate. We emphasize, however,
that this conclusion requires that the mean rate be nonrandom; it does not hold if
a(t) fluctuates randomly.

11.1.2 Poisson and rarity

Another route to the Poisson law— indeed, the one used by Poisson himself— is to
take the limit of a binomial law. Consider a set of M Bernoulli trials (coin flips,
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say), where the probability of success (heads) is p. We know that the total number
N of successes in M trials is given by the binomial law, (C.161). We denote this
probability as Pr(N |M,p), and we recall from (C.163) that the mean number of
successes, N, is given by Mp.

Now let M become very large and p become very small in such a way that
Mp (or N) remains constant. Since the probability of success is getting vanishingly
small, success is a rare event. In the context of coin flipping, very few of the flips
(on average, N/M) result in heads.

With p = N/M and some algebra, the binomial law can be written as

Pr(N |M,p) =
M !

(M −N)!N !
pN (1 − p)M−N

=

[

M(M − 1) · · · (M −N + 1)

MN

(

1−
N

M

)−N
]

(

1−
N

M

)M
N

N

N !
. (11.20)

As M → ∞, the factor in square brackets tends to 1. Also, since (1−N/M)M

limits to exp(−N), the remaining factors limit to the Poisson law, i.e.,

lim
M→∞

Pr(N |M,p) =
(N)N

N !
exp(−N) , (N = Mp = const) . (11.21)

This formula gives the correct mean N by construction, and it also gives the
correct variance. From App. C, we know that the variance of a binomial law is
Mp(1− p), which here is N(1− p). In the limit p → 0, this variance approaches N,
as it must for a Poisson.

Another way to see that the binomial limits to a Poisson is to show that the
Poisson postulates are satisfied in the limit. Consider a sequence of coin flips at a
regular pace, one every ∆T seconds. The total time over which the flips occur is
held constant at T, so the number of flips M = T/∆T goes to infinity as ∆T → 0.
As before, the probability of success is taken as p = N/M, where N is constant.

Since the flips are independent, the number in any time interval is statistically
independent of the number in any nonoverlapping interval, providing we consider
only intervals given by integer multiples of ∆T. In the limit as ∆T → 0, this
restriction is irrelevant and the first postulate holds. Similarly, since p = N/M =
N∆T/T, the second postulate holds with a = N/T. Finally, the third postulate
holds easily since there is only one flip in any interval of length ∆T. Thus all three
postulates are satisfied in the limit, and the Poisson law is inevitable.

11.1.3 Binomial selection of a Poisson

In most discussions of the binomial law, it is implicitly assumed that the number
of trials M is a predetermined constant. In many physical situations, however, M
is random. An important example in optics is radiation detection by an inefficient
photon-counting detector. We analyze this problem here using the intuitive picture
where discrete photons fall on the detector and produce photoelectrons with some
probability; in Sec. 11.5 we shall revisit the problem from the viewpoint of quantum
electrodynamics.

Suppose M photons are incident on the detector in time T and that each has a
probability η (called the quantum efficiency) of producing a photoelectron. If the
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photoelectric interactions are statistically independent, then the conditional proba-
bility Pr(N |M) for getting N photoelectrons is a binomial; the problem is formally
equivalent to Bernoulli trials with η being the probability of success (detection).
The margninal probability Pr(N), however, is given by

Pr(N) =
∞
∑

M=N

Pr(N |M) Pr(M) . (11.22)

Note the lower limit of the sum; getting N photoelectrons requires that there be at
least N photons.

Now suppose that the photons satisfy the three postulates so that M is a
Poisson random variable. With Pr(N |M) being binomial, we have

Pr(N) =
∞
∑

M=N

(

M

N

)

ηN (1 − η)M−N exp(−M)
M

M

M !
. (11.23)

A change of variables, K = M − N, and a little algebra shows that (Barrett and
Swindell, 1981, 1996)

Pr(N) = exp(−ηM)
(ηM)N

N !
. (11.24)

Thus N obeys a Poisson law with mean N = ηM. This result should come as
no surprise; if the postulates are satisfied for M, they are also satisfied for N. No
statistical dependence is introduced by the selection process.

This fundamental result is known as binomial selection theorem; we restate
it for emphasis as:

Binomial selection of a Poisson yields a Poisson, and the mean of the output

of the selection process is the mean of the input times the binomial probability

of success.

An interesting corollary of this theorem is that the number of times that the
photon is not detected is also a Poisson random variable. Moreover, the number
of nondetections is statistically independent of the number of detections. These
statements will come as a surprise to someone used to thinking about Bernoulli
trials in terms of coin flipping. If a coin with probability of heads equal to η is
flipped exactly M times, the number of heads Nh is binomial with parameter η,
the number of tails Nt is binomial with parameter 1 − η, and Nh and Nt are not
statistically independent since Nh+Nt = M. The situation is entirely different when
M itself is a Poisson random variable. Then Nh is Poisson with parameter ηM, Nt is
Poisson with parameter (1−η)M, and Nt andNh are statistically independent. This
peculiar result is obtained only if M is Poisson-distributed. Haight (1967) states
it in formal terms as follows: In a sequence of Bernoulli trials where the number
of attempts is random, the number of successes is independent of the number of
failures if and only if the number of attempts is a Poisson random variable.

Cascaded binomial selection Many situations in imaging can be described math-
ematically as a cascade of binomial-selection stages. Consider, for example, the
optical system depicted in Fig. 11.1. A light bulb emits photons randomly in all
directions, some of the photons are collected with a lens, pass through a neutral-
density filter, and illuminate the photocathode of a photomultiplier tube. We as-
sume that the photons are fully independent, in the sense that neither the direction
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nor the time of emission of one photon has any influence on the properties of any
other photon, and hence that the photons satisfy the Poisson postulates. The num-
ber of photons M emitted in some observation time T is then a Poisson random
variable with mean M.

Fig. 11.1 An optical system to illustrate the idea of binomial selection of a
Poisson distribution.

Since the photons are independent in all respects, including direction, collec-
tion of photons by the lens can be treated as a binomial selection. If the lens
subtends a solid angle Ω from the source and the emission is isotropic, on average
a fraction Ω/4π of the photons pass through the lens. The binomial probability
of success p in this case is Ω/4π, and the mean number of photons passed by the
lens is MΩ/4π. Since we know that the binomial selection of a Poisson yields a
Poisson, and that a Poisson is fully characterized by its mean, we now have the full
probability law for the number of photons passed by the lens: it is a Poisson with
mean MΩ/4π.

The neutral-density filter is another binomial selection. Each photon is either
passed by the filter or it is not. If the average transmittance of the filter is τ, then
the probability of success (in getting through) for an individual photon is also τ,
and the mean number passed by the filter is MτΩ/4π. Again we have a binomial
selection of a Poisson, which yields a Poisson, so the probability law on the number
of photons passing the filter is Poisson with mean MτΩ/4π.

Next we come to the photocathode, which we assume to have quantum effi-
ciency η. That is, each photon can independently produce a photoelectron with
probability η. This is another binomial selection, and again the input to the selec-
tion is a Poisson, so we know at once that the probability law on the number of
photoelectrons is Poisson with mean MτηΩ/4π.

We can extend this kind of reasoning indefinitely. If we know that at some
stage in a system we have photons (or particles of any nature) that satisfy the Pois-
son postulates and that subsequent stages in the chain are well modeled as binomial
selections, we need only compute the average number of photons passing through,
and the binomial-selection theorem will then demonstrate that the probability law
on this number is Poisson with the computed mean. Since the Poisson law is so
ubiquitous, this is a very powerful means of analyzing the statistical properties of
imaging systems.
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11.1.4 Doubly stochastic Poisson random variables

A random variable for which a parameter of the probability law is itself random is
said to be doubly stochastic. In this section we discuss Poisson random variables
where the Poisson mean is random. Such variables are called doubly stochastic
Poisson random variables. The closely related topic of doubly stochastic Poisson
random processes is discussed in Secs. 11.3.6 and 11.3.7.

To understand the usefulness of doubly stochastic Poisson random variables,
suppose that a large supply of light bulbs is available for use with a photon-counting
detector. Assume that each bulb produces a steady light output and that the pho-
tons satisfy the Poisson postulates. Then, as we have seen, the counting distribution
is Poisson so long as only that light bulb is used. In an experiment where the number
of counts N in a fixed interval T is observed, N is a Poisson random variable. That
means that if we repeat the experiment a large number of times (always with the
same light bulb), a histogram of the observed values of N would approach Pr(N |N),
where N is related to the brightness of the particular light bulb. A different bulb
produces a different amount of light, however, so this is only a conditional proba-
bility law, conditional on the particular bulb.

On the other hand, if we used a different light bulb for each measurement, then
the histogram of observed counts would be broadened because of the variation in
bulb output (see Fig. 11.2). To describe this situation fully, we now need to account
for two kinds of randomness, the Poisson randomness in photon counting and the
manufacturing randomness in bulb output. To do so, we allow N to be a random
variable.

Fig. 11.2 Illustration of the broadening of Pr(N ) that occurs when the Pois-
son rate is a random variable.
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Another situation in which N is random is when only one light source is used
but the mean count rate a(t) is random. For any particular realization of a(t), the
calculation in Sec. 11.1.1 holds and the probability law on N is a Poisson with mean
N given by the integral in (11.19). If a(t) is random, however, N is also necessarily
random. In Sec. 11.3.7 we develop the tools needed to discuss this case fully, but
we shall now consider what happens if we simply let N be a random variable
(ultimately derived from some random process), with an unspecified probability
law.

Poisson transform Though N is a discrete random variable with only integer values,
its mean N can take on any value in (0,∞). Thus, when we consider N to be
random, it must be described by a probability density function pr(N). The usual
rule for computing a marginal from a joint density, (C.75), then leads to

Pr(N) =

∫ ∞

0
dN Pr(N |N) pr(N) =

1

N !

∫ ∞

0
dN N

N
exp(−N) pr(N) . (11.25)

This expression is called the Poisson transform of pr(N). Many properties of
Poisson transforms and a table of examples are given in (Saleh, 1978). Of note
is the fact that the Poisson transform of an exponential is a Bose-Einstein; the
relevance of this result to optics will be explored in Sec. 11.5.3.

Though it is necessary to carry out the integral in the Poisson transform if one
wants the full probability law on N, the mean and variance of N can be obtained
more simply. The mean is given by

〈N〉 =
∞
∑

N=0

N Pr(N) =
∞
∑

N=0

N

N !

∫ ∞

0
dN N

N
exp(−N) pr(N) . (11.26)

Interchanging order of summation and integration, we find

〈N〉 =
∫ ∞

0
dN

[

∞
∑

N=0

N

N !
N

N
exp(−N)

]

pr(N) . (11.27)

The quantity in square brackets is recognized as the mean of the Poisson distribution
with parameter N, and we know from App. C that this mean is just the parameter.
Therefore,

〈N〉 =
∫ ∞

0
dN N pr(N) ≡ N . (11.28)

The double-overbar notation indicates that two separate averages are being per-
formed, one with respect to the probability Pr(N |N) and the other with respect to
the probability density function pr(N).

Computation of the second moment of N proceeds similarly. After the inter-
change of order of summation and integration, we have

〈

N2
〉

=

∫ ∞

0
dN

[

∞
∑

N=0

N2

N !
N

N
exp(−N)

]

pr(N) =

∫ ∞

0
dN

(

N +N
2
)

pr(N) ,

(11.29)
where we have used the result from (C.168) for the second moment of a Poisson.

We can express (11.29) in a neater form by recognizing that, for any random
variable x,

〈

x2
〉

= Var(x) + 〈x〉2 . (11.30)
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For the problem at hand, x is N, so

〈

N2
〉

= N +Var(N) +N
2
. (11.31)

Finally,

Var(N) =
〈

N2
〉

−N
2
= N +Var(N) . (11.32)

The first term on the right is just the Poisson variance appropriate to the average
value of the mean, while the second term, often called the excess variance, is the
result of randomness in the Poisson mean.

Another way to derive (11.32) is to apply a general result from Sec. C.4.4 of Ap-
pendix C. In the notation used there, VarNE{N |N} = Var{N} and ENVar{N |N} =

N, so (11.32) is equivalent to (C.84).
One trivial case of this formalism is when N is not really random. In that

case, pr(N) = δ(N −N0) and Var(N) = 0. Then Pr(N) is just a Poisson of mean
N0, so Var(N) = N0 and the excess variance vanishes.

For any pr(N) other than a delta function, however, the excess variance is
positive, and the variance associated with Pr(N) is greater than that associated
with Pr(N |N). Within the confines of the theory as developed so far, therefore, the
minimum variance of any counting process is its mean value, and this minimum
is achieved only when the mean itself is nonrandom, i.e., for a Poisson random
variable. Any randomness of the mean will lead to an increase in the variance over
the Poisson value. Curiously, this statement breaks down in the world of quantum
optics, where sub-Poisson statistics are indeed possible. This point will be discussed
further in Sec. 11.5.

Binomial selection from a non-Poisson source We now revisit the binomial-selection
theorem for the case where the source does not obey Poisson statistics (Barrett
and Swindell, 1981, 1996). The probability law on N is given by (11.22), where
Pr(N |M) is a binomial with probability of success η and Pr(M) is unspecified.
With this problem statement and some properties of binomial distributions, the
mean of N is given by

〈N〉 =
∞
∑

N=0

∞
∑

M=N

N Pr(N |M) Pr(M) =
∞
∑

M=0

M
∑

N=0

N Pr(N |M) Pr(M)

=
∞
∑

M=0

MηPr(M) = Mη , (11.33)

and the second moment is given by

〈

N2
〉

=
∞
∑

M=0

M
∑

N=0

N2 Pr(N |M) Pr(M)

=
∞
∑

M=0

[

Mη(1 − η) +M2η2
]

Pr(M) = Mη(1− η) + η2
[

Var(M) +M
2
]

, (11.34)

where we have used (11.30). Finally, the variance of N is

Var(N) =
〈

N2
〉

−N
2
= η(1 − η)M + η2 Var(M) . (11.35)
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There are several interesting features of (11.35). First, if Var(M) = 0 so that
M is not really random, (11.35) shows that Var(N) = η(1− η)M, just as we would
expect from the binomial law. Second, if η is small, (11.35) can be approximated
as

Var(N) ≈ N , (11.36)

just as we would expect for a Poisson random variable. For η small enough, the
excess variance is negligible.

Additional insight can be obtained by using N = ηM and rewriting (11.35) as
(Barrett and Swindell, 1981, 1996)

Var(N)−N = η2
[

Var(M)−M
]

. (11.37)

This form shows that a sufficient condition for having Var(N) = N is that
Var(M) = M. This condition is, of course, satisfied if M is Poisson, in which
case (11.37) is in accord with the binomial selection theorem. We see also from
(11.37) that Var(N) → N as η → 0, regardless of the statistics of M. Once again,
rarity begets Poissonicity.

Equations (11.35) and (11.37) are general results for binomial selection where
the input to the selection process, M, has arbitrary statistics. If M is specifically a

doubly stochastic Poisson random variable, its mean is denoted M and its variance
is given by [cf. (11.32)]

Var(M) =
〈

M2
〉

−M
2
= M +Var(M) . (11.38)

Inserting these results into (11.35), we obtain

Var(N) = η(1− η)M + η2
[

M +Var(M)
]

= ηM + η2 Var(M) . (11.39)

Now the factor η(1−η) usually seen in binomial variances does not appear explicitly.
Instead, we see that the Poisson part of the variance scales as η while the excess
variance scales as η2. Again, small efficiency reduces the excess variance relative to
the Poisson part.

11.2 POISSON RANDOM VECTORS

Many photon-counting detectors have a discrete output array, where the output
value in each element is the number of counts that occurred within the area of the
element during the exposure time. For simplicity, we can think of an array of discrete
detector elements, each with its own electronic system and counter. Suppose that
there are J elements and let the number of photons detected by element j be denoted
gj , (j = 1, ..., J). We wish to find a probability law for the set {gj}. In this section
we shall call this probability Pr({gj}), but later it will be convenient to consider
the set {gj} as components of a J-dimensional vector g, so the probability can be
denoted more compactly as Pr(g).

11.2.1 Multivariate Poisson statistics

It is easy to find Pr({gj}) for a Poisson source since it emits photons independently.
Suppose that detector element j has probability Pj of detecting a photon from the
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source, and that the mean number emitted by the source during time T is the non-
random quantity M. Then, by the binomial-selection theorem (Sec. 11.1.3), gj is a
Poisson with mean gj = PjM.

Since the photons arriving at different elements are independent, the multivari-
ate probability law Pr({gj}) on the set of all counts {gj , j = 1, ..., J} is a product
of Poissons of the form

Pr({gj}) =
J
∏

j=1

exp(−PjM)
(PjM)gj

gj !
=

J
∏

j=1

exp(−gj)
(gj)

gj

gj !
. (11.40)

Because of this product form, counts in different elements are uncorrelated. Also,
the variance of the counts in one element is equal to its mean, so we can write the
covariance matrix elements as

Kjk = 〈∆gj∆gk〉 = gj δjk , (11.41)

where ∆gj = gj − gj . This relation will prove very useful in later chapters where
we discuss statistical properties of images.

Multinomial statistics Another way of obtaining (11.40) is by generalizing the dis-
cussion in Sec. 11.1.3 on binomial selection of a Poisson. Suppose that the total
number of photons detected by an array is N and that element j has probability αj

of getting any particular photon. If the photons are independent, the conditional
multivariate probability law on gj for fixed N is the multinomial (see App. C):

Pr({gj}|N) = N !
J
∏

j=1

(αj)gj

gj !
, (11.42)

where
J
∑

j=1

gj = N ,
J
∑

j=1

αj = 1 . (11.43)

Note that (11.42) cannot be factored into independent probabilities because of the
factor N !.

If N is itself a random variable, we have

Pr({gj}) =
∞
∑

N=0

Pr({gj}|N) Pr(N) =
∞
∑

N=0

Pr(N)N !
J
∏

j=1

(αj)gj

gj !
δ



N,
J
∑

j=1

gj



 ,

(11.44)
where δ(·, ·) is another notation for the Kronecker delta. If Pr(N) is a Poisson of
mean N, we have

Pr({gj}) =
∞
∑

N=0

exp(−N) (N)N
J
∏

j=1

(αj)gj

gj !
δ



N,
J
∑

j=1

gj



 . (11.45)

Since N =
∑

j gj , we can rewrite this expression as

Pr({gj}) =
∞
∑

N=0

J
∏

j=1

exp(−gj)
(Nαj)gj

gj !
δ



N,
J
∑

j=1

gj



 . (11.46)
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The Kronecker delta allows us to perform the sum, with the result:

Pr({gj}) =
J
∏

j=1

exp(−αjN)
(αjN)gj

gj !
. (11.47)

We have thus generalized the binomial selection theorem:

Multinomial selection of a univariate Poisson yields a multivariate Poisson,

and the mean of each cell after multinomial selection is the mean of the input

times the probability of the event going to that cell.

Equation (11.47) has the same form as (11.40), but it does not seem to be
identical; αjN appears in (11.47) while PjM appears in (11.40). (Recall that N is
the total number of detected photons and αj is the probability that one of them
goes in detector j, while M is the total number of photons emitted by the source
and Pj is the probability that an emitted photon is detected in detector j.) The
distinction between αjN and PjM is, however, illusory. Of the M photons emitted
by the source, a fraction β on average is detected somewhere in the array. (As
discussed in Sec. 11.1.3, β is the product of the solid-angle factor Ω/4π and the
quantum efficiency η if the photons are emitted isotropically and independently, but
we can just leave β as a general parameter, interpreted as the overall probability of
detection.) Thus N = βM.

Moreover, under the same independence assumptions, N is a binomial selection
from M, so Pr(N) is a Poisson of mean N = βM if Pr(M) is a Poisson of mean
M. The counts gj in any single detector element are obtained by another binomial
selection with probability of success Pj , so the univariate probability Pr(gj) is a
Poisson of mean PjN = βPjM. Finally, we can argue from independence that the
multivariate law Pr({gj}) is just the product of the individual probabilities Pr(gj) as
given in (11.40) or (11.47); the two are equivalent since αjN = PjM, with Pj = βαj .

Preset counts vs. preset time We used the multinomial law above as a mathematical
device to derive the multivariate Poisson, but there are circumstances where the
multinomial itself is the correct multivariate distribution.

In many event-counting systems, data can be acquired either for a given time or
until a given number of events is reached. In the nuclear-medicine literature, these
two acquisition modes are referred to as preset time and preset counts, respectively,
and we shall adopt that terminology here also. The key distinction is that the total
number of events N is a random variable for preset time but a fixed number for
preset counts.

For preset counts, Pr({gj}|N) as given in (11.42) is directly the multivariate
probability law for the set {gj}. Even though the multinomial is derived on the
assumption that the events are independent, the numbers of counts in different
elements are not independent because of the constraint on the total number.

Multinomials and rarity Consider a preset-counts acquisition by a detector array
where the number of elements J is large and the counts are spread fairly evenly
over the elements, so that αj is small for all j. Small αj means that the event of
a count going into the jth detector is rare. Since we almost always collect a large
total number of counts N, the arguments of Sec. 11.1.2 apply, and the univariate
law on any gj is well approximated by a Poisson of mean Nαj .
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It is a little trickier to see how the multinomial limits to a multivariate Poisson.
The problem is that the total number of counts is fixed, so any one of the gj is fully
determined by the sum of all of the others. Thus the variance of one of the gj
conditional on all of the others is zero.

Let us arbitrarily (and without loss of generality) single out the detector with
index j = J as the one with zero conditional variance. Then, with algebra similar
to that in (11.20), (11.42) becomes

Pr({gj}|N) = δ



g
J
, N −

J−1
∑

j=1

gj





J−1
∏

j=1

exp(−αjN)
(αjN)gj

gj !
. (11.48)

If we leave out one detector, the probability law on the rest of them is multivariate
Poisson in this approximation. Even for the one we leave out, it is easy to show
that the mean equals the variance:

〈g
J
〉 = Nα

J
, Var(g

J
) = 〈g

J
〉 = Nα

J
. (11.49)

Moreover, to the same approximation, the covariance matrix is still given by the
Poisson covariance, (11.41).

Once again, we see two routes to the Poisson: independence and rarity. In a
preset-time acquisition mode, the counts are independent and the Poisson results
from binomial-selection arguments. In a preset-counts mode, strict independence is
lost but the Poisson is an excellent approximation if counts in any one detector are
rare compared to total counts.

11.2.2 Doubly stochastic multivariate statistics

The lack of correlation and the product form in (11.40) are consequences of the
Poisson (independent) nature of the source. They do not apply when the source
is random. There are two distinct kinds of randomness that could invalidate those
results: either the overall source strength could change from measurement to mea-
surement, or the spatial configuration of the source could change. The first circum-
stance could occur in passive imaging where a static object is illuminated with a
fluctuating external source; then the effective source strength is a constant spatial
distribution of reflectance or scattering amplitude times a random illumination. The
second circumstance could occur if an ensemble of objects is imaged with a steady
source; the statistical properties of interest then include both counting statistics
and object statistics.

Variable source strength Assume first that the source fluctuates only in overall
strength, and that the spatial distribution of radiation on the detector array is
constant. This means that the probabilities Pj are not random variables, and the
only random variable describing the source is the strength M.

Under these assumptions, the joint probability Pr({gj}) is obtained simply by
averaging (11.40) over the source fluctuations, i.e.,

Pr({gj}) =
∫ ∞

0
dM pr(M) Pr({gj} |M)

=

∫ ∞

0
dM pr(M)

J
∏

j=1

exp(−PjM)
(PjM)gj

gj !
. (11.50)
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Any marginal Pr(gi) can be recovered by summing (11.50) over all gj for j )= i.
All of the sums are one by the normalization of the Poisson probability, and we are
left with

Pr(gi) =

∫ ∞

0
dM pr(M) exp(−PiM)

(PiM)gi

gi!
. (11.51)

This equation is a Poisson transform, just as in our original discussion of doubly
stochastic Poisson random variables [cf. (11.25)]. Indeed, we could have obtained
it just by ignoring all other elements.

Of more interest is a pairwise marginal like Pr(gi, gk) for i )= k. Summing
(11.50) over all of the gj except j = i and j = k, we find

Pr(gi, gk) =

∫ ∞

0
dM pr(M) exp(−PiM)

(PiM)gi

gi!
exp(−PkM)

(PkM)gk

gk!
. (11.52)

Various moments can be obtained from this probability via methods used pre-
viously. It will be left as an exercise to show that

〈gi〉 = PiM ; (11.53)

〈gigk〉 = PkM δik + PiPk

[

Var(M) +M
2
]

; (11.54)

[Kg]ik = 〈∆gi∆gk〉 = PkM δik + PiPk Var(M) , (11.55)

where ∆gi = gi −〈gi〉. Another useful form for the covariance is obtained by use of
(11.32) for Var(M) (see Barrett and Swindell, 1981, Sec. 3.4, 1996), which leads to

[Kg]ik = PkM δik + PiPk

[

Var(M)−M
]

. (11.56)

Equation (11.55) shows that the off-diagonal elements ofKg vanish ifM is non-
random, which means that the individual counts gi and gk are Poisson. Equation

(11.56) shows that the off-diagonal elements also vanish if Var(M) = M ; substi-
tuting M for N in (11.32), we see that this condition can occur if and only if the
density on M is a delta function, again implying that the individual counts are
Poisson. In addition, both (11.55) and (11.56) show that the off-diagonal elements
are small if PiPk is small so that detection events are rare (compared to emission
events).

Variable source distribution Next we consider what happens if the spatial configu-
ration of the source is random. Different realizations of the source produce different
values of the mean counts {gj}. A full description of the source randomness now
requires a specification of the multivariate density pr({gj}), not just the univari-

ate pr(M). Note that variable source strength, treated above, is a special case of
variable source distribution where all of the gj covary together as a result of the

common factor M. Here we analyze the more general case.
The joint probability Pr({gj}) is obtained by averaging (11.40) over the set

{gj}, and (11.50) generalizes to
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Pr({gj}) =
∫ ∞

0
dg1

∫ ∞

0
dg2 · · ·

∫ ∞

0
dg

J
pr({gj}) Pr({gj}|{gj})

=

∫ ∞

0
dg1

∫ ∞

0
dg2 · · ·

∫ ∞

0
dg

J
pr({gj})

J
∏

j=1

exp(−gj)
(gj)

gj

gj !
. (11.57)

This expression appears formidable, but it is actually fairly easy to obtain means
and covariances from it. Showing all of the steps for pedagogical purposes, we find
the mean of gk via

〈gk〉 =
∞
∑

g1=0

· · ·
∞
∑

gk=0

· · ·
∞
∑

g
J
=0

gk Pr({gj})

=

∫ ∞

0
dg1

∫ ∞

0
dg2 · · ·

∫ ∞

0
dg

J
pr({gj})

∞
∑

g1=0

· · ·
∞
∑

gk=0

· · ·
∞
∑

gJ=0

gk

J
∏

j=1

exp(−gj)
(gj)

gj

gj !

=

∫ ∞

0
dg1

∫ ∞

0
dg2 · · ·

∫ ∞

0
dg

J
pr({gj})

∞
∑

gk=0

gk exp(−gk)
(gk)

gk

gk!

=

∫ ∞

0
dgk pr(gk) gk = gk . (11.58)

Along the way, we have used the normalization of the Poisson law (from line 2 to
line 3) and the definition of marginal densities (line 3 to line 4). The final result,
of course, could have been written down virtually by inspection.

Similar manipulations yield the second moment. Under Poisson statistics
alone, 〈gigk〉 = gi δik + gigk, but with the additional randomness in the means,
we have

〈gigk〉 =
∫ ∞

0
dgi

∫ ∞

0
dgk pr(gi, gk) [gi δik + gigk] = gi δik + [Kg]ik + gigk , (11.59)

where Kg is the covariance matrix for the means,

[Kg]ik =
〈[

gi − gi
] [

gk − gk
]〉

. (11.60)

The final covariance matrix for the counts themselves is

[Kg]ik =
〈[

gi − gi
] [

gk − gk
]〉

= gi δik + [Kg]ik . (11.61)

Several limits and special cases of this result are of interest. First, if none of
the means is random, we are back to Poisson statistics, and the covariance matrix
has the diagonal form given in (11.41). Second, if the randomness in the means
comes from randomness in overall source strength without any variation in source
configuration, then all of the means covary together, [Kg]ik is PiPk Var(M), and
(11.55) is recovered.

Finally, as in the case of randomness in overall source strength [cf. (11.55)],
the two terms in (11.61) have different dependencies on average number of counts.
The first term gi δik varies as the mean number of counts, which means it is linear
in source strength, detector efficiency or counting time. The second term [Kg]ik is
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quadratic in all of these quantities, so it becomes relatively more important as mean
counts increase. Conversely, when there are relatively few counts, the second term
can be neglected and the covariance matrix Kg is diagonal in spite of randomness
in the individual means gj . Thus Poisson sources always produce uncorrelated,
Poisson-distributed counts, and non-Poisson sources produce approximately uncor-
related and approximately Poisson-distributed counts in inefficient detectors.

11.3 RANDOM POINT PROCESSES

A random point process is a random process for which each sample function is
localized to a set of spatial or temporal points (Snyder and Miller, 1991). A sample
function of a point process is thus a sum of delta functions in some number of
dimensions. The amplitude and arguments of the delta functions can be random
variables, and the number of terms in the sum can be random as well.

In this section we develop the mathematical tools necessary to describe the
first- and second-order statistics of point processes. As in Sec. 11.1, we cast the
discussion in terms of radiation falling on a photon-counting detector since this is
the most common manifestation of point processes in optics and imaging.

11.3.1 Temporal point processes

Consider first a detector that produces a current pulse for each photoelectric inter-
action, and assume that this current pulse is independent of the spatial coordinates
of the event. If the properties of the detector and its associated electronic circuitry
are time-invariant (though the radiation source need not be temporally stationary),
the current waveform can be expressed as

i(t) =
N
∑

n=1

i0(t− tn) , (11.62)

where i0(t) is the current pulse produced by a count at t = 0, tn is the time of
occurrence of the nth count (0 < tn ≤ T ), and N is the total number of counts in
(0, T ).

This current waveform can be written as

i(t) = z(t) ∗ i0(t) , (11.63)

where z(t) is a random point process defined by

z(t) =
N
∑

n=1

δ(t− tn) , (0 < t ≤ T ) . (11.64)

Since the delta function is a generalized function, z(t) is a generalized random
process. Once the statistical properties of z(t) are understood, those of i(t) can be
derived by using the methods developed in Sec. 8.2 for filtered random processes.

Invocation of the Poisson postulates A full specification of the statistics of z(t)
requires knowledge of the probability laws for each of the random variables involved.
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In (11.64) there are N+1 random variables, namely each of the tn and N itself. We
require, therefore, the joint probability law on N and the arrival times {tn}, which
we can write as pr({tn}|N) Pr(N). It is easiest to specify this probability law in
the case of a Poisson point process where the postulates of Sec. 11.1.1 are satisfied,
and that is what we do here. Deviations from the Poisson model are considered in
Sec. 11.3.6 and 11.3.7.

First, note that the index n labels the individual counts but does not specify the
order of arrival. The counts are assumed to be indistinguishable, so pr({tn}|N) must
be invariant to permutations of the labels. Second, under the Poisson postulates
the counts are assumed to be statistically independent. With these assumptions,
the variables {tn} are i.i.d. (independent and identically distributed) and we have

pr({tn} |N) =
N
∏

n=1

pr(tn) . (11.65)

Note that pr(tn) cannot depend on the total number N if the counts are to be
statistically independent.

We can relate pr(tn) to the mean arrival rate a(t) introduced in Sec. 11.1.1.
If we allow a(t) to be a nonrandom function of time, postulate (b) states that the
probability of getting one count in (t, t+∆T ) is given by

Pr[1 in (t, t+∆T )] = a(t)∆T , (∆T → 0) . (11.66)

This same probability is also the probability that one of the tn lies in this time
interval. The event that tn lies in the interval (t, t + ∆T ) and the event that
tm(m )= n) lies in the same interval are mutually exclusive by postulate (c) as
∆T → 0. Thus the probability that either tn or tm is in the interval is the sum
of the individual probabilities, or twice the probability that specifically tn is in the
interval. By extension, if exactly N counts occur in (0, T) and both t and t+∆T
lie in this interval, then the probability that one count occurs in (t, t+∆T ) is given
by

Pr[1 in (t, t+∆T )|N ] =N Pr(t < tn ≤ t+∆T ) = N

∫ t+∆T

t
dtn pr(tn) ≈ N∆T pr(t) .

(11.67)
The approximation in the last step becomes exact as ∆T → 0.

The probability Pr[1 in (t, t+∆T )] is obtained by averaging over N :

Pr[1 in (t, t+∆T )] =
∞
∑

N=0

Pr(N) Pr[1 in (t, t+∆T )|N ] = N∆T pr(t) . (11.68)

Comparison of (11.68) with (11.66) shows that

N pr(tn) = a(tn) . (11.69)

Thus a(t), originally introduced in Sec. 11.1 as a mean arrival rate at time t, now
takes on a second meaning. When evaluated at tn, it is the constant N times the
probability density for occurrence of a count at t = tn. (Note that both pr(tn) and
a(tn) have dimensions of reciprocal time.)

Since we know from (11.19) that N is the integral of a(t), we also have

pr(tn) =
a(tn)

∫ T
0 dt a(t)

, (11.70)
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which shows immediately that
∫ T

0
dtn pr(tn) = 1 . (11.71)

Thus the probability density on arrival times is just the mean arrival rate properly
normalized.

When do the postulates break down? The essence of the Poisson postulates is the
independence of the events. Thus the statistical independence expressed in (11.65)
is required by the postulates. We shall now consider several physical circumstances
in which independence is not a valid assumption.

One such circumstance is detector saturation, manifested as dead time or loss
of efficiency at high counting rates. If one photon temporarily paralyzes the detector
and there is a significant probability of another photon arriving before it recovers,
the probability of detection of the second photon is dependent on the presence of
the first.

Statistical independence also fails in random multiplication processes where
one primary event gives rise to a random number of secondary events. In a scintil-
lation detector, for example, a single gamma-ray photon produces a large number
of optical photons, and these secondary events are not statistically independent
since they arise from the same gamma-ray photon. This situation will be discussed
further in Sec. 11.4.

Statistical independence also breaks down if a(t) is itself random, in which
case we refer to z(t) as a doubly stochastic Poisson random process. The effect
of such processes on the statistics of the total number of counts was discussed in
Sec. 11.1.4, and the effect on the mean and autocorrelation of z(t) will be discussed
below in Sec. 11.3.7.

The postulates are intimately related not only to the probability density on
the arrival times but also to the probability law on the total number of counts.
The postulates cannot be satisfied unless N is a random variable, and specifically
a Poisson random variable. With photon-counting detectors, it is always possible
to remove the randomness in N ; all we have to do is to count for a preset num-
ber of counts rather than for a preset time. When exactly N0 counts have been
accumulated, the accumulation is terminated. Under these conditions, Pr(N) is
the Kronecker delta δN,N0

, but this form of Pr(N) is incompatible with postulate
(a). Suppose that N0 − 1 counts occur in an interval (0, t′) and the total number
of counts is constrained to be N0. Then the number of counts in (t′, T ) is fully
determined, in contradiction to postulate (a); it can only be one.

In summary, the Poisson postulates can be satisfied only if the arrival times are
statistically independent and identically distributed as in (11.65), the probability
density on each arrival time is a normalized version of the mean arrival rate as in
(11.70), and the total number of counts N is a Poisson random variable.

11.3.2 Spatial point processes

The spatial counterpart of the temporal point process z(t) is g(r), defined by

g(r) =
N
∑

n=1

δ(r− rn) , (11.72)
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where r is a spatial position vector in q dimensions. For example, with q = 2, g(r)
could describe the pattern of photon interactions on a piece of film.

As in the temporal case, there are N +1 random variables in g(r), namely the
N positions rn and N itself. A full specification of the statistics of g(r) requires the
joint probability law pr({rn}|N) Pr(N).

Spatial Poisson postulates and their consequences As in the temporal case, there
are certain postulates that will lead to g(r) being a Poisson random process. For
definiteness we take q = 2 and speak in terms of areas, but the extension to 3D vol-
umes or regions in spaces of other dimensionalities is straightforward. We consider
an overall area A and an exposure time T during which counts occur at points {rn}
contained in A. The spatial counterparts of the postulates given for the temporal
case in Sec. 11.1.1 are:

(a) The number of counts in any area A1 is statistically independent of the
number in any other nonoverlapping area A2, where A1 and A2 are subareas of A.

(b) If we consider a very small area∆A contained in A and centered on point r,
the probability of a single count in this area during an observation time approaches
a deterministic function b(r) times ∆A, i.e., up through terms linear in ∆A,

Pr(1 in ∆A) = b(r)∆A . (11.73)

(c) The probability of more than one count in a vanishingly small area ∆A is
zero. Thus, again through terms linear in ∆A,

Pr(1 in ∆A) + Pr(0 in ∆A) = 1 . (11.74)

Note that we have allowed Pr(1 in ∆A) to be a function of position, but that b(r)
in (11.73) is a fixed function and not yet a random process.

By arguments analogous to those of the temporal case, these postulates can
be satisfied only if

pr({rn}|N) =
N
∏

n=1

pr(rn) ; (11.75)

pr(rn) =
b(rn)

∫

A d2r b(r)
; (11.76)

Pr(N) =
N

N

N !
exp(−N) ; (11.77)

N =

∫

A
d2r b(r) . (11.78)

As in the temporal case, we see that b(r) has a dual interpretation. It is the
count density or mean number of counts per unit area, and after normalization as
in (11.76), it is also the probability density on the position of any individual count.
In the language of radiometry (see Chap. 10), b(r) is the mean photon fluence if
g(r) represents a photon distribution.

The spatial Poisson postulates can break down for reasons similar to those
discussed above in the temporal case. In particular, they do not hold for random
multiplication processes where two or more correlated secondary events are pro-
duced by one primary event. This issue is discussed further in Sec. 11.4.
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11.3.3 Mean and autocorrelation of point processes

Since sample functions of a point process are generalized functions (sums of delta
functions) with no finite values other than zero, a probability density function does
not have much meaning. As with many other random processes, the most we can
do is compute the first- and second-order statistics of the process, or its mean and
autocorrelation function. We carry out this calculation here for the spatial point
process g(r); simple changes in notation will yield the corresponding results for the
temporal case.

Mean of a general spatial point process To compute the expectation value of g(r), we
must average over the random variables {rn, n = 1, ..., N} and N itself. Equations
(11.75) – (11.78) specify the probability laws of these variables for Poisson processes,
but we shall delay for a while invoking these equations. Instead, we first derive a
general expression that will prove useful later.

The joint probability law for {rn} and N can be written as pr({rn}|N) Pr(N),
and the general formula of interest is obtained by first taking the conditional ex-
pectation of g(r) for fixed N and then averaging over N. With the definition of g(r)
from (11.72), the first step requires evaluation of

E{g(r)|N} =

∫

A
d2r1

∫

A
d2r2 · · ·

∫

A
d2rN pr({rn}|N)

N
∑

n=1

δ(r− rn) . (11.79)

For any particular n, all of the integrals over rj except the one with j = n
can be performed by use of (C.75). What remains after performing these N − 1
integrals is the marginal density for rn, so

E{g(r)|N} =
N
∑

n=1

∫

A
d2rn pr(rn|N) δ(r− rn) . (11.80)

With the sifting property of delta functions, we have

E{g(r)|N} =
N
∑

n=1

pr(r|N) = N pr(r|N) . (11.81)

The notation here is a bit tricky; pr(r|N) must be interpreted as pr(rn|N) after the
substitution rn = r. The random variable is rn, and r is a deterministic position
vector. A further average over N yields

E{g(r)} = 〈N pr(r|N)〉N =
∞
∑

N=0

Pr(N)N pr(r|N) . (11.82)

Mean of a Poisson point process The expression (11.82) holds for any point process;
we have not used any specific characteristics of Poisson point processes. For the
Poisson case, pr(r|N) is independent of N, and we can use (11.76) to write

pr(r) =
b(r)

∫

A d2r′ b(r′)
. (11.83)

With (11.78) we have, finally,

E{g(r)} = N pr(r) = b(r) . (11.84)
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This result provides a third interpretation of b(r) for Poisson processes. We
have already seen that it is both the mean number of counts per unit area and,
when normalized, the probability density on the position of any individual count.
We now see from (11.84) that it is also the expectation value of the random process
g(r). All three of these interpretations are dimensionally consistent since counts
per unit area, pr(rj) and g(r) all have dimensions of reciprocal area (see Sec. 2.4.6
for a discussion of dimensions of delta functions).

Autocorrelation function of a general point process We consider next the autocor-
relation function for the random point process g(r). Initially we avoid use of the
Poisson model in order to obtain a general result; then we specialize to the Poisson
case.

The nonstationary autocorrelation function of g(r) is defined by

Rg(r, r
′) = E{g(r) g(r′)} . (11.85)

Again we do the calculation in two stages, first over the set {rn} for fixed N, then
over N. The first stage requires computation of

E{g(r) g(r′)|N} =

∫

A
d2r1

∫

A
d2r2 ···

∫

A
d2rN pr({rn}|N)

N
∑

n=1

δ(r−rn)
N
∑

j=1

δ(r′−rj) .

(11.86)
The double sum over j and n has N2 terms, N of which have j = n and N2 −N
of which have j )= n. Consider first a term with j = n. All of the integrals over rl
except the one with l = j = n can be performed by (C.75), resulting in the marginal
density for rn. Then, with a property of delta functions given in (2.78) and (2.79),
we have

∫

A
d2r1

∫

A
d2r2 · · ·

∫

A
d2rN pr({rn}|N) δ(r− rn) δ(r

′ − rn)

=

∫

A
d2rn pr(rn|N) δ(r− rn) δ(r

′ − rn) = pr(r|N) δ(r− r′) , (11.87)

where again pr(r|N) is to be interpreted as pr(rn|N) evaluated at rn = r. Note
that (11.87) is independent of n. There are N terms with j = n, and all of them
have the same expectation. Thus the contribution to E{g(r) g(r′)|N} from all terms
with j = n is

[E{g(r) g(r′)|N}]j=n = N pr(r|N) δ(r− r′) . (11.88)

Next consider the case j )= n. Now all but two of the integrals can be performed
by (C.75), and we obtain

∫

A
d2r1

∫

A
d2r2 · · ·

∫

A
d2rN pr({rn}|N) δ(r− rn) δ(r

′ − rj)

=

∫

A
d2rn

∫

A
d2rj pr(rn, rj |N) δ(r− rn) δ(r

′ − rj) = pr(r, r′|N) , (11.89)

where pr(r, r′|N) is the joint density pr(rn, rj |N) evaluated at rn = r and rj = r′.
Since (11.89) is independent of j and n, the contribution to E{g(r) g(r′)|N}

from the N2 −N terms with j )= n is

[E{g(r) g(r′)|N}]j %=n = (N2 −N) pr(r, r′|N) . (11.90)
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The conditional autocorrelation function {g(r)g(r′)|N} is obtained by adding
(11.88) and (11.90). A subsequent average over N yields the general result,

Rg(r, r
′) = E{g(r) g(r′)} = 〈N pr(r|N)〉N δ(r− r′) +

〈[

N2 −N
]

pr(r, r′|N)
〉

N
.

(11.91)
The autocovariance function for g(r) is given by

Kg(r, r
′) = 〈∆g(r)∆g(r′)〉 = Rg(r, r

′)− E{g(r)}E{g(r′)}

= 〈N pr(r|N)〉N δ(r−r′)+
〈[

N2 −N
]

pr(r, r′|N)
〉

N
−〈N pr(r|N)〉N 〈N pr(r′|N)〉N ,

(11.92)
where ∆g(r) = g(r)− 〈g(r)〉.

Autocorrelation function of a Poisson point process We now specialize the general
results (11.91) and (11.92) to the case of a Poisson process. Under that model,
pr(r, r′|N) = pr(r) pr(r′) (independent of N) and pr(r) is given by (11.83). More-

over, for Poisson random variables,
〈

N2 −N
〉

N
= N

2
, and N is given by the de-

nominator of (11.83). Thus,

Rg(r, r
′) = b(r) δ(r− r′) + b(r) b(r′) . (11.93)

For the autocovariance function in the Poisson case, the second and third terms
in the last form of (11.92) cancel, and we obtain

Kg(r, r
′) = b(r) δ(r− r′) . (11.94)

Note that the variance, Kg(r, r), is infinite; it could hardly be otherwise for a
random process that takes on only the values zero and infinity. In Sec. 11.3.9 we
shall see that this is not a worry in practice since a filtered Poisson random process
always has finite variance.

Temporal Poisson processes We can easily transcribe the results of this section
to the temporal case just by replacing g(r) with z(t) and b(r) with a(t). For a
nonrandom but possibly time-varying rate a(t), the mean of z(t) is [cf. (11.84)]

E{z(t)} = a(t) . (11.95)

Similarly, the autocorrelation function is [cf. (11.93)]

Rz(t, t
′) = a(t) δ(t− t′) + a(t) a(t′) . (11.96)

The autocovariance function for z(t) is [cf. (11.94)]

Kz(t, t
′) = a(t) δ(t− t′) . (11.97)

We emphasize that these results hold only if the Poisson postulates are satisfied,
which means that a(t) is nonrandom and N is a Poisson random variable.

11.3.4 Relation between Poisson random vectors and processes

We have so far discussed Poisson random vectors and random processes separately.
In this section we explore the connections between them.
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From process to vector In Sec. 11.2.1 we discussed multivariate Poisson statistics,
and especially the multivariate probability law (11.40). That law can also be derived
another way, starting from what we know about Poisson random processes. Suppose
we have a 2D detector array with uniformly spaced pixels of area ε2. Assume that
the pattern of photons incident on the detector is described by the 2D Poisson
random process g(r) and that every photon incident on the area of the jth pixel is
detected and assigned to that pixel. Then the (random) number of counts in the
jth pixel is given by

gj =

∫

j
d2r g(r) , (11.98)

where the integral is over the area of the jth pixel. The mean number of counts in
this pixel is given by

gj =

∫

j
d2r b(r) . (11.99)

The variance of gj is given by

Var(gj) = E
{

[gj − gj ]
2
}

=

∫

j
d2r

∫

j
d2r′ 〈∆g(r)∆g(r′)〉

=

∫

j
d2r

∫

j
d2r′ Kg(r, r

′) =

∫

j
d2r

∫

j
d2r′ b(r) δ(r−r′) =

∫

j
d2r b(r) = gj , (11.100)

where ∆g(r) = g(r)− 〈g(r)〉 = g(r)− b(r).
The covariance of the counts in two different pixels is computed similarly:

E{(gj − gj)(gk − gk)} =

∫

j
d2r

∫

k
d2r′ 〈∆g(r)∆g(r′)〉

=

∫

j
d2r

∫

k
d2r′ Kg(r, r

′) =

∫

j
d2r

∫

k
d2r′ b(r) δ(r− r′) . (11.101)

Now, however, the double integral must be zero since r cannot equal r′ if the former
lies in the jth pixel and the latter in the kth. We can combine the cases j = k and
j )= k by writing

E{(gj − gj)(gk − gk)} = gj δjk . (11.102)

This result is in accord with (11.41).
We can also justify the multivariate Poisson form in (11.40). Again the key is

the binomial selection theorem, with the probability of a photon being detected in
the jth pixel given by

Pj =

∫

j d
2r b(r)

∫

det d
2r b(r)

, (11.103)

where the integral in the denominator is over the whole detector. Since binomial
selection of a Poisson yields a Poisson, and since the events are independent, (11.40)
follows.
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From vector to process Having derived the probability law (11.40) from the prop-
erties of Poisson random processes, it is instructive to go in the other direction and
derive the autocorrelation function of the random processes from the probability
law (Metz, 1969). Since (11.40) implies (11.41), we start with the latter equation,
rewriting it as

E

[

∆gj
ε2

∆gk
ε2

]

=
gj
ε2
δjk
ε2

, (11.104)

where ∆gk = gk − gk. Since ε2 is the area of a pixel, gj/ε
2 is the mean number of

counts per unit area in the jth pixel. Similarly, gj/ε2 is the actual random number
per unit area. If we pass to the limit ε→ 0, then gj/ε2 → g(rj) and gj/ε

2 → b(rj).
Furthermore,

lim
ε→0

δjk
ε2

= δ(rj − rk) . (11.105)

This result can be proved by integrating both sides over rj (or rk) and representing
the integral on the left by a Riemann sum. Collecting results, we now have

lim
ε→0

E

{

∆gj
ε2

∆gk
ε2

}

= E{∆g(rj)∆g(rk)} = b(rj) δ(rj − rk) , (11.106)

which is identical to (11.94).

11.3.5 Karhunen-Loève analysis of Poisson processes

In Sec. 8.2.7 we introduced the concept of Karhunen-Loève analysis, which is just
eigenanalysis of the autocovariance operator. What are the eigenfunctions of the
temporal autocovariance operator with kernel Kz(t, t′) as given in (11.97)? The
eigenvalue problem is

∫ ∞

−∞
dt′ a(t) δ(t− t′)φ(t′) = µφ(t) . (11.107)

The integral can be performed by means of the sifting property of delta functions,
so the eigenvalue problem can also be stated as

a(t)φ(t) = µφ(t) . (11.108)

Since µ cannot be a function of t, we require a function which, when multiplied
by an arbitrary a(t), will yield a constant times the original function. The required
function is

φ(t) = δ(t− t0) , (11.109)

since, by (2.25),

a(t) δ(t− t0) = a(t0) δ(t− t0) = const · δ(t− t0) . (11.110)

Thus the eigenfunctions are the delta functions δ(t−t0), indexed by the contin-
uous variable t0, and the eigenvalues are just the rates a(t0). The continuous index
arises because this particular correlation operator is not compact (see Sec. 8.2.7).
The fact that the eigenfunctions are delta functions means that the Karhunen-Loève
domain is the original time domain in this problem. An exactly parallel analysis
holds for spatial Poisson random processes.
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We are now up to four interpretations of the rate a(t). It is (1) the mean
number of counts per unit time; (2) when normalized, the probability density on
the time of arrival of any individual count; (3) the expectation value of the random
process z(t), and now (4) an eigenvalue of the autocovariance operator. Just as
the statistics of a Poisson random variable are fully determined by its mean, so
too are the statistics of a Poisson random process fully determined by its mean
rate. Similar conclusions hold for spatial Poisson processes, and the same set of
four interpretations applies to the spatial density b(r).

The reader may have noticed an anomaly. In Sec. 8.2.7 we learned that the
Karhunen-Loève domain was the frequency domain for stationary random processes.
Here we see that it is the time (or space) domain for Poisson random processes,
which might in fact be stationary. How do we reconcile these apparently contradic-
tory statements?

In order for z(t) to be stationary, a(t) must be constant. In that case, the
stationary autocovariance function Kz(t) is a δ(t), so the autocovariance operator
is a multiple of the unit operator. If we transform this operator to the frequency
domain, we find

Γ(ν1, ν2) =

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 a δ(t1 − t2) exp[−2πi(ν1 · t1 − ν2 · t2)] = a δ(ν1 − ν2) .

(11.111)
Thus the operator has exactly the same form in the frequency and time do-

mains; unitary transformations leave the unit operator unchanged. It is therefore
not surprising that both domains are Karhunen-Loève.

11.3.6 Doubly stochastic spatial Poisson random processes

In Sec. 11.1.4 we studied the effect of randomness in the rate a(t) on the statistics
of the total counts N, and in Sec. 11.2.2 we examined similar effects for random
vectors, but so far in Sec. 11.3 a(t) and its spatial counterpart b(r) have been con-
sidered nonrandom. We now extend the treatment in Sec. 11.1.4 and compute the
mean and autocorrelation function of a doubly stochastic spatial Poisson random
process. The corresponding temporal case will be studied in Sec. 11.3.7.

Figure 11.3 illustrates the basic idea of a doubly stochastic Poisson process in
1D. Like a Poisson point process, each sample function g(x) of this process is still a
sum of delta functions, but now the density of the delta functions is controlled by
the random process b(x).

From (11.84) we know that the mean of g(r) is b(r) if that function is determin-
istic. We could equally well regard b(r) as a sample function of a random process,
however, and (11.84) would still be valid for a specific b(r). The mean of a doubly
stochastic Poisson random process is obtained simply by averaging (11.84) over all
realizations of the process b(r). All we need is some notation.

We now designate the kind of average we have been using in this chapter,
where b(r) is fixed, as a conditional average E{·|b}, where b is the Hilbert-space
vector corresponding to b(r). With this notation, (11.84) can be written as

E{g(r)|b} = b(r) . (11.112)

A further average over realizations of b(r) will be denoted by Eb{·}, so

Eb{E{g(r)|b}} = Eb{b(r)} ≡ b(r) . (11.113)
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If b(r) is a stationary random process, then b(r) is a constant.
Now consider the same averaging process for the autocorrelation function. Av-

eraging (11.93) over b(r) yields

Eb{E{g(r) g(r′)|b}} = Rg(r, r
′) = b(r) δ(r− r′) +Rb(r, r

′) , (11.114)

where Rb(r, r′) is the autocorrelation function of b(r), defined by

Rb(r, r
′) = Eb{b(r) b(r′)} . (11.115)

The corresponding autocovariance function is

Kg(r, r
′) = Rg(r, r

′)− b(r) b(r′) = b(r) δ(r− r′) +Rb(r, r
′)− b(r) b(r′)

= b(r) δ(r− r′) +Kb(r, r
′) . (11.116)

Thus the autocovariance consists of two terms, a delta-correlated term b(r) δ(r−r′)
which represents the average Poisson random process and a term Kb(r, r′) which
is just the autocovariance of the rate process b(r). This result should be compared
to (11.32) where the variance of a doubly stochastic Poisson random variable is
similarly decomposed. Such decompositions will turn out to be very important
when we consider the statistics of images where the fluctuations result from both
Poisson noise and object variability.

Fig. 11.3 Top: Sample function from the doubly stochastic process g(x).
Bottom: Corresponding sample function of the rate process b(x).

11.3.7 Doubly stochastic temporal Poisson random processes

Next we examine the temporal counterparts of (11.113) – (11.116). For a doubly
stochastic temporal random process where the rate is the random process a(t), the
overall mean of z(t), averaged over both the Poisson process and the rate process,
is given by

〈z(t)〉 = a(t) , (11.117)

and the overall autocorrelation function is [cf. (11.114)]

Rz(t, t+ τ ) = 〈z(t) z(t+ τ)〉 = a(t) δ(τ ) +Ra(t, t+ τ ) , (11.118)
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where Ra(t, t+ τ) is the temporal autocorrelation function of the rate process a(t).
The autocovariance function for z(t) is

Kz(t, t+τ ) = 〈[z(t)− a(t)] [z(t+ τ )− a(t+ τ )]〉 = a(t) δ(τ )+Ka(t, t+τ ) , (11.119)

where Ka(t, t+ τ ) is the autocovariance function of the rate process.

Statistics of the total count In Sec. 11.1.4 we considered a doubly stochastic random
variable where the mean number of counts N was itself a random variable with mean
N and variance Var(N). In (11.32) we related the overall variance of N to these
parameters. With what we have learned about doubly stochastic random processes,

we are now in a position to relate N and Var(N) back to the statistics of a(t).
We can immediately relate the (random) total number of counts N to z(t)

simply by integrating. From (11.64),

∫ T

0
dt z(t) =

N
∑

n=1

∫ T

0
dt δ(t− tn) =

N
∑

n=1

1 = N . (11.120)

The average of N over the Poisson process, conditional on a(t), is

N = E{N |a} =

∫ T

0
dt a(t) , (11.121)

where we have used (11.95). A second average Ea{·} over the rate process yields

N = Ea{E{N |a}} =

∫ T

0
dt a(t) . (11.122)

If a(t) is a stationary random process, a(t) is a constant and we find

N = aT . (11.123)

The overall variance of N is obtained by a similar double-averaging process. The
definition is

Var(N) = Ea{E{N2|a}}−N
2
. (11.124)

With a bit of algebra, we find

Var(N) = N +

∫ T

0
dt

∫ T

0
dt′ Ka(t, t

′) . (11.125)

This equation has important physical consequences, most easily seen in the
stationary case. If Ka(t, t′) = Ka(t − t′), it is convenient to transform to center
coordinate t0 = 1

2 (t + t′) and difference coordinate ∆t = t′ − t as in Sec. 8.2.4.
If a(t) fluctuates rapidly compared to the measurement time T, then Ka(∆t) is a
sharply peaked function of ∆t, and the limits on the ∆t integral can be extended
to infinity. Using Ka(∆t) = Ka(−∆t), we can show that

Var(N) ≈ N + T

∫ ∞

−∞
d∆t Ka(∆t) . (11.126)
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We can define a correlation time τa for the process a(t) by

τa =

∫∞
−∞ d∆t Ka(∆t)

Ka(0)
=

∫∞
−∞ d∆t Ka(∆t)

Var(a)
. (11.127)

With (11.123) and (11.127), Var(N) is given by

Var(N) ≈ N +N
2 τa
T

Var(a)

a2
. (11.128)

This equation reveals several situations under which N would behave as a
Poisson random variable, at least in the sense that Var(N) ≈ N. First, if a(t)

is nonrandom, Var(a) = 0 and Var(N) = N = N. Second, if N is very small

compared to one (events are rare on the time scale T ), then N
2
+ N and again

Var(N) ≈ N. Finally, in the limit of short correlation time or long measurement

time, i.e., τa/T → 0, then Var(N) → N regardless of the statistics of a(t). This
last condition comes into play with white light, where τa is of order 10−15 sec and
Var(a)/a2 = 1.

11.3.8 Point processes in other domains

We have discussed spatial and temporal point processes separately, but of course
it is possible that both spatial and temporal aspects are important in the same
problem. In that case we must be concerned with spatio-temporal point processes,
with sample functions of the form,

g(r, t) =
N
∑

n=1

δ(t− tn) δ(r− rn) . (11.129)

Now the rate process can depend on both space and time, so we denote it as b(r, t).
We shall say that the events are fully statistically independent if rj and rk (j )= k)
are independent, tj and tk are independent, and rj is independent of tj . Full sta-
tistical independence will occur only if b(r, t) is nonrandom.

For the fully independent case, both the spatial and temporal Poisson postu-
lates are satisfied, and it is easy to show that

〈g(r, t)〉 = b(r, t) ; (11.130)

Kg(r, r
′; t, t′) ≡ 〈g(r, t) g(r′, t′)〉 − 〈g(r, t)〉 〈g(r′, t′)〉 = b(r, t) δ(r− r′) δ(t− t′) .

(11.131)
For the general doubly stochastic case where b(r, t) is a spatio-temporal random

process, (11.131) becomes

Kg(r, r
′; t, t′) = b(r, t) δ(r− r′) δ(t− t′) +Kb(r, r

′; t, t′) . (11.132)

Other point processes are also important in imaging applications. For example,
in Chap. 10 we introduced the concept of radiance L in a deterministic sense, but
it can also be regarded as the mean of a 4D point process. We can define

g(r, n̂) =
∑

j

δ(r− rj) δ(n̂− n̂j) , (11.133)
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where the second delta function is an angular one, satisfying the sifting property
(2.155). The mean of this process is the mean number of photons per unit area per
unit solid angle, which we called the photon radiance in Chap. 10. Thus,

〈g(r, n̂)〉 = Lphot(r, n̂) . (11.134)

If g(r, n̂) is a Poisson point process, then its statistics are fully determined by its
mean and hence by the photon radiance. This is a useful result since there are many
ways of determining the radiance in imaging systems. For example, if we consider
film illuminated with collimated light, then the output radiance is proportional to
the bidirectional transmittance distribution function or BTDF (see Sec. 10.2.4).

One last kind of point process worth mentioning because of its radiological
applications is the spatio-spectral process,

g(r, E) =
∑

j

δ(r− rj) δ(E − Ej) , (11.135)

where E denotes a photon energy. As we shall see in Chap. 12, certain types
of gamma-ray cameras estimate position and energy of each gamma ray, and the
output of such cameras can be described by (11.135).

11.3.9 Filtered point processes

The general topic of filtered random processes was introduced in Sec. 8.2.6. We saw
there that each sample function of the random process goes through a linear filter
just as any deterministic function would. If the random process g(r) is the input
to a general shift-variant filter with impulse response h(r, r′), the output random
process is given by

go(r) =

∫

∞
dqr′ h(r, r′) g(r′) . (11.136)

For a point process, where g(r) is given by (11.72), the filter output becomes

go(r) =

∫

∞
dqr′ h(r, r′)

N
∑

n=1

δ(r′ − rn) =
N
∑

n=1

h(r, rn) , (11.137)

so the output is just a sum of randomly displaced impulse responses. If the filter is
shift-invariant, we have

go(r) =
N
∑

n=1

h(r− rn) , (11.138)

which is a sum of identical, randomly displaced replicas of h(r). The expressions in
(11.137) and (11.138) are illustrated in Fig. 11.4.
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Fig. 11.4 Illustration in one dimension of the output of a linear filter when
the input is a random point process. (a) Input; (b) Output of shift-variant
filter; (b) Output of shift-invariant filter.

Mean value of the filter output Calculation of the expectation of go(r) is straightfor-
ward. For the case of a general shift-variant filter and a doubly stochastic Poisson
process, we have

〈go(r)〉 =
∫

∞
dqr′ h(r, r′) 〈g(r′)〉 =

∫

∞
dqr′ h(r, r′) b(r′) . (11.139)

Various special cases are easily derived from this general result. If we consider
a Poisson point process rather than a doubly stochastic one, all we have to do is
delete the overbar on b(r′). If the filter is shift-invariant, h(r, r′) can be replaced
with h(r− r′). And if the input process is stationary, 〈g(r)′〉 is a constant and can
be removed from the integral.

The autocorrelation is a bit more complicated; it will be discussed separately
for Poisson processes and doubly stochastic ones.

Autocovariance of filtered Poisson point processes In Sec. 8.2.6 we investigated fil-
tering of delta-correlated processes. By (11.94), a Poisson point process g(r) has
a delta-function autocovariance. Equivalently, the zero-mean process ∆g(r) =
g(r)− g(r) has a delta-function autocorrelation, and the results in Sec. 8.2.6 can be
applied immediately. From (11.94) we have

Kgo(r, r+∆r) = R∆go(r, r+∆r) =

∫

∞
dqr′ h(r, r′) b(r′)h∗(r+∆r, r′) . (11.140)
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For shift-invariant filters, this equation reduces to

Kgo
(r, r+∆r) =

∫

∞
dqr′ h(r− r′) b(r′)h∗(r+∆r− r′)

= b(r) ∗ [h(r)h∗(r+∆r)] . (11.141)

Thus, in order to compute the autocovariance of a filtered Poisson point pro-
cess, all we have to do is convolve the mean of the input, b(r), with the function
[h(r)h∗(r+∆r)]. As discussed in Sec. 8.2.6, this induces a correlation width deter-
mined by the impulse response.

The variance can be easily derived from the autocovariance. For a shift-variant
filter with a Poisson process on the input, we have

Var{go(r)} = Kgo(r, r) =

∫

∞
dqr′ |h(r, r′)|2 b(r′) , (11.142)

and when the filter is shift-invariant,

Var{go(r)} = b(r) ∗ |h(r)|2 . (11.143)

In the literature on shot noise (e.g., Davenport and Root, 1958), (11.143) is called
Campbell’s theorem.

It is interesting to compare (11.142) and (11.143) to the corresponding expres-
sions for the mean of go(r), as obtained from (11.139):

E{go(r)} =

∫

∞
dqr′ h(r, r′) b(r′) , (shift-variant) ; (11.144)

E{go(r)} = b(r) ∗ h(r) , (shift-invariant) . (11.145)

Thus the expression for the variance of go(r) has the same form as for the mean,
save only that the squared modulus of the filter kernel appears in place of the filter
kernel itself. We emphasize, however, that this neat result holds only when the
input is a Poisson (delta-correlated) random process.

Another important result follows from (11.142) and (11.143). We saw in (11.94)
that the variance of a Poisson process was infinite, but (11.142) shows that the
variance on the filter output is finite any time either |h(r, r′)|2 or b(r′) has finite
spatial support. To be mathematically precise, we should also require that neither
|h(r, r′)|2 nor b(r′) can go to infinity anywhere, but physically that doesn’t happen
anyway. For any real-world filter, a filtered Poisson random process will have finite
variance.

For a stationary random process, b(r) is a constant b0, and (11.142) shows that
the variance is

Var{go(r)} = Kgo(r, r) = b0

∫

∞
dqr′ |h(r, r′)|2 . (11.146)

Note that this variance can still be a function of r if the filter is shift-variant. For
a shift-invariant filter, however,

Var{go(r)} = b0

∫

∞
dqr′ |h(r− r′)|2 = b0

∫

∞
dqr′ |h(r′)|2 = const . (11.147)

If a stationary random process is filtered with a shift-invariant filter, then neither
the input nor the filter imposes any preferred origin and hence the output is also
stationary.
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Autocovariance of filtered doubly stochastic Poisson processes In Sec. 11.3.6 we de-
rived the autocovariance of a doubly stochastic Poisson random process. These
expressions can be substituted into the formulas from Sec. 8.2.6 to find the effects
of filtering. We consider explicitly the case of a nonstationary process but a shift-
invariant filter; the computation for a shift-variant filter is similar but messier.

From (8.146) and (8.147), we find

Kgo
(r, r+∆r)

=

∫

∞
dqr′ h(r′)

∫

∞
dqr′′ h∗(r′′)

[

b(r− r′) δ(r′ +∆r− r′′) +Kb(r− r′, r+∆r− r′′)
]

= b(r) ∗ [h(r)h∗(r+∆r)] +

∫

∞
dqr′ h(r′)

∫

∞
dqr′′ h∗(r′′)Kb(r− r′, r+∆r− r′′)

= b(r) ∗ [h(r)h∗(r+∆r)] +
[

HKbH
†
]

(r, r+∆r) , (11.148)

where H is the integral operator corresponding to convolution with h(r), H† is its
adjoint (see Sec. 1.3.5) and Kb is the integral operator for which the kernel is the
autocovariance function of b(r) (see Sec. 8.2.7).

The first term in (11.148) is identical to (11.141) except for the overbar on
b(r); it represents the average Poisson random process as seen through the filter.
The second term is just what we would get by filtering the process b(r) without
regard to the fact that it is the mean of a Poisson process [cf. (11.129)].

11.3.10 Characteristic functionals of filtered point processes

The discussion above of filtered point processes is incomplete since it does not give
the full PDF of the output process. This PDF would have several applications.
For example, it would describe the output of a photon-counting detector with high
spatial resolution but post-detection smoothing. Also, as we saw in Sec. 8.4.4, a
filtered Poisson process called a lumpy background is a useful model for background
inhomogeneities in objects.

It is not possible to get the PDF in its full infinite-dimensional generality,
but we can compute the characteristic functional, from which all other statistical
properties can be derived (see Sec. 8.2.3). We shall carry out this computation first
for an unfiltered Poisson random process, and then we shall consider the effects
of filtering and show how various marginal PDFs can be derived. We shall also
make contact with Sec. 8.4.4 and discuss the statistics of lumpy-background texture
models.

As defined in (8.94), the characteristic functional involves an L2 scalar product
between the random process and the function s(r) in the argument of the functional.
To apply this definition to a Poisson process, we must either take s(r) as a test
function or treat δ(r − rn) as the limit of a sequence of L2 functions; with either
approach, we can substitute the definition of the point process from (11.72) into
(8.94) and obtain

Ψg(s) =

〈

exp

[

−2πi

∫

A
d2r s(r)

N
∑

n=1

δ(r− rn)

]〉

=

〈

exp

[

−2πi
N
∑

n=1

s(rn)

]〉

.

(11.149)
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The expectation is performed in two steps, first over the set of random variables
{rn} for fixed N, then over N. By using Poisson assumptions and the methods of
Sec. 11.3.3 [or by peeking at the derivation below (11.160)], the reader can show
that

Ψg(s) = exp

{

−N +

∫

A
d2rn b(rn) e

−2πi s(rn)

}

, (11.150)

where b(r) is the usual photon fluence (which must be nonrandom for this expression
to hold). For a stationary Poisson random process where b(r) is constant over an
area A, the fluence is N/A, and we have

Ψg(s) = exp

{

−N

[

1 +
1

A

∫

A
d2rn e−2πi s(rn)

]}

. (11.151)

Effect of filtering Though similar in form to the characteristic function of a Poisson
random variable [see (C.171)], the expressions in (11.150) and (11.151) are not very
useful as they stand. In particular, we know that the variance and higher moments
of a Poisson random process are infinite, so there is little point in trying to compute
them from the characteristic functionals. We can, however, go immediately from
(11.150) to the characteristic functional for a filtered Poisson process.

If we consider a general nonstationary Poisson random process and a general
linear filter H as defined in (11.136), then from (11.150) and (8.96) we see that

Ψgo
(s) = Ψg (H

†s) = exp

{

−N +

∫

A
d2rn b(rn) exp

[

−2πi

∫

A
d2r′ s(r′)h(r′, rn)

]}

.

(11.152)
This expression, the full characteristic function for the output process, is equiva-
lent to the full infinite-dimensional density of the process. To relate it to familiar
single-point or multiple-point characteristic functions and densities, we need to make
additional linear transformations.

For example, to get the univariate characteristic function on the scalar random
variable go(r) for some fixed point r = R, we define a sampling operator SR (see
Sec. 3.5) such that SRgo = go(R). The kernel of this operator is δ(r−R), and the
characteristic function (not functional this time) is given by (8.96) as

ψgo(R)(ξ) = Ψgo
(S †

Rξ) . (11.153)

Since S
†
Rξ = ξ δ(r−R), we see from (11.152) that

ψgo(R)(ξ) = exp

{

−N +

∫

A
d2rn b(rn) exp[−2πiξ h(R, rn)]

}

. (11.154)

To instill some confidence in this formalism, we can use (11.154) to compute
the mean and variance of go(R). With (C.55) and a little algebra, we find that

〈go(R)〉 =
∫

A
d2r h(R, r) b(r) , Var {go(R)} =

∫

A
d2r |h(R, r)|2 b(r) ,

(11.155)
in agreement with (11.139) and (11.142).
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Single-point density The single-point (univariate) PDF on go(R) can be obtained by
performing an inverse Fourier transform on (11.154), but usually this computation
will have to be performed numerically. The Fourier integral is one-dimensional
(with ξ as the variable of integration), but each point in the integrand requires
another two-dimensional integral (the one over rn), so the overall computational
effort is equivalent to a three-dimensional numerical integration—no great problem
on modern computers.

To gain some insight into the problem without doing numerical integrals, let
us consider a stationary problem with constant fluence b0 and a shift-invariant filter
such that h(R, rn) = rect [(R− rn)/ε]. This filter function is either 0 or 1, so the
inner integral in (11.154) simplifies to

∫

A
d2rn b(rn) exp[−2πiξ h(R, rn)] =

[

A− ε2 + ε2 exp(−2πiξ)
]

b0 , (11.156)

provided R is not within ε of the border. Since b0A = N, (11.154) becomes

ψgo(R)(ξ) = exp
{

−ε2b0[1− exp(−2πiξ)]
}

. (11.157)

This expression will be recognized as the characteristic function for a Poisson,
(C.171), with mean given by ε2b0.

The corresponding single-point PDF is essentially also a Poisson, but now as
a density rather than a probability; specifically [cf. (C.24)],

pr[go(R)] =
∞
∑

N=0

(ε2b0)N

N !
exp(−ε2b0) δ[go(R)−N ] . (11.158)

The delta functions at integer values arise since (11.157) is periodic with period 1.
The characteristic functional can, of course, be used also to compute various

multivariate densities, such as pr[go(R1), go(R2)]. In that case it is necessary to
define a sampling operator that maps the function go(r) to a 2D vector, the compo-
nents of which are the scalars go(R1) and go(R2). Because of the filtering operation,
the bivariate density will not factor into two univariate densities if R1 is within a
filter width of R2.

Generalized lumpy backgrounds In Sec. 8.4.4 we discussed the concept of a lumpy
background as a model for random texture fields. The simplest definition was given
in (8.303) as

f(r) =
N
∑

n=1

l(r− rn) , (11.159)

where l(r) is the lump profile, taken as nonrandom in the initial formulation by
Rolland and Barrett (1992). If the lump positions are independent and N is a
Poisson random variable, then this f(r) is a filtered Poisson random process, and
its statistics can be analyzed as discussed above. We also mentioned in Sec. 8.4.4,
however, that it can be very useful to take the lump profile as random. We shall
now extend the theory of filtered random processes to allow for random lump profile
(or filter function). Our tool will again be the characteristic functional.

We consider a random process f(r) that is composed of a sum of N statistically
independent and identically distributed realizations of some other random process
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l(r), where N is a Poisson random variable. Denoting the nth realization by ln(r),
we write

f(r) =
N
∑

n=1

ln(r) . (11.160)

The original lumpy background of (11.159) fits this mold if the only randomness is
in the location, but (11.160) is much more general.

To find the characteristic functional, we start with the basic definition (8.94)
and write [cf. (11.149)]

Ψf (s) =

〈

exp

[

−2πi
N
∑

n=1

∫

A
d2r s(r) ln(r)

]〉

. (11.161)

As usual in this chapter, we perform the expectation in two steps, first over the
randomness of each member of the set {ln(r), n = 1, ...N} for fixed N, then over N
itself. We therefore have

Ψf (s) =

〈〈

N
∏

n=1

exp

[

−2πi

∫

A
d2r s(r) ln(r)

]

〉

{ln(r)}|N

〉

N

. (11.162)

Since the realizations are independent, the expectation of the product is the product
of the expectations, and each factor is the same since the realizations are identically
distributed; hence

Ψf (s) =

〈

N
∏

n=1

〈

exp

[

−2πi

∫

A
d2r s(r) ln(r)

]〉

{ln(r)}|N

〉

N

=
〈

[Ψl(s)]
N
〉

N
,

(11.163)
where Ψl(s) is the characteristic functional of the individual random process ln(r).

To perform the remaining expectation, we temporarily define N0 by

N0 = NΨl(s) , (11.164)

so that

Ψf (s) =
∞
∑

N=0

exp(−N)
N

N

N !
[Ψl(s)]

N = exp(−N+N0)
∞
∑

N=0

exp(−N0)
NN

0

N !
. (11.165)

The sum is unity (since Poisson probabilities are normalized), and we have, finally,

Ψf (s) = exp(−N +N0) = exp[−N +NΨl(s)] . (11.166)

From this characteristic functional, we can in principle compute any desired
statistical properties of this generalized lumpy background, just as we discussed
above for the simple filtered Poisson process. Moreover, various special cases can
be treated by making different assumptions about the randomness inherent in l(r).
The reader should, for example, be able to go from (11.166) to (11.154).

Another useful exercise is to let N get large and show that (11.166) approaches
the characteristic functional for a normal random process, (8.216). Thus, no matter
the statistics of l(r), a random process created by adding a large number of i.i.d.
realizations of it approaches normality.

Characteristic functionals of other kinds of point processes have been derived
by Ramirez-Perez and Serfling (2001). Statistical properties of other kinds of lumpy
backgrounds can be obtained by modifying their results to include the filtering
operation as above.
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11.3.11 Spectral properties of point processes

As we have seen in Chap. 8, Fourier analysis is often a useful tool for studying
random processes. In this section we use the Fourier domain to study Poisson point
processes and their relatives.

Fourier transform of a sample function In Chap. 3 we discussed the Fourier proper-
ties of generalized functions at some length. We can apply these methods directly
to random point processes. For example, the Fourier transform of a sample function
of the qD point process g(r), as defined in (11.72), is

G(ρ) = Fq{g(r)} =
N
∑

n=1

exp(−2πiρ · rn) . (11.167)

ThusG(ρ) is a sum of a random number of plane waves with random frequencies rn.

Power spectral density of stationary Poisson processes The power spectral density
(see Sec. 8.2.5) is an important way of specifying the frequency content of a sta-
tionary random process. By the Wiener-Khinchin theorem, the power spectral
density Sg(ρ) is the Fourier transform of the autocorrelation function Rg(∆r). For
a stationary Poisson point process, Rg(∆r) is obtained from (11.93) by setting
b(r) = b0 = constant and ∆r = r′ − r. We then obtain for the spectral density,

Sg(ρ) = Fq{b0 δ(∆r) + b20} = b0 + b20 δ(ρ) . (11.168)

The term b20 δ(ρ) is a result of the nonzero mean of g(r). If we define a zero-mean
process ∆g(r) = g(r)− b0, its power spectral density is

S∆g(ρ) = Fq{b0 δ(∆r)} = b0 . (11.169)

Thus a stationary Poisson random process is white; its power spectral density is a
constant, namely the mean photon fluence.

Filtered Poisson processes Suppose a stationary Poisson process is passed through a
filter with shift-invariant impulse response h(r), and hence transfer function H(ρ).
Let the output of the filter be denoted go(r) and define ∆go(r) = go(r) − 〈go(r)〉.
Then, by (8.156), the power spectral density of ∆g(r) is given by

S∆go(ρ) = b0|H(ρ)|2 . (11.170)

Thus the output spectrum is a direct measure of |H(ρ)|2, but of course only because
we know that the input is white.

If the poisson process is not stationary, we cannot use the power spectral
density to describe its frequency content, but we can use the stochastic Wigner
distribution function defined in Sec. 8.2.5. As an exercise, the reader can show that
W∆go(r,ρ) = b(r) ∗Wh(r,ρ) and that this expression reduces to (11.170) when the
fluence is constant.

Stationary doubly stochastic processes The autocovariance function of a doubly
stochastic Poisson process is given by (11.116). The process is (wide-sense) sta-
tionary if b(r) = b = constant and Kb(r, r′) = Kb(r − r′). In that case, the power
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spectral density of ∆g(r) is given by

S∆g(ρ) = Fq{Kg(∆r)} = b+ S∆b(ρ) . (11.171)

In contrast to (11.169), this spectrum is not white; in addition to the constant
term b, there is also a term S∆b(ρ) arising from the rate process. The presence
of these two terms can, perhaps, be appreciated from the sample functions shown
in Fig. 11.3. These images were constructed with a rate process having a low-
pass character, and the low spatial frequencies are evident in the images if the
fine structure arising from the white-noise component is ignored. The same low
frequencies are also seen in the sample functions of b(r) shown in the figure.

11.4 RANDOM AMPLIFICATION

Many detectors and other imaging devices include a built-in gain mechanism. Ex-
amples include photomultipliers, avalanche photodiodes, fluorescent screens, image
intensifiers and photographic film. In this section we develop the basic statistical
tools for the analysis of such devices.

The basic principles of random amplification are introduced in Sec. 11.4.1 in
the context of single-element detectors. Such devices are analyzed again in Sec.
11.4.2 in order to introduce the useful mathematical technique of generating func-
tions. In Sec. 11.4.3 we study the spatial and temporal dependence of amplified
point processes, and the same topics are treated in the frequency domain in Sec.
11.4.4. These sections build heavily on the discussion of random point processes in
Sec. 11.3. Finally, in Sec. 11.4.5, we apply the formalism of generating functions to
imaging arrays with gain.

11.4.1 Random amplification in single-element detectors

We begin by considering a simple nonimaging detector such as a photomultiplier
or avalanche photodiode in which the input is photons and the output is electrons.
All we need to know about the mechanism of the detector for now is that it puts
out some random number of electrons for each input photon it absorbs. Since the
same mathematics will apply to detectors with other inputs (e.g., electrons or ions)
and/or other outputs (especially photons), we refer to the input events as primaries
and the output events as secondaries.

If N primaries are absorbed in time T and the nth primary produces kn sec-
ondaries, then the total number of secondaries is

K =
N
∑

n=1

kn . (11.172)

There are N+1 random variables in this problem: each of the kn and N itself. The
objective of the problem is to determine the statistics of K from those of N and
the set {kn}.

Conditional probabilities The statistics of kn are governed by a probability law
Pr(kn = k). Since the primaries are indistinguishable, the gain mechanism must be
the same for all primaries. Hence Pr(kn = k) has the same form for all n, and we
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shall denote it as γ(k). If N = 1, this same probability law also governs the total
number of output secondaries K, i.e.,

Pr(K|N = 1) = γ(K) . (11.173)

The conditional mean and variance of K are given by

E{K|N = 1} =
∞
∑

K=0

K Pr(K|N = 1) =
∞
∑

k=0

k γ(k) = m1 ; (11.174)

Var{K|N = 1} =
∞
∑

k=0

k2γ(k)−m2
1 = m2 −m2

1 , (11.175)

where mj is the jth moment of γ(k). The first moment m1 is the average gain kn,
i.e., the mean number of output secondaries per input primary.

If we assume that all input primaries are amplified independently, then the
mean and variance for N primaries are given by

E{K|N} = Nm1 , (11.176)

Var{K|N} = N(m2 −m2
1) . (11.177)

From these results it follows that the conditional second moment of K is

E
{

K2|N
}

= N(m2 −m2
1) +N2m2

1 . (11.178)

The overall first and second moments of K can now be calculated by averaging
over N :

E{K} = Nm1 , (11.179)

E{K2} = N(m2 −m2
1) +

[

Var(N) +N
2
]

m2
1 . (11.180)

The overall variance of K is not obtained just by replacing N with N in (11.177).
Instead, we must write

Var(K) = E{K2}− [E{K}]2 = N(m2 −m2
1) +m2

1 Var(N) . (11.181)

Since m2 −m2
1 is the variance of kn (for one input primary) and m1 is the corre-

sponding mean, we can also write

Var(K) = N Var(kn) + k
2
n Var(N) . (11.182)

This result is often referred to as the Burgess variance theorem (Burgess,
1959), but it has been rederived many times in the literature; see Shockley and
Pierce (1938), Mandel (1959) and Zwieg (1965).

For a Poisson input, Var(N) = N, so (11.182) becomes

Var(K) = N
[

Var(kn) + k
2
n

]

= Nm2 , (11.183)

showing that in this case the variance of the output is the mean number of input
primaries times the second moment of the gain distribution. We can also express
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this result in terms of an output signal-to-noise ratio, defined as the mean of K
divided by its standard deviation:

SNRout ≡
K

√

Var(K)
= N

1

2
m1√
m2

. (11.184)

For a Poisson random variable, the SNR is the square root of the mean, so we
also have

[SNRout]
2 =

[

SNRin
]2 m2

1

m2
. (11.185)

By the Schwarz inequality, m2
1 ≤ m2 for any probability law, so SNRout is always

less than or equal to SNRin. The gain mechanism gives us a stronger signal, but
it cannot improve the SNR beyond that inherent in the Poisson statistics of the
input. In the radiology literature (see e.g., Barrett and Swindell, 1981, 1996), the
ratio m2

1/m2 is known as the Swank factor since R. K. Swank (1973) derived it in
the course of analyzing fluorescent screens for x-ray imaging.

If m2 = m2
1, then the Swank factor is unity, the variance of kn is zero and

the gain mechanism is noise-free, so SNRout = SNRin for a Poisson input N. This
does not mean, however, that the output K is also Poisson. Instead, from (11.179)

and (11.183), Var(K) = m1K = k
2
nN, so the variance is increased in absolute terms

by the square of the gain, while the mean is increased only linearly. Rarity begets
Poissonicity, but amplification (even noise-free amplification) inevitably destroys it.
Since the secondaries come in bursts, they are not independent.

11.4.2 Random amplification and generating functions

Discussions of random amplification in the literature often make use of probability-
generating functions (or generating functions for short). In order to give the reader
the necessary background to follow this literature, we shall now rederive all of the
results in Sec. 11.4.1 with generating functions. There is no loss of continuity in
skipping this section and going directly to Sec. 11.4.3, but the material here will be
needed in Sec. 11.4.5 when we discuss random amplification in arrays.

Sums of a random number of random variables By its definition (11.172), K is a
sum of a random number of integer-valued random variables. A natural tool for
dealing with integer-valued random variables is the generating function Φ(ζ) defined
in Sec. C.3.3. Here we have three separate integer-valued random variables, K, kn
and N, so we distinguish their generating functions with appropriate subscripts. If
the individual kn are i.i.d., there is a compact expression for the generating function
ΦK(ζ) (see Sec. C.3.3) for the total output K in terms of the generating function
ΦN (ζ) for the random number of terms N and the (common) generating function
Φk(ζ) for each of the kn.

The generating function for K is defined by

ΦK(ζ) = 〈ζK〉 =
∞
∑

K=0

ζK Pr(K) , (11.186)



RANDOM AMPLIFICATION 673

and Φk(ζ) and ΦN (ζ) are defined similarly. With the usual probability calculus, we
can write

ΦK(ζ) =
∞
∑

N=0

∞
∑

K=0

ζK Pr(K|N) Pr(N) . (11.187)

The sum over K is the conditional generating function for K given a fixed N ; in
light of the assumed independence of the kn, it can be written as

∞
∑

K=0

ζK Pr(K|N) = E
{

ζK |N
}

=
N
∏

n=1

E
{

ζkn
}

=
N
∏

n=1

Φk(ζ) = [Φk(ζ)]
N . (11.188)

Plugging this result back into (11.187), we find

ΦK(ζ) =
∞
∑

N=0

Pr(N) [Φk(ζ)]
N . (11.189)

But this expression has the same form as ΦN (ζ) [cf. (11.186)] except that Φk(ζ)
appears in place of ζ; we can therefore write

ΦK(ζ) = ΦN [Φk(ζ)] . (11.190)

Hence the generating function for the total number of secondaries K is a com-
pound generating function (function of a function) involving the separate generating
functions for number of primaries N and number of secondaries per primary kn.
If there are many stages of gain, the compounding can be repeated for each stage
(Lombard and Martin, 1961).

One limit in which we can verify (11.190) is when N is not really random. Then
Pr(N) = δNN0

, ΦN (ζ) = ζN0 and ΦK(ζ) = [Φk(ζ)]N0, just as we would expect for
the sum of a fixed number of independent random variables.

Moments From (C.63) we know that ΦK(ζ) is essentially the z-transform of the
probability law for K, so we can in principle go from (11.190) to Pr(K), though
it requires a model for Pr(k) or Φk(ζ). As we shall see in later chapters, however,
many practical figures of merit for image quality require only the first- and second-
order statistics, so we turn now to computation of moments of K. The reader who
is interested in Pr(K) is referred to Saleh (1978) and Saleh and Teich (1982).

To compute moments of K, we must compute derivatives of the compound
function ΦK(ζ) (see Sec. C.3.3). For the first derivative, we have

d

dζ
[ΦK(ζ)] =

d

dζ
{ΦN [Φk(ζ)]} =

d

dΦk
[ΦN (Φk)]

d

dζ
[Φk(ζ)] = Φ′

N (Φk)Φ
′
k(ζ) ,

(11.191)
where prime denotes the derivative of a function with respect to its argument. For
the second derivative, we obtain

d2

dζ2
[ΦK(ζ)] = Φ′

N (Φk)Φ
′′
k(ζ) + Φ′′

N (Φk) [Φ
′
k(ζ)]

2
. (11.192)

Note the asymmetry in this result; the functional compounding takes place in a
specific order.



674 POISSON STATISTICS AND PHOTON COUNTING

We can now use the results in (11.191) and (11.192) to obtain the first two
moments of K. From (C.65) we know how to compute factorial moments ck from
derivatives of the generating function. The first factorial moment c1 is simply the
mean m1, and the second factorial moment is related to the mean and variance by
(C.43). Thus we can write

〈N〉 = Φ′
N (1) , Var(N) = Φ′′

N (1)− [Φ′
N (1)]

2
+ Φ′

N (1) . (11.193)

Similarly, the mean and variance of each of kn is given by

〈kn〉 = Φ′
k(1) , Var(kn) = Φ′′

k(1)− [Φ′
k(1)]

2
+ Φ′

k(1) . (11.194)

For the total output K, we obtain

〈K〉 = Φ′
N [Φk(1)]Φ

′
k(1) = Φ′

N (1)Φ′
k(1) = 〈N〉〈kn〉 , (11.195)

Var(K) = Φ′
N (1)Φ′′

k(1) + Φ′′
N (1) [Φ′

k(1)]
2− [Φ′

N (1)Φ′
k(1)]

2
+ Φ′

N (1)Φ′
k(1) . (11.196)

The variance of the compound process can be expressed in terms of the means
and variances of the component processes by adding and subtracting
Φ′

N (1)[Φ′
k(1)]

2 on the righthand side of (11.196):

Var(K) = Φ′
N (1)

{

Φ′′
k(1)− [Φ′

k(1)]
2
+ Φ′

k(1)
}

+ [Φ′
k(1)]

2
{

Φ′′
N (1)−[Φ′

N (1)]
2
+ Φ′

N(1)
}

. (11.197)

With the use of (11.193) and (11.194), we now have

Var(K) = 〈N〉Var(kn) + 〈kn〉2 Var(N) , (11.198)

in agreement with (11.182).
These results have been used in the literature to analyze nonimaging detectors

with gain, most notably photomultipliers (Lombard and Martin, 1961). In Sec.
11.4.5 we shall learn how to extend the method to imaging arrays.

11.4.3 Random amplification of point processes

In Sec. 11.4.1 we considered the statistics of the total number of output secondaries
in a detector with gain, but we did not look at the random output process itself. If
we describe each secondary as a delta function in time, then a sample function of
the temporal random process on the detector output can be written as

y(t) =
N
∑

n=1

kn
∑

k=1

δ(t− tnk) =
N
∑

n=1

kn
∑

k=1

δ(t− tn −∆tnk) , (11.199)

where tn is the time at which the nth primary is absorbed, tnk is the time at which
the kth secondary (of those resulting from the nth primary) is produced, and ∆tnk
is the random time delay from absorption of the nth primary to production of its
kth secondary. The total number of output secondaries K =

∑N
n=1 kn.
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If the spatial distribution is of interest, a sample function of the amplified point
process is given by

y(r) =
N
∑

n=1

kn
∑

k=1

δ(r− rnk) =
N
∑

n=1

kn
∑

k=1

δ(r−Rn −∆rnk) , (11.200)

where Rn is the location at which the nth primary is absorbed, rnk is the location
for the kth secondary produced by that primary, and ∆rnk is the random displace-
ment. The only essential difference in the spatial and temporal cases is that ∆tnk
must be positive since the secondary cannot be produced before the primary is ab-
sorbed, while the components of ∆rnk can have either sign.

We shall apply the procedures of Sec. 11.3.3 to calculate the mean and au-
tocorrelation function of y(r), and the results can be readily transcribed for the
temporal case. For definiteness, we assume that r, Rn and ∆rnk are 2D vectors,
but that restriction too is easily lifted.

Specification of the probability laws The random quantities in y(r) are the sets
{∆rnk}, {Rn} and {kn} plus the random number of primaries N and, for a doubly
stochastic source, the primary fluence b(r). In order to decide how to average over
all of these quantities, we must know how each affects the probability laws on the
others.

Consider first the displacements {∆rnk} of the secondaries from the primary
positions. The secondaries from different primaries are generated independently
since the devices in question have no memory from one primary to the next. Thus
∆rnk must be independent of ∆rn′k′ for n )= n′. Moreover, even for the same
primary (n = n′), it is reasonable to assume that ∆rnk is independent of ∆rnk′

for k )= k′ unless there is some specific mechanism (perhaps space charge) coupling
the secondaries. We can thus assume that the multivariate density on {∆rnk} is
a product of univariate densities on each of the ∆rnk. Similarly, the conditional
multivariate density pr({rnk}|Rn) is a product of conditional univariate densities
pr(rnk|Rn). Notice, however, that the statistical independence of the rnk is lost
when we consider the randomness in Rn; then rnk and rnk′ (k )= k′) are not
independent because of the common termRn. It remains quite reasonable to assume
that ∆rnk and ∆rnk′(k )= k′) are independent even with random Rn, and this is
one advantage of working with ∆rnk rather than rnk.

In principle the univariate density on ∆rnk could depend on N, kn or b(r),
but such dependence is ruled out if we consider only linear detectors where the
mean spatial pattern on the output is independent of the input fluence. (With this
assumption we ignore an effect called blooming, where an image is blurred more at
high fluences than at lower ones.) On the other hand, we should allow the spatial
pattern of secondaries to depend on the position of the primary interaction, since
the blur in the amplification process is shift-variant in many detectors. Thus the
density on ∆rnk can depend on Rn (though not on Rn′ for (n′ )= n), and the
relevant univariate density describing the displacement is denoted pr∆r(∆rnk|Rn).

The specific form of pr∆r(∆rnk|Rn) can be deduced by an argument similar
to the one used to obtain (11.70) or (11.76). Let pd(r,R) be the shift-variant point
spread function of the gain mechanism, defined as the mean number of secondaries
per unit area at r from one primary absorbed at R. By analogy to (11.66), the
probability of one secondary falling in a vanishingly small area ∆A(r) centered at
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r is given by

Pr(1 sec in ∆A(r)|1 pri at R) = pd(r,R)∆A(r) . (11.201)

Another way of computing the probability of one secondary in ∆A(r) is to consider
a specific secondary, say the kth secondary produced by the nth primary. If exactly
kn indistinguishable secondaries are produced by the nth primary, the probability
that one of them falls in ∆A(r) is kn times the probability that specifically the kth

secondary falls in that area. Thus

Pr(1 sec in ∆A(r)|1 pri at Rn, kn secs produced)

= kn Pr(rnk in ∆A(r)|1 pri at Rn, kn secs produced)

= kn∆A(r) pr∆r(∆rnk|Rn)|∆rnk=r−Rn
, (11.202)

where pr∆r(∆rnk|Rn) is the probability density function on ∆rnk given that the
kth secondary was produced by the nth primary at Rn. Averaging over kn yields

Pr(1 sec in ∆A(r)|1 pri at Rn) = kn(Rn)∆A(r) pr∆r(∆rnk|Rn)|∆rnk=r−Rn
,

(11.203)
where

kn(Rn) =

∫

∞
d2r pd(r,Rn) . (11.204)

Comparison of (11.201) and (11.203) shows that

pr∆r(∆rnk|Rn) =
[

kn(Rn)
]−1

pd(∆rnk +Rn,Rn) . (11.205)

We shall also need the probability density function on Rn. For a given photon
fluence function b(r) (or Hilbert-space vector b), this density is given by (11.76),
written here as

prpri(Rn|b) =
b(Rn)

N(b)
, (11.206)

where N(b) is the mean total number of counts for fixed b.
We still need probability laws on N and {kn}. Since the mechanisms of gener-

ating primaries and secondaries are unrelated, and since the secondaries produced
by one primary have no effect on those produced by another primary, it is reasonable
to assume that

Pr(N, {kn}|b) = Pr(N |b) Pr({kn}|N) = Pr(N |b)
N
∏

n=1

Pr(kn) . (11.207)

As we saw in Sec. 11.1.1, a fixed b implies a Poisson law for N, but by treating the
probability on N as conditional on b, we can later average over b and get a more
general doubly stochastic model.

To summarize, averaging any function of the point process y(r) requires the
following steps, in sequence:

(a) Average over displacements {∆rnk} for fixed Rn with density (11.205);

(b) Average over number of secondaries kn for fixed Rn;
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(c) Average over Rn for fixed b with density (11.206);

(d) Average over total number of primaries N for fixed b;

(e) Average over b if the primaries are doubly stochastic.

Calculation of the mean With the recipe given above, calculation of the mean of
y(r) is straightforward. Step (a), the average over {∆rnk}, yields

〈y(r)〉{∆rnk} =
N
∑

n=1

kn
∑

k=1

∫

∞
d2∆rnk δ(r−Rn−∆rnk)

[

kn(Rn)
]−1

pd(∆rnk+Rn,Rn)

=
N
∑

n=1

kn
∑

k=1

[

kn(Rn)
]−1

pd(r,Rn) =
N
∑

n=1

kn
[

kn(Rn)
]−1

pd(r,Rn) , (11.208)

where the last form follows from the observation that the summand is independent
of k and that there are kn terms in the sum over k. Step (b), the average over all
kn for fixed Rn simply replaces kn by k(Rn), so

〈〈y(r)〉{∆rnk}〉{kn} =
N
∑

n=1

pd(r,Rn) . (11.209)

Step (c) involves integration against the density prpri(Rn|b) from (11.206),
yielding

〈〈〈y(r)〉{∆rnk}〉{kn}〉{Rn} =
N
∑

n=1

[

N(b)
]−1

∫

∞
d2Rn pd(r,Rn) b(Rn)

= N
[

N(b)
]−1

∫

∞
d2R pd(r,R) b(R) , (11.210)

where the last line follows since all N terms in the sum are independent of n once
the dummy variable of integration Rn is renamed R.

Steps (d) and (e) are now easy. An average over N conditional on b replaces
N with N(b), so

E{y(r)|b} =

∫

∞
d2R pd(r,R) b(R) . (11.211)

Step (e), the average over b, replaces b(R) with b(R), yielding, finally,

〈y(r)〉 =
∫

∞
d2R pd(r,R) b(R) =

∫

∞
d2R pr∆r(r−R|R) kn(R) b(R) , (11.212)

where the second form has incorporated (11.205).
For later convenience, we now define a linear operator H1 such that

[H1b] (r) =

∫

∞
d2R pd(r,R) b(R) , (11.213)

where b is the Hilbert-space vector corresponding to the function b(R). The oper-
ator H1 maps a function of R to a function of r. Comparison with (11.212) shows
that the kernel of the operator is pr∆r(r − R|R) kn(R). With this notation, we
have

〈y(r)〉 =
[

H1b
]

(r) . (11.214)
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Discussion The expressions for the mean in (11.212) may be anticlimactic; the first
form, at least, could have been written down at once by someone conversant with
shift-variant imaging systems (see Sec. 7.2.1) but ignorant of the statistics of point
processes. The second form is also fairly obvious since it says merely that the input
fluence pattern is first multiplied by the space-variant gain and then subjected to a
space-variant blurring process.

Several limits of (11.212) are worth examining. If the system is really shift-
invariant, then pd(r,R) = pd(r−R) and 〈y(r)〉 is just the convolution of the mean
input fluence b(R) with the point spread function. If the system is shift-variant but
b(R) is slowly varying compared to the blur width, then b(R) can be approximated
by b(r) and removed from the integral. The integral can then be evaluated via
(11.205), giving

〈y(r)〉 ≈ b(r) kn(r) , (11.215)

which is just the mean input fluence times the position-dependent gain. If the im-
age amplifier is ideal in the sense that the blur width is negligible and the gain is
independent of position, then 〈y(r)〉 is the mean input fluence times a constant gain
factor.

The final average over b may not be appropriate in all cases. Often we want
to know the statistics of the image for one object, which implies one fluence pat-
tern b(r), so the conditional expectation E{y(r)|b} is the important quantity; it is
recovered from (11.212) just by deleting the overbar.

Calculation of the autocorrelation function The autocorrelation function of y(r) is
defined by

Ry(r, r
′)=〈y(r) y(r′)〉=

〈

N
∑

n=1

kn
∑

k=1

δ(r−Rn −∆rnk)
N
∑

n′=1

kn′
∑

k′=1

δ(r′ −Rn′ −∆rn′k′)

〉

,

(11.216)
where the angle brackets imply the five-step recipe outlined above. Executing the
recipe is a bit tedious because of the four sums. As in Sec. 11.3.3, various special
cases must be considered separately.

In the double sum over n and n′, there are N terms with n = n′ (each term
being itself a double sum over k and k′) and N2−N terms with n )= n′. For n = n′,
there are kn terms with k = k′ in the double sum over k and k′, and there are
k2n − kn terms with k )= k′. For n )= n′, it is irrelevant whether k = k′, so there are
three cases to consider.

Case 1: n = n′ and k = k′

The calculation in this case parallels the derivation of (11.88), with the ad-
ditional step of averaging over Rn. From steps (a) – (d) in the recipe, the total
contribution from all terms with n = n′ and k = k′ is

[E{y(r) y(r′)|b}]n=n′, k=k′ =

[
∫

∞
d2R pd(r,R) b(R)

]

δ(r−r′) = [H1b] (r) δ(r−r′) .

(11.217)
Step (e) in this case just replaces b(R) with b(R), but we shall postpone this step
for a while.
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Case 2: n = n′ and k )= k′

Now step (a) in the recipe requires averaging δ(r−Rn−∆rnk) δ(r′−Rn−∆rnk′)
over ∆rnk and ∆rnk′ for fixed Rn. Since ∆rnk and ∆rnk′ are independent, this
average is pr∆r(r−Rn|Rn) pr∆r(r

′−Rn|Rn). Each of the k2n−kn terms with k )= k′

gives this same form, so the result of averaging over displacements and summing
over k and k′ for fixed n is

kn
∑

k=1

kn
∑

k′=1

(1− δkk′)E{∆rnk}

{

δ(r−Rn −∆rnk) δ(r
′ −Rn −∆rnk′) |Rn

}

= (k2n − kn) pr∆r(r−Rn|Rn) pr∆r(r
′ −Rn|Rn) . (11.218)

Note that the factor k2n − kn eliminates primary interactions for which kn = 0 or
1; there must be at least two secondaries for this expression to be nonzero since we
are considering k )= k′.

The average over kn required in step (b) yields

E{k2n − kn|Rn} = Var(kn|Rn) + [E{kn|Rn}]2 − E{kn|Rn} ≡ s(Rn) , (11.219)

where we have introduced s(Rn) as a shorthand for the indicated combination
of conditional mean and variance. The mnemonic is that s(R) is related to the
statistical spread of the gain mechanism at point R.

Steps (c) and (d) now give

[E{y(r) y(r′)|b}]n=n′,k %=k′ =

∫

∞
d2R pr∆r(r−R) pr∆r(r

′ −R|R) b(R) s(R) .

(11.220)
We can express this term more compactly by defining a linear operator H2 that
maps a function of R to a function of r and r′. The definition is

[H2b](r, r
′) =

∫

∞
d2R pr∆r(r−R|R) pr∆r(r

′ −R|R) b(R) s(R) . (11.221)

Case 3: n )= n′

If n )= n′, ∆rnk and ∆rn′k′ are independent, and there is no correlation be-
tween Rn and Rn′ except possibly that induced by randomness in the fluence b(r).
For fixed fluence, then,

[E {y(r) y(r′)|b}]n %=n′

= E{N2−N |b}E{kn δ(r−Rn−∆rnk)|b}E{kn′ δ(r′−Rn′ −∆rn′k)|b} . (11.222)

Since N is a Poisson random variable if the fluence is fixed, we know that

E{N2 −N |b} = Var(N |b) + [E{N |b}]2 − E{N |b} = [E{N |b}]2 =
[

N(b)
]2

.
(11.223)

The remaining two expectations in (11.222) were calculated in (11.211), and we
have

[E{y(r) y(r′)|b}]n %=n′ =

∫

∞
d2R pd(r,R) b(R)

∫

∞
d2R′ pd(r

′,R′) b(R′)

= [H1b](r) [H1b](r
′) , (11.224)

where H1 is the operator defined in (11.213).
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Conditional autocorrelation and autocovariance Adding (11.217), (11.220) and
(11.224), we find

Ry(r, r
′|b)= E{y(r) y(r′)|b}= [H1b](r) δ(r−r′)+[H2b](r, r

′)+[H1b](r) [H1b](r
′) .

(11.225)
This expression is the conditional autocorrelation function (for fixed b) of the am-
plified point process y(r). The corresponding conditional autocovariance function
is obtained by subtracting off the product of the conditional means; comparison of
(11.225) and (11.211) shows that the term to be subtracted off is just the third term
in (11.225), so the conditional autocovariance is

Ky(r, r
′|b) = E{y(r)y(r′)|b}− E{y(r)|b}E{y(r′)|b}

=

[
∫

∞
d2R pd(r,R) b(R)

]

δ(r−r′)+

∫

∞
d2R pr∆r(r−R|R) pr∆r(r

′−R|R) b(R) s(R)

= [H1b](r) δ(r− r′) + [H2b](r, r
′) . (11.226)

This expression contains a delta-correlated part, which comes from the fact
that each sample function of the amplified random process is a sum of delta
functions, and it also has a term with a finite correlation range. The factor
pr∆r(r − R|R) pr∆r(r

′ − R|R) in the kernel of H2 drops to zero when |r − r′|
is approximately equal to the width of pr∆r(r|R).

The similarity of the second term in Ky(r, r′|b) to (11.140) should be noted
(see also the discussion in Sec. 8.2.6). The randomness in ∆rnk induces a correlation
in y(r) of the same form as that induced by filtering. A key difference, however, is
that there is no delta-correlated term in the autocorrelation or autocovariance func-
tion of a filtered point process. An amplified point process is still a point process,
but a filtered point process is not. Instead, each input delta function produces a
shifted replica of the filter spread function, so there is no longer a delta-correlated
component.

A possible simplifying assumption at this point would be that the gain process
obeys Poisson statistics, so that Var(kn|Rn) = kn(Rn). In fact, a Poisson law for
detectors with gain is rarely valid (see Sec. 11.4.2), but if it is, then s(R) is just the
square of the gain E{kn|Rn}. In that case, the second term in (11.226) is identical
to (11.140), with the effective filter spread function h(r,R) given by the product of
the gain and the probability density function pr∆r(r−R|R) that controls the blur.

Amplification without blur Another interesting limit is where the gain process has
no significant blur associated with it, so that pr∆r(r −R|R) is well approximated
by δ(r−R). Then,

[H2b](r, r
′) ≈

∫

∞
d2R δ(r−R) δ(r′ −R) b(R) s(R) = b(r) s(r) δ(r− r′) . (11.227)

Under this approximation, both terms are delta-correlated, and the conditional
autocovariance is given by

Ky(r, r
′|b) = kn(r) b(r) δ(r− r′) + s(r) b(r) δ(r− r′)

=
{

Var(kn|r) + k
2
n(r)

}

b(r) δ(r− r′) , (11.228)
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where we have used (11.219). We recall from (11.94) that the autocovariance of a
Poisson random process is just b(r) δ(r− r′), and by computing the autocovariance
of y(r) conditional on b, we are, in effect, assuming that the input to the amplifier
is a Poisson random process. For an amplifier without blur, (11.228) shows that

the autocovariance is increased by a factor of Var(kn|r) + k
2
n(r). For a noise-free,

blur-free amplifier, the factor would be k
2
n(r), but noise in the amplification process

imparts a random amplitude to the impulses.

Since Var(kn|r) + k
2
n(r) is just the second moment m2 of the number of sec-

ondaries, the autocovariance is increased by m2/m2
1, which is the reciprocal of the

Swank factor discussed in Sec. 11.4.1. Here the factor refers to the relative strength
of an autocorrelation function rather than a variance, so it can be a function of
position.

Mislocation without gain Some imaging detectors do not amplify the point process
but rather estimate (with some error) the location of each impulse; an example is
the Anger scintillation camera to be introduced in Sec. 12.3. In such devices, kn is
identically one but ∆rn1 is still a random variable. The derivation just given still
applies if we set Var(kn) = 0 and kn(R) = 1. Then s(R) = 0 and the conditional
autocovariance function (11.226) becomes

Ky(r, r
′|b) =

[
∫

∞
d2R pr∆r(r−R|R) b(R)

]

δ(r− r′) , (11.229)

which is just what we would have for a Poisson random process and an ideal detector,
except that the mean fluence pattern is blurred with the spread function pr∆r(r|R).
With no gain and no randomness in b, only the delta-correlated term appears.

Random fluence If the fluence pattern is random, the overall autocorrelation func-
tion is obtained by averaging (11.225) over b. The first two terms, both linear in
b, are easily averaged just by adding an overbar. The final term becomes

Eb{[H1b] (r) [H1b] (r
′)} =

∫

∞
d2R pd(r,R)

∫

∞
d2R′ pd(r

′,R′) Eb{b(R) b(R′)}

=

∫

∞
d2R pd(r,R)

∫

∞
d2R′ pd(r

′,R′)Rb(R,R′) , (11.230)

where Rb(r, r′) is the autocorrelation function of b(r). The integral in (11.230) can
be interpreted as the autocorrelation of b(r) as transformed by H1; we denote it as
[H1RbH

†
1](r, r

′). The final expression for Ry is

Ry(r, r
′) = E{y(r) y(r′)} =

[

H1b
]

(r) δ(r−r′)+
[

H2b
]

(r, r′)+
[

H1RbH
†
1

]

(r, r′) .

(11.231)
To get the autocovariance, we must subtract the product of the means, now

including the average over b. The result is

Ky(r, r
′) = E{y(r) y(r′)}− E{y(r)}E{y(r′)}

=
[

H1b
]

(r) δ(r−r′)+
[

H2b
]

(r, r′)+
[

H1RbH
†
1

]

(r, r′)−
[

H1b
]

(r)
[

H1b
]

(r′) .

(11.232)
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The third and fourth terms comprise the autocovariance function Kb(r, r′)
transformed by the operator H1, so we can write, finally,

Ky(r, r
′) =

[

H1b
]

(r) δ(r− r′) +
[

H2b
]

(r, r′) +
[

H1KbH
†
1

]

(r, r′) . (11.233)

As in the case of nonrandom fluence, the delta-correlated term arises because
the amplified point process is still a sum of delta functions. The second term arises
from the amplification process, and the third is the contribution from the doubly
stochastic nature of the source, as in (11.116).

11.4.4 Spectral analysis

As we saw in Sec. 11.2, stationary random processes are usefully described in the
frequency domain by their power spectral densities. There are, however, many
reasons why the amplified point process y(r) might not be stationary. We shall
enumerate these reasons here along with the assumptions needed for stationarity;
then we shall compute the power spectral density of y(r) under these assumptions.

For a random process to be stationary in the wide sense, its mean must be
constant and its autocorrelation function must depend only on r−r′. From (11.212),
the mean is constant if the blurring process pr∆r(r−R|R) is shift-invariant, meaning
that it can be written as pr∆r(r −R), and the mean gain kn(R) and mean input
fluence b(R) are independent of position R. One way to achieve a constant input
fluence is to illuminate the detector with a uniform flood source of radiation. In
that case, b(R) is nonrandom and independent of R.

One additional condition for stationarity that is impossible to satisfy in practice
is that the detector and the input fluence must both extend to infinity so that the
limits of integration in (11.212) are infinite. As discussed in Sec. 8.2.4, boundary
effects require a modified definition of stationarity. For present purposes we simply
ignore the boundaries and use infinite limits.

If all of these conditions—constant gain and fluence, shift-invariant blurring
and infinite field of view—are satisfied, (11.212) is the convolution of pr∆r(r) with
a constant, which gives a constant.

To achieve stationarity for the conditional autocovariance (11.226), we must
impose the additional condition that s(R) is constant, which requires that the
variance of the amplification process as well as its mean be constant. If we set
s(R) = s0 and b(R) = b0 and make the change of variables R′ = r − R, we can
rewrite the second term in (11.226) as

[H2b] (r, r
′) = s0b0

∫

∞
d2R′ pr∆r(R

′) pr∆r(r
′ − r+R′)

= s0b0 [pr∆r -pr∆r] (r
′ − r) , (11.234)

where - denotes the spatial (not statistical) autocorrelation function as defined in
(3.115). The conditional autocovariance under the accumulated assumptions is thus

Ky(r, r
′|b) = kb0 δ(r− r′) + s0b0 [pr∆r -pr∆r] (r− r′) , (11.235)

where k is the constant mean gain, and we have used the normalization of pr∆r(r).
Since this expression is manifestly a function of only r−r′, it describes a wide-

sense stationary random process. The conditional power spectral density of the
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zero-mean process ∆y(r) is the Fourier transform of the autocovariance function
Ky (see Sec. 8.2.5). An easy transform leads to

S∆y(ρ|b) = kb0 + s0b0|ψ∆r(ρ)|2 , (11.236)

where ψ∆r(ρ) is the Fourier transform of pr∆r(r) (i.e., the characteristic function
for ∆r), and we have used (3.245).

The first term in (11.236) represents white noise with power spectral density
kb0 equal to the mean number of secondaries per unit area. Since pr∆r(r) is the
point spread function of the amplifier, ψ∆r(ρ) is its transfer function, and the second
term in (11.236) is proportional to the squared modulus of the transfer function.
This term has a low-pass characteristic since pr∆r(r) is a blurring filter.

If the fluence pattern is a random process, then the autocovariance function
has another term as seen in (11.233). In order for y(r) to be stationary, b(r) must
be stationary as well. Under that assumption, the third term in (11.233) is just a
double convolution, and we obtain

S∆y(ρ) = k b+
[

s0b+ k
2
S∆b(ρ)

]

|ψ∆r(ρ)|2 . (11.237)

Now we have a superposition of three distinctly different spectral functions:
a white-noise term k b, a term s0b|ψ∆r(ρ)|2 proportional to the squared modulus

of the transfer function, and a term k
2
S∆b(ρ)|ψ∆r(ρ)|2. The first of these arises

since y(r) is still a sum of impulses, the second arises from the spread of the gain
mechanism, and the third represents the fluence spectrum as amplified and filtered
by the transfer function.

11.4.5 Random amplification in arrays

If a detector with gain is to be used as part of a digital imaging system, the output
must be binned into discrete pixels. The binned output is then a random vector
rather than a random process, and a second-order statistical analysis must give
the mean vector and the covariance matrix. There are three basic ways in which
we can compute these quantities, corresponding to three different descriptions of
imaging systems. As we saw in Chap. 7, an imaging system can be modeled as a
continuous-to-continuous (CC), continuous-to-discrete (CD) or discrete-to-discrete
(DD) mapping. The discussion in Secs. 11.3.3 and 11.3.4 was based on a stochastic
CC model, where both input and output of the detector are random processes.
However, we showed in Sec. 11.3.4 how to convert mean and autocovariance function
of a random process to mean vector and covariance matrix by integrating over pixels.
Applying this procedure to (11.226), we obtain immediately the conditional (fixed-
fluence) covariance matrix,

[Ky(b)]mm′ = δmm′

∫

m
d2r [H1b] (r) +

∫

∞
d2R pm(R) pm′(R) b(R) s(R) ,

(11.238)
where

pm(R) =

∫

m
d2r pr∆r(r−R|R) . (11.239)

The second approach is to model the detector from the outset as a CD mapping
and to modify the derivation given in Sec. 11.4.3 so that it uses probabilities rather
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than probability density functions. For example, instead of the conditional density
pr(rnk|Rn), we would consider the probability that a secondary produced by a
primary at the continuous position R will fall in the jth output pixel. This approach
will also lead to (11.238).

The third approach is to imagine that the position of the primary interaction
is described not by a continuous variable R, but by another discrete pixel index.
In this approach we are interested in the probability that a secondary will fall in
pixel j given that it was produced by a primary in pixel i. Few real detectors
are accurately described by this DD model, just as few real imaging systems are
accurately described by deterministic DD models. Nevertheless, such models are
deeply entrenched in the literature, and it is worthwhile learning how to analyze
them. Furthermore, the stochastic DD model affords a chance to gain more fluency
with the useful technique of generating functions. For these reasons, we sketch here
an analysis of amplifying detectors based on multivariate generating functions and
a DD model, an approach used by Rabbani et al. (1987).

Multivariate generating functions We denote the random number of primaries ab-
sorbed on the jth input pixel by gj , j = 1, ..., J , and the random number of secon-
daries on the mth output pixel by ym, m = 1, ...,M. The set {gj} can be regarded
as the components of a J × 1 vector g, while the set {ym} forms an M × 1 vector
y. Note that the number of input pixels need not be the same as the number of
output pixels, and in fact J can be allowed to go to infinity to get results for the
CD case.

The multivariate generating function (more specifically, the probability-
generating function) is a generalization of the univariate generating function dis-
cussed in Sec. C.3.3. For the output vector y, the generating function is defined
by

Φy(ζ1, ζ2, ..., ζM ) = Φy(ζ) = Ey

{

M
∏

m=1

(ζm)ym

}

, (11.240)

where ζ is an M ×1 vector with components {ζm}. The generating function for the
input vector g is defined similarly:

Φg(ξ1, ξ2, ..., ξJ) = Φg(ξ) = Eg







J
∏

j=1

(ξj)
gj







, (11.241)

where ξ is a J × 1 vector.
It will also be useful to consider various conditional generating functions, de-

fined like (11.240) or (11.241) but with conditional expectations. Consider first
the conditional generating function Φy(ζ|1 pri in j, 1 sec) where one primary is ab-
sorbed in the jth input pixel and exactly one secondary is produced. Since there
is only one secondary, the sample space for each of the ym is just (0, 1). The con-
ditional probability that ym = 1, given that one secondary was produced in input
pixel j, will be denoted pjm. If a particular ym (say the one with m = n) equals
one, all others must be zero since there is only one secondary. When that event
occurs, the M -fold product in (11.240) consists of one factor given by (ζn)1 = ζn
and M − 1 factors of (ζn)0 = 1. This event has probability pjn, and it is mutually
exclusive of the similar events for other m values, so the corresponding probabilities
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add. The conditional generating function is thus

Φy(ζ|1 pri in j, 1 sec) =
M
∑

m=1

pjmζm . (11.242)

The righthand side of (11.242) has the form of a scalar product in an M -
dimensional space, so we define an M × 1 vector pj with components pjm and
write

Φy(ζ|1 pri in j, 1 sec) = pt
jζ . (11.243)

We have assumed throughout that secondaries are independent, so if exactly
kj secondaries are produced at input pixel j, they are distributed independently
among the output pixels. We thus have

Φy(ζ|1 pri in j, kj secs) = (pt
jζ)

kj . (11.244)

Averaging over kj yields

Φy(ζ|1 pri in j) =
∞
∑

kj=0

(pt
jζ)

kj Pr(kj) = Φkj
(pt

jζ) , (11.245)

where we have used the definition of the generating function, (11.186).
We can also take advantage of the fact that secondaries produced by different

primaries are independent. If one primary is absorbed in pixel i and another in
pixel j, the conditional expectations factor, and we find

Φy(ζ|1 pri in i and 1 pri in j) = Φki
(pt

iζ)Φkj
(pt

jζ) . (11.246)

By extension, given a specific realization of the random primary vector g (each
component of which is an integer), we have

Φy(ζ|g) =
J
∏

j=1

[

Φkj
(pt

jζ)
]gj . (11.247)

Averaging over g yields

Φy(ζ) = Eg{Φy(ζ|g)} = Eg







J
∏

j=1

[

Φkj
(pt

jζ)
]gj







. (11.248)

Comparison with (11.241) shows that

Φy(ζ) = Φg

[

Φk1
(pt

1ζ),Φk2
(pt

2ζ), ...,ΦkJ
(pt

Jζ)
]

. (11.249)

Mean and covariance We can derive the mean vector and covariance matrix for y
by differentiating (11.249) in a manner similar to (11.195) – (11.198). Chain-rule
differentiation gives

∂Φy(ζ)

∂ζm
=

J
∑

j=1

∂Φg [Φk1
(pt

1ζ), ...,ΦkJ
(pt

Jζ)]

∂Φkj
(pt

jζ)

∂Φkj
(pt

jζ)

∂pt
jζ

∂pt
jζ

∂ζm
. (11.250)
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The mean of ym is found by evaluating (11.250) with ζj = 1 for all j (or ζ = 1,
where 1 is a vector with all elements equal to one). The last factor in the summand,
∂pt

jζ/∂ζm, is simply pjm, independent of ζ, so no evaluation is needed. The middle
factor evaluates to

∂Φkj
(pt

jζ)

∂pt
jζ

∣

∣

∣

ζ=1
=
∂Φkj

(ν)

∂ν

∣

∣

∣

ν=
∑

m pjm=1
= kj , (11.251)

where the middle step makes use of the normalization of probability, from which it
follows that setting ζ = 1 is the same thing as setting pt

jζ = 1.
The first factor in (11.251) evaluates to

∂Φg [Φk1
(pt

1ζ), ...,ΦkJ
(pt

Jζ)]

∂Φkj
(pt

jζ)

∣

∣

∣

ζ=1
=
∂Φg(ξ1, ..., ξJ)

∂ξj

∣

∣

∣

ξ=1
= gj , (11.252)

where in this step we have used the fact that Φkj
(pt

j1) = Φkj
(1) = 1 since the

zeroth moment of any random variable is unity.
Collecting results, we find

〈ym〉 =
J
∑

j=1

gjkjpjm . (11.253)

A similar analysis shows that

∂2Φy(ζ)

∂ζm∂ζn

∣

∣

∣

ζ=1
= 〈ymyn〉

=
J
∑

j=1

gjkjpjm

J
∑

l=1

glklplm +
J
∑

j=1

gjpjmpjn〈kj(kj − 1)〉 , (m )= n) . (11.254)

For the special case m = n we find

∂2Φy(ζ)

∂ζ2m

∣

∣

∣

ζ=1
= 〈ym(ym − 1)〉

=
J
∑

j=1

gjkjpjm

J
∑

l=1

glklplm +
J
∑

j=1

gjp
2
jm〈kj(kj − 1)〉 . (11.255)

From these expressions, the covariance matrix of y (for fixed fluence) is found
to be

[Ky(b)]mn = [〈ymyn〉 − 〈ym〉〈yn〉] (1− δmn) +
[

〈ym(ym − 1)〉+ 〈ym〉 − 〈ym〉2
]

δmn

=
J
∑

j=1

gjpjmpjn〈kj(kj − 1)〉+





J
∑

j=1

gjpjmkj



 δmn . (11.256)

This expression is the discrete counterpart of (11.226). The latter can be
derived from (11.256) by sprinkling in factors of 1/ε2, where ε is the pixel width,
and passing to the limit ε → 0 [cf. (11.106)]. In carrying out this procedure, note
that 〈kj(kj − 1)〉 corresponds to s(R), which appears in (11.226) in the guise of H2

[see (11.219) and (11.221)].
The covariance matrix in the CD case can also be derived by letting J → ∞ in

(11.256) but keeping the output pixel size constant. In this case the Kronecker delta
function remains instead of limiting to a Dirac delta as in (11.105). This procedure
will reproduce (11.238).
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11.5 QUANTUM MECHANICS OF PHOTON COUNTING

In this section we examine the role of quantum electrodynamics (QED) in the anal-
ysis of photon-counting experiments. Much of the groundwork for this discussion
was laid in Chap. 10, where we introduced the concepts of modes of the radiation
field, number operators and photons, along with the elements of photodetection
theory. The reader is presumed to be familiar with these ideas and with the basic
principles of quantum mechanics, including the concept of a state vector and its
relation to a wavefunction. Dirac notation is used freely, and quantum-mechanical
operators are denoted with a caret.

11.5.1 Coherent states

Since this chapter is mainly about Poisson statistics, we begin our discussion of
QED and photon counting by considering a set of quantum states where the Pois-
son distribution is of central importance. These states, introduced briefly in Sec.
10.1.3, are called variously coherent states, canonical coherent states, Glauber
states or minimum uncertainty states. They are states of a harmonic oscillator,
but we saw in Chap. 10 that a single mode of the radiation field is in fact described
by a harmonic oscillator.

The fundamental reference on coherent states is Glauber (1963), and excellent
discussions are found in Meystre and Sargent (1990), Mandel and Wolf (1995) and
Cohen-Tannoudji et al. (1989). Here we summarize, without derivation, the main
properties needed to better understand the role of Poisson statistics in imaging.
Along the way, we shall note some interesting connections with local Fourier trans-
forms, wavelets and other mathematical concepts introduced earlier in this book.

Eigenstates of the annihilation operator We saw in Sec. 10.1.3 that the electric field
operator for the jth mode of the radiation field is [cf. (10.22)]

êj(r, t) = iγjNj

[

exp(ikj · r) âj − exp(−ikj · r) â†j
]

, (11.257)

where γj is a unit vector in the direction of the field, Nj is a constant defined in

(10.13), and â†j and âj are, respectively, the creation and annihilation operators.
As shown in (10.27), the creation operator increases the number of photons in the
field by one and the annihilation operator decreases the number by one.

In Sec. 10.1.3 we discussed mainly the number states, eigenstates of the Hamil-
tonian. Another very useful set of states consists of the eigenstates of the annihi-
lation operator. The annihilation operator is especially important since (as stated
more precisely in Sec. 10.1.4) photodetection takes place by annihilating photons.

We now drop the index j designating a particular mode of the field. Then the
annihilation operator is denoted by â, and its eigenstate |α〉 is defined by

â|α〉 = α|α〉 . (11.258)

Since â is not Hermitian, its eigenvalue α need not be real, and in fact it can take
on any value in the complex plane.

The state |α〉 can be expressed in terms of number states as

|α〉 =
∞
∑

n=0

|n〉〈n|α〉 , (11.259)
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where (Glauber, 1963)

〈n|α〉 = exp(−1
2 |α|

2)
αn

√
n!

. (11.260)

As noted in Sec. 10.1.3, the probability that the state |α〉 contains n photons is
given by

|cn|2 = |〈n|α〉|2 = exp(−|α|2)
|α|2n

n!
, (11.261)

which is a Poisson distribution with mean |α|2.

Orthogonality and completeness The states |α〉 are not orthogonal; instead they
satisfy (Glauber, 1963)

〈α|α′〉 = exp(−|α− α′|2) . (11.262)

In spite of the lack of orthogonality, the coherent states form a complete set in
terms of which any state of the mode can be expanded. The set is overcomplete in
the sense that some subset of it would also span the state space; the state space is
an L2 space and can therefore be spanned by a denumerable basis (see Sec. 1.1.5).

The closure relation (resolution of the unit operator) is

Î =
1

π

∫

∞
d2α |α〉〈α| , (11.263)

where d2α is an area element in the complex α plane. The factor of 1/π is a measure
of overcompleteness of the states; for a complete, orthonormal set, the sum of outer
products is Î rather than πÎ. Equation (11.263) is reminiscent of closure relations
for other overcomplete sets or extended representations introduced in Chap. 5; see,
in particular, (5.39) and (5.85). We shall explore this connection further below.

One use of the closure relation is to express a number state as

|n〉 =
1

π

∫

∞
d2α |α〉〈α|n〉 , (11.264)

where 〈α|n〉 is the complex conjugate of (11.260).

Displacement operator As discussed by Glauber (1963), the coherent state |α〉 can
be generated by the Weyl displacement operator D̂(α) acting on the harmonic-
oscillator ground state (or vacuum state):

|α〉 = D̂(α)|0〉 . (11.265)

Explicitly, D̂(α) is given by

D̂(α) = exp
(

αâ† − α∗â
)

= exp(− 1
2 |α|

2) exp(αâ†) . (11.266)

The exponential operator is defined in the same way as a matrix exponential and
obeys the same manipulation rules (see Sec. A.7.1). Note that D̂(α) reduces to the
unit operator when α→ 0. Thus the vacuum state corresponds to both n = 0 and
α = 0, and the ambiguity of the notation |0〉 causes no problem.

We can also express D̂(α) in terms of position and momentum operators. Fol-
lowing (10.16), we define these operators by

Q̂ =

√

!

2ω

(

â† + â
)

, P̂ = i

√

!ω

2

(

â† − â
)

, (11.267)
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and we also define real scalars q and p by

q =

√

!

2ω
(α∗ + α) , p = i

√

!ω

2
(α∗ − α) , (11.268)

respectively. With these definitions,

D̂(α) = exp

[

i

!

(

pQ̂− qP̂
)

]

≡ D̂(q, p) . (11.269)

To discover the reason for the term displacement operator, we use the coor-
dinate representation where

Q̂|q′〉 = q′|q′〉 . (11.270)

In this representation, the matrix elements of Q̂ are given by (Messiah, 1961)

〈q′|Q̂|q′′〉 = q′δ(q′ − q′′) , (11.271)

and those of P̂ are given by

〈q′|P̂ |q′′〉 = −i!
∂

∂q′
δ(q′ − q′′) . (11.272)

With (11.270), it follows that

〈q′|D̂(q, p)|q′′〉 = exp

(

i

!
pq′ − q

∂

∂q′

)

δ(q′ − q′′) . (11.273)

In the coordinate representation, the stationary-state wavefunctions
ψn(q′) = 〈q′|n〉 are Hermite-Gauss functions, and in particular the vacuum state is
represented by (Messiah, 1961)

〈q′|0〉 =
( ω

π!

)
1

4

exp
(

−
ω

2!
q′2

)

. (11.274)

Thus

〈q′|α〉 =
∫

dq′′ 〈q′|D̂(p, q)|q′′〉〈q′′|0〉 =
( ω

π!

)
1

4

exp

(

i

!
pq′ − q

∂

∂q′

)

exp
(

−
ω

2!
q′2

)

.

(11.275)
We recognize exp(−q ∂

∂q′ ) as the displacement operator defined in Sec. A.10.1 of
App. A. From (A.177) and (11.275), it follows that

〈q′|α〉 =
∫

dq′′ 〈q′|D̂(p, q)|q′′〉〈q′′|0〉 =
( ω

π!

)
1

4

exp

(

i

!
pq′

)

exp
[

−
ω

2!
(q′ − q)2

]

.

(11.276)
Thus the effect of D̂(q, p) on the vacuum wavefunction 〈q′|0〉 is to displace it from
the origin by an amount q and to multiply it by the linear phase factor exp(ipq′/!).

Uncertainty We showed in Sec. 5.1.2 that the uncertainty product σqσp is mini-
mized when the wavefunction is a Gaussian. Thus the uncertainty is minimal for a
harmonic oscillator when it is in its ground state. The same uncertainty product
is, however, obtained for all coherent states. The phase factor in (11.276) vanishes
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when we compute the probability density |〈q′|α〉|2, and a shift of a probability den-
sity function does not affect its variance. In fact, the phase factor is merely a shift
in the momentum wavefunction, which is the Fourier transform of 〈q′|α〉, and the
squared modulus of the momentum wavefunction is the probability density function
on the momentum. Hence both σq and σp are independent of α by the observation
that variance is independent of shift.

Thus the coherent states comprise a family of states, all of which have the small-
est possible uncertainty. Recall also that the coherent states are quantum states of
a single mode of the radiation field and that the mode is a plane wave. A perfectly
monochromatic classical plane wave would have constant amplitude, but in quan-
tum mechanics the real and imaginary parts of the amplitude are operators subject
to the uncertainty relation. The coherent state is the best quantum-mechanical
counterpart of a classical monochromatic plane wave in the sense of minimizing
that uncertainty.

Local Fourier transforms In Sec. 5.1 we defined a local Fourier transform by win-
dowing a function with, say, a Gaussian, multiplying it by a linear phase factor
(or Fourier kernel), and then integrating. The local Fourier transform (5.1) is then
a function of the shift of the window function and the spatial frequency, which is
essentially the slope of the linear phase. Equivalently, the local Fourier transform is
a scalar product with a kernel of the form b(x− x0) exp(2πiξx). Exactly the same
operations— shifting and multiplying by a linear phase factor—occur in (11.276),
so we can think of the coherent-state wavefunction as a kernel in a local Fourier
transform.

This analogy sheds some light on the orthogonality and completeness proper-
ties of the coherent states. We saw in Sec. 5.1 that the local Fourier transform was
always invertible without any requirement that the kernels be orthogonal. As seen
in (5.40), inversion of the local Fourier transform requires integration over both
the shift variable and the spatial frequency. The closure relation (5.39) is, in fact,
identical to (11.263) since the integral over the complex α plane can be expressed in
terms of integrals over p and q. The reader should fill in the details of this assertion
as an exercise.

Coherent states and group theory In Chap. 5 we saw the similarities between the
local Fourier transform and the wavelet transform, and in Chap. 6 we investigated
the relation between wavelets and group theory. There is also an intimate connection
between coherent states and group theory (Klauder, 1985; Daubechies, 1992).

As we saw in Sec. 6.8.5, wavelets are derived from the affine group, a Lie
group that involves shifting and scaling a function. Coherent states and the local
Fourier transform are related to the Weyl-Heisenberg group, a group of functional
transformations of the form, f(x) → exp(2πiξx) f(x−x0). This group is sometimes
referred to as the translate-modulate group while the affine group is the translate-
scale group.

There are many similarities between the Weyl-Heisenberg and affine groups.
Both are multiparameter Lie groups, both are non-Abelian and both have only
infinite-dimensional irreducible representations (see Sec. 6.8.5). A minor difference
is that the affine group has two parameters, the shift and the scale, but the Weyl-
Heisenberg group actually has three; we must include multiplication by a constant
phase factor eiφ in order for the functional transformations to form a group. An
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element of the group is then specified by x0, ξ and φ (or q, p and φ in quantum
language).

Klauder (1985) has shown how any Lie group can be used to define generalized
coherent states. Consider a Lie group G represented by a set of unitary operators
{T̂θ} on some Hilbert space. (In Chap. 6 such an operator would have been denoted
by Tθ, but here we use the caret to suggest a quantum-mechanical operator.) A set
of vectors in the Hilbert space can be defined by

|θ〉 = T̂θ|0〉 , (11.277)

where |0〉 is an arbitrary reference state, called the fiducial state. Klauder calls |θ〉
a generalized coherent state if it satisfies two conditions:

Continuity: The vector |θ〉 is a strongly continuous function of the label θ.

Completeness: There exists a positive measure δθ on the Hilbert space such
that the unit operator can be expressed as

Î =

∫

δθ |θ〉〈θ| . (11.278)

These conditions are satisfied by Glauber’s coherent states (which Klauder refers
to as the canonical coherent states); in that case, the fiducial state is the vacuum
state of a harmonic oscillator, and the resolution of unity is given in (11.263).

Note that the continuity condition rules out discrete orthogonal vectors or δ-
normalized continuum orthogonal vectors such as delta functions and plane waves.
Moreover, the vectors |θ〉 are not orthogonal in general, so |θ〉 cannot be an eigen-
state of a Hermitian operator.

11.5.2 Density operators

According to the basic axioms of quantum mechanics, any physical observable Ω is
represented by a Hermitian operator Ω̂, and the expectation value of the observable
in any pure quantum state |ψ〉 is

〈Ω̂〉 = 〈ψ|Ω̂|ψ〉 . (11.279)

This expectation can be computed in any convenient basis. For example, in the
basis formed by the number states,

〈Ω̂〉 =
∑

n,m

〈ψ|n〉〈n|Ω̂|m〉〈m|ψ〉 , (11.280)

and in the coordinate basis,

〈Ω̂〉 =
∫

∞
dq′

∫

∞
dq′′ 〈ψ|q′〉〈q′|Ω̂|q′′〉〈q′′|ψ〉 . (11.281)

It is useful to define an operator, called the density operator, by

ρ̂ = |ψ〉〈ψ| . (11.282)
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The matrix elements of this operator in the number-state representation are given
by

ρmn = 〈m|ψ〉〈ψ|n〉 , (11.283)

and the matrix with these elements is called the density matrix.
In terms of the density operator, (11.280) becomes

〈Ω̂〉 =
∑

m

[

∑

n

ρmn〈n|Ω̂|m〉

]

= tr
{

ρ̂ Ω̂
}

, (11.284)

where tr{·} denotes the trace or sum of diagonal elements.
Since the trace is invariant to unitary transformations, the final form of (11.284)

applies also in the coordinate representation where

〈q′|ρ̂|q′′〉 = 〈q′|ψ〉 〈ψ|q′′〉 = ψ(q′)ψ∗(q′′) , (11.285)

and ψ(q′) is the usual Schrödinger wavefunction. In this representation, the coun-
terpart of (11.284) is

〈Ω̂〉 =
∫

∞
dq′

∫

∞
dq′′ 〈q′|ρ̂|q′′〉〈q′′|Ω̂|q′〉 =

∫

∞
dq′ 〈q′|ρ̂ Ω̂|q′〉 , (11.286)

where the last step follows from the closure relation,
∫

∞
dq′′ |q′′〉〈q′′| = Î . (11.287)

The single integral in the last form of (11.286) can be interpreted as a trace, but
with the discrete indices replaced with continuous variables and the sum replaced
by an integral.

Mixed or doubly stochastic states As we have just seen, the density operator, in
any representation, is sufficient for computing the expectation value of any physical
observable; knowledge of ρ̂ is equivalent to knowledge of the wavefunction or state
vector. Often, however, we do not know that the system is in a particular state.
Perhaps we can say only that it is in state |ψk〉 with probability Pr(k). In the
quantum-mechanics literature, such a system is often said to be in a mixed state,
though this may be misleading since we are really just saying that we do not know
what state it is in. In a frequentist interpretation of probability, the system is
in state |ψk〉 with relative frequency Pr(k) (over repeated experiments), and in
an ensemble interpretation a fraction Pr(k) of the systems are described by state
vector |ψk〉. In either case, Pr(k) is a classical probability satisfying the Kolmogorov
axioms (see Sec. C.1.4), not a quantum-mechanical probability amplitude.

In a mixed state, the expectation must be computed by a double averaging
process: first the quantum-mechanical expectation for a particular state, then a
classical averaging over states. The resulting expression is

〈Ω̂〉 =
∑

k

Pr(k) 〈ψk|Ω̂|ψk〉 . (11.288)

In Sec. 11.1.4, we defined a doubly stochastic random variable as one for which a
parameter of the probability law is itself random. That definition applies here if
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we think of the index k as the random parameter. Thus the averaging process in
(11.288) is the same sort of doubly stochastic averaging we have used often in this
chapter.

We can still use the concept of a density operator if we now define it as

ρ̂ =
∑

k

Pr(k)|ψk〉〈ψk| . (11.289)

The density matrix in the number-state representation (or any other denumerable
basis) is given by

ρnm = 〈n|ρ|m〉 =
∑

k

Pr(k) 〈n|ψk〉〈ψk|m〉 , (11.290)

and we can still write the overall, doubly averaged, expectation of Ω̂ as

〈Ω̂〉 = tr
{

ρ̂ Ω̂
}

. (11.291)

Density operator in the coherent-state representation The density operator can be
expressed in terms of coherent states as (Glauber, 1963)

ρ̂ =

∫

d2α P (α)|α〉〈α| . (11.292)

The function P (α) appears to play the same role as Pr(k) in (11.290), but it cannot
be interpreted as a classical probability or probability density function. In (11.290),
the states |ψk〉 are distinct (orthogonal), and the system is in state k with probability
Pr(k). If the system is in a particular |ψk〉, say k = k0, with probability one, then
by the Kolmogorov axioms (see Sec. C.1.4), its probability of being in some other
state must be zero. Because of the lack of orthogonality, however, the states |α〉 are
not distinct. If the system is described exactly by |ψ〉 = |α0〉, then its probability
|〈α1|ψ〉|2 of being in some other coherent state |α1〉 is not zero. This problem causes
P (α) to have some properties that are not allowed in classical probability theory.
As we shall see in some examples below, P (α) can go negative, and it can be more
singular than a delta function; that is, it does not integrate to a finite value and
hence it cannot be normalized as a probability density function.

Nevertheless, P (α) is quite useful for computing expectation values of functions
of the operators â and â†. Suppose we have a classical complex random variable
z = x+ iy, and we want to compute the expectation of some function f(x, y). Since
x and y can be expressed in terms of z and z∗, we can define f(x, y) = f ′(z∗, z) and
write the expectation as

〈f ′(z∗, z)〉 =
∫

∞
d2z pr(z) f ′(z∗, z) , (11.293)

where the notation pr(z) is used as a shorthand for the joint density of z and z∗. One
might think that a similar formula would hold for an operator function f(â†, â), but
â† and â do not commute, so any expectation must depend on the order in which
the operators are written.

One important way of ordering operators is normal ordering, where all cre-
ation operators appear to the left of all annihilation operators; an example is [a†]3a2.
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Another possibility is antinormal ordering where the annihilation operators ap-
pear to the left, as in a2[a†]3. There are also several ways of defining a symmet-
rical ordering (Tatarskii, 1983). Since the commutation relations are known, it is
straightforward to convert from one ordering to another. Normal ordering is impor-
tant in optics since, as we saw in Sec. 10.1.4, the photodetection rate is proportional
to an expectation value of a normally ordered operator.

The function P (α) plays the role of a probability for normally ordered opera-
tors. The quantum-mechanical counterpart of (11.293) is

〈{

f(â†, â)
}

nor

〉

=

∫

∞
d2α P (α) f(α∗,α) , (11.294)

where {·}nor indicates a normal ordering. Since it appears where a true probability
density function would appear in this formula, P (α) is called a quasiprobability.

Other quasiprobabilities Equations analogous to (11.294) can be given for other or-
dering schemes. The quasiprobability for antinormal ordering is usually denoted
Q(α). If P (α) is known, Q(α) can be found by convolving it with a Gaussian of
the form exp(−|α|2) (Cohen-Tannoudji et al., 1989). As a result of the smoothing
action of this convolution, Q(α) is much better behaved than P (α); it is never neg-
ative and it can always be normalized as a probability density function.

For a certain kind of symmetric ordering (called Weyl ordering), the ap-
propriate quasiprobability is the Wigner distribution function or WDF (Tatarskii,
1983). The WDF is also a smoothed version of P (α), but the convolution is with
exp(− 1

2 |α|
2) rather than exp(−|α|2). The WDF is intermediate between P and Q

in terms of its mathematical behavior; it can go negative but nevertheless it obeys
the normalization rules of a true joint probability density function.

From P (α) to the density matrix In terms of P (α), the number-state matrix ele-
ments of the density operator are given by

ρnm = 〈n|ρ̂|m〉 =
∫

∞
d2α P (α) 〈n|α〉〈α|m〉 , (11.295)

where 〈n|α〉 is given by (11.260). The diagonal element ρnn is the probability of
having n photons in the mode; it is given by

ρnn = 〈n|ρ̂|n〉 =
1

n!

∫

∞
d2α |α|2n exp(−|α|2)P (α) . (11.296)

This integral is formally identical to the Poisson transform defined in (11.25), and it
might appear that we have just rederived the classical result. Since P (α) does not
behave like a true probability density function, however, some strange and distinctly
nonclassical behavior can occur. To illustrate, let us look at a few forms for P (α)
and the resulting ρnn.

Example 1: Coherent state Consider first the coherent state |α0〉. For this state,
P (α) = δ(α− α0), and ρnn is given from (11.296) as

ρnn =
1

n!

∫

∞
d2α |α|2n exp(−|α|2) δ(α− α0) =

|α0|2n

n!
exp(−|α0|2) , (11.297)
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which is a Poisson probability of mean |α0|2. One consequence is that the variance
of the number of photons is equal to its mean.

Recall that in Sec. 11.1 we considered a source where the rate of photon emis-
sion was constant and the photons were independent, and we showed that the
probability law on the number of photons was Poisson. Here we see that a co-
herent state satisfies the assumptions of that calculation. A classical steady wave
gives rise to a Poisson distribution of counts, and the coherent state is the best
quantum-mechanical approximation to a classical steady wave.

Example 2: Thermal equilibrium If the system is in thermal equilibrium, P (α) is a
Gaussian centered at the origin (Glauber, 1963):

P (α) =
1

π〈n〉
exp

[

−
|α|2

〈n〉

]

. (11.298)

This P (α) can be interpreted as a classical probability density function. In fact, it
is just the circular Gaussian density discussed in Sec. 8.3.6. The real and imaginary
parts of α are independent and identically distributed.

The diagonal elements of the density matrix are now given by

ρnn =
1

π〈n〉n!

∫

∞
d2α |α|2n exp(−|α|2) exp

[

−
|α|2

〈n〉

]

. (11.299)

The integral is easily performed in polar coordinates. If we set α = Reiθ, then
d2α = RdRdθ, and the θ integral yields a factor of 2π. A further change of
variables, u = R2 = |α|2, converts the integral to

ρnn =
1

〈n〉

∫ ∞

0
du

un

n!
e−u exp

[

−
u

〈n〉

]

. (11.300)

Recalling (11.25), we recognize this form as the Poisson transform of an exponential
probability law. From the definition of the gamma or factorial function and some
algebra, we find (Saleh, 1978)

ρnn =
〈n〉n

[〈n〉+ 1]n+1 , (11.301)

which can also be written as

ρnn =
1

〈n〉+ 1
exp

[

−n ln

(

〈n〉+ 1

〈n〉

)]

. (11.302)

This is the Bose-Einstein distribution of photons in a single mode.
This Bose-Einstein distribution should not be confused with another function

often given the same designation. The latter function specifies the variation of 〈n〉
with the frequency ω of the mode and the absolute temperature T :

〈n〉 =
1

exp
(

!ω
kBT

)

− 1
, (11.303)

where kB is Boltzmann’s constant. The Bose-Einstein distribution in (11.301) gives
the probability distribution of photons, but (11.303) gives their distribution over
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frequency; it would better be called a spectrum, but the term distribution is almost
universal for it. Both (11.301) and (11.303) are needed for a complete statistical
description of the statistics of photons in multiple modes, but we concentrate here
on a single mode, where the statistics in thermal equilibrium are fully determined
by the single number 〈n〉.

The (single-mode) Bose-Einstein distribution ρnn is plotted in Fig. 11.5. As
seen from (11.302), ρnn is a simple exponential sampled at integer values; the most
probable value of n in thermal equilibrium is always zero.

Fig. 11.5 Plot of the Bose-Einstein probability distribution of photons in a
single mode, as given by the expression for ρnn in (11.301).

The variance associated with this distribution is given by (C.187) as

Var(n) = 〈n〉+ 〈n〉2 . (11.304)

This value is necessarily greater than 〈n〉 (unless 〈n〉 = 0), so there is an excess
variance (see Sec. 11.1.4), beyond the variance associated with a Poisson distribution
of the same mean.

Example 3: Number state Finally, consider a particular number state |N〉. The
density operator for this state is ρ̂ = |N〉〈N |, and the matrix elements of this
operator in the number-state representation are given by

ρmn = 〈m|N〉〈N |n〉 = δNm δNn . (11.305)

Hence the probability of finding n photons is

ρnn = δNn , (11.306)

so the state contains exactly N photons.
Since n can take on only the single valueN, the mean of n is N and the variance

of n is zero in the number state |N〉. Since 0 is less than N, the variance of the
number of photons in this state is less than the value predicted for a Poisson with
the same mean, and the statistics of n are said to be sub-Poisson. The classical
expression (11.32) says that sub-Poisson statistics cannot occur, so the number state
is an example of nonclassical light.
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The density operator for a number state can also be expressed in the coherent-
state representation. The relevant P (α) is given by Glauber (1963) as

P (α) =
1

π
(−1)Ne|α|

2

δ(N)(|α|2) , (11.307)

where δ(N)(·) denotes the N th derivative of a delta function as defined in Sec. 2.2.4.
This P (α) is unbounded and takes on negative values, which is another indication
that we are dealing with nonclassical light. It is a nontrivial exercise in delta
functions to go from (11.307) to (11.306).

11.5.3 Counting statistics

So far we have discussed the statistics of photons in a single mode of the radiation
field, but the number of photons is not directly observable. All we can ever do is
use some photoelectric detector and study the statistics of the number of photo-
electrons.

For a single mode, Scully and Lamb (1969) did a quantum mechanical calcu-
lation of the probability of counting k photoelectrons in a certain time τ. They
considered first the probability of getting one photoelectron in τ when the mode
contained exactly one photon, so the state was |1〉. Denoting this probability as p,
they then showed that the probability of getting k photoelectrons in τ is given by

Pr(k) =
∞
∑

n=k

(

n

k

)

pk(1− p)n−kρnn . (11.308)

This result is exactly like the classical expression (11.23), but now we know that
ρnn is given by (11.296), so

Pr(k) =
∞
∑

n=k

(

n

k

)

pk(1− p)n−k

∫

∞
d2α P (α) exp(−|α|2)

|α|2n

n!
. (11.309)

The same algebra as used in deriving the Poisson transform, (11.25), shows that

Pr(k) =
1

k!

∫

∞
d2α P (α) exp(−p|α|2) (p|α|2)k . (11.310)

This expression looks just like (11.296) except that the number of photons n
is replaced with the number of photoelectrons k and |α|2 is replaced with p|α|2.
Thus the photoelectron statistics reflect the photon statistics as modified by the
properties of the detector, including its quantum efficiency η and the exposure time
τ. To understand better the nature of this modification, we shall revisit the examples
used in Sec. 11.4.2.

Example 1: Coherent state For the coherent state |α0〉, P (α) = δ(α − α0), and
(11.310) becomes

Pr(k) =
1

k!

∫

∞
d2α δ(α− α0) exp(−p|α|2) (p|α|2)k

= exp(−p|α0|2)
(p|α0|2)k

k!
. (11.311)
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This is a Poisson probability law, so the photoelectrons always obey Poisson statis-
tics if the incident light is in a coherent state.

The mean number of photoelectrons is p|α0|2, and p was defined as the probabil-
ity of one photoelectron in the observation time if there is exactly one photon in the
mode. In the coherent state |α0〉, the mean number of photons in the mode is |α0|2
[see (11.297)], so we see that the mean number of photoelectrons is just the mean
number of photons times the probability of one photoelectron from one photon. In
other words, we have recovered the binomial selection theorem (11.24), but now in a
quantum-mechanical context. The coherent state is the correct quantum-mechanical
description of a source that produces a Poisson-distributed photon stream on a de-
tector.

Example 2: Thermal state For a single mode in thermal equilibrium, P (α) is given
by (11.298), and the distribution of photoelectrons is given by

Pr(k) =
1

π〈n〉k!

∫

∞
d2α exp

[

−
|α|2

〈n〉

]

exp(−p|α|2) (p|α|2)k . (11.312)

This integral has the same form as (11.299), and similar manipulations show that
[cf. (11.301)]

Pr(k) =
〈k〉k

[〈k〉+ 1]k+1
, (11.313)

where 〈k〉 = p〈n〉. Thus the distribution of photoelectrons is also a Bose-Einstein,
and it follows that

Var(k) = 〈k〉+ 〈k〉2 . (11.314)

These results might lead the unwary to think that it would be rather easy
to observe a Bose-Einstein distribution of photocounts in the laboratory, but we
must remember that we are considering only a single mode of the radiation field
here. Since the modes are characterized by their frequency and the direction of
their wavevector, (11.313) and (11.314) apply only to highly directional and essen-
tially monochromatic thermal light. To get the directionality in the laboratory,
we might place a small thermal source at the rear focal plane of a lens, and to
get a nearly monochromatic source we might use a narrowband optical filter. The
resulting light would become more directional as the source size got smaller and
more nearly monochromatic as the bandwidth of the filter got smaller, but both of
these measures result in loss of light (unless we somehow let the temperature of the
thermal source get correspondingly larger). In practice, the thermal light we can
produce in the laboratory is not well described by a single mode of the radiation
field. To analyze the photoelectron distribution with practical thermal sources, we
must consider multiple modes.

Actually, we have already analyzed the case of nonmonochromatic thermal
light, though we did not use that language. In Sec. 11.3.7, we considered a doubly
stochastic temporal random process where the rate is the random process a(t). If
modes of different frequencies and random phases are present, the rate of photoe-
mission is a temporal random process, and the variance of the number of counts is
given by (11.128) rather than (11.314). (Note that N in (11.128) is the same thing
as k in this section.) We can regard (11.314) as the (hypothetical) photocount
variance for a single-mode thermal source, while (11.128) describes the actual mul-
timode variance for a practical source. Though derived classically in Sec. 11.3.7,
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(11.128) would also result from a multimode generalization of the calculation by
Scully and Lamb.

We can get a rough idea of the differences between (11.128) and (11.314) by
considering thermal light that is somehow perfectly directional but which has a fi-
nite bandwidth ∆ν imposed by a narrowband filter. The rate process a(t) in Sec.
11.3.7 has correlation time τa of approximately 1/∆ν. Achievable filter bandwidths
in the optical region are of order 1011 Hz, and a typical observation time T might
be 1 µsec, so the factor τa/T in (11.128) is of order 10−5, and the factor Var(a)/a2

is unity for a thermal source since a is exponentially distributed Sec. C.5.3). Thus
the excess variance is reduced by a factor of about 10−5. Any deviation from perfect
directionality would reduce the excess variance still further (Goodman, 1985). In
other words, it is very difficult to discern any deviation between the photocount
variance produced by a practical thermal source and that produced by a coherent
state.

Example 3: Number state Now consider our prime example of nonclassical light,
the single-mode number state. Substituting (11.306) into (11.308) yields

Pr(k) =

(

N

k

)

pk(1− p)N−k , k ≤ N . (11.315)

This is the binomial law (C.161). From (C.163), the mean of k is pN and the
variance is

Var(k) = pN − p2N = 〈k〉 − p〈k〉 . (11.316)

The excess variance −p〈k〉 is negative, again reflecting the nonclassical nature of
the light, but we note that Var(k) → 〈k〉 as p → 0. As we saw several times in Sec.
11.1, rare events tend to a Poisson law. In the present context, rare means that
the probability of getting one photocount when there is one photon in the mode is
small.



12
Noise in Detectors

The physical principles underlying photodetection were introduced in Secs. 10.1.4
and 10.1.5, but there we discussed only the mean response. In Chap. 11 we devel-
oped the tools needed to discuss fluctuations about this mean, and in this chapter
we use these tools to analyze the noise properties of a variety of practical photode-
tectors.

We begin the discussion in Sec. 12.1 with a specific class of detectors called
photodiodes. These devices are important in their own right, but they also serve
as a useful pedagogical device for discussing the discrete nature of photoelectric in-
teractions and the consequent fundamental limits to optical detection. In Sec. 12.2
we discuss a variety of other noise sources that afflict practical optical detectors.

Finally, Sec. 12.3 addresses detectors for x rays and gamma rays, with partic-
ular attention to photon-counting detectors. The interesting new feature of these
devices is that we can do more than detect the presence or absence of a photon in-
teraction; we can also estimate the energy of the photon, the depth in the detector
at which it interacts and other attributes.

12.1 PHOTON NOISE AND SHOT NOISE IN PHOTODIODES

The terms Poisson noise, shot noise, and photon noise occur frequently in the
literature on radiation detectors, and they are often used interchangeably. The
simplest description of shot noise is that it is the noise associated with the random
arrival of discrete electrons, and photon noise is often similarly ascribed to the ran-
dom arrival of discrete photons. As noted in Chaps. 10 and 11, however, we seldom
have to consider the quantum properties of the electromagnetic field, so it is not
really relevant whether light consists of photons. On the other hand, photoelectric
interactions are discrete events, and the electrons produced in these events result
in shot noise just as any other free electrons do. Thus so-called photon noise is just
shot noise with photoelectrons.

701
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The term Poisson noise is somewhat more problematic since certain conditions,
discussed in detail in Chap. 11, must be satisfied for photoelectrons to obey Pois-
son statistics. In this section we shall generally assume that these conditions are
satisfied, so shot noise (or photon noise) will be well described by Poisson random
processes.

In Section 12.1.1 we discuss a simple device called a vacuum photodiode.
Though rarely used in practice, the vacuum photodiode provides a convenient way
of understanding the role of Poisson random processes in photodetection.

Section 12.1.2 is a digression from the main theme of Sec. 12.1. It is included to
ensure that readers are familiar with some basic concepts and terminology of semi-
conductor physics. Many readers will be able to skip this section with impunity. In
particular, Sec. 12.1.2 deals entirely with average quantities such as mean carrier
concentrations and conductivities; fluctuations about these means and their effects
on observable noise are taken up later, beginning in Sec. 12.1.3.

Section 12.1.3 discusses P-N junctions as detectors of electromagnetic radia-
tion, especially in the visible and infrared portions of the spectrum. The treatment
parallels the discussion of vacuum photodiodes in Sec. 12.1.1, with considerable
emphasis on the role of Poisson statistics.

12.1.1 Vacuum photodiodes

A vacuum photodiode is illustrated in Fig. 12.1. To fix the geometry, assume that
the light is propagating in the +z direction, that the photocathode lies in the plane
z = 0, and that the anode lies in z = Lz. Assume also that the lateral dimensions
Lx and Ly are large compared to Lz.

Fig. 12.1 Basic geometry for a vacuum photodiode.

The light falls on the photocathode and liberates photoelectrons into the vac-
uum gap with a quantum efficiency η. The electrons are accelerated across the
vacuum gap by an applied potential Vb, producing a current in the anode circuit.
In addition, electrons may also be liberated from the photocathode by thermal
excitation; to distinguish these two mechanisms, we refer to current arising from
thermal excitation as dark current and that arising from the incident radiation as
photocurrent. Once liberated, however, all electrons produce the same effect in the
output current.

To understand the noise properties of the anode current, we must first de-
termine the form of the current pulse i0(t) produced by a single electron emitted
from the photocathode at time t = 0. We assume that the electron has very little
kinetic energy when it leaves the photocathode, but the electric field E0 = −Vb/Lz

in the vacuum gap accelerates it towards the anode. By Newton’s second law, the
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z-component of the electron velocity at time t is given by

vz(t) =
eVb

mLz
t , (12.1)

where −e and m are, respectively, the charge and mass of the electron.
The work done by the field on the electron when it moves a distance dz is dW =

−eE0dz, and the power delivered to the electron is P (t) = dW/dt = −eE0vz(t) =
+eVbvz(t)/Lz. By conservation of energy, this power must be delivered to the
photodiode by the external circuit, so the power flow in the circuit is −P (t). If
the circuit maintains the potential across the diode at Vb (e.g., with an operational
amplifier, as discussed below), then the current during the time the electron is
moving across the gap is

i0(t) = −P (t)

Vb
= − e

Lz
vz(t) = − e2Vb

mL2
z

t , 0 ≤ t < Ttr , (12.2)

where Ttr is the transit time, given by

Ttr = Lz

√

2m

eVb
. (12.3)

Note that it is not necessary for the electron actually to reach the anode to induce
a current in the external circuit. We see from (12.2) that this current has the
form of a triangular pulse, with the current beginning as soon as the electron is
liberated from the cathode and then increasing in magnitude linearly with time as
the electron accelerates.

Delta-function approximation With practical values for Vb and Lz, it often turns
out that the induced current pulse is very narrow compared to the response time
of the circuit. For example, if Vb = 10 Volts and Lz = 1 mm, then Ttr # 10−9 sec.
If the circuit bandwidth is small compared to 1 GHz, we can approximate the
triangular pulse by a delta function. As an exercise, the reader should show that
the approximation takes the form

i0(t) # −e δ(t) . (12.4)

That the coefficient is −e should not be surprising; the time integral of the current is
the charge on the electron. The units are also worthy of note: current is measured
in amperes or Coulombs per second, which is dimensionally consistent with the
right-hand side of (12.4) since e is measured in Coulombs and a temporal delta
function has units of sec−1 (see Sec. 2.4.3).

RC filtering Suppose the photodiode output is filtered by a simple RC circuit as
shown in Fig. 12.2a or the slightly more complicated circuit of Fig. 12.2b. In both
cases, the input to the filter is the current from the photodiode, and the output
of the filter is the voltage drop across the RC network. The circuit in Fig. 12.2b
has the advantage that the voltage on the output plate of the photodiode is held
very near zero potential. Because an operational amplifier has very high gain, the
voltage across its input terminals remains very small; it is often said that the input
port of an operational amplifier is a virtual ground. Thus the potential difference
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between the two plates of the diode remains essentially at the fixed potential Vb

regardless of how much current flows. In the circuit of Fig. 12.2a, on the other
hand, the potential difference between the plates is Vb − Vout(t), so there can be a
change in the field inside the diode if Vout is significant compared to Vb. We shall
neglect this so-called debias effect here, either by using Fig. 12.2b or by keeping
Vout(t) $ Vb.

Fig. 12.2 Two circuits for filtering the output of a vacuum photodiode. In
(a), the output current flows through a simple parallel RC circuit, and the
voltage across this circuit is the filter output. In (b), an operational amplifier
with very high gain is used to maintain the anode of the photodiode at ground
potential, and the output voltage of the amplifier is the filter output.

With this assumption, the current from the photodiode is equal to the current
through the parallel RC combination, which is the sum of the current through the
capacitor and the current through the resistor. From elementary circuit theory,

i(t) = C
dVout(t)

dt
+

Vout(t)

R
. (12.5)

If we let i(t) be the impulsive current (12.4) produced by a single electron,
then the corresponding Vout(t) is the impulse response of the filter, denoted h(t),
which must then satisfy

C
dh(t)

dt
+

h(t)

R
= −e δ(t) . (12.6)

The solution of this differential equation is

h(t) = − e

C
exp

(

− t

RC

)

step(t) . (12.7)

Verification of this solution requires some properties of delta functions, including
(2.73) and (2.25).

Filtering a photoelectron stream So far we have computed the filter output for a
single photoelectron. Now suppose the photocathode is illuminated with steady
radiation satisfying the Poisson postulates. From the discussion in Sec. 11.1, we
know that the photoelectrons are statistically independent in this case, and we
assume that the dark-current electrons are also independent (of each other and of
the photoelectrons). Then, with approximation (12.4), the total output current
from the photodiode has the form [see also (11.62)]

i(t) =
N
∑

n=1

i0(t− tn) = −ez(t) , (12.8)
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where z(t) is a stationary Poisson process of rate a. With this input, the filter
output is a stationary random process given by

Vout(t) = h(t) ∗ z(t) . (12.9)

Note that the input to the filter is z(t), not i(t); we have included the constant −e
in the definition of h(t). Thus h(t) has dimensions of voltage, and the dimensions of
z(t) (namely sec−1) cancel those of the asterisk (the time integral in the convolution)
in (12.9).

The statistical properties of filtered Poisson point processes were discussed in
Sec. (11.3.9). From the temporal counterpart of (11.139), we know that the mean
of Vout(t) is

〈Vout(t)〉 = h(t) ∗ 〈z(t)〉 = h(t) ∗ a = −ea

C

∫ ∞

0
dt′ exp(−t′/RC) = −eaR . (12.10)

This result is really just a statement of Ohm’s law since −ea is the mean current.
Note that the mean filter output is proportional to the rate of the input process;
for this reason an RC filter is sometimes called a ratemeter.

The variance of the output is given by the temporal counterpart of (11.143),

Var{Vout(t)} = [h(t)]2 ∗ 〈z(t)〉 = e2a

C2

∫ ∞

0
dt′ exp(−2t′/RC) =

e2aR

2C
. (12.11)

The ratio of the square of the mean voltage to its variance is

[〈Vout(t)〉]2

Var{Vout(t)}
= 2aRC . (12.12)

One way to interpret this ratio is to compare it to the corresponding expression for
a perfect counter which observes a Poisson source for a time T. For this counter,
we know from Chap. 11 that the number of counts N in time T is Poisson and
the variance is equal to the mean; specifically, Var(N) = N = aT. Thus the ratio
of squared mean to variance is also aT for the counter. The expression in (12.12)
shows that the filter output has the same ratio if T = 2RC; the effective averaging
time of the filter is thus 2RC.

Once one knows that the effective averaging time Teff is 2RC, the expressions
above for the mean and variance of Vout(t) can be deduced from Poisson statistics.
Suppose N electrons occur in time Teff . These electrons carry a charge −Ne, so
the effective current is −Ne/Teff and the resulting voltage drop across the load
resistor is −RNe/Teff . Thus the factor −Re/Teff converts number of electrons
to voltage. The mean voltage is obtained by replacing the random number N by
its mean aTeff , reproducing (12.10). The variance of the voltage is the variance
in N times the square of the conversion factor −Re/Teff . Since Var(N) = aTeff ,
(12.11) follows readily.

Power spectral density and effective noise bandwidth Since we are assuming that the
photoelectron stream is a stationary temporal random process, we can also discuss
the noise properties in the frequency domain. If we subtract off the mean of all
random processes, the input to our filter is the random process ∆z(t), and we have
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seen in Sec. 11.3.11 that its power spectral density is the constant rate a, so the
input is white noise. The power spectral density of the current is

S∆i(ν) = e2a = e|〈i(t)〉| . (12.13)

By the temporal counterpart of (11.170), the power spectral density on the
output of the filter is

S∆Vout
(ν) = a|H(ν)|2 , (12.14)

where H(ν) is the Fourier transform of the impulse response h(t). Hence this power
spectral density has the same functional form as the squared modulus of the filter
transfer function. A straightforward transform of (12.7) shows that, for the problem
at hand,

|H(ν)|2 =
e2R2

1 + (2πνRC)2
. (12.15)

The variance of Vout(t) is the autocovariance function at zero lag, or

Var{Vout(t)} = R∆Vout
(0) =

∫ ∞

−∞
dν S∆Vout

(ν)

=

∫ ∞

−∞
dν

e2R2a

1 + (2πνRC)2
, (12.16)

where we have used the Wiener-Khinchin theorem (8.133). The integral in (12.16)
is elementary, and we find

Var{Vout(t)} =
e2aR

2C
, (12.17)

in agreement with (12.11).
Another way of viewing this result is to define an effective noise bandwidth

B by

B ≡ 1

|H(0)|2

∫ ∞

0
dν |H(ν)|2 . (12.18)

Note that the integral runs from 0 to ∞ in accord with the common practice in
electrical engineering of defining bandwidth over positive frequencies only.

For our RC filter,

B =

∫ ∞

0
dν

1

1 + (2πνRC)2
=

1

4RC
, (12.19)

so (12.17) can be written as

Var{Vout(t)} = 2Be2aR2 = 2BeR2|〈i(t)〉| , (12.20)

which is a familiar formula in the literature on electronic shot noise. The appear-
ance of 2B rather than just B often confuses students, but in fact 2B is the total
bandwidth, including negative frequencies. Note that 2B is the reciprocal of the
effective averaging time 2RC.
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SNR and DQE The rate a that appears in (12.10) and (12.11) is the total rate of
emission of photoelectrons from the photocathode. If we consider the radiation to
be made up of photons and assume that each incident photon produces a single
photoelectron with probability η (the quantum efficiency), then a can be written as

a = ηaphot + adark , (12.21)

where aphot is the rate of arrival of photons and adark is the rate associated with
dark current or thermionic emission. The first term, ηaphot, can be considered a
signal since it represents the mean response of the detector to the incident radiation.
From (12.10), the mean signal in the output voltage is then eRηaphot. We can thus
define a signal-to-noise ratio1 or SNR by

SNR2
out =

(eRηaphot)2

Var{Vout(t)}
= 2RC

(ηaphot)2

ηaphot + adark
. (12.22)

The ideal detector has η = 1 and adark = 0. We can express how closely the
real detector approaches the ideal by defining a detective quantum efficiency or
DQE as

DQE ≡
(

SNRout

SNRin

)2

, (12.23)

where SNRin is the signal-to-noise ratio of the input photon stream as seen by an
ideal detector and the same RC filter. Thus SNRin = (2RCaphot)

1

2, and

DQE =
η2aphot

ηaphot + adark
. (12.24)

One way to think about DQE is that it would require N/DQE photons in
some time interval to achieve the same SNRout with a real detector as would be
obtained with N photons and an ideal detector. Since η ≤ 1 and adark ≥ 0, DQE is
necessarily ≤ 1; real detectors always require more photons for the same SNR than
an ideal detector.

Note that the detective quantum efficiency reduces to the quantum efficiency
η if there is no thermionic emission or other noise sources. Moreover, DQE for
this problem is a function of the photon arrival rate aphot; it is possible to make
DQE # η just by using a bright light source so that aphot + adark.

12.1.2 Basics of semiconductor detectors

Vacuum photodiodes are seldom used in practice today, having been replaced by
semiconductor photodiodes. The fundamental mechanisms of photodetection with
semiconductor devices are surveyed briefly in this section; the reader with a basic
understanding of semiconductor physics can skip to Sec. 12.1.3 without loss of con-
tinuity.

1The usage of the term SNR given here is common in electrical engineering, but a distinctly
different meaning is emerging in image science. In objective assessment of image quality (one of
the main themes of this book), SNR is a measure of performance of some specific task. The ratio
of the mean of a random variable to its standard deviation, on the other hand, does not relate
directly to tasks. Perhaps the best interpretation of this SNR is that its reciprocal is the average
fluctuation in units of the mean.
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For detection of visible light, the most common semiconductor material is crys-
talline silicon (Si). Pure silicon is a poor conductor (actually an insulator at 0 K)
because all of its outer electrons are used up in covalent bonds. Each Si atom is
bound covalently to four neighbors in the crystalline lattice, and each bond requires
two electrons, one from each of the neighboring atoms. Except for a few electrons
released from the bonds by thermal excitation, there are no free electrons to par-
ticipate in conduction.

The same phenomenon can also be explained another way. In a crystalline
solid, electrons are confined to specific energy bands, consisting of the quantum
states allowed by quantum mechanics. According to the Pauli exclusion principle,
each state can be occupied by only zero or one electron. In Si there are two energy
bands of interest, the valence band and the conduction band, and there is a for-
bidden region or band gap between them. At low temperature, the valence band is
fully occupied (exactly one electron per state) and the conduction band is empty.
In this condition there is no electrical conduction in the valence band since there are
no available states for electrons to be accelerated into, and there is no conduction
in the conduction band because there are no electrons there.

Doping In order to provide charge carriers for conduction, trace amounts of impu-
rity elements are added to the Si in a process called doping. There are two kinds of
dopants, called donors and acceptors. For doping of Si, donors are elements such
as arsenic (As) or antimony (Sb) from Group V of the periodic table, and acceptors
are elements such as gallium (Ga) or indium (In) from Group III. Since Si is in
Group IV, it requires four valence electrons to complete its chemical bonds. When
an element from Group V is substituted for Si, there is one electron not needed for
bonding and hence only loosely bound to the impurity atom. At room temperature
there is a high probability that this extra electron will be thermally excited and
free to move around in the Si lattice; the impurity has donated an electron to the
conduction band. The doped Si is said to be N-type (N for negative) because of
the excess free electrons.

When an element from Group III is substituted for Si, the three available va-
lence electrons are not sufficient to complete all of the bonds. At room temperature,
there is a high probability that one of the electrons in the valence band will be in-
corporated into a bond to the impurity, thereby creating a vacancy, called a hole,
in the valence band. Under an applied electric field, a valence-band electron can be
accelerated into the state vacated when the hole was formed, filling that state but
creating a vacancy in another state. If the field is in the +z direction, the actual
valence band electron moves in the −z direction but the hole appears to move in
+z, thus behaving like a mobile positive charge carrier. The acceptor impurity, by
accepting an electron, has in effect donated a hole to the valence band. The doped
Si in this case is said to be P-type because of the excess free holes.

Optical absorption in semiconductors In addition to thermal excitation, holes and
electrons can also be created in semiconductors by optical excitation. The physics
of this process was discussed in Sec. 10.1.4 where we saw that a transition from an
initial state of energy Ei to a final state of energy Ef can be induced by light of
frequency ν if hν = Ef − Ei. If hν is less than the bandgap energy Eg, this con-
dition cannot be satisfied for an initial state in the valence band and a final state
in the conduction band, and no transitions between these two bands are induced.
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Moreover, transitions between two states within the valence band generally do not
occur since both states are filled, and transitions within the conduction band do
not occur since both states are empty. For hν < Eg, therefore, there is very little
absorption of light.

For hν substantially greater than Eg, however, there are many possible combi-
nations of filled valence-band initial states and empty conduction-band final states,
and the light is strongly absorbed by producing these transitions. As a practical
matter, the attenuation coefficient for light of energy hν > Eg is about 104 cm−1 or
1 µm−1. Thus a photon travels a path length of only about 1 µm before absorption.
When an absorption event occurs, it creates one electron in the conduction band
and one hole in the valence band; both contribute to the electrical conductivity.

Conductivity in semiconductors Consider a homogeneous semiconductor with an
electron concentration2 of n electrons/cm3 and a hole concentration of p holes/cm3.
A uniform electric field E0 in the +z direction will exert a force in the same direction
on the holes and in the opposite direction on the electrons. In addition, however,
the carriers experience forces from lattice imperfections, from lattice vibrations or
phonons and from interactions with other free carriers. All of these interactions
retard the acceleration of the carriers by the field, and the carriers quickly reach a
terminal velocity, much as a sky diver falling from an airplane reaches a terminal
velocity at which the force of gravity is balanced by the forces from collisions with
air molecules. To a good approximation, the terminal velocity is proportional to
the field, and the constant of proportionality, called the mobility, is denoted by
µ. Adding subscripts e for electrons and h for holes, we can write the terminal
velocities as

ve = −µeE0 , vh = µhE0 . (12.25)

More discussion of mobility and its physical origins will be found in Sec. 12.2.1.
The mean current density (Amperes/cm2) is the carrier concentration (cm−3)

times the charge per carrier (Coul) times the mean velocity (cm/sec); it is given,
for electrons and holes, respectively, by

Je = −neve , Jh = pevh . (12.26)

Note that these two currents are in the same direction since both velocity and charge
have opposite signs for electrons and holes.

The total mean current density J, is thus given by

J = Je + Jh ≡ σE0 , (12.27)

where σ, called the conductivity, is given by

σ = e(nµe + pµh) . (12.28)

Practical units of mobility are cm2/V-sec and those of conductivity are (Ohm-cm)−1,
where 1 Ohm = 1 Volt/Ampere.

2Consistent use of SI units would require concentrations to be measured in m−3, but the semicon-
ductor literature normally uses hybrid units with lengths in cm.
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Photoconductivity A simple way to make a photodetector is to shine light on a
homogeneous semiconductor and observe the change in conductivity. Two experi-
mental setups are shown in Fig. 12.3. In both geometries, the light is travelling in
the +z direction, and for simplicity we assume that the detector material is thin in
this direction so that photoelectric interactions occur uniformly within the material.
Suppose the incident photon irradiance3 is Ip photons/(cm2 sec) and a fraction η
of the photons are absorbed. (For an optically thin detector, η = αLz, where α is
the absorption coefficient for the light.) If we assume that each absorption event
results in the production of one electron-hole pair, then the light causes the mean
carrier densities to increase at the rates

[

∂n

∂t

]

light

=

[

∂p

∂t

]

light

=
1

Lz
ηIp . (12.29)

The carrier concentrations can also change because of recombination and trap-
ping. In a recombination event, a conduction-band electron fills a valence-band hole,
with the energy being converted to photons or phonons. Trapping occurs when an
electron or hole is attracted to an impurity or lattice defect and the binding energy
is such that thermal fluctuations are unlikely to free it over the time scale of interest
in some measurement. The traps correspond to localized energy states somewhere
near the middle of the forbidden gap. (They are not themselves forbidden since an
impurity breaks the translational symmetry, which is what gives rise to the band
structure in the first place.)

Fig. 12.3 Two configurations for observing photoconductivity. In (a) the
light impinges directly on a face of the photoconductive material, and the
conductivity is measured by observing a current that flows perpendicular to
the direction of the light flux. In (b), the light passes through a transparent
electrode before striking the photoconductive material, and the current flow
is parallel to the light flux.

Trapping and recombination are actually quite complicated, but a simple phe-
nomenological model will serve our purposes here. We assume that the carrier

3Note that we use capital I for irradiance, and to avoid confusion we therefore use lower-case i for
current. One might, of course, wonder why either I or i is used for current. It apparently goes back
to Georg Simon Ohm, who often referred to the ‘intensity of the current’ through a load. Thus
there was once the same degree of confusion about the word intensity in electrical engineering as
there is today in optics!
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concentrations n and p relax towards their thermal equilibrium values, n0 and p0
respectively, according to

[

∂n

∂t

]

tr

= −n− n0

τe
,

[

∂p

∂t

]

tr

= −p− p0
τh

, (12.30)

where τe and τh are characteristic time constants for electrons and holes, respec-
tively. These time constants are called lifetimes since an excess carrier lasts an
average time τ before it recombines or is trapped. It is usually a good approxima-
tion to assume that τe and τh are independent of any applied electric field.

In the steady state, the electron concentration is given by

[

∂n

∂t

]

light

+

[

∂n

∂t

]

tr

= 0 , (12.31)

or
n = n0 +

τe
Lz

ηIp , (12.32)

and similarly for holes. The mean steady-state conductivity is then found from
(12.28) to be

σ = σ0 +
τeµe + τhµh

Lz
ηeIp , (12.33)

where σ0 is the dark conductivity. This formula shows that the change in conduc-
tivity is linearly related to the mean photon irradiance. Real photoconductors may
exhibit nonlinearities since the lifetimes and mobilities may depend on the carrier
concentrations (Bube, 1992).

P-N junctions A P-N junction is formed when P-type and N-type materials are
brought together as shown in Fig. 12.4. Both pieces are initially electrically neu-
tral; the N-type material has a density n of free electrons, but since these all came
from donor atoms, there is an equal density Nd = n of ionized (hence positively
charged) donors. Similarly, the P-type material has an initial density p of free holes
and an equal density Na = p of negatively charged ionized acceptors.

When the two materials are joined as shown in Fig. 12.4b, the free electrons
from the N-type material diffuse into the P-type material, leaving behind the im-
mobile positive donor ions. Once in the P-type material, the electrons encounter
many holes and quickly recombine. Similarly, the free holes from the P-type ma-
terial diffuse into the N-type material and recombine, leaving behind the immobile
negative acceptor ions. In the steady state, there is a region devoid of free carriers
but containing a layer of fixed negative charges on the P side and fixed positive
charges on the N side (see Fig. 12.4b). The field due to this double layer retards
further diffusion of the free carriers. The region without any free carriers is called
the depletion region. The potential as a function of position across the depletion
region is illustrated in Fig. 12.4c and the associated electric field is shown in Fig.
12.4d.

In the absence of any applied bias voltage, there is no net current flowing across
a P-N junction, but there are four individual current components, as illustrated in
Fig. 12.5. First, there are a few holes generated by thermal fluctuations in the
N-type material, where they are referred to as minority carriers. If one of these
holes diffuses into the depletion region, it feels an accelerating field that sweeps
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it across the junction. (The field direction is such that it retards the diffusion of
electrons from N to P, hence it must accelerate holes in that direction.) Similarly,
electrons generated thermally on the P side can diffuse into the depletion region
and be swept into the N-type material. We refer to these two current components
as hole generation current and electron generation current, respectively. Note
that they are in the same direction, so there is a nonzero net generation current.

Fig. 12.4 Diagrams to illustrate the formation of a P-N junction. (a) N-type
and P-type semiconductor materials before they are joined. In the N-type
material, circles with plus signs denote ionized donor atoms and minus signs
denote the free electrons. In the P-type material, circles with minus signs
denote ionized acceptor atoms and plus signs denote the free holes. Note that
a few free holes are created on the N side and a few free electrons are created
on the P side by thermal excitation across the band gap. (b) After the two
materials are joined, free holes diffuse into the N side and free electrons diffuse
into the P side, where they recombine. A depletion region is created by the
ionized dopant atoms left behind, and equilibrium is reached when the electric
field from these ions retards further diffusion. (c) Illustration of the potential
energy of an electron as it tries to move through the depletion region. Note
that the direction of the potential is such that it opposes passage of an electron
from N side to P side. (d) Electric field corresponding to the potential of (c)
in the absence of any applied voltage. Note that a positive field accelerates a
hole to the right and an electron to the left.

The two other current components arise from carriers that happen to be en-
ergetic enough to diffuse across the potential barrier and still reach the other side.
There are copious electrons on the N side, but if they diffuse into the depletion
region, they are repelled by the negative charges associated with acceptor ions, and
they are dragged back by the positive charges of the donor ions. The electrons have
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a thermal distribution of velocities, however, and a tiny fraction of them will have
sufficient velocity in the +z direction to get over the potential barrier. When they
do, they enter the undepleted portion of the P-type material and recombine. For
this reason, the resulting current component is called the electron recombination
current.

Fig. 12.5 Energy bands in a P-N junction at zero bias, showing the free
electrons and free holes. On the N side, there are many free electrons but
only a few energetic enough to surmount the potential barrier; those that do
constitute the electron recombination current ier , an electron flow from left
to right on the figure. On the P side, there are a few thermally generated
free electrons, but they are readily swept across the barrier from right to left,
producing the electron generation current ieg . Similar considerations apply
to holes, though the diagram must be turned upside down in order to depict
a hole potential. Thus the few free holes on the left are readily swept across
the barrier to form the hole generation current ihg.

In thermal equilibrium with no applied external bias, the electron recombina-
tion current must be exactly equal and opposite to the electron generation current.
This cancellation is required by the thermodynamic principle of detailed balance,
but it is also plausible on physical grounds. Recall that there are many electrons on
the N side but very few of them are sufficiently energetic to surmount the potential
barrier. On the other hand, there are very few electrons on the P side, but essen-
tially all of those that reach the depletion region are swept across. The product of
the number of carriers times the probability of crossing the barrier must be the same
for the two current components to maintain thermodynamic equilibrium. Similar
considerations show that there is a hole recombination current to exactly balance
the hole generation current at zero bias.

Effect of bias Now suppose that a bias voltage Vb is applied to the P-N junction
as shown in Fig. 12.6a, with the positive terminal attached to the P side. Now
the potential barrier is reduced in height by an amount Vb, and a larger fraction
of holes on the P side and electrons on the N side can surmount the barrier; thus
both recombination currents are increased. The generation currents are essentially
unchanged since they arise from minority carriers (holes on the N side or electrons
on the P side) that diffuse into the depletion region and get swept across by the
field; even the reduced field is adequate for this purpose. With the recombination
currents increased and the generation currents unchanged by the applied voltage,
there is now a net current in the conventional direction from positive terminal to
negative. The current increases rapidly with bias voltage in this direction, which is
called forward bias.
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If the direction of the bias is reversed and the positive terminal is attached
to the N side as shown in Fig. 12.6b, then the height of the potential barrier is
increased. Fewer majority carriers (electrons on the N side, holes on the P side)
are energetic enough to surmount the barrier in this case, and the recombination
currents are reduced. In the limit of a large reverse bias, the only currents remaining
are the small generation currents due to minority carriers.

Fig. 12.6 Effect of a bias voltage on the energy bands of Fig. 12.5. (a) Forward
bias; (b) reverse bias. Note that the two generation currents are relatively
unaffected by the bias, but the two recombination currents are increased by
forward bias and reduced by reverse bias.

These considerations are summarized in the current-voltage characteristic
curve illustrated in Fig. 12.7. The difference in behavior in the forward- and
reverse-bias conditions makes the junction into a rectifying device called a diode.
Mathematically, the current i through an ideal P-N junction when a voltage Vb is
applied is given by

i = is

[

exp

(

eVb

kBT

)

− 1

]

, (12.34)

where kB is Boltzmann’s constant, T is the absolute temperature and is is just the
sum of the two generation currents. When Vb has a large negative value, i = −is,
so is is called the reverse-bias saturation current.

Fig. 12.7 Current-voltage characteristic of a P-N junction without illumina-
tion.
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Effect of light If we want to use a P-N junction as a photodetector, we have to get
light into the depletion region. Light absorbed in an undepleted region changes the
conductivity of that region but does not greatly affect the total current since most
of the voltage drop is across the depletion region. Since light with hν > Eg pene-
trates only about 1 µm or so, we must minimize the amount of material between the
external surface of the semiconductor and the depletion region. A suitable geom-
etry is shown in Fig. 12.8. The light traverses a transparent conducting layer and
penetrates into the semiconductor. The junction is designed so that there is very
little undepleted material (< 1 µm) before the light enters the depletion region. The
thickness of the depletion region is substantially greater than 1 µm, so essentially
all of the light is absorbed in the depletion region.

Fig. 12.8 Geometry of a photodiode.

When a photon is absorbed in the depletion region, producing a hole-electron
pair, both carriers are accelerated by the field, holes towards the P side and electrons
towards the N side. One might think that each absorbed photon would contribute
a total charge of 2e to the external circuit, so the mean current would be −2eηIpA
(where A is the entrance area of the detector, Ip is the photon irradiance and η is
the fraction of light absorbed in the depletion region), but the factor of 2 in this
expression is incorrect. We shall see why in Sec. 12.1.3 when we analyze the P-N
junction photodetector in more detail. For now, suffice it to say that the mean
current due to the light is −eηIpA.

Because we now have another current source—photogeneration of electron-
hole pairs in the depletion region—the current-voltage characteristic (12.34) is
modified to

i = −eηIpA+ is

[

exp

(

eVb

kBT

)

− 1

]

. (12.35)

This characteristic is illustrated in Fig. 12.9. Note that the sign of the photocurrent
is such that it effectively increases the reverse-bias saturation current. As discussed
earlier in this subsection, this current arises from thermally generated minority car-
riers that are swept across the depletion region, and the light provides additional
carriers to be swept across.
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One very useful limit of (12.35) is when a large reverse bias is applied, so that
Vb is large and negative. Then

i = −eηIpA− is . (12.36)

The current flowing in the circuit in this case is a direct linear (affine) measure of
the photon irradiance, independent of the bias voltage.

Fig. 12.9 Current-voltage characteristic of a photodiode with illumination.

12.1.3 Shot noise in semiconductor photodiodes

The discussion in Sec. 12.1.1 of shot noise in vacuum photodiodes is generally ap-
plicable to semiconductor photodiodes, but there are some important differences
between the two kinds of devices. In the vacuum diode, only one kind of carrier
is produced, and it is always produced at the same location, the photocathode. In
the semiconductor, holes and electrons are produced, and the position of the pho-
toelectric interaction is a random variable. Finally, electrons are accelerated across
the gap in the vacuum diode, but both carriers quickly reach a terminal velocity in
a semiconductor.

We can analyze these effects with a simple model. Suppose that light is prop-
agating in the +z direction and that the depletion region extends from z = 0 on
the P side to z = Lz on the N side. Assume also that the lateral dimensions (Lx

and Ly) of the P-N junction are large compared to Lz. If an electron-hole pair is
produced at the interaction point z = zint in the depletion region, the hole must
travel a distance zint and the electron must travel Lz − zint to reach undepleted
material. Since the undepleted material is a good conductor, it may be considered
part of the external circuit, and we need to consider the effect of carrier motion
only within the depletion region.

For simplicity, we assume that the field in the depletion region has a constant
value (which may be a good approximation at large reverse bias). In that case,
the hole moves at constant speed vh = µhE0 for a time Th = zint/(µhE0), and
the electron moves at speed ve = µeE0 for a time Te = (Lz − zint)/(µeE0). A
conservation-of-energy argument similar to the one in Sec. 12.1.1 then shows that
the hole and electron currents in the external circuit (for a single photoelectric
interaction) are, respectively,

i0h(t) = −eE0µh

Lz
, 0 ≤ t <

zint
µhE0

; (12.37)

i0e(t) = −eE0µe

Lz
, 0 ≤ t <

Lz − zint
µeE0

. (12.38)
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Comparison of these expressions with (12.2) shows that the semiconductor diode
gives two rect-function pulses rather than the single triangular one obtained with
the vacuum diode. Both pulses are negative since the electrons move towards the
load resistor in the external circuit and the holes move away.

At zero bias, the field E0 is approximately given by the bandgap potential
difference (i.e., Eg expressed in eV) divided by Lz. Since Eg is around 1 eV and
Lz is typically a few microns, E0 is of order 103 – 104 V/cm. Typical mobilities
are a few thousand cm2/V-sec, so the carrier speeds in the depletion region are of
order 107 cm/sec. Therefore the resulting pulse widths in (12.37) and (12.38) are of
order 10−11 sec for zero bias, and even less for reverse bias. If these widths are short
compared to the reciprocal bandwidth of the circuit, then we can approximate the
rects by delta functions. Taking care to preserve normalization, we write

i0h(t) # −zint
Lz

e δ(t) , i0e(t) # −Lz − zint
Lz

e δ(t) . (12.39)

One interpretation of this result is that each carrier induces a total charge propor-
tional to the distance it travels and independent of the field and mobilities.

Of course, we do not observe these pulses separately. The total current flowing
in the circuit for one electron-hole pair is

i0(t) = i0h(t) + i0e(t) = −e δ(t) . (12.40)

Thus the total induced charge per electron-hole pair is e, not 2e.
Since (12.40) is identical to (12.4), the remainder of the discussion in Sec. 12.1.1

is still applicable to semiconductor diodes. Note especially that i0(t) is independent
of the interaction position zint, so this random variable does not affect the statistics
of the photocurrent under the present model. The key assumptions that caused zint
to cancel out were that both carriers eventually reach the undepleted region (no
trapping or recombination in the depletion region) and that the lateral dimensions
of the diode are large (Lx, Ly + Lz). We shall come back to the effects of trapping
in the depletion region below.

Mean photocurrent As in Sec. 12.1.1, we now assume that the radiation is tempo-
rally stationary and that the Poisson postulates are satisfied. The rate of photo-
electric generation of electron-hole pairs is ηaphot, where η is the fraction of photons
absorbed in the depletion region and aphot is the rate of arrival of photons,

aphot = AIp . (12.41)

Here, A = LxLy is the cross-sectional area of the diode and Ip is the (nonrandom)
photon irradiance.

The total photocurrent ip(t) is now a Poisson random process of the form
(12.8), and from (11.95) its mean is

〈ip(t)〉 = −eηaphot = −eηAIp . (12.42)

Total current There is a dark current in semiconductor photodiodes analogous to
the thermionic emission from the photocathode in a vacuum diode, but the physics
is rather different. As we saw in Sec. 12.1.2, there are actually four components
to the dark current in a P-N junction: electron and hole generation currents and
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electron and hole recombination currents. The sum of the means of these currents
is zero at zero bias in the dark, but each current component carries its own noise,
and the noises do not cancel even if the means do.

To the extent that each electron or hole flowing in the diode produces a current
pulse short compared to the reciprocal of the system bandwidth, we can express
the total current as a sum of point processes,

itot(t) = −ezp(t)− ezeg(t)− ezhg(t) + ezer(t) + ezhr(t) , (12.43)

where the subscripts have the following meanings: p ⇒ photoelectric, eg ⇒ elec-
tron generation, hg ⇒ hole generation, er ⇒ electron recombination, hr ⇒ hole
recombination. Each random process is a sum of delta functions as in (12.8), and
each has its own rate a with an appropriate subscript. All of the rates are positive
by definition, so the signs in (12.43) indicate the directions of the corresponding
currents. The rates for the generation and recombination components depend on
temperature and on the bias voltage across the diode, but in thermal equilibrium
at zero bias, aeg = aer and ahg = ahr.

A great simplification arises if we can assume that each of the five random
processes in (12.43) is statistically independent of the other four, but to make this
assumption we must neglect several effects. The first is Coulomb interaction of one
charge carrier with another. The basic argument that validates this assumption is
that the field in the depletion region is rather strong, of order 104 V/cm, so the
motion of each carrier is determined by this field and not by the weaker fields of the
other carriers. We must also assume that the rate for one current is independent of
the magnitudes of the other currents. Effects that could invalidate this assumption
include heating of the material at high current and changes in bias arising from the
voltage drop across the external circuit. The latter effect is minimized by use of an
operational amplifier as in Fig. 12.2b. Finally, fluctuations in ambient temperature
or bias voltage can produce correlations among the current components. Good en-
gineering practice will usually control these factors adequately, however, and there
is seldom a serious objection to assuming statistical independence of the component
currents.

An additional useful assumption is that each of the five random processes
is stationary. From the discussion in Sec. 11.3.1, we know the conditions under
which zp(t) is a stationary Poisson process; basically, the photon irradiance must
be nonrandom and independent of time, and all photoelectric events must produce
identical output pulses. Similarly, the four thermal processes are stationary if the
temperature is constant since the rates are determined by the temperature. More-
over, all carriers entering the depletion region produce identical current pulses if
there is no trapping or recombination in the depletion region. Under these condi-
tions, zeg(t), zhg(t), zer(t) and zhr(t) are all stationary Poisson random processes.

With these assumptions, the overall current is a stationary random point pro-
cess, though not exactly a Poisson point process because of the factors of ±e. In-
stead, from the discussion in Sec. 11.3.3, we can see that the mean current is

〈itot(t)〉 = −eap − eaeg − eahg + eaer + eahr , (12.44)

and the stationary autocovariance function is [cf. (11.97)]

Kitot(∆t) =
[

e2ap + e2aeg + e2ahg + e2aer + e2ahr
]

δ(∆t) = e2atot δ(∆t) , (12.45)
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where atot is the total rate of electrons crossing the junction due to all processes,
with no regard to the direction of the currents. Because the factors ±e are squared,
the covariances add even when the mean currents tend to cancel.

The power spectral density of the total current is the Fourier transform of
(12.45), or

Sitot(ν) = e2atot , (12.46)

so the current noise is white (within our approximation of short transit time).

RC filtering As with vacuum photodiodes, we now investigate the effect of passing
itot(t) through an RC filter. Repeating the calculations in Sec. 12.1.1 with due
attention to the signs of various terms, we find [cf. (12.10) and (12.11)]

〈Vout(t)〉 = R[−eap − eaeg − eahg + eaer + eahr] , (12.47)

Var{Vout(t)} =
R

2C

[

e2ap + e2aeg + e2ahg + e2aer + e2ahr
]

. (12.48)

To simplify these expressions, we consider a large reverse bias so that the
recombination currents are zero (no majority carriers can surmount the potential
barrier) and the reverse-bias saturation current is is given by eaeg + eahg. Since
ap = ηAIp, we can now write the mean and variance of the filter output as

〈Vout(t)〉 = −ReηAIp −Ris , (12.49)

Var{Vout(t)} =
R

2C

[

e2ηAIp + eis
]

. (12.50)

The mean photocurrent is −eηAIp, and −is is the mean dark current, so (12.49) is
Ohm’s law and (12.50) is the shot noise associated with the total mean current [cf.
(12.11)].

Trapping So far we have assumed that any carrier that enters the depletion region
is swept across. One consequence of this assumption is that all photoelectric events
in the depletion region produce identical output current pulses, so the noise is
determined solely by Poisson statistics. In real photodiodes, however, there is always
some probability that an electron or hole will be trapped at a defect in the depletion
region. When this occurs, the induced current pulse in the external circuit is smaller
than for a carrier that makes it all the way across. Since trapping is a random
phenomenon, the noise is increased in the presence of trapping.

With trapping, there are three new random variables to consider for each
photoelectric event: the random depth of interaction zint, the random distance
travelled by the electron and the random distance travelled by the hole. Suppose
a hole and an electron are generated at time t = 0 and at depth z = zint, that the
electron moves in the +z direction by a distance de (where 0 < de ≤ Lz − zint),
and that the hole moves in the −z direction a distance dh (where 0 < dh ≤ zint).
(Hence de and dh are both positive numbers.) If we can assume, as we did above,
that the transit times are small compared to the reciprocal bandwidth of the circuit,
the current induced in the external circuit can be written as

i0(t) = i0h(t) + i0e(t) = −e

[

dh
Lz

+
de
Lz

]

δ(t) ≡ −eβ δ(t) , (12.51)
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where 0 < β ≤ 1. Note that β = 1 if there is no trapping since then de = Lz − zint
and dh = zint.

Equation (12.51) may seem to imply that the induced charge need not be an
integral multiple of e, in violation of charge quantization, but two points should
be kept in mind. First, charge is quantized but current is not; an electron can
move an arbitrary distance and hence induce an arbitrary current. Second, even
when the total current is integrated on a capacitor to get a voltage, it is the total
charge, arising from many current pulses of the form (12.51) that is quantized, not
the charge from each pulse independently. Quantization of charge on a capacitor
plate, called Coulomb blockade, has indeed been observed experimentally, but it
is of little practical concern in electronic devices.

A first-principles treatment from this point would deduce the probability den-
sity function for β from knowledge of the physics of photon absorption and carrier
trapping, but for present purposes it will suffice to assume that the mean β and
variance σ2

β of the random amplitude β are known. It is not necessary to know how
the statistics of β depend on those of zint, de and dh.

Suppose the photoelectric events comprise a stationary Poisson point process
of rate ap, with the nth event occurring at time tn (0 < tn ≤ T ) but inducing a
delta-function current pulse with strength −eβn. Then the current is not a Poisson
process because the pulses are not identical. We assume, as usual, that all events
are statistically indistinguishable and independent, so the mean and variance of βn

are the same for all events, and βn is statistically independent of βm for n -= m.
The total photocurrent is then

ip(t) = −e
N
∑

n=1

βn δ(t− tn) . (12.52)

There are now 2N + 1 random variables: the set {tn}, the set {βn} and N itself.
It will serve as an excellent test of the reader’s comprehension of random point
processes to retrace the derivation in Sec. 11.3.3 and show that the mean and
autocorrelation function of the photocurrent are given by

〈ip(t)〉 = −eapβ , (12.53)

〈ip(t) ip(t′)〉 = e2ap
(

σ2
β + β

2
)

δ(t− t′) + e2a2pβ
2
. (12.54)

If there is no trapping, β = 1 and σ2
β = 0, and we are back to the usual results for

stationary Poisson random processes.
With trapping, however, the mean and variance on the output of the RC filter

are both modified. Neglecting generation and recombination currents for simplicity,
we find [cf. (12.47) and (12.48)]

〈Vout(t)〉 = −eapRβ , (12.55)

Var{Vout(t)} =
e2apR

2C

(

σ2
β + β

2
)

. (12.56)

The detective quantum efficiency in this case is given by

DQE =
β
2
η

σ2
β + β

2 , (12.57)
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where η is the usual quantum efficiency (the probability of a photon producing a
photoelectric event). Note that DQE → η as σ2

β → 0, regardless of β; the absolute
size of the current pulse does not affect DQE (if there are no other noise sources),
but its randomness does.

12.2 OTHER NOISE MECHANISMS

So far we have focused on different manifestations of shot noise or photon noise, but
in real detectors there are other noise mechanisms as well. In this section we shall
discuss the most important ones, including thermal or Johnson noise, generation-
recombination noise arising from random fluctuations in the number of free carriers
in a semiconductor, a somewhat mysterious process known as 1/f noise, and a kind
of noise called kTC noise, which is peculiar to gated integrators.

12.2.1 Thermal noise

The thermal motion of charge carriers in any conductor leads inevitably to fluctua-
tions in the current. This phenomenon was reported independently in 1928 by J. B.
Johnson and H. Nyquist in two papers with nearly identical titles in the same issue
of Physical Review (Johnson, 1928; Nyquist, 1928). The terms Johnson noise and
Nyquist noise are both used in the literature, with perhaps a 75% chance that
Johnson will be given sole credit. We shall use the broad term thermal noise to
describe Johnson/Nyquist noise and any other fluctuations that would disappear at
absolute zero temperature.

There are many ways of looking at thermal noise, including the equipartition
principle, the fluctuation-dissipation theorem and stochastic differential equations.
We shall touch briefly on these various approaches, emphasizing concepts useful in
analyzing imaging systems.

Thermodynamic probabilities and equipartition A basic result of statistical mechanics
is that the probability of occurrence of any state j in thermal equilibrium is given
by

Pr(j) =
1

Z
exp

(

− Ej
kBT

)

, (12.58)

where Ej is the energy of the state. The normalizing constant Z, called the partition
function, is usually written as

Z =
∑

j

exp

(

− Ej
kBT

)

, (12.59)

where the sum is over all possible states of the system. In many cases, there is a
continuum of states, so the probability becomes a probability density function and
the discrete sum over the index j must be replaced by an appropriate integral.

For a system consisting of N free particles of mass m, the state j is specified
by stating the velocity vn for each particle. The energy is the sum of the kinetic
energies of the particles:

E =
N
∑

k=1

1
2mv2k =

N
∑

k=1

1
2m

(

v2kx + v2ky + v2kz
)

, (12.60)
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where vkx is the x-component of vk, etc.
An immediate consequence of (12.58) and (12.60) is that all components of

all velocities are normally distributed with zero mean. For example, the marginal
probability density function on vkz is

pr(vkz) =

√

m

2πkBT
exp

(

−
1
2mv2kz
kBT

)

. (12.61)

Since current in a circuit is linearly related to the velocity of charge carriers, it
follows that thermal noise currents must be normally distributed as well.

The average energy associated with any velocity component (say vkz) is

〈

1
2mv2kz

〉

= 1
2kBT . (12.62)

This is quite a general result, known as the equipartition principle: Each quadratic
contribution to the energy has an average value of 1

2kBT, and the associated dy-
namical variable (here vkz) is normally distributed.

Basic equations for thermal noise A simple way to get from the equipartition prin-
ciple to a practical formula for thermal noise is to consider a resistor R in parallel
with a capacitor C. The energy stored in the capacitor is 1

2CV 2, where V is the
voltage across the parallel combination. This voltage is the only dynamical variable
necessary to specify the energy of the system. By equipartition, we must have

1
2C

〈

V 2
〉

= 1
2kBT , (12.63)

or
〈

V 2
〉

=
kBT

C
. (12.64)

But we know from (12.19) that the effective noise bandwidth B is given by (4RC)−1,
so we can also write

〈

V 2
〉

= 4RkBTB . (12.65)

This fundamental equation shows that the noise variance is proportional to the
resistance, to the absolute temperature and to the circuit bandwidth. An alterna-
tive—and more general—derivation of (12.65) will be given below after we state
the fluctuation-dissipation theorem.

One way to interpret (12.65) is in terms of equivalent circuits, as shown in Fig.
12.10. The actual noisy resistor can be modeled as a noise free resistor in series
with a zero-mean random voltage source that produces an RMS noise of

√
4RkBTB.

By Thevenin’s theorem an alternative equivalent circuit is a noise-free resistor in
parallel with a zero-mean random current source that produces an RMS current
of

√

4kBTB/R . The latter circuit is convenient for comparing the thermal noise
current to the photocurrent from a photodiode.

Another interpretation of (12.65) is in terms of available noise power. Max-
imum power is transferred from a source to a load if the resistance of the load
equals the internal resistance of the source. Thus a noisy resistor R in parallel with
another resistor of resistance R′ will transfer the maximum possible power to the
second resistor if R = R′ (and of course the second resistor will transfer the same
amount of power back to the first if they are in thermal equilibrium). The noise
voltage from the first resistor is then divided evenly between itself and the second
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resistor, and the voltage that appears across the load is V/2, where the variance of
V is still given by (12.65). The average power transferred to a matched load is

Pmax =

〈

V 2
〉

4R
= kBTB . (12.66)

Fig. 12.10 Equivalent circuits for a resistor with thermal noise. Left: Series
equivalent circuit with a random voltage source. Right: Parallel equivalent
circuit with a random current source.

Thus the available power is kBTB, and the available power per unit bandwidth is
kBT. Since kBT is an energy (with SI units of Joules) and B has units of Hz or
sec−1, kBTB has units of Joules/sec or Watts. Numerically, at room temperature
(300 K) and a bandwidth of 1 MHz, kBTB = 4 × 10−15 Watts, a seemingly tiny
number but nevertheless often the dominant noise in practical electronic circuits
and photodetectors.

Finally, we can also interpret (12.65) in terms of the power spectral density
of the noise, SV (ν). Since the frequency ν does not appear in (12.65), we must be
dealing with a white-noise process. If we assume that

SV (ν) = 2RkBT , (12.67)

then (12.65) follows since the variance is the autocovariance function at zero shift
and, for a zero-mean process, the autocovariance function is the inverse Fourier
transform of the power spectral density. Thus (12.67) requires that

〈

V 2
〉

=

∫ B

−B
dν SV (ν) = 4RkBTB , (12.68)

in agreement with (12.65).
The expression in (12.67) can be regarded as the power spectral density of the

voltage source in the equivalent circuit of Fig. 12.10a. The corresponding spectral
density for the current source in Fig. 12.10b is, by Thevenin’s theorem,

Si(ν) =
2kBT

R
. (12.69)
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Thermal noise in P-N junctions We have already analyzed the noise properties of
generation and recombination currents in P-N junctions. In Sec. 12.1.3 we con-
sidered the shot noise from these currents and showed in (12.46) that the power
spectral density of the current was white. Since generation and recombination cur-
rents arise from thermal fluctuations, however, one might wonder how they relate
to thermal noise. We shall now show that in thermal equilibrium (no bias or illu-
mination), they are in fact the same thing.

A P-N junction can be considered to be a nonlinear resistance. For a linear
resistor, the resistance R is V/i, and for a nonlinear element an effective differential
resistance Rd can be defined as ∂V/∂i. We can find Rd for a P-N junction in the
dark at zero bias by differentiating the current-voltage characteristic (12.34):

1

Rd
≡

[

∂i

∂Vb

]

Vb=0

=
eis
kBT

. (12.70)

Since the thermal fluctuations are always so small that the current-voltage charac-
teristic is locally linear, we can compute the thermal noise associated with Rd just
as we would from a linear resistor. In particular, we know from (12.69) that the
power spectral density for the thermal-noise current is 2kBT/R, and if we replace
R with Rd we find

S∆i(ν) =
2kBT

Rd
= 2eis . (12.71)

There is no net current across an unilluminated P-N junction at zero bias, but
there are four component currents: electron and hole generation and recombination
currents. As discussed in Sec. 12.1.2, the two generation currents persist at reverse
bias, and is is given by eaeg + eahg. Thus the positive quantity aeg + ahg = is/e.
At zero bias there are two other contributions to the total rate, namely aer and
ahr, and the total rate atot is 2is/e. The power spectral density of the shot noise
associated with this total rate is then e2atot = 2eis, which is identical to (12.71).

The shot noise due to thermally generated generation and recombination cur-
rents is thus the same thing as thermal noise in an unilluminated P-N junction at
zero bias. At large reverse bias, on the other hand, the recombination currents are
zero and the rate of carrier transport across the junction is reduced from 2is/e to
is/e, so the noise power spectral density (and variance after filtering) are also re-
duced a factor of 2. The differential resistance Rd is very high at large reverse bias,
so the thermal contribution to S∆i(ν) is negligible, but the shot-noise associated
with the two generation currents remains. The system is no longer in thermal equi-
librium at reverse bias, so there is no reason to expect that the thermal expressions
will account for all of the noise.

Fluctuation-dissipation theorem The basic principle that dictates the inevitability
of thermal noise is the fluctuation-dissipation theorem, which was stated precisely
and given a quantum-mechanical basis by Callen and Welton (1951). A succinct
derivation is given by Mandel and Wolf (1995), and a more detailed treatment is
given by Kogan (1996). Here we merely state the key results without derivation.

Consider a temporally shift-invariant system in which some dynamical variable
y(t) responds linearly to a stimulus x(t). For a monochromatic stimulus expressed
as the real part ofX(ν) exp(−2πiνt), the response has a similar form with amplitude
Y (ν) given by

Y (ν) = H(ν)X(ν) , (12.72)
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where H(ν) is the transfer function. In addition, assume that the variables are
defined so that a time average of the product x(t) y(t) is the power delivered from
the stimulus to the system. For example, x(t) could be a current across a resistor
and y(t) the resulting voltage, or x(t) could be the force exerted by an electric field
and y(t) the velocity of a charged particle. Note, however, that we cannot take
x(t) as the electric field and y(t) as the resulting displacement of a charged particle;
even though these variables are linearly related, the product x(t) y(t) is not a power,
dimensionally or physically.

With the proper choice of variables and a monochromatic stimulus, the power
transfer is given by (see Sec. 10.1.2)

P = 1
2 Re{Y (ν)X∗(ν)} = 1

2 |X(ν)|2 ReH(ν) . (12.73)

Thus the real part of the transfer function controls the power dissipation.
The fluctuation-dissipation theorem says that the dynamical variable y(t) will

undergo thermal fluctuations ∆y(t) with a power spectral density S∆y(ν) propor-
tional to ReH(ν). The full quantum-mechanical calculation (Mandel and Wolf,
1995) shows that

S∆y(ν) = 2hν

[

1

2
+

1

ehν/kBT − 1

]

ReH(ν) . (12.74)

The reader should verify the dimensional consistency of this equation.
The factor in square brackets in (12.74) is the mean number of quanta associ-

ated with a mode of the radiation field in thermal equilibrium, and hν times this
factor is the mean energy. As T → 0, the mean energy approaches the zero-point
value 1

2hν. For practical problems with ordinary electrical circuits or photodetec-
tors, it is almost always valid4 to say that hν $ kBT. With this approximation,
the mean number of quanta in the mode is very large, so quantum-mechanical ef-
fects become negligible and (12.74) takes a simple form (independent of Planck’s
constant h):

S∆y(ν) = 2kBT ReH(ν) . (12.75)

Now we see that fluctuations in y(t) have a power spectral density controlled entirely
by the dissipative part of the transfer function, with the constant of proportionality
just given by 2kBT.

As an application of this theorem, let the dissipative system be an ideal resistor
where the input x(t) is the current through the resistor and the output y(t) is the
voltage V (t) across it. Then H(ν) is the constant R for all ν, and the power spectral
density of the voltage fluctuations is

S∆V (ν) = 2RkBT , (12.76)

in agreement with (12.67).

Stochastic differential equation The fluctuation-dissipation theorem tells us how
large the thermal fluctuations in a dissipative system must be, but it sheds no light

4As a useful rule of thumb, an energy E = 1 eV corresponds to a temperature E/kB = 11, 600 K
and to a frequency E/h = 2.4× 1014 Hz.
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on how they arise in the first place. We shall now show how both the fluctuations
and the dissipation can be derived from a common differential equation.

Consider a single free electron in a solid. Forces are exerted on the electron
by an applied (possibly time-dependent) electric field E0(t) in the +z direction and
by thermal motion of atoms and other electrons in the material. The equation of
motion for the z component of the electron velocity is (Reif, 1965; Riskin, 1984)

m
dvz(t)

dt
= −eE0(t) + Fz(t) , (12.77)

where Fz(t) is the z-component of the total fluctuating force on the electron. Since
Fz(t) is random, (12.77) is a stochastic differential equation.

The main thing we need to know about Fz(t) is that it fluctuates very rapidly.
That is, Fz(t) is a sample function of a temporal random process with a very short
correlation time, of order 10−13 sec in semiconductors, so it is short compared to
any time interval over which we can observe the system in the laboratory. In
particular, the correlation time is short compared to the lifetime τ introduced in
Sec. 12.1.2. The lifetime is the mean time before trapping or recombination, and it
is typically milliseconds or microseconds for electrons in semiconductors. We shall
neglect trapping and recombination altogether in this section but reintroduce them
in Sec. 12.2.2.

We can write the velocity component vz(t) as

vz(t) = vz(t) +∆vz(t) , (12.78)

where the overbar indicates a time average over an interval long compared to the
correlation time of the force but short compared to the time dependence of E0.
Similarly, we can write the random force as

Fz(t) = Fz(t) +∆Fz(t) . (12.79)

One might expect Fz(t) to be zero because forces acting in the +z direction have
the same probability as forces acting in −z. That would be true for an electron at
rest, but the average motion vz(t) breaks the symmetry. To first order in vz(t) we
can write

Fz(t) = −α vz(t) , (12.80)

where α > 0 since the average force must be in the direction of decelerating the
moving electron.

A time average of (12.77) yields

m
dvz(t)

dt
= −eE0(t)− α vz(t) . (12.81)

For constant field, the steady-state solution of this equation is vz = −eE0/α. If
we identify vz with the average electron velocity in (12.25), we see that e/α is the
electron mobility µe. Thus, after reinserting the fluctuating terms, we can rewrite
(12.77) as

dvz(t)

dt
+

e

mµe
vz(t) = − e

m
E0(t) +

1

m
∆Fz(t) . (12.82)

Equation (12.82) is known as the Langevin equation.
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Solution of the Langevin equation For notational simplicity, we define e/(mµe) as
γ and ∆Fz(t)/m as the force per unit mass, denoted ∆fz(t). Then the Langevin
equation in the absence of an applied field is

dvz(t)

dt
+ γvz(t) = ∆fz(t) . (12.83)

If one considers a specific sample function ∆fz(t) of the fluctuating force, then this
is an ordinary inhomogeneous differential equation with the solution

vz(t) = vz(0)e
−γt +

∫ t

0
dt′ e−γ(t−t′)∆fz(t

′) . (12.84)

Of course, vz(t) is also a sample function of a random process, and we can now
study its mean and autocorrelation function. The mean is immediately zero since
there is no applied field and the +z and −z directions are indistinguishable. To
find the autocorrelation function of vz(t), we take advantage of the fact that ∆fz(t)
fluctuates very rapidly (with zero mean), so that its autocorrelation function can
be written as

〈∆fz(t
′)∆fz(t

′′)〉 = C δ(t′ − t′′) , (12.85)

where C will be determined below. With this assumption, the autocorrelation
function for vz(t) becomes

〈vz(t1) vz(t2)〉 = v2z(0) e
−γ(t1+t2) +

∫ t1

0
dt′

∫ t2

0
dt′′ e−γ(t1+t2−t′−t′′)C δ(t′ − t′′)

= v2z(0) e
−γ(t1+t2) + C

∫ min[t1,t2]

0
dt′ e−γ(t1+t2−2t′)

= v2z(0) e
−γ(t1+t2) +

C

2γ
e−γ(t1+t2)

[

e2γ min[t1,t2] − 1
]

= v2z(0) e
−γ(t1+t2) +

C

2γ

[

e−γ|t1−t2| − e−γ(t1+t2)
]

. (12.86)

In typical semiconductors at room temperature, µe is about 1000 cm2/V-sec,
and m must be interpreted as the effective mass, typically 0.1 times the actual
electron mass; with these numbers, γ (= e/mµe) is of order 1013 sec−1. Therefore,
we can neglect the exponential factors involving t1 + t2, so that

〈vz(t1) vz(t2)〉 #
C

2γ
e−γ|t1−t2| . (12.87)

This equation shows that the correlation time of the random process vz(t),
defined as the value of |t1 − t2| for which the autocorrelation drops by a factor of
1/e, is 1/γ. We can express the correlation time as

τsc =
1

γ
, (12.88)

where the notation τsc is used since this correlation time can be interpreted as the
mean time between scattering events.
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We can now determine the constant C by appealing to the equipartition prin-
ciple. Since 1

2m
〈

v2z(t)
〉

= 1
2kBT , we must have

〈vz(t1) vz(t2)〉 =
kBT

m
e−γ|t1−t2| . (12.89)

If we are not concerned with time scales as small as τsc, we can use

lim
γ→∞

γ

2
e−γ|∆t| = δ(∆t) (12.90)

to obtain

〈vz(t1) vz(t2)〉 =
2kBTµe

e
δ(t1 − t2) . (12.91)

Relation to current noise Consider a homogeneous semiconductor of dimensions
Lx × Ly × Lz (Lx, Ly + Lz) with electrodes on the faces z = 0 and z = Lz

connected to an external circuit. We know from (12.2) that a moving electron with
velocity v(t) induces a current in the circuit given by

i0(t) = − e

Lz
vz(t) . (12.92)

It follows from (12.91) and (12.92) that the autocorrelation function of this current
is

〈i0(t) i0(t+∆t)〉 = 2kBTeµe

L2
z

δ(∆t) . (12.93)

Now suppose the semiconductor has a density of n electrons per unit volume,
or a total of N = nLxLyLz electrons. The total current is still a zero-mean random
process. Since the fluctuations in the motions of different electrons are uncorrelated,
the autocorrelation function of the total current is

〈i(t) i(t+∆t)〉 = N〈i0(t) i0(t+∆t)〉 = 2nAkBTeµe

Lz
δ(∆t) , (12.94)

where A = LxLy.
We can rewrite (12.94) in terms of the resistance of the specimen, which, with

(12.28), is given by

R =
Lz

σA
=

Lz

enµeA
. (12.95)

Thus the autocorrelation function for the current is

〈i(t) i(t+∆t)〉 = 2kBT

R
δ(∆t) (12.96)

and the corresponding power spectral density is

Si(ν) =
2kBT

R
, (12.97)

in agreement with (12.69).
This expression shows that the noise power is independent of frequency, but

recall that we approximated the autocorrelation function by a delta function in
(12.91). The reader is invited to show that the more general result is

Si(ν) =
2kBT

R

1

1 + (2πντsc)2
. (12.98)
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The white-noise expression (12.97) is thus valid if 2πντsc $ 1, which is easily
satisfied in all practical electronic circuits, but the total power, integrated over all
frequencies is finite.

Another straightforward generalization is to consider an applied field in the
derivation above. Then the mean velocity is not zero, but the autocorrelation
function of the velocities is essentially unchanged; thermal velocities are so much
larger than drift velocities that the drift can be neglected in the autocorrelation.
Thus, even though thermal noise can be described microscopically as current noise
or shot noise, it does not depend on the mean current.

Diffusion and the Einstein relation We have seen that random thermal forces on an
electron account for both the finite mobility and the thermal noise. As we shall now
demonstrate, they also account for Brownian motion and diffusion.

Consider an electron (or any other particle) whose z coordinate at time t = 0
is denoted z(0). As a result of the random thermal forces, it will be at some other
coordinate z(t) at time t. The mean-squared distance moved in the +z direction is
given by

〈

[z(t)− z(0)]2
〉

=

〈

[
∫ t

0
dt1 vz(t1)

]2
〉

. (12.99)

If we write the squared integral as a product of two identical integrals and inter-
change order of integration and expectation,5 we obtain

〈

[z(t)− z(0)]2
〉

=

∫ t

0
dt1

∫ t

0
dt2 〈vz(t1) vz(t2)〉 . (12.100)

Inserting the delta-function form (12.91) for the autocorrelation of vz(t) and per-
forming two easy integrals, we find

〈

[z(t)− z(0)]2
〉

=
2kBTµe

e
t . (12.101)

We have thus rediscovered a well-known result from the theory of Brownian motion
and other diffusion processes: the RMS displacement grows as the square-root of
time. The diffusion constant D is defined such that (Reif, 1965)

〈

[z(t)− z(0)]2
〉

= 2Dt . (12.102)

We see at once that

D =
kBT

e
µe , (12.103)

which is the celebrated Einstein relation linking the diffusion constant to the
mobility.

5The validity of this step is discussed in Sec. 8.2.2, but the theorem cited there specifically rules
out white-noise processes. To justify the interchange we have to say that it is done before letting
γ → ∞.
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12.2.2 Generation-recombination noise

Generation-recombination noise or GR noise is the noise associated with ther-
mal fluctuations in carrier density in a semiconductor. Since the conductivity is
proportional to the carrier density, GR noise can be thought of as fluctuations in
resistance of a specimen. If an electric field is applied to the specimen, the resis-
tance fluctuations lead to current fluctuations, so this mechanism is an important
noise source in photoconductors.

GR noise should not be confused with the shot noise due to generation and
recombination currents in P-N junctions. In Sec. 12.1.3 we analyzed the latter noise
in terms of shot noise, and then in Sec. 12.2.1 we saw that it could also be inter-
preted as thermal noise, at least at zero bias. What we are calling GR noise in this
section occurs in homogeneous semiconductors (as opposed to junctions), and it is
fundamentally the result of resistance fluctuations rather than shot noise.

Simple model for GR noise Consider again a piece of semiconductor with dimensions
Lx × Ly × Lz (Lx, Ly + Lz) with electrodes on the faces z = 0 and z = Lz . If a
bias voltage Vb is applied to the electrodes, the charge carriers experience a field
E0 = Vb/Lz in the −z direction. For simplicity we consider only electrons.

Each free electron moves with constant velocity µeE0 in the +z direction,
corresponding to a current −eµeE0/Lz, but the electrons do not remain free so
the current is not constant. If an electron recombines or is trapped, its current
immediately ceases. If the electron is thermally excited out of a trap at a later time,
or a new free electron is generated by thermal excitation from the valence band,
then this electron is very quickly accelerated to its terminal velocity (on a time scale
of picoseconds), and the current resumes. The resulting current waveform due to a
single electron is illustrated in Fig. 12.11; this random process is often referred to
as a random telegraph wave, and its statistics directly control the statistics of GR
noise.

Fig. 12.11 Typical waveform of a single electron that is randomly trapped.

Statistics of the random telegraph wave Consider a single electron and define a
random process y(t) to have the value 1 when the electron is free and zero when it
is trapped. The mean of this process is

〈y(t)〉 = Pr[y(t) = 1] = Pr[electron is free] ≡ p1 . (12.104)

The autocorrelation function (for ∆t > 0) is

〈y(t) y(t+∆t)〉 = Pr[y(t) = 1 and y(t+∆t) = 1]

= Pr[y(t+∆t) = 1|y(t) = 1] p1 . (12.105)
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If p1 is independent of time, the process is stationary.
We can further decompose the event that y(t + ∆t) = 1 given that y(t) = 1

into two mutually exclusive possibilities: either no transitions between the free and
trapped states occur in the interval ∆t, or one or more transitions occur. If no
transitions occur, then Pr[y(t +∆t) = 1|y(t) = 1] = 1. If one or more transitions
occur, then it is reasonable to assume that the electron loses all memory of its
previous state, and Pr[y(t+∆t) = 1|y(t) = 1] = Pr[y(t+∆t) = 1] = p1. Thus

〈y(t) y(t+∆t)〉 = p1{Pr(no trans in ∆t) + p1[1− Pr(no trans in ∆t)]} , (12.106)

where Pr(no trans in ∆t) is the probability that the electron makes no transitions
and hence remains free for a time ∆t. If the transitions are independent events
satisfying the Poisson postulates, this probability is given by [cf. 11.6]

Pr(no trans in ∆t) = e−∆t/τ , (12.107)

where τ is the lifetime of the electron in the free state.
The discussion above was for ∆t > 0, but an autocorrelation function must be

symmetrical, so

〈y(t) y(t+∆t)〉 = p1
[

e−|∆t|/τ + p1
(

1− e−|∆t|/τ
)]

= (p1 − p21) e
−|∆t|/τ + p21 . (12.108)

Defining the zero-mean process ∆y(t) = y(t)−〈y(t)〉, we see that the autocovariance
of y(t) is given by

Ky(∆t) = 〈∆y(t)∆y(t+∆t)〉 = (p1 − p21) e
−|∆t|/τ . (12.109)

From telegraph wave to GR noise Now assume there are Ntot electrons in the volume
and that the generation and recombination processes act independently on different
electrons. Under this assumption, the mean and autocovariance of the current are
given by

〈i(t)〉 = −Ntot
eµeE0

Lz
p1 ; (12.110)

Ki(∆t) = 〈∆i(t)∆i(t+∆t)〉 = Ntot

[

eµeE0

Lz

]2
(

p1 − p21
)

e−|∆t|/τ . (12.111)

But Ntotp1 is the mean number of free electrons, denoted N and given in terms
of the mean density n of free electrons by

N = Ntot p1 = nALz , (12.112)

where A = LxLy. The mean resistance of the specimen, now denoted R, is given
by (12.95), and it follows from (12.110) and (12.112) that the mean current obeys
Ohm’s law,

〈i(t)〉 = V0/R , (12.113)

where V0 = E0Lz is the applied voltage.
The autocovariance can also be expressed in terms of V0 and R. Since the num-

ber of free carriers is much less than the total number of carriers in a semiconductor
(or else it wouldn’t be semi), p1 $ 1 and we can neglect the term proportional to
p21 in (12.111). A little algebra then yields

Ki(∆t) = nA
(eµeE0)2

Lz
e−|∆t|/τ =

〈i(t)〉2

N
e−|∆t|/τ =

V 2
0

N R
2 e

−|∆t|/τ . (12.114)
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Power spectral density The power spectral density of the GR current fluctuations
is obtained by Fourier transforming (12.114), with the result,

S∆i(ν) =
V 2
0

N R
2

2τ

1 + (2πντ )2
. (12.115)

A useful alternative form is

S∆i(ν) = N

[

eµeE0

Lz

]2 2τ

1 + (2πντ)2
. (12.116)

Though one of these expressions has N in the denominator and one has it in the
numerator, they are nonetheless equivalent since R ∝ 1/N.

This power spectral density is similar in form to the thermal-noise expression
in (12.98), but there are two key differences. First, the relevant relaxation time
for GR noise is the lifetime, which is microseconds to milliseconds, while the re-
laxation time for thermal noise is τsc, which is of order 10−13 sec. For frequencies
of importance with ordinary laboratory electronics, 2πντsc $ 1 but 2πντ may be
comparable to or greater than one, so the rolloff in (12.115) should not be neglected.
In fact, measurement of the power spectral density of GR noise is a useful technique
for determining the lifetime.

Second, we see that the power spectrum of the GR noise current in a homoge-
neous semiconductor is proportional to the square of the mean current and hence
to the square of the applied voltage. The power spectral density of thermal noise,
on the other hand, is independent of applied voltage (basically because thermal
velocities are large compared to drift velocities).

Variance and its interpretation In discussing shot noise and thermal noise, we as-
sumed that the relevant fluctuations were very rapid so that the power spectral
density was essentially constant. To that approximation, the variance of the cur-
rent was then infinite; to get back to a finite variance, we had to invoke an additional
filtering step with finite bandwidth. With GR noise, as we have noted, the fluctu-
ations tend to be much slower, so the power spectral density in (12.115) will not
usually be well approximated by a constant. Thus the variance of the GR noise
current is finite even without a filter.

Specifically, from (12.114) the variance is given by

Var{i(t)} = Ki(0) =
V 2
0

N R
2 . (12.117)

The ratio of the square of the mean to the variance is thus

SNR2
i ≡ 〈i(t)〉2

Var{i(t)} = N . (12.118)

This expression has a simple interpretation. The mean number of free electrons is N,
but the electrons are generated independently and thus obey Poisson statistics. The
variance in the number is also N, as is the ratio of the mean number squared to the
variance. Since i(t) = V0/R(t) and R(t) is proportional to 1/N(t), ∆i(t)/ 〈i(t)〉 =
−∆R(t)/R = ∆N(t)/N and (12.118) follows. Thus GR noise is basically the result
of the Poisson fluctuations in the number of free carriers, leading to fluctuations
in resistance which are converted to fluctuations in current if a constant voltage is
applied.
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GR noise in photoconductors As we saw in Sec. 12.1.2, a photoconductor is essen-
tially a resistor whose resistance depends on illumination. The resistance fluctua-
tions of GR noise are therefore an important limitation to the ability to detect weak
illumination with photoconductors. In addition, a photoinduced carrier has a ran-
dom lifetime, and this randomness is a further limitation to detection performance.
This is also a form of GR noise, even though it involves photogeneration rather
than thermal generation (Kingston, 1995). We shall now analyze a photoconductor
where both of these effects are present.

The starting point for the discussion will be a slight modification of (12.116).
If we write the total mean number of free electrons N as the sum of a thermal
component Nth and a component Np from photoexcitation, we have

S∆i(ν) =
(

Nth +Np

)

[

eµeE0

Lz

]2 2τ

1 + (2πντ )2
. (12.119)

Similarly, the mean current from (12.110) becomes

〈i(t)〉 = −
(

Nth +Np

)eµeE0

Lz
. (12.120)

Now consider explicitly the geometry of Fig. 12.3b, where both the illumination
and the mean current flow are in the +z direction. Also, assume for simplicity that
the hole mobility and/or lifetime are small so that the photoconductivity is mediated
solely by electrons. From (12.32) we obtain

Np = τAηIp . (12.121)

If we recognize that Lz/(µeE0) is the transit time Ttr across the detector, we
can write the mean photocurrent as

〈ip(t)〉 = − τ

Ttr
eAηIp . (12.122)

Since AηIp is the mean number of electrons per second generated by the illumina-
tion, we see that each electron contributes a current equivalent to that produced by
a charge −eτ/Ttr. The ratio of lifetime to transit time,

G ≡ τ

Ttr
, (12.123)

is called the photoconductive gain.
In many practical detectors, G is greater than 1, which requires a little expla-

nation. One might think that the life of an electron would end when it reached the
anode, as indeed it does in a photodiode. In a linear photoconductor with ohmic
(non-rectifying) contacts, however, a new electron is injected at the cathode as soon
as one disappears at the anode. Depending on τ and Ttr, this process can be re-
peated many times (Bube, 1992).

From (12.119), the low-frequency power-spectral density of the current can
now be written as

S∆i(0) = 2τNth

[

eµeE0

Lz

]2

+ 2Ge〈ip〉 . (12.124)
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The first term is what we had before for the GR noise associated with thermally
generated carriers. The second term, however, looks more like shot noise. Com-
parison with (12.13) shows that this term can be interpreted (except for a factor
of 2 which we explain below) as the shot noise associated with carriers of charge
Ge (Kingston, 1995). Note, however, that both G and 〈ip〉 are proportional to the
applied voltage, so the second term in (12.124) still varies as voltage squared.

The extra factor of 2 in (12.124) comes from the randomness in the time an
electron lives before recombination or trapping, an effect we have already analyzed
in discussing trapping in P-N junctions. We saw in (12.56) that the noise variance

(or power spectral density) is increased by a factor of σ2
β + β

2
if each carrier con-

tributes a random charge βe to the output current. In the present problem, β is
proportional to the free time T, which is exponentially distributed:

pr(T ) =
1

τ
e−T/τ , (T ≥ 0) . (12.125)

From the mean and variance of this density, as given in Sec. C.5.3, it follows that
(

σ2
T + T

2)
= 2τ2, accounting for the extra 2 in (12.124).

12.2.3 1/f noise

In 1925 J. B. Johnson (later to discover thermal noise) was studying noise in vacuum
tubes with thermionic cathodes. He observed the shot noise associated with the
thermionic emission and saw that it had a flat temporal power spectrum, but he also
discovered a component of the noise that had increased power at lower frequencies,
with the power spectral density varying approximately as the reciprocal of the
temporal frequency (Johnson, 1925; Kogan, 1996). A year later, Schottky (who
had earlier discovered shot noise proffered an explanation in terms of slow, random
changes in the emission from the thermionic cathode, and he dubbed the effect
flicker noise (Schottky, 1926). The flickering consists of slow, large-amplitude
variations (see Fig. 12.12) that might today be called drift or trending.

Fig. 12.12 Three typical waveforms of 1/f noise.

Since 1925 it has been found that virtually any current-carrying device has
such excess low-frequency noise. Moreover, very similar behavior has been found in
a wide variety of other fields, including seasonal temperatures, average rainfall, ve-
hicular traffic flow, potentials across nerve membranes, loudness and pitch of music
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and even stock-market indices (Keshner, 1982). The most common term for this
phenomenon, in all of these fields, is 1/f noise, even though the power spectrum
seldom varies exactly as 1/f (and even though it is common to use ν or ω rather
than f for temporal frequency).

A comprehensive treatment of electronic 1/f noise in solids is given by Ko-
gan (1996), and broad general reviews are given by Mandelbrot (1999), West and
Shlesinger (1990), Gardner (1978), Keshner (1982) and Schroeder (1991). Another
excellent source with a different bent is Lukyanchikova (1996); this book views noise
processes in semiconductors not so much as a limitation on device performance but
rather as a tool for investigating the fundamental physics and measuring key pa-
rameters of semiconductor materials and devices.

Power spectral density and autocorrelation function The most striking manifestation
of 1/f noise is that the power spectral density of some temporal random process
x(t) varies as

Sx(ν) ∝
1

|ν|β , (12.126)

where β is a positive number, usually in the range 1 ≤ β < 2. Since the variance of
a stationary, zero-mean random variable is given by

Var(x) =

∫ ∞

−∞
dν Sx(ν) , (12.127)

we must have infinite variance if (12.126) holds for all ν. For this reason, many
workers have assumed that there must be some low-frequency cutoff, but all at-
tempts to date to find one have failed. For example, Caloyannides (1974) studied
the noise in certain transistors down to 5 × 10−7 Hz, or 1 cycle in 3 weeks,6 and
found no deviation from (12.126).

The power spectral density in (12.126) implies that the temporal correlations
persist over very long times. One might think that the form of the autocorrelation
would be given by (3.168), which gives the Fourier transform of |ν|−β, but in fact
the function |ν|−β in (12.126) is not the same thing as the generalized function
|ν|−β defined by Lighthill and discussed in Sec. 2.3.3 [see (2.96)]. As we saw there,
the generalized function must have a strong negative singularity at the origin, while
power spectral densities are never negative. We can, however, directly transform
the power spectral density (at least for β < 1) and get the autocorrelation function.
Since a power spectral density is an even function, we can write

R(∆t) = 2

∫ ∞

0
dν Sx(ν) cos(2πν∆t) . (12.128)

With (12.126) and the change of variables u = 2πν∆t, we find

R(∆t) ∝ |∆t|β−1

∫ ∞

0
du u−β cos u . (12.129)

The integral converges for 0 < β < 1, but the important point for this discussion is
that it is just some constant,7 independent of ∆t, so we see that R(∆t) ∝ |∆t|1−β,

6The number of seconds in a year is approximately π × 107.
7The reader who really must know what this constant is can consult Gradshteyn and Ryzhik
(1980), formula 3.761.9.
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which approaches |∆t|0 or constant as β → 1. A 1/f process is therefore one where
the distant past strongly influences the present.

Observed variance If (12.126) is valid for all frequencies, the ensemble-average vari-
ance is infinite, but it does not follow that an experimenter would ever measure an
infinite variance. Suppose a single sample function of duration T of the random
process x(t) is available, say for − 1

2T < t ≤ 1
2T. The experimenter might define a

sample mean m and variance s2 by

m =
1

T

∫ 1

2
T

− 1

2
T
dt x(t) , (12.130)

s2 =
1

T

∫ 1

2
T

− 1

2
T
dt [x(t)−m]2 . (12.131)

Now suppose that x(t) is zero-mean and stationary, with the power spectral density
given by (12.126). What are the expected values of m and s2?

To find the expected value of m, we must interchange the order of statistical
averaging and integration over t. This interchange is legal since the integral of the
absolute value of the integrand is finite before and after taking the expectation (see
Sec. 8.2.2). It is finite before expectation since experimental values of x(t) must be
finite and the range of integration is finite, and after taking the expectation inside
the integral, the result is in fact zero:

〈m〉 = 1

T

∫ 1

2
T

− 1

2
T
dt 〈x(t)〉 = 0 . (12.132)

The expectation of s2 is more delicate. The integral in (12.131) is still finite
before taking the average, but the ensemble average of x2(t) is infinite if (12.126)
holds for all ν. Surprisingly, however,

〈

s2
〉

is finite. To see why, express the sample
function x(t) in terms of its Fourier transform as

x(t) =

∫ ∞

−∞
dν X(ν) exp(2πiνt) . (12.133)

Then the sample mean is given by

m =
1

T

∫ 1

2
T

− 1

2
T
dt

∫ ∞

−∞
dν X(ν) exp(2πiνt) =

∫ ∞

−∞
dν X(ν) sinc(νT ) , (12.134)

and the sample variance is

s2 =
1

T

∫ 1

2
T

− 1

2
T
dt

∣

∣

∣

∫ ∞

−∞
dν X(ν) [exp(2πiνt)− sinc(νT )]

∣

∣

∣

2

=
1

T

∫ 1

2
T

− 1

2
T
dt

∫ ∞

−∞
dν

∫ ∞

−∞
dν ′ X(ν)X∗(ν′)

× [exp(2πiνt)− sinc(νT )][exp(−2πiν ′t)− sinc(ν′T )] . (12.135)
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Now we want to take the expectation inside not one but three integrals, and two of
them are on the infinite line. To legalize this step, suppose that Sx(ν) ∝ |ν|−β only
for |ν| > ν1, where ν1 will be allowed to approach zero. All integrals then remain
finite, and we have

〈

s2
〉

=
1

T

∫ 1

2
T

− 1

2
T
dt

∫ ∞

−∞
dν

∫ ∞

−∞
dν′ 〈X(ν)X∗(ν ′)〉

× [exp(2πiνt)− sinc(νT )][exp(−2πiν ′t)− sinc(ν′T )] . (12.136)

We know from the temporal counterpart of (8.181), however, that

〈X(ν)X∗(ν′)〉 = Sx(ν) δ(ν − ν ′) (12.137)

for any stationary random process, so

〈

s2
〉

=
1

T

∫ 1

2
T

− 1

2
T
dt

∫ ∞

−∞
dν Sx(ν)| exp(2πiνt)− sinc(νT )|2 . (12.138)

A little algebra then yields

〈

s2
〉

=

∫ ∞

−∞
dν Sx(ν)

[

1− sinc2(νT )
]

. (12.139)

The factor [1 − sinc2(νT )] suppresses low frequencies, |ν| < T−1, so the integral in
(12.139) no longer diverges, even if ν1 → 0. Specifically, if Sx(ν) = C/|ν|β for all ν,
then

〈

s2
〉

= CT β−1

∫ ∞

−∞

dy

|y|β
[

1− sinc2(y)
]

, (12.140)

where y ≡ νT. The integral is finite for 1 < β < 2, so the expectation of s2 increases
with increasing measurement time in this range. Arbitrarily large T implies arbi-
trarily large experimental variances. On the other hand, for any finite T, s2 is an
infinitely biased estimate of the ensemble variance.

Other experimental observations For linear electrical devices, such as resistors and
photoconductors, it is usually found that the power spectral density of the fluctu-
ating voltage across the device is proportional to the square of the mean voltage
and inversely proportional to the mean number of free carriers N (Voss and Clarke,
1976). This observation prompted Hooge (1969) to suggest the following empirical
relation:

S∆V (ν) =
αHV

2

N |ν|
, (12.141)

where αH is often called the Hooge constant, though it varies quite a bit from one
material to another (Kogan, 1996).

Since ∆i(t) = ∆V (t)/R, the Hooge relation can also be expressed as

S∆i(ν) =
αHV

2

N R
2|ν|

. (12.142)

The factor V
2
/N R

2
is found also in the GR power spectrum of (12.115), where it

occurs because the basic noise mechanism is random fluctuations in resistance. The
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Hooge relation thus suggests strongly that 1/f noise is also the result of random
resistance variations.

The single-point amplitude statistics of 1/f noise have also been studied exten-
sively. Occasionally deviations from Gaussian behavior are observed in electronic
1/f noise, but usually the probability density function pr[V (t)] is remarkably close
to a univariate normal (Kogan, 1996).

Control of 1/f noise Even if the variance of 1/f noise is not actually infinite, it is
at least very large, and the only way to control it in practice is to make measuring
systems insensitive to low frequencies. For electronic systems, a simple coupling
capacitor may be effective in suppressing 1/f noise. More sophisticated high-pass
filters or active systems such as automatic level controls can also be used. In optical
systems, a common remedy is to modulate the light by periodically interrupting it
with a shutter. (A periodically opened shutter is often called a chopper.) Then the
electronics of the detector system does not need to pass low frequencies, and most
of the 1/f spectrum can be filtered out.

Distribution of relaxation times The first attempts at explaining 1/f noise mathe-
matically were in the 1930s (Bernamont, 1937; Surdin, 1939). These early workers
took the view that 1/f noise was basically GR noise but with a distribution of
relaxation times. If we start with (12.115) for the GR spectrum but regard τ as a
random variable with probability density function prτ (τ ), we can write

S∆i(ν) =
V

2

N R
2

∫ ∞

0
dτ prτ (τ )

2τ

1 + (2πντ )2
. (12.143)

A convenient assumption, made with essentially no justification in the 1930s,
is that τ takes on values in some broad range (τ1, τ2) and that its density in this
range is given by

prτ (τ ) ∝
1

τ
, τ1 ≤ τ < τ2 . (12.144)

With this assumption, we find

S∆i(ν) ∝
∫ τ2

τ1

dτ
1

1 + (2πντ)2
=

1

2π|ν|
[

tan−1(2π|ν|τ2)− tan−1(2π|ν|τ1)
]

.

(12.145)
Over a broad range of frequencies, this expression can be approximated as

1

2π|ν|
[

tan−1(2π|ν|τ2)− tan−1(2π|ν|τ1)
]

# 1

4|ν| ,
1

τ2
$ 2π|ν| $ 1

τ1
. (12.146)

Thus this distribution of relaxation times explains the 1/|ν| behavior over a limited
range, but of course it still remains to explain the distribution of relaxation times.
To account for the experimental observations, the range from τ1 to τ2 must cover
many decades.

Thermal activation The next step was taken by van der Ziel (1950). He recognized
that trapping is a thermally activated process obeying an Arrhenius relation of the
form [cf. (12.58)]

τ = τ0 exp

(

E
kBT

)

, (12.147)



OTHER NOISE MECHANISMS 739

where E is the binding energy of a trapped electron and τ0 is a characteristic of
the material and the trap, assumed to be a constant. In semiconductors, E is of
order 0.1 – 1.0 eV. Thus a distribution in τ can result from a distribution in E , but
because of the exponential a relatively narrow range in E can lead to a very large
range in τ .

If the probability density function of E , denoted prE(E), is assumed to be
known, the corresponding distribution on τ can be found from (C.45); the result is

prτ (τ ) =
prE(E)
|dτ/dE| =

kBT

τ
prE [kBT log(τ/τ0)] . (12.148)

Now we see that prτ (τ) varies as 1/τ so long as prE(E) is approximately constant.
Moreover, since τ appears in the argument of prE(E) only logarithmically, prE(E) can
vary substantially with E without causing large deviations from the 1/τ behavior.

Some numbers should prove instructive. Suppose τ0 = 10−11 sec, which is
typical for semiconductors, and suppose E is distributed more or less uniformly
over 0.2-0.8 eV. Since kBT = 0.025 eV at room temperature, (12.147) shows that τ
varies from 3×10−8 sec to about 800 sec. Thus a modest range of E values can lead
to an enormous range of τ values if the process is thermally activated, and (12.148)
shows that prτ (τ ) ∝ 1/τ over this range. With the numbers in this example, the
approximation in (12.146) is valid from milliHertz to gigaHertz frequencies, and the
spectrum follows 1/ν over this range.

A caveat It is important to note that the derivation of a 1/f spectrum from a dis-
tribution of relaxation times implicitly assumes that the medium is inhomogeneous.
In a homogeneous medium, multiple relaxation mechanisms would combine to give
an overall effective relaxation rate

1

τeff
=

∫ ∞

0
dτ

pr(τ )

τ
. (12.149)

Then (12.107) would still hold with τ replaced by τeff , and the characteristic
Lorentzian GR spectrum of (12.116) would be found in spite of the distribution
of τ . It is only when the medium can be divided into independent subregions, each
characterized by a certain τ and hence a certain GR spectrum, that we should
expect multiple relaxation mechanisms to lead to a 1/f spectrum.

Relation to log-normals A rather different view of 1/f noise and other power-law
phenomena has been championed by Montroll, West and Shlesinger in various com-
binations (e.g., Montroll and Shlesinger, 1982; West and Shlesinger, 1989, 1990).
They note that a wide variety of physical processes are cascaded random selections,
where the overall probability of a success is the product of probabilities of success
on individual tasks. They cite the probability of publishing a scientific paper, the
probability of a water droplet making it all the way to the end of the Nile and
the probability of an air molecule reaching a particular alveolus in the lung. In all
of these cases, they argue, some final random variable should follow a log-normal
probability law.

The basic premise is simple: If one has a product of independent random
variables,

X =
N
∏

n=1

xn , (12.150)
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then the log of the product must be a sum of independent random variables,

Y = lnX =
N
∑

n=1

lnxn . (12.151)

By the central-limit theorem (see Sec. 8.3.4), Y tends to a normal distribution as
N increases, so X tends to a log-normal. Specifically, the density on X takes the
form (see Sec. C.5.9)

pr(X) # 1

X

1
√

2πσ2
Y

exp

[

−
(

lnX − Y
)2

2πσ2
Y

]

. (12.152)

Shlesinger and his colleagues note that this density mimics a 1/X over a range
that can be large if σ2

Y is large, and they offer this observation as an explanation
of the ubiquitous appearance of 1/X probability densities. To make the connection
to electrical 1/f noise, they identify X as the relaxation time τ and then appeal
to the same reasoning as in (12.144) – (12.146). They do not, however, identify the
component variables xn, nor do they explain why the variance should be large or how
the log-normal can approximate a 1/τ behavior over the many decades required to
match observed noise spectra. At best, this work is an intriguing suggestion without
obvious applicability to electrical noise.

Nonlinear dynamics Another class of explanations for 1/f noise centers on chaos
and nonlinear dynamics. A readable, semi-popular survey of these approaches is
Schroeder (1991).

In a classic paper, Bak et al. (1988) argue that many dissipative dynamical
systems evolve naturally toward a critical state with no characteristic time or length
scale. In this view, 1/f noise is not noise at all but rather reflects the intrinsic
dynamics of self-organized critical systems.

The prolific scientific output of Benoit Mandelbrot on these themes is collected
in Mandelbrot (1999).

Maybe it isn’t stationary Another view on 1/f noise is that it doesn’t have a 1/f
power spectral density at all— in fact, it doesn’t have any power spectral density
because it isn’t a stationary random process. Mandelbrot (1967) suggested that the
paradox of infinite variance could be avoided by treating 1/f noise as a nonstation-
ary random process with a time-dependent variance.

Keshner (1982) developed this theme further and gave several intriguing ex-
amples, all of which were based on the assumption that the process had a definite
beginning at some point in the distant past. If we call the beginning point t = 0 and
we observe the process from t = t1 to t = t2, where t2 − t1 + t1, then we might not
be able to discern that the process was nonstationary. If we then assumed that the
observed segment was a sample function of a stationary random process, we could
estimate a power spectral density even though the actual process did not possess
one. Under broad assumptions, Keshner’s models yield apparent power spectra of
1/f form.

There have been several experimental attempts to detect nonstationarity in
electronic 1/f noise by making repeated measurements on the same device over
long periods of time, but uniformly they fail to find evidence for the kinds of mech-
anism postulated by Keshner (Kogan, 1996). For example, Stoisek and Wolf (1976)
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prepared resistors by ion implantation, and no manifestation of nonstationarity was
found for 2.5 years after the birth of the devices. Similarly, Tandon and Bilger
(1976) observed a semiconductor device called a stabilitron and concluded that it
remained essentially invariant for 4.5 years.

Other mechanisms A wide variety of other mechanisms have been postulated for
electronic 1/f noise, including temperature fluctuations, surface trapping, random
scattering of carriers and hopping of carriers from one site to another (van der Ziel,
1988). Each of these mechanisms is capable of limited success in explaining the
behavior of certain devices, but none appears to reach the stature of a universal
mechanism for this virtually universal phenomenon. Indeed, many authors assert
that no single mechanism can ever account for the myriad experimental manifesta-
tions of 1/f noise.

12.2.4 Noise in gated integrators

In Secs. 12.1.1 and 12.1.3, we considered the effect of an RC filter on the output
current from a photodiode. This circuit can be thought of as a leaky integrator: the
charge on the capacitor builds up by integrating the current but leaks off through
the resistor. As we saw in Sec. 12.1.1, the effective averaging time is 2RC, though
the averaging occurs with an exponential temporal weighting.

An alternative to the leaky RC integrator is the gated integrator shown in
Fig. 12.13. At time t = 0 the electronic switch is closed briefly, shorting out the
capacitor and setting its voltage to approximately zero. Then the switch is opened
and the capacitor begins to integrate the current, so the mean output voltage at
time t is

Vout(t) =
1

C

∫ t

0
dt′ i(t′) . (12.153)

In practice, the device is usually allowed to integrate for a fixed time t0, after which
the output voltage is sampled and stored, and then the voltage is reset and the
cycle is repeated.

Gated integrators form the basis for a number of important image detectors.
It is possible, for example, to replicate the circuit of Fig. 12.13 many times on a
silicon integrated-circuit chip and to bond it to a photoconductor made of some
other material. Such devices are known as hybrid focal-plane arrays (hybrid be-
cause two materials are involved, focal-plane because they are often placed in the
image plane of an optical system). Since the different cells on the device function
independently, the analysis presented below for single-element gated integrators is
directly applicable to the arrays.

Fig. 12.13 Schematic of a gated integrator.
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Charge-coupled devices (CCDs) and various other video detectors can also be
regarded as arrays of gated integrators. In a CCD, charge is accumulated for a
fixed period in each unit cell, and then the charge signals of all cells in one row
of the array are transferred to a shift-register and stepped to an output line. The
charge in each cell is set approximately to zero by the transfer operation, so the
basic operation of a CCD is that of a gated integrator.

Similarly, in television camera tubes such as vidicons, charge is accumulated on
a photoconductive surface and read out periodically by a scanning electron beam.
The beam effectively sets the charge to zero, so a vidicon too is a kind of gated
integrator. In this case, however, there are no discrete cells and hence no way to
identify discrete elementary circuits like Fig. 12.13.

kTC noise The mean output voltage from a single gated integrator has the form
(12.153). The corresponding equation for the actual random output is

Vout(t) = Vout(0
+) +

1

C

∫ t

0
dt′ i(t′) , (12.154)

where Vout(0+) is the voltage immediately after the switch is opened, and i(t) is
the total random current (dark current, photocurrent and any noise currents that
might be present).

One might think that Vout(0+) should be zero, but a small random voltage is
required by the equipartition principle. The mean of this voltage is zero, and the
variance is given by (12.64) as

Var{Vout(0
+)} =

kBT

C
. (12.155)

Since the charge on the capacitor at t = 0+ is Q(0+) = CVout(0+), the charge
variance corresponding to (12.155) is

Var{Q(0+)} = C2 Var{Vout(0
+)} = kBTC . (12.156)

Because of this expression, the randomness in Q(0+) is called kTC noise, and the
same term (rather than kT -over-C noise) is applied to the randomness in Vout(0+).

Though the equipartition principle gives the right answer for the kTC noise
variance, there are some puzzling aspects to it. First, the kTC noise is of ther-
mal origin, since it vanishes if T → 0, but it does not seem to be in accord with
the fluctuation-dissipation theorem. Ideal capacitors are purely reactive elements
and do not dissipate any power, so why should there be fluctuations associated with
them? Moreover, when the capacitor is shorted out by the switch, the voltage across
it should be zero, so why shouldn’t it remain zero when the switch is opened?

To answer these questions, it is necessary to look in more detail at the charac-
teristics of the switch. A switch is a device that changes its resistance from a very
low value to a very high value when it is opened. For typical electronic switches, the
closed resistance is 1 – 10 ohms and the open resistance is perhaps 1010 – 1011 ohms.
This resistance is in parallel with the capacitance C, and we know from (12.19)
that the bandwidth B of this combination is (4RC)−1. The integrating capacitors
used in gated integrators are quite small in order to get a large voltage for a small
amount of charge. If we take C = 0.1 pF, then B is of order 25 – 250 Hz when the
switch is open and 250 – 2500 GHz when it is closed.
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In the closed state, then, the voltage is not zero because the switch is not a
perfect short circuit; the voltage fluctuates at hundreds of GHz, and its variance is
given by (12.155). When the switch is open, (12.155) still applies, but now the volt-
age fluctuates very slowly. Indeed, if the integrator is well designed, there should be
negligible discharging of the capacitor during one integration period, so this period
sets the time scale for the voltage fluctuations. Opening the switch does not change
the noise variance but instead freezes in a value that will remain constant for the
integration period. During the next integration period, a different value will be
frozen in. Since the fluctuations are so rapid in the closed state, the values during
successive integration periods are statistically independent.

Correlated double sampling There is a simple way to suppress kTC noise. Suppose
the output voltage is sampled twice per integration cycle, once just after a reset
(t = 0+) and once just before the next reset (t = t−0 ). Both of these voltages can be
stored either digitally or on additional capacitors. Since there is very little decay
of the initial voltage during the integration period, the first of these voltages is
V1 = Vout(0+) and the second, V2, is given by (12.154). If we take the difference,
V2 −V1, the kTC noise disappears and only the desired integrated current remains.
We can effectively remove the kTC noise because it is so highly correlated between
the two sample points.

Dark current The gated integrator, like any integrator used with a photoconductor,
must integrate dark current as well as photocurrent. If we integrate for a time T, the
mean output voltage from dark current is −(e/C)adarkT and the variance, under
the usual Poisson model, is (e/C)2adarkT. Since kTC noise and dark current are
statistically independent, this variance component is just added to (12.155).

12.2.5 Arrays of noisy photodetectors

So far we have considered single photodetectors, but in imaging applications we
usually have imaging detectors, often in the form of regular arrays. In that case
the detector performance cannot be summarized by a single number such as DQE;
instead the characteristics must be stated as a function of spatial position or spatial
frequency.

As a simple example, consider a J × J array of contiguous gated integrators
with center-to-center spacing of ε and area ε2. Thus J = L/ε, where L is the width
of the array, and the total number of detectors is M = J2. The easiest way to
characterize the noise properties of this array is in terms of the mean vector and
covariance matrix for its output. We have already discussed this problem in detail
in Sec. 11.2 for the case where each element is an ideal photon counter, and now
we need to extend the discussion to include the additional noise sources introduced
above.

To do so, we write the output of the mth detector as a sum of two random
variables,

gm = g(phot)m + δgm , (12.157)

where g(phot)m results from photon absorption and δgm is the contribution from dark
current, Johnson noise and other noise sources. In many real detector arrays, the
elements are electrically and optically isolated, so photons absorbed in one element
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have no influence on neighboring elements and any excess noise is statistically in-
dependent from element to element. With this assumption the elements of δg are
independent, and the covariance matrix of this term is diagonal. If we further
assume that the detector elements are identical, then

Kδg = σ2
excI , (12.158)

where I is the M × M unit matrix and σ2
exc is the variance of the excess noise in

each element.
Moreover, with the exception of trapping noise discussed in Sec. 12.1.3, all of

the excess noise sources presented so far in this chapter are independent of the pho-
ton flux, so δg is independent of g(phot). With this restriction, the overall covariance
matrix is given by

Kg = K(phot)
g +Kδg . (12.159)

The first term, K(phot)
g , is just what we computed in Sec. 11.2. We know from that

discussion that K(phot)
g is diagonal for a Poisson source, but it can be non-diagonal

if we consider random fluence or other non-Poisson effects.

Frequency-domain descriptions The covariance matrix is a complete description of
the second-order statistics of a random vector. When the random vector is produced
by a regular detector array, however, many authors apparently feel an impulse to
invoke a Fourier description. We know from Chaps. 7 and 8 that Fourier descriptions
are useful for signals and systems that exhibit translational invariance, and an array
of identical detectors looks almost the same when it is shifted by one element, so one
might expect a Fourier transform to do something useful; there are several reasons
why this expectation might be forlorn.

First, the apparent translational invariance is discrete rather than continuous,
so a discrete Fourier transform must be used instead of a Fourier integral. Second,
the array is not really invariant to a shift by an integer number of elements since
it has finite extent; the only way to get any kind of invariance is to assume that
the array wraps around cyclically when shifted (see Sec. 8.2.8). Third, even if we
assume that the array itself has this unphysical cyclic property, it does not follow
that the noise covariance does; we saw in Chap. 11 that a nonuniform photon fluence
leads to nonstationary noise. Finally, to get something like an SNR or DQE in the
frequency domain, we must pick a frequency of interest, and a discrete DFT contains
only a discrete set of frequencies even though the actual continuous fluence pattern
incident on the detector is not so constrained.

We shall return to the topic of DQE in the spatial-frequency domain in Sec.
13.2.9, and we shall deal specifically with some of the problems associated with
discrete spatial frequencies in Sec. 16.1 when we discuss digital radiography.

12.3 X-RAY AND GAMMA-RAY DETECTORS

Though x rays and gamma rays are electromagnetic radiation like visible light, the
crucial difference is that the energy per photon is much higher. While a photoelec-
tric interaction of visible light in a semiconductor detector, for example, produces
a single electron-hole pair, thousands of such pairs are produced in each x-ray or
gamma-ray interaction.
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A more subtle issue concerns the rate of arrival of photons. In almost all
gamma-ray imaging systems in nuclear medicine or gamma-ray astronomy, the av-
erage interval between photons is large compared to the resolving time of the elec-
tronics, so it is possible to count individual photons. In medical radiography, on
the other hand, a relatively short exposure is made with a high flux of x rays, so
the individual photons are usually not temporally resolved. When talking about x
rays and gamma rays, therefore, we need to distinguish photon-counting detectors
from integrating detectors, the latter term implying that only the integrated effect
of many photons is observed.

In Sec. 12.3.1 we review the basic physics of the interaction of high-energy
photons with a detector material; readers conversant with these processes can skip
to the next section without loss of continuity.

In Sec. 12.3.2 we analyze single-element, photon-counting semiconductor de-
tectors in detail, building on the discussion of optical semiconductor detectors in
Sec. 12.1.2.

The discussion of imaging detectors begins in Sec. 12.3.3 with an analysis of
photon-counting semiconductor detector arrays. This discussion continues in Sec.
12.3.4, where we show how techniques from estimation theory can be used to get
better information about the position and energy of gamma-ray photons. This sec-
tion and much of the remainder of the chapter presumes some acquaintance with
maximum-likelihood estimation, a topic to be treated in detail in Sec. 13.3.4.

Section 12.3.5 discusses photon-counting scintillation detectors, especially the
Anger camera, which has been the mainstay of nuclear medicine since the 1950s,
and Sec. 12.3.6 treats estimation of photon energy and interaction position in these
devices. Then in Sec. 12.3.7 we discuss the statistical properties of images formed
from these position and energy estimates.

In Sec. 12.3.8 we discuss integrating detectors of the kind that might be used
in digital radiography. This treatment builds heavily on the theory of amplified
random processes from Sec. 11.4.

Finally, in Sec. 12.3.9 we discuss the effects that arise specifically in x-ray and
gamma-ray detectors when the energy from one incident photon is deposited at two
distinct locations due to K x-ray emission or Compton scattering. This section also
builds on basic principles developed in Chap. 11, and it should serve to deepen the
reader’s understanding of random point processes.

12.3.1 Interaction mechanisms

A full understanding of the detection of x rays and gamma rays must take into
account the mechanisms by which they interact with the detector material. For the
energy range of interest in medical applications, there are two main processes for
the initial interaction: photoelectric absorption and Compton scattering. There
is also an elastic scattering mechanism at relatively low energies called Rayleigh
scattering, and at high energies (above 1 MeV) gamma rays can produce positron-
electron pairs, but we shall ignore both of these effects in this discussion.

Many of the interesting properties of x-ray and gamma-ray detectors arise from
secondary interactions that take place after the initial photoelectric or Compton
event. For example, a high-energy photoelectron or Compton electron can produce
many electron-hole pairs in a semiconductor, or it can excite luminescent centers
in a scintillator. We then need to understand how these secondary excitations are
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distributed spatially and how they result in a detector output. Moreover, the initial
interaction events will usually result in secondary high-energy photons as well as
electrons, and these photons can also produce electron-hole pairs or excite lumines-
cent centers.

We shall discuss these processes in this section to the extent needed to under-
stand the characteristics of image detectors. Some background material relevant to
this section has already been presented in Chap. 10. In particular, the reader is
assumed to be familiar with the physics of photoelectric interactions (Sec. 10.1.4)
and Compton scattering (Sec. 10.3.7) and with the concept of a cross section (Sec.
10.2.5).

Photoelectric interactions A photoelectric interaction is one in which a photon is
absorbed by an electron, the photon disappearing completely in the process and
the electron acquiring some kinetic energy. These interactions cannot occur with
free electrons since momentum would not be conserved in that case. A photon of
energy E0 has momentum E0/c, and a free electron at rest has zero momentum. If
the photon energy is transferred to the electron, it will have kinetic energy Ekin =
1
2mv2 = E0, where v is the speed of the electron after the interaction and m is its
mass. Since momentum p = mv for an electron, it will then have momentum

√
2E0m

rather than E0/c, so we cannot simultaneously conserve energy and momentum in
photoelectric absorption by a free electron.

If the electron is bound to an atom, however, then any excess momentum can
be transferred to motion of the atom. The atom is much heavier than an electron, so
when it carries away momentum ∆p, it acquires only a very small energy ∆p2/2Ma,
where Ma is the mass of the atom. To a good approximation, therefore, we can
neglect the energy transferred to the atom and write the kinetic energy of the
photoelectron as

Ekin = E0 − Eb , (12.160)

where Eb is the initial binding energy of the electron to the atom.
The photon E0 is typically in the range 10 – 100 keV for x rays used in di-

agnostic radiology and up to 500 keV or so for the gamma rays used in nuclear
medicine. The binding energy Eb depends on the type of atom and the specific
energy level. Photoelectric interactions have higher cross sections for more tightly
bound electrons, so the dominant interaction is usually with the innermost electron
shell, called the K shell in x-ray parlance. As an example, iodine is a constituent of
scintillation materials such as NaI or CsI, and the K-shell binding energy of iodine
is about 35 keV. Thus if a photon of energy 140 keV (a common energy in nuclear
medicine) is absorbed by photoelectric interaction with a K-shell electron in iodine,
the electron gains a kinetic energy of about 105 keV.

Compton interactions As discussed in Sec. 10.3.7, Compton scattering is the process
by which a photon scatters inelastically from a free (or loosely bound) electron.
Suppose the electron is initially at rest and a photon of initial energy E0 scatters
through an angle θs. Energy and momentum are conserved if the photon energy E
after interaction is given by (10.226) and the electron acquires an energy E0 − E .

Numerically, we saw in Sec. 10.3.7 that 450 scattering of a 140 keV photon gives
a scattered photon of energy 129.6 keV, 900 scattering gives 109.9 keV and 1800

scattering gives 90.4 keV. The corresponding energies for the Compton electrons
are 11.4 keV, 30.1 keV and 49.6 keV, respectively.
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Secondary photons Both photoelectric interactions and Compton interactions pro-
duce high-energy electrons, and Compton scattering also leaves a high-energy scat-
tered photon. In fact, secondary photons are also produced in photoelectric in-
teractions. Let us suppose, as in the example above, that a photon of energy E0
greater than 35 keV is absorbed by a K-shell electron in iodine. This process leaves
a vacancy in the K shell that can be filled by a transition of an electron from some
higher shell into the K shell. The most probable occurrence is that the transition
is from the next higher shell, called the L shell (see Fig. 12.14). This transition
results in the emission of an x-ray photon of energy corresponding to the difference
in energies of the two shells. This photon, called a Kα x ray, has an energy of about
28 keV in iodine. If the K-shell vacancy is filled by a transition from the next higher
level, the M shell, then the photon is called a Kβ x ray and has energy about 30
keV.

Of course, the process does not stop there. The transition from, say, the L
shell to the K shell leaves a vacancy in the L shell. That vacancy can be filled by
a transition from the M shell, yielding a photon of energy around 2 keV, called an
Lα x ray. Often we ignore such low energy photons since they are reabsorbed very
near the point of emission, but the K x rays can play a significant role in detector
performance.

Fig. 12.14 Processes involved in production of a K x ray following absorption
of a 140 keV photon in iodine.

Two things can happen to a K x ray when it is produced after a photoelectric
interaction: it can interact within the material or it can escape from the volume of
the material without interacting. If it interacts within the material, it can do so
by either a Compton or photoelectric interaction. In either case, another energetic
electron will be produced and another photon. Similarly, if the initial interaction
is Compton scattering, the scattered photon can either escape the material or in-
teract within it, and in the latter case the interaction can be either Compton or
photoelectric. Accounting for all events in this complex cascade is difficult; usually
the best approach is Monte Carlo simulation.

High-energy electrons As we have just seen, an initial interaction, either Compton
or photoelectric, results in one or more energetic electrons in the material. If the
material is to be used as a detector, we must sense the effects of these electrons.
How this is done depends on the type of detector. In a semiconductor detector,
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some of the energy of the high-energy electrons is converted to electron-hole pairs
that can eventually be sensed on external electrodes. In a scintillation detector,
some of the energy of the high-energy electrons is converted to light which we can
detect with ordinary optical detectors. In either case, the characteristics of the
detector depend on the fraction of the energy converted to a useful form, its spatial
distribution, and its statistics.

The major interaction mechanisms for a high-energy electron in a solid are
scattering by other free electrons, emission or absorption of phonons (lattice vi-
brations), and ionization of the lattice via creation of electron-hole pairs. Since
detector materials are typically good insulators, there are very few free electrons,
and we can concentrate on the two competing processes of electron–phonon inter-
actions and lattice ionization.

We do not need to study these processes in detail here, but a useful mental
image is that the electron travels a tortuous path from the point of interaction, gen-
erating phonons and electron-hole pairs in its wake. The energy loss along this path
is approximately uniform, so a relatively uniform cloud of low-energy electrons and
holes is produced. The size of this cloud is roughly 20 µm for a 100 keV electron. In
a scintillator, there is another step in which the low-energy electrons are trapped in
luminescent centers and eventually recombine with holes and emit optical photons.

12.3.2 Photon-counting semiconductor detectors

Having sketched the process of production of electron-hole pairs following an initial
interaction of an x ray or gamma ray, we can now begin to develop more detailed
statistical descriptions of the detector output, taking into account charge transport
and induction of measurable signals in an external circuit. The basic principles we
need for this purpose were developed in Secs. 12.1.2 and 12.1.3 in the context of
optical semiconductor detectors, but there are some new complications when x rays
and gamma rays are involved.

First, x-ray and gamma-ray detectors must be thick enough to absorb the ra-
diation; it is common to use thicknesses from 1 mm to 1 cm or more, as opposed
to 1 – 10 µm which will suffice for optical detectors. A result of the increased thick-
ness is that trapping effects may be much more severe in semiconductor x-ray and
gamma-ray detectors than in optical ones. Moreover, it is quite common for one
type of charge carrier (usually holes) to be trapped much more strongly than the
other. As we shall see, the combined effect of the random depth of interaction and
the strong trapping plays a key role in the detector statistics.

In a semiconductor photodiode for optical use, the material initially has fairly
low resistivity, but a thin, high-resistivity depletion region is formed by a P-N junc-
tion, and it is this region that is sensitive to light. In a well-designed gamma-ray
detector, on the other hand, the whole volume has high resistivity and hence is
sensitive to photons. It is perhaps more accurate to refer to gamma-ray detectors
as semi-insulators rather than semiconductors.

Finally, because we can detect individual photons, we may ask for more infor-
mation from each one. Often we want to know not only the position of a photon but
also its energy. For example, in nuclear medicine we usually use a radioisotope that
emits only a single photon energy, but photons may undergo Compton scatter in the
patient’s body and arrive at the detector with a reduced energy; it is important to
be able to recognize and reject these scattered photons since they convey relatively
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little useful information about the object. In some applications—notably positron
emission tomography—we also want to estimate the time of arrival of a photon to
high precision.

Problem statement Throughout this section we shall consider a single-element
(nonimaging) detector in the same configuration as in Sec. 12.1.3, a slab of di-
mensions Lx × Ly × Lz , with Lx, Ly + Lz. Even though Lz is small compared to
the lateral dimensions, we shall assume that it is large compared to the dimensions
of the charge cloud produced by a gamma-ray absorption; typical sizes might be
a charge cloud of 20 µm, a slab thickness of 1 – 2 mm and lateral dimensions of
1 cm. The electrodes are on the faces z = 0 and z = Lz, and the photons are
incident in the +z direction. The material has homogeneous resistivity (no P-N
junction), so a potential difference V0 between the electrodes establishes a uniform
field E0 = V0/Lz in the material. Holes drift toward the cathode and electrons
toward the anode, with each carrier having some probability of being trapped en
route.

As we know from Sec. 12.1.3, a moving charge carrier will induce a current
pulse in the external circuit even if it is trapped before reaching the electrode. In
common practice, this current pulse is integrated with a leaky integrator having a
time constant that is large compared to the duration of the current pulse. If the
time interval between pulses is large compared to this time constant, then each
absorbed gamma ray produces a distinct output pulse, and the amplitude of the
pulse is proportional to the total induced charge for that photon. The distribution
of output signals for a large number of incident photons is called the pulse-height
spectrum. Except for normalization, the pulse-height spectrum is the univariate
probability density function for the charge induced by a single absorbed gamma ray.

The random variables contributing to the pulse-height spectrum are the depth
of interaction zint, the initial number of electron-hole pairs Neh, and the distances
travelled by each electron and hole under the influence of the field. In addition, we
need to know the probability that the initial interaction is photoelectric vs. Comp-
ton, the probability that a K x ray or Compton-scattered photon will escape the
detector volume, and if not, the probability density on where it will be reabsorbed.
From knowledge of the statistics of these variables, we would first like to compute
the pulse-height spectrum. Then, from knowledge of the spectrum, we would like
to set some criterion for acceptance of photons and to compute the statistics on the
number accepted.

The initial interaction Consider a beam of gamma rays travelling in the +z di-
rection, entering the detector at z = 0. The probability density function that an
incident gamma ray interacts at z = zint is

pr(zint) = αtot exp[−αtotzint] , (12.161)

where αtot is the total attenuation coefficient8 including contributions from the
Compton and photoelectric effects:

αtot = αC + αpe . (12.162)

8In Chap. 10, attenuation coefficients were denoted by µ, but we use α here to avoid confusion
with mobility.
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Since we are considering only two types of interaction, the probability that the
initial interaction is photoelectric is αpe/αtot and the probability that it is Compton
is αC/αtot.

The probability that an interaction occurs at all in a detector of thickness Lz

is

Pr(int in Lz) =

∫ Lz

0
dzint pr(zint) = 1− eαtotLz . (12.163)

If we consider only the gamma rays that undergo an interaction in the detector, the
probability density function on their interaction depths is

pr(zint|int in Lz) =
pr(zint)

Pr(int in Lz)
=

αtot exp(−αtotzint)

1− exp(−αtotLz)
. (12.164)

Probability law for Neh As noted above, generation of electron-hole pairs by a high-
energy electron is a competition between phonon emission and lattice ionization.
The minimum energy required to generate a pair is the bandgap energy Eg, so an
electron of kinetic energy Ekin could in principle produce Ekin/Eg pairs, but because
of the competing process of phonon generation, a smaller number will be produced
on average. We can define the mean energy expended per electron-hole pair, Eeh,
such that the mean number of pairs is

Neh =
Ekin
Eeh

. (12.165)

The distribution of Neh about its mean is interesting. If there were no compe-
tition from phonon generation or other mechanisms, conservation of energy would
require that Neh = Ekin/Eg, which is not a random number at all. At the opposite
extreme, if the phonon interaction were so strong that only a small fraction of the
electron energy went into creation of electron-hole pairs, the pairs would be gener-
ated approximately independently, and Neh would therefore be a Poisson random
variable (see the discussion of Poisson and rarity in Sec. 11.1.2).

Thus the variance of Neh should fall between 0, for a material where the
electron-phonon interaction is very weak, and Neh, for a material where the inter-
action is strong. This problem was first studied by Ugo Fano (1947), and we define
the Fano factor F as

F =
Var(Neh)

Neh

. (12.166)

A value of F < 1 implies sub-Poisson behavior, and that is indeed observed exper-
imentally. In Si and Ge, measurements of F are in the range 0.07 to 0.15.

The full probability law Pr(Neh) is difficult to compute but fortunately not
very important. If Neh were a Poisson random variable with mean of order 104, we
would not hesitate to approximate it by a Gaussian; with the actual sub-Poisson
character, we can do the same, writing

Pr(Neh) #
1

√

2πFNeh

exp

[

− (Neh −Neh)2

2FNeh

]

. (12.167)

To make contact with Sec. 11.3.1, we note that Pr(Neh) is what we called

Pr(K|N = 1) or γ(K) there. The momentsm1 andm2 are now Neh and FNeh+N
2
eh,

respectively.
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Drift and diffusion If a photon of energy E0 is absorbed photoelectrically, then Neh

electron-hole pairs are generated in a compact cloud around the interaction point,
and Neh = (E0−Eb)/Eeh. Additional pairs may be generated at another location by
reabsorption of a K x ray, but for now we focus on this initial charge cloud. There
are three forces acting on the charges in the cloud: Coulomb forces between charges,
the applied electric field, and random forces from interactions of the charges with
lattice vibrations.

The Coulomb forces are initially small since there is a cloud of electrons inter-
spersed with an equal and oppositely charged cloud of holes, but as the two clouds
separate, self-repulsion may come into play. Nevertheless, we shall neglect this effect
here since the resultant field is usually small compared to the applied field (Marks,
2000). The total field is then approximately the applied field V0/Lz.

Interactions of the charge carriers with phonons have two effects. As discussed
in Sec. 12.1.2, one effect is to create a viscous drag so that the carriers quickly reach
a terminal or drift velocity given by the mobility times the field. The other effect
is that the carriers acquire a random, zero-mean thermal velocity superimposed on
the drift velocity. The effect of this thermal motion is that the carriers can diffuse
radially outward from the (moving) center of the cloud, so the electrons comprise a
fuzzy ball of charge moving uniformly towards the anode and increasing in radius
as it moves. The holes form a similar fuzzy ball moving at a different speed toward
the cathode.

The initial radius of the fuzzy ball is approximately the range of the photoelec-
tron, of order 20 µm for a 100 keV electron in a typical detector material. To see
the effects of diffusion, we neglect this initial radius and suppose that a pointlike
distribution of charge is created at t = 0. With this assumption, we know from
(12.102) that the radius of the distribution at time t is

√
6Dt, where D is the dif-

fusion coefficient.
To estimate how large the ball can get, we need to know D and the maximum

time available for diffusion; an important link between these two parameters is pro-
vided by the Einstein relation, (12.103). The largest distance either carrier can drift
is Lz, so the maximum drift time is

tmax =
Lz

µE0
=

L2
z

µV0
, (12.168)

where µ is either µe or µh. With the Einstein relation and a little algebra, we have

√

6Dtmax = Lz

√

6kBT

eV0
. (12.169)

Note that no specific material properties enter into this result. Materials with
higher mobility have smaller tmax but larger diffusion coefficients, so the radius of
the charge cloud after drifting the full thickness of the detector is independent of
the mobility.

As a numerical example, if we consider a 1 mm thick detector with 100 Volts
bias at room temperature, then

√
6Dtmax = 38 µm. Since this number is small com-

pared to typical detector dimensions, we shall ignore the diffusion for the remainder
of this section.

Trapping As the carriers drift, they may be captured by localized defects known as
traps (see Sec. 12.1.2). The trapped carriers will eventually be released (detrapped)
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by thermal excitation, but this process usually takes a very long time compared to
the duration of the current pulse generated by a single photon, so we shall neglect
detrapping here; once a carrier has been trapped, it disappears (at least from our
theory).

We know from (12.30) that hole trapping occurs at a constant rate determined
by the hole lifetime τh, and similarly for electrons, so the mean number of carriers
diminishes exponentially with time. Since the carriers are drifting at a constant
velocity, the mean number also diminishes exponentially along the drift path, and
the probability of an individual carrier surviving for a distance d without being
trapped decays exponentially with d.

Specifically, the probability of a hole not being trapped after traveling a dis-
tance dh is

Pr(no trapping in dh) = e−dh/λh , (12.170)

where λh is the hole drift length, given by

λh = µhE0τh . (12.171)

Similar relations exist for electrons, of course, but we shall continue to discuss holes
for definiteness.

Next we need an expression for the probability density function for a hole being
trapped at distance dh from the interaction point. Note that we are taking dh as
a positive number even though the hole is travelling in the −z direction, so the
maximum value for dh is the interaction depth zint. For dh < zint, the probability
density on dh is given by analogy to (12.161) as λ−1

h exp(−dh/λh), but we also have
to consider what happens when the hole strikes the cathode.

If the cathode contact is ohmic, then it is possible that a compensating hole
will be injected at the anode when the initial hole hits the cathode, and then
a photoconductive gain will ensue [see (12.123)]. More commonly, however, the
cathode contact will be such that there is a very high probability that the hole will
be trapped (and eventually recombine) when it hits the cathode. In that case, the
overall PDF for trapping at dh must include a delta function at dh = zint. The
weight of this delta function is just the probability that the hole makes it to the
cathode, exp(−zint/λh), so the desired PDF is9

pr(dh) = e−zint/λh δ(dh − zint) +
1

λh
e−dh/λh

= e−dh/λh

[

δ(dh − zint) +
1

λh

]

. (12.172)

The mean and variance of dh (conditional on the interaction depth zint) can
be computed from this density as

E{dh|zint} = λh

[

1− e−zint/λh

]

, (12.173)

Var{dh|zint} = λ2
h − 2λhzint e

−zint/λh − λ2
h e

−2zint/λh . (12.174)

9The normalization of this density is correct on the interval 0 ≤ dh ≤ zint + ε, where ε is a
vanishingly small positive quantity. Alternatively, we could multiply the second term by a rect
function that is nonzero on the interval 0 ≤ dh ≤ zint, and then the normalization would work on
0 ≤ dh < ∞.
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The corresponding results for electrons are obtained by changing subscript h to e
throughout and changing zint to Lz − zint.

Conditional PDF of the induced charge By integrating the expression for i0(t) in
(12.51), we see that the random charge induced in the circuit by a single electron-
hole pair (say the jth) is

Qj = − e

Lz
(dhj + dej) , (12.175)

where the electron has travelled a distance dej and the hole dhj . An assemblage of
Neh pairs generated by a single gamma-ray interaction at depth zint thus induces
a pulse with total charge Q given by

Q = − e

Lz

Neh
∑

j=1

(dhj + dej) . (12.176)

We know the probability laws for Neh, zint, dhj and dej , so we are ready to study
the statistics of Q (that is, to compute the pulse-height spectrum). As a first step,
we shall compute the conditional PDF of Q for fixed zint and Neh.

Recall that Neh is a large number, of order 104 – 105, so Q is a sum of a
large number of random variables. Since the trapping events are independent, the
central-limit theorem (see Sec. 8.3.4) tells us that the conditional PDF is

pr(Q|zint, Neh) =
1

√

2πσ2
Q

exp

[

−
[

Q−Q(zint, Neh)
]2

2Var{Q|zint, Neh}

]

, (12.177)

where the conditional mean and variance are

Q(zint, Neh) = − e

Lz
Neh[E{dh|zint}+ E{de|zint}] , (12.178)

Var{Q|zint, Neh} =

(

e

Lz

)2

Neh[Var{dh|zint}+Var{de|zint}] . (12.179)

With (12.173) and the similar expression for electrons, we can also express the
conditional mean of the induced charge via the Hecht relation,

Q(zint, Neh) = − e

Lz
Neh

{

λh

[

1− e−zint/λh

]

+ λe

[

1− e−(Lz−zint)/λe

]}

. (12.180)

Some limits of this expression are instructive. If λe and λh are both large compared
to Lz, as they usually are in Si or Ge detectors, then an expansion of the exponentials
shows that

Q(zint, Neh) → − e

Lz
Neh

{

λh
zint
λh

+ λe
Lz − zint

λe

}

= −eNeh . (12.181)

In this limit, therefore, trapping is negligible and the full charge of Neh electron-hole
pairs appears in the external circuit.

The opposite limit is where both carriers are heavily trapped, so that λe and
λh both approach zero. In this case,

Q(zint, Neh) → −eNeh
λh + λe

Lz
. (12.182)
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Much less charge is induced in this case, but both (12.181) and (12.182) show that
the induced charge is independent of zint. Unfortunately, that conclusion does not
hold in the intermediate cases.

Suppose, for example, that holes are heavily trapped and electrons are not, so
that λh $ Lz and λe + Lz (which is often a realistic assumption in compound
semiconductors such as CdTe). In the limit as λh → 0,

Q(zint, Neh) → −eNeh
Lz − zint

Lz
. (12.183)

In this case, the average induced charge depends linearly on the random depth of
interaction; as we shall see shortly, this randomness smears out the pulse-height
spectrum.

Effect of carrier-generation statistics The desired overall PDF for Q is given by

pr(Q) =

∫ Lz

0
dzint pr(zint) pr(Q|zint)

=

∫ Lz

0
dzint pr(zint)

∞
∑

Neh=0

Pr(Neh) pr(Q|zint, Neh) . (12.184)

We have approximated pr(Q|zint, Neh) by a normal in (12.177), and in (12.167) we
also approximated Pr(Neh) by a normal. Since Neh is very large, we can replace the
sum over Neh with an integral, and then we have a convolution10 of two normals,
which is another normal. To specify pr(Q|zint) in this approximation, therefore, we
need only compute the mean and variance of Q conditional on zint alone.

The mean of Q conditioned on zint is obtained by averaging (12.178) over Neh,
with the result

E{Q|zint} = − e

Lz
Neh[E{dh|zint}+ E{de|zint}] ≡ − e

Lz
Nehdeh , (12.185)

where deh is the mean total distance travelled by a single hole and electron. (Re-
call that de and dh are both positive numbers, even though the carriers travel in
opposite directions.)

The procedure for computing Var(Q|zint) is first to compute the second mo-
ment, then to subtract off the square of the relevant mean. A similar procedure
was used several times in Sec. 11.4 for discussing random amplification, but that
problem should not be confused with the present one. In Sec. 11.4, the double ran-
domness came about since a random number of primaries each generated a random
number of identical secondaries. Here we are concerned with a single primary, and
the secondaries are not identical since they induce random amounts of charge in the
output.

10The reader who wishes to fill in the details of this calculation will discover that it is necessary to
replace Neh with Neh in (12.179), but this step is easily justified since Pr(Neh) is sharply peaked.



X-RAY AND GAMMA-RAY DETECTORS 755

From (12.178) and (12.179), the second moment of interest is

E{Q2|zint} =
e2

L2
z

{

〈Neh〉[Var{dh|zint}+Var{de|zint}] +
〈

N2
eh

〉

d
2
eh

}

=
e2

L2
z

{

Neh[Var{dh|zint}+Var{de|zint}] +
[

FNeh +N
2
eh

]

d
2
eh

}

, (12.186)

where we have used (12.166). The desired variance is now

Var{Q|zint} =
e2

L2
z

Neh

[

Var{dh|zint}+Var{de|zint}+ Fd
2
eh

]

. (12.187)

With these expressions for the mean and variance, the overall PDF pr(Q) is
given by

pr(Q) =

∫ Lz

0
dzint pr(zint)

1
√

2πVar{Q|zint}
exp

[

− [Q− E{Q|zint}]2

2Var{Q|zint}

]

. (12.188)

All of the pieces needed for a numerical computation of pr(Q) with arbitrary
trapping are in place; the key equations are (12.164), (12.173), (12.174), (12.185),
(12.187) and (12.188), and only a 1D integral is needed. This procedure can be used
to study the pulse-height spectrum as a function of material parameters, bias voltage
and photon energy, but more insight can be obtained by developing approximate
analytic expressions. We shall do so for various assumptions about the degree of
trapping.

Pulse-height spectrum when trapping is negligible As we saw in (12.181), Q is in-
dependent of zint in the limit that trapping is negligible for both carriers, as in Si
and Ge. The variances of the drift lengths, Var{dh|zint} and Var{de|zint}, also go
to zero in this limit, as one can see physically by noting that the drift length for
holes approaches its maximum value of zint and the one for electrons approaches
Lz − zint, and both of these quantities are nonrandom for fixed zint. The same
conclusion follows more formally from (12.174) and the corresponding expression
for de by expanding the exponentials and letting λh and λe get large.

Thus, when trapping is negligible, the overall mean and variance, from (12.185)
and (12.187) respectively, become

Q = −eNeh , (12.189)

Var{Q|zint} = e2FNeh . (12.190)

We then have pr(Q|zint) = pr(Q), so this quantity can be removed from the integral
in (12.188), and the integral is then unity. To an excellent approximation, the PDF
pr(Q) for negligible trapping is thus a normal with the mean and variance specified
in (12.189) and (12.190).

We can define a signal-to-noise ratio for Q as

SNRQ =
|Q|

√

Var(Q)
=

√

Neh√
F

, (12.191)

and the sub-Poisson character of the electron-hole generation process can be seen
in the denominator.
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Photopeaks and energy resolution If we recall from (12.165) that Neh = Ekin/Eeh,
then we see from (12.189) that (without trapping) the mean induced charge in the
external circuit is proportional to the mean kinetic energy of the high-energy elec-
tron. For photoelectric events, we also know from (12.160) how the kinetic energy
depends on the photon energy, but that equation does not tell the whole story. A
photoelectric interaction with a K-shell electron may be followed by emission of a K
x ray, and that photon may or may not be reabsorbed in the detector material; if it
is, additional electron-hole pairs are created and add to the induced charge Q. The
maximum Q, over all possible sequelae of a photoelectric absorption, occurs when
the K x ray and all subsequent photons are reabsorbed within the detector. Then
the total kinetic energy released is the photon energy E0. Such events contribute a
distinct peak, called the photopeak, to the pulse-height spectrum. Similarly, events
where the K x ray escapes, contribute a lower peak called the K-escape peak (see
Fig. 12.15), and peaks corresponding to the escape of other photons can often be
identified as well.

Fig. 12.15 Schematic pulse-height spectrum showing K-escape peak. The
lower-energy peak is centered at a pulse height corresponding to the initial
gamma-ray energy minus the K x-ray energy.

Since Q = −eNeh = −eE0/Eeh for photopeak events in a good detector ma-
terial, it is natural to use the actual induced charge as an estimate of the photon
energy E0. We can define an estimated energy by

Ê ≡ −Eeh
Q

e
, (12.192)

and then the pulse-height spectrum can be reinterpreted as a PDF on the new
random variable Ê . For all events, Ê is an unbiased estimator of Ekin, and for
photopeak events it is an unbiased estimator of E0. For this reason, a pulse-height
spectrum is often called (quite misleadingly) an energy spectrum. At best, it
is the distribution of estimated energies, and the estimate is useful only when
trapping is negligible and escape peaks are ignored. We can also reinterpret SNRQ,
defined above, as an SNR for Ê ; since the constant −e/Eeh affects numerator and
denominator in the same way, we have

〈Ê〉
√

Var(Ê)
= SNRQ =

√

Neh√
F

. (12.193)

For photopeak events where 〈Ê〉 = E0, we can write

√

Var{Ê}
E0

=
√
F

√

Eeh
E0

. (12.194)
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Thus the precision of the energy estimate is better for higher-energy photons and for
detector materials with smaller Fano factor and smaller average energy per electron-
hole pair.

It is almost universal in the literature to quote the energy resolution as the full-
width at half maximum (FWHM) of the photopeak divided by the center position
of the photopeak. This ratio is usually denoted ∆E/E (ignoring the fact that the E
in question is an estimate, not an actual energy). As we have seen, Q and hence E
are normally distributed in the absence of trapping, and the FWHM of a normal is
2.35 times its standard deviation, so ∆E/E is 2.35 times the expression in (12.194).

Strong trapping of both carriers If both carriers are heavily trapped, so that λh and
λe approach zero, we see from (12.182) that Q is again independent11 of zint, and
we have

Q = −e
λh + λe

Lz
Neh . (12.195)

Similarly, we see from (12.174) that Var{dh|zint} → λ2
h and Var{de|zint} → λ2

e in
this limit, so the variance of Q from (12.187) becomes

Var{Q} =
e2

L2
z

Neh

[

λ2
h + λ2

e + F (λh + λe)
2
]

. (12.196)

The SNR on Q is now

SNRQ =
√

Neh
λh + λe

√

λ2
h + λ2

e + F (λh + λe)2
. (12.197)

Thus the beneficial effects of the Fano factor, evidenced in (12.193), are reduced
with strong trapping. If F = 0, SNRQ is infinite for no trapping but finite with

strong trapping. If λh = λe, for example, SNRQ approaches
√

2Neh as F → 0.

Carrier-generation statistics negligible In the two limits of no trapping and very
strong trapping of both carriers, pr(Q|zint) is independent of the interaction depth
zint, but in the intermediate cases the spread of the pulse-height spectrum can be
dominated by the randomness in zint. In these cases, we can see the basic shape
of the spectrum by neglecting the variance of Neh and approximating pr(Q|zint)
with a delta function in (12.188). This approximation becomes increasingly valid

at higher photon energies since the SNR for Q conditional on zint varies as
√

Neh,
so the relative width of pr(Q|zint) decreases as energy (and hence Neh) increases.
In addition, low-energy photons may be absorbed near the surface of the detector,
but higher-energy photons are more penetrating so pr(zint) is broader, and hence
the width of pr(Q|zint) plays less of a role as energy increases.

With this approximation, (12.188) becomes

pr(Q) =

∫ Lz

0
dzint przint

(zint) δ[Q−Q(zint)] , (12.198)

11The limit here is a little tricky. For λh small but finite, we have to exclude events where zint is
less than about λh (i.e., interactions very near the cathode), and for λe small but finite, we have
to exclude interactions near the anode.
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where przint
(zint) means the same thing as pr(zint). (The reason for the notational

change will become apparent shortly.) To perform the integral, we can use (2.33)
to write

δ[Q−Q(zint)] =
δ[zint − z̃(Q)]

∣

∣

∂Q(zint)
∂zint

∣

∣

zint=z̃(Q)

, (12.199)

where z̃(Q) is found by solving Q(z̃) = Q. Then we have

pr(Q) =
przint

[z̃(Q)]
∣

∣

∂Q(zint)
∂zint

∣

∣

zint=z̃(Q)

. (12.200)

Since przint
[z̃(Q)] is simply przint

(zint) evaluated at the specific point zint =
z̃(Q), the pulse-height spectrum in the current approximation is just a remapped
version of the PDF on the depth of interaction. Each random depth corresponds
to a specific (nonrandom, we assume) amount of charge in the external circuit, so
the number of events producing charge between Q and Q+∆Q is the same as the
number of gamma-ray photons interacting between z̃(Q) and z̃(Q + ∆Q). Some
typical pulse-height spectra are shown in Figs. 12.16 – 12.18.

Electronic noise The analysis above is not complete since it does not include elec-
tronic noise in the circuit that reads out the detector signal. As we know from
Sec. 12.2, electronic noise is usually a Gaussian random process, but we need to
understand how it affects a measured pulse height.

For definiteness, consider an operational amplifier with a parallel RC circuit in
the feedback loop, and assume that the amplifier noise can be modeled as a random
voltage source in series with the input as shown in Fig. 12.19. A separate low-pass
filter is used to limit the overall bandwidth, and the fluctuating output voltage of
this filter is denoted vf (t). For purposes of noise analysis, we can neglect the DC
voltage applied to the detector and the current pulse that results when a gamma
ray is absorbed. The problem is thus to compute the variance of vf (t) in terms of
the properties of the noise source.

Fig. 12.16 Pulse-height spectrum for a high-quality Germanium detector
at cryogenic temperature (!100K). The gamma-ray source is 99mTc, which
emits photons at energies 18, 20, 21 and 140 keV. The weak response near 90
keV arises from 140 keV photons that are Compton scattered in the detector
material, with the scattered photon escaping from the detector. Trapping
is negligible in Ge, and the K-escape peaks are not seen since K x rays in
Ge have an energy near 10 keV and are therefore reabsorbed without much
probability of escape. Note that pulse heights have been converted to energy
units for this plot by use of (12.192).
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Fig. 12.17 Pulse-height spectrum for a high-quality Mercuric Iodide (HgI2)
detector at room temperature. As in Fig. 12.16, the gamma-ray source is
99mTc. Moderate trapping is evidenced by the tails on the low-energy side of
each peak. The peaks around 110 – 115 keV correspond to escape of iodine K
x rays, and the peaks around 6 – 75 keV correspond to escape of Hg Kα and
Kβ photons.

Fig. 12.18 Pulse-height spectrum for a poor-quality Cadmium Telluride
(CdTe) detector at room temperature. Again, the gamma-ray source is 99mTc.
Severe trapping is evidenced by the plateau on the low-energy side of the pho-
topeak. Note also that the energy resolution, as measured by the width of the
photopeak, is much worse than in Ge or HgI2. The rapid rise at the extreme
low-energy end of the spectrum is amplifier noise.

Fig. 12.19 Leaky integrator with a noisy operational amplifier and added
low-pass filter.

As in Sec. 12.1.1, we can assume that the operational amplifier has very high
gain and hence maintains the voltage across its input terminals very near zero. Thus
the noise voltage vn(t) is also the voltage across the detector capacitance, and the
fluctuating current through the detector is Cdetdvn/dt. Since the amplifier has very
high input impedance, no current can flow into its input terminals, and the current
through the detector must be equal and opposite to the current in the feedback
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loop. This condition can be expressed as [cf. (12.5)]

Cdet
dvn(t)

dt
=

vout(t)− vn(t)

R
+ C

d

dt
[vout(t)− vn(t)] , (12.201)

where vout(t) is the voltage at the output of the amplifier. A Fourier transform and
a bit of algebra yield

Vout(ν) = Vn(ν)
1 + 2πiνRCtot

1 + 2πiνRC
, (12.202)

where Ctot = C + Cdet. If the detector had negligible capacitance, this equation
shows that the amplifier would function as a voltage follower with Vout(ν) = Vn(ν),
but with real detectors there is a frequency-dependent gain factor that approaches
Ctot/C as ν gets large. Even though the amplifier with RC feedback functions as
a low-pass filter for the current pulse produced by a gamma ray, it does not have a
low-pass effect on the noise. The transfer function relating the noise voltage to the
amplifier output voltage is given by the ratio in (12.202).

To proceed, we must specify the power spectral density of the noise. For
simplicity, we ignore 1/f noise and assume that all other sources of electronic noise
can be lumped together into a white-noise spectrum Sn(ν) = Sn(0) = constant.
With this assumption and (8.156), the power spectral density for vout(t) is

Sout(ν) = Sn(0) ·
∣

∣

∣

1 + 2πiνRCtot

1 + 2πiνRC

∣

∣

∣

2
= Sn(0)

1 + (2πνRCtot)2

1 + (2πνRC)2
. (12.203)

This function is plotted in Fig. 12.20. Note that Sout(ν) approaches Sn(0)[Ctot/C]2

as ν → ∞, so the power spectral density is not integrable and the variance of vout(t)
is infinite.

Fig. 12.20 Power spectral density of noise on the output of the operational
amplifier of Fig. 12.18. [Plot of (12.203)]

To get a finite variance, we must include the low-pass filter as in Fig. 12.19. The
power spectral density for the filter output voltage vf (t) is obtained by multiplying
(12.203) by |Hf (ν)|2, where Hf (ν) is the filter transfer function. With (8.156) and
(12.203), the variance of vf (t) is given by

Var{vf (t)} = Sn(0)

∫ ∞

−∞
dv

1 + (2πνRCtot)2

1 + (2πνRC)2
|Hf (ν)|2 . (12.204)

The integral simplifies if we assume that the filter has the same low-pass character-
istic as the amplifier (Rf = R, Cf = C) and that Hf (0) = 1. Then

Var{vf (t)} = Sn(0)

∫ ∞

−∞
dν

1 + (2πνRCtot)2

[1 + (2πνRC)2]2
= Sn(0)

1

4RC

(

1 +
C2

tot

C2

)

,

(12.205)
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where we have used Gradshteyn and Ryzhik (1980), formula 3.241.5.

Dark current The variance of vf (t) as given in (12.205) arises from the amplifier
noise alone. An additional variance component comes from the shot noise of the
dark current through the detector. This component was analyzed in Sec. 12.1.1,
and we do not need to repeat the discussion here, but one key point should be
noted: The dark-current originates outside the feedback loop of the amplifier, so it
is subject to the filtering action of both the integrating amplifier and the low-pass
filter. Unlike the amplifier noise, the dark current does not produce white noise at
the amplifier output.

Photopeak variance and SNR In Sec. 12.1.1, we analyzed an operational amplifier
with a parallel RC circuit in the feedback loop. By a slight generalization of (12.7),
we know that an input current pulse of total charge Q produces an output voltage
pulse of height Q/C if the pulse duration is very short compared to RC. If Q is ran-
dom, the pulse height is also random, with variance given by C−2 Var{Q}. When
the output pulse from the amplifier is fed through the low-pass filter, however, a
further change in the pulse height occurs. As illustrated in Fig. 12.21, the pulse
height is reduced by a factor of e−1 (where e is the base of the natural logarithms,
not the charge on the electron) and the peak is shifted to t = RC (where t = 0 is
the time of the gamma-ray interaction). The contribution of randomness in Q to
the variance of vf (t) at t = RC is thus (eC)−2 Var{Q}.

If the amplifier noise (but not the dark current) is included, the total vari-
ance of the output voltage of the filter is obtained by adding the variances of the
independent components:

Var{vf (RC)} =
1

e2C2
Var{Q}+ Sn(0)

1

4RC

(

1 +
C2

tot

C2

)

. (12.206)

It is tempting to identify the variance of vf (RC) as the variance in the height
of the pulse out of the filter, but that step requires some justification. The difficulty
is that there are several ways to measure pulse height. Some pulse-height analyzers
become active after the pulse exceeds some threshold, and then they find the next
maximum of the voltage and call it the height. With this kind of system, the
probability density function for the heights relates to the density of maxima of the
random process, a notoriously difficult problem (see Middleton, 1996, Chap. 9, and
Rice, 1948). An alternative approach is to trigger a delay generator on the leading
edge of the pulse and to take a voltage sample after a fixed delay approximately
equal to RC. In this approach, the sample need not occur at a maximum, but we
regard the voltage at that time as an estimate of the pulse height anyway. Then
(12.206) can be directly interpreted as the variance in the (estimated) pulse height.
We shall assume this latter approach in what follows.

The SNR on the pulse heights is defined as

[SNRph]
2 =

(Q/eC)2

Var{vf (RC)} . (12.207)

With (12.206), we have

[SNRph]
2 =

Q
2

Var{Q}+ Sn(0)
e2

4RC (C2 + C2
tot)

. (12.208)
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One implication of this expression is that there is an optimum choice for the capac-
itance C; regarded as a function of C, (12.208) has a maximum when C = Cdet/

√
2.

Other implications are also apparent. To optimize SNRph, we should use low-noise
amplifiers, detectors with low capacitance and large values of RC. The latter mea-
sure, however, reduces the count rate that can be accommodated without pulse
overlap.

Overall pulse-height spectrum Implicit in most of the discussion above is the as-
sumption that the initial gamma-ray interaction transfers a definite energy Ekin to
the detector material, and for the most part we have considered photopeak events
where Ekin = E0−Eb. In practice, however, E0 is a random variable, and Ekin is also
a random variable even when conditioned on E0. In nuclear medicine, for example,
gamma rays may scatter in the patient’s body and lose a random amount of energy,
so the energy E0 of a photon striking the detector is random. Moreover, in any de-
tector there is an additional randomness arising from escape of secondary photons,
so Ekin is random as well. Under these circumstances, the pulse-height spectrum is
quite complicated (see Figs. 12.16 – 12.18), and it would be very misleading to char-
acterize it with a single number like an SNR. What we need now is an expression
for the overall probability density on the pulse heights, accounting for randomness
in Ekin and E0 as well as all of the random detector effects treated so far.

Fig. 12.21 Pulse outputs from (a) the operational amplifier and (b) the low-
pass filter of Fig. 12.19.

A good starting point is (12.188), which we can now view as a conditional
density and relabel as pr(Q|Ekin). Then we can write12

pr(Q) =

∫ ∞

0
dEkin pr(Q|Ekin) pr(Ekin)

=

∫ ∞

0
dEkin

∫ ∞

0
dE0 pr(Q|Ekin) pr(Ekin|E0) pr(E0) . (12.209)

12Equation (12.209) leaves out one potentially significant effect. When an x ray or scattered
photon is reabsorbed within the detector, the PDF on the total induced charge Q depends not
only on the initial interaction depth zint, which was already accounted for in (12.188), but also
on the depth at which the secondary photon is absorbed. (Lateral position of the absorption is
unimportant in the slab geometry.)
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Usually the only feasible way to evaluate this expression is Monte Carlo simulation,
but two separate simulations are required: a simulation of scatter and escape in the
detector material to estimate pr(Ekin|E0), and a simulation of scatter and absorption
in the patient’s body and in any collimating structures to estimate pr(E0).

After Monte Carlo evaluation of pr(Q), we still need to transfer the charge
signal through the integrating amplifier and low-pass filter to get the pulse height.
With the assumptions listed above, this is merely an amplitude scaling by a factor
of 1/(eC), but we also need to add the electronic noise. This latter step is just
convolution with a zero-mean Gaussian with variance given by (12.205).

Windowing and counting statistics What do we do with a pulse-height spectrum in
gamma-ray imaging systems? Ideally, we would use the entire spectrum from every
detector and attempt to extract as much information about the object as possible.
In common practice, however, a simple binary decision is made on each pulse: it is
either accepted into the image or rejected. The usual approach is to accept an event
only if its pulse height lies in some preset range of values around the photopeak.
This range is usually called an energy window, but that is a distinct misnomer;
it is a window on pulse heights rather than energies of incident photons. With
complicated spectra such as Figs. 12.16 – 12.18, the relation between pulse height
and energy is tenuous to say the least.

The fraction of photons absorbed by the detector that are accepted by the
window depends in a complicated way on the actual distribution of incident ener-
gies, all of the noise sources considered above, and the escape processes. If we know
the pulse-height spectrum, we can compute the probability of an incident photon
being accepted by the window, denoted P (acc), by integrating the spectrum over
the window range. Knowing P (acc), we can discuss the statistics of the number of
detected photons.

Consider first the case where the detector observes a Poisson source for a fixed
time τ, and assume that a fraction α of the emitted photons strike the detector and
a fraction η of those are absorbed. By the discussion in Sec. 11.1.3, we know that
binomial selection of a Poisson random process yields a Poisson random variable;
in the present problem we have three successive binomial selections, so the number
of recorded counts is a Poisson random variable with mean f0ταηP (acc), where f0
is the mean number of photons per second emitted by the source. In effect, the
quantum efficiency of the detector is reduced by the factor P (acc).

Other results from Chap. 11 are also applicable with this factor of P (acc). If we
have a system of M detectors, we have to add subscripts to the quantities defined
above to specify a particular detector. If we count until a preset total number of
counts Ntot is recorded, then the number recorded in the mth detector follows a

binomial law with mean NtotαmηmP (acc)
m , and the multivariate distribution on the

counts in all detectors is multinomial as in (11.42). If the mean number of counts
in each detector is small, the multinomial limits to a multivariate Poisson as in
(11.48).

Finally, all of the discussion of doubly stochastic processes in Sec. 11.2.2 is im-

mediately applicable with the additional factor of P (acc)
m in each quantum efficiency.



764 NOISE IN DETECTORS

12.3.3 Semiconductor detector arrays

So far we have discussed single-element, nonimaging detectors for x rays or gamma
rays. With the slab geometry, no information is obtained about the interaction
position of a photon except that it lies within the slab, and we have assumed that
the lateral dimensions Lx and Ly are large, so only rudimentary spatial information
is obtained. More complete information could be obtained by using an array of
single-element detectors—a lot of separate slabs, each with its own electronics—
but this would be expensive because of cost of fabricating many small detectors and
the amount of electronics required. Moreover, the resolution would still be limited
by the conditions on the slab geometry. In this section we shall discuss photon
counting semiconductor detectors in which spatial resolution is obtained by using a
slab detector with many separate electrodes rather than one continuous one.

The objective of this section is to develop mathematical and statistical descrip-
tions of the output signals from such multi-electrode semiconductor detectors. In
Sec. 12.3.4 we shall learn how to use the signals to form an image.

Electrode geometries and readouts The basic slab detector can be made into a
detector array just by adding more electrodes. An approach dating back to the
1960s is to place a set of strip electrodes on one side of the slab and a set of
orthogonal strips on the other side as shown in Fig. 12.22. When a high-energy
photon is absorbed, a charge is induced primarily on one strip on each side, so the
event is localized to approximately the area of overlap of the orthogonal strips. The
index of the active strip on one side can specify the x or row index in a pixel matrix
and the index of the active strip on the other side can specify the y or column index,
so this device is called a row-by-column detector. If J strips are used on each side,
a J × J pixel array is defined, but only 2J channels of electronics are needed (plus
logic circuitry to detect the strongest signal on each side).

Fig. 12.22 Strip detector, with orthogonal strip electrodes on the two sides.

One drawback of row-by-column readout is increased detector capacitance com-
pared to an array of single-element detectors with the same spatial resolution. If
each strip has width ε and length Jε, then the capacitance on the input to each
amplifier is proportional to the strip area Jε2 while the resolution area is ε2. As
we saw in (12.208), increased detector capacitance results in poorer pulse-height
resolution.

Another useful geometry, shown in Fig. 12.23, consists of a slab detector with
a continuous metal electrode on one side and a set of small square electrodes on the
other side. The small electrodes define pixels in the image array, so this geometry
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is referred to as pixellated.13 Now each pixel electrode needs its own electron-
ics chain, but fortunately they can all be fabricated on a single silicon chip in an
application-specific integrated circuit or ASIC. The ASIC can then be bonded to
the semiconductor detector slab as shown in Fig. 12.23. The resulting assembly is
often called a hybrid array because two different semiconductor materials are used,
one to absorb the gamma rays and provide charge signals and one to read out the
signals and pass them on to additional off-chip electronics.

The readout ASIC may use gated integrators, as shown in Fig. 12.13 and dis-
cussed in Sec. 12.2.4, with one integrator provided for each pixel electrode. In
operation, the voltage across the integrating capacitor is set to zero, and the sys-
tem then integrates the incoming charge for a fixed time T. This charge includes
both leakage current and the induced charge following a gamma-ray absorption. At
the end of the integration time, the voltage is sampled and passed to the external
electronics. This transfer operation can be done serially on all pixels during the
next integration period, so different pixel signals can be temporally multiplexed to
a single output line via electronic switches.

Fig. 12.23 Schematic of a hybrid semiconductor detector with a readout inte-
grated circuit (IC). A continuous metal electrode is deposited on the upper side
of the semiconductor slab, and small pixel electrodes are produced photolitho-
graphically on the underside. The semiconductor material is cold-welded to
the readout IC with indium bumps.

If two or more gamma-ray photons are absorbed in the slab during time T,
then the integrated charge is the sum of the leakage charge plus the charges due to
all gamma rays. In many applications, however, the rate of arrival of the gamma
rays is such that it is unlikely that more than one photon will be absorbed in time T.
When we can make this assumption, the hybrid array of gated integrators functions
as a photon-counting detector except for an occasional double hit, which we can
usually reject by windowing.

Charge spreading and induction In both row-by-column and pixellated detectors,
more than one output electrode may receive charge signals from a single gamma-
ray interaction. As we saw in Sec. 12.3.2, the initial charge cloud produced by

13In commenting on the origin of the word pixel, William Safire (Arizona Daily Star, Apr. 3,
1995) cites two unrelated but similar words: pixilated—bemused, fey, whimsical (from pixie); and
pixilate (which Safire suggests we should spell pixelate), referring to a photographic technique to
make cinematography look like animation by deleting frames. We intend neither of these usages
here.
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a gamma-ray interaction has a finite size, and it grows as the charges drift as a
result of Coulomb interactions and diffusion. These effects, collectively known as
charge spreading, were not an issue in slab detectors with lateral dimensions large
compared to the thickness, but pixellated or row-by-column detectors may have
electrodes as small as 50 µm, so the charge cloud might spread out over several
electrodes. Moreover, even without spread, the charge cloud can induce a charge on
several electrodes. We need either to minimize these effects or to understand them
and use the signals from multiple electrodes intelligently.

One way to minimize charge spreading is to cut grooves around the electrodes,
but this approach increases fabrication costs and makes the device more difficult
to analyze. In what follows we shall assume that there are no grooves and that
the detector is a slab of homogeneous semiconductor with a regular array of pixel
electrodes on one side.

We shall also assume that each electrode is connected to a gated integrator, for
example on a readout ASIC, and that the integrator holds the electrode at ground
potential. We shall neglect the small gaps between the pixels, so essentially the
entire pixellated surface of the slab (z = Lz) is at ground potential. The continuous
electrode on the other side of the slab (z = 0) will be the cathode and held at
potential −Vb. Thus the field inside the slab is still uniform, so all of the calcula-
tions on slab detectors above still apply to the total induced charge and the total
current through all pixel electrodes, but we now want to compute the signal on each
electrode. The mathematical tools needed for this purpose were developed in Chap.
9; specifically, we shall make use of the Green’s function for the Poisson equation
(Sec. 9.3.3) and Green’s theorem (Sec. 9.3.5).

Suppose a gamma ray is absorbed at an arbitrary point rint in the semicon-
ductor. As in Sec. 12.3.2, the result of the interaction is a cloud of holes and a cloud
of electrons, and the overall charge density14 can be written as

q(r, t) = qe(r, t) + qh(r, t) , (12.210)

where the first term comes from the electrons and the second from holes. Both
terms include a moving cloud of charge as well as any trapped charge.

This time-varying charge density produces a time-varying potential φ(r, t),
which is difficult to compute in full generality. A useful approximation, justified
by Eskin et al. (1999), is that the charge density varies sufficiently slowly that the
potential can be computed by the equations of electrostatics rather than the full
Maxwell’s equations. With this quasistatic assumption, the potential must satisfy
Poisson’s equation,

∇2φ(r, t) = − 1

εs
q(r, t) , (12.211)

where εs is the permittivity of the semiconductor. The potential must also satisfy
the inhomogeneous Dirichlet boundary conditions φ(r, t) = −Vb for z = 0 and
φ(r, t) = 0 for z = Lz . We shall assume that Lx and Ly are very large compared to
Lz, so the lateral boundaries of the slab are not important.

To solve (12.211) subject to these boundary conditions, we need a Green’s

14Recall from Sec. 9.1.1 that we use q for charge density instead of the usual ρ, reserving the latter
for spatial frequency. Do not confuse charge density q(r, t) with total charge Q(t).
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function p(r, r0) that satisfies [cf. (9.72)]

∇2
0p(r, r0) = δ(r − r0) , r and r0 in V , (12.212)

where V is the volume of the slab. We also require the Green’s function to satisfy
homogeneous Dirichlet boundary conditions, p(r, r0) = 0 if r0 is in V and r lies
on the surface z = 0 or z = Lz (or vice versa, r in V and r0 on the surface).
Physically, p(r, r0) is the potential at point r due to a unit point source at r0 in V
plus whatever configuration of sources outside V is needed to enforce the boundary
conditions. Explicit forms for the Green’s function will be derived below.

Once we know the Green’s function, we can express φ(r, t) via (9.73) as

φ(r, t) = − 1

εs

∫

V
d3r0 p(r, r0) q(r0, t)− Vb

∫

S
dx0 dy0

∂p(r, r0)

∂z0
, (12.213)

where S is now just the surface z0 = 0. (The potential vanishes on z0 = Lz , and
we are neglecting the lateral boundaries.)

Next, we need to compute the induced charge on each pixel electrode. For
this purpose, we construct a Gaussian pillbox, shown in Fig. 12.24, straddling the
inner surface of the mth pixel electrode. The field inside the electrode is zero if the
electrode is an ideal conductor, and the normal component (in the −z direction) of
the field on the surface of the pillbox inside the semiconductor is ∂φ(r, t)/∂z. By
Gauss’s theorem, the enclosed charge is

Qm(t) = εs

∫

m
da

∂φ(r, t)

∂z
= −

∫

m
da

∫

V
d3r0

∂p(r, r0)

∂z
q(r0, t) + const , (12.214)

where the area integral is over the inner surface of the mth pixel (in the plane
z = Lz), and da = dx dy.

Fig. 12.24 Gaussian pillbox used to compute induced charge.

The physical interpretation of (12.214) is that a surface charge is induced with
just the right distribution to maintain the electrode at ground potential, and the
total charge induced on the electrode is the area integral of the surface charge
density. The constant term in (12.214) [arising from the second integral in (12.213)]
is the charge needed to maintain the DC field in the absence of gamma rays. Our
interest is in the charge induced by q(r0, t), so we shall drop the constant term.
The time-dependent term that remains is the charge pulse due to a gamma-ray
interaction.
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The time derivative of the charge pulse is the current, which is integrated by
the gated integrator. The output voltage of the mth gated integrator at t = T is
given from (12.153) as

Vm(T ) =
1

C

∫ T

0
dt′ i(t′) =

1

C
Qm(T ) , (12.215)

where we have neglected leakage current (for now) and assumed that Qm(0) = 0.
With (12.214), we can write (12.215) in the continuous-to-discrete form,

Vm(T ) = − 1

C

∫

V
d3r0 Φm(r0) q(r0, T ) , (12.216)

where the dimensionless function Φm(r0) is given by

Φm(r0) =

∫

m
da

∂p(r, r0)

∂z

∣

∣

z=Lz

. (12.217)

In some of the literature on gamma-ray detectors, Φm(r) is called a weighting
potential, but it isn’t really a potential, so we call it simply the weighting func-
tion.15

We see from (12.216) that the voltage at the end of the integration period
depends on only the final charge distribution q(r0, T ). Since T is usually long com-
pared to the transit time of charge across the detector, this distribution consists of
static charge that was trapped either en route to the electrode or at the electrode.
(Recall that we are not considering photoconductive gain, so any charge that makes
it to the electrode can be considered to be trapped there.)

Fig. 12.25 Infinite sequence of pairs of image charges needed to satisfy bound-
ary conditions.

15The term Ramo’s theorem is sometimes used for an equation similar to (12.216). This theorem
was proved by S. Ramo (1939) after being introduced by Shockley (1938). Neither Ramo nor
Shockley envisioned the kinds of integrating devices under consideration here, and their theorem
is essentially the time derivative of (12.216).
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Image charges and the Green’s function The method of images was introduced in
Sec. 9.4.3 as a way of constructing a Green’s function satisfying Dirichlet boundary
conditions. By (12.212), the Green’s function is the potential at point r in V due
to a point charge at point r0 in V, but this charge produces a nonzero potential on
the boundaries, so additional charges outside V are needed. As in Sec. 9.4.3, we
could cancel the potential on z = 0 by placing a compensating negative charge at
the mirror-image point r0m outside V, where r0m = (x0, y0,−z0) if r0 = (x0, y0, z0),
but then we would have a nonzero potential on z = Lz from these two charges. Two
additional charges would correct this problem and force the potential on z = Lz

to zero, but that would then make the potential on z = 0 nonzero. To force the
Green’s function to be zero on both surfaces simultaneously, we need an infinite
sequence of pairs of image charges as shown in Fig. 12.25. The Green’s function
can then be written as (Barrett et al., 1995; Eskin et al., 1999)

p(r, r0)

=
∞
∑

k=−∞

[

1

[(z − 2kLz − z0)2 + |r− r0|2]
1

2

− 1

[(z − 2kLz + z0)2 + |r− r0|2]
1

2

]

,

(12.218)
where r = (x, y) and r0 = (x0, y0).

Alternative form of the Green’s function There is another way of deriving the Green’s
function that will not only give a useful alternative form, but will also serve to il-
lustrate some important mathematical concepts introduced earlier in the book.

The basic idea is to expand the Green’s function in eigenfunctions of the Lapla-
cian operator with the relevant Dirichlet boundary conditions. Since we are ignoring
the lateral boundaries, this operator is shift invariant in x and y, and the eigen-
functions are complex exponentials of the form exp[2πi(ξx + ηy)] (see Sec. 7.2.4).
With any real values of ξ and η, these functions are eigenfunctions of ∇2, so the
operator has a continuous spectrum (see Sec. 1.4.5) as far as its x-y dependence is
concerned.

In the +z direction, we could use sines and cosines as eigenfunctions [see (4.24)],
but the boundary conditions now restrict our choices for the spatial frequency, and
the spectrum is discrete. The function sin(πnz/Lz) is an eigenfunction of ∇2 and
vanishes at z = 0 and z = Lz if n is an integer, but the corresponding cosine does
not satisfy the boundary conditions, and no other spatial frequencies can be used
in the sine.

Thus the eigenfunctions we need are

unξη(r) =

√

2

Lz
exp[2πi(ξx+ ηy)] sin(πnz/Lz) . (12.219)

These functions are orthonormal on the slab, satisfying

(unξη,un′ξ′η′) =

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ Lz

0
dz u∗

nξη(r)un′ξ′η′(r) = δnn′ δ(ξ−ξ′) δ(η−η′) .

(12.220)
Any function that is square-integrable on the slab and vanishes for z = 0 and Lz

can be expanded in these functions.
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Acting on the eigenfunctions with∇2 shows that the corresponding eigenvalues
are

λnξη = −
(

nπ

Lz

)2

− 4π2ρ2 , (12.221)

where ρ2 = ξ2 + η2. The eigenvalues are real since ∇2 is Hermitian.
The spectral decomposition of the Laplacian (with the pertinent boundary

conditions) is [cf. (1.86)]

∇2 =
∞
∑

n=1

∫ ∞

−∞
dξ

∫ ∞

−∞
dη λnξηunξηu

†
nξη , (12.222)

and the inverse operator is given formally by [cf. (1.87)]

∇−2 =
∞
∑

n=1

∫ ∞

−∞
dξ

∫ ∞

−∞
dη

1

λnξη
unξηu

†
nξη . (12.223)

The inverse Laplacian is an integral operator whose kernel is the Green’s function,
which can therefore be written as

p(r, r0) =
∞
∑

n=1

∫ ∞

−∞
dξ

∫ ∞

−∞
dη

1

λnξη
unξη(r)u

∗
nξη(r0) . (12.224)

Note the limits on the sum; the eigenfunctions vanish identically for n = 0, and
terms with negative n are redundant with those for positive n. Therefore we are
never dividing by zero in (12.224), and there is no worry about the existence of the
inverse.

To get an explicit form for the Green’s function, we note that the double
integral is an inverse Fourier transform of a rotationally symmetric 2D function,
which we can reduce to a single integral by (3.248). By use of (12.219), (12.221),
(12.224) and formula 6.532.4 in Gradshteyn and Ryzhik (1980), we then find (Eskin
et al., 1999)

p(r, r0) = − 1

πLz

∞
∑

n=1

K0

(

πn|r− r0|
Lz

)

sin

(

πnz

Lz

)

sin

(

πnz0
Lz

)

, (12.225)

where K0(·) is the zero-order modified Bessel function. The reader may show the
equivalence of this form to (12.218) by use of the Poisson summation formula,
(3.197). Both forms are numerically tractable (Eskin, 1997).

Computation of the weighting function We now need to differentiate the Green’s
function with respect to z and integrate over a pixel area to get Φm(r) as defined
in (12.217). This step is most easily accomplished with the eigenfunction expansion
of (12.224) where the z-dependence is exhibited in a simple form. We need the
derivative only on the pixel surface, z = Lz, and we find from (12.219) that

∂

∂z
unξη(r)|z=Lz

=

√

2

Lz
(−1)n

πn

Lz
exp[2πi(ξx+ ηy)] . (12.226)

If we define a 2D function wm(r) to be unity on the surface of the mth pixel
and zero elsewhere, and let Wm(ρ) be its 2D Fourier transform, we can combine
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(12.217), (12.221) and (12.224) to obtain

Φm(r0) =
1

π

∞
∑

n=1

(−1)nn sin

(

nπz0
Lz

)
∫

∞
d2ρ

Wm(ρ)

n2 + (2Lzρ)2
exp(2πiρ · r0) . (12.227)

We can interchange sum and integral and then perform the sum by means of formula
1.445.4 in Gradshteyn and Ryzhik (1980); the result is

Φm(r0) = −1

2

∫

∞
d2ρ

sinh(2πz0ρ)

sinh(2πLzρ)
Wm(ρ) exp(2πiρ · r0) . (12.228)

For z0 = Lz, the ratio of sinh functions is unity, and the integral is propor-
tional to the 2D inverse Fourier transform of Wm(ρ). Thus Φm(r0) ∝ wm(r0), and
the weighting function is the pixel function itself in the pixel plane. For z0 = 0,
sinh(2πz0ρ) = 0, so the weighting function vanishes identically on the cathode plane.

To get the weighting function for other planes, we recognize that the integral in
(12.228) is the 2D inverse Fourier transform of a product, which is a 2D convolution
given by

Φm(r0) = [wm ∗ sz0 ](r0) , (12.229)

where, with the help of (3.248),

sz0(r0) = −π

∫ ∞

0
ρdρ

sinh(2πz0ρ)

sinh(2πLzρ)
J0(2πρr0) . (12.230)

Note the curious mixture of coordinates here: r0 is the 3D position vector comprised
of the 2D vector r0 and the distance z0, and r0 = |r0|. The 2D convolution with a
rotationally symmetric, z-dependent kernel yields a 3D function.

In general, numerical methods must be used to evaluate the convolution, but
some insight can be gained by examining two limits.

The slab limit If the width ε is large compared to Lz, then Wm(ρ) # δ(ρ), and
(12.228) yields

Φm(r0) = −1

2
lim
ρ→0

sinh(2πz0ρ)

sinh(2πLzρ)
= − z0

2Lz
. (12.231)

Thus the pixel response to charge near the surface z0 = 0 is very small, and the
largest magnitude response is at z0 = Lz. Recall, however, that the weighting
function applies to the charge distribution at t = T, when presumably all of the
charge drift has finished. Electrons that make it to the pixel electrode (the anode)
have the full effect, and holes that make it to the cathode have zero effect. As
explained in Sec. 12.1.3, an electron-hole pair induces an anode charge of −e, not
−2e, in the absence of trapping.

The small-pixel limit To obtain high sensitivity in a gamma-ray detector, we want
to make Lz large, and to obtain high spatial resolution, we want to make the pixel
size ε small, so it often turns out that the aspect ratio Lz/ε is large compared to 1.
For the energies used in nuclear medicine and gamma-ray astronomy, Lz is typically
in the range 1 – 10 mm, and pixels can be as small as 0.05 mm.

The function Wm(ρ) extends to frequencies of order 1/ε, and when Lz + ε, we
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can use the asymptotic limit 2πLzρ + 1 over most of this range. To see why this
is useful, note that

Sz0(ρ) ≡
sinh(2πz0ρ)

sinh(2πLzρ)
= e−2π(Lz−z0)ρ

[

1− e−4πz0ρ

1− e−4πLzρ

]

. (12.232)

When z0ρ and Lzρ are both large, the factor in square brackets is near unity and
Sz0(ρ) # exp[−2π(Lz − z0)ρ]. The greatest error in this approximation occurs near
ρ = 0, where Sz0(ρ) # (z0/Lz) exp[−2π(Lz − z0)ρ], but even this error is small for
z0 near the pixel plane z = Lz.

Thus a reasonable approximation to (12.230) is

sz0(r0) = −π

∫ ∞

0
ρdρ exp[−2π(Lz − z0)ρ]J0(2πρr0) =

−(Lz − z0)

4π [(Lz − z0)2 + (r0)2]
3/2

,

(12.233)
where we have used Gradshteyn and Ryzhik (1980), formula 6.623.2. In the limit
that Lz − z0 → 0, sz0(r0) → δ(r0), so the weighting function exactly in the pixel
plane is again proportional to the pixel function.

For finite values of Lz − z0, sz0(r0) has a spatial width of about Lz − z0, so we
can regard it as approximately a delta function whenever it is integrated against a
substantially broader function. In particular,

Φm(r0) # wm(r0) for Lz − z0 $ ε . (12.234)

Thus the weighting function is independent of z0 for points within about ε of the
pixel.

For more distant points, such that Lz − z0 + ε, sz0(r0) is broad compared to
wm(r0), and we can do the convolution by regarding the latter as the delta function
this time. If wm(r) is centered on r = rm, we obtain

Φm(r0) # ε2sz0(r0 − rm) for Lz − z0 + ε . (12.235)

By inspection of (12.233), we see that the weighting function now falls off as the
inverse square of the z distance from the pixel in this limit.

Fig. 12.26 Behavior of the weighting function in the small-pixel limit. (Cour-
tesy of Josh Eskin.)

The behavior of the weighting function for small and large pixels is shown in
Fig. 12.26. The key point is that the pixel is sensitive only to charge that comes
within about one pixel width of the electrode; charge trapped outside this sensitive
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zone is irrelevant (Barrett et al., 1995; Eskin et al., 1999). If the pixel is the
anode, as we have assumed, then holes travel away from the sensitive zone, and
hole trapping is far less important than it is with large electrodes. As a result of
this small-pixel effect, the trapping plateau in a pulse-height spectrum is greatly
reduced, and the photopeak fraction is increased.

Mean signals Now that we know the weighting function, we can use it in (12.216)
to compute the mean signal from each pixel under various assumptions about charge
spreading and trapping. We just need to replace the charge density q(r0, T ) by its
average over all possible paths for the carriers, which we denote by q(r0, T ). Though
the notation does not show it, the average here is conditional on both rint and Neh.

For example, if we neglect carrier diffusion and the finite size of the initial
charge cloud, but consider arbitrary trapping of both holes and electrons, then
the carriers travel along straight lines, undergoing exponential trapping as they go.
After time T (assumed to be much longer than the drift times), the mean electron
charge density qe(r0, T ) is a line of trapped charge extending from the interaction
point to the pixel plane (which we assume is the anode) plus a delta function to
account for the electrons that make it to the pixel. Specifically,

qe(r0, T ) = −eNeh δ(r0 − rint)

×
[

1

λe
exp

(

−z0 − zint
λe

)

step(z0 − zint) + exp

(

−Lz − zint
λe

)

δ(z0 − Lz)

]

,

(12.236)
where r0 = (r0, z0). A similar expression gives the charge density for holes:

qh(r0, T ) = eNeh δ(r0 − rint)

×
[

1

λh
exp

(

−zint − z0
λh

)

step(zint − z0) + exp

(

−zint
λe

)

δ(z0)

]

. (12.237)

Note that these densities of trapped charge are assumed to be proportional to Neh,
which is a valid assumption if each trap has only a small probability of being filled.
Most practical detectors satisfy this condition.

Now we want to use these charge densities to average the voltage Vm(T ) defined
in (12.216). For notational simplicity, we shall drop the argument and shorten
Vm(T ) to Vm. Then we can insert (12.236) and (12.237) into (12.216) and perform
the integrals for which we have delta functions, yielding

E{Vm|rint} = − e

C
Neh

[

exp

(

−zint
λe

)

δmmint

+
1

λe

∫ Lz

zint

dz0 Φm(rint, z0) exp

(

−z0 − zint
λe

)

− 1

λh

∫ zint

0
dz0 Φm(rint, z0) exp

(

−zint − z0
λh

)]

, (12.238)

where mint denotes the pixel nearest to the interaction (i.e., the one for which
wmint

(rint) = 1). The notation Φm(r0, z0) means the same thing as Φm(r0), and
we have used the fact that Φm(rint, 0) = 0. Note also that the expectation has now
included an average over Neh.
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Several limits of this expression are of interest. First, if there is very little trap-
ping (λe,λh + Lz), then E{Vm|rint} # −(e/C)Neh δmmint

; all of the electrons ar-
rive at a single pixel (m = mint) and induce the full charge there. Second, for strong
trapping of both carriers (λe,λh $ Lz), E{Vm|rint} # −(e/C)NehΦm(rint, zint);
in contrast to slab detectors, pixellated detectors exhibit a strong dependence on
depth of interaction in the strong-trapping limit.

Finally, many materials of interest exhibit good electron transport (λe + Lz)
but poor hole transport (λh $ Lz); in these materials,

E{Vm|rint} # − e

C
Neh[ δmmint

− Φm(rint, zint)] . (12.239)

Except for interactions that occur within about ε of the pixel, Φm(rint, zint) is
small compared to one, so the second term makes little contribution to the signal
on pixel mint. Its contribution to adjacent pixels may, however, be significant. Hole
trapping produces a small positive signal on an anode pixel, while electrons produce
a negative one; if no electrons reach a pixel for which m != mint, only the positive
signal is observed. Since this signal depends strongly on zint, it can be used to
estimate the depth of interaction (Marks, 2000).

It is not difficult to generalize this calculation to include charge spreading and
nonlocal charge deposition, but Monte Carlo methods are usually required to get
the relevant charge densities. For examples and many details, see Eskin (1997) and
Marks (2000).

Covariance of the output signals The conditional covariance matrix on the output
voltages for a specified interaction position rint is defined as

[KV (rint)]mm′ ≡ E{∆Vm∆Vm′ |rint} , (12.240)

where ∆Vm ≡ Vm − Vm(rint), and Vm(rint) ≡ E{Vm|rint}. The major stochastic
effects that influence this matrix are generation of electron-hole pairs, trapping,
dark current and electronic noise.

Some of these effects contribute only to the diagonal terms of this matrix (the
variance), and some are correlated from pixel to pixel and hence contribute to the
off-diagonal elements as well. In particular, dark current and electronic noise are
certainly statistically independent from pixel to pixel. In fact, since the pixels are at
least nominally identical, a good model for these noise sources is an i.i.d. Gaussian
distribution. Carrier generation and trapping may lead to significant correlations.

We shall see, however, that the off-diagonal terms in KV (rint) will often vanish
if Neh is a Poisson random variable (so that the Fano factor is unity). This result
should be expected from Chap. 11 where the word Poisson was taken to be almost
synonymous with independent (and hence uncorrelated). On the other hand, in the
discussion in Sec. 11.4 on integrating detectors with gain, we did not find that the
correlations vanished when the gain process was Poisson. In Sec. 11.4, the variable
kn, the number of secondaries produced by the nth primary, corresponds to what
we call Neh here, but there are correlations, evident in (11.226) and (11.238), even
when the variance of kn equals its mean. [From (11.219) we see that Var(kn) = kn
does not correspond to s(R) = 0.]

The resolution of this apparent paradox is that Neh is only conditionally
Poisson, since it is computed for a single interaction event. When a Poisson number
of interaction events occur over the integration time, the total number of secondaries
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is no longer Poisson [cf. (11.198)], and the correlations evident in (11.226) and
(11.238) must occur. The reader should not confuse KV (rint), which applies to a
single interaction event at the specified location rint, with the covariance matrix
Ky of an integrating detector with gain as given in (11.238).

Carrier-generation statistics with no trapping In the absence of trapping, all electrons
make it to the pixel plane (anode), and all holes make it to the cathode. Since
the weighting function Φm(r0) is zero for the cathode plane, we can ignore the
holes and just account for the distribution of electrons among the pixels. This
distribution is affected by nonlocal charge deposition and charge spreading, but for
present purposes all we need to know is that there is some probability βm(rint)
that an electron generated at rint arrives at the mth pixel. In the absence of
trapping,

∑

m βm(rint) = 1. If Nm is the actual number that arrive at the pixel,
then

∑

m Nm = Neh, and the conditional mean of Nm is Nehβm(rint).
If we neglect Coulomb interactions between electrons, then each electron will

choose a pixel independently of the others, and the conditional probability law (for
fixed Neh and rint) will be the multinomial, (C.164). For m != m′, we can write

〈NmNm′〉 ≡ E{NmNm′ |rint} =
∞
∑

Neh=0

Pr(Neh)E{NmNm′ |Neh, rint}

= βm(rint)βm′(rint)
∞
∑

Neh=0

Pr(Neh)Neh(Neh − 1)

= βm(rint)βm′(rint)[Var{Neh}+N
2
eh −Neh] . (12.241)

Since Var{Neh} = FNeh, where F is the Fano factor, we quickly find that

〈∆Nm∆Nm′〉 = Neh(F − 1)βm(rint) βm′(rint) , (m != m′) , (12.242)

where ∆Nm = Nm − E{Nm|rint}. By a similar procedure, the variance of Nm is
found to be

Var{Nm} = Nehβm(rint) +Neh(F − 1)β2
m(rint) . (12.243)

We can combine these last two equations into the covariance matrix (Barrett
and Swindell, 1981, 1996),

[KN (rint)]mm′ ≡ 〈∆Nm∆Nm′〉 = Nehβm(rint) δmm′+Neh(F−1)βm(rint)βm′(rint) .
(12.244)

We see that Nm andNm′ are uncorrelated if Neh is a Poisson random variable where
F = 1; this result is expected from the discussion in Sec. 11.2.1 on multinomial
selection of a Poisson. We know from earlier discussions in this chapter, however,
that Neh is not Poisson, and F may be much less than unity. With such sub-Poisson
statistics, there is a negative correlation between Nm and Nm′ ; in the limit where
F = 0 and only two pixels receive charge, a fluctuation in Nm must be accompanied
by an equal and opposite fluctuation in Nm′ since their sum is fixed.

If we consider only the statistics of Nm and neglect electronic noise and dark
current, the output voltage of the mth integrator is −eNm/C, so the covariance
matrix for the output voltages is

[KV (rint)]mm′ =
e2

C2
βm(rint)Neh δmm′ +

e2

C2
(F − 1)Nehβm(rint)βm′(rint) .

(12.245)
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We reiterate that (12.245) refers to the signals after one integration period in which
exactly one gamma-ray interaction occurs, that it is conditional on the interaction
location, and that it applies only in the absence of trapping.

Random distribution of trapped charge With trapping, we cannot use the multino-
mial arguments because we are not just counting particles; as we have seen, electrons
and holes induce signals even without reaching the electrodes. The new stochastic
effect is the random spatial distribution of trapped charge after time T.

Since the trapped charges are single electrons or holes, the charge density is a
spatial point process, and we can use the properties of such processes as developed
in Sec. 11.3.3. Specifically, the electron charge density can be written as

qe(r, T ) = −e
Neh
∑

j=1

δ(r − rj) ≡ −ege(r) , (12.246)

with a similar expression for holes. Since the number of carriers Neh is not a Pois-
son random variable, however, we are not dealing with a Poisson point process.
Instead, we can start with the general expression (11.92) for the autocovariance of
an arbitrary point process.

To adapt (11.92) to the present discussion, we must first distinguish the 3D
vector r from the 2D vector r. Also, we shall need separate expressions for elec-
trons and holes, so we add subscripts. Finally, we recognize the dependence of
all quantities on the interaction position rint. With these notational changes, the
probability density pr(r|N) that appears in (11.92) can be replaced (for electrons)
by pre(r|rint, Neh), which is the spatial density of trapped electrons after time T.
We include in this density the number of electrons that make it to the electrode as
well as the number trapped in the bulk, so the total number is just Neh.

If we assume, as we did in (12.236) and (12.237), that each trap has a small
probability of being filled, then the trapping events are independent, and the spatial
density of trapped electrons is given, by analogy to (11.83), as

pre(r|rint, Neh) =
qe(r, T )

∫

V d3r′ qe(r
′, T )

= − 1

eNeh
qe(r, T ) , (12.247)

and similarly for holes. Recall from the discussion above (12.236) that qe(r, T ) is
conditional on both rint and Neh, so these dependences are hidden on the right-
hand side of (12.247). With (12.236), however, qe(r, T ) is linearly related to Neh,
and the resulting spatial density pre(r|rint) is independent of Neh. This conclusion
is again a consequence of the assumption that each trap has a small probability of
being filled.

By this same assumption, the joint density pr(r, r′|N) that appears in (11.92)
factors into the product of the two marginals, and (11.92) becomes

Kge(r, r
′) = Neh pre(r|rint) δ(r− r′)+ (F −1)Neh pre(r|rint) pre(r′|rint) , (12.248)

where we have used the definition of the Fano factor, (12.166). Not unexpectedly,
we see that the random process ge(r) is delta-correlated for the Poisson case where
F = 1.

Covariance of the output signals with trapping To compute the covariance matrix
on the signals out of the gated integrators, we can use (12.248) along with results
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from Sec. 8.2.6 on filtering of random processes. The filtering action is described
by (12.216), which has the general form of a continuous-to-discrete (CD) mapping
from the point process q(r0, T ) to the random vector of voltages. With (12.216),
we can write the covariance matrix of the voltages as [cf. (8.147)]

[KV (rint)]mm′ =
( e

C

)2
∫

∞
d3r

∫

∞
d3r′ Φm(r) [Kge(r, r

′) +Kgh(r, r
′)]Φm′(r′) .

(12.249)
There are no cross-covariance terms since the random processes for holes and elec-
trons are uncorrelated with each other.

Inserting (12.248) and its hole counterpart into (12.249), we get the following
generalization of (12.245):

[KV (rint)]mm′ =
( e

C

)2
Neh

∫

∞
d3r [pre(r|rint) + prh(r|rint)]Φm(r)Φm′(r)

+
( e

C

)2
(F − 1)Neh

∫

∞
d3r pre(r|rint)Φm(r)

∫

∞
d3r′ pre(r

′|rint)Φm′(r′)

+
( e

C

)2
(F − 1)Neh

∫

∞
d3r prh(r|rint)Φm(r)

∫

∞
d3r′ prh(r

′|rint)Φm′(r′) .

(12.250)
This expression reduces to (12.245) in the absence of trapping, where pre(r|rint) ∝
δ(z − Lz) and prh(r|rint) ∝ δ(z).

One interesting observation about (12.250) concerns the Poisson limit, F → 1.
We are accustomed to Poisson processes leading to uncorrelated measurements, but
that is not necessarily the case here. The first integral in (12.250) can be nonzero
for m != m′ if Φm(r) and Φm′(r) overlap. A particular trapped charge in the bulk
can contribute to the signals on different pixels, so there is a positive correlation.
In the absence of trapping, however, the delta function δ(z − Lz) in the electron
distribution reduces the volume integral to an integral over the pixel surface where
Φm(r) is the pixel function; then Φm(r) and Φm′(r) cannot overlap if m != m′ and
hence there is no correlation.

The non-Poisson parts of (12.250) (the second and third terms) give negative
correlations for the usual case where F < 1. These correlations do not require that
Φm(r) and Φm′(r) overlap, but they do require that the charge distribution overlap
with both functions. Thus the correlations are stronger for interactions farther
from the pixel plane, and they arise only from charge trapped in the bulk. Charge
spreading by diffusion enhances these off-diagonal terms in KV (rint).

Correlations induced by random depth of interaction So far we have concentrated on
the conditional covariance matrix KV (rint) for fixed interaction location, as defined
in (12.240). As we shall see in Sec. 12.3.5, this is the relevant matrix when we wish
to estimate all three coordinates of rint from the observed signals, but often we want
to estimate just the two lateral coordinates xint and yint. In that case we shall need
the covariance KV (rint) conditional on only the 2D vector rint; it is defined by

[

KV (rint)
]

mm′
≡ E

{[

Vm − Vm(rint)
][

Vm′ − Vm′(rint)
]}

, (12.251)

where Vm(rint) ≡ E{Vm|rint}. By adding and subtracting Vm(rint) to each factor
in the expectation and doing a little algebra, we find

KV (rint) = 〈KV (rint)〉zint
+KV (rint) , (12.252)
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where

[KV (rint)]mm′ =
〈[

Vm(rint)− Vm(rint)
] [

Vm′(rint)− Vm′(rint)
]〉

zint

. (12.253)

The second term in (12.252) arises because the random depth of interaction affects
the distribution of charge trapped in the bulk, and this distribution is sensed by
two pixels m and m′, especially if they are adjacent. The resulting correlation can
be either positive or negative. It is positive when the photon energy is low and Lz/ε
is large, so that most photons are absorbed a long distance from the pixel plane;
then the photons that happen to be absorbed nearer to the pixels contribute more
to both Vm(rint) and Vm′(rint). For higher photon energies and smaller Lz/ε, more
photons are absorbed within ε of the pixels where Φm(r) and Φm′(r) have little
overlap, and the positive correlation is reduced or may become negative. For no
trapping, of course, depth of interaction is irrelevant, and [KV (rint)]mm′ = 0 for
m != m′.

12.3.4 Position and energy estimation with semiconductor detectors

The analysis in Sec. 12.3.3 provides us with a statistical description of the electrode
signals in a photon-counting semiconductor gamma-ray detector array, but we still
need to form an image from these signals. Two distinct approaches are possible: we
can either devise some algorithm based on the pixel signals from a single event to
assign that event to an image bin; or we can use all signals from all events to estimate
the fluence pattern. The first approach, called event estimation, is by far the more
common, and it will be the focus of this section. The second approach, fluence
estimation, requires knowledge of image reconstruction algorithms, so it will be
postponed to Chap. 15. For application of fluence estimation to semiconductor
detector arrays, see Marks (2000).

In event estimation, the x and y coordinates of the interaction position (i.e.,
the 2D vector rint) can be estimated and used to assign the event to a 2D array of
image bins, or the depth zint can also be estimated, leading to a 3D array of image
bins. In either case, the image bins are referred to as pixels, but they need not be
the same size as the pixel electrodes on the detector array. As we shall see, it is
possible to obtain spatial resolution better than the size of the electrodes.

As discussed in Sec. 12.3.2, we also usually want to estimate the energy of the
event. The energy estimate can be used to create another index into the image
array, but more commonly it is used in some decision algorithm for accepting an
event into the spatial image array.

The mathematical framework underlying this process of image formation is
statistical decision theory, as presented in Chap. 13. This theory includes the theory
of parameter estimation, obviously relevant for both position and energy estimation,
and classification theory, applicable to the decision to accept or reject an event. We
presume here that the reader is conversant with that theory, especially as developed
in Sec. 13.3. In particular, we shall use concepts of bias and variance of an estimator
freely, and we shall soon make use of maximum-likelihood estimation.

The hottest pixel The simplest algorithm for assigning events to image pixels is just
to identify the electrode with the largest signal in the electrode array and to assign
the event to the corresponding pixel in an image array of the same size. There is
then a 1:1 correspondence between electrodes and image pixels.
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This procedure is the obvious one to use in the absence of trapping since then
only one electrode gets charge from the gamma-ray interaction; all others merely
integrate the dark current. If σ2 is the variance of the signals due to dark current
and electronic noise, and if the interaction produces a mean signal that is at least,
say, 3σ or 4σ, then there is essentially zero probability that the wrong pixel will be
identified this way. With trapping, however, several electrodes may receive charge
from a single gamma-ray interaction, and there may be a significant probability of
an incorrect assignment.

In addition to identifying the interaction pixel, we also want to estimate the
energy of the incident photon and to accept or reject it based on some preset window
(see Sec. 12.3.2). In the absence of trapping, the obvious estimate of energy is the
observed signal on the interaction pixel minus an estimate of the contribution from
dark current, but with trapping it is not so obvious how to proceed. To use just the
signal from one electrode to estimate energy is to ignore useful information from
other electrodes.

Linear and quasilinear estimates One simple way to use information from pixels
other than the one with the largest signal is to form linear combinations of the
signals in some neighborhood around that pixel. For example, if we have identified
pixel m0 as the one with the largest signal, we can define a neighborhood N (m0)
consisting of a square array of pixels centered on m0. With this reduced data set,
a possible estimate of E0 is

Ê = A
∑

m in N (m0)

[

Vm − V
(dark)
m

]

, (12.254)

where A is a constant and V
(dark)
m is the average of Vm over many integration periods

without gamma-ray illumination (a quantity we can easily measure). Alternatively,
if we assume that exactly one interaction has occurred in a single integration period,
then we can use the entire set of electrode signals for that period. In either case,
except for the fact that we have subtracted off the mean dark current, E is a linear
estimator of Ekin. We can choose the constant A to minimize the bias in this
estimate. With charge spreading but no trapping, for example, Ê is an unbiased
estimator of the deposited energy Ekin (or E0 if we consider only photopeak events)
if A = −EehC/e [cf. (12.192)]. With this choice, the mean of Ê is Ekin since the
mean of the total generated electron charge is given by −eEkin/Eeh, and this charge
induces a total mean voltage of Qe/C. A linear estimator of the x component of
the 2D interaction position has a form analogous to (12.254),

x̂ =
∑

m

Bxm

[

Vm − V
(dark)
m

]

, (12.255)

and similarly for the y component. Again, the coefficients Bxm and Bym could be
chosen to minimize bias.

One immediate difficulty with (12.255), however, is that the position estimate
depends on Ekin since the mean of all terms in the sum is proportional to the
deposited energy. To avoid this problem, we can define a quasilinear estimator as

r̂ =
1

Ê

∑

m

Bm

[

Vm − V
(dark)
m

]

, (12.256)
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where Bm = (Bxm, Bym). This estimator is not linear in the signals {Vm} since the
denominator Ê is itself a linear function of the signals. Instead, the form is

r̂ =

∑

m wm

[

Vm − V
(dark)
m

]

∑

m

[

Vm − V
(dark)
m

] , (12.257)

where wm = Bm/A.
We can determine the weighting coefficients by making use of the lateral shift-

invariance of the slab. If the lateral dimensions Lx and Ly are large compared to

Lz and ε, then the mean of Vm−V
(dark)
m (averaged over all random effects including

depth of interaction) is some function of rm − rint, where rm is the 2D location of
the mth electrode. Calling this function f(rm − rint), we can write

E{r̂|rint} #
∑

m wmf(rm − rint)
∑

m f(rm − rint)
. (12.258)

If we now simply take wm as the pixel position rm, and if we assume that the pixels
are small compared to the width of f(rm − rint), we find

E{r̂|rint} =

∑

m rmf(rm − rint)
∑

m f(rm − rint)
#

∫

∞ d2rm rmf(rm − rint)
∫

∞ d2rm f(rm − rint)
. (12.259)

Next we make the obvious change of variables r′ = rm − rint. Since left and right
are indistinguishable in this problem, we must have f(r′) = f(−r′), and we find
readily that

E{r̂|rint} = rint . (12.260)

Thus the simple expedient of choosing the weights in a quasilinear estimator
as the pixel coordinates leads to an unbiased estimator of rint if we can assume that
the charge spread is large compared to the pixel width and we can neglect effects
from the lateral boundaries. This approach was originally proposed by Hal Anger
(1956) in the context of scintillation cameras (to be discussed in Sec. 12.3.5), but it
is also applicable to semiconductor arrays.

Problems with linear estimators In spite of the easy implementation, linear estima-
tors have some deficiencies. One way to see them is to reconsider the neighborhood
N (m0) introduced in (12.254). If we assume that exactly one interaction has oc-
curred in the integration period, then the neighborhood can be as large as desired,
up to the size of the array, without changing the choice of weighting coefficients.

The mean of Vm − V
(dark)
m is nonzero only for a few pixels surrounding m0, so

including additional pixels does not affect the mean of Ê or r̂, and we deduced
the weighting coefficients solely by consideration of the mean values. Intuitively,
however, we expect bad things to happen when we make the neighborhood unnec-
essarily large since we are adding in signals that convey no useful information, yet
which are corrupted with noise. In the position estimator, moreover, this effect is
exacerbated because we are weighting the signals proportionally to the pixel po-
sition, so a signal from a pixel far from the interaction site could receive a large
weight and hence a large noise amplification. To minimize these noise problems,
we need estimators that account for the variances and covariances of the signals,
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not just their means. Statistical estimation theory, the topic of Sec. 13.3, tells us
how to find such estimators under different assumptions about our knowledge of
the noise in the signals and the distribution of the parameters being estimated. In
particular, we show in Sec. 13.3.6 that maximum-likelihood (ML) estimators have
certain desirable noise characteristics, so we shall now discuss the application of ML
estimation to the problem at hand.

Maximum-likelihood estimation of position and energy An ML estimate of any pa-
rameter θ from a data vector g requires knowledge of the conditional probability
pr(g|θ), which is called the likelihood when it is regarded as a function of θ for
fixed g. In the present problem, θ includes the interaction position rint or rint and
the energy E0 of the gamma-ray photon. The data vector g is now the set of pixel
signals {Vm} for m either in some neighborhood of the hottest pixel or in the entire
array. We can denote the signal set as an M × 1 vector V, where M is either the
size of the neighborhood or the size of the array, so the ML estimation problem
requires that we maximize pr(g|rint, E0) or pr(g|rint, E0), depending on whether we
want to know the interaction position in 2D or 3D. The 2D and 3D problems are
rather different, so we shall discuss them separately.

ML estimation of position in 3D and energy The PDF on V is fully determined by E0
and rint so long as the entire photon energy is deposited locally at the interaction
point, which means we are ignoring K escape and Compton scatter. The only
remaining random effects are the random generation and propagation of charge
carriers. Since the electrode signals result from many statistically independent
electrons and holes, we can appeal to the central-limit theorem (Sec. 8.3.4) to assert
that the likelihood is multivariate normal. In Sec. 12.3.3, we developed expressions
for the mean of V and its covariance matrix for fixed rint and E0, so we can write
the likelihood for 3D position estimation as

pr(V|rint, E0) = (2π)−
1

2
M [detKV (rint, E0)]−

1

2

× exp
{

−1
2 [V−V(rint, E0)]t K−1

V (rint, E0)[V−V(rint, E0)]
}

. (12.261)

ML estimation requires maximization of pr(V|rint, E0) with respect to the
unknown parameters rint and E0. Equivalently, we can maximize the log-likelihood,
requiring that

log[pr(V|rint, E0)] = max at rint = r̂ML and E0 = ÊML . (12.262)

Explicitly,
log[pr(V|rint, E0)]

= − 1
2 log{det[KV (rint, E0)]}− 1

2 [V−V(rint, E0)]t K−1
V (rint, E0)[V−V(rint, E0)] .

(12.263)
Often we can assume that log{det[KV (rint, E0)]} is a slowly varying function of its
arguments and treat it as approximately a constant. In that case, maximizing the
log-likelihood is equivalent (because of the minus sign) to minimizing the quadratic
form in (12.263):

[V−V(rint, E0)]t K−1
V (rint,E0)[V−V(rint, E0)] = min at rint = r̂ML and E0 = ÊML .

(12.264)
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Since V(rint, E0) and K−1
V (rint, E0) are nonlinear functions of their arguments,

(12.264) states a nonlinear least-squares problem. Many methods of solution exist,
but all amount to searching systematically through the 4D space defined by E0
and the three components of rint. The linear estimators discussed above are useful
starting points for the search.

ML estimation in 2D If we want to know only the 2D interaction position rint, then
the depth of interaction zint is a nuisance parameter, a topic to be discussed in
Sec. 13.3.8. As we shall see in that section, there are three general ways of dealing
with a nuisance parameter: we can estimate it along with the parameters of interest;
we can assign it some value a priori, or we can marginalize the likelihood over the
nuisance parameter and then do ML estimation solely on the parameters of interest.
Under very general assumptions, the marginalization approach is optimal, but the
other two approaches are often computationally easier.

We have already seen how to estimate the nuisance parameter zint when rint
and E0 are the parameters of interest. We simply solve the nonlinear least-squares
problem (12.264) and discard the estimate of zint. The main drawback to this
approach is that the search is over a 4D space when we are interested in only a 3D
one.

If we want to assign a typical value to zint, one obvious choice is the mean
zint as computed from (12.164); it varies from α−1

tot to
1
2Lz depending on the value

of αtotLz . With the substitution rint → (rint, zint), the nonlinear least-squares
problem in (12.264) is again solved by a 3D search.

The final approach is true 2D ML position estimation, where the likelihood is

pr(V|rint, E0) =
∫ Lz

0
dzint pr(V|rint, E0) pr(zint) , (12.265)

where pr(zint) is given in (12.164). We can no longer argue that pr(V|rint, E0) is
normal; instead, it is essentially a multivariate pulse-height spectrum. The marginal
pr(Vm|rint,E0) is precisely the pulse-height spectrum that would be observed on the
mth electrode if the detector were illuminated at normal incidence with photons of
energy E0 at the point rint, and we know from inspection of Figs. 12.16 – 12.18 that
pulse-height spectra are far from normal.

ML estimation is not the same as nonlinear least-squares in this case, but we
can still maximize (12.265) by means of a 3D search. Evaluation of the likelihood
at each step in the search requires numerical integration over zint, but in practice
this integral might be approximated by a sum with relatively few terms.

12.3.5 Scintillation cameras

All detectors for x rays and gamma rays operate by converting an absorbed pho-
ton into charge. In semiconductor detectors, this charge is sensed directly, but in
scintillation detectors the charge is converted to light, and the light is then sensed
by optical detectors such as photomultipliers or photodiodes. If multiple optical
detectors are used to provide spatial information, and if their temporal response
is sufficient to resolve individual pulses from each absorbed gamma ray, then the
detector is called a scintillation camera.

The basic geometry of a scintillation camera is often quite similar to that of
a semiconductor array: a slab crystal absorbs a high-energy photon and produces
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light, the light spreads out as it propagates, and many optical detectors receive
light from an absorption event. The analogy should be clear— light in a scintilla-
tion camera plays the role of charge, and optical detectors substitute for electrodes.

In one respect, however, scintillation detectors are simpler than semiconductor
detectors: an optical photon causes no response on an optical detector until it ac-
tually reaches the detector surface, while a moving charge induces an output signal
without reaching the electrode. Optical photons can be absorbed, which is anal-
ogous to charge trapping, but the absorbed photons have no effect on the output
signals.

Anger camera The most common detector in nuclear medicine is theAnger camera
(Anger, 1956), illustrated in Fig. 12.27. It usually consists of a large single crystal
of sodium iodide (NaI) doped with thallium (Tl), an optical window and an array of
photomultiplier tubes (PMTs). In Anger’s original design, seven PMTs were used
in a hexagonal configuration, but modern cameras use up to 100 PMTs and cover
a field of view of up to a half meter. Many different configurations of PMTs have
been tried.

Fig. 12.27 Schematic of an Anger scintillation camera.

In NaI(Tl), an optical photon of energy around 3 eV is produced for every
30 eV of gamma-ray energy on average, so a 150 keV gamma-ray photon produces
about 5000 optical photons. The optical window allows the optical photons to
spread out over several PMTs, and typically the PMT nearest the interaction point
might receive only 500 – 1000 photons. The photons that reach the photocathode of
a particular PMT produce photoelectrons with some quantum efficiency η, usually
below 0.3. The PMT amplifies this weak pulse of photoelectrons by about a factor
of 106, and an easily measurable output current pulse is produced. All PMTs
that receive light produce pulses simultaneously, and the heights of the pulses are
measured and used to estimate the interaction position and energy of the gamma-
ray photon. The accuracy of these estimates is determined by the statistics of the
PMT signals.

The two major noise sources that affect a PMT signal are the random number
of photoelectrons produced at each photocathode and the randomness in the gain
process. Because the output of the PMT is large, noise in the subsequent electronics
can usually be neglected.

Dark current is also negligible, for two reasons. First, the scintillation light
from NaI(Tl) is in the blue and near-ultraviolet portion of the spectrum, so there is
no need for the PMT to respond to longer wavelengths. Therefore, a photocathode
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with a large work function can be used, and few thermal electrons can overcome
the potential barrier at the photocathode surface. Second, even if there were a
dark current, only the electrons during a gamma-ray pulse would have any effect;
thermal electrons between pulses would not trigger the pulse circuitry.

Photoelectron statistics If Nm photoelectrons are produced at the mth photocath-
ode by a single gamma-ray interaction, we want to compute the mean Nm and the
covariance matrix KN . Both of these quantities depend on rint, the 3D position
of the interaction point in the scintillation crystal. In addition, both depend on
the energy deposited in the crystal and its spatial distribution; for simplicity, we
shall consider only photopeak events and neglect nonlocal charge deposition, so the
photon energy E0 is assumed to be deposited at rint.

We denote the mean number of optical photons as Nopt(E0) (independent of
rint for a homogeneous material) and the average fraction of those that reach the
mth photocathode as βm(rint). To a first approximation, βm(rint) is Ωm/4π, where
Ωm is the solid angle subtended by the photocathode from point rint, but a practical
Anger camera includes various reflecting surfaces to increase the light collection, so
actual computation of βm(rint) is complicated. We shall simply treat βm(rint) as
a known function here. The mean number of photoelectrons produced in the mth

photocathode, Nm(rint,E0), is then the mean number of optical photons that reach
the cathode times the quantum efficiency η, or Nopt(E0) ηβm(rint).

We have already done most of the work necessary to determine the covari-
ance matrix KN(rint). In Sec. 12.3.3 we considered the analogous problem for
semiconductor detectors without trapping, and we computed the covariance matrix
(12.244) for the number of electrons that reach each pixel. To do so, we had to
neglect Coulomb interactions between electrons, so that each electron would choose
a pixel independently of the others. Photons do not have Coulomb interactions in
the first place, so this assumption is rigorously satisfied in scintillation detectors.

All of the steps leading up to (12.244) are then valid for the scintillation camera
as long as we replace βm(rint) with ηβm(rint), and the resulting covariance matrix
is16

[KN (rint, E0)]mm′ = Nopt(E0) ηβm(rint) δmm′+(F−1)Nopt(E0) η2βm(rint)βm′(rint) ,
(12.266)

where we have assumed that η is the same for all PMTs.
For several reasons, the off-diagonal elements of KN (rint, E0) are less impor-

tant here than in semiconductor detectors. First, because of the extra conversion
step (charge to light), scintillators are less efficient than semiconductors, and we
argued in Sec. 12.3.2 that lower efficiency implies a probability law on Nopt that is
more nearly Poisson and hence a Fano factor nearer to unity. For F = 1, the off-
diagonal part of KN (rint, E0) vanishes, basically because the distribution of optical
photons among the PMTs is a multinomial selection of a Poisson (see Sec. 11.2.1).

16The reader may worry about the requirement in the derivation of (12.244) that the βm factors
sum to unity, which is what led to the use of the multinomial law. This requirement is not met in
scintillation cameras because light may be absorbed and because η %= 1. We can, however, remove
the restriction by supposing that there is an unobserved light sink in which a fraction β0 of the
optical photons are collected, where β0 = 1−

∑M
m=1

ηβm. The conditional multinomial law then
holds if all M + 1 locations (the M actual detectors and the light sink) are considered, but only
the actual detectors are included in the M ×M covariance matrix.



X-RAY AND GAMMA-RAY DETECTORS 785

The off-diagonal elements are also relatively unimportant, even if F != 1, be-
cause the quantum efficiency η and the collection efficiency βm are both small. From
(12.266) we see that the off-diagonal terms scale as η2 while the diagonal ones scale
as η, so there is a factor of η reducing the off-diagonal elements relative to the diag-
onal ones. Similarly, the off-diagonal terms involve the product βm(rint)βm′(rint)
while the diagonal terms are linear in βm(rint). As we noted above, η is about 0.3
and βm(rint) is about 0.1 – 0.2 for the PMT nearest the interaction point, and much
less for more distant ones. Thus the event that a photoelectron is produced on a
particular photocathode is rare compared to the emission of optical photons at the
interaction point, and we know from Chap. 11 that rarity implies Poisson implies
independent.

An excellent approximation to (12.266) is therefore

[KN (rint, E0)]mm′ = Nm(rint, E0) δmm′ , (12.267)

where Nm(rint, E0) = Nopt(E0)ηβm(rint).
Another approximation that is usually justified in Anger cameras is that

KN (rint, E0) and Nm(rint, E0) are independent of the depth of interaction zint. A
practical camera will have a reflector on the entrance surface z = 0, and the amount
of light reaching a particular photocathode is relatively independent of how far from
the reflector the light is produced. Without the reflector, the subtended solid angle
would depend on zint, but the reflected light compensates for this effect. Thus we
can often use (12.267) with Nm(rint, E0) replaced by Nm(rint, E0).

Statistics of the PMT outputs Knowing the statistics of Nm, we next want to study
the statistics of Km, the number of electrons produced on the output of the mth

PMT in a single event. The theory needed for this purpose was developed in Sec.
11.4.1.

Computation of the mean of Km is little more than a matter of definition.
The gain G of the PMT is defined as the average number of output electrons per
electron emitted from the photocathode. It is reasonable to assume that all electrons
are amplified independently, so the PMT is a linear detector, and the mean total
number of photoelectrons in the mth PMT for a single event is given by17

Km(rint, E0) = GNm(rint, E0) . (12.268)

In the notation of Sec. 11.4.1, G is the same as m1, the first moment of the gain
distribution (normalized such that m0 = 1). If we know m1 and the corresponding
second moment m2, we can express the variance of Km by the Burgess variance
theorem, (11.182). Moreover, if Nm is approximately Poisson, as we have argued
above, then we can use (11.183) and write

Var{Km} = Nmm2 = GKm
m2

G2
= GKm

m2

m2
1

. (12.269)

As noted in Sec. 11.4.1, the ratio m2
1/m2 is called the Swank factor, and we shall

denote it here as s. For typical PMTs, s is about 0.8 – 0.9.

17Do not confuse Km or Km with a covariance matrix, which we denote K with some subscript.
We use K here as the number of electrons on the PMT output for consistency with Sec. 11.4.1.
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The PMTs act independently, so there is no correlation in their outputs if
there is none in their inputs. Thus, if the input covariance is given by (12.267), the
output covariance is

[Kk(rint)]mm′ =
G

s
Km(rint, E0) δmm′ . (12.270)

Finally, if the output pulse is integrated with a simple RC integrator with
time constant long compared to the pulse duration, then the mean pulse height (for
photopeak events) is

Vm(rint, E0) =
e

C
Km(rint, E0) =

e

C
GNopt(E0) ηβm(rint) , (12.271)

and the covariance matrix on the pulse heights is [cf. (12.245)]

[KV (rint, E0)]mm′ =
e2

C2

G

s
Km(rint, E0) δmm′ =

e

C

G

s
Vm(rint, E0) δmm′ . (12.272)

In the next section we shall show how (12.271) and (12.272) are used in estimating
the interaction position and the energy.

12.3.6 Position and energy estimation with scintillation cameras

In Sec. 12.3.4 we discussed position and energy estimation in the context of semi-
conductor detectors, but in fact most of the methods introduced there were orig-
inally developed for scintillation detectors. A quasilinear estimator was pioneered
by Anger in the mid-1950s, and it has been widely emulated and embellished since.
ML position estimation was first suggested for scintillation cameras by Gray and
Macovski (1976), and it was implemented in practical cameras by W. L. Rogers et
al. and Milster et al. (1984, 1985, 1990). As in the semiconductor case, we prefer
the ML approach because of its optimal bias and variance properties.

Statistical model To do ML estimation, we need a probability law, and it is much
easier to find one for scintillation cameras than for semiconductors since there are
fewer random processes. In semiconductors, as we saw, we have to account for
random trapping, which does not arise in scintillators, and dark current, which is
usually negligible for the PMTs commonly used in scintillation cameras. In both
cases, depth of interaction is random, but the effect is exacerbated in semiconductors
because of the trapping and ameliorated in scintillators by the reflecting surfaces.

The dominant stochastic effect in a scintillation camera is fluctuations in the
number of photoelectrons. Because the output voltage is the sum of independent
contributions from each photoelectron, the central-limit theorem applies, and we
can assume that the likelihood pr(V|rint, E0) is a multivariate normal with mean
and covariance given by (12.271) and (12.272), respectively. Several simplifications
of these expressions will serve us well.

First, since the signals are only weakly dependent on the depth of interaction
zint, we can replace rint with rint. Second, as with semiconductors, the mean signals
from scintillators are linear in E0 to a good approximation, so (12.271) has the form

Vm(rint, E0) = E0fm(rint) . (12.273)
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The function fm(rint) is just some constant times βm(rint); it can be determined
by calibration measurements or by modeling of the light propagation in the camera.

The third simplification is the diagonal form of the covariance in (12.272),
which we can rewrite as

[KV (rint, E0)]mm′ = AE0fm(rint) δmm′ , (12.274)

where A is a constant that will turn out not to be very important.

Log-likelihood We argued above that pr(V|rint, E0) is a multivariate normal, and
we now have the simplified expressions (12.273) and (12.274) for the mean and co-
variance, respectively. Since the covariance is diagonal and none of the elements is
identically zero, it is easy to compute the inverse covariance needed in the multi-
variate normal PDF. Also, the determinant of a diagonal matrix, which is needed in
the normalizing factor of a multivariate normal, is just the product of the diagonal
elements. Thus the log-likelihood for estimation of 2D position and energy takes
the form [cf. (12.263)]

log[pr(V|rint, E0)]

= − 1
2 log{2π det[KV (rint, E0)]}− 1

2 [V−V(rint,E0)]tK−1
V (rint, E0)[V−V(rint, E0)]

= − 1

2

M
∑

m=1

log[2πAE0fm(rint)]−
1

2

M
∑

m=1

[Vm − E0fm(rint)]2

AE0fm(rint)
. (12.275)

ML estimation of 2D position and energy The ML estimates of position and energy
are found by searching for the maximum of the log-likelihood over the three param-
eters xint, yint and E0. If we neglect the slow dependence of the log-determinant on
these parameters, as we did in Sec. 12.3.4, then the maximum of the log likelihood
occurs when the quadratic form in the exponent is minimized. Thus we have the
nonlinear least-squares problem [cf. (12.264)]:

M
∑

m=1

[Vm − E0fm(rint)]
2

E0fm(rint)
= min at rint = r̂ML and E0 = ÊML . (12.276)

Note that the constant A has disappeared; the same minimum will be found for
all A.

The similarity in form between (12.276) and (12.264) should not conceal the
fact that the latter was for 3D position estimation in semiconductor detectors while
the former is for 2D estimation in scintillation cameras. We got to (12.276) by
assuming that the random depth of interaction in a scintillation camera had no
appreciable effect on the mean PMT signals. In a semiconductor material with
trapping, on the other hand, depth-of-interaction effects dominate the pulse-height
spectrum (see Sec. 12.3.2), so the only way we could get to a simple least-squares
problem was to estimate the depth along with the lateral coordinates.

12.3.7 Imaging characteristics of photon-counting detectors

From the position and energy estimates, derived in Sec. 12.3.4 for semiconductor
detectors and 12.3.6 for scintillation cameras, we need to form an image. The most
common way to do so is to apply some window test, as discussed in Sec. 12.3.2,
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and then to bin the position estimates for the events that pass the test into a pixel
array. Intuitively, there is some loss of information in this operation, both because
photons that do not pass the window test are simply rejected, even though they
might convey useful information about the object being imaged, and because the
finite bin width adds further uncertainty to the position estimates.

In principle, this information loss could be avoided by storing the raw position
and energy estimates or, equivalently, forming from them a random point process.
In this section we shall first discuss the properties of this point process, building on
the theory developed in Chap. 11, and then we shall discuss the effects of energy
windowing and spatial binning.

This treatment is largely motivated by gamma-ray detectors as used in nuclear
medicine, but there are position-sensitive optical detectors that fit into a similar
framework (except that no energy estimation is involved).

Point processes Suppose we have observed a set of J events and estimated that the
jth event occurred at the 2D interaction position r̂j and that it deposited energy
Êj there. We can then construct the spatio-spectral point process (see Sec. 11.3.8)

gdet(r̂, Ê) ≡
J
∑

j=1

δ(r̂− r̂j) δ(Ê − Êj) , (12.277)

where the subscript det indicates that we are dealing with the detected events. We
shall refer to gdet(r̂, Ê) as the detected image, with the understanding that the
detection process includes estimation of position and energy.

The statistics of the detected image follow from the theory of Poisson random
processes developed in Sec. 11.3. In that section we discussed the conditions needed
for a point process to be a Poisson process. In essence, these conditions amount
to saying that the events are independent. We saw that randomness in the source
configuration or source strength could spoil the independence, but let us assume
here that the source is nonrandom, so the incident photons are independent and
satisfy the conditions for a Poisson point process. In that case gdet(r̂, Ê) is also
a Poisson point process since the actions of detecting the interaction events and
estimating their position and energy do not introduce any dependence or otherwise
invalidate the Poisson model. As we know from Sec. 11.1.3, detection is a binomial
selection process, which preserves the Poisson character, and the estimation step is
a random displacement of each point, which also preserves the Poisson character
[see Sec. 11.4.3, especially (11.229)].

Mean detected image The mean of gdet(r̂, Ê) is the spatio-spectral fluence (or
spectral photon fluence) bdet(r̂, Ê), defined as the mean number of photons per
unit area per unit energy in the detected image. Thus

〈gdet(r̂, Ê)〉 ≡ bdet(r̂, Ê) . (12.278)

By an extension of the discussion of spatial Poisson processes in Sec. 11.3.2, however,
we know that bdet(r̂, Ê) also has another interpretation: after proper normalization,
it is the probability density on the position of any individual count. Specifically,
the PDF for recording a count at r̂ and Ê is [cf. (11.76)]

pr(r̂, Ê) =
bdet(r̂, Ê)

∫

∞ d2r
∫∞
0 dE bdet(r, E)

=
1

J
bdet(r̂, Ê) , (12.279)
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where J is the mean total number of detected counts.
We can now rewrite (12.278) as

〈gdet(r̂, Ê)〉 = J pr(r̂, Ê) = J

∫

∞
d2r

∫ ∞

0
dE pr(r̂, Ê |r, E) pr(r, E) , (12.280)

where pr(r̂, Ê |r, E) is the PDF for obtaining estimates (r̂, Ê) when the event actually
occurred at (r,E); in other words, it is the spatio-spectral point response function.

To put this result into a more familiar form, suppose that the incident photons
are described by a spectral fluence b(r, E) and that the detector has a quantum
efficiency of η for all r and E. Suppose also that the photons strike the detector at
normal incidence so that we do not need to distinguish the lateral coordinates of
the interaction point, rint, from the 2D vector that appears in the fluence. Then,
by analogy to (12.279), we see that

pr(r, E) =
η

J
b(r,E) , (12.281)

where J/η is the mean number of incident photons. Combining (12.280) and
(12.281), we find

〈gdet(r̂, Ê)〉 = η

∫

∞
d2r

∫ ∞

0
dE pr(r̂, Ê |r, E) b(r, E) . (12.282)

Unsurprisingly, the mean detected image is the incident spectral fluence blurred by
a spatio-spectral point response function and multiplied by the quantum efficiency.

We had, in fact, obtained essentially this same result earlier in Sec. 11.4.3,
where we considered gain processes where the secondaries are randomly displaced
from the primary photons. A special case considered in that section was mislocation
without gain, where each primary produces exactly one secondary; this is just what
happens in position and energy estimation, where one absorbed photon results in
one point in the detected image.

Bias and variance; distortion and spatial resolution Perhaps the only new insight in
(12.282) is that the point response function is also the probability density function
associated with the estimation procedure. In fact, we can relate this function to the
bias and variance of the estimate as defined in Sec. 13.3.1. To see this relation more
clearly, let us ignore the energy estimation and write the PRF as pr(r̂|r). From this
density we can compute the bias and variance of the position estimate via (13.276)
and (13.279).

The bias of the position estimate is a vector defined by

B(r) ≡ E{r̂|r}− r , (12.283)

where the conditional expectation is computed with the density pr(r̂|r). Note that
this bias can, in general, depend on the true position r.

Since r̂ is a 2D random vector, its second-order statistics are specified by a 2×2
covariance matrix, but we focus here on the two diagonal elements, the variances
of x̂ and ŷ. The variance of the x estimate is defined by

Var{x̂|r} ≡ E{x̂2|r}− [E{x̂|r}]2 , (12.284)
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and similarly for the y estimate. Note especially that the variance of x̂ measures
the spread around the mean estimate, not around the actual x.

The bias and variance of the 2D position estimates can be measured by using
a thin beam of gamma rays, all of which strike the detector at normal incidence
very near point r. After a large number of gamma rays from this source have been
detected, the resulting image (see Fig. 12.28) is a good representation of the PDF
on r̂ conditional on r. As the number of collected photons approaches infinity, the
sample mean of x̂−x approaches the bias component Bx(r), and similarly for the y
component. The sample variances also approach the ensemble variances defined in
(12.284). The off-diagonal terms manifest themselves as a tilt of the distribution.

Fig. 12.28 Image of many gamma rays, all incident at the same position.
As the number of gamma rays approaches infinity, this image approaches the
conditional PDF pr(r|"r).

We can relate the biases and variances back to the general descriptions of shift-
variant imaging systems introduced in Sec. 7.2. The bias measures the distortion of
the image detector, and the variances measure the spatial resolution (see Sec. 7.2.1).
If we repeated the measurement described above with a uniformly spaced grid of
true interaction positions r, the position estimates would cluster around a distorted
grid, and both the displacement of the estimates from the true grid (distortion) and
the spread of the estimates (variance) could vary over the surface of the detector,
in general.

Contributions to bias and variance Bias and variance in any estimate can arise from
several sources, including modeling error, inaccurate or incomplete system calibra-
tion, statistical noise in the data or suboptimal estimators.

In the present problem, an example of modeling error is neglecting the depth
of interaction. When we assume that the mean and covariance of the PMT signals
are independent of zint, we make an error that can affect both the bias and the
variance. The magnitude of this error can be determined only by doing more care-
ful modeling.

System calibration comes into our problem since we need to know the func-
tions fm(rint) defined in (12.273). To calibrate the camera, we can measure these
functions for a finite grid of interaction points and interpolate between grid points,
but errors of measurement and interpolation again affect bias and variance.

Finally, even with full knowledge of the system, there may be bias and vari-
ance associated with the estimator. As discussed more fully in Sec. 13.3.5, there is
a minimum variance, called the Cramér-Rao bound, that can be attained by any
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estimator operating on a specific data set. An estimator that achieves this lower
bound is said to be efficient. An efficient estimator may not exist for many prob-
lems, but if one does exist, it is the ML estimator.

Moreover, the ML estimator is always asymptotically unbiased and asymptoti-
cally efficient. This statement is usually applied to situations where N independent
measurements are made for the same value of the unknown parameter, and the
term asymptotic implies the limit as N → ∞. In a scintillation camera, we get only
a single light flash for each rint and E we want to estimate, but nevertheless an
asymptotic argument can be applied. Specifically, if the number of optical photons
gets very large, the ML estimate is again asymptotically unbiased and efficient,
which means that it will give better spatial resolution and less distortion than any
other estimator in this limit.

Autocovariance of the detected image Now let us assume that we have accounted
for the modeling and calibration errors and the estimator performance, so that
we know the PDF pr(r̂, Ê |r, E). Then, for a nonrandom incident spectral fluence,
we can compute the mean detected image, or equivalently the detected spectral
fluence bdet(r̂, Ê), via (12.282). We argued above that the detected image is a
Poisson random process, so we can use a generalization of (11.94) to express its
autocovariance function as

Kgdet
(r̂, r̂′, Ê , Ê ′) = bdet(r̂, Ê) δ(r̂− r̂′) δ(Ê − Ê ′) . (12.285)

Binning For storage or display of the image, we must bin the events into some
digital matrix. We can, for example, apply an energy window and accept only
those events for which Ê falls in the window and then bin the remaining events into
spatial pixels. Thus if r̂ falls in the region of the mth pixel, it contributes one count
to that pixel in the final image. Alternatively, we can use multiple energy bins and
make one spatial image for each energy.

In both of these cases, we can compute the statistics of the discrete image from
what we know about the random process gdet(r̂, Ê). Suppose the mth pixel includes
only those events for which Em − 1

2∆E < Ê ≤ Em + 1
2∆E , xm − 1

2ε < x̂ ≤ xm + 1
2ε

and ym− 1
2ε < ŷ ≤ ym+ 1

2ε. Then the number of counts gm in this pixel is obtained

by integrating gdet(r̂, Ê), as defined in (12.277), over this region:

gm =

∫ Em+ 1

2
∆E

Em− 1

2
∆E

dÊ
∫ xm+ 1

2
ε

xm− 1

2
ε
dx̂

∫ ym+ 1

2
ε

ym− 1

2
ε
dŷ gdet(r̂, Ê) . (12.286)

From (12.282), the mean of gm is

gm =

∫ Em+ 1

2
∆E

Em− 1

2
∆E

dÊ
∫ xm+ 1

2
ε

xm− 1

2
ε
dx̂

∫ ym+ 1

2
ε

ym− 1

2
ε
dŷ gdet(r̂, Ê)

= η

∫ Em+ 1

2
∆E

Em− 1

2
∆E

dE
∫ xm+ 1

2
ε

xm− 1

2
ε
dx̂

∫ ym+ 1

2
ε

ym− 1

2
ε
dŷ

∫

∞
d2r

∫ ∞

0
dE pr(r̂, Ê |r,E) b(r, E)

≡
∫

∞
d2r

∫ ∞

0
dE hm(r,E) b(r, E) , (12.287)

where hm(r, E) is the overall kernel for the CD mapping from b(r, E) to the discrete
vector g. This kernel includes all of the complicated effects that go on in the detector
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material, position and energy estimation and binning into pixels and energy bins of
finite size. At the end, we have our standard linear CD mapping formula.

Autocovariance of the discrete image Since we have argued that gdet(r̂, Ê) is a Pois-
son random process (for nonrandom fluence), counts in different spatial or energy
bins must be independent Poisson random variables. Thus we have at once that

[Kg]mm′ = gm δmm′ . (12.288)

The indices m and m′ can refer to two different spatial pixels in the same energy
image or to different energy images; so long as any event can go into only one bin
and the fluence is nonrandom, the counts in different bins are independent.

We shall make considerable use of (12.288) in Chap. 14 when we discuss image
quality and in Chap. 15 when we discuss inverse problems.

12.3.8 Integrating detectors

So far in this section we have discussed mainly photon-counting detectors, but
both semiconductor and scintillator arrays can be operated in an integrating mode
where no attempt is made to identify individual gamma rays or x rays. None of the
discussion above on position and energy estimation is applicable in this case, and
we must go back to the theory developed in Sec. 11.4 to determine the statistical
properties of the images.

Scintillator-photodiode arrays For definiteness, we shall consider a scintillation de-
tector with an array of photodiodes for the readout, but semiconductor detectors
can be treated similarly. The geometry will be a slab of scintillation material with a
regular array of photodiodes of width ε on the face z = Lz. The specific application
of most interest for these detectors is transmission radiography using x rays with a
broad spectrum of energies; for a more detailed discussion of this application, see
Sec. 16.1.

Though the detector being considered here is qualitatively similar to a scintil-
lation camera, two important differences must be noted. First, x-ray detectors often
use fluorescent screens consisting of scintillating grains held together with a par-
tially transparent binder. Scattering from binder-grain interfaces causes the light
to diffuse significantly as it propagates from the interaction point to the photode-
tectors, and light can be absorbed in both the binder and the grains. As a result,
depth of interaction is much more important here than it is with the single-crystal
scintillators used in scintillation cameras.

Secondly, scintillation cameras are used mainly in nuclear medicine where the
gamma-ray source is usually monoenergetic. In medical transmission radiography,
on the other hand, the x rays are generated by allowing energetic electrons to strike
a metal target, and most of the x rays are Bremsstrahlung (German: braking ra-
diation) generated when the electrons are decelerated in the metal. This process
produces a broad spectrum of x-ray energies extending from near zero up to the
energy of the electron.

The light diffusion and the broad energy spectrum contribute to the variability
in the amount of light reaching the photodetectors. Our goal in this section is to
show how these effects can be incorporated into the derivation given in Sec. 11.4 of
the mean vector and covariance matrix for the output signals after a finite integra-
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tion time during which more than one x ray can be absorbed. The procedure will
be first to compute the mean and autocovariance function of the output random
process as in Sec. 11.4.3 and then to convert to the mean and covariance matrix of
the discrete random vector as in Sec. 11.4.5. The reader may wish to review these
sections before continuing.

Interaction parameters and the output random process In Sec. 11.4.3, the interaction
position of the nth primary event was specified by the 2D vector Rn, but for x
rays interacting in a thick detector we must also specify the depth of interaction
zn and the energy deposited in the interaction, En. We can incorporate these
new parameters formally simply by regarding Rn as a 4D vector with components
(xn, yn, zn, En) or (rn, zn, En).

The optical photons created in this interaction can propagate to the plane
z = Lz , and there they define a 2D random point process y(r) given by [cf. (11.200)]

y(r) =
Nx
∑

n=1

kn
∑

k=1

δ(r− rnk) , (12.289)

where Nx is the number of absorbed x-ray photons, rnk is the 2D position of the
kth optical photon produced by the nth absorbed x ray, and kn is the number of
optical photons reaching z = Lz for the nth absorption. The random variables in
(12.289) are the sets {rnk} and {kn} as well as Nx.

It is convenient to define a 2D displacement vector ∆rnk such that rnk =
rn +∆rnk, and then we can write

y(r) =
Nx
∑

n=1

kn
∑

k=1

δ(r− rn −∆rnk) . (12.290)

In contrast to (11.200), rn rather than Rn appears here. (It would not make sense
to subtract a 4D vector from a 2D one.)

Our task now is to compute the mean and autocovariance function of y(r) by
methods introduced in Sec. 11.4.3. This will turn out to be relatively easy since we
took care in that section not to assume shift invariance. (Even if the fluorescent
screen is laterally shift-invariant, it cannot have this property with respect to zn or
En.)

Probability density for the interaction parameters To incorporate the new random
variables zn and En into the derivation of Sec. 11.4.3, we need a probability density
function pr(Rn), which we can write as

pr(Rn) = pr(rn, zn, En) = pr(zn|En, rn) pr(En|rn) pr(rn) . (12.291)

To proceed, we need to make some assumptions about the x-ray beam and its
interactions. The simplest form of pr(Rn) will arise if we assume that all of the
x rays are travelling parallel to the z axis, that all of the x-ray interactions are
photoelectric and that all of the photon energy is deposited at the interaction site.
From the discussion in Sec. 12.3.1, we know that even a photoelectric interaction
can result in a secondary photon (a K x ray), but for present purposes we assume
that it is reabsorbed a negligible distance from the initial interaction. The effects
of nonlocal charge deposition will be discussed in more detail in Sec. 12.3.9.
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With these restrictive assumptions, we can relate pr(rn) to the x-ray fluence
b0(r) on the entrance face z = 0 by (11.206):

pr(rn) =
b0(rn)

∫

A d2r b0(r)
, (12.292)

where A = LxLy is the area of the detector.
In (12.291), pr(En|rn) is the energy spectrum of the incident gamma rays, which

is presumed to be known, and pr(zn|En, rn) is the PDF on interaction depths. If
the properties of the fluorescent screen are independent of x and y, pr(zn|En, rn) is
independent of rn and given by (12.161) as

pr(zn|En) = α(En) exp[−α(En)zn] , (12.293)

where α(En) is the energy-dependent photoelectric absorption coefficient.
With all of the accumulated assumptions, the desired PDF is thus

pr(Rn) = α(En) exp[−α(En)zn] pr(En|rn)
b0(rn)

∫

A d2r b0(r)
. (12.294)

To remove the assumption that all of the x rays are travelling in the +z direction,
we must specify the angular distribution of the x rays on z = 0, for example by
stating the photon radiance on that plane; this point will be pursued further in Sec.
16.1.

Spatio-spectral fluence Another way of looking at the distribution of interaction
sites and energies is that they define a 4D spatio-spectral point process [cf. (11.135)]

gss(R) ≡
Nx
∑

n=1

δ(r− rn) δ(z − zn) δ(E − En) =
Nx
∑

n=1

δ(R−Rn) . (12.295)

Since we are neglecting nonlocal energy deposition (Compton scattering and K x
rays), each of the interactions is produced by a different x-ray photon, and these
photons are independent unless we consider random fluence, so g(R) is a 4D Poisson
point process. We can define the mean of this Poisson process as the spatio-spectral
fluence bss(R), and we know from the discussion in Sec. 11.3 that pr(Rn) is just a
normalized version of that fluence. Specifically, by a slight generalization of (11.83),

pr(Rn) =
bss(Rn)

∫

D d4R bss(R)
, (12.296)

where
∫

D d4R implies integration of x and y over the lateral dimensions of the
detector, integration over z from 0 to Lz and integration over E from 0 to the
maximum energy in the spectrum.

We can also work backwards and regard (12.296) as a definition of bss(Rn) if
pr(Rn) is known, for example from (12.294). In either case, if we know that gss(R)
is a spatio-spectral Poisson process, its statistics are fully specified by bss(R).

Averaging over Rn It is now straightforward to modify the treatment in Sec. 11.4.3
with the new density pr(Rn) from (12.294) or (12.296). The modification comes
at step (c) of the five-step averaging procedure summarized below (11.207), and
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mainly it is a matter of replacing b(r) with bss(R) at various places.
A slight subtlety arises with the function pd(r,R), defined above (11.201) as

the shift-variant spread function of the gain mechanism. Had we succumbed in
Chap. 11 to the temptation of writing this function as pd(r−R), we would not be
able to use subsequent results in the present context where r is 2D and R is 4D, but
with the shift-variant notation there is no problem. In particular, pd(r,R) is now
defined as mean number of optical photons per unit area at point r in the plane
z = 0 when the x-ray interaction is at the 4D point R.

With this reinterpretation of pd(r,R), the definition of the operator H1 in
(11.213) is modified to

[H1bss] (r) =

∫

D
d4R pd(r,R) bss(R) . (12.297)

Similarly, the definition of H2 in (11.221) becomes

[H2bss] (r, r
′) =

∫

D
d4Rn pr∆r(r− rn|Rn) pr∆r(r

′ − rn|Rn) bss(Rn) s(Rn) ,

(12.298)
where s(Rn) is still given by (11.219).

As the reader should verify, no further changes are required in Sec. 11.4.3, and
the conditional autocovariance for the optical-photon random process y(r) is given
from (11.226) as

Ky(r, r
′|bss) = [H1bss](r) δ(r− r′) + [H2bss](r, r

′) . (12.299)

This autocovariance is conditional on a specific spatio-spectral fluence bss(R), which
is just the average distribution of interaction points within the detector as a function
of 3D position and energy deposition. For x rays at normal incidence, bss(R) is
given by (12.296) and (12.294), but for more complicated x-ray beams a numerical
calculation might be required. Nevertheless, (12.299) gives the autocovariance of
any nonrandom x-ray source. It would not apply if the source strength fluctuated or
if different absorbing objects were placed in the x-ray beam on different repetitions
of the experiment.

Discrete photodetectors Now consider an array of photodiodes on the surface z =
Lz of the scintillator. If we assume that each photodiode is connected to a gated
integrator, the output voltage of the mth photodiode after the integration time T
is given by (12.215), where the charge Qm(T ) that appears in that equation results
from both dark current and photocurrent. The photocurrent contribution to Vm(T )
is related to y(r) by

V ph
m (T ) = −eηm

Cm

∫

m
d2r y(r) , (12.300)

where Cm is the integrating capacitor for photodiodem, ηm is its quantum efficiency,
and the integral is over the area of that diode. We carry along the subscript m on
ηm and Cm since these parameters may not be well controlled in the semiconductor
manufacturing process. We can define an effective gain for the mth photodiode as

Γm = −eηm
Cm

. (12.301)
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This gain is the ratio of the output voltage from the photodiode to the number of
optical photons incident on it.

Since (12.300) is a linear continuous-to-discrete mapping, we can obtain the
covariance matrix of the output voltages by applying (8.147) to (12.299). All other
noise sources, including dark current, kTC noise and electronic noise, can be lumped
into a variance term σ2

m in Vm. These noise sources are uncorrelated, so they
contribute only to the diagonal elements of the covariance matrix. The covariance
is thus given by

[KV(bss)]mm′

=

[

Γ2
m

∫

m
d2r [H1bss](r) + σ2

m

]

δmm′ + ΓmΓm′

∫

m
d2r

∫

m′

d2r′ [H2bss](r, r
′) .

(12.302)
The diagonal elements come from both the excess noise and the fact that y(r) is a
point process, and the off-diagonal terms come from the fact that a single x ray can
contribute to the output of more than one photodiode.

Gain and offset correction In addition to the gain variations described by Γm, there
can also be offset voltages arising from dark current or electronic offsets. It is
common practice with photodiode arrays to correct the voltages for these variations,
defining the final output data by

gm =
Vm − V

dark
m

Γm
, (12.303)

where V
dark
m is the mean of Vm in the absence of x rays.

The covariance matrix for the data vector g is given by

[Kg(bss)]mm′ =

[
∫

m
d2r [H1bss](r) +

σ2
m

Γ2
m

]

δmm′ +

∫

m
d2r

∫

m′

d2r′ [H2bss](r, r
′) .

(12.304)
Note especially that the effect of gain variations has not disappeared. Photodiodes
with small gain have relatively more noise after the gain correction if there is any
noise source that is independent of the optical flux.

Stationarity? We have by now accumulated a long list of conditions that must be
satisfied if we want to consider the noise in g to be stationary in any sense. First, we
know from Sec. 11.4.4 that the optical-photon point process y(r) is stationary only
if the 2D x-ray fluence is constant (immediately ruling out any interesting images)
and the gain process is independent of lateral position. In the present context, the
latter condition requires that the amount of light produced by an x ray and the
spread of that light in propagating to the photodiode plane must be independent
of x and y. There are many different kinds of material inhomogeneities that could
invalidate this assumption. For example, many scintillators use a dopant to provide
the light, and stationarity of y(r) requires uniform doping density.

In addition, we know from Sec. 12.2.5 that stationarity is useful in a finite,
discrete array only if it is cyclic. If we specify the photodiodes by the 2D multi-index
j, cyclic stationarity requires that [K]′jj depend on j− j′ modulo J. This unphysical
wrap-around effect never occurs in practice, but it might have a negligible effect
on subsequent uses of the covariance matrix if the array is large. Or it might not
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(Pineda et al., 2001).
Finally, we have just encountered a new reason for the stationarity assumption

to fail— the inevitable gain variations in practical arrays. Even after correction, we
see from (12.304) that the excess noise variance will depend on m (or j if we choose
to use a multi-index). To see why this effect negates any possible advantage of a
Fourier description of the data, consider the data vector g in the absence of any x
rays, so that

[

Kdark
g

]

jj′
=

σ2
j

Γ2
j

δjj′ . (12.305)

We now take a discrete Fourier transform (DFT) of g, using the multi-index nota-
tion. If both components of j are assumed to run from 0 to J − 1, we can write

Gk =
J−1
∑

j=0

gj exp

[

−2πi
j · k
J

]

. (12.306)

The covariance matrix is then transformed to

[

Kdark
G

]

kk′
=

J−1
∑

j=0

J−1
∑

j′=0

[

Kdark
g

]

jj′
exp

[

−2πi
j · k− j′ · k′

J

]

=
J−1
∑

j=0

σ2
j

Γ2
j

exp

[

−2πi
j · (k− k′)

J

]

. (12.307)

This is as far as we can go in general. If we could assume that σ2
j /Γ

2
j was constant,

we could perform the sum and find that Kdark
G was diagonal, but in real detectors

there will be off-diagonal terms. The natural (Karhunen-Loève) domain for de-
scribing the excess noise is the original data domain, where Kdark

g is diagonal; the
covariance matrix for this noise component gets more complicated, not less, after
the DFT.

We thus have a quandary: The dark noise is diagonal in the original data
domain, but if we make all of the other assumptions needed for stationarity, the
x-ray part of the covariance is diagonalized in the Fourier domain. To diagonalize
the overall covariance, we would have to use a Karhunen-Loève transformation (see
Sec. 8.1.6), but it would be just a numerical device; no general theory or new in-
sights would emerge.

The resolution of this quandary will be presented in Sec. 16.1. As we shall
see there, we can use the noise characterizations derived in this chapter to compute
meaningful, task-based figures of merit for image quality for x-ray detector arrays
without needing the Fourier domain.

12.3.9 K x rays and Compton scattering

Throughout most of Sec. 12.3, we have ignored the secondary photons that are
created in the initial x-ray or gamma-ray interaction. We know from the qualitative
discussion in Sec. 12.3.1 that an initial photoelectric interaction can produce a K
x ray that might then be reabsorbed at another point in the detector material.
Similarly, if the initial interaction is Compton scattering, the scattered photon can
also be reabsorbed in the detector. These reabsorbed photons can deposit energy
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at points distant from the initial interaction, creating light or charge there that can
be sensed on the exit face of the detector.

In this section we shall discuss the effect of these new energy deposition points
with integrating x-ray detectors. The main tool for this purpose will be the 4D
spatio-spectral point process defined in (12.295), only now it will be necessary to
distinguish the primary (initial) interaction parameters from those for the secondary
interactions. We thus rewrite (12.295) as

gss(R) = gpriss (R) + gsecss (R) =
Nx
∑

n=1

δ(R −Rpri
n ) +

Nsec
∑

n=1

δ(R−Rsec
n ) , (12.308)

where Nx is the number of absorbed x rays and Nsec is the number of secondary
photon absorptions in the detector (which can be less than Nx since the secondary
photons can escape from the detector).

Spatio-spectral fluences We can define spatio-spectral fluences as the means of the
component random processes:

bpriss (R) =
〈

gpriss (R)
〉

, bsecss (R) = 〈gsecss (R)〉 . (12.309)

Though it may be complicated in practice, there is no difficulty in principle in
computing these fluences from knowledge of the incident x-ray flux and properties
of the detector material. Henceforth we shall assume that the fluences are known.

If the primary fluence is nonrandom, gpriss (R) is a Poisson random process, and
its autocovariance function is given by

Kpri(R,R′) = bpriss (R) δ(R−R′) . (12.310)

Moreover, by the binomial-selection theorem of Sec. 11.1.3, Nsec is a Poisson random
variable ifNx is. Once the binomial selection is made, the secondary random process
results from a 4D displacement from the primary process, and we know from the
discussion around (11.229) that the Poisson character is preserved. Thus we also
have

Ksec(R,R′) = bsecss (R) δ(R−R′) . (12.311)

It does not follow, however, that the overall interaction pattern gss(R) is a Poisson
random process; it cannot be since Rsec

n and Rpri
n both arise from the nth absorbed

x ray and hence are not independent.

Cross-correlation To compute the overall autocovariance, we need to study the cross
correlation function,

〈

gpriss (R)gsecss (R′)
〉

=

〈

Nx
∑

n=1

δ(R−Rpri
n )

Nsec
∑

n′=1

δ(R′ −Rsec
n′ )

〉

. (12.312)

The average will be performed by methods developed in Sec. 11.3.3. As in that
section, we must consider separately terms for which n = n′ and those for which
n != n′.

If n = n′, then
〈

δ(R−Rpri
n ) δ(R′ −Rsec

n )
〉
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=

∫

D
d4Rpri

n

∫

D
d4Rsec

n pr(Rsec
n |Rpri

n ) pr(Rpri
n ) δ(R−Rpri

n ) δ(R′ −Rsec
n )

= prp→s(R
′|R) prpri(R) , (12.313)

where prp→s(R
sec
n |Rpri

n ) means the same thing as pr(Rsec
n |Rpri

n ), but the new nota-
tion is required when we substitute R for Rpri

n and R′ for Rsec
n as dictated by the

delta functions.
For n != n′, we have

〈

δ(R−Rpri
n ) δ(R′ −Rsec

n′ )
〉

=

∫

D
d4Rpri

n pr(Rpri
n ) δ(R−Rpri

n )

∫

D
d4Rsec

n′ pr(Rsec
n′ ) δ(R−Rsec

n′ )

= prpri(R) prsec(R
′) . (12.314)

Since gpriss (R) and gsecss (R′) are individually Poisson processes (albeit correlated with
each other), prpri(R) and prsec(R

′) are just normalized versions of the respective
fluences:

prpri(R) = N
−1
x bpriss (R) , prsec(R

′) = N
−1
sec b

sec
ss (R′) . (12.315)

Since each of the secondary interactions derives from exactly one primary in-
teraction, there are Nsec terms for which n = n′ and NxNsec − Nsec terms with
n != n′. Thus

〈

gpriss (R) gsecss (R′)
〉

= Nsec

[

prp→s(R
′|R)N

−1
x bpriss (R)

]

+(〈NxNsec〉−Nsec)
[

N
−1
x bpriss (R)N

−1
sec b

sec
ss (R′)

]

.

(12.316)
The only remaining expectation to perform is

〈NxNsec〉 =
∞
∑

Nx=0

Pr(Nx)
∞
∑

Nx=0

Pr(Nsec|Nx)NxNsec . (12.317)

The conditional probability Pr(Nsec|Nx) is a binomial for which the probability of
success can be denoted pp→s, which is the probability that an absorbed primary x
ray will produce an absorbed secondary somewhere in the detector. The average of
Nsec with respect to Pr(Nsec|Nx) is pp→sNx. Since Pr(Nx) is a Poisson, we have

〈NxNsec〉 =
∞
∑

Nx=0

Pr(Nx) pp→sN
2
x = pp→s

(

Nx +N
2
x

)

. (12.318)

Inserting this result into (12.317) and doing a little algebra, we find

〈

gpriss (R) gsecss (R′)
〉

= pp→s prp→s(R
′|R) bpriss (R) + bpriss (R) bsecss (R′) . (12.319)
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Overall 4D autocovariance function The autocovariance of gss(R) (conditional on
the specified fluences) is defined by

Kgss(R,R′|bss)

=
〈

[gpriss (R) + gsecss (R)][gpriss (R′) + gsecss (R′)]
〉

− [gpriss (R) + gsecss (R)][gpriss (R′) + gsecss (R′)] . (12.320)

With (12.309) – (12.311) and (12.319), we see that

Kgss(R,R′|bss)

= [bpriss (R) + bsecss (R)] δ(R−R′)

+ pp→s[prp→s(R
′|R) bpriss (R) + prp→s(R|R′) bpriss (R′)] . (12.321)

We see that the 4D autocovariance contains the expected delta-correlated part
proportional to the total fluence plus another part with a correlation structure de-
termined by prp→s(R

′|R). This function is the probability density for a secondary
interaction at R′ given that the primary interaction was at R (and given that the
secondary photon does not escape).

The dependence of prp→s(R
′|R) on the spatial parts of R and R′ (the first

three components of the 4D vectors) can be computed from knowledge of the at-
tenuation coefficient and the geometry of the detector material. If the detector
were infinitely thick, the spatial correlation would extend over a range in |r′ − r|
approximately equal to the reciprocal of the attenuation coefficient, but of course
the correlation length cannot exceed Lz in the +z direction. We can envision
prp→s(R

′|R) as a fuzzy ball centered on the primary interaction site and truncated
by the detector boundaries.

The fourth component of R′ is the energy deposited in the secondary in-
teraction. If we assume that the secondary photon gives up all of its remain-
ing energy in the secondary interaction, then conservation of energy requires that
E ′+ E = E0 (where E0 is the initial energy of the primary photon), so prp→s(R

′|R) ∝
δ(E ′ + E − E0).

Discrete readouts The 4D autocovariance is not directly observable, but it deter-
mines the correlation properties of discrete readout signals in both semiconductor
and scintillation detectors. Consider, for example, a scintillation detector with an
array of photodiodes as analyzed in Sec. 12.3.8. In that section the energy deposi-
tion was described by a Poisson point process, so the only pixel-to-pixel correlation
was that induced by the spreading of the optical photons en route to the photodi-
odes. With the secondary interactions, there is another source of correlation since
optical photons are generated not only at the primary site, but also at a nearby
secondary site. Even if there were no spread of the optical photons, there would be
correlations between different pixels.

The implications of these correlations for x-ray imaging will be discussed in
Sec. 16.1.



13
Statistical Decision Theory

In the preceding chapters we have considered various descriptions for the determin-
istic image-formation process (Chaps. 7, 9 and 10) as well as the possible sources
of randomness in the resulting images (Chaps. 8, 11 and 12). Armed with this
background, we are now able to consider the weighty topic of image quality and
imaging system evaluation.

It is our premise that the quality of an imaging system is defined by how well
inferences about an underlying scene can be made using its image as input. More
importantly, image quality must be assessed on the basis of average performance
of some inference task by some observer or decision-maker. Image quality is thus a
statistical concept; statistical decision theory is the key to the mathematical char-
acterization of image quality.

This chapter discusses the kinds of inferences that might be of interest to var-
ious imaging communities, how these tasks are approached by predefined decision-
makers or observers, and figures of merit for quantifying the performance of these
observers. In Chap. 14 we shall discuss many of the practical issues that arise in
the application of the mathematical tools provided in this chapter to the problem
of the objective assessment of imaging systems. In particular, issues related to es-
timation of image statistics and figures of merit from a finite set of sample images
are presented in Chap. 14. Throughout this chapter we assume full knowledge of
the ensemble statistics of the data necessary to calculate the figures of merit under
discussion.

13.1 BASIC CONCEPTS

We begin with a discussion of the kinds of inferences or decisions that can be de-
rived from the output of an imaging system. In addition to the image itself, inputs
to the decision-making process can include statistical and deterministic models of
the imaging system (combined into a likelihood function), prior information about
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the objects, and a judgment as to the costs of incorrect decisions and the benefits
of correct ones. The discussion of priors and costs will inevitably take us back to
the conflict between Bayesian and frequentist approaches to inference. Our gen-
eral approach to this issue, sketched in the Prologue, will be taken up in more
mathematical detail here.

13.1.1 Kinds of decisions

As described in the Prologue, we divide statistical inference into two types: classi-
fication and parameter estimation. Any time there are a finite number of possible
outcomes, we refer to the inference as classification. In the imaging literature, the
terms pattern recognition, signal detection, discrimination, discriminant anal-
ysis, differential diagnosis, segmentation, and hypothesis testing fall under this
category. Parameter estimation, on the other hand, can be regarded as the limit
of hypothesis testing when the number of hypotheses becomes infinite (usually un-
countably infinite). Then the premise is that we are interested in extracting one
or more numerical parameters from the data, and these parameters can take on
any value in some specified range. The medical literature sometimes calls this task
quantitation.

We treat both kinds of inference within this chapter for, as we shall demon-
strate, there are strong connections between the approaches to classification and
estimation problems provided by statistical decision theory, as demonstrated in
Fig. 13.1. For both inferences the first step is the development of a model for the
objects under investigation. For this we make use of the mathematical models for
the deterministic aspects of objects described in Chap. 7 and the tools provided in
Chap. 8 for characterization of the variability of the objects under consideration.
The next step is the generation of a model for the acquired data. Here we must
apply whatever knowledge we have of the image-formation process, including the
deterministic mapping of an object through the imaging system as well as the noise
sources of the system.

Fig. 13.1 Flow chart showing steps toward the extraction of a test statistic
or a parameter estimate.

We call the means by which the task gets done, or the strategy, the observer
or decision-maker. For example, the observer in a lesion-detection task on real
clinical images might be a radiologist. Alternatively, much research effort is being
expended on the development of computer algorithms for such tasks. A special ob-
server known as the ideal observer or Bayesian observer is defined as the observer
that utilizes all statistical information available regarding the task to maximize task
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performance as measured by Bayes risk or some other related measure of perfor-
mance. Thus the performance of the Bayesian observer provides an upper bound
against which all other observers can be compared.

Estimation tasks using images as inputs are most often performed by computer
algorithms. These algorithms can run the gamut from very ad hoc procedures to
ones based on optimality criteria involving the bias and/or variance of the resulting
estimates.

Returning to Fig. 13.1, we see that one or more operations are applied to the
data by the observer to facilitate the inference. If the task is classification, the
output of these operations is a test statistic. If the task is estimation, the output
is the estimate itself. These quantities are random, because they are based on oper-
ations on random data. Thus both classification and estimation tasks demand the
same kind of information from the practitioner, and both result in the computation
of a random quantity at the output to the inference process. As we shall show,
the assessment of system performance for both kinds of tasks also has a similar
construction.

Classification In classification, the output of an imaging system is observed, and
the observer must infer the class membership of the object at the input to the imag-
ing system. The observer usually has some information about the possible objects
being imaged, the way in which objects are distorted by the image-acquisition pro-
cess, and the sources of randomness in the data. In radar, the classification task
might be the determination of the presence or absence of a target in the radar sig-
nal. In medical applications the task might be tumor detection, or it might be the
classification of a detected tumor into a particular class, e.g., malignant or benign.
The discrimination of tanks from trucks in aerial photographs is a common military
application of statistical decision theory.

The classification problem was studied as early as the middle of the 18th cen-
tury, when Thomas Bayes published his theory for the testing of hypotheses by
statistical inference (Bayes, 1764). The advent of radar and communications tech-
nology in the mid-twentieth century rekindled interest in Bayes’ theories for sta-
tistical decision making (Van Meter and Middleton, 1954; Peterson, 1954). More
recently, statistical decision theory has been applied to the evaluation of medical
imaging systems (Swets, 1979; Swets and Pickett, 1982; Wagner and Brown, 1985;
Barrett, 1990; ICRU Report, 1996) and has contributed to the study of human per-
ception (Tanner and Swets, 1954; Swets, 1964; Lusted, 1968; Burgess et al., 1981;
Swensson and Judy, 1981).

A classification problem is categorized according to the number of hypotheses
to be distinguished, the nature of the hypotheses, the structure of the data, and
the statistics of the signal and noise. Classification tasks can be as simple as the
detection of a known (nonrandom) signal in a known background, or as complex as
the discrimination of multiple classes comprised of fully random objects described
by different probability density functions.

Classification tasks with just two underlying hypotheses or classes from which
the data might be drawn are known as binary decision problems. Determining
whether a reconnaissance image contains a tank is an example of a binary decision
problem, because the classification is into one of two possible alternatives— tank or
no-tank. As we shall see, the same theory can be extended to the multiple-decision
or L-class task, where the data are to be assigned to one of L possible hypotheses.
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The L hypotheses may correspond to L different signals, all in the same location
(Burgess and Ghandeharian, 1984b; Eckstein and Abbey, 2001), or one signal in one
of L possible locations (Goodenough, 1975; Starr et al., 1975), or a more general
set of L hypotheses.

A common example of an L-class task is the pattern-recognition task of char-
acter recognition. The character to be classified might be one of a finite number
of letters of known font, so that the signals are nonrandom. Alternatively, the
characters might have some randomness in one or more parameters; for example,
perhaps they might be of known font but with some randomness in scale. At the
other extreme, the characters to be classified might be freehand letters, so that the
objects have a great deal of randomness associated with them. In Sec. 13.3 we shall
show in mathematical detail how increasing levels of randomness in the classes to
be discriminated are incorporated in signal-detection theory.

Estimation Classical estimation begins with the assumption that we are given data
g from some known probability law pr(g|θ) and the task is to estimate the scalar pa-
rameter θ. As an example, a photon-counting probe might be used to determine the
activity in a draining lymph node. Poisson statistics govern the number of detected
counts in this case. Since the Poisson law has just one free parameter, the mean
count rate, measurements over equal counting intervals will allow the estimation of
this rate for the node under test. As a second example, suppose we use a photocon-
ductor to detect light transmitted by an object. If the current at the output of the
detector suffers from Johnson noise fluctuations, the randomness of the current can
be modeled by a Gaussian random process. While a Gaussian probability density
function (PDF) is generally parameterized by a mean and variance, we might make
the assumption that the noise variance is independent of the signal, and that this
variance has already been characterized for this detector. An estimate of the mean
of the Gaussian PDF can then be formed based on measurements at the output of
the detector.

The estimation of a single parameter from a measurement, like the example of
the photon-counting detector above, is scalar parameter estimation. Vector pa-
rameter estimation involves the determination of more than one parameter, which
we arrange in a parameter vector θ. If we had to estimate both the mean and
variance of the noise in the Gaussian example above, these two parameters would
constitute the vector θ. The task of image reconstruction, a subject we treat in de-
tail in Chap. 15, may also be thought of as a kind of vector parameter estimation.

Determination of the single “best” estimate of one or more parameters is known
as point estimation. In point estimation no information is provided about the un-
certainty in the estimated value. In contrast, interval or region estimation results
in a set of values the parameters might reasonably take on (Casella and Berger,
1990). An interval estimate is not as precise as a point estimate, but is intended
to provide confidence that the true value of the parameter is within the estimated
interval. The result of an interval estimation procedure for a scalar quantity is
straightforward to present in graphical or numerical terms. However, due to the
inherent difficulty of representing the output of a region estimation procedure for a
large set of numbers, region estimation is not commonly applied to vector estima-
tion problems.

In some circumstances the task is the estimation of the entire probability den-
sity function of a random variable from sample values. One approach to this so-
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called density estimation problem is to parameterize a well-known density function
kernel and seek estimates for the underlying parameters, e.g., the mean and variance
of a Gaussian PDF. The most common nonparametric method of density estimation
is kernel estimation, in which a smoothing kernel such as a Gaussian is associated
with each observed point in the sample space (Silverman, 1986).

In a sense, image reconstruction is density estimation. We saw in Chap. 11
that an object, when properly normalized, can often be regarded as the PDF for
photon emissions, so to estimate the object is to estimate this PDF. In practice,
we may adopt some approximate representation such as a voxel expansion for the
object, and in that case reconstruction is parameter estimation, albeit with a large
number of parameters. As we shall see in Sec. 15.2.2, however, it is also possible to
estimate the underlying object function—a density—without discretization. With
this exception, we shall say nothing more about density estimation.

Hybrid estimation-classification tasks We are often interested in forming an estimate
of one or more parameters that will then be used as input to subsequent decision-
making operations. Examples abound of quantities that are extracted from medical
images with the end goal being the classification of the tissue or organ as normal
or diseased. For instance, a series of nuclear medicine images might be obtained
to quantify organ time-activity dynamics, which can be used in the classification
of disease in such organs as the liver, heart, or kidney. Alternatively, estimation
may follow detection, as is the case when a decision is made in favor of a particular
hypothesis, and an estimate is then made of a parameter underlying the objects
known to be present under the selected hypothesis. For example, a tumor may first
be detected, and then its size is estimated to determine the stage of the disease.
When estimation and classification tasks are combined, the overall procedure is
termed a hybrid estimation-classification task.

Tests of the null hypothesis Classification can also be called hypothesis testing. For
some readers this term will conjure up the standard form of significance testing
taught in most statistics classes and found in much of the biomedical sciences lit-
erature. In this approach, a null hypothesis H0 is formulated; for example, the
parameter θ is a random variable distributed as N (0,σ2). The complement of the
null hypothesis, denoted H1, is called the alternative to H0. Often the null hypoth-
esis is that one data set is drawn from the same density function as another; the
alternative to this hypothesis is that the data sets are different (or, one product
is better!). Once the hypotheses are formulated, observed values are tested to see
whether the null hypothesis can be accepted or rejected.

Consider the typical scenario in which data are collected from two sets of bio-
logical samples, one which underwent a treatment program and one which did not.
Now the investigators want to determine whether the mean value of the data from
each set is different to see if the treatment program has an effect. A test of the null
hypothesis that the data have the same means, assuming Gaussian PDFs with equal
variance, is performed. Sample means x1 and x2 are determined from the data and
used to test whether x2 − x1 is statistically significantly different from 0. Based on
standard tables, the probability of obtaining the observed difference in the means is
computed. If this probability (the so-called p-value) is deemed small enough, at the
.01 or .05 level, say, these investigators would claim they have grounds for rejecting
the null hypothesis.
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There are a number of serious flaws in this approach to assessing the separabil-
ity of two data sets. First of all, the simple point hypothesis can virtually always be
shown to be wrong. Consider two normal distributions N (1, 10) and N (1.01, 10). A
single sample would have almost no value for distinguishing the two distributions. A
physician would say that a diagnostic test based on this variable was worthless, and
a physicist would say the two distributions were not significantly different since the
difference in means is very small compared to the standard deviation. A determined
statistician, on the other hand, could draw not one but many thousand samples and
discern that the difference in means is significant at the .01 level. The same state-
ment could be made if the distributions were N (1, 1) and N (2, 1) and many fewer
samples were used. The point is that so-called statistical significance is a function
of the diligence of the experimenter as well as the size of the deviation from the
null hypothesis relative to the spread in measurements of a sample. A statistician
who reports only a p-value has ignored perhaps the most important aspect of the
data: the difference in estimated means divided by the estimated average standard
deviation.

A second serious flaw in this approach is that the alternative to the null hy-
pothesis is vague and meaningless. The alternative to the hypothesis that the data
have equal means is that the means are different. How different? It does not matter
in this framework.

A further objection to this sort of hypothesis testing is that the determination
of statistical significance allows the investigator to reject the null hypothesis, when
in fact it might be that the model is what is really in need of being rejected. One
can easily concoct an illustration where two data sets would result in a rejected null
hypothesis for Gaussian PDFs with equal means when in actuality the Gaussian
PDF assumption that was made was inappropriate. In the end, it can be quite
difficult to know whether it is the model or the hypothesis that should be rejected.
For all these reasons we reject the usage of this methodology for the assessment
of imaging systems, recommending instead the task-based approach of statistical
decision theory with clearly specified alternatives.

13.1.2 Inputs to the process

The data As shown in Fig. 13.1, estimation and classification involve the com-
putation of estimates, in the former, or test statistics, in the latter, based on the
data at the output of an imaging system. For a digital imaging system the data
consist of the set of M measurements {gm}, which might be the set of pixel values
or gray levels from a direct imaging system, or the raw measurements from a tomo-
graphic imaging system. As usual, these data can be thought of as a point in an
M -dimensional observation space, denoted by the M × 1 column vector g. Each of
the elements of g is a random variable.

The data are the result of an image-formation process whereby a continuous
object f(r) is mapped to the data set. The mapping can be represented quite
generally by

g = Hf+ n , (13.1)

where H is some appropriate imaging operator, as discussed in Chap. 7. Note that
we have written the continuous object as a vector f in the Hilbert space of square-
integrable functions; we emphasize that this notation does not limit our treatment
to discrete objects.
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The M -dimensional vector n in (13.1) represents the noise in the data set. The
fact that the noise is represented as additive does not restrict us to additive noise
conditions. It is understood that the noise is the difference between the expected
data set in the absence of noise and the actual data set. That is,

n ≡ g− 〈g〉n = g−Hf , (13.2)

where the angle brackets subscripted by n denote a statistical average over the noise
for an ensemble of data sets acquired with a particular object f.

Raw images are just one form of input data upon which an observer might base
decisions. Decisions might also be based on features extracted from images. These
features might be numerified qualitative observations (e.g., spicularity of a lesion
on a scale of 1 to 10), or features derived from an image by computer algorithms.

It follows from (13.1) that a model of the deterministic characteristics of the
imaging system, specified by H, is required for drawing inferences based on images.
To whatever extent is possible, we want our system model to be accurate so that
inference errors are solely the result of the limiting variability in the data, and not
due to modeling errors.

Conditional probability model In order to draw an inference from random data, it
is vital that a model for the conditional probability density function on the data
be constructed and brought to bear on the classification or estimation problem by
the decision-maker. Classification strategies hinge on how the data are distributed
given a particular underlying object or hypothesis; this information is captured by
the conditional density function pr(g|f ). Alternatively, estimation involves the de-
termination of the value of some feature θ of the object given the data in hand.
The strategy for estimating this feature will depend to a large degree on the effect
this feature has on the data set. We write the probability density function for the
data conditioned on a particular value of this feature by pr(g|θ). The conditional
probability densities pr(g|f ) and pr(g|θ) are referred to as likelihood functions since
they tell how likely it is that a given data set is obtained when some underlying
state of nature is true.

Imperfect or incomplete knowledge of the likelihood function results in addi-
tional classification or estimation errors beyond what would occur as a result of
the limiting uncertainty in the data due to measurement noise. In particular, it
may be hard to determine pr(g|θ) in an estimation problem if the vector θ has
low dimensionality. For example, many possible data sets could be obtained from
objects with the same tumor volume, so that it would be quite difficult to deter-
mine the probabilistic relationship between tumor volume and the data. If, on the
other hand, θ has high dimensionality, we can be more hopeful of making sense
of pr(g|θ). For example, if θ is a vector of expansion coefficients used to repre-
sent the object, we might be able to approximate the mapping of (13.1) by writing
g = Hf+ n ≈ Hθ + n (for a linear imaging system). In that case we can presume
that pr(g|θ) ≈ pr(g|f ). This density is something we can compute by making use
of the techniques presented in Chaps. 8, 11, and 12.

In the Prologue we describe our philosophy regarding the interpretation of
pr(g|f ), which we believe is naturally interpreted in terms of relative frequencies
and hence can, in principle, be obtained by repeated experimental observation. In
most cases, however, the basic physics of the measurement process tells us the form
of pr(g|f ), in a frequentist sense, and we do not have to actually do the experi-
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ments. For example, in a photon-counting situation, we know that the statistics
will be Poisson under broad conditions discussed in Chap. 11.

Priors When the object has some randomness, the density function for the data
depends on the probability density function on the object as well as the measurement
noise. Consider a classification problem for which there exists a distribution of
possible objects for each hypothesis Hj . We write the conditional density function
on the data under Hj as1

pr(g|Hj) =

∫

U

df pr(g|f ) pr(f |Hj) , (13.3)

where the conditional probability pr(f |Hj) is the object prior. From Chap. 8 we
know that it is difficult to be precise about the meaning of pr(f |Hj) for realistic
problems since f is in principle infinite-dimensional. As discussed in Sec. 8.4, we
can avoid this problem by using a finite-dimensional object representation such as
(7.27) with an N × 1 vector of coefficients α. In that case (13.3) becomes

pr(g|Hj) =

∫

∞
dNα pr(g|α) pr(α|Hj) . (13.4)

Now we need only an N -dimensional prior on α instead of the infinite-dimensional
prior on f. As discussed in Sec. 8.4.1, it is sometimes possible to evaluate the integral
in (13.4) through simulation methods.

Analogously, in estimation a Bayesian decision-maker assumes that θ is itself a
random variable with a probability density function given by pr(θ). As we shall see,
the Bayesian’s estimation strategy recasts the information contained in this prior
density in light of the acquired data.

As discussed in the Prologue, Bayesians and frequentists have vastly differing
views on the relevance and interpretation of object priors. Methods for deriving
and interpreting prior object information are introduced in the Prologue; a number
of models for object variability are presented in Chap. 8.

Prevalence in classification tasks From a Bayesian point of view a final bit of in-
formation is needed to perform a classification task. For classification a Bayesian
would need to know the prior probability or prevalence of the underlying classes
to which the data set must be assigned, denoted Pr(Hj) = Pj . For example, in-
formation regarding troop and equipment movements will influence the reading of
newly acquired aerial reconnaissance photographs by an expert military observer.
Likewise, the prevalence of a disease will influence a radiologist’s decision process
when reading a set of films where the task is to determine if that disease is present
or absent. There are many ways of determining prevalence, all typically frequen-
tist in approach. Prevalence might be estimated from nationwide statistics, local
community statistics, data gathered from a particular medical practice so that the
demographics of that small patient population are represented, or it might even
take into account patient-specific information such as age, weight, or family risk
factors.

1The integral here is, in principle, over the entire object Hilbert space U. See Sec. 8.2.2 and
especially (8.81) for details.
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Costs and risks Costs can be associated with making correct and incorrect deci-
sions, and a decision strategy can be designed to minimize these costs. Similarly,
costs can be associated with estimation errors, and an estimator can be chosen to
minimize these. The philosophy of the decision-maker greatly influences the manner
by which costs are utilized in the design of an inference strategy.

For estimating a scalar parameter, we write the cost of an estimation error as
C(θ̂, θ), which is a function of both the underlying parameter, θ, and its estimated
value, θ̂. The squared distance (θ̂−θ)2 between the estimate and the actual value of
the parameter is a common cost function. The risk, or average cost, can be defined
in three ways, depending on the functional dependence we are interested in probing.

Table 13.1 Definitions of Risk

Average Cost Functional Dependence

〈
C(θ̂, θ)

〉

g|θ
Function of θ

〈
C(θ̂, θ)

〉

θ|g
Function of g

〈〈
C(θ̂, θ)

〉

g|θ

〉

θ

=

〈〈
C(θ̂, θ)

〉

θ|g

〉

g

Pure scalar

The first definition of risk in Table 13.1 is essentially frequentist, in that it averages
over many realizations of the data for a particular underlying parameter θ. In con-
trast, a Bayesian considers only the single data set in hand to be relevant. Thus the
second row in the table above, which expresses the average cost of the estimate for a
particular data set g, is a Bayesian measure of risk. The left-most form in the third
row defines the average cost found by first averaging over all data sets conditioned
on a particular parameter θ, followed by averaging over the ensemble of possible
values of θ. An equivalent value is obtained by first computing the average cost of
the estimate for a fixed data set and then averaging over the ensemble of possible
data vectors. The resulting risk is a scalar that summarizes the overall performance
of the estimator in the presence of measurement noise as well as randomness of
the underlying object. This measure is commonly (but confusingly) referred to as
Bayes risk. Hard-nosed Bayesians would resist the average over g.

A similar hierarchy exists when considering classification errors. Let Cij be
the cost associated with making decision Di (in favor of hypothesis Hi) when hy-
pothesis Hj is actually true. Then Cij = C(Di, Hj) is the classification analog of

the estimation cost function C(θ̂, θ). In general, a cost can be assigned to a correct
decision as well as an incorrect decision (a positive cost indicates a penalty). If
there are L total classes, the average cost of making decision Di is:

C(Di) =
L∑

j=1

Cij Pr(Hj |Di) . (13.5)
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The average cost, over all possible decisions, when hypothesis Hj is true is given by

C(Hj) =
L∑

i=1

Cij Pr(Di|Hj) . (13.6)

The overall average cost of a decision, also called the Bayes risk, is given by

C =
L∑

i=1

L∑

j=1

Cij Pr(Hj , Di)

=
L∑

i=1

L∑

j=1

Cij Pr(Hj |Di) Pr(Di) =
L∑

i=1

L∑

j=1

Cij Pr(Di|Hj) Pr(Hj)

=
L∑

i=1

C(Di) Pr(Di) =
L∑

j=1

C(Hj) Pr(Hj) . (13.7)

Note the parallel between the three kinds of averages represented by (13.5) – (13.7)
and the three kinds of average cost functions for estimation presented in Table 13.1.
We can average over the decision (estimate), the underlying truth state (underlying
true parameter value), or both.

13.2 CLASSIFICATION TASKS

In this section we present a formal theory for the detection and classification of
objects from data distorted by noise. We begin in Sec. 13.2.1 with the concept
of classification as a partitioning of the data space. The specific case of a binary
decision task is considered in Sec. 13.2.2, with methods for summarizing binary
classification performance given in Secs. 13.2.3 – 13.2.5. Once we have defined figures
of merit for task performance, we can make use of these tools in Secs. 13.2.6 and
13.2.7 to determine optimal strategies for classification. The optimal classifier for
known signals on known backgrounds in Gaussian noise is treated in Sec. 13.2.8,
and the non-Gaussian case is the subject of Sec. 13.2.9. Section 13.2.10 considers
situations in which the signal is random; the generalization to random backgrounds
is given in Sec. 13.2.11. Finally, we consider the performance of the best linear
observer in Sec. 13.2.12. All these sections treat the data as discrete random vectors;
continuous data sets are treated in Sec. 13.2.13. Readers already conversant with
the approach to statistical decision theory found in such classic texts as Van Trees
(1968), Whalen (1971), and Melsa and Cohn (1978) should be able to skim the
material in Secs. 13.2.1 – 13.2.4.

13.2.1 Partitioning the data space

In a classification problem, an observer makes use of a data vector g to infer which
of the underlying classes or hypotheses was the source of the detected data. That
is, given all the inputs to the process the observer makes decision Di, deciding in
favor of hypothesis Hi. We shall impose two restrictions on the manner by which
the observer makes this decision. First, we allow no randomness in the decision
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rule; repeated observations of the same data g must result in the same decision
Di. We also assume that every observation results in a decision; we shall not
allow for the possibility of an equivocal test. With these assumptions, classification
is equivalent to partitioning the observation space into distinct (nonoverlapping)
volumes. Combined, these regions in observation space must contain all possible
observation points. (See App. C for a presentation of the basics of set theory needed
to understand the concept of an observation space and its underlying probability
structure.)

An example data space is shown in Fig. 13.2 with nonoverlapping partitions
labeled Γi to indicate that a data vector in that region results in decision Di.
Regardless of the topology of the decision boundaries, the union of the partitions
covers all data space V: ⋃

i

Γi = V , (13.8a)

where
Γi

⋂
Γj = ∅ for i (= j . (13.8b)

For a binary or two-class problem, the process of assigning the data to one of
the decision regions is accomplished by computation of a scalar test statistic, t.
The test statistic is related to the data through a discriminant function T (g) = t.
The discriminant function can be either a linear or nonlinear functional of the ran-
dom data. The observer assigns a given data set to a particular decision region by
comparing t to a decision threshold or cutoff tc. The partition lines in Fig. 13.2
are thus contours of constant value of t.

Fig. 13.2 Example of a partitioned data space showing four decision regions.

In an L-class problem with L > 2, we need multiple discriminant functions
and some partitioning rule. For example, we could compute a set of functions
{T"(g), $ = 1, ..., L} and assign a particular g to region Γj if Tj(g) > Tk(g) for all
j (= k.

Partitioning with hyperplanes Consider the special case in which t = T (g) is a linear
function of the data. That is,

T (g) = wtg , (13.9)

where w is an M × 1 vector and wtg is the scalar product of w and g. The
decision boundary is an isocontour of this function, which is a hyperplane in an
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M -dimensional space.2 For a binary classification problem, the data space can be
partitioned with a single such hyperplane, though the use of several hyperplanes to
allow a region Γi to consist of disjoint subregions is not precluded. If there are L
classes, at least L− 1 hyperplanes are needed.

General discriminants and their density functions More generally, the test statistic is
a nonlinear function of the data, in which case the decision boundary can deviate
greatly from a hyperplane. For example, when the test statistic depends quadrat-
ically on the data, the decision boundaries shown in Fig. 13.2 would be quadratic
in shape.

Whatever its functional dependence on the data, the test statistic t is a ran-
dom variable through its dependence on g. The probability density function on t
depends on the underlying hypothesis:

pr(t|Hj) =

∫

∞
dMg pr(t|g) pr(g|Hj) =

∫

∞
dMg δ[t− T (g)] pr(g|Hj) , (13.10)

where we have represented the deterministic function T (g) = t as a probabilistic
mapping.

The ellipses in Figure 13.3 represent the PDFs pr(g|H1) and pr(g|H2) in a 2D
subspace for the binary decision problem. Overlapping univariate PDFs represent-
ing pr(g1|H1) and pr(g1|H2) are plotted along the x axis. Similarly, overlapping
univariate PDFs representing pr(g2|H1) and pr(g2|H2) are plotted along the y axis.
A linear discriminant is also shown in the figure; the line perpendicular to the dis-
criminant function is the t-axis. When t ≥ tc, H2 is chosen; when t < tc, H1 is
chosen. By varying tc we move the line in Fig. 13.3 perpendicular to itself. In the
general L-class problem, changes in decision boundaries cause the partitions in Fig.
13.2 to shrink or grow.

Fig. 13.3 Illustration of a linear discriminant for a 2-pixel (feature) problem.
The ellipsoids indicate isocontours of constant joint probability density on the
data values for each class. The line labeled t = tc is the linear discriminant
for one threshold setting. Also shown are the marginal PDFs for each data
component.

2We have assumed that both g and w are real vectors in (13.9), resulting in a real test statistic
t. In the case of complex data, the form of the linear discriminant is generalized to t = Re[w†g],
with w possibly also complex, such that t is a real scalar which is then compared to a threshold.
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13.2.2 Binary decision outcomes

We again restrict our discussion to the binary decision problem depicted in Fig.
13.3, in which the object belongs to one of two classes or hypotheses: H1 and H2.
In the detection case the hypotheses correspond to signal present or signal absent,
but the hypotheses more generally represent signal family 1 vs. signal family 2. We
assume that the decision made by the observer is also binary: D1 denotes a decision
that hypothesis H1 is true, and D2 similarly for H2.

The observer’s decision is based on the data g, which constitute only incom-
plete clues to the underlying object because they are obtained through some imaging
system and contaminated by noise. Because this is the case, whatever the decision
rule adopted, the decisions to which it leads cannot always be correct. Instead, as
shown in Table 13.2, four scenarios exist for each experimental observation.

Table 13.2 Decision outcomes

1. True positive (TP): H2 is true; observer decides H2 is true.
2. False positive (FP): H1 is true; observer decides H2 is true.
3. False negative (FN): H2 is true; observer decides H1 is true.
4. True negative (TN): H1 is true; observer decides H1 is true.

Two of the above alternatives result in the observer correctly determining the
underlying hypothesis, but we also see that two types of errors can be made. If
the problem is to decide whether signal is present or absent, and the observer says
a signal is present when in fact it is not, a type I error is made. In radar termi-
nology this is called a false alarm, while in the medical literature it is called a
false positive. When the signal is present, but the observer chooses the noise-only
alternative, we say a miss or false negative has occurred. This is known as a Type
II error.

The four scenarios for the binary detection problem can be represented by the
2× 2 decision table shown in Table 13.3.

Sensitivity and specificity Let N be the total number of decisions made by an ob-
server. Further, let NTP denote the number of true positive decisions made by
the observer. Similar notation can be used for the number of times a decision is
made corresponding to the other three scenarios represented in the table, so that
N = NTP +NFP + NTN +NFN . The observed fractions of correct and incorrect
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decisions under each truth state are random quantities; in the limit of an infinite
number of trials they yield the actual true- and false-positive fractions:

TPF = Pr(D2|H2) =

〈
NTP

NTP +NFN

〉
= lim

N→∞

[
Number of true positive decisions

Number of actually positive cases

]
,

(13.11a)

TNF = Pr(D1|H1) =

〈
NTN

NTN +NFP

〉
= lim

N→∞

[
Number of true negative decisions

Number of actually negative cases

]
,

(13.11b)

FPF = Pr(D2|H1) =

〈
NFP

NTN +NFP

〉
= 1− TNF , (13.11c)

FNF = Pr(D1|H2) =

〈
NFN

NTP +NFN

〉
= 1− TPF . (13.11d)

By definition each of these fractions has value in the range from zero to one.
We see from (13.11c) and (13.11d) that the observer’s performance is fully

specified by two of the fractions, e.g., TPF and FPF. In the medical literature, the
TPF is referred to as the sensitivity, since it is an indication of the sensitivity of
the test to the presence of an abnormality. The TNF is commonly referred to as
the specificity, because a test with low specificity is one where there are many false
or meaningless positive decisions.

We can compute the fraction of true and false decisions for each truth state
(see Table 13.2) given knowledge of the probability density functions on t, which we
presume we have via (13.10). As we see in Fig. 13.4, these fractions are the areas
under the appropriate PDF on t for a given threshold tc:

TPF = Pr(t ≥ tc|H2) =

∫ ∞

tc

dt pr(t|H2) , (13.12a)

FPF = Pr(t ≥ tc|H1) =

∫ ∞

tc

dt pr(t|H1) , (13.12b)

TNF = 1− FPF =

∫ tc

−∞
dt pr(t|H1) , (13.12c)

FNF = 1− TPF =

∫ tc

−∞
dt pr(t|H2) . (13.12d)

13.2.3 The ROC curve

We see from (13.12a) and (13.12b) that the TPF and FPF depend on the decision
threshold or criterion tc. A decision-maker is said to be conservative when a strict
criterion is used that results in relatively few positive decisions, some of which are
correct and some of which are false. On the other hand, a lax criterion yields a
higher number of positive decisions, both true and false. By varying the decision
threshold, a plot showing the relationship between the TPF and the FPF can be
generated. This plot, known as a receiver operating characteristic curve, or an
ROC curve, is a method of portraying test performance that is becoming increas-
ingly popular in the medical community. The ROC curve is an extremely useful
tool because, as we shall see, it summarizes the difficulty of the task, the perfor-
mance of the decision strategy, and the quality of the data for enabling the observer
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to perform the specified task. Additionally, the ROC curve and figures of merit
derived from it are independent of prevalence, the main complaint lodged against
the use of accuracy (see Sec. 13.2.4) as a measure of classification performance.

Fig. 13.4 The probability density functions for the test statistic under the
two hypotheses and one setting of the threshold, with the resulting TPF, FPF,
TNF, FNF.

A sample ROC curve is shown in Fig. 13.5. There are three points on the ROC
curve labeled A, B, and C. Point A corresponds to a very strict criterion level, so that
the observer has very few false-positive responses, but few true-positive responses
as well. As the observer’s threshold is relaxed, the number of true-positive and
false-positive responses increases. The point indicated by the letter B on the graph
is a moderate criterion level, and point C corresponds to a very lenient criterion.
At point C the observer often says signal is present in the images, resulting in many
true-positive calls, but many false-positive calls, too.

Properties of ROC curves are covered thoroughly in the three-volume series by
Van Trees (1968). The application of ROC techniques to nuclear medical imaging
and radiography has been discussed by Lusted (1971), Metz et al. (1973), and
Anderson et al. (1973). Two early tutorial papers on ROC analysis in medical
imaging were published by Metz (1978) and Turner (1978). Good general overviews
have been presented by Swets (1979), Swets and Pickett (1982), Swets (1988), and
Metz (1999).

Fig. 13.5 A sample ROC curve with three threshold levels identified.
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13.2.4 Performance measures for binary tasks

A variety of measures exist for summarizing task performance for a given imaging
system and observer. More importantly, meaningful summary measures of task
performance allow the quantitative comparison of imaging systems and observers.

Accuracy It is tempting to summarize the performance of a classification task by
its accuracy, which is the fraction of decisions that are correct:

accuracy = lim
N→∞

NTP +NTN

N
. (13.13)

As mentioned briefly in Sec. 13.2.3, the problem with accuracy as a figure of merit is
that it is highly dependent on the prevalence of the underlying hypotheses. Consider
a physician involved in screening patients for a disease so rare it affects only 0.1% of
the population [Pr(H2) = 0.001]. The physician can perform with 99.9% accuracy
simply by calling all patients normal, all the while miscalling every case where
disease is present, a clearly worthless strategy. Accuracy can make a bad test look
good when the prevalences are unbalanced.

A similar misrepresentation of test performance occurs for any figure of merit
that involves only one of the probabilities of error. Beware of studies that claim
excellent performance based on high values for sensitivity or specificity alone. A test
with high sensitivity could be achieved by calling all patients positive for disease,
but this strategy would yield abysmal specificity.

Positive and negative predictive value Two other measures for summarizing the per-
formance of a diagnostic test or classification task are sometimes found in the lit-
erature. These are the positive predictive value (PPV) and negative predictive
value (NPV) of the test. They are defined by:

PPV = Pr(H2|D2) = lim
N→∞

NTP

NTP +NFP
, (13.14a)

and

NPV = Pr(H1|D1) = lim
N→∞

NTN

NTN +NFN
. (13.14b)

These measures have a decidedly Bayesian flavor, in that they tell us how likely an
underlying condition is given that the test decides in favor of that condition.

Cost and utility We already described in Sec. 13.1 how we can characterize a
decision-making strategy by associating costs with making correct and incorrect
decisions. Three kinds of average classification cost are defined in (13.5) – (13.7).
Any one of these average costs can be used as a summary measure of performance,
though the choice among them and the assignment of costs is inherently arbitrary.

The utility of a classification outcome has been defined as a measure of the de-
sirability of the outcome relative to other outcomes (Patton and Woolfenden, 1989).
In medical applications the overall diagnostic utility of a test can be evaluated as an
expectation of the utility of the test over the population of patients and outcomes.
The cost effectiveness of a test is determined by the utility of the test and its cost
(Fryback and Thornbury, 1991). Early models for analyzing the cost effectiveness
of classification decisions were presented by McNeil and Adelstein (1976), Weinstein
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and Fineberg (1980), and Swets and Pickett (1982). Cost-effectiveness analysis of
medical imaging exams, including the determination of decision costs and the val-
uation of life quality with and without various medical interventions, is an area of
active research (Gold et al., 1996; Russell et al., 1996).

TPF-FPF pairs The ROC curve suggests a number of summary measures of clas-
sification performance. The first is the TPF at a specified FPF, which is no more
than a presentation of two of the elements in Table 13.2. A detection strategy that
maximizes this performance measure is known as the Neyman-Pearson criterion
(Sec. 13.2.6).

When we can make the argument that t is normally distributed, then the TPF
and FPF can be derived from (13.12) to give

TPF =
1

2

[

1− erf

(
tc − t2√

2σ2
2

)]

, (13.15a)

FPF =
1

2

[

1− erf

(
tc − t1√

2σ2
1

)]

, (13.15b)

at each threshold level tc. Here 〈t〉j = tj denotes the mean of the test statistic
under hypothesis Hj , and σ2

j is the variance of the test statistic under hypothesis j,
defined by

σ2
j =

〈(
t− tj

)2〉

j
. (13.16)

Throughout this chapter the notation 〈 · 〉j indicates an average over the data when
hypothesis j is true, or equivalently, an average over the density of t given that Hj

is true. The error function, erf (z), is defined by (C.115)

erf (z) =
2√
π

∫ z

0
dy exp

[
−y2

]
. (13.17)

Fig. 13.6 Plots of pr(t|H1) and pr(t|H2) for two cases. In (a) the PDFs
exhibit little overlap, resulting in relatively few decision errors. In (b) the
PDFs are virtually identical and the TPF and FPF are approximately equal
for each value of tc.

Figure 13.6 contains plots of pr(t|H1) and pr(t|H2) for two cases. In Fig. 13.6a
the PDFs exhibit little overlap, enabling the observer to choose a threshold that
separates the two classes quite well. Figure 13.6b shows the case where the PDFs
are virtually identical. In this case, the TPF and FPF are approximately equal for
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each value of tc, and the observer using this test statistic has difficulty separating
the classes. Plots of the TPF vs. FPF for these cases are shown in Fig. 13.7. Two
PDFs with no overlap (perfect class separation) yield an ROC curve formed by
the left and top borders of the square, while the 45◦ or chance line results when
pr(t|H1) = pr(t|H2) for all t.

Fig. 13.7 Plots of the TPF vs. FPF for the PDFs depicted in Fig. 13.6, as
well as the chance line (dA = 0). The ROC curves are symmetric about the
negative diagonal.

AUC Another figure of merit is the area under the ROC curve, AUC, defined as

AUC =

∫ 1

0
dFPF TPF(FPF) . (13.18)

Since both the FPF and the TPF range from 0 to 1, the area under the ROC curve
also ranges from 0 to 1. The ROC curves shown in Fig. 13.7 are symmetric about
the negative diagonal. For this special case, higher values of AUC indicate higher
true positive fraction for any given false positive fraction; intuitively one can see
that classification systems with higher AUC are then preferable. On the other hand,
ROC curves need not be symmetric, as Fig. 13.8 illustrates. The ROC curves in
Fig. 13.8 have the same area, which is the average TPF over all FPF. Thus the
AUC may be the same for two imaging systems, even though one may be superior
within some range of FPF values.

Fig. 13.8 Two crossing ROC curves with the same area.
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SNRt The degree of overlap of the density functions of the test statistic determines
the separability of the classes in the general classification problem; in the detection
problem this overlap determines the detectability of the signal. The AUC is one
measure of this overlap. Another is the signal-to-noise ratio associated with t:

SNRt =
〈t〉2 − 〈t〉1√
1
2σ

2
1 +

1
2σ

2
2

. (13.19)

SNRt should be used with caution if the test statistic is not normally dis-
tributed under both hypotheses. In particular, when the test statistic has a highly
skewed PDF, the variance is not a good measure of the spread of the decision
variable, and this figure of merit is not useful.

SNR under assumptions of normality When the test statistic is normally distributed
under both hypotheses, the area under the ROC curve can be derived from SNRt

through the following relationship:

AUC = 1
2 + 1

2 erf

(
SNRt

2

)
, (13.20)

where erf (z) is defined in (13.17). A proof of this relationship is given in Sec. 13.2.5.
When the variance of a normally-distributed test statistic is the same under

each hypothesis, SNRt is granted the special name d′ (Simpson and Fitter, 1973;
Swets, 1979). In this particular case, the ROC curve bows upward toward the left-
hand corner of the ROC plot and is symmetric about the negative diagonal. The
value of d′ is related monotonically to the distance between the ROC curve and
the positive diagonal. Figure 13.7 contains two equal-variance ROC curves with
different nonzero values of d′. When d′ is zero, pr(t|H1) is equal to pr(t|H2), and
the resulting ROC curve is the chance line. When d′ is infinite, there is perfect
separation between pr(t|H2) and pr(t|H1). Consequently, d′ values range from 0 to
∞ and classification performance increases monotonically with d′.

If the test statistic is normal with unequal variance under the two hypotheses,
the ROC curve will be asymmetric, like those shown in Fig. 13.8. The shape of
the curve in that case is determined by the ratio of the variances under the two
hypotheses (Green and Swets, 1966). In this circumstance, neither SNRt nor AUC is
sufficient to specify the system completely. Of course, we can still find an area under
the ROC curve, but two skewed ROC curves may have the same area, as shown in
the figure. We need another way of deciding which imaging system yields the best
performance when this happens. Metz and Kronman (1980) have discussed several
possible approaches. One option is to choose the system with the highest partial
area under the ROC curve, given as a modified version of (13.18) involving only the
portion of ROC-space thought to be most critical for the system under consideration
(McClish, 1989). Another is to compare the ROC curves by considering the utility
associated with their optimal operating points (Halpern et al., 1996).

The estimate of AUC given in (13.20) can be grossly in error for test statistics
that are far from normally distributed. In such cases, it is advisable to determine
AUC directly from (13.18).

Detectability index dA When AUC is known, it can be used to compute an effective
signal-to-noise ratio simply by inverting (13.20). The resulting figure of merit is
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denoted dA and calculated via (ICRU Report 54, 1996)

dA = 2erf−1[2(AUC)− 1] . (13.21)

The quantity is invariant to any monotonic transformation on the test statistic used
to obtain AUC.

Most experimental ROC curves from psychophysical studies of human per-
formance can be modeled quite well with the assumption that the test statistic is
normal under each hypothesis, although with unequal variance, otherwise referred
to as a binormal model for the test statistic (Swets, 1986). In that case dA equals
the difference in means divided by the square root of the average variance under
each hypothesis as given in (13.19).

Many studies of human-observer performance measure AUC directly through
the use of a forced-choice technique, a method described theoretically in Sec. 13.2.5
and revisited in Sec. 14.2. Such a measurement method gives an estimate of AUC
without determining the shape of the ROC curve, so no information is obtained
regarding the relevance of the Gaussian model for the underlying PDFs of the ob-
server’s test statistic. Even so, the measured AUC is commonly converted to dA for
comparison with other studies (see Sec. 14.2.3).

13.2.5 Computation of AUC

We now consider various ways of computing AUC, depending on what knowledge we
have of the statistics of the problem. Our treatment follows Barrett et al. (1998b),
though each of the methods has a considerable prior literature.

Discriminant function with known probability law Consider the case where we have
complete statistical descriptions pr(t|H1) and pr(t|H2) for the discriminant function
t. First let us rewrite the expression for the area under the ROC curve in (13.18)
to explicitly show the role of the threshold tc:

AUC =

∫ 1

0
dFPF(tc) TPF(tc) . (13.22)

For notational convenience, we define the shorthand pr(t|Hj) ≡ pj(t). Since FPF is
a monotonic function of tc, we can change the variable of integration from FPF(tc)
to tc, yielding

AUC = −
∫ ∞

−∞
dtc TPF(tc)

d

dtc
FPF(tc) , (13.23)

where the minus sign arises since FPF(tc) → 1 as tc → −∞.
From (13.12b) and Leibniz’ rule, we have

d

dtc
FPF(tc) = −p1(tc) , (13.24)

so

AUC =

∫ ∞

−∞
dtc p1(tc)

∫ ∞

tc

dy p2(y) . (13.25)

We can rewrite this expression in a variety of ways. One is to recognize that the
cumulative probability distribution function (Sec. C.2.3) of t under H2 is given by

F2(tc) ≡ Pr(t < tc|H2) =

∫ tc

−∞
dy p2(y) = 1−

∫ ∞

tc

dy p2(y) . (13.26)
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Thus

AUC = 1−
∫ ∞

−∞
dtc p1(tc) F2(tc) . (13.27)

We can obtain another form for AUC by using the step function to rewrite
(13.25) as

AUC =

∫ ∞

−∞
dtc

∫ ∞

−∞
dy p1(tc) p2(y) step(y − tc) . (13.28)

With the change of variables x = y − tc, we obtain

AUC =

∫ ∞

−∞
dtc

∫ ∞

−∞
dx p1(tc) p2(x+ tc) step(x) =

∫ ∞

0
dx [p1 ' p2](x) , (13.29)

where ' denotes a 1D correlation integral [cf. (3.115)]. Computation of AUC by
this formula thus requires cross-correlating p1 and p2 and then integrating the result
over the half line from 0 to ∞.

The Fourier transform of the step function given in (3.163) allows us to write

step(x) =
1

2
+

1

2πi
P
∫ ∞

−∞

dξ

ξ
exp(2πiξx) , (13.30)

where P indicates that the singular integral must be interpreted as a Cauchy prin-
cipal value (see Sec. B.3.9). Then (13.29) becomes

AUC =
1

2
+

1

2πi
P
∫ ∞

−∞

dξ

ξ

∫ ∞

−∞
dtc

∫ ∞

−∞
dy p1(tc) p2(y) exp[2πiξ(y − tc)]

=
1

2
+

1

2πi
P
∫ ∞

−∞

dξ

ξ
ψt1(ξ)ψ

∗
t2(ξ) , (13.31)

where ψtj(ξ) = 〈exp(−2πiξt)|Hj〉 is the characteristic function for t under hypoth-
esis Hj [see (C.53)].

AUC with normal probability law When we know that the functions pr1(t) and pr2(t)
are both univariate Gaussians, the characteristic function for t under hypothesis Hj

is given by
ψtj(ξ) = exp(−2πitjξ − 2π2σ2

j ξ
2) . (13.32)

Then the AUC of (13.31) becomes

AUC =
1

2
+

1

2πi
P
∫ ∞

−∞

dξ

ξ
exp

[
−2πi(t1 − t2) ξ − 2π2(σ2

1 + σ2
2) ξ

2
]

=
1

2
+

1

2π
P
∫ ∞

−∞

dξ

ξ
sin[2π(t2 − t1) ξ ] exp

[
−2π2(σ2

1 + σ2
2) ξ

2
]

=
1

2
+ (t2 − t1)

∫ ∞

−∞
dξ sinc[2(t2 − t1) ξ ] gaus

[√
2π(σ2

1 + σ2
2) ξ

]
, (13.33)

where gaus( · ) is defined in (3.173), and we have dropped the principal value in the
third line because the integrand is now well behaved at the origin. By Parseval’s
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theorem we have

AUC =
1

2
+

1

2
√

2π(σ2
1 + σ2

2)

∫ ∞

−∞
dx rect

[
x

2(t2 − t1)

]
gaus

[
x√

2π(σ2
1 + σ2

2)

]

=
1

2
+

1
√

2π(σ2
1 + σ2

2)

∫ (t2−t1)

0
dx exp

[
− x2

2(σ2
1 + σ2

2)

]
. (13.34)

A change of variables then yields the error-function relationship of (13.20).

Discriminant function with unknown probability law In the last sections we assumed
that the densities pj(t) were known, and we derived general expressions for AUC
that are independent of the specific form of the densities and for the specific case of
a normal probability law. When t is a complicated function of g, we may not know
its densities or even its moments. We may, however, know pr(g|Hj) from the basic
physics of the image-formation process and knowledge of the signal and background
statistics. We shall now develop expressions for AUC in terms of integrals over g
rather than ones over t.

If we again define pr(t|Hj) ≡ pj(t) and also define the shorthand qj(g) ≡
pr(g|Hj), (13.10) becomes

pj(t) =

∫

∞
dMg qj(g) δ[t− T (g)] . (13.35)

The 1D delta function defines an (M−1)-dimensional surface in the M -dimensional
data space; all points on this surface have T (g) = t and hence contribute to the
probability density on t at the same t.

From (13.28) and (13.35), we have

AUC =

∫ ∞

−∞
dtc

∫ ∞

−∞
dy

∫

∞
dMg q1(g) δ[tc−T (g)]

∫

∞
dMg′ q2(g

′) δ[y−T (g′)] step(y−tc) .

(13.36)
The delta functions allow us to perform the integrals over tc and y, with the result

AUC =

∫

∞
dMg

∫

∞
dMg′ q1(g) q2(g

′) step[T (g′)− T (g)] . (13.37)

Note that if we replace T (g) with T ′(g) = h[T (g)], where h(x) is a monotonically in-
creasing function, then the step function remains unchanged: if step[T (g′)−T (g)] =
1 for some set of values of g and g′, then step[T ′(g′)− T ′(g)] = 1 for precisely this
same set. Thus AUC is unchanged by a monotonic point transformation of the
data.

If we express the step function in terms of its Fourier transform, as given in
(3.163), we obtain

AUC =
1

2
+

1

2πi
P
∫ ∞

−∞

dξ

ξ

∫

∞
dMg

∫

∞
dMg′ q1(g) q2(g

′) exp{2πiξ [T (g′)− T (g)]}

=
1

2
+

1

2πi
P
∫ ∞

−∞

dξ

ξ
〈exp [−2πiξT (g)]〉1 〈exp [2πiξT (g′)]〉2

=
1

2
+

1

2πi
P
∫ ∞

−∞

dξ

ξ
ψt1(ξ)ψ

∗
t2(ξ) , (13.38)
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where we have again made use of the definition of the characteristic function (C.53)
in the last line. The final form of (13.38) is identical to (13.31); AUC can be
obtained by computing expectations over either the probability density on g or the
one on t.

2AFC interpretations The area under the ROC curve has another interesting inter-
pretation. Consider an experiment where an observer is presented with two data
sets g and g′ simultaneously, where g is drawn from pr(g|H1) and g′ is drawn from
pr(g|H2). The observer’s task is to choose the image from class 2. This experimental
paradigm, called the two-alternative forced-choice method, or 2AFC procedure,
is often used in studies of human performance (see Sec. 14.2.3).

To make a decision, the observer computes two test statistics T (g) and T (g′),
and the data vector that gives the higher value is assigned to H2. This assignment
is correct if T (g′) > T (g). Thus the probability of a correct decision is

Pr(correct) = Pr[T (g′) > T (g)] =

∫

∞
dMg

∫

∞
dMg′ q1(g) q2(g

′) step[T (g′)− T (g)] ,

(13.39)
which, by (13.37), is AUC. For any test statistic, the probability of a correct decision
in a 2AFC experiment is the AUC for that observer.

A similar interpretation applies to (13.28). If we denote the test statistics by
t = T (g) and y = T (g′), the 2AFC decision is correct if t > y, and (13.28) gives the
probability of this event.

Linear discriminants When the test statistic is linear in the data, as in (13.9),
(13.37) becomes

AUClin =

∫

∞
dMg

∫

∞
dMg′ q1(g) q2(g

′) step[wt(g′ − g)] . (13.40)

The change of variables g′′ = g′ − g yields

AUClin =

∫

∞
dMg

∫

∞
dMg′′ q1(g) q2(g+ g′′) step(wtg′′)

=

∫

∞
dMg′′ [q1 ' q2](g

′′) step(wtg′′) , (13.41)

where [q1 ' q2](g′′) denotes a multidimensional cross-correlation integral with shift
g′′. This equation shows that AUClin can be found by cross-correlating q1 and q2
and then integrating the result over the half-space wtg > 0.

The similarity in form between (13.29) and (13.41) should be noted; (13.29)
holds for an arbitrary discriminant function (but requires the probability densities
for that function), while (13.41) holds specifically for a linear discriminant and re-
quires knowledge of the data densities.

With a linear discriminant, we can also relate AUC to the multivariate char-
acteristic functions for g, defined by (see Sec. 8.1.4)

ψgj(ρ) ≡
∫

∞
dMg qj(g) exp(−2πiρtg) , (13.42)
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where ρ is the M -dimensional frequency vector conjugate to the data vector g. We
can relate the characteristic function for the scalar test statistic t to the character-
istic function for the MD data vector g via

ψtj(ξ) =

∫

∞
dt pj(t) exp(−2πiξt) =

∫

∞
dt

∫

∞
dMg δ[t− T (g)] pr(g|Hj) exp(−2πiξt)

=

∫

∞
dMg pr(g|Hj) exp(−2πiξwtg) = ψgj(wξ) , (13.43)

where we have used (13.19), (13.35), and the sifting property of the delta function.
Thus, in the case of a linear discriminant, we see that the characteristic function
of the test statistic is determined by the characteristic function of the data along
a line through the origin and parallel to w in the MD Fourier space. For linear
discriminants, (13.38) becomes

AUClin =
1

2
+

1

2πi
P
∫ ∞

−∞

dξ

ξ
ψg1(wξ)ψ

∗
g2(wξ) . (13.44)

Another way of interpreting this result is to say that all we need to calculate AUClin

are integrals of the data densities q1 and q2 over (M − 1)D hyperplanes normal to
w. By the MD central-slice theorem (4.178), integral of an MD density over these
hyperplanes gives information about the Fourier transform of the density along the
line specified in (13.43). With nonlinear discriminants, the central-slice theorem
does not provide any assistance; we need integrals over (M − 1)D surfaces defined
by constant T (g) rather than integrals over hyperplanes.

In practice, we can often simplify the computation of AUClin greatly by real-
izing that a linear discriminant wtg is univariate normal if g is multivariate normal.
Even if g follows some other probability law, the output of a linear discriminant
acting on the data can often be assumed to approximate a univariate normal law
by the central-limit theorem (see Sec. 8.3.4). Then we can use the expression given
in (13.19) for SNRt with confidence. Thus it is almost always safe to compute AUC
from SNRt for a linear discriminant, though it is useful to check the assumption by
plotting histograms of t.

Linear discriminants with independent additive noise We can be more specific about
the AUC of a linear discriminant if we can assume that the noise is additive and
independent of the signal. In that case, we can write:

pr(g|H2) =

∫

∞
dMs pr(g|H2, s) pr(s) =

∫

∞
dMs pr(g− s|H1) pr(s) . (13.45)

Since this is an MD convolution, its Fourier transform yields

ψg2(ρ) = ψg1(ρ)ψs(ρ) , (13.46)

where ψs(ρ) is the characteristic function of the signal. Thus (13.44) becomes

AUClin =
1

2
+

1

2πi
P
∫ ∞

−∞

dξ

ξ
ψ∗
s (wξ) |ψg1(wξ)|2 . (13.47)

Note that ψ(ρ) = ψ∗(−ρ) for any characteristic function since it is the Fourier
transform of a real function. Thus |ψg1(wξ)|2 is an even function of ξ, and the
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integral in (13.47) vanishes unless ψs(wξ) has an odd component.
One situation where we can readily identify the odd component of ψs(wξ) is

when the signal is nonrandom and known exactly. In that case,

pr(s) = δ(s− s0) , ψs(ρ) = exp(−2πist0ρ) . (13.48)

Only the odd component of ψs(ρ) contributes to the integral in (13.47), so

AUClin =
1

2
+

1

2π

∫ ∞

−∞
dξ

sin(2πst0wξ)

ξ
|ψg1(wξ)|2 . (13.49)

The principal-value indicator P is no longer necessary, and the expression is patently
real.

As st0w → ∞, the factor sin(2πst0wξ)/ξ approaches πδ(ξ) [cf. (2.44)], so
AUClin → 1; strong, nonrandom signals can be perfectly detected by any linear
discriminant not orthogonal to the signal. If st0w is small, on the other hand, then

AUClin ≈ 1

2
+ st0w

∫ ∞

−∞
dξ |ψg1(wξ)|2 . (13.50)

This expression shows, not surprisingly, that AUClin → 1
2 as st0w → 0, which occurs

either for weak signals or for a linear discriminant orthogonal to the signal.

13.2.6 The likelihood ratio and the ideal observer

We have defined AUC and related figures of merit for classification, and these
metrics provide a basis for the optimization of classification performance. We shall
now explore several optimization strategies and show that all optimization roads
lead to the ideal or Bayesian observer.

Minimum average cost One possible decision strategy is to formulate a test statistic
that minimizes the overall average cost or Bayes risk of making a decision. The
average cost given in (13.7) can be written in the binary case as

C = C22 Pr(D2|H2) Pr(H2) + C12 Pr(D1|H2) Pr(H2)

+C21 Pr(D2|H1) Pr(H1) +C11 Pr(D1|H1) Pr(H1) . (13.51)

The probability of making decision Di when hypothesis Hj is true can be
written as an integral over the M -dimensional data space:

Pr(Di|Hj) =

∫

Γi

dMg pr(g|Hj) , (13.52)

where Γi defines the observation region over which a decision is made in favor of
Hi (see Fig. 13.2). The average cost can thus be written in terms of integrals over
the regions Γ1 and Γ2:

C = C22 Pr(H2)

∫

Γ2

dMg pr(g|H2) + C12 Pr(H2)

∫

Γ1

dMg pr(g|H2)

+C21 Pr(H1)

∫

Γ2

dMg pr(g|H1) + C11 Pr(H1)

∫

Γ1

dMg pr(g|H1) . (13.53)
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To minimize the overall cost is to choose an optimal division between the regions
Γ1 and Γ2.

We can use the fact that

Pr(D2|H2) + Pr(D1|H2) = 1 , (13.54)

and that the regions are nonoverlapping and complete to say
∫

Γ2

dMg pr(g|H2) +

∫

Γ1

dMg pr(g|H2) = 1 . (13.55)

We can then rewrite the average cost as a function of region Γ2 only:

C = C12 Pr(H2) + C11 Pr(H1)

+

∫

Γ2

dMg [(C21 − C11) Pr(H1) pr(g|H1)− (C12 − C22) Pr(H2) pr(g|H2)] . (13.56)

The first two terms in the cost function are constants, leaving the integral to
be minimized by choice of the region Γ2. This is done by choosing to include in
the region only that portion of the observation space for which the integrand is
negative. Thus the region Γ2, where H2 is chosen, is the region for which

(C12 − C22) pr(g|H2) Pr(H2) > (C21 − C11) pr(g|H1) Pr(H1) , (13.57)

where we have assumed that the cost of making an error is greater than the cost
of a correct decision, so (C12 − C22) and (C21 − C11) > 0, and we made use of the
knowledge that all PDFs are nonnegative. The decision rule is then to choose H2

when
pr(g|H2)

pr(g|H1)
>

(C21 − C11) Pr(H1)

(C12 − C22) Pr(H2)
. (13.58)

Otherwise, choose H1.
The quantity pr(g|H2)/ pr(g|H1) is called the likelihood ratio and is often

written Λ(g). It is a scalar random variable that depends on the data vector g. In
terms of Λ(g), the decision rule becomes

Λ(g)
D2

>
<
D1

(C12 − C22) Pr(H2)

(C21 − C11) Pr(H1)
. (13.59)

This inequality is to be read “decide hypothesis H2 true whenever the greater-than
sign holds; decide hypothesis H1 when the less-than sign holds.”

We have found the region Γ2 that minimizes the average cost of (13.51). The
resulting minimum average cost is called the Bayes risk, and this decision criterion
is called the Bayes criterion. A detector that uses this criterion to do signal detec-
tion is called a Bayesian detector.

The overall average cost is determined by repeated decision-making trials.
Thus the performance of the Bayesian detector that minimizes this value is de-
termined using frequentist methods.3 Similarly, AUC and all measures derived
from it are found by keeping score in frequentist fashion.

3Recall from Sec. 13.1 that a hard-nosed Bayesian would not use the Bayes criterion. Strict
Bayesians resist the last averaging step, relying instead on the cost determined from the posterior
as represented in the second row of Table 13.1.
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Minimum-error detector The costs Cij can be quite difficult to know. Many times
they are determined in some ad hoc manner. As a result, it is often desirable to find
a decision rule that minimizes the average probability of error, which is equivalent
to maximizing the AUC. The probability of error in the binary decision problem is
given by

Pe = Pr(D1|H2) Pr(H2) + Pr(D2|H1) Pr(H1) . (13.60)

Comparing (13.60) to (13.51), we discover that minimizing the probability of error
is equivalent to minimizing the average cost, provided no costs are associated with
correct decisions, and each kind of error is assigned an equal cost. From (13.59) we
ascertain that the minimum-error decision rule is written

Λ(g)
D2

>
<
D1

Pr(H1)

Pr(H2)
. (13.61)

This decision rule tells us to choose H2 when

pr(g|H2)

pr(g|H1)
>

Pr(H1)

Pr(H2)
, (13.62)

or when
pr(g|H2) Pr(H2) > pr(g|H1) Pr(H1) , (13.63)

since Pr(Hj) and pr(g|Hj) are always positive.
We can use Bayes’ theorem,

pr(g|Hj) Pr(Hj) = Pr(Hj |g) pr(g) , (13.64)

to rewrite the condition for choosing H2 as

Pr(H2|g) pr(g) > Pr(H1|g) pr(g) (13.65)

or
Pr(H2|g) > Pr(H1|g) . (13.66)

The decision rule is to choose H2 when the a posteriori probability of H2 given
the data vector g is greater than the a posteriori probability of H1 given g. For
this reason the minimum-error criterion is also called the maximum a posteriori
probability, or MAP, criterion.

Neyman-Pearson criterion In certain applications we may wish to constrain the
false-positive fraction to be less than or equal to some level α. The Neyman-Pearson
test seeks the maximum true-positive fraction given this constraint. We now derive
the decision strategy that yields this outcome.

We want to impose the constraint that FPF = α′ ≤ α while maximizing
the TPF. We can solve this problem using Lagrange multipliers. The Lagrangian
function we want to maximize is

F = TPF + γ[α′ − FPF]

=

∫

Γ2

dMg [pr(g|H2)− γ pr(g|H1)] + γα′ . (13.67)



828 STATISTICAL DECISION THEORY

The problem is thus one of choosing the discriminant function such that the region
Γ2 results in maximum F, similar to the approach we used earlier to find the decision
rule that gives minimum average cost. For positive γ, we obtain maximum F if we
include all g in Γ2 for which pr(g|H2) > γ pr(g|H1). In other words, the Neyman-
Pearson decision boundaries are obtained by assigning to Γ2 all data for which

pr(g|H2)

pr(g|H1)
> γ . (13.68)

We see that a constraint on the likelihood ratio results. When γ < 0, a likelihood-
ratio constraint also results, of opposite sign in that instance. Since the probability
density functions are continuous, the probability that these quantities are equal is
zero, and thus we have neglected this case.

Lastly, we need a solution that satisfies the constraint FPF = α′ ≤ α. We
can rewrite the decision rule of (13.68) in terms of the likelihood ratio as

Λ(g)
D2

>
<
D1

γ , (13.69)

whereby we see that the Lagrange multiplier plays the role of a threshold for the
scalar decision variable Λ(g). The FPF can thus be expressed in terms of Λ(g) as

FPF =

∫ ∞

γ
dΛ pr[Λ(g)|H1] = α′ . (13.70)

Note that decreasing γ increases the region for which we decide in favor of H2,
which thereby increases the TPF (and, of course, the FPF). Since our goal is to
maximize the TPF while keeping FPF ≤ α, we continue to decrease γ until we run
into the α′ = α condition (we are assuming the FPF to be a continuous function of
γ). Thus the maximum TPF is obtained when the FPF equals its upper bound, α.

The particular value of α in the above derivation is arbitrary. Thus, the deci-
sion rule given by (13.69) yields maximum TPF at every predetermined FPF, and
this is equivalent to a decision rule that yields maximum AUC by virtue of (13.18).

Maximum-likelihood criterion There is one last decision criterion important to us.
This is the decision rule that results when the observer has no information about
the a priori probabilities of the hypotheses, Pr(H2) and Pr(H1), which in medical
imaging correspond to the probabilities of disease. When this is the case the observer
has no reason not to assume they are equivalent (there is no information to the
contrary, so this is the least prejudiced assumption). The decision rule under this
assumption becomes

Λ(g)
D2

>
<
D1

1 . (13.71)

We call (13.71) a maximum-likelihood criterion because we choose the hy-
pothesis which results in the greatest probability or likelihood of the data vector
given that hypothesis. This is the decision strategy that results when the observer
has the least amount of information about the decision problem.

The ideal observer We have described four decision strategies, all of the form

Choose H2 if Λ(g) > Λc , (13.72)
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where Λ(g) is the likelihood ratio and Λc is the threshold determined by the par-
ticular objective of the test. Note that the data-dependent part of the decision rule
in each case is the same. Thus all four decision strategies described above yield
the same ROC curve. The observers differ only in their choice of threshold, the
operating point along the ROC curve.

A test that can be written in the form of (13.72) is termed a likelihood-ratio
test. Any observer that performs a likelihood-ratio test properly is referred to as
an ideal observer.

What is required to perform a likelihood-ratio test properly? Looking back at
our four test strategies, we see that the ideal observer must have no internal noise
mechanism that would further corrupt the data. It must know the threshold and
maintain it exactly at that level on each trial. Most importantly, it must have all
the information necessary to formulate pr(g|Hj), including descriptions of the ob-
jects to be classified and complete information regarding the measurement process
and the noise statistics.

In the previous subsections we have seen how particular choices of threshold
result in minimum-Bayes risk or minimum-error performance for the ideal observer.
These are just two operating points on the same ROC curve. These operating points
are determined by the particular values of the priors and decision costs that enter
into the calculation of the threshold. Since the ideal observer is optimal for every
choice of costs Cij in (13.59), it is optimal at all operating points. In other words,
the ideal observer is that observer that achieves maximum TPF for any specified
FPF. It follows that the ideal observer achieves maximum AUC of all observers.
AUC is a widely-used figure of merit for summarizing ideal-observer performance
among scientists studying image quality, since figures of merit that require the
specification of the operating point depend on the costs and priors assigned by the
various users of the system and are therefore fairly arbitrary.

Monotonic transformations and performance of the ideal observer Since monotonic
transformations of the discriminant function do not affect decision outcomes, an
observer that uses a monotonically transformed version of the likelihood ratio is
also called an ideal observer. In particular, when the data statistics are normal,
the log-likelihood ratio, denoted λ(g) or just λ, is often found to be an easier test
statistic to work with. Since the decision outcomes are unchanged, AUCλ = AUCΛ.
Therefore, dA, as defined in (13.21), is also invariant to whether the likelihood ra-
tio or the log-likelihood ratio is used as the test statistic. On the other hand, the
SNR computed from (13.19) is very much dependent on the statistical properties
of the decision variable. Thus SNRλ may be quite different from SNRΛ. An SNR
computed from (13.19) is useful only when the decision variable is approximately
Gaussian; otherwise it can be very misleading as a summary measure of observer
performance.

In the same spirit, image processing does not affect the ideal observer’s AUC,
so long as the processing operation is invertible in the sense that the original data
before processing are recoverable. When it is not invertible, the processing may re-
duce the ideal observer’s AUC. Alternatively, post-processing cannot improve ideal-
observer performance. By definition the ideal observer operates optimally on the
data to achieve the maximum AUC for the specified classification task, so if any
algorithm is useful, she will use it.
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To see the invariance of the ideal observer to post-processing, let y = Bg
represent the output of an invertible processing operation applied to the data. Since
the data are random, y is also a random vector in the range of B. The PDF on y
is given by

pry(y) = pry(Bg) =
prg(g)

|J | , (13.73)

where J is the Jacobian of the transformation [see (C.102)], assumed to be nonzero
for all g.

An ideal observer who has only y to perform the classification task forms the
likelihood ratio in y-space:

Λ(y) =
pry(y|H2)

pry(y|H1)
=

prg(g|H2)

prg(g|H1)
= Λ(g) (13.74)

since the Jacobians cancel. Thus the performance of an ideal observer given only y

is identical to the performance of an ideal observer with access to the original data
g. This conclusion is true whether B is linear or nonlinear and whether g and y

are continuous or discrete; all we require is that the dimensionality of g equal the
dimensionality of y and the transformation from g to y be invertible.

13.2.7 Statistical properties of the likelihood ratio

Knowledge of the PDFs on Λ or λ is required to calculate the TPF and FPF at
each threshold and thus compute AUC. We shall now show that the particular form
of the ideal observer’s discriminant function leads to some interesting and useful
relationships between its moments under each hypothesis.

The likelihood ratio is the ratio of the two densities q2(g) and q1(g). These
same densities are the ones needed to compute moments of Λ under the two hy-
potheses. The general (k + 1)th moment of Λ under H1 is given by

〈
Λk+1

〉
1
=

∫

∞
dMg q1(g)

[
q2(g)

q1(g)

]k+1

=

∫

∞
dMg q2(g)

[
q2(g)

q1(g)

]k
=
〈
Λk
〉
2
. (13.75)

This relationship is true for any task, regardless of the form of the PDF on Λ,
simply by virtue of the special form of the ideal discriminant function.

It follows immediately from (13.75) that the mean of Λ under H1 is always 1,
since

〈Λ〉1 =

∫

∞
dMg q1(g)

q2(g)

q1(g)
=

∫

∞
dMg q2(g) = 1 . (13.76)

The variance of Λ under H1 is given by

Var(Λ|H1) = 〈Λ2〉1 − Λ
2
1 = Λ2 − 1 . (13.77)

Since Λ = eλ, we can use (13.75) to write a similar relationship for the moments
of λ: 〈

e(k+1)λ
〉

1
=
〈
ekλ
〉
2
. (13.78)

This relationship holds for all k, including complex values, so long as the expecta-
tions exist.
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From the definition of the moment-generating function (C.56), we see that the
moment-generating function of λ evaluated at k = β + 1 under H1 is the moment-
generating function of λ evaluated at k = β under H2:

M1(β + 1) = M2(β) , (13.79)

where β is an arbitrary complex number. This property has been shown by Swensson
and Green (1977) to be unique to log-likelihood ratios. It is left as an exercise for
the reader to show how M1(β) can be used to generate moments of both λ and Λ
under both hypotheses.

A corresponding relation for the characteristic functions for λ can be found
from (13.79) and (C.53) to be

ψλ1

(
ξ +

i

2π

)
= ψλ2(ξ) . (13.80)

The densities p1(λ) and p2(λ) can then be related by an inverse Fourier transfor-
mation of (13.80):

p2(λ) = F−1{ψλ2(ξ)} =

∫ ∞

−∞
dξ ψλ1

(
ξ +

i

2π

)
exp(2πiξλ)

= eλ
∫ ∞+ i

2π

−∞+ i
2π

dz ψλ1(z) exp(2πizλ) , (13.81)

where z = ξ + i/(2π). If ψλ1(z) is analytic in the strip 0 ≤ Im(z) ≤ 1/(2π), we can
shift the contour to obtain (see Barrett et al. 1998b, App. A)

p2(λ) = eλ
∫ ∞

−∞
dz ψλ1(z) exp(2πizλ) = eλp1(λ) . (13.82)

The shift is allowed as long as 〈Λ〉2 is finite.
We can now use (13.82) to find a relation between the densities for Λ under

the two hypotheses. From (C.45) we know the transformation of the probability
density functions is given by

pj(λ) =
pr(Λ|Hj)

|dλ/dΛ| , (13.83)

where the Jacobian |dλ/dΛ| is the same under H1 and H2. Then we have

pr(Λ|H2) = eλ pr(Λ|H1) = Λpr(Λ|H1) . (13.84)

Another way of writing (13.84) is

pr(Λ|H2)

pr(Λ|H1)
= Λ . (13.85)

Green and Swets (1966) describe this result by stating, “To paraphrase Gertrude
Stein, the likelihood ratio of the likelihood ratio is the likelihood ratio.” The rev-
elation of (13.85) is that all the information necessary for discriminating between
H2 and H1 is contained in Λ. In statistical terminology, the likelihood ratio is said
to be a sufficient statistic for the task.
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Likelihood-generating function We have considered various ways of computing AUC,
depending on the knowledge we have of the form of the probability law on the data
or the test statistic. In this section we introduce the concept of the likelihood-
generating function, which will provide us with another avenue for obtaining ap-
proximations for AUC.

The relationship between the density functions given in (13.82) tells us that
one function is sufficient to specify both p2(λ) and p1(λ). In terms of this arbitrary
function, which we shall call f(λ), we have

p2(λ) = eλ/2f(λ) and p1(λ) = e−λ/2f(λ) . (13.86)

The characteristic function of λ can be written in terms of f(λ):

ψλ2(ξ) = F

(
ξ +

i

4π

)
and ψλ1(ξ) = F

(
ξ − i

4π

)
. (13.87)

The moment-generating functions on λ can be rewritten in terms of this function:

M2(β) = FL

(
β + 1

2

)
and M1(β) = FL

(
β − 1

2

)
, (13.88)

where FL(β) is the two-sided Laplace transform of f(λ) [see (4.77) and (C.59)].
The normalization of the moment-generating function requires thatMj(0) = 1,

so that FL(± 1
2 ) = 1. Normalization of the characteristic function requires ψλj(0) =

1, so that F (±i/4π) = 1. We can enforce these constraints by rewriting the char-
acteristic function and moment-generating function in terms of new functions A(ξ)
and G(β):

F (ξ) = exp

[(
ξ +

i

4π

)(
ξ − i

4π

)
A(ξ)

]
(13.89)

and
FL(β) = exp

[(
β + 1

2

) (
β − 1

2

)
G(β)

]
, (13.90)

where G(β) is the likelihood-generating function. It is straightforward to show
the following relationship between these new functions:4

A(ξ) = −4π2G(2πiξ) . (13.91)

In terms of G(β) the moment-generating functions under each hypothesis are

M2(β) = exp
[
β(β + 1)G

(
β + 1

2

)]
and M1(β) = exp

[
β(β − 1)G

(
β − 1

2

)]
.

(13.92)
The characteristic function for λ under each hypothesis is given in terms of the
likelihood-generating function by

ψλ2(ξ) = exp
[
−4π2ξ

(
ξ + i

2π

)
G
(
2πiξ − 1

2

)]
and

ψλ1(ξ) = exp
[
−4π2ξ

(
ξ − i

2π

)
G
(
2πiξ + 1

2

)]
. (13.93)

4The difference in sign between the argument in this expression and that found in (5.7) of Barrett
et al. (1998b) is the result of the difference between their definition of the Laplace transform and
the one given in (4.77).
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Fig. 13.9 The function M1(β), which passes through unity at β = 0 and
β = 1.

Figure 13.9 contains a plot of M1(β) as a function of β for real β. From (13.92)
we know the value of the function at β = 1

2 defines G(0).
We can make use of Marcinkiewicz’s theorem, presented in Shiryayev (1984),

to draw a conclusion regarding the form of G(β). By this theorem, when a char-
acteristic function has the form exp(P ), where P is a polynomial, the order of the
polynomial cannot exceed 2. Thus G(β) cannot be a polynomial (other than a
polynomial of order 0, where G(β) is a constant).

Since all moments of the likelihood ratio are determined byG(β), the likelihood-
generating function determines the statistics of the likelihood ratio under both hy-
potheses. We can apply (C.54) to (13.92) to determine the moments of λ in terms
of G(β). We leave it to the reader to show that

λ2 = G
(
1
2

)
and λ1 = −G

(
− 1

2

)
,

Var(λ|H2) = 2
[
G
(
1
2

)
+G′

(
1
2

)]
and Var(λ|H1) = 2

[
G
(
− 1

2

)
−G′

(
−1

2

)]
.

(13.94)
With these moments we can write the SNR for the log-likelihood ratio in terms of
G(β):

SNR2
λ =

[
G
(
1
2

)
+G

(
− 1

2

)]2

G
(
1
2

)
+G

(
−1

2

)
+G′

(
1
2

)
−G′

(
− 1

2

) . (13.95)

For a Gaussian test statistic we can obtain AUC from (13.95) via (13.20).
Note that (13.95) takes on a particularly simple form if G′(1/2) ≈ G′(−1/2).

When we can make this assumption,

SNR2
λ = G

(
−1

2

)
+G

(
1
2

)
≈ 2G(0) . (13.96)

Clarkson and Barrett (2000) have found that values of ideal-observer AUC
derived from 2G(0) are more accurate than those derived from the SNR given in
(13.19) for non-Gaussian noise models, including Poisson, and one- and two-sided
exponential models.

Setting β = 1
2 in (13.92) gives G(0) = −4 lnM1(

1
2 ). Thus the SNR of (13.96)

can be computed directly from the probability density functions on the data ac-
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cording to

G(0) = −4 lnM1

(
1
2

)
= −4 ln〈Λ 1

2 (g)〉1

= −4 ln

{∫
dMg

[
q2(g)

q1(g)

] 1

2

q1(g)

}

= −4 ln

{∫
dMg [q1(g) q2(g)]

1

2

}
≡ 4dB ,

(13.97)
where dB is the Bhattacharyya distance between the probability densities on the
data under the two hypotheses (Bhattacharyya, 1943).

A complete description of the performance of any observer is contained in the
general expression for AUC of (13.38), which holds for any test statistic. For the
special case of the ideal observer, we can rewrite this expression in terms of the
characteristic function for the log-likelihood ratio under H1:

AUC =
1

2
+

1

2πi
P
∫ ∞

−∞

dξ

ξ
ψλ1(ξ)ψλ1

(
−ξ + i

2π

)
, (13.98)

where we have made use of (13.80) and the Hermiticity of the characteristic function.
By moving the contour of integration, (13.98) becomes (Barrett et al., 1998b)

AUC = 1 +
1

2πi

∫ ∞

−∞

dξ

ξ + i
4π

ψλ1

(
ξ +

i

4π

)
ψλ1

(
−ξ + i

4π

)
. (13.99)

We can write (13.99) in terms of F (ξ) using (13.87):

AUC = 1 +
1

2πi

∫ ∞

−∞

dξ

ξ + i
4π

F (ξ)F (−ξ) . (13.100)

Substituting the expression for F (ξ) given in (13.89) and doing some algebra yields

AUC = 1 +
1

2πi

∫ ∞

−∞

dξ

ξ + i
4π

exp

{(
ξ2 +

1

16π2

)
2Re[A(ξ)]

}
, (13.101)

where we have made use of the fact that A(−ξ) +A(ξ) = 2Re[A(ξ)]. The relation-
ship between A(ξ) and G(ξ) given in (13.91) leads finally to

AUC = 1 +
1

2πi

∫ ∞

−∞

dξ

ξ + i
4π

exp

{
−8π2

(
ξ2 +

1

16π2

)
2Re[G(2πiξ)]

}
. (13.102)

Thus the values of the likelihood-generating function along the imaginary axis de-
termine AUC.

Bounds on AUC We have seen that the single value G(0) can be used to derive
AUC with the approximation above (13.96). It has also been shown that G(0)
establishes a lower bound on AUC with no approximation (Barrett et al., 1998b).
Additional bounds on AUC have been derived that may help to bracket ideal-
observer performance for tasks where exact calculation of AUC is difficult (Shapiro,
1999; Clarkson, 2002). An active area of research continues to be the development
of approximations and bounds for AUC for use in system optimization for more
realistic noise and object models.
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13.2.8 Ideal observer with Gaussian statistics

We now consider the decision problem of discriminating between two nonrandom
signals in additive Gaussian noise. This is the so-called SKE/BKE (signal-known-
exactly/background-known-exactly) problem. While this level of knowledge about
the object is unrealistic in practice, it provides a useful starting place for understand-
ing the theory of signal detection and the calculation of ideal decision strategies.

Let the first hypothesis, H1, denote that a single, nonrandom object f1 is
present at the input. Under the second hypothesis, H2, a different, but nonrandom,
object f2 is present. Under each hypothesis we then have:

H1 : g = Hf1 + n = s1 + n

H2 : g = Hf2 + n = s2 + n , (13.103)

where the signal sj is the MD data-space vector resulting from the imaging opera-
tor acting on the object-space vector fj . These signals are assumed to be real and
known (though it is not known which of the two is present), and they are nonran-
dom since the two possible objects are nonrandom.

We shall now derive expressions for the ideal-observer test statistic and associ-
ated figures of merit for this problem for both correlated and uncorrelated Gaussian
noise. Non-Gaussian noise is treated in Sec. 13.2.9.

Independent, identically distributed Gaussian noise As a simple example, assume
that the noise corrupting the data is zero-mean, independent, identically distributed
(i.i.d.) Gaussian with variance σ2 for each data component. The conditional prob-
ability density function for each component is then

pr(gm|Hj) =

(
1

2πσ2

) 1

2

exp

[
− (gm − sjm)2

2σ2

]
. (13.104)

The noise samples are statistically independent, which tells us that the conditional
PDF on the data vector g is simply the product of the densities of the components.
Thus the PDF on the data vector under the jth hypothesis can be written as follows:

pr(g|Hj) =

(
1

2πσ2

)M
2

M∏

m=1

exp

[
− (gm − sjm)2

2σ2

]
. (13.105)

Using this expression for the conditional PDF on the data vector and the definition
of the likelihood ratio below (13.58), we can write Λ(g) as

Λ(g) =
pr(g|H2)

pr(g|H1)
=

∏M
m=1

√
2πσ2 exp

[
− (gm−s2m)2

2σ2

]

∏M
m=1

√
2πσ2 exp

[
− (gm−s1m)2

2σ2

] . (13.106)

The ideal decision rule is to evaluate this expression and compare it to a
threshold Λc. We can simplify this expression by first cancelling the common terms
in the numerator and denominator to get

Λ(g) =
M∏

m=1

exp

[
(s2m − s1m)gm

σ2
− s22m − s21m

2σ2

] D2

>
<
D1

Λc . (13.107)
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Since the natural logarithm is a monotonic function, we can construct an equivalent
test by taking the log of both sides of this expression to give

lnΛ(g) = λ(g) =
M∑

m=1

(s2m − s1m)gm
σ2

− s22m − s21m
2σ2

D2

>
<
D1

lnΛc = λc . (13.108)

The threshold is the logarithm of Λc, which we have rewritten as λc. We can go
one step further and combine the constant term relating the nonrandom difference
in the signal energies into the threshold, giving the new decision rule:

M∑

m=1

(s2m − s1m)gm

D2

>
<
D1

λ′c . (13.109)

This expression gives the well-known “matched-filter” discriminator in which the
expected signal is used as a filter that is correlated5 with the data. Since the signal
is known exactly, the filtering operation is performed with the data and the filter
perfectly aligned; no relative shift between filter and data is implied. Matched
filtering has long been known as the optimal strategy for the detection of known
signals buried in Gaussian noise (North, 1943; Van Vleck and Middleton, 1946;
Zadeh and Ragazzini, 1952).

We can rewrite (13.109) using vector notation as

∆stg
D2

>
<
D1

λ′c , (13.110)

where ∆s is the expected difference signal s2 − s1, and we have assumed that the
data and expected signals are real.

Correlated Gaussian noise The covariance matrix under the jth hypothesis is defined
to be

Kj = 〈(g− sj)(g− sj)
t|Hj〉 = 〈nnt〉 , (13.111)

where the angle brackets denote an average over all possible noise realizations for a
given hypothesis with known signal sj , and we have again assumed that the noise
and signals are real. We see immediately from (13.111) that K1 = K2, because the
noise is independent of the signal.6 We can therefore drop the hypothesis-specific
subscript on the covariance matrix in the discussion that follows and refer to it as
Kn, where the subscript n refers to the noise.

The probability density function on g under the jth hypothesis is the multi-
variate Gaussian [cf. (8.185)]

pr(g|Hj) =
[
(2π)M det(Kn)

]− 1

2 exp
[
− 1

2 (g− sj)
t K−1

n (g− sj)
]
, (13.112)

5Though the term “correlation filter" is commonly used for a matched filter, we note that (13.109)
is just a scalar product, not a correlation. The confusion arises since scanning matched filters are
often used with signals whose form is known but whose spatial or temporal location is not. In
that case, the matched filter is not optimal, even with i.i.d. Gaussian noise. For more details see
Sec. 13.2.10.
6Two random variables that have the same variance, or two random vectors that have the same
covariance, are said to be homoscedastic. The word derives from the ancient Greek verb skedanumi

(σκεδανoυµι), meaning “scatter." A related word is diaskedanumi, which can mean “throw the
troubles out, entertain, have fun." In many statistical problems, homoscedasticity is more fun
than heteroscedasticity. (Thanks to Mary Ruddick for assistance with ancient Greek etymology.)
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where det(Kn) is the determinant of the matrix Kn.
The likelihood ratio test follows:

Λ(g) =
exp

[
− 1

2 (g− s2)t K−1
n (g− s2)

]

exp
[
− 1

2 (g− s1)t K
−1
n (g− s1)

]
D2

>
<
D1

Λc . (13.113)

The log-likelihood ratio is then

λ(g) = 1
2 (g− s1)

t K−1
n (g− s1)− 1

2 (g− s2)
t K−1

n (g− s2)

= 1
2

[
gtK−1

n (s2 − s1) + (s2 − s1)
tK−1

n g+ st1K
−1
n s1 − st2K

−1
n s2

]
. (13.114)

The ideal observer evaluates this expression and compares it to the threshold λc to
make its decision. We can form an equivalent test by incorporating the last two
terms into the threshold, since they are scalars independent of the data, and make
use of the fact that the covariance matrix is symmetric, to obtain this form for the
ideal decision strategy:

∆stK−1
n g = λ′(g)

D2

>
<
D1

λ′c . (13.115)

Equation (13.115) describes the operations an ideal observer would perform to
decide which hypothesis was responsible for the received data. First the data vector
is filtered by the inverse of the covariance matrix. The output of this operation is
then correlated with the difference signal, ∆s, a matched-filter operation like that
found in (13.110). The correlation function is evaluated at zero shift because the
ideal observer makes use of the a priori information that the signal is at a known
location in the object; we can assume without loss of generality that the signal
location is the origin.

SNR and AUC in the Gaussian case The expression for the log-likelihood ratio in
(13.115) was derived under the assumption that the data are multivariate normal
with K1 and K2 equal. The decision variable is a linear transformation of the data,
and since linear transformations of Gaussian random variables are Gaussian random
variables, we conclude that λ′(g) must also be Gaussian. Thus we can confidently
use the expression for SNR given in (13.19) as a measure of the test performance.
We shall now determine the SNR for this case, dropping the prime on the decision
variable to avoid clutter in the equations that follow.

To derive SNRλ, we must first find the mean of λ(g) under each hypothesis:

〈λ(g)|Hj〉 = 〈∆stK−1
n g|Hj〉 = ∆stK−1

n sj . (13.116)

The variance of λ(g) under the jth hypothesis is

σ2
λ = 〈[λ(g)− 〈λ(g)|Hj〉]2|Hj〉 = 〈λ2(g)|Hj〉 − 〈λ(g)|Hj〉2

= 〈∆stK−1
n ggtK−1

n ∆s|Hj〉 −∆sK−1
n sjs

t
jK

−1
n ∆s

= ∆stK−1
n ∆s , (13.117)

which is independent of the hypothesis, as we would expect.
Now we can put all the pieces together to write down the expression for SNR2

λ:

SNR2
λ =

[
∆stK−1

n s2 −∆stK−1
n s1

]2

σ2
λ

=

[
∆stK−1

n ∆s
]2

∆stK−1
n ∆s

= ∆stK−1
n ∆s . (13.118)
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As we should expect, the performance of the observer depends only on the difference
in the two signals and the noise covariance.

In the special case where the noise in the data is uncorrelated, the covariance
matrix can be written [Kn]mm′ = σ2

m δmm′ and the SNR becomes

SNR2
λ =

M∑

m=1

[∆sm]2

σ2
m

. (13.119)

If, in addition, the noise variance is uniform (σm = σ for all m), this expression
further simplifies to

SNR2
λ =

1

σ2

M∑

m=1

[∆sm]2 =
||∆s||2

σ2
. (13.120)

In this case the form of the signal does not enter into the SNR expression; all that
matters is the norm of the difference signal relative to the noise variance.

Likelihood-generating function for Gaussian data The SNR given in (13.118) can be
used to determine AUC exactly via (13.20) in this Gaussian case. Moreover, the
approximation based on G(0) given in (13.96) gives precisely the same SNR values.
These approximations are all exact for Gaussian data.

For Gaussian data the log-likelihood ratio is Gaussian because of its linear re-
lationship with g. Thus its characteristic function takes the form given in (C.116)
for scalar Gaussian random variables (although with a constant phase factor de-
termined by the mean of λ under each hypothesis). When we revisit the general
forms for the characteristic function for λ given in (13.93), we see that G(β) must
therefore be independent of β. Thus the likelihood-generating function is a constant
in the Gaussian case. All the information needed to describe the performance of
the ideal observer is contained in one number, 2G(0).

KL formulation for SKE/BKE tasks Equivalent expressions for the SNRs given in
the previous section can be written in terms of the Karhunen-Loève expansion of
the signal and data vectors. From (8.58) we can write the data as

g =
M∑

m=1

βmφm = Φβ , (13.121)

where, by (8.59), the vector of coefficients is given by β = Φ†g. For any set of
expansion vectors the β would be random variables through their linear relation-
ship to g. In the special case where we use a KL expansion, so that the φm are
the eigenvectors of the covariance matrix of the data, we know by (8.62) that the
coefficients are uncorrelated random variables. Thus we can write the covariance
matrix for the coefficients as Kβ = M, with diagonal elements µm.

We can similarly define the mean difference in the data under each hypothesis
by

∆s = ∆g = Φ∆β . (13.122)

We can use (13.122) and (8.64) to rewrite (13.118) as
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SNR2
λ = ∆stK−1

n ∆s =
[
Φ∆β

]t [
ΦM−1Φ†

] [
Φ∆β

]

=
M∑

m=1

[
∆βm

]2

µm
=

M∑

m=1

|(φm,∆s)|2

µm
. (13.123)

The last form is analogous to the result we found in (13.119) for data contaminated
by uncorrelated Gaussian noise. The KL domain is defined to be the domain where
the random vectors are uncorrelated, so the SNR in that domain always has the
form of (13.119).

Prewhitening matched filter If the noise covariance matrix Kn is nonsingular, we
can make use of (8.66) and (8.67) to define a new random variable z in terms of the

square-root matrix K
− 1

2

n :

z = K
− 1

2

n g . (13.124)

Similarly,

zj = K
− 1

2

n gj , (13.125)

so that

∆z = K
− 1

2

n ∆g = K
− 1

2

n ∆s , (13.126)

and the test statistic of (13.115) becomes

λ = ∆stK−1
n g =

[
K

− 1

2

n ∆s
]t [

K
− 1

2

n g
]
= ∆ztz . (13.127)

The covariance of z is given by

Kz =

〈[
K

− 1

2

n ∆g
] [

K
− 1

2

n ∆g
]t〉

= K
− 1

2

n KnK
− 1

2

n = I . (13.128)

We see that z is an uncorrelated Gaussian random variable with unit variance in
each element. The process represented by (13.124) is called prewhitening; it yields
a Gaussian random variable whose correlation matrix has a flat, or white, eigen-
spectrum. From (13.127) we see that the ideal decision strategy is to first prewhiten
the data and then perform a filtering operation with a prewhitened version of the
expected difference signal. This observer is therefore referred to as the prewhiten-
ing matched filter or PWMF.

The simple form for the covariance of z leads to a particularly simple form for
the SNR given in (13.118) when it is written in terms of z:

SNR2
λ = ||∆z||2 . (13.129)

13.2.9 Ideal observer with non-Gaussian data

So far we have restricted our attention to the SKE/BKE classification task in ad-
ditive Gaussian noise. We now consider the SKE/BKE classification problem for
other statistical descriptions of the measurement noise that might arise in imaging.
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Poisson noise In many photon-limited imaging situations, the probability law on
the data is Poisson (see Chap. 11). If the task is the discrimination between two
exactly-specified signals in a radiological image with only Poisson noise, the condi-
tional PDF of the data under hypothesis Hj is given by [cf. (11.40)]

pr(g|Hj) =
M∏

m=1

e−gjm [gjm]gm

(gm)!
, (13.130)

where gjm is the mean of the mth element of the data vector when hypothesis Hj

is true. When we form the likelihood ratio using (13.130) for the two hypotheses,
we find the ideal observer’s test statistic to be (Helstrom, 1964)

λ(g) =
M∑

m=1

gm ln
g2m
g1m

. (13.131)

We see that in the Poisson case the optimum operation on the data is again a linear
filtering operation, only now the filter is a nonlinear functional of the expected
signals under the two hypotheses.

We can use (13.131) to determine the signal-to-noise ratio associated with the
test statistic, according to (13.19) (Cunningham et al., 1976; Wagner et al., 1981)

SNR2 =

[∑M
m=1(g2m − g1m) ln

(
g2m

g1m

)]2

1
2

∑M
m=1(g2m + g1m) ln2

(
g2m

g
1m

) . (13.132)

The derivation of (13.132) makes use of a definition for SNR that is relevant
whenever the test statistic is a Gaussian random variable. While the data are not
assumed here to be Gaussian, the fact that λ as defined in (13.131) is a weighted
sum of random variables implies that the assumption of Gaussianity is often valid
owing to the central-limit theorem.

It is illustrative to consider the behavior of the ideal observer when certain
pixels in the image are known to have expected values equal to zero for one hypoth-
esis and nonzero for the other. From (13.131) we see that the test statistic becomes
infinite when the data in those elements are nonzero. The SNR is infinite as well,
as (13.132) confirms. This example demonstrates the tremendous power of such
complete prior information regarding the expected values in a particular pixel in
the image, information that is possible only for contrived problems in which there
is no uncertainty in the expected images under each hypothesis.

An approximation to the SNR for the Poisson noise case can be obtained by
utilizing the SNR expression for the multivariate Gaussian case given in (13.118).
Poisson noise results in a diagonal covariance matrix in which the mean of each
element specifies the variance:

[Kn]mm′ = σ2
m δmm′ = gm δmm′ , (13.133)

where we have assumed that the signal is of sufficiently low contrast that the vari-
ance in each detector element is independent of hypothesis. Substituting this form
for Kn into (13.118) yields

SNR2 =
M∑

m=1

(g2m − g1m)2

gm
=

M∑

m=1

∆g 2
m

gm
, (13.134)
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similar to (13.119). To make use of (13.118) in deriving (13.134) we are assuming
that the number of counts in each detector is greater than about 10, so that a
Gaussian approximation to the Poisson law on the data can be made (Barrett and
Swindell, 1981, 1996).

Perhaps surprisingly, even in the absence of a large number of counts per
detector element, we can obtain the same expression for the SNR given in (13.134),
provided we again assume that the signal is weak. To see this, consider the task
of detecting a low-contrast signal, in which case we can write the expected data
under hypothesis H2 as g2m = g1m + sm, with sm . g1m for all m. Then a Taylor
expansion of the logarithms in (13.132) through terms linear in the signal yields

SNR2
λ ≈

M∑

m=1

s2m
gm

, (13.135)

where gm can be either g1m or g2m to this approximation.

Exponential noise Speckle noise, found in coherent imaging applications involving
ultrasound or laser sources, is characterized by an exponential probability density
function (see Chap. 18 for more detail). If the task is the detection of a known
signal in speckle noise, where the signal affects only the mean, the conditional PDF
on the data is written [cf. (C.118)]

pr(g|Hj) =
M∏

m=1

1

gjm
exp

[
− gm
gjm

]
. (13.136)

This expression is valid in the idealized case in which the detectors are small relative
to a speckle cell and separated by a distance greater than a speckle cell, such that
the data elements are uncorrelated.

The log-likelihood ratio for this case can be shown to be

λ(g) =
M∑

m=1

(
∆gm

g1mg2m

)
gm , (13.137)

where we have dropped all terms that are independent of the data. We see that
the ideal observer again performs a matched filter on the detected data, only now
the filter is the expected difference signal normalized by the square of the geometric
mean.

We can find SNRλ by direct calculation of the relevant expectations. The mean
of λ under hypothesis Hj is

〈λ(g)〉j =
M∑

m=1

(
∆gm

g1mg2m

)
gjm . (13.138)

The variance of λ under the jth hypothesis is

σ2
j =

M∑

m=1

(
∆gm

g1mg2m

)2

(gjm)2 , (13.139)
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since we have assumed there are no correlations between the data components. The
SNR is thus

SNR2
λ =

[
∑
m

∆g 2
m

g1mg2m

]2

1
2

∑
m

∆g 2
m

(
g 2
2m + g 2

1m

)

g 2
1mg 2

2m

. (13.140)

An interesting limit is the one in which g1m ≈ g2m = gm. Then (13.140)
becomes

SNR 2
λ =

∑

m

∆g2m
g 2
m

. (13.141)

There is an interesting difference between this expression and that obtained in the
low-contrast limit for Poisson noise [see (13.135)]. For exponential noise there is no
SNR increase to be found by increasing the exposure, because this affects both the
numerator and the denominator equally. This is in contrast to the behavior found
for the low-contrast Poisson case, where an increase in exposure yields a linear
improvement in SNR2 with count density.

Log-normal In some circumstances the data can be modeled as log-normally dis-
tributed. For example, log-normal statistics have been shown to describe the statis-
tics of images that have been reconstructed from projections using nonlinear algo-
rithms (Barrett et al., 1994; see also Sec. 15.4.7).

Independent log-normal data are described by

pr(g|Hj) =
∏

m

1√
2π σjmgm

exp

[

− (ln gm − lnAm − xjm)2

2σ2
jm

]

, (13.142)

assuming the density for the random variable gm is determined by the two param-
eters xjm and σjm under hypothesis j (see Sec. C.5.9).

The log-likelihood ratio can be shown to be

λ(g) =
∑

m

ln gm

[
lnAm + x2m

σ2
2m

− lnAm + x1m

σ2
1m

]
+
∑

m

(ln gm)2
[

1

2σ2
1m

− 1

2σ2
2m

]
,

(13.143)
where we have again combined all terms independent of the data into the threshold.
If we can assume σ1m ≈ σ2m, the optimal decision variable is linear in the logarithm
of each data element. In this case the log-likelihood ratio takes the form of a matched
filter operation acting on the elements of lng, which is intuitively sensible since the
log operation recovers Gaussian data.

13.2.10 Signal variability and the ideal observer

In the previous section we assumed that the signals to be classified were known
exactly, so that the only limitation to task performance by the ideal observer was
the randomness in the data resulting from measurement noise. Let us now consider
the case where the task is the detection of a signal which is in some way random.
Under the two hypotheses the data are now given by

H1 : g = Hf1 + n = b+ n (13.144a)
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and
H2 : g = Hf2 + n = s+ b+ n . (13.144b)

In this model, when the signal is absent the data are the sum of two components:
the nonrandom (but not necessarily uniform) background b and the measurement
noise n. The background b is the image that would be obtained in the signal-
absent case in the limit of an infinite exposure time. The signal present under H2

is whatever represents the distinguishing image feature(s) between class 1 and class
2. We assume here that the presence of the signal does not occlude or alter the
background.

Both b and s are defined in the data space V. They are the result of some
unspecified deterministic mapping H that maps each object, either background-
only or signal-plus-background, to the data domain. For example, the signal might
be the image of a nodule to be detected in a detection task. The background is
whatever is left that makes up the image of the object, for example, the ribs and
other “non-nodule” structures in a chest film.

One approach to the problem of signal variability is to let s be characterized
by randomness in P of its defining parameters (Sec. 8.4). For example, s might have
known shape, but unknown amplitude or location or the signal might be a sinusoidal
pattern of unknown frequency and phase. We can define a P -dimensional vector of
random parameters θ with probability density prθ(θ). Then

H2 : g = s(θ) + b+ n . (13.145)

We assume that the statistics of n and θ are independent.
The ideal observer uses the likelihood ratio as a test statistic. To compute

this statistic we must first determine the conditional PDF of the data under each
hypothesis. The PDF of the data under the signal-absent condition is given by

pr(g|H1) = prn(g− b) , (13.146)

which is the noise probability density function centered on the background b. The
PDF of the data under the signal-present condition is a weighted average of the noise
probability density function shifted to each signal-plus-background combination,
with the weighting given by the probability of each signal as described by prθ(θ):

pr(g|H2) =

∫

∞
dPθ prn[g− b− s(θ)|θ] prθ(θ) = 〈pr(g|H2,θ)〉θ . (13.147)

The likelihood ratio is thus given by

Λ(g) =
pr(g|H2)

pr(g|H1)
=

〈pr(g|H2,θ)〉θ
pr(g|H1)

=

〈
pr(g|H2,θ)

pr(g|H1)

〉

θ

= 〈ΛSKE(g,θ)〉θ (13.148)

in the case where the signal depends on a random parameter vector.
Consider the case of independent, identically distributed Gaussian noise, so

that Kn = σ2I. Then

ΛSKE(g,θ) =

(
1

2πσ2

)M
2 exp

{
−1

2 [g− b− s(θ)]t K−1
n [g− b− s(θ)]

}

(
1

2πσ2

)M
2 exp

[
− 1

2 (g− b)t K−1
n (g− b)

]

= exp
{

1
σ2 [s(θ)]

t(g− b)− 1
2σ2 ||s(θ)||2

}
. (13.149)
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When we average (13.149) over the distribution of random parameters we obtain

Λ(g) =

∫

∞
dPθ prθ(θ) exp

{
1
σ2 [s(θ)]

t(g− b)− 1
2σ2 ||s(θ)||2

}
. (13.150)

We see from (13.150) that the decision function is no longer a linear function of the
data, even in this i.i.d. Gaussian-noise case, and the log-likelihood function is not
linear in the data either. In general, when the signal is random, the ideal observer
performs a nonlinear operation on the data.

An exception to this general rule can be found for the case of weak signals or
large noise. Suppose the energy of the signal is independent of θ, so that ||s(θ)||2 =
||s0||2. This holds, for example, if the random parameter is location and the signal
is large with respect to the detector elements. Now let the signal be sufficiently
weak that it satisfies

1

σ2
[s(θ)]t(g− b) . 1 . (13.151)

In this case we can rewrite (13.150) as

Λ(g) = exp
{
− 1

2σ2 ||s0||2
}∫

∞
dPθ prθ(θ)

{
1 + 1

σ2 [s(θ)]
t (g− b)

}

= exp
{
− 1

2σ2 ||s0||2
}{

1 + 1
σ2 s

t(g− b)
}
, (13.152)

where s = 〈s(θ)〉θ is the average signal. When we incorporate all additive and
multiplicative constants into the threshold, we find the ideal observer’s decision
function to be

Λ(g) = st(g− b) . (13.153)

The strategy is a matched filter with the expected average signal, once the known
background has been subtracted from the data. Note that this matched filter yields
the likelihood ratio, not the log-likelihood ratio as found in (13.110) and (13.115).

Example: Weak sinusoid of random frequency If the task is the detection of a weak
grating pattern of uncertain frequency, the signal contribution to the mth detector
element is given by

[s(θ)]m = cos(2πiθxm) (13.154)

when the pattern has frequency θ. If the PDF on θ is a Gaussian centered at
frequency θ0 and with variance σ2

θ , the average signal is given by

sm =

(
1

2πσ2
θ

) 1
2
∫ ∞

−∞
dθ cos(2πiθxm) exp

[
− (θ − θ0)2

2σ2
θ

]

= cos(2πθ0xm) exp
[
−2π2x2

mσ
2
θ

]
, (13.155)

which has the form of a Gabor function centered at frequency θ0, with width dictated
by σθ. It is this average signal that the ideal observer would use as a template in
the matched filter expression of (13.153). As we shall discuss in greater detail in
Chap. 14, the visual system has been shown to have frequency-selective filters or
channels of the form given in (13.155). It has been suggested that the evolution
of such channels was motivated by the need for a mechanism for detecting weak
signals of unknown scale, leading to Gabor-like channels in the visual system.
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Example: Location uncertainty Consider the problem of detecting a signal with
unknown location in uncorrelated Gaussian measurement noise. The task is to
determine whether the data do or do not contain the signal, without needing to
determine its location. Under H1 the signal is absent, and the conditional PDF of
the data (13.146) is equivalent to (13.105), where the nonrandom signal component
in that expression is now given by b. Under H2 the underlying continuous signal
s(r) is parameterized by a random location vector rs such that when the signal is
present at location rs, its contribution to the mth data element is

sm(rs) =

∫

m
d2r s(r− rs) , (13.156)

where the subscripted integral denotes an integration over the sensitive area of the
mth detector element. Using (13.105) and (13.147), the PDF of the data under H2

is given by

pr(g|H2) =

(
1

2πσ2

)M
2
∫

∞
d2rs prr(rs) exp

{

− 1

2σ2

M∑

m=1

[gm − sm(rs)− bm]2
}

.

(13.157)
The likelihood ratio is thus given by

Λ(g) ∝
∫

∞
d2rs prr(rs) exp

{
1

σ2

M∑

m=1

[gm − bm]sm(rs)

}

, (13.158)

where we have dropped all factors that are independent of the data. We see from
this expression that the ideal decision strategy in the location-uncertain problem is
to subtract the known background contribution from each pixel value, correlate with
the signal for a particular location rs, and exponentiate. The observer performs this
set of operations for each possible signal shift and averages with respect to the prior
density on signal locations.

The generalization of (13.158) to correlated Gaussian noise is straightforward,
leading to

Λ(g) ∝
∫

∞
d2rs prr(rs) exp

[
(g− b)tK−1

n s(rs)
]
. (13.159)

It is interesting to consider the weak-signal case in the presence of location
uncertainty. If the signal is equally likely to be located anywhere in the data, the
average signal is a uniform gray level. For i. i. d. Gaussian noise we see from (13.153)
or (13.159) that ideal observer uses this template to detect the signal, meaning it
simply computes the sum of the data elements to determine the total number of
counts collected and compares this to a threshold.

The decision strategy represented by (13.158) was explored by Nolte and
Jaarsma (1967), who also considered several approximations to this expression.
They showed that the integral is dominated by the point of maximum correlation
with the signal, provided the signal is equally likely at all locations [uniform pr(θ)]
and the noise variance is small. The ideal observer is approximated quite well by a
cross-correlator that compares the maximum output to a threshold in this case.

More recently, Brown et al. (1995) revisited the location-uncertainty problem
and showed that the likelihood ratio has a very non-Gaussian probability density
function, rendering the SNR expression of (13.19) invalid as a measure of perfor-
mance. Subsequently, Barrett et al. (1998a) showed that this problem is resolved if
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one makes use of the log-likelihood ratio as the ideal observer’s test statistic. They
also demonstrated that the likelihood-generating function can be used to determine
the ideal observer’s SNR for this task in terms of G(0).

One caution should be observed in making use of (13.158), in that we have
dropped a data-independent term in the exponent that is proportional to s2m, the
energy of the signal in each pixel. This quantity is independent of rs provided the
signal is large relative to the detector pixels and always within the field of view;
otherwise this quantity becomes random with signal position. When this is the case,
another component of uncertainty must be incorporated into the ideal observer’s
decision rule.

We have considered the ideal-observer strategy in the location-uncertain prob-
lem in which the task is to decide whether signal is present or absent without
providing an indication of signal position. When the location of the signal must
also be reported, the strategies discovered above are no longer optimal. The de-
tection of a signal in one of many possible signal locations can be considered to be
an L-class task, with hypotheses connected with each of the location alternatives
(potentially an infinite number of them). The ideal observer would then determine
the signal location with the greatest likelihood and compare this to the likelihood
that signal is absent in all locations, choosing to report the signal as present in
location rs or absent, depending on the observer’s threshold.

Example: Location and scale uncertainty A signal with random location rs and
random scale parameter θ can be represented by

[s(θ, rs)]m =

∫

m
d2r

(
1

θ2

)
sm

(
r− rs

θ

)
. (13.160)

Scaling the signal amplitude by 1/θ2 ensures that all signals have the same in-
tegrated value regardless of their size. The likelihood ratio in this case is given
by

Λ(g) ∝
∫

∞
d2rs

∫ ∞

0
dθ prθ(θ) prr(rs) exp

[
(g− b)tK−1

n s(θ, rs)
]
. (13.161)

We see that in this case the ideal observer performs the following steps:

1. Subtract the known background from the image.

2. Prewhiten with the noise covariance matrix K
−1

2

n .

3. Compute the inner product with the shifted, scaled, prewhitened signal.

4. Exponentiate.

5. Average over all shifts and scales.

6. Compare to a threshold.

Unequal variance and the quadratic discriminant Another model for variability in
the object is to consider a signal with known mean s, and covariance given by Ks.
This might be a reasonable model for a signal with known position, shape, and scale
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and random amplitude described by a Gaussian PDF. The likelihood ratio for the
detection of such a signal is [cf. (13.113)]

Λ =
exp

[
− 1

2 (g− s)t K−1
2 (g− s)

]

exp
[
−1

2g
tK−1

1 g
] , (13.162)

where we have dropped the normalizing constants out front, since they are indepen-
dent of the data and will therefore only affect the operating point of the observer and
not the form of the discriminant function. We have also assumed the signal-absent
image has zero mean; a nonzero mean simply requires the addition of a background
term as in previous examples. The covariance matrix on the data is now different
under the two hypotheses so we have used subscripts to label them; K1 = Kn and
K2 = Ks+Kn. Note that we are again describing the signal as a vector in the data
space.

The log-likelihood ratio test can be shown to be

λ(g) = − 1
2g

t
(
K−1

2 −K−1
1

)
g+ stK−1

2 g

D2

>
<
D1

λc , (13.163)

where we have incorporated all data-independent terms into the threshold. We see
that the inequality of the data covariance under the hypotheses results in a decision
function that is no longer linear in the data. The discriminant contains a term that
is quadratic in the data in addition to the prewhitening matched filter term.

The L-class problem Another approach to signal variability is to consider the task
to be the classification of the data into L distinct classes. For example, the classes
might represent L different signal shapes or locations. One of the L classes might
be a signal-absent alternative, but this is not required. For each random data set,
the observer chooses in favor of D", indicating the decision that hypothesis H" is
true,7 without equivocation or randomness in the decision process.

The ideal observer is defined as that observer who makes optimal use of the
available information to perform this task. Not surprisingly, the optimal strategy
in this L-class paradigm is to choose the hypothesis H" associated with a likelihood
pr(g|H") that is higher than the likelihood of the data conditioned on all competing
hypotheses (Melsa and Cohn, 1978). More generally, the ideal observer decides in
favor of the hypothesis with greatest utility, which can be defined as minimization
of Bayes risk if the costs and prevalences are known, or as maximum likelihood if
this information is not to be used.

While the optimal strategy is straightforward (in principle) in the L-class prob-
lem, the full ROC curve is an (L2 −L− 1)-parameter hypersurface in an (L2 −L)-
dimensional probability space. Thus an analog to the area under the ROC curve is
harder to determine. AUC is an appealing summary measure of binary classification
performance because it is a scalar figure of merit that is independent of prevalence
and threshold; these attributes are difficult to capture in L-class problems. As an
alternative metric, some investigators have made use of the percent of correct re-
sponses in an L-alternative forced-choice experiment (Goodenough, 1975; Burgess

7This is in contrast to the binary task of the previous section, in which the observer chose between
2 hypotheses, signal present (with random parameters) versus signal absent.
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and Ghandeharian, 1984). Another approach is to compute the original Bayes risk,
recognizing that this figure of merit depends on prevalence and threshold. In Chap.
14 we shall discuss the experimental use of L-alternative tasks for measurement of
human performance.

13.2.11 Background variability and the ideal observer

Up to this point we have assumed that the background is a known, nonrandom
quantity. In most instances this is an unrealistic model for the imaging task. We
now remove the restriction that the background be nonrandom and consider the
effect this has on the ideal observer’s decision function.

Under the signal-absent hypothesis, the presence of a random background re-
sults in a data vector with a probability density given by

pr(g|H1) =

∫

∞
dMb pr(g|H1,b) prb(b) . (13.164)

Similarly, the signal-present density is given by

pr(g|H2) =

∫

∞
dMb pr(g|H2,b) prb(b) . (13.165)

Note that we have assumed that the background density is the same under both
hypotheses.

The likelihood ratio now becomes

Λ(g) =

∫
∞ dMb pr(g|H2,b) prb(b)∫

∞ dMb′ pr(g|H1,b
′) prb(b′)

=
〈pr(g|H2,b)〉b
〈pr(g|H1,b)〉b

. (13.166)

The quantities pr(g|Hj ,b) in this expression are usually easy to compute from the
physics of the measurement noise, at least when the signal is nonrandom. In some
problems we will also be able to perform the average over b either analytically or
numerically by drawing samples as discussed in Sec. 8.4, but in other problems this
will prove difficult.

To get a useful alternative form for the likelihood ratio, we multiply and divide
the integrand in the numerator by pr(g|H1,b) and regroup terms,8 yielding

Λ(g) =

∫

∞
dMb

pr(g|H2,b)

pr(g|H1,b)

[
pr(g|H1,b) prb(b)∫

∞ dMb′ pr(g|H1,b
′) prb(b′)

]
. (13.167)

The factor in square brackets is recognized as the posterior density on the back-
ground after observation of g under the no-signal hypothesis:

pr(g|H1,b) prb(b)∫
∞ dMb′ pr(g|H1,b

′) prb(b′)
=

pr(g|H1,b) prb(b)

pr(g|H1)
= pr(b|g, H1) . (13.168)

Thus we can write the likelihood ratio as

Λ(g) = 〈ΛBKE(g,b)〉b|g,H1
, (13.169)

8The authors thank Brandon D. Gallas for suggesting this approach and Hongbin Zhang for
demonstrating its practicality.
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where the subscript BKE indicates background known exactly, and

ΛBKE(g,b) ≡
pr(g|H2,b)

pr(g|H1,b)
. (13.170)

The interpretation is that ΛBKE(g,b) is the likelihood that we would have if we knew
the background exactly; since we don’t, we must average over the backgrounds, but
with the posterior density pr(b|H1,g) rather than the prior pr(b) as in (13.166).
Note also that (13.166) uses separate averages of numerator and denominator, while
(13.169) averages the ratio.

For nonrandom signals, ΛBKE(g,b) is easy to compute since numerator and
denominator are just noise densities for a specified object. The average over the
posterior in (13.169) can often be performed by Markov-chain Monte Carlo methods,
especially in simulation studies. (See Secs. 14.3.3 and 15.4.8 for more on Markov-
chain Monte Carlo methods.)

When the signal has parameter uncertainty in addition to randomness in the
background, the signal-present density is given by

pr(g|H2) =

∫

∞
dPθ

∫

∞
dMb prn[g− b− s(θ)|b] prb(b) prθ(θ) . (13.171)

Now the likelihood ratio is given by

Λ(g) = 〈ΛSKE(g,θ)〉θ , (13.172)

where the SKE likelihood ratio must first be computed by taking the background
variability into account for each possible signal, as is done in (13.169). Then an
average over all possible signals is performed.

Gaussian random backgrounds Several models for random backgrounds were pre-
sented in Sec. 8.4. One useful model for a statistically defined background is a
multivariate Gaussian with mean b and covariance matrix Kb in the image do-
main.9 If the noise covariance matrix is also Gaussian, the data are described by a
form similar to that given in (13.112):

pr(g|H1) =
[
(2π)M det(Kg)

] 1

2 exp
[
−1

2 (g− b)t K−1
g (g− b)

]
, (13.173)

where the overall data covariance matrix Kg = Kb +Kn. Similarly, if the signal is
known exactly, then

pr(g|H2) =
[
(2π)M det(Kg)

] 1

2 exp
[
− 1

2 (g− b− s)t K−1
g (g− b− s)

]
. (13.174)

When the signal is nonrandom the data covariance matrix is the same under the two
hypotheses and the likelihood ratio can be determined in the same fashion by which
(13.115) was derived; the ideal observer is again a prewhitening matched filter, this
time applied to the image once the mean background has been subtracted.

9The process of integrating a 2D stationary Gaussian process over a finite detector element is one
way to obtain the Gaussian random background vector model in data space, although other forms
for the background in object space can also yield a Gaussian random vector when mapped through
an imaging system by virtue of the central-limit theorem.
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Random signals on Gaussian backgrounds It is straightforward to incorporate a
Gaussian random background into the previous variable-signal examples in which
the signal is a function of one or more random parameters. The randomness in the
signal results in a data covariance matrix that is no longer the same under the two
hypotheses. For this reason the ideal observer’s discriminant function is no longer
linear in the data. Barrett and Abbey (1997) give specific forms for the likelihood
ratio for the cases of random signal location and scale on a Gaussian background.

Random signals on non-Gaussian random backgrounds Non-Gaussian statistical forms
for a random background can be incorporated into the general framework of (13.164)
and (13.165). All that is required to make use of these expressions is an analyti-
cal form for pr(g|H1) = prb+n(g|H1). The likelihood ratio can be written again
as in (13.148), with the randomness in the background implicitly included in the
randomness in g. The likelihood ratio is thus written

Λ(g) =
〈pr(g|H2,θ)〉θ

pr(g|H1)
=

〈
prb+n[g− s(θ)]

prb+n(g)

〉

θ

=
〈
ΛBKS(g,θ)

〉
θ
, (13.175)

where the subscript BKS indicates background known statistically. This expres-
sion tells us that for a general random background model the ideal detection strategy
is to

1. Compute the signal-absent density function on the data for the given
background model, pr(g|H1).

2. Shift by s(θ) for particular θ.

3. Compute ΛBKS(g,θ), the conditional likelihood ratio for that θ.

4. Average over all θ.

5. Compare to a threshold.

Many useful models for non-Gaussian backgrounds are described in Chap.
8, which presents a variety of analytical models for random background as well as
suggestions for their simulation.

13.2.12 The optimal linear discriminant

We began this chapter with a discussion of figures of merit for discriminant functions
of arbitrary form. We then considered the particular form and behavior of the ideal
observer, which requires full knowledge of the density function of the data for each
hypothesis. In this section we consider discriminant functions that are optimal
amongst all discriminant functions constrained to be linear in the data. As we shall
see, linear discriminant functions are easy to compute, their performance is easy to
summarize, and far less information regarding the data statistics is needed along
the way.

Linear discriminants have the general form [cf. (13.9)]

T (g) = wtg , (13.176)
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where g and w are assumed to be real. We define the optimal linear discriminant
as the T (g) that maximizes a certain measure of class separability, to be discussed
below.

In the binary classification problem, a measure of separability is the SNR
defined in (13.19). As we shall demonstrate below, the linear discriminant that
maximizes this measure takes the form

wopt lin = K−1
g ∆g (13.177)

when the data have equal covariance Kg under each hypothesis. The resulting SNR
is then given by

SNR2
opt lin = ∆gtK−1

g ∆g = tr
[
K−1

g ∆g∆gt
]
, (13.178)

where ∆g is the average difference in the data under the two hypotheses, averaged
over all sources of variability, and tr[ · ] denotes the trace of the matrix.

An expression very similar to (13.178) (albeit with sample means and covari-
ances instead of population quantities) was first given by the American statisti-
cian Harold Hotelling (Hotelling, 1931). By extension, wopt lin has been called the
Hotelling discriminant, though in fact it is the population equivalent of the fa-
miliar Fisher linear discriminant, introduced five years after Hotelling’s 1931 paper
(Fisher, 1936).10 Similarly, an observer who implements the optimal linear discrim-
inant has been called the Hotelling observer. We shall adopt that terminology
here and replace the subscript opt lin with Hot henceforth.

Relation between Hotelling and ideal observers We have already seen in Sec. 13.2.8
that the optimal discriminant is linear in the data whenever the data are Gaussian
distributed with the same covariance matrix under the two hypotheses, as is the
case when the signal is known exactly and the background is either known exactly
or random but Gaussian under both hypotheses. The ideal observer’s SNR is then
[cf. (13.118)]

SNR2
λ = ∆stKg

−1∆s = tr
[
Kg

−1∆s∆st
]
. (13.179)

The significant difference between the Hotelling SNR of (13.178) and this expression
is that the former allows for signal variability through its reference to the mean data
vector ∆g. The ideal observer’s SNR takes the form given in (13.179) only when
the signals to be discriminated are known exactly; hence it is written in terms of∆s.

When the data are Gaussian, with equal covariance for the classes, the Hotelling
observer is equal to the ideal observer for the task. When the data are not Gaus-
sian, due to signal variability or non-Gaussian noise or both, the ideal observer can
be (usually is) nonlinear in the data. Calculation of the likelihood ratio requires
knowledge of the full probability density functions for the data; this requirement
can be a major impediment to calculation of the ideal discriminant function for
more realistic tasks. The advantage of the Hotelling approach is that it requires
knowledge of only the first- and second-order statistics of the data. In essence,
the Hotelling approach models the data as Gaussian, regardless of the data’s true

10Hotelling is credited with establishing one of the first statistics departments in the United States
at the University of North Carolina in 1946. Before World War II, many statisticians, including
Fisher, had worked in eugenics departments.
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statistics. Moreover, as we shall discuss in Chap. 14, the Hotelling observer has been
found to be a useful predictor of human performance for a variety of discrimination
tasks. Another advantage to the Hotelling formalism is that, as we shall see below,
it readily leads to a scalar figure of merit for the L-class problem.

Demonstration of optimality We now demonstrate that the Hotelling template of
(13.177) is indeed optimal in an SNR sense. To do this, we must show that the
Hotelling observer achieves equal or better SNR than that achieved by an arbitrary
template w. An arbitrary template would yield an SNR according to (13.19) of

SNR2
w =

(wt∆g)2

wtKgw
. (13.180)

Thus we must show that
(wt∆g)2

wtKgw
≤ ∆gtK−1

g ∆g (13.181)

or
(wt∆g)2 ≤ (wtKgw)(∆gtK−1

g ∆g) , (13.182)

where we have used the positive-definiteness of the denominator in the first line to
move it to the right-hand side in the second line.

We can insert an identity in the form of the product of the square root of the
covariance matrix and its inverse, and then make use of the triangle inequality, to
write the left-hand side as

(wt∆g)2 =
[
wtK1/2

g K−1/2
g ∆g

]2
≤ ||wtK1/2

g ||2 ||K−1/2
g ∆g||2 . (13.183)

Now we write the norms of the vectors as inner products and we have

(wt∆g)2 ≤ (K1/2
g w)t(K1/2

g w) (K−1/2
g ∆g)t(K−1/2

g ∆g) = (wtKgw) (∆gtK−1
g ∆g) .
(13.184)

This is what we set out to show in (13.182). Thus the template given in (13.177)
indeed achieves the maximum SNR of all linear observers when K1 = K2 = Kg.

It is left to the reader to show that a template given by w = [ 12 (K1+K2)]−1∆g

achieves maximum SNR in the binary classification problem when K1 (= K2. As
we shall soon demonstrate, this is the Hotelling template for this case.

L-class problem The beauty of the Hotelling figure of merit is that it is readily
extended to the L-class problem, where L > 2. To describe the performance of
the optimal linear discriminant in the L-class problem, we first define two scatter
matrices. The interclass scatter matrix,

S1 = 1
L

L∑

"=1

(g" − g)(g" − g)t , (13.185)

describes the average distance between the means of the distributions of the data
under each hypothesis from the overall mean g = (1/L)

∑
" g". The rank of S1 is

L − 1, owing to the relationship of the class means to the overall mean. In the
2-class problem, the interclass scatter matrix reduces to:

S1 = 1
4∆g∆gt . (13.186)
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The intraclass scatter matrix, S2, is given by

S2 = 1
L

L∑

"=1

〈(g− g")(g− g")
t〉" = 1

L

L∑

"=1

Kg|" , (13.187)

and describes the average covariance matrix of the data, found by averaging the
covariance matrices of the L classes.

We assume knowledge of the ensemble mean and covariance of the data under
each hypothesis in writing (13.185) and (13.187). The Hotelling observer is the
linear observer that makes use of this knowledge to achieve maximum discrimination
performance of all linear observers. The generalized measure of class separability
in the L-class problem is referred to as the Hotelling trace and often given the
label J :

J = tr
[
S−1
2 S1

]
. (13.188)

For a binary classification task, this reduces to

J = 1
4∆gtS−1

2 ∆gt = 1
4SNR

2
Hot (13.189)

by (13.186).
Note that the scatter matrices of (13.186) and (13.187) often are written as

sums of class contributions weighted by class prevalence, even in literature from
the authors. We have deliberately defined the scatter matrices here with equally
weighted contributions from the L classes so that the Hotelling observer’s discrim-
inant function is independent of prevalence. With this formulation the Hotelling
observer achieves maximum SNR and maximum J.

Finding the optimal linear discriminant Given the scatter matrices above, we wish
to determine the linear discriminant in the L-class problem that achieves maximum
J. We follow the derivation given by Fukunaga (1990).

The key to finding the optimal linear discriminant is the knowledge that we can
simultaneously diagonalize two noncommuting Hermitian matrices by the process
outlined in Sec. 1.4.6. The simultaneous diagonalization of S2g and S1g is written
[cf. (1.100)]

W†S2gW = I and W†S1gW = D , (13.190)

where D is diagonal. Note that this transformation whitens the intraclass scatter
matrix. It is shown in Sec. 1.4.6 that an equivalent eigenvalue problem is given by
[cf. (1.110)]

S−1
2g S1gW = WD . (13.191)

Thus W is the matrix of eigenvectors of the product S−1
2g S1g, and D is the diagonal

matrix of eigenvalues. We shall call the M eigenvalues {µm} and the eigenvectors
{wm}.

Recall that the trace of a matrix is equal to the sum of its eigenvalues. Thus
the Hotelling trace for the data has these equivalent forms:

Jg = tr[S−1
2g S1g] = tr[D] =

M∑

m=1

µm . (13.192)

The mth eigenvalue measures the separability associated with a projection of the
data along the direction in feature space defined by wm. Since the rank of S1g is



854 STATISTICAL DECISION THEORY

(L−1), where L is the number of classes, the ranks of S−1
2g S1g and D are also (L−1).

There are therefore only (L−1) nonzero eigenvalues in the sum; all the separability
in the data is carried by these eigenvalues. Projection of the data onto the subspace
spanned by the eigenvectors of S−1

2g S1g results in no loss of discriminability.
The optimal linear discriminant is thus found by solving the eigenvalue equa-

tion of (13.191). The Hotelling observer classifies the data using the feature vector

t = Wtg , (13.193)

where W is the matrix whose columns are the eigenvectors of S−1
2g S1g. We shall

label the mth column vector wm, corresponding to the eigenvalue µm. Then

tm = wt
mg . (13.194)

In the binary classification problem the separability inherent in anM -dimensional
data set is preserved in a 1D feature space, and (13.191) reduces to

S−1
2g S1gwHot = µwHot . (13.195)

The reader can show that this equation is satisfied when

wHot = S−1
2g ∆g , (13.196)

which is a generalized form for the optimal feature vector of (13.177) when the
covariances under the hypotheses are unequal. The binary discriminant is thus
given by

t = wt
Hotg , (13.197)

and the resulting Hotelling trace is given by µ.
Fukunaga (1990) also addresses the question of the best linear transformation

that yields an ND feature vector, where N < (L − 1). It can be shown that this
inefficient transformation, so named because it does not preserve the separability in
the original data, is again obtained by solving the eigenvector problem of (13.191),
only now the transformation matrix is composed of the N eigenvectors with the
largest eigenvalues as its columns.

From features to classification In the binary decision problem the connection be-
tween feature extraction and classification is straightforward. The Hotelling ob-
server forms the single test statistic of (13.197) and compares this value to a thresh-
old to decide between hypothesis 1 and 2. The test statistic t can be thought of
as a single feature derived from a given image; that feature is used to classify the
image.

The relationship between feature extraction and classification in the L-class
task is more complex. Comparing each of the L−1 features to a threshold is equiv-
alent to using L − 1 hyperplanes to partition the feature space, which can lead to
regions of ambiguous class assignment.

A number of options are available for avoiding the problem of ambiguous areas
in the decision space (Duda et al., 2001). We shall consider one option, inspired by
the approach taken by the ideal observer in the L-class problem as described in Sec.
13.2.10. Recall that the ideal observer selects the hypothesis associated with the
greatest likelihood of the data. Analogously, one option for the Hotelling observer’s
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strategy is to choose the hypothesis that gives the largest probability of obtaining
the data, only now under Gaussian assumptions for each pr(g|H").

Under the Gaussian assumption, pr(t|H") is a multivariate Gaussian PDF as
given in (13.112), with t" = Wtg" and Kt|" = WtKg|"W. The Hotelling observer
chooses the hypothesis that gives maximum

t
t
"K

−1
t|" t = gt

"W [WtKg|"W]−1 Wtg . (13.198)

When Kg|" is approximately independent of $, then by (13.190)

[WtKgW]−1 = I . (13.199)

With (13.199) we can rewrite the Hotelling observer’s decision strategy of (13.198)
as

Choose H" that gives max [gt
"W][Wtg] = t

t
" t . (13.200)

This is a matched filter applied to the feature vector; no prewhitening is required
because the covariance of the feature vectors is already white by (13.199).

Thus, in the L-class classification problem, the Hotelling observer forms the
matched filter output for each possible signal in the reduced-dimensionality feature
space and chooses the alternative that gives the maximum value. No ambiguity
in the decision space arises. Furthermore, the Hotelling trace describes the perfor-
mance of the Hotelling observer in this L-class problem, providing a useful scalar
measure of performance for system optimization.

Post-processing and feature extraction We found in Sec. 13.2.6 that digital image
processing does not affect the ideal observer, so long as the processing operation
is invertible in the sense that the original digital data before processing is recover-
able. The same can be said for linear post-processing and the performance of the
Hotelling observer. Any nonsingular M ×M linear transformation A preserves the
the separability in the data because if

y = Atg , (13.201)

then
Jy = tr[(AtS2gA)−1AtS1gA] = tr[S2gS1g] = Jg . (13.202)

Similarly, a nonsingular linear transformation can be applied to the features t of
(13.197); the inherent discriminability of the data is preserved by these features,
and an invertible transformation applied to t will still yield Jt = Jg by the logic of
(13.202).

We have seen that the dimensionality of the data can be reduced and yet
maintain the separability inherent in the data. Suppose instead that the post-
processing resulted in an increase in dimensionality. For example, linear image
reconstruction algorithms process the raw data to yield a number of features N
(pixel values) that can be greater than M . We now show under what conditions
the resulting features preserve the separability of the data.

Let the post-processing operation again be written as (13.201), with A now
an M ×N post-processing matrix, N > M . Then

Jy = tr[(AtS2gA)−1AtS1gA] = tr[A(AtS2gA)−1AtS1g] . (13.203)
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However, we cannot equate Jy with Jg as we did in (13.202) because in the current
example A−1 does not exist.

Now form the M ×M matrix L = AAt. If we assume that A has a left inverse
(that is, L is nonsingular; see Sec. 1.7.2), we can insert the identity S−1

2g L
−1LS2g

inside the trace in (13.203) to find

Jy = tr[S−1
2g L

−1LS2gA(AtS2gA)−1AtS1g]

= tr[S−1
2g L

−1AAtS2gA(AtS2gA)−1AtS1g] = tr[S−1
2g L

−1AAtS1g]

= tr[S−1
2g S1g] = Jg . (13.204)

We have thus demonstrated that the features preserve the inherent discriminability
in the original data so long as a left inverse of the post-processing matrix exists.

The effect associated with nonlinear processing is more subtle. Appropriately
chosen nonlinear processing or feature extraction can improve Hotelling observer
performance by rendering the data more separable by a linear discriminant. For
example, consider the case of a binary detection task in which the signal can have
either a positive amplitude a or negative amplitude −a with equal probability. Since
the mean data vector under each hypothesis is zero, a linear observer would yield an
SNR of zero for this problem. The reader can show that, for additive multivariate
Gaussian noise, use of (13.112) and (13.148) to compute the log-likelihood ratio
yields the following optimal strategy:

λ = gtK−1
n g . (13.205)

When the noise is independent and identically distributed, the ideal observer’s de-
cision variable reduces to

λ =
M∑

m=1

g2m . (13.206)

We see that the ideal observer uses a decision variable that is quadratic in the
data. Taking inspiration from the ideal observer, the application of a point-wise
absolute-value operator to each data element, y = |g|, improves the performance of
the Hotelling observer in that SNR2

y > SNR2
g = 0.

More generally, for any task where the ideal observer’s decision strategy is non-
linear, it is possible to improve a linear observer’s AUC by nonlinear preprocessing
of the data. As demonstrated in the previous example, the optimal nonlinear pro-
cessing takes the form of computing the likelihood ratio. Designing post-processing
to improve the Hotelling trace, however, is trickier business, requiring an improve-
ment in the difference in class means relative to their average variance, as quantified
by (13.178). This point is particularly relevant to the performance of human ob-
servers. There are some tasks for which the human and Hotelling SNRs are well
below the detectability achievable by an ideal observer [computed from AUC via
(13.21)]. In such circumstances, preprocessing of the data may improve human ob-
server performance by better matching the data to the abilities of the human visual
system. This has implications for image processing and computer-aided diagnosis.

Signal variability and the Hotelling observer The Hotelling approach allows arbitrary
variability in the data resulting from random signals and/or random backgrounds.
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If the task is discrimination between two classes with statistically defined signals,
the Hotelling template is given by

w = S−1
2 ∆g = S−1

2 ∆s , (13.207)

requiring the mean of the variable signal under each hypothesis to calculate ∆s.
This linear discriminant may work very well in the presence of signal variability,
especially for compact signals (Eckstein and Abbey, 2001).

Then again, the Hotelling observer may be quite challenged by the presence
of signal uncertainty, particularly when it leads to highly non-Gaussian data. We
shall illustrate this challenge by considering the problem of detection of a signal with
large location uncertainty. Let H1 denote the absence of a signal and H2 denote the
signal-present hypothesis, with signal of known shape and amplitude in any one of
L nonoverlapping locations on the detector. The task of the observer is to decide
whether or not a signal is present. Figure 13.10 is a simplistic representation of
the data PDFs for this task in a two-dimensional subspace. Under H1, the data
are centered on the origin with circular isocontours of constant probability density.
Under H2 the data are distributed equally into L regions of data space, two of which
are shown in the plot. The circular isocontours show the scatter about these two
locations due to the additive Gaussian noise. The overall density function of the
data in the signal-present case is highly non-Gaussian and multimodal. The ideal
observer decision variable for this problem, quite nonlinear in the data, is given
in (13.150). The Hotelling observer attempts to separate the data from the two
hypotheses using features derived from the eigenanalysis of (13.191). It has been
shown that in the limit of a very large number of locations, the linear discriminant
is not an effective classifier for this task (Brown et al., 1995). However, this binary
detection example can be reformulated as a (L + 1)-hypothesis classification task,
with H0: signal absent and H": signal present at location $. Then a set of linear
discriminants will separate the data quite nicely.

Fig. 13.10 Isocontours of the data in the random-location problem with
signal-present contours centered on s1 = (a, 0) and s2 = (0, a); a noise-only
contour is centered on (0, 0). (a) The data PDFs when the problem is for-
mulated as binary discrimination; the linear discriminant is shown for one
threshold setting. (b) The data PDFs when the problem is reformulated as L-
class discrimination; now the data are Gaussian distributed under each class.
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Note that a similar reformulation can be imposed on the bipolar-signal exam-
ple discussed above in the context of post-processing. Splitting the signal-present
hypothesis into two, where one is that the signal is present with amplitude +a and
the other is that the signal is present with amplitude −a, yields improved perfor-
mance over the 2-class problem (as measured by the Hotelling trace in each case).

More generally, situations in which signal uncertainty produces a data space
populated by multiple approximately Gaussian clouds, such as occurs in the de-
tection of a signal in one of L orthogonal locations, or the detection of one of L
orthogonal signal profiles (e.g., sinusoids of different phase, or multiple Hadamard
signals) often yield improved Hotelling performance when the number of candidate
hypotheses is increased. In these cases the signal is defined in terms of a vector of
random parameters θ as in (13.145), where prθ(θ) takes on the special form of a
finite set of delta functions. Increasing the number of hypotheses reduces the contri-
bution from signal variability to the intraclass scatter matrix, leaving measurement
noise (which is often well modeled by a Gaussian PDF) as the dominant source
of variability in the data. The data are thus characterized by localized Gaussian
distributions such that a set of linear discriminants can be used to partition the
space.

Not all decision problems with signal-parameter uncertainty may be reformu-
lated to suit the Hotelling observer so readily. When the signal uncertainty does
not take the form of a finite set of delta functions, the Hotelling observer’s efficiency
relative to the ideal observer can decrease dramatically, and no amount of fiddling
with the number of hypotheses will help. For example, discrimination of texture
differences is often cited as a decision task that requires nonlinear strategies. The
choice of observer (Hotelling or ideal) used to design or evaluate an imaging system
will be driven by the information available regarding the task and the observer for
which the system is being optimized.

Detectability maps Another approach to tasks with randomness in the signal is to
compute the optimum linear test statistic for the SKE case as a function of the
random parameters:

w(θ) = [S2(θ)]
−1∆s(θ) . (13.208)

The SNR for the Hotelling observer for each value of the random parameter vector
is thus given by

SNR2
Hot(θ) =

{[w(θ)]t ∆s(θ)}2

[w(θ)]t S2(θ)w(θ)
= [w(θ)]ts(θ) . (13.209)

Using this expression, detectability maps showing sensitivity of SNR to θ, e.g.,
location, can be made (Pineda, 2000). The beauty of (13.208) is that in many cases
the linear observer is the ideal observer for fixed signal parameters, because the
randomness in the data from measurement noise (and even background variability
in some cases) is well approximated by a Gaussian.

Signal known exactly, but variable The SNR of (13.209) gives the Hotelling ob-
server’s performance for a particular value of the random parameter θ. A summary
measure of observer performance can be obtained by averaging this expression over
θ. System optimization can thus be pursued with this overall measure of perfor-
mance as the figure of merit, so that the system is “best” for the set of all possible
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signals. We refer to this assessment method as signal known exactly, but variable
(SKEV).

Detection in a random background We found previously that a Gaussian random
background results in an ideal decision strategy that is linear in the data. The
ideal observer and the Hotelling observer are thus equivalent for this special case.
Other statistical models for random backgrounds may yield nonlinear optimal dis-
criminant functions; the exact form of the optimal discriminant given in (13.175)
may not even be calculable in many cases. We are not without resources, though,
because calculation of the Hotelling SNR requires only knowledge of the first- and
second-order statistics of the data, and often we have knowledge of these.

We can characterize a general random background in terms of its mean con-
tribution to detector element m, denoted bm and its covariance matrix

[Kb]ij = 〈(bi − bi)(bj − bj)〉b . (13.210)

In the weak-signal approximation, the covariance of the data is the same under each
hypothesis and equal to

[Kg]ij = 〈〈(gi − bi)(gj − bj)〉n|b〉b = bi δij + [Kb]ij , (13.211)

where we have assumed Poisson noise in writing the last result. The Hotelling
observer’s discriminant is given by (13.208) (presuming some randomness in the
signal) with S2 equal to Kg of (13.211).

A uniform background model with a random level can be considered as the
limit of a random background model in which the mean background is the same in
all detector elements, and the background variation is completely correlated across
the detector. Let b be the average level of the uniform background, with variance
σ2
b . The covariance matrix for the data in this case is given by

[Kg]ij = b δij + σ2
b

or

Kg = bI+ uut , (13.212)

where u is an M×1 column vector in which each element is equal to σb. The inverse
of Kg can be determined via (A.55):

K−1
g = ( b )−1I− uut

b
2
+Mbσ2

b

. (13.213)

The Hotelling observer’s test statistic for discriminating between two known
signals on a flat background of random level is then given by:

t = ∆stK−1
g g =

M∑

n=1

M∑

m=1

∆sn

[

δnm
b

− [uut]nm

b
2
+Mbσ2

b

]

gm

= ( b )−1
M
∑

n=1

∆sn

[

gn − σ2
b

∑

m gm
b+Mσ2

b

]

= ( b )−1
M
∑

n=1

∆sn

[

gn − Mσ2
b b̂

b+Mσ2
b

]

, (13.214)
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where b̂ = 1
M

∑

m gm is an estimate of the background level formed from the data
set in hand. Note that as σ2

b → 0 the Hotelling observer approaches the background-
known-exactly matched filter result. Alternatively, for large σ2

b , the Hotelling test
statistic approaches

t =
1

b

M
∑

n=1

∆sn(gn − b̂) . (13.215)

In this case the Hotelling observer estimates the background from the data prior to
applying a matched filter.

The Hotelling observer’s performance in the random-background-level task is
summarized by

SNR2
Hot = ∆stK−1

g ∆s =
M
∑

n=1

M
∑

m=1

∆sn

[

δnm
b

− [uut]nm

b
2
+Mbσ2

b

]

∆sm

=
||∆s||2

b
− [∆stu]2

b
2
+Mbσ2

b

. (13.216)

The Hotelling observer’s SNR in the presence of a more general background is
found by an extension to the approach that led to (13.216); in particular, a more
general background model would give a more general expression for the data co-
variance of (13.212). Of note are models for statistically defined backgrounds with
known first- and second-order statistics such as the lumpy and clustered-lumpy
backgrounds (described in Sec. 8.4.4) that allow for task-based assessment through
exact computation of Hotelling-observer performance even though the ideal ob-
server’s strategy is unknown. Figure 13.11 shows the radial profile of the Hotelling
template for classification of a known Gaussian signal on a Gaussian lumpy back-
ground of known correlation length. The Hotelling observer attempts to match the
signal in the expected location, while subtracting off an estimate of the local sur-
rounding background.

Fig. 13.11 Radial profile of the Hotelling template for detection of a Gaussian
signal on a lumpy background.

Practical issues related to the use of random backgrounds in system evaluation
will be discussed further in Chap. 14.
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Non-Gaussian noise and the Hotelling observer The Hotelling observer results in a
suboptimal AUC whenever the statistics of the data are non-Gaussian. Even when
the statistics on the data are Gaussian, the Hotelling observer achieves suboptimal
AUC for situations where data covariance matrices are unequal across hypotheses;
the ideal-observer’s discriminant is a nonlinear functional of the data in that case.

In Sec. 13.2.9 we determined the ideal observer’s decision strategy for several
examples involving non-Gaussian data.11 While the ideal observer’s test statistic
can be highly nonlinear in the data for non-Gaussian statistics, recall that certain
non-Gaussian statistics yield a linear ideal decision surface. We found this to be the
case for Poisson noise (13.131) as well as exponential noise (13.137). Nevertheless,
the ideal observer’s linear strategy and that of the Hotelling observer can differ
because the Hotelling observer uses only first- and second-order statistics to describe
the data and not the complete joint density function.

As an example, consider the problem of detection in speckle noise, for which
the log-likelihood ratio gives a linear filtering operation with the following template
[cf. (13.137)]:

[wideal]m =
∆gm

g1m g2m
. (13.217)

The Hotelling observer makes use of the fact that the mean in the mth detector
element under hypothesis j is gjm and its variance is g2jm to yield

[wHot]m = [S−1
2 ∆g]m =

∆gm
1
2 (g

2
1m + g22m)

. (13.218)

The numerators are the same, but the ideal observer divides by the geometric mean
of the variances while the Hotelling observer divides by the arithmetic mean. The
resulting decision surface for each observer is a hyperplane in data space, although
with different orientation. As a result, the Hotelling observer attains maximum
SNR, while the ideal observer attains maximum AUC. The observer with the higher
AUC is preferred, of course, since AUC is a more accurate measure of observer per-
formance for arbitrary data statistics.

A similar set of calculations can be performed to compare the Hotelling ob-
server to the ideal observer for other non-Gaussian data distributions. In particu-
lar, since Poisson noise is well approximated by a Gaussian PDF when the number
of counts per detector element is greater than about ten, the Hotelling observer is
asymptotically optimal in both AUC and SNR in that limit. Both the ideal observer
and the Hotelling observer are linear in the data for Poisson noise; the orientation
of their decision surfaces converges as the count rate increases.

AUC-optimal linear discriminants As we have just seen, there are some cases where
the log-likelihood is a linear discriminant but not equivalent to the Hotelling dis-
criminant. This raises two questions: 1) In general, what linear discriminant is
optimal in the sense of maximizing AUC? 2) When is the log-likelihood a linear
discriminant? We shall address the former question here and the latter below.

11Note that these strategies do not necessarily yield maximum SNR as computed from (13.19).
Rather, they are optimal in the attributes relevant to the ideal observer: maximum AUC and thus
maximum dA, minimum decision error, and minimum Bayes risk.
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Our starting point for finding the linear discriminant that maximizes AUC is
(13.47), which gives the AUC for an arbitrary linear discriminant when the noise
is additive and independent of the signal. As that equation shows, only the odd
part of the signal characteristic function ψ∗

s (wξ) contributes to AUClin. Since
ψ∗
s (wξ) = ψs(−wξ), the odd part of ψ∗

s (wξ) is i times its imaginary part, and the
AUC for a linear discriminant is optimized by

wopt = argmax
w

{
∫ ∞

−∞

dξ

ξ
|ψg1(wξ)|2 Im [ψ∗

s (wξ)]

}

. (13.219)

For SKE problems [cf. (13.49) and (13.50)],

wopt = argmax
w

{
∫ ∞

−∞

dξ

ξ
|ψg1(wξ)|2 sin(2πst0wξ)

}

= argmax
w

{

st0w

∫ ∞

−∞
dξ |ψg1(wξ)|2 sinc(2st0wξ)

}

≈ argmax
w

{

st0w

∫ ∞

−∞
dξ |ψg1(wξ)|2

}

, (13.220)

where the last form holds for weak signals. Note that the magnitude of w does not
affect the quantity being maximized; if w → αw, the integrals in the last two forms
scale as 1/α, st0w scales as α, and the quantity in curly brackets remains constant.

As applications of these results, the reader can rederive the linear discriminants
for uncorrelated Poisson or exponential noise, as well as the prewhitening matched
filter for correlated Gaussian noise.

When is the log-likelihood ratio linear? Now we address the second question posed
above: When is the AUC-optimal linear discriminant in fact the log-likelihood ratio?
We require that

λ(g) = ln

[

pr(g|H2)

pr(g|H1)

]

= wtg+ c , (13.221)

where c is a constant that can be lumped into the decision threshold. This condition
implies that

pr(g|Hj) = Aj d(g) exp(b
t
jg) , (13.222)

where Aj and bj are independent of the data g, and d(g) is independent of the
hypothesis j. The constants bj are related to the discriminant function by

w = b2 − b1 . (13.223)

As a point of terminology, (13.222) is a multivariate linear exponential-type
distribution. The general form for such a PDF is (Kotz et al., 2000)

pr(g|θ) = d(g) exp
[

btg− q(θ)
]

. (13.224)

Rather than a continuous parameter θ, (13.222) has a discrete index, but (13.222)
and (13.224) are essentially the same form. The reader can show that (13.222) holds
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for several SKE problems we have encountered: multivariate Gaussian, Poisson and
exponential PDFs, all of which are exponential families.

We can recast (13.222) in terms of the characteristic functions:

ψgj(ξ) = Aj

∫

∞
dMg d(g) exp

[

(bj − 2πiξ)t g
]

. (13.225)

A little algebra shows that

ψg2(ξ) =
A2

A1
ψg1

(

ξ +
i

2π
w

)

. (13.226)

Note that bj and hence w have to be real since PDFs are real; thus, in order for
the log-likelihood ratio to be a linear discriminant, ψg2(ξ) must be proportional to
ψg1(ξ) with each component shifted along the imaginary axis; the shift is immedi-
ately the ideal-observer discriminant function.

13.2.13 Detectability in continuous data

The previous sections assumed that the data were a discrete set ofM measurements,
relevant to a digital imaging system. We can conceive of two scenarios in which we
might be willing to analyze an imaging system using a continuous framework. The
first would be the case where the data are indeed continuous, as would be found
when the detection system is film-based. The second scenario would be when we
have a sufficiently large number of discrete detector elements that we are tempted
to consider the limit of an infinite number of infinitely fine samples. We shall treat
the true continuous detection system here. Our treatment is inspired by that of
Helstrom (1995).

SKE/BKE tasks in Gaussian noise Consider first the problem of binary classification
in Gaussian noise, and assume that the signal and background are both exactly
known. We write the continuous data set as a linear functional of the known object
under each hypothesis:

Hj : g(r) =

∫

∞
dqr′ h(r, r′) fj(r

′) + n(r) ≡ sj(r) + n(r) . (13.227)

Because the noise is a zero-mean Gaussian random process, E[g(r)|Hj ] = sj(r). The
noise is described by the continuous autocovariance function Kn, which is assumed
to be independent of the underlying hypothesis:

Kn(r, r
′) = 〈n(r)n∗(r′)〉 . (13.228)

From Sec. 8.2.7 we know that the noise autocovariance operator Kn, whose
kernel is the noise autocovariance function Kn(r, r′), is a compact Hermitian oper-
ator provided Kn is Hilbert-Schmidt. The conditions for compactness are further
detailed in Sec. 1.3.3; from that discussion we know that if the random variable g

has finite support, then Kn is Hilbert-Schmidt and hence has a denumerable eigen-
function expansion. The eigenfunctions of Kn can be used as an infinite series of
orthonormal expansion functions for g(r), which is written analogously to (13.121)
as

g =
∞
∑

m=1

βmφm . (13.229)
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Using these expansion functions as a basis for the data g(r) allows us to follow the
same steps that led to the SNR given in (13.123), giving

SNR2
λ =

∞∑

m=1

[
∆βm

]2

σ2
m

=
∞∑

m=1

|(φm,∆s)|2

µm
. (13.230)

The infinite sums in (13.230) cannot diverge so long as the discrimination task
cannot be done perfectly.

Stationarity Let us now assume that the autocovariance function is wide-sense
stationary: Kn(r, r′) = Kn(r − r′). Note that to make this assumption we are
abandoning the requirement stated in the previous paragraph that the data have
finite support. The data are thus no longer square-integrable, the Hilbert-Schmidt
condition is gone, and the eigenvalues are no longer denumerable. In Chap. 8
we showed that the eigenfunctions of the autocorrelation operator of a stationary
random process are the Fourier expansion functions. The eigenfunctions of Kn are
thus

φρ(r) = exp(2πiρ · r) , (13.231)

where ρ is the continuous vector spatial-frequency index. With these expansion
functions we can write the data as

g(r) =

∫

∞
dqρ G(ρ)φρ(r) =

∫

∞
dqρ G(ρ) exp(2πiρ · r) . (13.232)

The inner product of the Fourier expansion functions and the expected difference
signal is given by

(φρ,∆s) =

∫

∞
dqr ∆g(r) exp(−2πiρ · r) = ∆G(ρ) ; (13.233)

and thus
|(φρ,∆s)|2 = |∆G(ρ)|2 . (13.234)

From (8.181) we know that the autocovariance function in the Fourier basis
becomes

〈

[F2{n(r)}] [F2{n(r′)}]†
〉

= [F2KnF
†
2 ](ρ,ρ

′) = Wn(ρ) δ(ρ− ρ′) , (13.235)

where Wn(ρ) is the power spectral density of the noise. The noise autocorrelation
function is diagonalized by the Fourier operator, so that the components are delta-
correlated in that domain.

We now have all the pieces in place for writing the ideal observer’s SNR by
analogy with (13.230). The numerator is given in (13.234). By (8.178), the eigen-
values in the denominator are given by the power spectral density Wn(ρ). Thus, for
the continuous, stationary case the SNR is given by

SNR2
λ =

∫

∞
dqρ

|∆G(ρ)|2

Wn(ρ)
. (13.236)

For a linear, shift-invariant imaging system, we can rewrite the expected dif-
ference in the data as (see Sec. 7.2.6)

|∆G(ρ)|2 = |H(ρ)∆F (ρ)|2 , (13.237)
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whereH(ρ) is the transfer function of the system and∆F (ρ) is the difference object,
f2(r) − f1(r), in the Fourier domain. By (7.154) and (7.155) we can factor H(ρ)
into two components and thus rewrite the SNR of (13.236) as

SNR2
λ =

∫

∞
dqρ |∆F (ρ)|2

{

|H(0)|2 MTF2(ρ)

Wn(ρ)

}

, (13.238)

where MTF(ρ) is the modulation transfer function of the imaging system. The
integrand of (13.238) is the product of two factors, one specifying the objects to be
discriminated and the other (in curly brackets) characterizing the performance of
the imaging system. We shall have more to say about (13.238) after we consider
the effects of quantum noise.

Quantum noise: The weak-signal limit Just as we did in the SKE/BKE task for
Gaussian noise, we can consider the limit of an infinite number of infinitely fine
samples to reach the limit of a continuous data set for Poisson noise. In this limit,
the SNR of (13.135) becomes

SNR2
λ ≈

∫

∞
d2r

s2(r)

g(r)
=

∫

∞
d2r

s2(r)

b(r)
(13.239)

in the 2D case, where b(r) is the background fluence that describes the mean back-
ground image at each location [cf. (11.84) and (11.94)].

The SNR of (13.239) is the continuous formulation of the SNR of (13.135),
which was derived for the case of a weak signal. Note that for the current prob-
lem—the limit of infinitely fine detector elements— it cannot be the case that each
mean data component gm is much greater than 1. Thus the weak-signal limit must
be achieved by requiring that the signal have low amplitude relative to the back-
ground. Even so, the SNR may still be large since it is computed as an integral
over a large area.

Poisson noise plus additive Gaussian noise Suppose the data have an additional noise
contribution that can be modeled as an additive Gaussian random process, e.g., the
excess noise due to dark current or noisy amplification. Then the data covariance
is given by [cf. (12.159)]

Kg(r, r
′) = Kphot(r, r′) +Kexc(r, r′) = b(r) δ(r− r′) +Kexc(r, r′) , (13.240)

where the first term is the delta-correlated photon noise and the second term is
the excess Gaussian noise. For this form to be valid, the excess noise must have
the same units as the Poisson random process, namely fluence or inverse area. For
example, suppose there is a noisy gain mechanism that senses the Poisson process
and produces a random output voltage. If the mean conversion gain (from fluence
to voltage) is denoted Gconv, then the voltage must be divided by Gconv before
calculating Kexc(r, r′) in (13.240). Thus Kexc(r, r′) = (Gconv)−2Kexc

V (r, r′), where
Kexc

V (r, r′) is the autocovariance function of the voltage random process. We say
that the excess noise has been referred back to the input.

With the noise described by (13.240), we seek to derive a Fourier-domain
extension to (13.239) to describe the SNR for detection of a weak signal. To do so,
we again need to impose the assumptions of a linear, shift-invariant imaging system
and wide-sense stationary noise. The Fourier-domain counterpart of the numerator
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is then |H(ρ)F (ρ)|2, where F (ρ) is the Fourier transform of the weak signal to be
detected. Noise stationarity requires that the background be flat, that is, b(r) = b0.
Then the mean image and the variance in the data due to the quantum fluctuations
are independent of position (in this weak-signal case). The Fourier-domain noise
description under the present model then becomes Wg(ρ) = b0 +Wexc(ρ).

We can rewrite (13.239) for the current problem in the Fourier domain as

SNR2
λ =

∫

∞
d2ρ

|H(ρ)F (ρ)|2

Wg(ρ)
=

∫

∞
d2ρ |F (ρ)|2

{

|H(0)|2 MTF2(ρ)

Wg(ρ)

}

. (13.241)

We define the relative object ∆frel(r) = s(r)/b0, so that F (ρ) = b0[∆Frel(ρ)].
Then

SNR2
λ = |H(0)|2

∫

∞
d2ρ |∆Frel(ρ)|2

{

b20 MTF2(ρ)

Wg(ρ)

}

≡ |H(0)|2
∫

∞
d2ρ |∆Frel(ρ)|2 NEQ(ρ) , (13.242)

where

NEQ(ρ) =
b20 MTF2(ρ)

Wg(ρ)
=

b20 MTF2(ρ)

b0 +Wexc(ρ)
. (13.243)

The expression in (13.243) is referred to as the noise equivalent quanta, or NEQ
of the system. Its name originates in the historical interpretation of NEQ as the
equivalent number of input quanta per unit area required by an ideal imaging sys-
tem to give the same SNR achieved by an actual system whose output is an image
degraded by measurement noise and blur. Shaw (1963) proposed the frequency
decomposition of system performance measures of (13.243) in response to the prob-
lems that were being encountered at the time when evaluating detector performance
using finite apertures. Dainty and Shaw (1974) explored the NEQ concept in great
detail for photographic processes.

NEQ and signal-detection theory The ideal-observer SNR of (13.242) is an elegant
factorization of hardware characteristics, bundled into NEQ, and the signal to be
detected, expressed in terms of its Fourier spectrum. Thus NEQ(ρ) can be inter-
preted as the weight applied to each frequency component of the signal in computing
the ideal observer’s SNR for an LSIV imaging system on an SKE/BKE task when
there is quantum noise and possibly also some excess noise mechanism. NEQ(ρ) is a
function of the system MTF, which describes the resolution properties of the imag-
ing system in terms of how well each exponential eigenfunction of an LSIV system
is transferred by the system; the noise power spectrum Wg(ρ), which characterizes
the noise variance in the data as a function of spatial frequency, and finally, the
fluence of the uniform input exposure level, b0, also referred to as the operating
point of interest. Since the MTF is dimensionless, NEQ(ρ) has dimensions of flu-
ence (quanta per unit area).

Wagner and his colleagues were the first to show this connection between NEQ
and ideal-observer SNR (Wagner, 1978; Wagner et al., 1979). Soon after, Wagner
and Brown (1985) developed expressions for NEQ as a function of spatial frequency
for a variety of medical imaging modalities, including radiography, CT, PET, and
NMR.
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It would appear from (13.242) that system optimization could be performed
via maximization of NEQ. However, very restrictive assumptions regarding the de-
terministic and stochastic properties of the imaging system were required to derive
this SNR form, as well as strong assumptions regarding the task. As Wagner and
Brown point out in their 1985 paper, their treatment is strictly valid only when the
signal is low contrast and the noise is additive and Gaussian. As we shall see, more
complicated tasks, or imaging systems in which the assumptions of shift invariance
and stationarity are violated, rarely yield such an elegant factorization for SNR as
found in (13.242).

Relationship between NEQ and DQE The detective quantum efficiency, or DQE,
was first encountered in Chap. 12 as a measure of detector performance (without
any discussion of tasks or observers) for the case of a single photodiode [cf. (12.24)].
The nonimaging DQE of (12.24) is in keeping with the basic definition of DQE given
by Rose (1948), who compared the noise level of an actual radiation detector with
that of an ideal one. Rose applied this concept to the determination of the efficiency
of the eye as a photoreceptor.

Dainty and Shaw (1974) explored the Rose concept of DQE in great detail.
One of the ways in which they interpreted DQE was as a ratio of squared SNRs, so
that the DQE described the transfer of SNR in photographic processes. From there
it was a simple step to relate the squared input and output SNRs to the ratio of
the ideal and effective number of counts, and Dainty and Shaw’s NEQ was born.

Consider the DQE we obtain when we form the ratio of the frequency-dependent
NEQ of (13.243) with the actual number of quanta (per unit area) at the input.

DQE(ρ) =
NEQ(ρ)

b0
=

[

b0
b0 +Wexc(ρ)

]

MTF2(ρ) . (13.244)

We see that this frequency-dependent DQE is dimensionless, as we would expect.
Note also the similarity between the DQE expressions of Chap. 12 and that ob-
tained here in the context of the performance of the ideal observer on a specific
imaging task. The denominator is again the sum of two terms representing the
photon and excess noise contributions. Furthermore, (13.244) has the limiting be-
havior we would expect for a perfect system: as the excess noise and blur approach
zero, DQE → 1.

However, the expression for DQE given in (13.244) is limited in that it is suit-
able for characterization of an imaging system only when NEQ(ρ) is an appropriate
measure of system performance. Specifically, this definition of DQE is not appro-
priate when the system is shift variant, or the noise is nonstationary, or the task is
not SKE/BKE.

In order for the DQE concept to be applicable to more realistic systems and
tasks, we must return to its original definition in terms of a ratio of squared de-
tector SNRs. To generalize this definition, we define a task-dependent DQE as the
squared SNR at the output of an imaging system or component divided by the
squared SNR at the input, for a given task and observer. This ratio describes the
degree to which the SNR has been degraded by the system, in terms of observer
performance. Thus this definition is relevant to the usefulness of the system for its
intended task, as Wagner and Brown advocated, while going beyond the limitations
of NEQ(ρ). Since the numerator and denominator are SNRs, and not in units of
quanta, we call this ratio simply the detection efficiency, η. As we shall see in Chap.
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14, a similar efficiency measure is often used to describe the performance of the hu-
man observer relative to a model observer for a given task.

We shall now relate (13.244) to a ratio of observer SNRs. The squared SNR
of an ideal system can be obtained by considering (13.242) in the limit of a perfect
MTF and no excess noise:

[SNRλ, ideal system]2 ≡ |H(0)|2 b0
∫

∞
d2ρ |∆Frel(ρ)|2 , (13.245)

where we use subscripts to label the observer as well as the system. The efficiency
of the system in presenting information to the ideal observer is then

η =
[SNRλ]2

[SNRλ, ideal system]2
=

|H(0)|2
∫

∞ d2ρ |∆Frel(ρ)|2 NEQ(ρ)

|H(0)|2 b0
∫

∞ d2ρ |∆Frel(ρ)|2

=

∫

∞ d2ρ |∆F (ρ)|2 DQE(ρ)
∫

∞ d2ρ |∆F (ρ)|2
. (13.246)

To interpret these results, consider the detection of a cosinusoidal signal of the
form

∆f(r) =
A

L
rect

( x

L

)

rect
( y

L

)

cos(2πρ0 · r) . (13.247)

It follows from (2.86) and (3.255) that

lim
L→∞

|∆F (ρ)|2 = 1
2A

2[δ(ρ− ρ0) + δ(ρ+ ρ0)] . (13.248)

We note that NEQ(ρ) depends only on the MTF and the noise power spectrum,
both of which are even functions of ρ. Hence DQE(ρ) is also even, and in the limit
L → ∞, (13.246) becomes

η = DQE(ρ0) . (13.249)

For this highly specialized signal, the efficiency of the system is directly its DQE
evaluated at the frequency of the signal. For more realistic signals, DQE(ρ) is
best interpreted as the weighting factor giving the contribution of each frequency
component of |∆F (ρ)|2 to the efficiency η. We reiterate, however, that the whole
formalism rests on the assumptions of continuous data, a linear, shift-invariant
imaging system, and stationary noise. The concept of detective quantum efficiency
and its application to digital radiography are treated further in Sec. 16.1.6.

Random backgrounds and generalized NEQ The concept of NEQ was presented in
(13.243) in the context of detection SNRs for classification tasks limited by station-
ary noise processes and for which the imaging system was assumed to be linear and
shift-invariant (LSIV). Both the signals to be classified and the background were
assumed to be known exactly. The NEQ concept can be generalized to the detection
of known signals on Gaussian random backgrounds (Barrett et al., 1989; Barrett
et al., 1995); to do this we again assume the imaging system to be LSIV and the
random background to be stationary in the wide sense.

In the analysis of NEQ for the SKE problem we modeled the data as having
two sources of randomness, one due to the quantum fluctuations in the incoming
photons and the other resulting from an excess noise source [see (13.240)]. To gener-
alize that derivation to incorporate a Gaussian random background, we add another
term to the autocovariance function for the data:

Kg(r, r
′) = Kphot(r, r′) +Kexc(r, r′) +Kbg(r, r′) , (13.250)
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where the third term is the contribution to the covariance of the data from the
random background. For a particular background, the data have a covariance given
by (13.240). In the limit of no excess noise, and for a fixed background, the data
are Poisson.

Now let us make the assumption that the random background can be described
by a 2D stationary Gaussian random process in the object domain with power
spectral density Wfb(ρ). We assume that the mean image averaged over all random
backgrounds is independent of location and denoted by b0. When we also make the
assumption that the excess noise contributions are stationary, the Fourier domain
expression for (13.250) is written [cf. above (13.241)]:

Wg(ρ) = b0 +Wexc(ρ) + |H(0)|2 MTF2(ρ)Wfb(ρ) . (13.251)

The factors describing the imaging system transfer characteristics impact only the
background power spectral density; they represent the mapping of the background
randomness from object space to image space.

Given the Fourier description for the data covariance of (13.251), we can write
the SNR for the random-background detection problem analogously to (13.242):

SNR2
λ = |H(0)|2

∫

d2ρ |∆Frel(ρ)|2
{

b
2
0MTF2(ρ)

b0 +Wexc(ρ) + |H(0)|2 MTF2(ρ)Wfb(ρ)

}

.

(13.252)
We identify the quantity in brackets as the generalized NEQ:

GNEQ(ρ) =
b
2
0MTF2(ρ)

b0 +Wexc(ρ) + |H(0)|2 MTF2(ρ)Wfb(ρ)
. (13.253)

The important attribute of this result is that, even when the imaging system is
LSIV and the background process is Gaussian and stationary, we find that object
variability results in an SNR that couples together task and hardware contributions
in a complicated fashion. Simple measures of the properties of the imaging system
alone cannot be reported as measures of system performance across all tasks.

A more meaningful approach would be to a) compute the SNR of a specified
observer at the input to the system, taking into account the background randomness
as well as the quantum fluctuations; b) determine the same observer’s SNR at the
output of the system; and c) compute the ratio of those squared measures, the
detection efficiency η. This quantity describes the efficiency of the imaging system
in transferring the information to the observer for performing the specified task.

Hotelling SNR in the continuous limit The SNR given in (13.178) is maximum over
all possible linear decision strategies without making any assumptions regarding the
stationarity of the data statistics. For continuous data (13.178) becomes

SNR2
Hot =

∫

d2r

∫

d2r′ ∆g(r)S(−1)
2 (r, r′)∆g(r′) , (13.254)

where S2(r, r′) is the average of the data autocovariance functions, and S(−1)
2 (r, r′)

satisfies
∫

d2r S(−1)
2 (r′′, r)S2(r, r

′) = δ(r′′ − r′) . (13.255)
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The superscript −1 is in parentheses here to indicate that S(−1)
2 (r′′, r) is the kernel

of the operator S−1
2 , not the reciprocal of the function S2(r′′, r).

If we assume that the autocovariance functions are stationary, we can follow
the derivation that led to the ideal observer’s SNR in the Fourier domain given in
(13.242). The Hotelling observer’s SNR is given by

SNR2
Hot =

∫

∞
d2ρ

|∆G(ρ)|2

Wg(ρ)
, (13.256)

where ∆G(ρ) is the Fourier transform of the average signal and Wg(ρ) is the power
spectral density determined from the stationary average autocovariance function.
While the SNR given in (13.242) holds for the ideal observer in the case of stationary
Gaussian noise and signal known exactly, (13.256) holds more generally for the
Hotelling observer. The signal may be random and the data statistics may be non-
Gaussian. All that is required is that the data covariance be stationary under each
hypothesis, and that the mean signal under each hypothesis be known.

Quasistationary noise We now consider the form of the SNR that results when the
task is the detection of a known signal on a quasistationary background. We shall
continue to assume that the data are continuous in order to make use of the Fourier
descriptors developed in Sec. 8.2.5 for quasistationary random processes.

We assume the signal is spatially compact and localized at r0, so that∆g(r) = 0
if |r − r0| > R. As in (8.120), we can make use of the following coordinate trans-
formation:

r = 1
2 (r+ r′) , ∆r = r− r′ (13.257)

so that

r = r+ 1
2∆r , r′ = r− 1

2∆r . (13.258)

Note that the Jacobian of this transformation is unity.
We assume the autocovariance function of the background Kg(r, r′) is the

same under each hypothesis. When we rewrite the autocovariance function using
the transformation of (13.258) we obtain

Kg(r, r
′) = Kg(r+

1
2∆r, r− 1

2∆r) ≡ Kg(r,∆r) . (13.259)

We can similarly transform K−1
g (r, r′) or any other function of r and r′. Thus the

SNR of (13.254) becomes

SNR2
Hot =

∫

d2r

∫

d2 ∆r ∆g(r+ 1
2∆r)K(−1)

g (r,∆r)∆g(r− 1
2∆r) , (13.260)

where K(−1)
g (r,∆r) is the kernel of the operator K−1

g . We have made a coordinate
transformation, but no approximations thus far.

The compact support of the signal implies that ∆g(r+ 1
2∆r)∆g(r− 1

2∆r) = 0

unless |r − r0| < 2R. If we can assume that K(−1)
g (r,∆r) is a slowly varying
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function of the r variable, so that it is approximately constant over this range, then

K̃(−1)
g (r,∆r) ≈ K̃(−1)

g (r0,∆r). Then the SNR becomes

SNR2
Hot(r0) ≈

∫

d2∆r K(−1)
g (r0,∆r)

∫

d2r ∆g(r+ 1
2∆r)∆g(r− 1

2∆r)

=

∫

d2∆r K(−1)
g (r0,∆r) [∆g '∆g](∆r) , (13.261)

where [∆g '∆g] is the spatial autocorrelation function of the known signal, and the
argument indicates that the SNR depends on the signal location r0.

The SNR expression above is ripe for transformation to the Fourier domain.
We know that F2{∆g(r)} = ∆G(ρ) and F2{[∆g'∆g](∆r)} = |∆G(ρ)|2. We define

F2{K(−1)
g (r0,∆r)} = C(r0,ρ). By Parseval’s rule (13.261) can be rewritten as

SNR2
Hot(r0) =

∫

d2ρ C(r0,ρ)|∆G(ρ)|2 . (13.262)

To better understand (13.262), we must determine the relationship between
C(r0,ρ) and the autocovariance of the quasistationary noise, Kg(r,∆r). To ascer-
tain this relationship, we rewrite the defining equation (13.255) for the inverse of
Kg with the approximation 1

2 (r+ r′) ≈ 1
2 (r+ r′′) ≈ r0, yielding

∫

d2r K(−1)
g (r′′, r)Kg(r, r

′) ≈
∫

d2r K(−1)
g (r0, r

′′ − r)Kg(r0, r− r′) = δ(r′′ − r′) .

(13.263)
With the change of variables12 ∆r = r− r′, this relation becomes

∫

d2∆r K(−1)
g (r0, r

′′ −∆r− r′)Kg(r0,∆r) = δ(r′′ − r′) . (13.264)

Since (13.264) is a convolution integral, taking the Fourier transform of both sides
produces

F2 K(−1)
g (r0,∆r) F2 Kg(r0,∆r) = F2{δ(∆r)} = 1

or

F2 K(−1)
g (r0,∆r) = C(r0,ρ) =

1

F2 Kg(r0,∆r)
=

1

W∆g(r0,ρ)
, (13.265)

where W∆g(r0,ρ) is the stochastic Wigner distribution function [cf. (5.54) and
(8.140)] for the zero-mean process ∆g(r).

Thus the SNR in (13.262) in the quasistationary approximation is

SNR2
Hot(r0) =

∫

d2ρ
|∆G(ρ)|2

W∆g(r0,ρ)
. (13.266)

This expression is strikingly similar to the one found in (13.256), only now we
have the Wigner distribution function in place of the power spectral density of the
stationary noise, Wn(ρ). For stationary noise, (13.266) reduces to (13.256).

12Note that r′ is simply a constant here, independent of the variable of integration.
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Factorable quasistationarity and prewhitening As we saw in Sec. 8.2.4, an autocor-
relation or autocovariance function can often be factored into a slowly varying con-
tribution arising from variations in overall intensity and a short-range function
describing correlation between neighboring points. As in (8.119), we can write

Kg(r, r
′) = a(∆r) b(r) . (13.267)

For example, this formula holds for Poisson random processes with a(∆r) = δ(∆r)
and b(r) being the fluence [see (11.94)]. It also has use for describing the field au-
tocovariance in coherent imaging systems [see (18.115)].

From (8.142) we know that the stochastic Wigner distribution function corre-
sponding to (13.267) is

W∆g(r,ρ) = A(ρ) b(r) . (13.268)

If b(r) is slowly varying so that it is approximately equal to b(r0) over the signal
support, then (13.266) becomes

SNR2
Hot(r0) =

1

b(r0)

∫

d2ρ
|∆G(ρ)|2

A(ρ)
. (13.269)

The factor 1/b(r0) may be surprising, but in fact ∆G(ρ) will scale as b(r0) in most
problems, so the overall result will be that SNR2

Hot(r0) ∝ b(r0). This proportion-
ality can be seen explicitly in the expression for the ideal observer’s SNR given in
(13.242).

It is interesting to relate these results to prewhitening. Let the output of a
linear processing operation on the data be

y(r) =

∫

d2r′ o(r, r′) g(r′) . (13.270)

This operation can legitimately be referred to as prewhitening if 〈∆y(r1)∆y(r2)〉 =
δ(r1 − r2). We leave it to the reader to demonstrate that this property is achieved
for the covariance model of (13.267) if

o(r, r′) =
1

b(r′)

∫

d2ρ
1

A(ρ)
exp[2πiρ · (r− r′)] . (13.271)

Note that y(r) is simply g(r)/ b(r) if a(∆r) = δ(∆r) and hence A(ρ) = 1.
From (13.129) we know that the SNR after prewhitening is given by

SNR2
pw =

∫

d2r |∆y(r)|2 , (13.272)

and the reader can show that this expression is equivalent to (13.269) under the
assumption of (13.267). Thus (13.269) is the SNR2 for a locally prewhitening
matched filter. The more general expression for the locally prewhitened SNR2

when the model of (13.267) is not valid is (13.266).

Observer efficiency We defined DQE as a measure of the efficiency of a detector
in providing information to the ideal observer for performing a specified task. The
DQE concept can be applied equally well to observer models, as a means of de-
scribing the relative performance of two model observers on the same task using the
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same data. Specifically, the efficiency of the Hotelling observer relative to the ideal
observer is written

ηHot =
SNR2

Hot

d2A,ideal

. (13.273)

The figure of merit for the ideal observer to be used here is dA, derived from AUC
via (13.21), because dA summarizes the area under the ROC curve, while the SNR of
(13.19) might not. We aren’t too interested in computing ηHot for SKE/BKE tasks
in Gaussian noise, since we know the efficiency must be unity for that circumstance.
What is interesting is the quantification of the difference in performance between
the observers for more complex tasks, particularly ones where (13.19) would not be
a good summary measure of the ideal observer’s performance. Hence the use of dA.

In Chap. 14 we shall make use of similar definitions of observer efficiency in
terms of human performance relative to that of various model observers.

13.3 ESTIMATION THEORY

In Sec. 13.1 we presented a joint description of classification and estimation tasks,
emphasizing their connections. As described in detail in Sec. 13.2, classification is
partitioning of data space, assigning labels to regions. In contrast, estimation is
assigning numbers or vectors to points in data space. We now take up the subject
of estimation in detail.

As we saw in Sec. 13.1.1, estimation problems can be categorized by the par-
ticular quantity being estimated. In point estimation, also called parameter es-
timation, we are given a data vector g and a parametric form for the conditional
density pr(g|θ). Our job is to form an estimate of all elements of the vector θ. A
second class of problems is one in which two complementary vectors θ and θn de-
termine the data. We seek to estimate the P -dimensional vector θ; the components
of θn are termed nuisance parameters. This problem is therefore referred to as
estimation with nuisance parameters. Most texts on estimation deal only with
the problem of point estimation, with little mention of nuisance parameters. We
shall first consider parameter estimation without regard for nuisance parameters
here as well, later turning to the topic of nuisance parameters and means of dealing
with them.

We begin in Sec. 13.3.1 with a discussion of the basic concepts of estimation,
including the essential ingredients of the estimation process and figures of merit for
parameter estimation. Common terms that are defined and discussed in that sec-
tion are bias and mean-square error or MSE. As we shall see, there is considerable
subtlety in defining these terms; indeed, in many practical problems in imaging, no
satisfactory definition exists. In Sec. 13.3.2 we digress from our development of
estimation methods to detail some of the difficulties that arise in trying to apply
MSE to imaging.

In Sec. 13.3.3 we return to our main thread and discuss Bayesian estimation,
in which the underlying parameters are assumed random and characterized by a
prior probability density. The powerful method of maximum-likelihood (ML) esti-
mation and properties of ML estimators are presented in Secs. 13.3.4 – 13.3.6. Other
classical estimators are discussed briefly in Sec. 13.3.7. In Sec. 13.3.8, we present
a definition of nuisance parameters and discuss ways of dealing with them in pure
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estimation problems. In Sec. 13.3.9 we treat hybrid classification-estimation tasks,
again from the perspective of nuisance parameters.

13.3.1 Basic concepts

The first ingredient in an estimation problem is the PD vector of parameters θ we
seek to estimate. In an imaging context, θ may be a low-dimensional vector that
parameterizes object size, shape, location, amplitude, etc. Alternatively, we may
be interested in the estimation of a figure of merit for the objective evaluation of an
imaging system. For example, we may be given a limited set of images for use in the
estimation of the area under the ROC curve or related measures of imaging system
performance, a problem we consider in more detail in Chap. 14. These applications
are to be contrasted with the situation in which a large number of parameters are
to be estimated, for example, a large set of expansion coefficients used to represent
the object. Chap. 15 is devoted to the complex topic of estimation of coefficients of
approximate object expansions. With one exception, we limit the presentation in
this chapter to estimation problems in which a small number of parameters are to
be determined. The exception is the treatment of some issues that arise in the use
of mean-square error as a figure of merit in digital imaging; that presentation sets
the stage for a related discussion in Chap. 14.

The prior probability density, pr(θ), describes the underlying randomness in
the parameter(s). This density is analogous to Pr(Hj) in the classification problem.
As described in the Prologue, Bayesian estimation makes use of such a prior in
formulating an estimation procedure; a Bayesian considers the underlying param-
eter vector to be random. This is in contrast to classical estimation, in which the
underlying θ is assumed to be fixed for a given data set.

Another essential element, as we emphasized in Sec. 13.1.2, is knowledge of the
mapping from parameter space to the measurement (data) space. This mapping
is the probability law on the data conditioned on the true parameter θ, written
pr(g|θ). In imaging, this density function is determined by the (possibly nonlinear)
relationship between θ and the object, the deterministic mapping from object space
to data space, as well as the noise characteristics of the imaging system.

Finally, estimation requires a rule, or procedure, for mapping from the data
space to the estimate θ̂(g). We assume that the estimation rule is deterministic, so
that the same data vector always yields the same estimate. We made an analogous
assumption in Sec. 13.2, stating that the decision function always yields the same
decision given the same data as input. We shall often drop the explicit dependence
of the estimate on the data, writing simply θ̂.

Many estimation procedures are formulated as the minimization of some cost
function C(θ̂,θ) that describes the penalty associated with reporting θ̂ when the
true parameter is equal to θ. This cost function is analogous to the classification
cost Cij of making decision Di when hypothesis Hj is true.

There are a variety of methods for characterizing the performance of an esti-
mator. We begin here with a discussion of costs and risks, followed by definitions of
the bias and variance of a scalar estimate, and then we shall generalize these expres-
sions to vector estimation. Other relevant aspects, such as whether the estimate is
consistent, efficient, or sufficient, will be taken up in Sec. 13.3.6.
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Costs and risks Table 13.1 gives three definitions of risk using three different kinds
of average cost. Let us consider the assumptions required for the computation of
the various definitions of risk. The first row gives a frequentist definition of risk,
which we shall call C(θ) since it is a function of θ. The computation of the av-
erage requires knowledge of the prior probability density on the data conditioned
on the underlying parameter, pr(g|θ). This averaging operation is analogous to
the average performed in (13.6) over all decision outcomes given an underlying true
hypothesis state.

The second row of Table 13.1 defines average cost as a function of a particu-
lar g. This Bayesian definition requires knowledge of the posterior probability on
θ, that is, pr(θ|g). The Bayesian regards θ as random, but has no concept of an
ensemble of g vectors; the data are fixed. We call this cost function C(g) since it
is a function of g. This cost is analogous to the cost computed in (13.5), where the
average is performed over all underlying classes for a given decision.

The third row of Table 13.1 defines the overall average cost, found by averaging
over the ensemble of possible data vectors {g} for a particular θ, followed by an
average over the distribution of underlying parameters prθ(θ). The double average
results in a scalar cost C that is no longer a function of either θ or g. This cost is
analogous to the overall average cost of a classification decision computed in (13.7).

In summary, estimates are statistical quantities, hence their evaluation requires
statistical methods. We conceive the data as being derived from some noisy mea-
surement system, so that the data would be random given repeated trials of the
measurement procedure on the same object, with additional randomness in the case
of underlying parameter variability. We shall thus treat two problems in parallel,
considering the performance of an estimator acting on noisy data when the underly-
ing parameter is fixed, as well as the extension to the case where there is randomness
in the underlying parameter.

Bias Given a data vector g, let θ̂ denote an estimate of some fixed scalar parameter
θ underlying the data. Because θ̂ is a function of noisy data, it is a random variable
with a distribution (see Fig. 13.12) that depends on the true value of the underlying
parameter. If we know pr(g|θ) and the estimation rule θ̂(g) we can write the mean
of θ̂ as

θ̂ =
〈

θ̂(g)
〉

g|θ
=

∫

dMg pr(g|θ) θ̂(g) , (13.274)

where the subscript g|θ in the middle form indicates that the average is over all
sources of randomness in the data when the parameter has fixed value equal to θ.

We therefore call θ̂ the conditional mean of θ̂. If we know the conditional PDF of
θ̂ itself, we can write

θ̂ =

∫

dθ̂ pr(θ̂|θ) θ̂ , (13.275)

where now we no longer need an explicit form for θ̂(g). On the other hand, we need
to know pr(θ̂|θ) in this formulation. Since θ̂ is often a nonlinear or even an implicit
function of g, it can be challenging to determine pr(θ̂|θ).

Note that the mean of the estimated value, θ̂, may not equal the true value
θ. In this case a systematic error, or bias, exists in the estimation procedure. We
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denote the conditional bias by b(θ), where

b(θ) = θ̂ − θ . (13.276)

The overline indicates an average over all realizations of the data, given the true
value θ. An unbiased estimate is one for which b(θ) = 0 for all θ.

Fig. 13.12 Distribution of !θ conditioned on θ.

Estimability It is not always possible to find an unbiased estimate. It often hap-
pens that even noise-free data are not sufficient to determine θ unambiguously. As
a simple example, suppose that θ is the integral of some object over a region S
but that the data available consist of an image that covers only the smaller region
S′ contained in S. One could still make an estimate of θ, but there would be no
satisfactory way of determining the bias b(θ). The estimate θ̂(g) is fully determined
by g, which in turn is determined by the part of the object in S′, so the mean of θ̂
is well defined but insensitive to the part of the object outside S′. The true value
θ, however, depends on the exterior part of the object also, so different objects will
give different θ but the same mean estimate, hence different b(θ). The bias might
be zero for some particular object, but that is not of much use; we would like to
have an estimator that is unbiased for all values of the parameter. A stopped clock
is an unbiased estimator of the time twice a day.

A parameter is said to be be estimable or identifiable with respect to some
data set if there exists an unbiased estimator of it for all true values of the under-
lying parameter. Some books impose the additional restriction that there must be
a linear unbiased estimator, but we use the broader definition of estimability.

An alternative approach to defining estimability is in terms of the likelihood
pr(g|θ). A parameter is estimable if different values of the parameter lead to dif-
ferent likelihoods. Putting it the other way around, if the statement pr(g|θ1) =
pr(g|θ2) does not imply that θ1 = θ2, then θ is not estimable.

For linear measurement systems, estimability is closely linked to null func-
tions. Consider our familiar imaging equation, g = Hf + n. The conditional
density pr(g|f ) depends on f only through Hf, so if there are two objects f1 and
f2 such that Hf1 = Hf2 but θ(f1) $= θ(f2), then θ(f ) is not estimable. The two
objects differ by a null function, since H(f1 − f2) = 0, and it is fundamentally the
existence of null functions that causes some parameters not to be estimable.

Estimability is critical in digital imaging, especially in indirect methods such
as computed tomography, since it determines what one can, in principle, determine
about the object from a particular data set. Most importantly, it turns out that
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the integral of an object over small pixels or voxels is almost never an estimable pa-
rameter, so the bias in pixel values is not very useful in saying how well an imaging
system performs. We shall be more specific about this point below in Sec. 13.3.2,
and we shall discuss it in detail in Chap. 15 when we consider image reconstruction
algorithms.

Ensemble-average bias One way of dealing with the issue of estimability is to aver-
age the bias over all possible true values of the parameter, defining an average bias
by

θ̂ =

∫

dP θ pr(θ)

∫

dMg pr(g|θ) θ̂(g) , (13.277)

or equivalently

b = 〈b(θ)〉θ = θ̂ − θ . (13.278)

The average bias b can be zero even for a biased estimator if positive and negative
biases cancel out.

Actually computing the average bias requires a probability density on θ. For
our example above of data limited to a subregion, we would need a probability
density function for the integral of the object over the region of S that is not
contained in the measured region S′. Note that we do not need a density on the
object itself, just its integral.

Modeling errors and bias Bias may be the result of the estimation procedure itself,
as we shall see below in the discussion of the use of prior information to form an
estimate. Bias can also be the result of an incorrect model for the mapping from
the parameter space to the data space. When incorrect assumptions are made
regarding the likelihood pr(g|θ), a nonzero bias can be expected. Theoretical and
simulation studies sometimes skirt this issue by using the same incorrect likelihood
in the computation of both θ̂ and in the evaluation of the bias.

Variance Another common measure of estimator performance is the variance, which
describes the fluctuations in the estimate of θ that would be obtained over a re-
peated number of trials:

Var(θ) = σ2
$θ
= |θ̂(g)− θ̂|2

g|θ
=

∫

dMg pr(g|θ) |θ̂ − θ̂|2 . (13.279)

The variance describes the fluctuations of the estimate about the mean of the esti-
mate, not the true mean.

The bias and variance of an estimator are closely related to the accuracy and
precision of a measurement, since a measurement is essentially an estimate of some
physical quantity. The accuracy of a measurement is the closeness of the measured
result to the true value, which is specified by the bias. The precision of a mea-
surement is the reproducibility of multiple measurements, which is specified by the
variance.

Mean-square error The bias and variance defined in (13.276) and (13.279) are con-
ditioned on a particular value for the parameter θ. The mean-square error, or
MSE, of an estimate is the overall fluctuation in the estimate, conditioned on a
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particular value for θ:

MSE(θ) =
〈

|θ̂ − θ|2
〉

g|θ
. (13.280)

Note that the MSE is a distance from the true θ, while the variance is a measure of

the spread relative to the mean estimate θ̂. For an unbiased estimate the variance
and the MSE are identical.

If the parameter θ has some randomness associated with it, the ensemble
mean-square error, or EMSE, is found by taking an additional average over the
parameter:

EMSE =

〈

〈

|θ̂ − θ|2
〉

g|θ

〉

θ

. (13.281)

Thus computation of the EMSE requires knowledge of the probability density func-
tion pr(θ). The prior probability density function required to compute the average
over θ could be an actual sampling density or a subjective Bayesian prior.

Vector generalizations The generalization of the discussion of performance mea-
sures to vector estimates is straightforward. A P -dimensional parameter vector θ
has an estimate θ̂ with mean 〈θ̂〉 given by

θ̂(g) =

∫

dMg pr(g|θ) θ̂(g) =

∫

dP θ̂ pr(θ̂|θ) θ̂ . (13.282)

The first integral requires knowledge of the data density pr(g|θ) and the explicit
form of the mapping θ̂(g), while the second form assumes we know the conditional
PDF of θ̂ itself.

The bias b(θ) is now a vector quantity:

b(θ) ≡ θ̂ − θ ≡

∫

∞
dMg

[

θ̂(g)− θ
]

pr(g|θ) =

∫

∞
dP θ

[

θ̂ − θ
]

pr(θ̂|θ) . (13.283)

The average bias is now written b = 〈b(θ)〉θ.

If we denote the mean of the pth element of the random vector θ̂ by 〈θ̂〉p = θ̂p,
the variance of the pth element is given by

Var(θ̂p) ≡
〈[

θ̂p − 〈θ̂p〉
] [

θ̂p − 〈θ̂p〉
]∗〉

g|θ

=

∫

∞
dMg |θ̂p(g)− 〈θ̂p(g)〉|

2 pr(g|θ) =

∫

∞
dP θ |θ̂p − 〈θ̂p〉|

2 pr(θ̂|θ) , (13.284)

and the full covariance matrix is written:

K$θ =

〈

(

θ̂ − θ̂
)(

θ̂ − θ̂
)†
〉

= 〈∆θ̂∆θ̂
†
〉 . (13.285)

The MSE in the vector case is:

MSE =
〈

||θ̂ − θ||2
〉

g|θ
=

∫

∞
dMg ||θ̂(g)− θ||2 pr(g|θ) =

∫

∞
dP θ ||θ̂− θ||2 pr(θ̂|θ) .

(13.286)
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The reader can show that the MSE can be written equivalently in terms of the
covariance matrix and the bias vector as:

MSE = tr
[

K$θ

]

+ tr
[

bb†
]

. (13.287)

The mean-square error is thus the sum of two contributions: one from the bias and
the other resulting from the variance about the mean estimate.

The EMSE is obtained by averaging the MSE over all θ:

EMSE =

〈

〈

||θ̂ − θ||2
〉

g|θ

〉

θ

= tr
[

K$θ

]

+ tr
〈

bb†
〉

. (13.288)

As noted below (13.281), the PDF used to perform the average over θ could be an
actual sampling density or a subjective Bayesian prior. As described in the Prologue
and Chap. 8, it becomes increasingly difficult to determine pr(θ) through sampling
as the dimensionality P increases. In such cases, it is common to assume some
subjective Bayesian prior, examples of which are explored further in Chap. 15.

13.3.2 MSE in digital imaging

In this section we discuss some technical issues in using MSE in digital imaging,
and specifically in image reconstruction from indirect data. The reader wanting to
learn the basics of estimation without necessarily applying them to imaging may
skip ahead to Sec. 13.3.3.

It is common in digital imaging to specify how well an imaging system is func-
tioning by specifying the MSE between object and image. The implicit assumption
is that the purpose of the imaging system is to reproduce the object, so the best
image must be the one that looks the most like the object. Our goal here is to
examine that approach critically; alternative approaches will be offered in Chap.
14.

The commensurability problem An immediate problem in trying to define an MSE
for digital images is that the object and image are in different spaces; the object is
a function of continuous variables and the image is a discrete set of numbers. To
compute a difference between the two, we must either make the object discrete or
the image continuous.

As we saw in detail in Chap. 7, a digital data set is described by a continuous-
to-discrete (CD) mapping of the form

gm =

∫

Sf

dqr f(r)hm(r) + nm (13.289)

or, in operator form,
g = Hf + n , (13.290)

where g is the M × 1 data vector, n is the zero-mean M × 1 noise vector, and f

is the infinite-dimensional Hilbert-space vector corresponding to the function f(r).
Though we shall use the notations f(r) and f interchangeably, as we have in previ-
ous chapters, we emphasize here that the object is a function; no discretization is
implied by the notation f .
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For direct-imaging systems, g may be the final digital image, but often some
additional processing is applied. For indirect imaging systems, a reconstruction step
is always required. We can treat these cases together by denoting the final digital
image by the N×1 vector θ̂, where N may be equal to M , but could also in general
be different. If the digital processing is linear, we can write

θ̂ = Ag = AHf +An , (13.291)

where A is an N × M matrix. For direct imaging without additional processing,
N = M , and A is the unit matrix. Specific forms for A for indirect imaging will be
discussed in Chap. 15.

Our problem now is to compute an MSE between the N × 1 vector θ̂ and
the original object function f(r). Building on the formalism in Chap. 7, we shall
present three possible solutions to this problem.

Discrete error norm One way to compare θ̂ to f(r) is to discretize f(r) to a vector
of the same dimension as θ̂. If this discretization is a linear mapping, its general
form is given by (7.35) as

θ = Dχf , (13.292)

where the discretization operator Dχ is defined explicitly in (7.36).
We can now define the discrepancy between this discretized version of the

object and the output of the digital imaging system as

δθ ≡ θ̂ − θ . (13.293)

With (13.291), the norm of this error is given by

||δθ||2 = ||(AH −Dχ)f +An ||2 , (13.294)

where the norm is in the ND Euclidean space EN. The numerical value of this norm
depends, of course, on the choice of the discretization functions {χn(r)} as well as
on the system operator H, the noise n, and the processing matrix A.

Continuous error norm The second option is to make a continuous version of the
digital image. If this operation is a linear mapping, its general form is given from
(7.37) as

f̂(r) =
[

D
†
φθ̂
]

(r) =
N
∑

n=1

θ̂n φn(r) . (13.295)

The functions {φn(r)} thus serve as interpolating functions.
We can define the discrepancy between the two functions f(r) and f̂(r) as

δf(r) ≡ f̂(r)− f(r) . (13.296)

The norm of this error, now defined in L2(Rq), is given by

||δf ||2 = ||(D†
φAH− I )f +D

†
φAn||2 . (13.297)
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The simulation solution The third solution to the commensurability problem is
to ignore it and do a simulation! This approach, favored in most of the imaging
literature, starts by discretizing some assumed continuous object f(r), yielding an
N × 1 vector θa, defined by

θa = Dψf (13.298)

for some set of discretization functions {ψn}.
This vector is now regarded as the “true” object. It is imaged through a matrix

H, as described in Sec. 7.4.1, and the resulting approximate data vector is given by
[cf. (7.305)]

ga = Hθa + n . (13.299)

The noise term should really be written as ε instead of n since we use the former
notation to include both true measurement noise and modeling error, but this dis-
tinction is virtually always ignored in simulation studies. Customarily, a zero-mean
noise vector n is generated in the computer and added to Hθ to give ga. This ga

is then processed just as a real data vector would be, yielding a digital image θ̂a.
Now, however, there is no commensurability problem since the true object is

regarded as the discrete vector θa. The error norm is given by

||δθ||2sim ≡ ||θ̂a − θa||
2
sim = ||(AHDψ −Dψ)f +An||2 . (13.300)

What do we mean by mean? To convert an error norm to a mean-square error, we
must specify what kind of averaging is implicit in the word mean. There are three
options: First, we can do a spatial average over a single image for a single object
and a single realization of the noise. In spite of the terminology used, the MSE
that results in this case is a random variable. Second, we can choose to average
the error norm over all realizations of the noise for a single object. If we regard
the object as nonrandom, the resulting MSE is not a random variable, but it does
depend on the specific object chosen. Third, we can average over the noise and also
over some ensemble of objects. This approach thus requires some knowledge of the
object statistics, the topic of Sec. 8.4.

The spatial average is just the norm divided by the number of voxels in the
discrete cases or the area of the object support in the continuous case, so the MSE
is proportional to the error norm if we choose this kind of averaging. Explicitly, if
we do only the spatial averaging, the continuous MSE is defined by

MSEcont ≡
1

A
||δf ||2 =

1

A

∫

Sf

dqr |δf(r)|2 , (13.301)

where A is the area of the object support if q = 2 (or the volume if q = 3).
For the discrete error norm, the corresponding MSE is defined by

MSEdisc ≡
1

N

N
∑

n=1

|θ̂n − θn|
2 . (13.302)

When we include the other kinds of average, we shall append additional sub-
scripts. For example,

MSEcont,n,f ≡
1

A

〈〈

||δf ||2
〉

n|f

〉

f
. (13.303)



882 STATISTICAL DECISION THEORY

With three ways of defining the error norm and three ways of averaging it,
we have nine definitions of MSE. Some of them are common in the literature. For
example, MSEsim, with only the spatial average, probably appears in the majority
of papers on image processing. The Wiener-Helstrom estimator (Wiener, 1942;
Helstrom, 1967) minimizes MSEcont,n,f , though usually under the assumption that
f(r) is a sample function of a stationary random process, and also that the imaging
system is so finely sampled that the distinction between continuous and discrete
MSEs can be ignored. When the Wiener-Helstrom estimator is modified to use
discrete models, it minimizes MSEdisc,n,f . The best linear unbiased estimator or
BLUE, to be discussed in Sec. 13.3.7, minimizes MSEdisc,n in two steps: first it is
designed to be unbiased—which implicitly assumes that all components of θ are
estimable—and then it minimizes the MSE, which for an unbiased estimator is just
the average variance.

Note that the issue of estimability does not arise if the MSE includes an average
over the object class. While it is true that some objects in the class will almost
invariably contain null functions, any MSE with an average over f will tell us how
close we come, on average, to reconstructing an object from the class.

This point is largely moot, however, for two reasons: we never have enough
information about the object class to do a believable average over f , and even if we
did, MSE has nothing to do with the intended use of the image. At best, MSEcont,n,f

and MSEdisc,n,f say something about how well we can represent a class of objects,
but nothing about how well we can distinguish between two different classes. The
details that are important to the intended use of the image may make a very small
contribution to the quadratic content (energy), yet accurate reproduction of these
details may be essential.

Another objection to MSE is that any value computed will depend on an
arbitrary choice of the functions used in the discretization or interpolation steps.
Sometimes these choices can make large changes in the numerical values and can
even change the rank ordering of the systems supposedly being evaluated.

Effect of null functions To understand better the role of null functions when no
average over f is involved, let us look more closely at the mathematical forms of
MSEcont,n, MSEdisc,n and MSEsim,n. With some algebra, the expressions we wish
to compare can be rewritten as

MSEcont,n =
1

A
||(D†

φAH− I )f ||2 +
1

A
tr{AKA†

DφD
†
φ} ; (13.304)

MSEdisc,n =
1

N
||(AH−Dχ)f ||

2 +
1

N
tr{AKA†} ; (13.305)

MSEsim,n =
1

N
||(AHDψ −Dψ)f ||

2 +
1

N
tr{AKA †} , (13.306)

where K is the covariance matrix of the noise and tr{·} denotes the trace operation,
or sum of the diagonal elements13 of the matrix.

13Note that the noise contribution to the MSE in (13.304) can also be written as tr{ †
φAKA†

φ}

by using the cyclic property of the trace, (A.96), but in this form the trace would have to be
interpreted as an integral rather than a sum.
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To see how null functions influence the continuous MSE, we can decompose
the object function as in (1.127):

f(r) = fmeas(r) + fnull(r) , (13.307)

where Hfnull = 0. With this decomposition, we can rewrite (13.304) as

MSEcont,n =
1

A
||(D†

φAH− I )fmeas − fnull||
2 +

1

A
tr{D†

φAKA†
Dφ} . (13.308)

By the triangle inequality, the first term has a minimum value of A−1||fnull||2.
We could simply accept this offset and rate systems by how close they came

to the minimum if all systems of interest had the same null space (optical systems
with the same aperture but different aberrations, for example), but modern imaging
ranges over many different systems with different null spaces. Even different pro-
cessing algorithms on the same data can differ in the way they attempt to recover
null functions. Hence ||fnull||2 is of critical importance if we want to compare sys-
tems on the basis of MSEcont,n. Since this MSE uses just a single object, it depends
strongly on the null functions of that object. The nefarious (or unwitting) investi-
gator wanting to show that System A was better than system B could, for example,
construct an object as a linear superposition of natural pixels (see Sec. 7.4.3) for
system A, thereby removing the contribution ||fnull||2 from the continuous MSE.

The situation is more complicated in MSEdisc,n since both H and Dψ have null
spaces. If these null spaces were identical, then null functions would play no role
at all in MSEdisc,n. Furthermore, if we chose an object such that Dχf lay entirely
in the measurement space of H, then again null components of the object would
play no role. Even for complicated objects with lots of fine detail not resolved by
the system, we can still make MSEdisc,n small just by choosing the matrix A to
reconstruct on a coarse grid and choosing {χn(r)} to discretize the object on the
same grid. In that case, AHf could easily be a good approximation to the coarsely
discretized object Dχf .

The main feature of MSEsim,n is that it can be completely insensitive to null
functions for all choices of the object. Since both AHDψ and Dψ erase the com-
ponents of f(r) in the null space of Dψ, this null space is always irrelevant for
any version of MSEsim. Moreover, the entire first term in (13.308) vanishes when
A = H−1 or AHDψ = Dψ; since one or both of these conditions often hold in
simulations, all we can ever hope to learn about the system from MSE measures in
such studies is how much the noise is amplified by the processing.

13.3.3 Bayesian estimation

Bayesian estimation is the determination of an estimate of a random θ through
minimization of the Bayes risk. Knowledge of pr(θ) is assumed, and a cost func-
tion C(θ̂,θ) must be specified. Choosing a cost function is equivalent to choosing
a particular tradeoff between bias and variance. In the following sections we shall
determine the form of the Bayesian estimator for several commonly chosen cost func-
tions. In each case we begin with the scalar estimation problem. Where possible,
the generalization to the vector problem is then given.

Quadratic cost functions and the MMSE estimator The EMSE is a common form for
the cost measure C(θ̂, θ) to be minimized in the design of an estimation procedure.
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Since the EMSE is quadratic in (θ̂−θ), it is referred to as a quadratic cost function.
We shall now derive the form of the estimator that minimizes this cost function,
starting with the scalar case.

The EMSE in the scalar case, (13.281), can be written as

EMSE =

〈

(

θ̂ − θ
)2

〉

g,θ

=

∫

dMg pr(g)

∫

dθ pr(θ|g)
(

θ̂ − θ
)2

=

∫

dMg pr(g)

∫

dθ pr(θ|g)
(

θ̂2 − 2θθ̂ + θ2
)

=

∫

dMg pr(g)

[

θ̂2 − 2θ̂

∫

dθ θ pr(θ|g) +

∫

dθ θ2 pr(θ|g)

]

. (13.309)

We know that pr(g) is always nonnegative, so the EMSE is minimized by setting

∂

∂θ̂

[

θ̂2 − 2θ̂

∫

dθ θ pr(θ|g) +

∫

dθ θ2 pr(θ|g)

]

= 0 . (13.310)

The solution is given by

2θ̂ − 2

∫

dθ θ pr(θ|g) = 0 , (13.311a)

or

θ̂MMSE =

∫

dθ θ pr(θ|g) = 〈θ〉θ|g , (13.311b)

where the subscript MMSE stands for minimum mean-squared-error. A better
term might be MEMSE, or minimum ensemble mean-squared-error since the
average over θ is required. Note, however, that the average over g is not required;
exactly the same estimate would be obtained with a quadratic cost function averaged
over the prior alone, so θ̂MMSE is a true Bayesian estimate.

The density function in the integrand of (13.311b) is the posterior probability
of θ conditioned on the measured data vector. We see that θ̂MMSE is the mean of θ
with respect to this density, or the posterior mean.

We can use Bayes’ rule to write (13.311b) as

θ̂MMSE =

∫

dθ θ

[

pr(g|θ) pr(θ)

pr(g)

]

=

∫

dθ pr(g|θ) pr(θ) θ
∫

dθ pr(g|θ) pr(θ)
. (13.312)

Example: MMSE estimation of the rate of a Poisson process Suppose we have a
radioactive sample of unknown concentration and we wish to estimate the rate
parameter a of the Poisson process. We further assume that a follows an exponential
distribution (C.118): pra(a) = (1/β) exp(−a/β). We denote the integer number of
counts detected in the sampling interval by n. Then pr(n|a) is given by the well-
known Poisson probability law of (C.165):

pr(n|a) =
e−aan

n!
. (13.313)

We find the MMSE estimate for a by solving (13.312):

âMMSE =

∫∞
0 da e−a[1+(1/β)] a(n+1)

∫∞
0 da e−a[1+(1/β)] an

. (13.314)
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A tabulated integral (Gradshteyn and Ryzhik 3.351(3.), 1980) can be used to de-
termine the numerator and denominator, giving

âMMSE =
n+ 1

1 + 1
β

. (13.315)

We shall return to this example in the next sections, to demonstrate how differences
in the choice of prior or cost function alter the form of the resulting estimate.

Posterior mean and symmetric cost functions It can be shown that any symmetric,
convex-upward cost function gives the same form for the optimal estimator we have
derived using a quadratic cost function, provided the posterior density is symmetric
as well. Furthermore, if the cost function is symmetric and nondecreasing, like
the one shown in Fig. 13.13, the optimal estimator is again the posterior mean if
the posterior density is a symmetric unimodal function that satisfies the following
property (Van Trees, 1968):

lim
θ→∞

C(θ) prθ|g(θ|g) = 0 . (13.316)

There are many cost functions and posterior PDFs that satisfy (13.316), leading to
optimal estimators that are equivalent to θ̂MMSE. We shall have occasion to refer
to this property in later sections.

Fig. 13.13 An example of a symmetric, nondecreasing cost function, in par-
ticular, a cost function that is uniform outside a region of width 2ε.

Vector generalization The vector generalization of the MMSE is a straightforward
extension of (13.311). The vector estimate that minimizes (13.288) is given by

θ̂MMSE =

∫

dP θ θ pr(θ|g) . (13.317)

The conditional mean of the MMSE estimate is given by

θ̂MMSE(θ) = θ̂MMSE
g|θ

=

∫

dP θ′ θ′
∫

dMg pr(θ′|g) pr(g|θ) , (13.318)

for all values of the underlying parameter θ. The estimator is biased, but the
average bias [see the discussion below (13.283)] is zero.
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Linear cost functions A linear cost function is one that takes the form C(θ̂, θ) =
c|θ̂ − θ|. A plot of this cost function is shown in Fig. 13.14. The estimator that
minimizes this cost function is found by solving

∂

∂θ̂

∫

dMg pr(g)

∫

dθ pr(θ|g) c|θ̂ − θ| = 0 . (13.319)

We again solve for the value of θ̂ that minimizes the inner integral. We can rewrite
the absolute value to give

∂

∂θ̂

∫ ∞

−∞
dθ pr(θ|g) |θ̂ − θ|

=
∂

∂θ̂

[

∫ $θ

−∞
dθ pr(θ|g) (θ̂ − θ) +

∫ ∞

$θ
dθ pr(θ|g) (θ − θ̂)

]

= 0 (13.320)

as the expression to be solved. When we use Leibniz’ rule for taking the partial
inside the integrals, we find

∫ $θ

−∞
dθ pr(θ|g)−

∫ ∞

$θ
dθ pr(θ|g) = 0 (13.321a)

or
∫ $θ

−∞
dθ pr(θ|g) =

∫ ∞

$θ
dθ pr(θ|g) . (13.321b)

This equality holds when θ̂ is equal to the median of the posterior density, so we
say that θ̂lin is equal to the posterior median.

Fig. 13.14 Illustration of a linear cost function for a scalar parameter.

The optimal estimator for a linear cost function in the vector case does not
lead to such an easily interpretable form. However, given the fact that the linear
cost function is a symmetric, nondecreasing function, θ̂lin = θ̂MMSE for all unimodal
posterior PDFs that satisfy (13.316).

Uniform cost functions and MAP estimation Sometimes the cost is considered negli-
gible if smaller than some tolerance ε, and all estimator errors beyond that tolerance
are regarded as equally costly. In the scalar case, the form of such a cost function
is given by

C(θ̂, θ) = C(θ̂ − θ) = 1− rect

(

θ̂ − θ

2ε

)

. (13.322)
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Figure 13.13 shows a plot of this cost function, which is referred to as a uniform
cost function.

We seek the estimator that minimizes the cost function of (13.322), averaged
over all θ and g. This average cost, or risk is written

R = 1−

∫

dθ prθ(θ)

∫

dMg pr(g|θ) rect
θ̂ − θ

2ε
. (13.323)

We assume that ε is sufficiently small that prθ(θ) ≈ prθ(θ̂) and pr(g|θ) ≈ pr(g|θ̂) in
the integral. Then

R = 1−

∫

dMg pr(g|θ̂)

∫

dθ prθ(θ̂) rect
θ̂ − θ

2ε

= 1− 2ε

∫

dMg pr(g|θ̂) prθ(θ̂) . (13.324)

This expression is minimized if at each g we choose θ̂(g) such that pr(g|θ̂) prθ(θ̂) is
maximized with respect to θ̂. That is,

θ̂Unif = argmax
θ

pr(g|θ) pr(θ) . (13.325)

Bayes’ rule lets us rewrite (13.325) as

θ̂Unif = argmax
θ

pr(θ|g) pr(g) . (13.326)

Since pr(g) is independent of θ, we have

θ̂Unif = argmax
θ

pr(θ|g) . (13.327)

The quantity pr(θ|g) describes the posterior probability of θ after the data g are
obtained; thus the estimation rule of (13.327) is known as maximum a posteriori,
or MAP, estimation. Equivalently, the MAP estimate is the mode of the posterior,
or the posterior mode. We shall therefore refer to the resulting estimate as θ̂MAP.

Interestingly, MAP estimation is often what is meant in the literature on
Bayesian estimation. However, as we have just seen, MAP estimation is just a
special case of Bayesian estimation in which the particular form of the cost function
is (13.322).

Some authors present MAP estimation as the procedure to follow in the ab-
sence of a cost function (Whalen, 1971). This is really a special case of the uniform
cost function of (13.322) in which ε is taken to be small, which was the assumption
we made below (13.323).
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Fig. 13.15 Graph of the prior pr(θ) and the conditional density function
pr(g|θ); the product of these, referred to as the weighted likelihood function,
is the dark curve.

Figure 13.15 shows a graph of the prior pr(θ) and the likelihood pr(g|θ) that
appear in (13.325). Their product is shown in bold line width in the figure. The
prior serves as a scalar weight on the likelihood function, playing an increasing role
as the width of pr(θ) narrows, as happens when there is less prior uncertainty in
the value of θ. For this reason, MAP estimation is also referred to as weighted-
likelihood estimation. The MAP estimate is located where the weighted likelihood
reaches a maximum, as shown in the figure.

An equivalent expression for the MAP estimation rule of (13.326) is

θ̂MAP = argmax
θ

{ln [pr(g|θ)] + ln [pr(θ)]} . (13.328)

The monotonicity of the logarithm function means it does not affect the location of
the maximum in the estimation procedure.

Another way of interpreting MAP estimation is that pr(θ) characterizes the
prior uncertainty in the parameter, which is often subjective in nature. Then pr(θ|g)
is the (presumably reduced) uncertainty after data are collected, hence the term
posterior. We now revisit the problem of estimating the rate of a Poisson process
to demonstrate this relationship between the estimate, the data, and the prior.

Example: MAP estimation of the rate of a Poisson process We again wish to esti-
mate the rate parameter a of a Poisson process, where a is assumed to follow an
exponential distribution as in the previous example. We are given an MD data
vector g = {nm} of independent samples of the Poisson process, so that

pr(g|a) =
M
∏

m=1

e−aanm

nm!
. (13.329)

The MAP estimate is found by solving

0 =
∂

∂a
ln[pr(g|a)] +

∂

∂a
ln[pr(a)] =

M
∑

m=1

(

−1 +
nm

a

)

−
1

β
, (13.330)
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or

âMAP =

[

1

M + (1/β)

] M
∑

m=1

nm . (13.331)

We see that the estimate approaches the sample mean when M is large. In the case
of a limited number of samples, however, the estimate is influenced by the value of
β, especially for low numbers of counts per sample, where âMAP ∝ β. Note that in
the case of a single sample (13.331) reduces to âMAP = n/[1 + (1/β)]. The MAP
estimate is not equal to the MMSE estimate [cf. (13.315) ] because the posterior is
not symmetric, thanks to the exponential prior.

Vector generalization The vector generalization of (13.325) and (13.327) is straight-
forward:

θ̂MAP = argmax
θ

pr(θ|g) = argmax
θ

pr(g|θ) pr(θ) . (13.332)

Similarly, a vector form for (13.328) is written

θ̂MAP = argmax
θ

{ln [pr(g|θ)] + ln [pr(θ)]} . (13.333)

The uniform cost function is a symmetric, nondecreasing function; hence, θ̂MAP

= θ̂MMSE for all unimodal forms for pr(g|θ) that satisfy (13.316). A Gaussian form
for pr(θ|g) satisfies this property. In a series of examples, we shall derive the form
of the MAP estimator for multivariate Gaussian data and Gaussian priors on the
underlying parameters, keeping in mind that the same estimator satisfies the MMSE
criterion.

Example: Gaussian parameter uncertainty and Gaussian noise Consider a data vector
composed of the sum of s(θ), which denotes a signal parameterized by θ, a known
background b, and Gaussian noise, so that g = s(θ) + b+ n, with n ∼ NM (0,Kn)
[cf. (13.145) ].14 The parameter vector might contain signal location, scale, etc.
(See Sec. 8.4 for a review of parametric signal descriptions.) The conditional PDF
of the data is given by [cf. (13.174)]

pr(g|θ) = (2π)−M/2[det(Kn)]
−1/2 exp

{

− 1
2 [g− b− s(θ)]t K−1

n [g− b− s(θ)]
}

.
(13.334)

Suppose the parameter vector is normally distributed according to NP (θ,Kθ), or

pr(θ) = (2π)−P/2[det(Kθ)]
−1/2 exp

[

− 1
2 (θ − θ)t K−1

θ (θ − θ)
]

. (13.335)

By (13.333), the MAP estimate is found by minimizing

[g− g(θ)]t K−1
n [g− g(θ)] + (θ − θ)tK−1

θ (θ − θ) (13.336)

with respect to θ. The first term tells us to minimize the difference between the data
in hand and the data we would expect to obtain given the parameter vector; hence it

14The reader should not confuse the background b with the bias vector discussed earlier.
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is referred to as the data-agreement term. The second term, which comes from the
prior, drives the solution toward agreement with the mean parameter vector. The
prior serves to control the contribution of the measurement noise to the estimate;
hence it is often referred to as a regularizer. The MAP solution strikes a balance
between these two terms, giving a solution that matches the data more closely as
the prior broadens, and in contrast, giving an estimate that is increasingly biased
toward the prior as the noise in the data increases. We shall have much more to
say about regularizers in Chap. 15.

To obtain a more explicit form for the MAP estimate of the parameters in
(13.336), an explicit form for the expected data is required. In the next examples
we find the form of the MAP estimate when we have a signal of random amplitude,
random background level, or both.

Example: Amplitude uncertainty Suppose the random parameter is the amplitude
A of a known signal s0, whose other characteristics are all nonrandom and known.
Furthermore, we assume A ∼ N (A,σ2

A) and all nm ∼ N (0,σ2
n). Then g(A) =

A s0 + b+n and g = A s0 + b. An explicit solution to (13.336) is found by solving

∂

∂A

{

1

σ2
n

||g−A s0 − b||2 +
(A−A)2

σ2
A

}

= 0 , (13.337)

leading to

ÂMAP =

[

||s0||
2 +

σ2
n

σ2
A

]−1 [

(g− b)ts0 +

(

σ2
n

σ2
A

)

A

]

= CA

[

(g− b)ts0 +A′
]

,

(13.338)
where A′ is the average amplitude scaled by the ratio of the noise to amplitude vari-
ances. In this simple Gaussian case the MAP estimate is linear in the data. It is
determined by subtracting the known background from the data, matched filtering
with the signal, adding in the scaled mean signal amplitude, and rescaling again.
We can see from (13.338) how the relative strengths of the noise and parameter
variances influence the MAP estimate.

Recall that the SKE classification problem in Gaussian noise leads to an op-
timal discriminant that is linear in the data [cf. (13.110) and (13.115)]; similarly
we find here that a signal of Gaussian amplitude embedded in Gaussian noise is
optimally estimated in a MAP sense through linear estimation.

Example: Random background level Now consider the problem in which we have a
signal of nonrandom, known amplitude A on a random background b. The back-
ground has uniform level bm = b for all m, with b distributed according to N (b,σ2

b ).
The MAP estimate for the background level is found by solving

∂

∂b

{

1

σ2
n

||g−A s0 − b||2 +
(b− b)2

σ2
b

}

= 0 , (13.339)

which gives

b̂MAP =

(

M +
σ2
n

σ2
b

)−1
[

∑

m

(g−As0)m +

(

σ2
n

σ2
b

)

b

]

≡ Cb

[

∑

m

(g−As0)m + b′
]

,

(13.340)
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where b′ is the average background level multiplied by the ratio of noise to back-
ground variances. The MAP estimation procedure starts with the expected value
for the background level, scales it by the ratio of the noise and background vari-
ances, does a correction that depends on the sum of the differences in each detector
element between the actual data and what is expected given the signal, and finally
rescales. Like the amplitude estimate of (13.338), the background estimate is also
linear in the data.

Note that the M in (13.340) is the dimensionality of the data vector, or the
number of detector elements. When this number is much greater than σ2

n/σ
2
b ,

(13.340) reduces to

b̂MAP ≈
1

M

∑

m

(g−As)m . (13.341)

In this case the optimal strategy is to first subtract off the known signal and then
find the average data value. In most instances we would expect M to be quite large
relative to σ2

n/σ
2
b ; otherwise the noise variance would have to be very large relative

to the fluctuations in the random background level. We would not use (13.341) only
when the prior knowledge is very strong, meaning σ2

b is so small that even when it
is multiplied by M it is still comparable to σ2

n. In general, the availability of M
independent measurements for use in estimating the single number b renders the
prior knowledge useless relative to the quality of the data as M gets large.

Example: Random amplitude and background level Now let us take up the multi-
parameter estimation problem in which both the signal amplitude and background
level are random. If we make the assumption that A and b are independent, the
MAP solution is found by simultaneously solving (13.337) and (13.339) for the two
unknown parameters. The solutions are given by the same expressions for ÂMAP

and b̂MAP we gave in (13.338) and (13.340), only now the parameter fixed in each
solution is replaced by a MAP estimate. Thus

ÂMAP = CA

[

(g− b̂MAP)
ts+A′

]

(13.342a)

and

b̂MAP = Cb

[

∑

m

(g− ÂMAPs)m + b′
]

. (13.342b)

The reader can show that the MAP estimates are now given by

ÂMAP =
[

1− CACb (stot)
2
]−1

CA

[

gts+A′ − Cb(gtot + b′) stot
]

(13.343a)

and

b̂MAP =
[

1− CACb (stot)
2
]−1

Cb

[

gtot + b′ − CA(g
ts+A′) stot

]

, (13.343b)

where gtot =
∑

m gm and stot =
∑

m sm are the sums of the data and signal compo-
nents, respectively. Note that, while the data appear twice in each of the estimators
given in (13.343), the estimates are still linear in the data. It can be shown that
the optimal estimator (in a minimum mean-square error sense) is always linear if
the object and the noise obey Gaussian statistics, regardless of the dimensionality
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of the problem (Van Trees, 1968). The resulting parameter estimates are Gaussian
distributed and therefore easy to characterize in terms of bias, variance, and so on.

In contrast, we found in Sec. 13.2.11 that the detection of a random Gaussian
signal on a random Gaussian background gives a discriminant function that is non-
linear in the data, owing to the fact that the data covariance matrices cannot be the
same under the two hypotheses (with the exception of the low-contrast limit). The
decision variable in that problem is not Gaussian distributed, unlike the estimates
we just derived.15

Adding in the imaging operator In the above examples, the signal and background
components of g were expressed in the data domain without concern for how these
entities came to be in that space. We now reconsider the MAP estimation problem
when the data are derived from a continuous-to-discrete imaging system. Our goal
is to see the role the imaging system plays in the form of the estimator in that case.

Consider a linear imaging model, g = Hf (θ) + n, with n ∼ NM (0,Kn), so
that the conditional PDF on the data is given by

pr[g|f (θ)] = pr(g|θ)

= (2π)−M/2[det(Kn)]
−1/2 exp

{

− 1
2 [g−Hf (θ)]t K−1

n [g−Hf (θ)]
}

. (13.344)

The parameter could be signal size, amplitude, location, etc. We again assume that
the parameter vector is normally distributed according to (13.335). By (13.333),
the MAP estimate is found by minimizing

[g−Hf (θ)]tK−1
n [g−Hf(θ)] + (θ − θ)tK−1

θ (θ − θ) (13.345)

with respect to θ.
Let us return to the problem of signal-amplitude uncertainty, so that the object

is f(r) = Afs(r) + fb(r). We shall assume that the imaging operator H is linear
and therefore object-independent. We further assume that H is a CD operator,
with gm = (Hf )m. Not surprisingly, when the noise is again assumed to be i.i.d.
Gaussian, the MAP estimate of the signal amplitude is given by [cf. (13.338)]

ÂMAP =

[

||Hfs||
2 +

σ2
n

σ2
A

]−1 [

(g−Hfb)
t
Hfs +

(

σ2
n

σ2
A

)

A

]

. (13.346)

More generally, when the noise is correlated, we find

ÂMAP =

[

(Hfs)
tK−1

n Hfs +
1

σ2
A

]−1 [

(g−Hfb)
tK−1

n Hfs +

(

A

σ2
A

)]

. (13.347)

Other MAP problems and priors Problems involving other types of parameter un-
certainty, such as location, scale, or frequency, using different forms for the PDFs
in (13.333), can be solved to determine the resulting MAP estimators by following
the steps outlined in the previous examples. We have considered Gaussian PDFs
for the data and parameters in the examples we have presented for their ease of

15While strictly speaking the decision variable is non-Gaussian, we argued that it is approximately
Gaussian in some cases by way of the central-limit theorem.
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manipulation in making the concepts more concrete. However, we recognize the
artificiality of this assumption in many problems. A Gaussian model for the ampli-
tude of a signal implies that the amplitude can take on negative values. Perhaps
we can justify this model by claiming we are interested in objects that have either
positive or negative contrast relative to the average background. However, allowing
the background to also have the possibility of negative values is less appealing on
physical grounds. At best, we need to assume that b is large enough, and σ2

b suffi-
ciently small that the probability of a negative background is negligible. Alternative
prior models for random objects that have been suggested for imaging applications
are presented in Chap. 8.

MAP estimation is applicable when the parameters to be estimated are random
as well as nonrandom. For random parameters, the prior pr(θ) describes the distri-
bution of parameter values that would be observed over repeated samples. When
the parameters are assumed to be nonrandom, pr(θ) is a description of our belief
that the nonrandom parameters take on any particular value. The prior serves to
bias the estimate toward our expectation of the underlying parameter, before col-
lecting data.

In the absence of prior information, or in deference to the quality of the data,
one might eschew the use of a prior altogether. This is one avenue leading to the
approach referred to as maximum-likelihood estimation, a method we now consider.

13.3.4 Maximum-likelihood estimation

Maximum-likelihood or ML estimation uses the following rule to determine the
underlying parameters:

θ̂ML ≡ argmax
θ

pr(g|θ) . (13.348)

This procedure can be written equivalently as [cf. (13.333)]

θ̂ML = argmax
θ

ln[pr(g|θ)] . (13.349)

As stated in the previous section, ML estimation can be considered as a limit
to MAP estimation when the prior pr(θ) is sufficiently broad that pr(g|θ) pr(θ) is
dominated by pr(g|θ). However, ML estimation is much more than a limiting form
of MAP estimation. As we shall see, ML estimation is a powerful procedure in its
own right, owing to the unique properties of ML estimates.

Example: Poisson data revisited Consider once again the estimation of the rate
parameter of a Poisson process. The conditional PDF of the data has the form
given in (13.329). The ML estimate of a is obtained by solving

0 =
∂

∂a
ln pr(g|a) =

M
∑

m=1

∂

∂a
(−a+ nm ln a+ const) , (13.350)

which leads to

âML =
1

M

M
∑

m=1

nm . (13.351)
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The ML estimate is the sample mean, which can be compared to the MAP and
MMSE results found earlier.

Example: Mean of a Gaussian process Suppose we are given a data vector g that
contains M i.i.d. samples of a Gaussian process with mean µ and variance σ2. Our
goal is to form an ML estimate of the underlying mean µ.

The conditional PDF of the data is given by

pr(g|µ) =
M
∏

m=1

(

1

2πσ2

)
1

2

exp

[

−
1

2

(gm − µ)2

σ2

]

. (13.352)

The estimate is found by solving (13.349), which in this case becomes

0 =
∂

∂µ
ln pr(g|µ) =

M
∑

m=1

∂

∂µ

[

C −
1

2

(gm − µ)2

σ2

]

=
M
∑

m=1

(gm − µ)

σ2
, (13.353)

leading to

µ̂ML =
1

M

M
∑

m=1

gm . (13.354)

We see that the ML estimate is the sample mean, which is the most likely approach
someone would use without any knowledge of statistics! This is a common finding
(it seems to us) in ML estimation.

Since the estimate of (13.354) is a linear function of the Gaussian data, it too
is Gaussian distributed. Note also that µ̂ML = µ, so the estimate is unbiased. It is
left to the reader to show that

σ2
$µ = 〈(µ̂− µ̂)2〉 =

σ2

M
. (13.355)

The greater the number of samples used to form the estimate, the smaller the
variance in the result. When a single sample is used, the variance in the ML
estimate is the variance in the sample.

Multivariate ML estimation in the Gaussian case Suppose we are given data contam-
inated by Gaussian noise so that the likelihood of the data takes the form given in
(13.334). When the noise is correlated, the ML estimate can be determined from
(13.349) to be

θ̂ML = argmin
θ

[g− g(θ)]tK−1
n [g− g(θ)] , (13.356)

which has the form of a weighted least-squares procedure. The presence of the
inverse of the noise covariance matrix serves to weight the low-noise components
preferentially in the formulation of the ML estimate. When the noise is uncorrelated,
the ML estimate simplifies to

θ̂ML = argmin
θ

||g− g(θ)||2 . (13.357)

This expression is the well-known form of a least-squares estimator [cf. (1.191)].
We simply find the parameter vector that results in an expected data vector that
most closely matches the data in hand in a mean-squared-error sense.
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13.3.5 Likelihood and Fisher information

In all of the cost functions described in Sec. 13.3.1 we found that a central role
is played by pr(g|θ). In ML estimation it is the quantity being maximized, but
even in MAP estimation its role has some level importance that depends on the
relative weight of the prior. The quantity pr(g|θ) means different things to different
people. The frequentist interpretation is that it is a function of g for fixed θ.
Repeated observations can be used to determine the nature of this quantity for a
given underlying object (parameter vector). Alternatively, pr(g|θ) can be viewed as
a function of θ for fixed g. In this viewpoint pr(g|θ) is a measure of the likelihood of
any θ once the data are in hand. In this section we explore the likelihood function
and functions of the likelihood in greater depth.

Score The score is a random vector that tells us how sensitive the likelihood is to
changes in the parameters:

s(g) =
∂
∂θ pr(g|θ)

pr(g|θ)
=

∂

∂θ
ln[pr(g|θ)] . (13.358)

In words, the score is the gradient of the log-likelihood. Since the score is a function
of the log-likelihood, which is a random variable through its dependence on g, the
score is also random. Note that 〈s〉g|θ = 0, where 〈·〉g|θ denotes an average with
respect to pr(g|θ):

〈s〉g|θ =

∫

∞
dMg pr(g|θ)

∂
∂θ pr(g|θ)

pr(g|θ)

=
∂

∂θ

∫

∞
dMg pr(g|θ) =

∂

∂θ
(1) = 0 . (13.359)

Thus the score is a zero-mean random vector.
Our interest in the score and its properties stems from its close relationship to

maximum-likelihood estimation. As the gradient of the log-likelihood, s(g,θ) = 0
when θ = θ̂(g). The process of finding the ML estimate is thus equivalent to de-
termining the point in parameter space where all components of the score vanish.16

The score is useful more generally, though, as we shall see next.

Fisher information and performance bounds The covariance matrix of the score is
called the Fisher information matrix:

F = 〈sst〉g|θ . (13.360)

The components of F are given by

Fjk =

〈[

∂

∂θj
ln pr(g|θ)

] [

∂

∂θk
ln pr(g|θ)

]〉

g|θ

=

∫

∞
dMg pr(g|θ)

[

1

pr(g|θ)

∂

∂θj
pr(g|θ)

] [

1

pr(g|θ)

∂

∂θk
pr(g|θ)

]

. (13.361)

16We are restricting our attention here to unconstrained ML estimation. Constraints such as
positivity could lead to solutions away from the s = 0 point.
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We can rewrite (13.361) as

Fjk =

∫

∞
dMg

1

pr(g|θ)

[

∂

∂θj
pr(g|θ)

] [

∂

∂θk
pr(g|θ)

]

= −

∫

∞
dMg pr(g|θ)

∂

∂θj

[

1

pr(g|θ)

∂

∂θk
pr(g|θ)

]

= −

∫

∞
dMg pr(g|θ)

∂2

∂θj∂θk
ln pr(g|θ) = −

〈

∂2

∂θj∂θk
ln pr(g|θ)

〉

g|θ

. (13.362)

Thus Fjk is the second derivative of the average log-likelihood, evaluated at θ.
One interpretation, then, is that the components of the Fisher information matrix
describe the degree of curvature of the average log-likelihood, which in turn gives
an indication of the strength of the peak, or maximum, averaged over all data sets
given the underlying parameter vector θ.

Consider an arbitrary (not necessarily ML) estimate θ̂(g). We assume the
estimate is unbiased; if we define a = θ̂(g) − θ to be the estimation error, then
〈a〉g|θ = 0 and 〈aat〉 = K$θ. We can build a new random vector x from the
components of a and s:

x =

(

a
s

)

〈xxt〉 =





〈aat〉 〈ast〉

〈sat〉 〈sst〉



 , (13.363)

where all averages are over the data conditioned on the true parameter θ. We
already know the diagonal components of the covariance matrix x; we now show
that 〈sat〉 = 〈ast〉 = I:

〈sat〉ij = 〈si(θ̂j − θj)〉 = 〈siθ̂j〉 − 〈si〉θj = 〈siθ̂j〉

=

∫

dMg pr(g|θ)

[

∂

∂θi
ln pr(g|θ)

]

θ̂j(g)

=

∫

dMg θ̂j(g)
∂

∂θi
pr(g|θ) =

∂〈θ̂j〉

∂θi
=
∂θj
∂θi

= δij . (13.364)

Putting this result together with our knowledge of the covariance on a and s gives

〈xxt〉 = Kx =





K$θ I

I F



 . (13.365)

We know that the determinant of any covariance matrix must be greater than
or equal to zero; thereforeKx, K$θ, and F are all positive-semidefinite. By definition,
a positive-semidefinite matrix satisfies utKxu ≥ 0 for all nonzero vectors u (see Sec.
A.8.1). The same condition holds for quadratic forms involving a nonzero matrix
U in place of the vector u (Harville, 1997): UtKxU ≥ 0 when Kx is positive-
semidefinite. We now use this property to prove that K$θ ≥ F−1.

We shall assume that there are P features to be estimated, so that K$θ and F

are both P × P matrices. Let U be a 2P × 1 matrix with

U =

(

cu1

u2

)

, (13.366)
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where the vectors u1 and u2 are both P×1 column vectors. The quadratic condition
then becomes

(u1
t ut

2)





K$θ I

I F





(

u1

u2

)

= ut
1K$θu1 + ut

1u2 + ut
2u1 + ut

2Fu2 ≥ 0 . (13.367)

For any nonzero u1, we can let u2 = −F−1u1. Then (13.367) becomes17

ut
1K$θu1 − ut

1F
−1u1 − ut

1F
−1u1 + ut

1F
−1u1 ≥ 0 , (13.368)

or
ut
1K$θu1 ≥ ut

1F
−1u1 . (13.369)

This inequality is proof that K$θ − F−1 is positive-semidefinite (see Sec. A.11.2).
The Loewner convention can be used to indicate that (13.369) holds by writing
simply

K$θ ≥ F−1 . (13.370)

Consider the particular case where we let u1 = en be the column vector
{0, ..., 1, ..., 0}t with nth component equal to 1 and all other components equal to
zero. In this case (13.370) reduces to

[K$θ]nn = Var{θ̂n − θn} ≥
[

F−1
]

nn
. (13.371)

This inequality is the well-known Cramér-Rao lower bound on the variance of an
estimator, after H. Cramér (1946) and C. R. Rao (1945). The unbiased estimate of
the nth parameter has a variance that must be at least as large as the nth diagonal
element of the inverse of the Fisher information matrix.

For a scalar parameter (13.371) reduces to

Var{θ̂ − θ} ≥
1

〈

[

∂
∂θ ln pr(g|θ)

]2
〉 . (13.372)

We can extend the CR bound to biased estimators by allowing the mean of a
to be nonzero in the preceding derivation. In this case (13.364) generalizes to

〈sat〉ij =
∂〈θ̂j〉

∂θi
=

∂

∂θi

[

(〈θ̂j〉 − θj) + θj
]

=
∂bj
∂θi

+ δij , (13.373)

where bj is a component of the bias vector as defined in (13.276), making ∂bj/∂θi
the bias gradient. In vector form (13.373) becomes

〈sat〉 = ∇θb+ I . (13.374)

Now (13.365) becomes

〈xxt〉 = Kx =





K$θ ∇θb+ I

(∇θb+ I)t F



 , (13.375)

17We are assuming here that F−1 exists; Stoica and Marzetta (2001) provide an alternative theory
for situations for which the Fisher matrix is singular.
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and
det

[

K$θF− (∇θb+ I)(∇θb+ I)t
]

≥ 0 ,

or
K$θ ≥ (∇θb+ I)F−1(∇θb+ I)t . (13.376)

This inequality gives the lower bound on the variance achievable by any estimator.
To add to our intuition, let us see what form (13.376) takes in the case of a scalar
parameter. We find that

Var{θ̂ − θ} ≥

(

db(θ)
dθ + 1

)2

〈

[

∂
∂θ ln pr(g|θ)

]2
〉 . (13.377)

It is interesting to compare this expression to (13.372). The bias of an estimator
alters the lower bound on the variance by an amount that depends on the bias
gradient. If the bias is independent of the parameter, no impact on the variance
is felt. But, if the bias strongly depends on the parameter, the bound can change
dramatically. Note that bias can also decrease the variance if the bias gradient is
negative. Consider the scalar estimation problem where we choose an estimation
strategy of always setting θ̂ to 3. Then ∂b/∂θ = −1 and the variance is zero. Thus
bias does not uniformly increase variance. In all cases, though, the mean-squared
error in θ̂ is inversely proportional to the average of the squared gradient of the
log-likelihood.

The derivations of (13.371) and (13.376) rely on the assumption that the Fisher
information matrix is nonsingular. Stoica and Marzetta (2001) have shown that a
singular Fisher information matrix typically leads to estimates with infinite vari-
ance.

An estimator that achieves the bound of (13.376) is called efficient. As we
shall prove below, when an efficient estimator exists, the ML estimator is efficient.

13.3.6 Properties of ML estimators

Maximum likelihood estimators offer multiple advantages for problems that can be
categorized as well-posed. These are problems in which the number of parameters
to be estimated is low relative to the amount of data available to form the esti-
mate. Furthermore, the data are known to be influenced by the parameters in such
a manner that we can unambiguously determine θ from the data in the noise-free
case. Such are the problems we shall focus on in this section. We defer until Chap.
15 the contrasting situation we find ourselves in when attempting to reconstruct a
continuous object from a discrete set of measurements, where there is a significant
null space that confounds the use of ML methods.

In the early 1900s, R.A. Fisher wrote a series of papers in which he considered
various criteria for the evaluation of estimator performance (Fisher, 1922, 1925,
1934, 1935). Chief among these criteria were: consistency, efficiency, and suffi-
ciency.18 In this classical (non-Bayesian) approach, an estimate is assumed to be a

18While Fisher derived these criteria, and then proceeded to evaluate ML methods based upon
them, it is interesting to note that the early history of the maximum-likelihood principle dates
back to the late 18th and early 19th centuries, with contributions by Lagrange, Bernoulli, Gauss,
and Laplace (Edwards, 1974).



ESTIMATION THEORY 899

random variable, through its dependence on the random data. The performance of
the estimator is assessed using its sampling distribution, that is, the distribution of
estimates obtained over repeated trials for the same underlying true parameter. For
example, the bias (13.276) and the variance (13.279) are computed using the sam-
pling distribution. Since these measures can be difficult to compute in some cases,
an alternative approach is to consider bounds on estimator performance. This is
the motivation for the development of the CR bound on variance presented in the
previous section. While the CR bound was developed without regard to the form
of the estimator, we shall see that it is particularly relevant to ML estimation.

Before we return to the topic of the CR bound on variance and its relationship
to Fisher’s criteria, we shall establish one of the properties of ML estimators that
makes them exceedingly useful. Recall that up to this point we have restricted
our attention to the direct estimation of a parameter vector θ. In what follows we
shall expand our treatment to include estimation of any arbitrary function of the
unknown θ. This extension is made eminently doable thanks to a powerful theorem
in ML estimation.

ML estimation of a function of a parameter Let the true value of a parameter be θ,
and the function we want to estimate be τ(θ). If Θ = τ (θ), then (Scharf, 1991)

Θ̂ML = τ (θ̂ML) . (13.378)

In words, the maximum-likelihood estimate of a function is the function of the
maximum-likelihood estimate. This property of the ML estimator has been termed
invariance (Tan and Drossos, 1975; Scharf, 1991). By this principle, all the dis-
cussion that follows on ML estimators applies to both direct parameter estimation
and estimation of the function of an unknown parameter.

Efficiency According to (13.371), the variance of any unbiased estimator must ex-
ceed some minimum value greater than zero. If the bound is achieved, so that the
equality in (13.371) holds, the estimator is said to be efficient. We now show that
if the CR bound is attainable, it will be attained by an ML estimator. Without loss
of generality, we consider the scalar case.

We can rewrite (13.372) as

Var{θ̂ − θ}

〈

[

∂

∂θ
ln pr(g|θ)

]2
〉

≥ 1

or
{
∫

∞
dMg pr(g|θ) [θ̂(g)− θ]2

}

{

∫

∞
dMg pr(g|θ)

[

∂

∂θ
ln pr(g|θ)

]2
}

≥ 1 . (13.379)

This expression is a restatement of the Schwarz inequality. The equality holds if
and only if

∂ ln pr(g|θ)

∂θ
= α(θ) [θ̂(g)− θ] , (13.380)

where α(θ) is a constant that depends on θ. Also, (13.380) must hold for all θ and g.
The ML estimate is defined by the likelihood equation, (13.349), which we can

rewrite as
∂ ln pr(g|θ)

∂θ

∣

∣

∣

θ=$θML

= 0 . (13.381)
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Combining (13.380) and (13.381) gives

α(θ)[θ̂(g)− θ]
∣

∣

∣

θ=$θML

= 0 . (13.382)

The data-dependent solution to (13.382) is to require that θ̂(g) = θ̂ML. Thus, if an
efficient estimator exists, the ML estimator is efficient.

Sufficiency and uniqueness We found in Sec. 13.2 that the likelihood ratio is a
sufficient statistic for hypothesis testing. It contains all the necessary information
for performing the classification task. The concept of a sufficient statistic extends
quite naturally to estimation tasks. In estimation, a sufficient statistic is one that
captures all the essential features in the data necessary for optimal performance of a
given estimation task. The maximum-likelihood estimator is a sufficient statistic for
estimation; it makes optimal use of the information in the data. No other estimator
can yield more information.

A necessary and sufficient condition for θ̂ to be a sufficient estimate is that the
likelihood function must be factorable into the product

pr(g|θ) = pr(θ̂|θ) f(g) , (13.383)

where f(g) is independent of θ. We leave it to the reader to show that this can be
done for the case of Gaussian samples of unknown mean.

A sufficient estimator may exist even when an efficient estimator does not; effi-
ciency is a stricter criteria than sufficiency. A sufficient estimator is unique; we can
use a function of the sufficient statistic because it will also be sufficient, and we can
choose it such that the estimate may be consistent (defined below) and unbiased.

In general there can be many solutions to (13.349) that give equal likelihood.
This is especially the case in high-dimensional problems, there the null space can be
infinite-dimensional. In Chap. 15 we explore the application of ML estimation to the
high-dimensional problem of image reconstruction; as we shall see there, prior infor-
mation or smoothness conditions can be introduced to address the nonuniqueness
of the ML estimate.

Asymptotic properties Asymptotic properties of an estimate describe the behavior
of the estimate as the number of observations approaches infinity. Suppose an
estimate based on the data vector g is denoted θ̂M (g), where the data are M
independent observations or samples. The estimate is conditionally consistent if,
for any arbitrarily small, positive ε and α, there exists an N such that

Pr
[

||θ̂M (g)− θ|| < ε|θ
]

> 1− α (13.384)

for all M > N . An estimate is unconditionally consistent when (13.384) is true
for all θ. This property is called stochastic convergence, or convergence in prob-
ability. Cramér proved that, under reasonably general conditions, an ML estimate
is consistent. The density function for a consistent estimate becomes increasingly
narrow about the value of the underlying parameter as the number of samples in-
crease. For example, we found that the ML estimate of the variance of a Gaussian
process [cf. (13.354)] is proportional to 1/M .
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An example of an estimate that is not consistent is the sample power spectrum.
For a single record, an increase in the number of samples (an increase in the record
length) does not increase the probability that the estimate of the power spectrum
is within ε of the true power spectrum. For an example, see Fig. 8.1.

While we might know that an estimate is consistent, that knowledge tells us
nothing regarding its behavior for a finite set of observations. Consistency is a
property that applies to the estimate as M → ∞.

The relationship between bias and consistency is not as strong as it appears.
A consistent estimator is not necessarily unbiased, and an unbiased estimate is not
necessarily consistent. However, a consistent estimator whose asymptotic distribu-
tion has finite mean must be asymptotically unbiased.

We have established that the ML estimate is efficient, if an efficient estimator
exists. ML estimates achieve the equality sign in the bound given by (13.371) as
the number of samples goes to infinity; that is, ML estimates are asymptotically
efficient.

When estimates satisfy (13.371), they are said to demonstrate minimum vari-
ance. Moreover, in the limit of a large number of samples, Fisher showed that
an efficient estimate is one whose sampling distribution approaches a minimum-
variance Gaussian (Fisher, 1922). Thus an ML estimate is asymptotically Gaussian
distributed with minimum variance. It can be shown that, for a large class of con-
sistent statistics, the sampling distribution of the ML estimate is approximately
Gaussian as the number of observations increases because of the central-limit the-
orem (Cramér, 1946). The asymptotic Gaussian nature of ML estimates provides
tremendous ease in understanding their properties, even for those ML estimates
that are not efficient.

In summary, ML estimates are asymptotically unbiased, efficient, normally
distributed and consistent.

Other bounds When ML estimates are not normally distributed, the Cramér-Rao
bound may not be a good predictor of the variance of the estimates. For exam-
ple, in problems where the data are nonlinearly related to the parameter and the
noise is high, Müller et al. (1995) have shown that the CR bound is not a good
measure of the variance of the estimates. Abbey et al. (1998) demonstrated how a
non-Gaussian density on the estimates can be approximated starting with a Taylor
series expansion about the true parameter vector. The isocontours of the result-
ing approximate densities were shown to capture the skewed distributions of the
estimates quite well. This approach was subsequently applied to the estimation of
parameters from phase-shifting interferometer/ellipsometer data by Rogala (1999).

Alternatives to the Cramér-Rao bound have been explored for the characteri-
zation of estimates. The Bhattacharyya bound (Bhattacharyya, 1946, 1947, 1948)
has received significant attention, but it can be challenging to compute. While the
Cramér-Rao bound involves the calculation of second-order partial derivatives of
the likelihood, the Bhattacharyya bound involves higher partial derivatives (Van
Trees, 1968).

Another alternative is the Barankin bound (Barankin, 1949), which has the
advantage that it gives a greatest lower bound and it does not require that the
underlying PDFs be differentiable. Barankin demonstrated that an unbiased esti-
mator that achieves the Barankin bound must exist if an unbiased estimator exists.
McAulay and Hofstetter (1971) evaluated the performance of the Barankin bound
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for estimation of vector parameters in additive white Gaussian noise; while the
Barankin bound reduced to the Cramér-Rao bound when the SNR was high, large
differences between these bounds were exhibited in other regimes. Kijewski et al.
(1992) compared CR and Barankin bounds on estimates of lesion parameters in
simulated nuclear medicine images for the purpose of collimator optimization. This
approach is limited since the Barankin bound is infinite if no unbiased estimator
exists (Müller, 1995; Abbey and Denny, 1996). The difficulty in practice is thus in
knowing whether an unbiased estimator exists.

If no efficient estimate exists, an unbiased estimator with lower variance might
exist. The difficulty comes in knowing how to find it. A significant advantage of
ML estimation is that it is straightforward.

13.3.7 Other classical estimators

We have described Bayesian estimation in general and determined the resulting
estimators for a variety of cost functions. We then explored ML estimation in
considerable detail. The full Bayesian approach requires that the cost function as
well as the prior probability of the random parameters and their likelihood function
be completely specified. The ML approach does not require a prior, but it still
requires full knowledge of the likelihood function. In this section we consider some
other estimation methods and their properties.

Linear estimators Linear estimation is always much easier mathematically than gen-
eral, nonlinear estimation. Sometimes it is even optimal. As we shall see, there is a
parallel between linear classification strategies and requirements for their optimal-
ity and optimality conditions for linear estimators. In this section we shall present
basic properties of some well-known linear estimation strategies. We shall limit the
discussion here to basic theory, without reference to specific applications. In par-
ticular, while image reconstruction is frequently formulated as a linear estimation
problem, the high dimensionality of this application requires an understanding of
the specific role played by null functions of the imaging system in the assessment
of the estimator. In Chap. 15 we discuss linear and nonlinear image reconstruction
algorithms in great detail. Thus we shall defer to that chapter further discussion of
linear image reconstruction.

A linear estimator is one that takes the general form θ̂ = Wtg, where g is an
M × 1 data vector and W is a M × P estimator matrix. The P columns of W
represent templates that each yield a parameter estimate. For example, a region-
of-interest (ROI) estimator is realized by a column vector w defined on the space
of voxels, where the elements corresponding to voxels in the region of interest take
on the value 1, and voxels outside this region are taken as 0.

The forms of the bias and variance of θ̂ are straightforward for a linear esti-
mator. Assuming that θ is zero mean,19 we can write the ensemble mean-square
error as

EMSE = 〈||θ̂ − θ||2〉g,θ = 〈(Wtg− θ)t(Wtg− θ)〉g,θ . (13.385)

19This assumption does not limit the generality of the treatment in any way; for nonzero-mean
parameters we can always define new parameters with zero mean by simply subtracting off the
mean.
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We can use calculus of variations to find the W that gives minimum EMSE.
Let W′ = W+ εV. The optimal W is found by solving

∂(EMSE)

∂ε

∣

∣

ε=0
= 0 . (13.386)

This leads to the requirement that

〈(Vtg)t(Wtg− θ)〉g,θ = 0 . (13.387)

This expression is a condition on the optimal W for all possible V, including the
case V = W. In that case

〈(Wtg)t(Wtg− θ)〉g,θ = 0 , (13.388)

which says that the error Wtg − θ must be orthogonal to the estimate θ̂ = Wtg,
when averaged over all sources of randomness. When this condition is satisfied,
minimum mean-square error is achieved.

We have derived a condition for the EMSE to reach a minimum. Now we shall
derive a form of the estimator W that achieves this performance. First, we rewrite
the condition of (13.387) as

〈

〈

tr[(Wtg− θ)(Vtg)t]
〉

g|θ

〉

θ
= tr

[

V
〈

〈

(Wtg− θ)gt
〉

g|θ

〉

θ

]

= tr
[

V
〈

WtKg|θ − θgt
θ

〉

θ

]

= 0 , (13.389)

where gθ denotes the average data vector conditioned on the underlying parameter
θ and Kg|θ is the data covariance matrix when the underlying parameter is θ.

The last step we must take to find the form of the minimum EMSE estimator
is to average the conditional quantities in (13.389) over the prior probability density
on θ, obtaining

tr
[

V(WtKg −Kg,θ)
]

= 0 , (13.390)

where Kg is the covariance of the data averaged over θ, and Kg,θ is the cross-
covariance of θ and gθ.

Since (13.390) must hold for all V, the linear estimator W that achieves min-
imum mean-square error is given by

Wt = Kg,θK
−1
g . (13.391)

An estimator of this form is often referred to as a Wiener estimator (Wiener, 1942)
or the Wiener-Helstrom estimator (Helstrom, 1967), although it is more commonly
encountered as a ratio of power spectra for applications where the data are assumed
to be continuous and stationary.

We have shown that the Wiener estimator is the linear estimator that achieves
minimum EMSE. In the case of jointly Gaussian data, the Wiener estimator achieves
minimum EMSE of all estimators. (In this special case the Wiener estimator is the
posterior mean given in (13.312).)

Recall from Sec. 13.2 that for classification problems where knowledge of the
full joint probability on the data is not available, we often can compute the first-
and second-order statistics of the data. Then we can determine the performance of
the Hotelling observer for the task. If the data are truly Gaussian distributed, the
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Hotelling observer is the overall optimal observer in an SNR sense. Analogously,
when our knowledge is limited to the first and second order statistics of the data,
we can determine the optimal linear estimator, that is, the Wiener estimator. If the
data are truly Gaussian, this estimator achieves minimum EMSE of all estimators.

Best linear unbiased estimators A best linear unbiased estimator, or BLUE,
achieves the minimum conditional variance among all unbiased estimators con-
strained to be linear. Unlike the Wiener estimator, a BLUE takes no account of
object variability. Rather, it minimizes the conditional variance of θ̂ for a given f; it
minimizes MSE, not EMSE. This estimator is also referred to as the Gauss-Markov
estimator. When the data covariance is large, the Wiener estimator approaches the
Gauss-Markov estimator.

Most texts on estimation derive mathematical expressions for Gauss-Markov
estimates for problems involving data linearly related to the underlying parameter
according to the model g = Hθ+n. We have deliberately avoided examples of this
form because they are not directly applicable to estimation of object parameters
such as tumor size or activity. However, this data model is the basis for many image
reconstruction approaches, as we discuss in great detail in Chap. 15.

Uniformly minimum-variance unbiased estimates A minimum-variance estimate is
one that achieves a variance less than that of any other estimate. Uniformly
minimum-variance unbiased estimates, or UMVU estimates, are unbiased and
have minimum variance among all unbiased estimates, hence the name. UMVU
estimates are usually unique. They may or may not be linear. Rade and Wester-
gren (1990) suggest two approaches for the determination of an UMVU estimate.
The first is to find an unbiased estimator that is a function of a complete sufficient
statistic. Such an estimate is automatically the minimum variance estimator. As
Cox and Hinkley (1994) put it, any function of a complete sufficient statistic is
the unique minimum-variance estimator of its expectation. The second approach
is to find an unbiased estimate θ̂ and solve for its expectation conditioned on the
sufficient statistic.

Rade andWestergren provide a table of parameters and their UMVU estimates,
along with the variance of the estimate, for a variety of parameter distributions.

13.3.8 Nuisance parameters

Thus far, our treatment of estimation theory has assumed that we are given data g
from some known probability law pr(g|θ) and that we want to estimate a parameter
θ that fully determines the PDF. We have ignored the fact that this assumption is
often not valid. Here we consider the role of nuisance parameters, which we are
not interested in estimating but which must be stated in order for the PDF on the
data to be fully specified.

Definition of nuisance parameters Suppose that the PDF on g is fully determined
by the PD vector of parameters of interest θ and some complementary LD vector
of parameters θn, called a nuisance vector. We define a nuisance parameter as any
parameter that does not influence the overall cost, or Bayes risk (see Sec. 13.3.1).

Consider the problem of estimating depth of interaction as well as energy and
lateral position of a high-energy photon absorbed in a semiconductor detector. If
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the photons arrive normal to the detector surface, as with a collimator, depth of
interaction z is a nuisance parameter, carrying no useful information about the
photon fluence. This is unfortunate since we have a good objective prior (the ex-
ponential absorption law) on z and could do a fairly good job of estimating it (see
Sec. 13.3.3). The question is, would an estimate of z be a good thing to have? To
answer this question, we must determine the impact of having an estimate of z on
the overall cost, relative to other approaches we might take toward z.

There are basically four ways we might deal with nuisance parameters:

(1) Replace θn with some typical value θ0, so that pr(g|θ) ≈ pr(g|θ,θn0).

(2) Ignore the problem and assume a form for pr(g|θ).

(3) Estimate θn.

(4) Assume some prior and marginalize over θn.

We shall consider each of these approaches in turn.
The first option, replacing θn with some typical value θn0, amounts to taking

pr(θn) as a delta function—a very strong prior! This approach sounds extreme
but in fact is often used in imaging with little or no justification. For example, in
SPECT (single-photon emission computed tomography, treated in detail in Chap.
17), scatter correction is often performed using an assumed scatter coefficient at
each location; this is a nuisance parameter when the activity at each location is to
be estimated.

The second approach often taken is to ignore the problem altogether and as-
sume some form for pr(g|θ). This approach sounds even more extreme, but it
describes the approach being taken when image reconstruction is done using a dis-
crete object model and the modeling errors are ignored.

The third approach is to estimate both θ and θn, in hopes that doing so will
improve the estimate of θ. Note that many times θn is infinite-dimensional, so that
this approach is not realizable. Suppose, however, that it is possible to estimate θ̂n.
We can show how having to estimate the nuisance parameters affects our ability to
estimate the parameters of interest, in terms of the variance of the estimate.

From (13.372) we know that the variance on an estimate of any parameter θp is

bounded according to Var{θ̂p} ≥ [F−1]pp, where F is the P ×P Fisher information
matrix for θ. If only 1 of the P parameters is unknown and in need of estimation,
then the bound on that estimate is given by (13.373). That is, Var{θ̂p} ≥ 1/Fpp

bounds the estimate on the pth parameter when all the other parameters, presumed
for this discussion to be nuisance parameters, are known. We can use the extended
Cauchy-Schwarz inequality of (A.192) to write

|atb|2 ≤ (atFa)(btF−1b) , (13.392)

since F is positive-definite. If we let a = b = ep, the column vector {0, ..., 1, ..., 0}t

with the pth component equal to 1 and all other components equal to zero, we
obtain

|etpep|
2 ≤ (Fpp)(F

−1)pp . (13.393)
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The left side is equal to 1, giving

1

(Fpp)
≤ (F−1)pp . (13.394)

Thus the bound on the variance for the parameter estimated in the absence of nui-
sance parameters is lower than the bound that is active in the presence of nuisance
parameters.

Now let us consider the fourth option, which is to assume some prior pr(θn)
on the nuisance parameters and form the marginalized likelihood:20

pr(g|θ) =

∫

∞
dθn pr(g|θ,θn) pr(θn|θ) , (13.395)

where now all P elements of θ are unknown parameters we want to estimate. The
risk is a function of only these parameters, and is given by

〈C(θ, θ̂)〉 =

∫

dθ

∫

dθn

∫

dθ̂

∫

dθ̂n C(θ, θ̂) pr(θ, θ̂,θn, θ̂n)

=

∫

dθ

∫

dθn

∫

dθ̂

∫

dθ̂n C(θ, θ̂) pr(θ̂, θ̂n|θ,θn) pr(θn|θ) pr(θ)

=

∫

dθ

∫

dθn

∫

dθ̂

∫

dθ̂n C(θ, θ̂)

∫

dMg pr(θ̂, θ̂n|g) pr(g|θ,θn) pr(θn|θ) pr(θ) ,

(13.396)
where the last line explicitly shows that the cost is averaged over all possible real-
izations of the data and the parameters.

We can rearrange the order of integration to obtain:

〈C(θ, θ̂)〉

=

∫

dθ pr(θ)

∫

dθ̂ C(θ, θ̂)

∫

dθ̂n

∫

dMg pr(θ̂, θ̂n|g)

∫

dθn pr(g|θ,θn) pr(θn|θ)

=

∫

dθ pr(θ)

∫

dθ̂ C(θ, θ̂)

∫

dθ̂n

∫

dMg pr(θ̂, θ̂n|g) pr(g|θ) . (13.397)

We could stop right here since only the marginalized likelihood pr(g|θ) appears.
The estimation rule cannot depend separately on the original joint likelihood.

Note that the estimators are specific functions of the data:

θ̂ = f(g) and θ̂n = fn(g) , (13.398)

so
pr(θ̂, θ̂n|g) = δ

[

θ̂ − f(g)
]

δ
[

θ̂n − fn(g)
]

. (13.399)

Substituting (13.399) into (13.397), we find

〈C(θ, θ̂)〉 =

∫

dMg

∫

dθ C[θ, f(g)] pr(g|θ) pr(θ) . (13.400)

20We thank Dan Marks for posing the problem and formulating the solution we present here.
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Now we will stop, because to go on would be to rederive familiar results from
Sec. 13.3.3. Whatever estimation rule we would obtain from that section still holds,
dependent only on the forms of the prior pr(θ) and cost function, as if θn had
never existed! The optimal strategy in the presence of nuisance parameters is to
marginalize over them rather than estimate them. The key step that led us to this
conclusion was assuming a cost function that was independent of θn.

13.3.9 Hybrid detection/estimation tasks

In Sec. 13.2.10 we considered the problem of detection of signals with one or more
random parameters θ. We derived the optimal classification strategy that minimizes
Bayes risk. We found that the optimal decision strategy, given knowledge of the
prior probability densities prθ(θ) of the parameters, involved marginalizing over θ
[see (13.147)] to compute the likelihood of the data in the signal-present case. We
presented examples where signal scale, frequency, or location were random. These
were nuisance parameters; the observer does not report an estimate of their value,
and no penalty is associated with errors in their estimate. In the language used here,
the cost is just a 2×2 matrix, not a function of the signal parameter. Thus, similar
to what we found above in the estimation case, a cost function that is independent
of the nuisance parameter results in an optimal strategy involving marginalizing
over the nuisance parameters.

Generalized likelihood-ratio detection Suppose under H2 that a signal with random
parameters θs is present, along with a background with random parameters θb.
Under H1 only the random background is present. If the prior probability density
on these random parameter vectors is unknown, a common approach is to form the
generalized likelihood ratio

Λ(g) =
maxθs,θb

[pr(g|θs,θb, H2)]

maxθb
[pr(g|θb, H1)]

. (13.401)

The interpretation of this detection strategy is that the observer forms maximum-
likelihood estimates of the unknown parameters θs and θb under H2, forms a
maximum-likelihood estimate of θb under H1, and chooses the hypothesis with
greater overall likelihood. This approach is known as generalized likelihood-ratio
detection. No estimates of the parameters are reported; a simple binary classifica-
tion is performed.

The reasonableness of the generalized likelihood-ratio approach does not imply
optimality in a minimum-decision-error or minimum-cost sense. In fact, as we shall
now show, when the cost function depends on the underlying parameters, the result
is a decision strategy that does not involve computation of the maximum-likelihood
estimate under each hypothesis.

Parameter-dependent cost functions Suppose the task is again the detection of a
random signal on a random background and that the classification cost function
depends on the random parameters and their estimates. For example, there is
a penalty for a false location in the random-location problem, or the penalty for
missing a lesion increases with lesion size. We can construct a cost function that
involves both the parameter estimates and the decision and determine the optimal
classification strategy given that cost function.
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If θs is a random parameter vector associated with the signal and θb is one
associated with the background, the elements of the cost matrix are:

C22(θs, θ̂s,θb, θ̂b) = cost of deciding H2 and giving estimates θ̂s and θ̂b when
H2 is true and the actual values of the parameters are θs and θb.

C21(θ̂s,θb, θ̂b) = cost of deciding H2 and giving estimates θ̂s and θ̂b when H1

is true and the actual value of the background parameter vector is θb.
(In this case, θs does not exist, so it has no actual value.)

C12(θs,θb, θ̂b) = cost of deciding H1 and giving estimate θ̂b for the back-
ground when H2 is true and the actual values of the parameters are θs
and θb. (Since the decision is signal-absent, no θ̂s is reported.)

C11(θb, θ̂b) = cost of deciding H1 and giving estimate θ̂b when H1 is true and
the actual background parameter vector is θb. (In this case θs does not
exist, and no value of θ̂s is reported.)

A reasonable step at this point would be to drop the dependence of all costs
on θb and θ̂b since there rarely is a cost associated with an inaccurate background
estimate. (The background parameters are nuisance parameters.) With this as-
sumption, the elements of the cost matrix are

C22(θs, θ̂s) = cost of deciding H2 and obtaining estimate θ̂s when H2 is true.

C21(θ̂s) = cost of deciding H2 and giving estimate θ̂s when H1 is true.

C12(θs) = cost of deciding H1 when H2 is true.

C11 = constant = cost of deciding H1 when H1 is true.

The cost C21 is dependent on the estimate θ̂s, allowing for the possibility that
it might be more risky to falsely detect a lesion at some locations, or that the cost
of estimating that the pseudo-lesion is large is different from estimating it to be
small. Similarly, C12 is a function of the underlying signal parameters, recognizing
that the cost of missing the lesion might be a function of lesion size or location.

By analogy to (13.396), the risk is given by

〈C〉 =
2

∑

i=1

2
∑

j=1

∫

dθs

∫

dθ̂s Cij(θs, θ̂s) pr(Di, Hj ,θs, θ̂s)

=
2

∑

i=1

2
∑

j=1

∫

dθs

∫

dθ̂s Cij(θs, θ̂s) pr(Di, θ̂s|Hj ,θs) pr(Hj ,θs)

=

∫

dθs

∫

dθ̂s C22(θs, θ̂s) pr(D2, θ̂s|H2,θs) pr(θs|H2) Pr(H2)

+

∫

dθ̂s C21(θ̂s) pr(D2, θ̂s|H1) Pr(H1)

+

∫

dθs C12(θs)

∫

dθ̂s pr(D1, θ̂s|H2,θs) pr(θs|H2) Pr(H2)

+C11

∫

dθ̂s pr(D1, θ̂s|H1) Pr(H1) , (13.402)
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where Di is the decision and Hj is the true state.
When we insert the dependence on g we obtain

〈C〉 =

∫

dMg

∫

dθs

∫

dθ̂s C22(θs, θ̂s) pr(D2, θ̂s|g) pr(g|H2,θs) pr(θs|H2) Pr(H2)

+

∫

dMg

∫

dθ̂s C21(θ̂s) pr(D2, θ̂s|g) pr(g|H1) Pr(H1)

+

∫

dMg

∫

dθs C12(θs)

∫

dθ̂s pr(D1, θ̂s|g) pr(g|H2,θs) pr(θs|H2) Pr(H2)

+C11

∫

dMg

∫

dθ̂s pr(D1, θ̂s|g) pr(g|H1) Pr(H1) . (13.403)

Using a delta function representation of the estimator, as in (13.399), gives

pr(Di, θ̂s|g) = pr(Di|θ̂s,g) pr(θ̂s|g) = pr(Di|g) pr(θ̂s|g) = pr(Di|g) δ
[

θ̂s − f(g)
]

.
(13.404)

Then

〈C〉 =

∫

dMg

∫

dθs C22(θs, f(g)) pr(D2|g) pr(g|H2,θs) pr(θs|H2) Pr(H2)

+

∫

dMg C21(f(g)) pr(D2|g) pr(g|H1) Pr(H1)

+

∫

dMg

∫

dθs C12(θs) pr(D1|g) pr(g|H2,θs) pr(θs|H2) Pr(H2)

+C11

∫

dMg pr(D1|g) pr(g|H1) Pr(H1) . (13.405)

When we combine the integrals over g and θ we find:

〈C〉 =

∫

dMg

{
∫

dθs
[

[C22(θs, f(g)) pr(D2|g)

+C12(θs) pr(D1|g)] pr(g|H2,θs) pr(θs|H2) Pr(H2)
]

+ [C21(f(g)) pr(D2|g) + C11 pr(D1|g)] pr(g|H1) Pr(H1)

}

. (13.406)

Let Γi denote the region of g-space for which the decision is Di. Since
pr(Di|g) = 1 if g lies in Γi and zero otherwise, we have

〈C〉 =

∫

Γ2

dMg

{
∫

dθs [C22(θs, f(g)) pr(g|H2,θs) pr(θs|H2) Pr(H2)]

+C21(f(g)) pr(g|H1) Pr(H1)

}

+

∫

Γ1

dMg

{
∫

dθs [C12(θs) pr(g|H2,θs) pr(θs|H2) Pr(H2)]

+C11 pr(g|H1) Pr(H1)

}

. (13.407)
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We now have a double optimization problem: choose Γ2 and f(g) to minimize 〈C〉.
There is no need to choose Γ1 separately since Γ1 and Γ2 comprise all of g-space.

To make further headway, we must assume specific forms for the cost functions
in (13.407). We shall adopt a MAP cost function for C22[θs, f(g)]:

C22[θs, f(g)] = C22 ×

{

1− rect

[

θs − f(g)

ε

]}

, (13.408)

where C22 without an argument is the cost of a true-positive classification with a
tolerance in the error of the signal-parameter estimate specified by ε. To simplify
the example we shall assume that the cost of rendering a false-negative decision
is independent of θs, and similarly, the cost associated with the erroneous signal
parameter estimates in the absence of a signal does not depend on the estimate:

C12(θs) = C12 (13.409)

and
C21[f(g)] = C21 . (13.410)

With ε tending to zero, (13.407) becomes

〈C〉 =

∫

Γ2

dMg

{

C22

[

pr(g|H2) Pr(H2)− ε pr(g|H2, θ̂s) pr(θ̂s|H2) Pr(H2)
]

+C21 pr(g|H1) Pr(H1)

}

+

∫

Γ1

dMg
{

C12 pr(g|H2) Pr(H2) + C11 pr(g|H1) Pr(H1)
}

, (13.411)

where we have substituted θ̂s for f(g).
We can write the integrals over Γ1 in terms of integrals over Γ2 to find

〈C〉 = C12 Pr(H2) + C11 Pr(H1)

+

∫

Γ2

dMg
{

(C22 − C12) pr(g|H2) Pr(H2) + (C21 − C11) pr(g|H1) Pr(H1)

− εC22 pr(g|H2, θ̂s) pr(θ̂s|H2) Pr(H2)
}

. (13.412)

By Bayes rule we can write the last term in (13.412) as

εC22 pr(g|H2, θ̂s) pr(θ̂s|H2) Pr(H2) = εC22 pr(θ̂s|g, H2) pr(g|H2) Pr(H2) , (13.413)

and the average cost becomes, finally,

〈C〉 = C12 Pr(H2) + C11 Pr(H1)

+

∫

Γ2

dMg
{

(C22 − C12) pr(g|H2) Pr(H2) + (C21 − C11) Pr(H1) pr(g|H1)

− εC22 pr(θ̂s|g, H2) pr(g|H2) Pr(H2)
}

. (13.414)

If ε→ 0, we must choose Γ2 so that

(C11 − C21) Pr(H1) pr(g|H1) > (C22 − C12) pr(g|H2) Pr(H2) . (13.415)
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That is, we make decision D2 if

pr(g|H2)

pr(g|H1)
>

(C21 − C11) Pr(H1)

(C12 − C22) Pr(H2)
, (13.416)

which is the usual decision strategy for the ideal observer in the absence of parameter
uncertainty. The term proportional to ε in (13.414) has the following interpretation:
choose θ̂s such that pr(θ̂s|g, H2) is maximal (i.e., the expected MAP estimator).

In summary, with the stated assumptions about costs, the strategy is to do
the hypothesis test with the marginalized likelihood pr(g|H2), followed by MAP
estimation of the underlying parameter if D2 is made. Contrary to popular belief,
one should not use the maximum of pr(g|θ, H2) in the hypothesis test.

Bayesians and frequentists In both pure estimation problems (Sec. 13.3.8) and hy-
brid detection/estimation problems (this section), we have found that the optimal
strategy for handling nuisance parameters is to marginalize rather than to esti-
mate them. This finding begs the question of the appropriate prior to utilize. To
a frequentist, the prior should be a sampling prior, verifiable by experiment; an
example is the exponential absorption law for photons. To a Bayesian, the prior
could incorporate prior beliefs. Indeed, a Bayesian would say that the problem of
nuisance parameters is an example of a fundamental dilemma that arises in any
inference problem: we never have enough empirical information to solve the prob-
lem at hand, and we must always bring in prior belief. Our reply, which we shall
expound more fully in Chaps. 14 and 15, is that, yes, one can use prior beliefs in
estimation problems in imaging, but the final measure of the efficacy of the belief
is a long-run, frequentist measure of task performance.



14
Image Quality

In this chapter we consider the many practical issues one must wrestle with in the
objective evaluation of imaging systems. Unlike Chap. 13, where knowledge of the
relevant population statistics of the image classes is assumed, the emphasis here is
on the practical issues that come to the fore when only a finite sample of images
is available for determining the image statistics or the observer’s performance, or
both.

We begin in Sec. 14.1 with a description of various approaches to the assess-
ment of image quality, including methods based on preference assessments, fidelity
measures, and information-theoretic approaches. Then, in Sec. 14.1.5, we introduce
the key elements that are required for the approach we advocate: the method must
be objective, task-based, and account for the statistical properties of the relevant
images and observers.

Properties of the human visual system and the determination of classification
performance by human observers is the subject of Sec. 14.2, including the conduct
of psychophysical experiments and the estimation of summary statistics for human
performance. In Sec. 14.3 we turn to the subject of model or algorithmic observers
for classification and estimation tasks. The approaches presented in Secs. 14.2 and
14.3 may make use of actual data sets derived from real imaging systems or, more
often in research investigations, simulated images. Methods for image simulation
are discussed in Sec. 14.4. As emphasized in that section, accurate models of the
properties of the object and the physics of the image acquisition system are required
if simulated images are to lead to accurate assessments of system performance.

913
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14.1 SURVEY OF APPROACHES

14.1.1 Subjective assessment

The simplest approach to the assessment of image quality is to rely on a viewer’s
subjective assessment regarding how good an image looks. This approach can be as
crass as the presentation of just a single pair of images, one processed by algorithm
A and the other processed by contender B, with the developer of algorithm A draw-
ing sweeping conclusions regarding the merits of A over B. A panel of experts might
be used to make a stronger case regarding the merits of one algorithm over another,
but here again the panel’s decision is based on subjective preference rather than
objective, task-based performance. There may be a place for beauty contests in
the evaluation of imagery, such as when an individual selects a home-entertainment
video system. We would argue that even then, most buyers base their subjective
preference of one system over others by viewing a range of images; buyers usually
take into account technical data across competing systems as well.

In an effort toward putting subjective preference methods on more solid foot-
ing, Zetzsche and Hauske (1989) developed a model based on the visual system with
the goal of predicting subjective ratings of image quality. If this goal were met, the
authors reasoned that they could determine image quality without the need for
building physical prototypes of display devices. The predictions of the model were
found to have correlations with mean subjective ratings ranging from 0.74 to 0.95
for images in which various artifacts were present.

Methods based on multidimensional scaling (MDS) have been applied to the
analysis of subjective image quality ratings (Ahumada and Null, 1993). MDS meth-
ods incorporate various approaches for collecting numerical rating from multiple
observers given the task of rating the quality of a set of images. Images can be
presented in pairs, with the observer given the task of selecting the one with higher
quality, or a set of images can be rank-ordered by quality. Normalizations can be
done to account for differences in how observers scale the rating values; Thurstone
scaling is a procedure that allows observers to use a rating scale nonlinearly (Tor-
gerson, 1958). Once the rating data are in hand, MDS enables the dimensions of
image quality to be extracted (Farrell et al., 1991). Standard software packages
are available for performing MDS. The difficulty with the MDS approach is that
the labeling of the extracted dimensions, in terms of physical characteristics of the
images or the image acquisition system, is left to the investigator (Shepard et al.,
1972). Moreover, the connection between an observer’s rating of the quality of an
image and the usefulness of the image for a specified task is never made.

Structured preference assessments formalize the subjective approach through
the use of trained observers who perform a prescribed set of analyses. The well-
known National Imagery Interpretability Rating Scale (NIIRS) system, which uses
an interpretability rating scale for analyzing military reconnaissance images, is an
example of a structured-preference approach. The NIIRS system was developed
under the leadership of the U.S. Imagery Resolution Assessments and Reporting
Standards (IRARS) Committee in the early 1970s. The first NIIRS system eval-
uated the visibility of military objects in images acquired in the visible spectrum.
Later, the NIIRS system was extended to incorporate objects like buildings, roads,
railroads and bridges, enabling the evaluation of images without military objects.
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The NIIRS system is now able to handle data outside the visible spectrum, includ-
ing thermal, radar, and multispectral imagery.

Models have been developed for predicting NIIRS ratings just as models have
been developed for predicting subjective preference ratings. Given a set of input
variables that can include the scene contrast, scene illumination, and imaging sys-
tem characteristics, the models generate measures of image quality that can be
related to the NIIRS scale. Another approach to the estimation of an image quality
metric that correlates with the NIIRS scale is based on the power spectrum of the
image to be rated, indicating that the measure is heavily influenced by the noise
properties of the image.

The NIIRS approach is almost exclusively used for military applications; NI-
IRS refers to the value of an image for “intelligence purposes,” rather than image
quality per se. Furthermore, the NIIRS approach is not amenable to the analysis of
the variation in true- and false-positive fractions [TPF and FPF, defined in (13.11)]
of image interpretations as a function of the reader’s mindset (see Fig. 13.5). Some
argue that a preference-based approach is appropriate whenever the task is not well
defined. We have not encountered an example where there truly is no specific task.
There may be several tasks, in which case the system could be evaluated for each.

We regard preference assessments as useful in go/no-go decisions, giving in-
formation on the adequacy of images for further, more rigorous, testing. Indeed,
rank-order studies of image quality have been proposed as a formal approach to
determining whether the cost of a large-scale objective study is justified (Gur et
al., 1997; Rockette et al., 1997; Good et al., 1999; Towers et al., 2000). These
studies can make use of highly trained observers and specified tasks; their drawback
is that they identify trends without providing an absolute measure of image quality.
Statistical methods for planning and analyzing rank-order experiments have been
introduced (Rockette et al., 2001).

14.1.2 Fidelity measures

A common approach to image assessment is to assume that the goal in imaging is to
reproduce a likeness of the object, leading to the conclusion that the best imaging
system is the one that gives the smallest discrepancy between object and image.
The most common measure of fidelity is the mean-square error (MSE) between
object and image; some flavor of MSE is quoted in the majority of papers on image
processing or image reconstruction. As we saw in Sec. 13.3.2, however, there are
some arbitrary choices to be made in defining MSE, and different choices can lead
to quite different conclusions about the quality of an imaging system or processing
algorithm.

Problems with fidelity measures MSE and any other fidelity measure will be sensi-
tive to many different properties of an image. If we rotate an image slightly with
respect to the object or change the magnification, for example, we can produce a
large discrepancy between the object and the image, even if they would otherwise
be identical. Similarly, image distortion, such as barrel or pincushion effects, can
lead to a large MSE. Finally, gray-scale errors such as nonlinear mapping of the
image intensity or even an error in overall brightness can contribute heavily to any
fidelity measure.
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In many cases, these image modifications are trivial in the sense that they
do not degrade the information we want to extract from the images. For exam-
ple, a radiologist can interpret a chest radiograph just as well if it is rotated by a
few degrees on a light box or displayed at a different magnification on a computer
monitor.1 MSE or other measures of fidelity would show that the rotated or scaled
image was a poor representation of the object, but the user might not even notice
the discrepancy.

Sometimes, however, apparently trivial modifications of an image are impor-
tant. A cartographer wanting to derive accurate distances from an aerial pho-
tograph, for example, would worry a great deal about the magnification, and an
astronomer wanting to track the angle between the two members of a binary star
would worry about the rotation angle. In designing a lens system for photolithog-
raphy, distortion might be critical, though for portrait photography it would be
imperceptible. Even in these cases, however, a fidelity measure such as MSE is too
blunt an instrument to say anything meaningful about the usefulness of an image.

Why not MSE? As delineated in Sec. 13.3.2, there are many arbitrary choices to be
made in defining an MSE. For digital images, we must decide whether to discretize
the assumed object for comparison with the digital output, to interpolate the digital
image in order to get a continuous function to compare to the real object, or just to
do a simulation and hope that the results will mean something. For each of these
options, we must select a set of functions for discretization or interpolation, and we
must select either a single object or a class of objects for comparison in some sense
to the images. If the object contains null functions of either the system operator
or the discretization operator, as any real object will, then any MSE will be very
sensitive to the choice of object.

MSE measures can be very sensitive to relatively trivial image modifications
such as magnification, rotation and gray-scale mappings, but they may be com-
pletely insensitive to small details that we really want to capture in the image.
Furthermore, MSE measures make no distinction between blur and noise. It is easy
to construct two very different images, one with high noise but good sharpness and
a blurred one with low noise that have the same MSE. The main objection to any
MSE metric, however, is that it has nothing to do with the intended use of the
image..

14.1.3 JND models

There exists a school of thought in the field of image evaluation that the goal of an
image processing or compression algorithm is to create an image that is perceptu-
ally equivalent to the original. This school measures image degradation in units of
just-noticeable differences, or JNDs, between the original image and its processed
counterpart. One JND unit corresponds to a fixed probability, say 50 or 75 percent,
that an observer would detect the difference between two images or image regions
(Lubin, 1993).

1There is anecdotal evidence that sometimes such image modifications can even aid the observer
by changing the appearance of an image such that a previously-missed signal becomes visible.
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The JND approach to image quality is rooted in the threshold theory of vision.
Threshold theory states that signal detection occurs when a signal’s perceptibility
exceeds an observer’s threshold; signal detection is a yes or no event. Furthermore,
by the Weber-Fechner law, discussed in more detail in Sec. 14.2.1, the threshold for
detecting an extended signal increases proportionally with background intensity. In
the early days of vision science, much effort was expended on the measurement of
the detection thresholds of various signals on different backgrounds. In the JND
approach to image quality, the “signal” is a difference in a pair of images; if that
difference is below threshold, the images are of equal quality.

All JND models are based on a model of the human visual system with the
intent of predicting human performance in the ranking of image quality or the de-
tection of image differences. The simplest approach is to weight image differences
using a function that models the sensitivity of the human visual system to spatial
frequency, referred to as a contrast sensitivity function (Daly, 1993). The JND
model of Carlson and Cohen (1980) decomposes the input images into frequency
bands. After the contents of the bands are processed nonlinearly, the outputs are
compared to determine where image differences as seen through this simple model of
the visual system are greatest. This model has been used to predict the detectabil-
ity of edges and artifacts. Barten has also presented a model of the visual system
that has been used to predict image quality (Barten, 1992, 1993). The Barten JND
model utilizes a single integral over spatial frequencies rather than a decomposition
into frequency bands, making use of an average contrast sensitivity function of the
visual system. The Barten model has been shown to predict subjective image qual-
ity for several simple tasks and is the centerpiece of a recent National Electrical
Manufacturers Association standard on display quality (NEMA, 2001).

More complex mechanistic models of the visual system have been developed
for use in the prediction of visually perceptible differences in gray scale, color, and
video imagery (Hultgren, 1990; Lubin, 1993; Daly, 1993). The models can account
for such observation factors as viewing distance and light level (pupil diameter).
The most comprehensive models include a nonlinearity representing the visual sys-
tem’s nonlinear response to luminance, a contrast sensitivity function, a bank of
spatial-frequency and orientation-sensitive filters, and models of the chromatic and
temporal properties of the visual system. The output is a JND map of the image
differences, quantified per pixel, field, frame, or sequence.

One argument for the use of a JND metric is that the approach implies the
matching of the processing algorithm with the visual system, similar to the way
in which the information in a color television signal is matched to the human; be-
cause color resolution in the visual system is less than gray-scale resolution, the
National Television Standards Commission (NTSC) represents color information
more sparsely than luminance information.

Advocates of the JND approach argue that it is objective, it correlates with
subjective assessments of image quality, and it predicts a large body of human data
for both detection and discrimination tasks without the need to fit any free model
parameters. The tasks have included disk detection, sine grating detection, checker-
board detection and edge-sharpness discrimination. The task can utilize real objects
on real backgrounds; a recent comparison of image quality for the task of micro-
calcification detection in mammographic images showed a high correlation between
JND measures of image quality and human observer performance (Krupinski et al.,
2003). Commercial JND-based image evaluation packages are readily available.
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JND measures suffer from some of the same problems we have enumerated
for fidelity measures, including the lack of distinction between blur and noise and
the questionable definition of task. Both fidelity and JND measures quantify some
form of image discrepancy: fidelity measures give all image differences equal im-
portance, while JND measures weigh image differences according to their predicted
manifestation at the output of the visual system. In order to calculate perceptual
image differences, the JND approach requires twinned-noise image pairs, that is,
two images in which the noise realization in each is the same. This paradigm is
significantly different from the one underlying statistical decision theory, in which
each image represents an independent sample from the signal, background, and
noise distributions. It is not clear how the JND approach can be extended beyond
simulated targets to real images with real signals because it is not possible to acquire
real images that are identical except for the presence or absence of some target. An
active area of current research is the usefulness of the JND approach for predicting
the quality of an imaging system given random signals on random backgrounds in
images with unpaired noise realizations.

Nevertheless, the JND community has much to offer the field of objective as-
sessment of image quality. For example, we shall see that model observers play
a significant role in the objective assessment of image quality; the sophisticated
models of the visual system developed by the JND community may be of use in
the development of predictive models of human task performance for more realistic
tasks.

14.1.4 Information-theoretic assessment

In 1948, Claude Shannon published his now-famous theory of communication, in
which he defined the information content of a message as a measure of the degree
to which it is unexpected.2 Shannon defined the information content of a single
message state n as I(n) = log[1/Pr(n)], where Pr(n) is the prior probability of
occurrence of the nth message. Messages with high probability carry little informa-
tion; high information content is associated with messages that are least expected.
By this definition, the mean information content of a message is

I =
N∑

n=1

Pr(n) I(n) =
N∑

n=1

Pr(n) log

[
1

Pr(n)

]
= −

N∑

n=1

Pr(n) log[Pr(n)] , (14.1)

which becomes

I =
N∑

n=1

1

n
log[n] = −

N∑

n=1

1

n
log

[
1

n

]
(14.2)

when the messages are equally likely.
Shannon’s model for a communications system was a nonimaging system com-

prised of a single source (the message), an encoder, a communications channel that
transmitted the message, and a decoder. The purpose of the communications sys-
tem was to provide the user with a reproduction of the message. Designers of

2In his book on the relationship between information theory and thermodynamic entropy, Brillouin
(1956) points out that the theory developed by Shannon came to light earlier in Szilard’s discussion
of the Maxwell demon (1929). (We thank B. R. Frieden for this historical note.)
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encoders, decoders, and transmitters were seeking to ensure that the user received
the message that was sent. Not surprisingly, systems whose goal was to reproduce
a transmitted message were most often evaluated using fidelity measures.

There is a large literature on the application of information theory to the evalu-
ation of imaging systems. Fellgett and Linfoot (1955) and Linfoot (1955) considered
a simplified model of an optical system in which the source is divided into small
discrete elements, each capable of a finite number of discrete brightness levels. The
information content of the values of the elements can then be defined in terms of
their degree of unexpectedness. That is, the information carried by a particular
object f is given by

I(f ) =
N∑

n=1

pr(fn) log

[
1

pr(fn)

]
= −

N∑

n=1

pr(fn) log [pr(fn)] , (14.3)

where fn is the brightness of the nth object element. In this simple model the object
values are assumed to be independent, and we see that the entropy of the set of
values becomes the measure of information content [cf. (15.158)].

Fellgett and Linfoot generalized this simple model to allow for a continuous
distribution of object values and a division of object space into isoplanatic patches.
With these additions to the model, Fourier methods can be used to describe the
transfer characteristics of the imaging system. Felgett and Linfoot considered the
assessment of an optical system for two tasks: the formation of an image that is sim-
ilar to the object, and the production of an image that carries the most information
about the object without regard to a specific inference or interpretation process.
Assessment by similarity leads to fidelity measures; the same issues raised in the
previous section on fidelity measures then apply, and Felgett and Linfoot point out
many of these shortcomings as well. Thus Felgett and Linfoot turn to assessment
by information content. Using the object’s information measure as a starting point,
an imaging system’s ability to transfer information is computed and maximized.
However, their resulting figure of merit is independent of the statistics of the object
set and the measurement noise (film type, in those days). This is seen as a positive
result by these authors, because it allows for optimization of optical systems with-
out regard to the statistical properties of the object and the measurements, and no
specific task must be considered.

More modern works have followed the approach of Fellgett and Linfoot, em-
phasizing the information rate of an imaging system (Huck et al., 1997) and its
correlation with the visual quality of the resulting images, where visual quality is
measured in terms of image sharpness, clarity, and fidelity. Of course, all of these
measures encounter the commensurability problem discussed in Sec. 13.3.2. More-
over, these measures are not uniquely related to the performance of a specified
observer on a particular task.

Dainty and Shaw (1974) and Shaw (1978) related the information theory of
Shannon to their noise-equivalent quanta (NEQ) approach to image assessment.
According to these authors, an actual imaging system that degrades the informa-
tion content of the input is associated with an NEQ relative to the real exposure
quanta. As described in Sec. 13.2.13, this theory assumes a linear shift-invariant
imaging system and stationary noise, leading to a Fourier-domain framework for
describing the detection SNR as a function of spatial frequency. Spatial frequencies
correspond to Shannon’s channels in this approach (Wagner and Brown, 1985).
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A broader view of information-theoretic image formation and assessment ex-
ists (O’Sullivan et al., 1998). Object representation is achieved by combinations
(not necessarily linear) of basis functions that may or may not be orthogonal; this
approach does not automatically assume the object space is decomposed into pixels.
The objects may be known exactly or random. The imaging system may be deter-
ministic (low noise, nonrandom) or may be stochastic, and may be direct or indirect.
This view of information-theoretic image formation is consistent with the framework
shown in Fig. 7.14 for the imaging process. Moreover, in this treatment the task
is more generally cast to include measures of optimality for detection, recognition
(classification), parameter estimation, and scene estimation (image reconstruction).
When the task is detection or classification, the overall performance of a system
is measured by the performance of the recognition or detection function; perfor-
mance measures for detection and recognition tasks include such familiar measures
from Chap. 13 as the probability of detection and the probability of a false alarm.
Optimal estimation for random objects is achieved using the familiar maximum a
posteriori (MAP) procedure derived in Chap. 13 when a prior for the object exists;
without a prior, maximum-likelihood methods result and are characterized by the
Fisher information matrix and the Cramér-Rao bound.

Thus we see that the information-theoretic approach, when presented in this
broad manner, is akin to the statistical-decision-theoretic approach presented in
Chap. 13. In the information-theoretic approach, all performance metrics quantify
the information provided by the measurements and the likelihood function plays
a fundamental role in all cases. Similarly, we found in Chap. 13 that the likeli-
hood ratio is central to all measures of task performance that characterize opti-
mal decision/estimation strategies in statistical decision theory. The information-
theoretic approach postulates that the user knows “everything except the decision”
(O’Sullivan et al., 1998). In other words, an ideal observer is assumed. Information
measures are therefore useful for the assessment of raw data, but they are not neces-
sarily good predictors of human performance. This point is particularly relevant to
the use of information criteria in deriving optimal reconstruction algorithms. There
is no guarantee that the resulting images are optimal when assessed in terms of
human performance.

14.1.5 Objective assessment of image quality

For an image-assessment method to be acceptable, it must objectively quantify
the usefulness of the images for performing a given task. Task-based measures of
image quality have been advocated for many decades, starting with Harris (1964),
and including Hanson (1977), Wagner (1978), Judy et al. (1981) and Myers et al.
(1986). The resulting figure of merit must be computable and scalar, so that it can
be used unambiguously in the optimization of imaging systems and the assessment
of observer performance. Methods based on statistical decision theory satisfy these
requirements.

Four key elements are essential in the objective assessment of image quality
(Barrett, 1990):

1. Specification of a task;

2. Description of the object class(es) and imaging process, leading to a descrip-
tion of the data;
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3. Delineation of the observer;

4. Figure of merit.

Let’s consider each of these elements in more detail.

The task In Chap. 13 we considered two kinds of tasks in some detail. One kind
of task is the detection of an object in the presence of a background or clutter.
The object might have one or more random parameters and the background may
or may not be random. A related task is the classification of an image into one
of a finite number of alternative classes. A second type of task is the estimation
of parameters describing the object or background or both. Chap. 13 gives many
examples of detection, classification, and estimation tasks.

We have seen that many of the approaches described in earlier sections define
the task as the reproduction of a single object. While object reproduction might
be construed as an estimation task, there are several important differences between
estimation and object reproduction. First, defining the task as object reproduction
leads to the problem of commensurability delineated in Sec. 13.3.2: objects and im-
ages live in different spaces. No imaging system can exactly reproduce a continuous
object. How then, to choose among systems that all fall short of this impossible
goal? In addition, when the stated task is object reproduction, an assumption is
being made that all object locations/elements/parameters are equally important;
this is not the case in real situations. Finally, no imaging system will be utilized for
a single object, so the task definition should encompass the use of the system over
the expected range of objects.

Properties of objects and images From the preceding discussion we know that the
evaluation of an imaging system should take into account the physical and statis-
tical properties of the set of objects to be imaged. In a classification task, the
objects are categorized into a finite set of classes. For example, the evaluation of
mammographic imaging systems for the task of breast lesion detection requires the
characterization of normal breast tissues and breast lesions in terms of the full prob-
ability density function of the objects under each class. While this is an impossible
task, tremendous progress is being made toward the characterization of the mean
and low-order joint densities of real tissues using ultra-high-resolution projection
imaging and autoradiography, among other methods (Hoeschen et al., 2000).

Another method for creating and characterizing a set of objects is through the
use of simulations. The use of numerical algorithms to generate random objects
gives the investigator the ability to characterize the deterministic and stochastic
properties of the objects. Modern simulations are becoming increasingly realistic.
Investigators have added simulated targets to real images (creating so-called hybrid
images) with sufficient realism that in some cases human observers were unable
to discriminate the artificial targets from real ones (Revesz et al., 1974; Eckstein
and Whiting, 1996). The future will bring even greater flexibility and realism to
simulated images, with the entire anatomy and physiology of a human being mod-
eled on a fine scale as a starting point toward the creation of simulated, highly
realistic imagery of normal and abnormal states. Nonmedical imaging applications
are following the same trajectory; in astronomy, acoustical imaging, radar, and so
on, simulations of objects and imaging systems are vastly improving and leading to
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new abilities to generate realistic data sets for image evaluation. Image simulation
methods are described in some detail in Sec. 14.4.

The observer Given a task and a set of objects, the next requirement for the as-
sessment of image quality is an observer or strategy for performing the task. The
observer might be a human, such as a radiologist or an expert photointerpreter.
Models of human observers can be used to predict human performance. Model ob-
servers make it possible to optimize imaging systems without the need for lengthy
human-observer studies at every design stage. Human observers and their models
are relevant to the assessment of images to be displayed for human consumption.
For example, the assessment of display devices, reconstruction algorithms, and all
manner of image-processing routines are evaluated appropriately using human ob-
servers or their surrogates.

The ideal observer is defined in Chap. 13 as the observer that makes optimal
use of all available information to perform the specified task. Having no need for
image reconstruction, the ideal observer is appropriate for the evaluation of the
quality of the raw data for classification tasks.3 Thus the ideal observer is the ob-
server of choice for the assessment of imaging hardware. As detailed in Chap. 13,
the ideal observer requires the complete PDF of the data under each hypothesis. In
cases where this information is not available, the Hotelling observer can be a useful
alternative, requiring only the first- and second-order statistics of the data.

The figure of merit Having specified the task, the objects, and the observer, all
that is needed is some way of telling how well the observer performs. For classifi-
cation tasks, useful figures of merit include the area under the receiver operating
characteristic (ROC) curve (AUC), partial ROC areas, sensitivity/specificity pairs,
the percent of correct decisions (PC), and the classification signal-to-noise ratio, or
SNR. Those readers unfamiliar with the theory of ROC curves are referred to Chap.
13 for background material necessary for understanding the terminology here.

Possible figures of merit for estimation tasks include bias, variance, mean-
square error (MSE), and ensemble mean-square error (EMSE). The MSE sum-
marizes the performance of an estimation algorithm in determining the estimable
parameters of a single object averaged over multiple data sets. In contrast, EMSE
describes estimation performance averaged over both measurement noise and a dis-
tribution of objects, allowing for nonestimable parameters. Estimators can also be
evaluated using bounds on their performance, the most notable being the Cramér-
Rao bound for maximum-likelihood estimators. In Sec. 13.3 the reader can find a
lengthier treatment of performance measures for estimation tasks.

Returning to the set of requirements listed at the beginning of this section,
we can see that each of the methods described in the previous sections lacks one
or more of these key elements. For example, JND methods measure image quality
using a distance between two scenes without specification of a task or an object
class. Thus, in the remainder of this chapter we shall rely on the approach to the
objective assessment of image quality outlined in this section.

3Wagner, Brown, and Pastel suggested the division of imaging systems into detection and display
components for assessment purposes as early as 1979.
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14.2 HUMAN OBSERVERS AND CLASSIFICATION TASKS

A wide variety of imaging applications make use of a human as the observer or
expert reader. The task is almost always classification, because humans are not
as adept as machine algorithms at the absolute quantitation of parameters using
images as input. The purpose of this section is to chronicle what is known regard-
ing the perception of form by the human visual system, how we measure human
performance on classification tasks, and what we have learned regarding human
performance for various classification tasks. We shall focus on the perception of
pattern and form, with the goal of connecting this to an understanding of human
performance on single, static images. The extension to tasks involving temporal
information, color, or stereo are beyond our scope, although in many cases the
generalizations required to include this kind of information will be suggested.

14.2.1 Methods for investigating the visual system

Centuries ago, the human eye was assumed to work as a simple camera. This view
was espoused by the famous astronomer Johannes Kepler as early as 1604. Not
long after, Réné Descartes’ famous treatise, La Dioptrique (1637), described an
experiment in which an eye from an ox was used to “view” the image formed on the
retina, which had been scraped away to make the eye translucent. The discovery
that the image formed by the eye’s lens was inverted was a source of much confu-
sion, since none of us has the experience of seeing the world upside down. Since
that time we have come to realize that we do not directly “see” the retinal image;
what we perceive is a processed and interpreted version of the image formed at the
back of the eye. The retina and the visual components of the eye-brain system are
complex entities that have been the subject of amazing discovery since the time of
Kepler.

The images formed by the eye’s lens onto the retina stimulate the approxi-
mately 130 million photoreceptors we know as the rods and cones. These units
stimulate bipolar cells that lead to the ganglion cells, whose axons form the optic
nerve. The axons of the optic nerve terminate in the lateral geniculate nucleus
(LGN) of the thalamus. The cells of the LGN relay signals to a region of the striate
cortex called the primary visual cortex. The activity of a cortical cell is thus the
result of millions of retinal inputs. Within the visual cortex further signal pro-
cessing and feature extraction occurs, leading to our visual perception of the world
around us.

Early discoveries of the visual system were anatomical, as described so graph-
ically by Descartes. Anatomical studies tell us the spatial sampling of the rods and
cones, the number of fibers making up the optic nerve, and the location of their
termini. We need other means of determining how these entities function and in-
terrelate.

One means of elucidating the functional properties of the elements of the vi-
sual system is through electrophysiological studies in animals. These studies in-
volve the placement of electrodes into single cells in the visual pathway and the
subsequent measurement of the cell’s response to visual stimuli. In 1940, Hartline
became the first to insert electrodes into a single ganglion cell in a vertebrate (a
frog) and record axon potentials, following his earlier experiments in the horseshoe
crab (1934). Hartline’s work was the precursor to the acclaimed work of Hubel and
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Wiesel (1962), who shared the Nobel Prize for their pioneering study of the visual
system of the cat. Hubel and Wiesel studied the response of single cortical cells
to visual patterns of specific orientation and location (bars, edges, and spots) and
found that the cells demonstrate orientation selectivity and binocularity. They soon
reported similar findings in monkeys (1968).

Many electrophysiological investigations in animal models have followed in the
giant footsteps of Hartline, Hubel and Wiesel. For such studies to be relevant to
the human visual system, the animal’s characteristics must be able to be extrapo-
lated to the human. Since the visual systems of all vertebrates are similar, these
measurements provide especially valuable information regarding the behavior of the
human visual system.

The functioning of the visual system can also be studied using psychophysics,
the measurement of the reactions of observers to visual scenes and the development
of quantitative relationships between response data and physical characteristics of
the input images. The physical characteristics of the images include quantities such
as the display luminance, the noise and resolution properties of the images, as well
as parameters that specify the target and background. Observer performance is
measured in terms of indices such as the area under the ROC curve or the percent-
age of correct detection or localization responses. Thus psychophysical experiments
determine external measures of the visual-system function. Methods for the conduc-
tion of psychophysical studies using human observers are presented in Sec. 14.2.3.4

Modern imaging methods have brought new tools to the study of the func-
tion of the visual system. Using functional imaging methods such as functional
magnetic resonance imaging (fMRI) and positron emission tomography (PET), in-
vestigators are determining areas of the brain involved in the performance of visual
tasks. Imaging provides a noninvasive alternative to electrophysiological techniques
with the ability to map both spatial and temporal response to stimuli.

In what follows we shall describe the more salient features of the visual sys-
tem that are relevant to understanding human performance on classification tasks
using images as inputs. These characteristics play a key role in the development of
predictive models of the human observer.

Receptive fields A receptive field is an area on the retina that gives excitation or
inhibition of a neuron’s activity upon changes in illumination. Receptive fields can
be defined for ganglion, geniculate, and cortical cells. The receptive field is evidence
of a many-to-one relationship between photoreceptors in a region of the retina and
the neural cell. In fact, there are about 1000 cortical neurons per retinal cone for
visual information processing (Kronauer and Zeevi, 1985).

Receptive fields for the ganglia can be organized into two broad classes: those
that have plain receptive fields, and those that have complex receptive fields. Plain
receptive fields have a center-surround structure. When a spot of light illuminates
their center, an increase in firing rate occurs (excitation); light on the surround
region decreases the rate (inhibition). Diffuse light that illuminates both regions
gives a cancellation of the signal, resulting in no response. Simple cells are often

4While it might be expected that psychophysics is exclusively applied to the study of human
observers, psychophysical experiments using trained animals have been performed to elucidate
properties of the cat and monkey visual system.
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referred to as Kuffler cells, after the early investigator who mapped their behavior
in the cat (Kuffler, 1953).

Complex cells, not surprisingly, are tuned to more complex retinal patterns,
such as gratings. Enroth-Cugell and Robson (1966) were the first to measure the
response of single ganglion cells to cosine gratings in the cat. Both even and odd
receptive fields exist, giving the cat visual sensitivity to gratings and edges. At one
time it was thought that complex cells were in series with simple cells, but we now
know that simple and complex cells act in parallel. For some tasks the response
of complex cells occurs earlier than that of simple cells, and for other tasks the
opposite is the case (Hoffman and Stone, 1971).

The LGN and cortical neurons are also associated with receptive fields at the
retina. Cortical cells have been found that are tuned to edges, lines, movement
of lines and gratings at certain orientations, speeds and accelerations, and even
angles between lines. While the responses of ganglion, LGN, and cortical neurons
to stimuli have significant similarities, there are interesting differences across them
as well. Maffei and Fiorentini (1973) compared the responses of these neurons to
cosine gratings in the cat and found that the stages respond to different ranges of
spatial frequencies. Moreover, the spatial frequency selectivity becomes narrower
from the retina to the LGN to the cortex. DeValois et al. (1982) also found in the
macaque that the sharpest tuning occurs in the cortex.

Lateral inhibition The output of a receptor’s ganglion cell is not only impacted
by multiple retinal inputs, but also by the behavior of nearby neurons. In studies
of the horseshoe crab, Hartline and Ratliff (1957) were the first to show that the
output of a ganglion cell can be inhibited when a nearby neuron is excited. This
effect is referred to as lateral inhibition. The opposite can also occur, in which
case the effect is termed lateral summation. Lateral inhibition and summation
demonstrate one role of the synapse of the bipolar cells that communicate with the
ganglion cells, enabling ganglion cells to interact.

Contrast sensitivity function By measuring the electrophysiological response of an-
imals to patterns, the structure and function of multiple receptive fields have been
elucidated. In humans, the ability to detect patterns is measured via psychophysics,
giving a global response to the pattern rather than a response localized to a single
neuron. The contrast sensitivity function (CSF) describes the overall sensitivity
of the visual system to sinusoidal patterns as a function of pattern frequency. High
sensitivity signifies that the pattern can be seen with little contrast; low sensitivity
implies that a large contrast is required for the observer to detect the pattern. A
great many psychophysical studies have been conducted to determine the sensitivity
of human observers to grating patterns, starting with DePalma and Lowry in 1962.
Robson (1966) measured both spatial and temporal CSFs in humans in the 1960s.
Campbell and Robson (1968) measured the contrast sensitivity to single sinusoidal
gratings over a broad range of spatial frequencies at fixed background luminances.
By determining the just-visible contrast of sine-wave targets, these authors found
that the CSF follows a band-pass shape with a pronounced maximum at 2 to 4
cycles per degree, falling off at both low and high spatial frequency. An idealized
CSF is shown in Fig. 14.1.
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Fig. 14.1 Idealized example of a contrast sensitivity function.

We now know that the visual system is extraordinarily adaptive; the CSF is
dependent on mean luminance level, noise level, color, accommodation, eccentricity,
and image size (Kelly, 1977). While color CSFs have a shape similar to that shown
in Fig. 14.1, high-frequency color patterns are less detectable than luminance pat-
terns of the same frequency (Cornsweet, 1970). There is also significant variation
in contrast sensitivity functions, as well as other parameters of the visual system,
across human observers (Ginsburg et al., 1982; Owsley et al., 1983). Ginsburg and
Evans (1984) measured the CSFs of a large population of observers and found that
the peak value is dependent on the individual.

The CSF is often depicted as the envelope of multiple narrow spatial-frequency-
selective responses internal to the visual system. This view stems from evidence
that the bandwidth determined via psychophysical study in animals can be much
greater than that determined via electrophysiological experimentation. For exam-
ple, individual neurons in the cat have been found to respond to a narrower range
of frequencies (Movshon et al., 1978) than what is found externally via behavioral
studies (Blake et al., 1974).

Lateral inhibition reduces sensitivity to signals with large extent. That the
CSF is very low at low frequency is consistent with the inhibitory behavior of re-
ceptive fields at low frequencies. Several studies have established that the human
observer is unable to efficiently integrate information beyond a certain spatial extent
(Blackwell, 1946; Burgess et al., 1979; Boff et al., 1986).

Masking Research has shown that the presence of one pattern can make another
pattern less visible to an observer. This property is known as masking. The op-
posite of masking is facilitation, defined as the improved detection of a pattern in
the presence of another. The pattern to be detected is referred to as the signal; the
additional pattern is referred to as the mask. The mask is usually supra-threshold,
meaning its contrast is above that required for detection. When the mask contrast
becomes sufficiently low, the signal threshold is identical to the the signal threshold
in the presence of a uniform background; that is, the signal threshold is what is
expected based on the observer’s CSF and no masking occurs.

Periodic patterns such as gratings or sinusoids have been shown to mask pat-
terns with similar orientation or spatial frequency (Legge and Foley, 1980; Phillips
and Wilson, 1984). This effect is known as phase-coherent masking. Another ex-
perimental paradigm is to use noise fields of different bandwidths as masks; the
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effect is then called phase-incoherent masking (Pollehn and Roehrig, 1970; Pelli,
1981; Thomas, 1985). The presence of an aperiodic pattern such as an edge or a
gradient can also mask a nearby feature (Fiorentini et al., 1955). Masking demon-
strates orientational selectivity as well as frequency-dependent behavior (Campbell
and Kulikowski, 1966).

Diffuse light can mask signals. For this reason radiologists are trained to read
images in a darkened viewing area after they have adapted to the ambient light
level, to better detect low-contrast signals. Scattering in the lens and cornea of the
eye can also mask low-contrast signals. This problem is known to worsen with age.

Channels Channels are independent processors tuned to different narrow ranges of
spatial or temporal frequency. Channels were first hypothesized as visual scientists
pondered data from studies using compound-frequency patterns such as sawtooth
and rectangular gratings (Campbell and Robson, 1968). These data seemed to
indicate that detection of the pattern occurs only when the most detectable compo-
nent reaches its own threshold, independent of the presence of the other frequency
components. Sachs et al. (1971) then carried out experiments using compound
gratings consisting of just two frequency components. Whenever the second com-
ponent differed in frequency from the first by more than a certain ratio, the data
were consistent with the hypothesis that the two frequency components were being
detected independently. Moreover, when two components with frequencies related
by an even larger ratio were combined, the grating was no more detectable when
the two components were phased so that their peaks added than when their peaks
subtracted (Graham and Nachmias, 1971). The investigators concluded that differ-
ent spatial-frequency components were detected by independent processors tuned
to different narrow ranges of spatial frequencies. Detection of a stimulus occurs
whenever the activity in one of these processors rises above a threshold. These
processors were referred to as channels. Channels can be thought of as mosaics of
receptive fields (Sachs et al., 1971).

Many scientists have worked to corroborate the presence of frequency-selective
channels in the visual system (Mostafavi and Sakrison, 1976) and to determine
their properties in finer detail (Halter, 1976). The electrophysiological recordings of
Hubel and Wiesel (1962) are construed by many as the first evidence for channels.
Adaptation and masking experiments support the hypothesis that the channels
are medium-bandwidth mechanisms (Blakemore and Campbell, 1969; Stromeyer
and Julesz, 1972; Stromeyer and Klein, 1975; Legge and Foley, 1980). Narrow-
bandwidth channels are suggested by the results of frequency-discrimination tasks
(Campbell et al., 1970). The entirety of the data suggests the presence of approxi-
mately octave bandwidth spatial-frequency channels over the entire visible range.

There is ample evidence, starting with the work of Hubel and Wiesel (1962),
that the visual system also contains orientation-selective channels. DeValois et al.
(1982) investigated simple cells in the macaque and found them to have an angular
resolution of ±20◦. These data are quite similar to the estimates of orientation selec-
tivity in humans obtained using masking experiments (Campbell and Kulikowski,
1966; Phillips and Wilson, 1984). There are also channels tuned to object mo-
tion that have direction selectivity (Tolhurst, 1973), with a temporal two-octave
bandwidth (Tolhurst, 1975; Watson and Robson, 1981).
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Internal noise Human observers are noisy measurement devices. Thus, even if the
images presented to a human observer were noise-free, the output of the human
would have some variability. While it requires only one optical photon to excite a
rod, the number necessary for “seeing” is larger (Hecht et al., 1942). Barlow was
the first to suggest that this discrepancy is the result of an internal noise mechanism
(1956).

Burgess et al. (1981) compared human SKE (signal-known-exactly) detection
performance in white noise to an ideal detector with an added internal noise contri-
bution. While this modification to the ideal-observer model improved the model’s
agreement with the human data, it was suggested that some form of observer sam-
pling inefficiency was also needed for the model to match the slope of the human
data vs. noise spectral density. The authors further suggested that perhaps the ob-
server noise might be a function of image noise. Data from subsequent classification
experiments have borne out the suggestion that the visual system has two internal
noise components (Burgess and Colborne, 1988). The first component is an addi-
tive noise term that is independent of the image luminance. This noise component
may be the result of neural noise (Tolhurst et al., 1983), as well as fluctuations in
the observer’s decision criterion (Eckstein et al., 1997). The second component is
an induced, or image-dependent, component. The induced internal noise has been
shown to be proportional to the variance of the image noise (Burgess and Colborne,
1988).

Weber-Fechner law As stated earlier, diffuse light can mask low-contrast signals.
As a result, objects on bright backgrounds are harder to detect than objects on
dark ones (Cornsweet, 1970). The Weber-Fechner law states that the relative con-
trast of an object, given by (Lmax − Lmin)/Lmean = ∆L/L, is equal to a constant
for a given probability of detection. By this law, the detection of a difference in
luminance depends on the baseline, so that relative luminance is important, rather
than absolute differences.

Evidence of behavior following the Weber-Fechner Law has been interpreted
as a local gain mechanism or a saturating nonlinearity in the visual system, coupled
with internal noise (Shapley and Enroth-Cugell, 1985). This law also plays a sig-
nificant role in the approach used by many investigators in choosing the calibration
method for their soft-copy display (Blume and Hemminger, 1997). Many investiga-
tors choose to use a perceptually linearized display, in which the output luminance
at each digital driving level is set so that the step sizes between gray levels is higher
at higher absolute luminance levels (Pizer, 1981).

Psychometric functions A psychometric function is a plot of the probability of a
signal being detected as a function of signal contrast. For a signal of contrast c, the
probability of detection is usually fit by a sigmoidal function of the form (Nachmias,
1981)

Pr(D2|c) = 1− exp[−(c/α)β] , (14.4)

where D2 indicates that the observer chose in favor of the signal being present, β is
a slope parameter, and α shifts the function relative to the signal contrast. Many
experiments have been found to indicate approximately equal slope parameters
(Mayer and Tyler, 1986).
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14.2.2 Modified ideal-observer models

Given the vast array of anatomical, electrophysiological and psychophysical data
now available to us, many researchers have worked to develop models for all or por-
tions of the visual system. Some models are highly specialized, with the minimum
number of components required to demonstrate the model’s ability to predict data
obtained in a narrow range of psychophysical experiments. Other models are ex-
traordinarily complex, incorporating foveal sampling, a hierarchy of neural stages,
and higher-level signal processing and decision making in an effort to replicate the
entire visual system. We shall focus on models that have been developed for the
specific purpose of objective evaluation of imaging systems for classification tasks.

In Chap. 13, the ideal observer was introduced as the optimal decision maker
for classification tasks as determined by statistical decision theory. The ideal
observer sets the upper bar for classification performance. Statistical-decision-
theoretic models of the human observer thus use the ideal-observer model as a
starting point. We do not need a model with millions of photoreceptors and re-
ceptive fields, so long as the model predicts human data on a range of tasks that
are useful for image assessment. In fact, a simpler model facilitates imaging system
evaluation and optimization over high-dimensional optimization spaces.

The modified-ideal-observer approach to modeling human performance is this:
begin with the concept of the ideal observer; compare performance predictions with
human performance on actual classification tasks; modify the model to better pre-
dict human performance. Modifications to the model should be grounded in the
known features of the visual system described in the previous section.

We therefore require a rigorous basis for comparing observer performance. For
this, we return to the concept of observer efficiency.

Observer efficiency In Chap. 12 we introduced the concept of detective quantum
efficiency as a measure of the SNR transfer characteristics of a detector [cf. (12.23)].
In Chap. 13 we extended this concept to describe the efficiency of the Hotelling ob-
server relative to the ideal observer [cf. (13.273)]. Analogously, we can define the
statistical efficiency of the human observer relative to the ideal observer as

ηhuman =
SNR2

human

SNR2
ideal

. (14.5)

The relative efficiency of any two observers can be similarly defined.5

When human and ideal performance are comparable, the efficiency approaches
one and we conclude that the human observer is able to make almost complete use
of the information in the data to perform the visual task. For efficiencies much less
than one, we can conclude that the human observer is inefficient at extracting the
relevant information in the image for performing the task. When this occurs, we
look for features of the human visual system that might be the basis for the human
observer’s reduced performance.

5Some authors have defined observer efficiency as the ratio of SNRs required by the observers to
perform the task. In this school, human efficiency equals the SNR required by the ideal observer
divided by the SNR required by the human, where SNR is a physical quantity such as contrast;
smaller SNRs denote better performance. We prefer the definition given in (14.5), where SNR
quantifies task performance and high SNR is good!



930 IMAGE QUALITY

Classification in uncorrelated noise As described in Sec. 13.2.13, the definition of
observer efficiency given in (14.5) comes from the basic definition of DQE first
given by Albert Rose (1948) as a means of comparing the noise level of an actual
radiation detector with that of an ideal one. Rose compared the performance of the
eye to an ideal picture pickup device and determined that the minimum contrast
cmin required for detecting a uniform object on a flat background with quantum
noise satisfies

c2minNA = k , (14.6)

where N is the photon density of the uniform background, A is the area of the
object and k is a constant dependent on the observer; from experiments on human
subjects, Rose determined that k is in the range of 3 to 7. A lower value of k implies
a lower cmin and hence a more efficient observer.

Recall from Sec. 13.2.8 that the ideal observer takes on a special form when the
task is the discrimination of two nonrandom signals in additive Gaussian noise. In
this case the ideal observer is equivalent to a prewhitening matched filter (PWMF),
which reduces to a simple matched filter when the noise is white. Lawson (1971)
demonstrated that the Rose model of (14.6) is a special case of the PWMF for a
pillbox signal in Poisson noise of sufficient count rate that the Poisson statistics can
be approximated by Gaussian statistics.

The calculation of the ideal observer’s SNR is straightforward for SKE/BKE
(signal-known-exactly/background-known-exactly) tasks in Gaussian noise and can
be done analytically. For this reason the first comparisons of human performance
to ideal-observer performance were achieved in SKE/BKE tasks in white, or uncor-
related, Gaussian noise. Burgess et al. (1981) found human observers to be highly
efficient (η of 0.5 to 0.8) for SKE/BKE detection and discrimination tasks in white
noise. Human performance is well predicted by an ideal observer that positions a
template over the location of the expected signal and performs a linear summation
of the output. The fact that the efficiency is less than one can be explained by
internal noise (Burgess and Colborne, 1988).

When the signal extent becomes sufficiently large, human detection efficiency
in white noise declines (Burgess et al., 1979). In effect, there is a spatial limit to
the human’s ability to perform the template-matching operation. We might have
expected this from the shape of the CSF of the visual system. Other investiga-
tors have found that the human is unable to efficiently process “DC” information
(Ratliff, 1965; Van Nes and Bouman, 1967). For this reason some investigators
proposed that the PWMF model be modified by adding an “eye filter” (Loo et al.,
1984; Burgess, 1994).

Correlated noise Many experiments have been performed to investigate the impact
of correlated noise on human discrimination performance (Judy, 1981; Guignard,
1982; Burgess, 1985b; Myers et al., 1985; Blackwell, 1998). Of particular interest in
the early 1980s was the character of the noise in computed tomography (CT) images
and its impact on human perception. Raw CT data sets have Poisson noise, which
is uncorrelated. When CT images are reconstructed from the raw data using the
method of filtered backprojection (see Sec. 4.4.3), a filter with a ramp shape in the
frequency domain is used, and the resulting images have a ramp-shaped power spec-
trum at low spatial frequency. Early on, Wagner (1978) hypothesized that human
observers would be inefficient when faced with this noise-correlation structure, and
suggested that a non-prewhitening matched filter model might be a good predictor
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of human performance. Soon after, several studies found that human efficiency rel-
ative to the ideal observer is about 20% in CT noise, much less than the efficiencies
found in white noise (Judy et al., 1981; Burgess et al., 1985b). Myers et al. (1985)
investigated human performance for a family of noise power spectra of the form ρn,
for n = 1, 2, 3, 4, where ρ is spatial frequency. Thus n = 1 corresponds to the CT
case. These studies showed that human efficiency falls rapidly as n increases from
1 to 4.

A natural conclusion to draw from the reduced efficiency of the human ob-
server in tasks limited by correlated noise is that the human observer is indeed
unable to perform the prewhitening operation. For this reason the human observer
was modeled by some investigators as a matched filter without the prewhitening
operation. The efficiency of the human relative to this so-called non-prewhitening
matched filter (NPWMF) was shown to be around 50% (Judy and Swensson, 1985),
with the difference again explainable by internal noise.

Since the NPWMF equals the PWMF in white noise, the NPWMF model pre-
dicts human performance in both correlated and uncorrelated noise. Furthermore,
by combining an eye filter and an internal noise mechanism with the NPWMF, an
even larger body of human psychophysical data can be explained (Ishida et al.,
1984; Loo et al., 1985; Ohara et al., 1986; Giger and Doi, 1987, deBelder et al.,
1971; and Wolf, 1980). This observer is often called the NPWE in the literature,
to denote the addition of an eye filter to the non-prewhitening matched filter; we
shall use this same shorthand below.

The NPWE models the spatial-frequency response of the visual system with
a single spatial-frequency filter. Given the experimental evidence that the human
visual system has multiple narrow spatial-frequency channels, a preferred approach
to modifying the ideal observer is to incorporate this recognized characteristic of
the visual system.

Adding channels to the ideal observer The model of the human visual system as a
matched filter is effectively a model with an infinite number of channels. Yet there is
substantial evidence that the visual system processes images through a finite num-
ber of finite-width channels. Myers and Barrett (1987) introduced a handicapped
ideal observer, constrained to process scenes through frequency-selective channels,
and demonstrated that this modified Bayesian observer ably predicted human per-
formance in correlated noise. They found that this model was robust to the choice
of a channel width parameter. By requiring the lowest-frequency channel to have
a finite turn-on frequency, this model also predicts the inefficient performance of
human observers on tasks that have significant DC content.

Myers and Barrett found the performance predictions of the channelized ideal
observer and the NPWMF to be indistinguishable for the problems they studied
(stationary Gaussian noise, signal known exactly). They argued in favor of the
channelized ideal observer because this model is consistent with a known mecha-
nism of the visual system. Moreover, as we shall see in the following sections, this
model has been found to be predictive of human performance over a much broader
range of signal detection and discrimination tasks.

Random backgrounds The tasks described in the previous section were ones in
which the background was known exactly; the only variation in the data was due
to measurement noise. We now consider tasks in which the data are random due to
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both background variability as well as measurement noise. The noise in the data is
therefore said to have two components.

In Sec. 8.4 we described several approaches for generating random backgrounds,
and in Chap. 13 we discussed model observers for tasks in which the background
is random and known only in a statistical sense. Several investigators have made
use of these methods to study the performance of human observers in random
backgrounds and compare the results to model-observer predictions. Rolland and
Barrett (1992) generated lumpy backgrounds by randomly superimposing Gaus-
sian blobs on a uniform background according to the procedure described in Sec.
8.4.4. For the task of detecting Gaussian signals of known size and location on
the lumpy backgrounds, Rolland and Barrett compared human performance to the
performance of the Hotelling or optimal linear observer defined in Sec. 13.2.12 as
well as the NPWMF. Rolland and Barrett found that the Hotelling observer was a
good predictor of the human performance data. The performance of the NPWMF
was not able to predict human performance over the range of system parameters
investigated in the study.

Yao and Barrett (1992) combined the background model of Rolland and Bar-
rett with power-law noise of the type investigated by Myers et al. (1987) and found
that a channelized Hotelling observer was a good predictor of all the human data
acquired in these experiments (Barrett et al., 1993). Burgess et al. (1994, 1997,
1999) studied human performance in random lumpy backgrounds generated by fil-
tering a Gaussian field. Their results were consistent with the findings of Rolland
and Yao: a Hotelling observer constrained to process the frequency-selective chan-
nels is able to predict the data over the range of experimental parameters describing
the signals and backgrounds. A NPWMF is not predictive, even when modified to
include an eye filter. More recent experiments in power-law backgrounds generated
by filtering a Gaussian random process were less conclusive; the most predictive
model depended on the signal profile in a study by Burgess (2001).

Several studies have been performed to compare human performance to model
observers using real images as backgrounds. In a study using backgrounds drawn
from real x-ray coronary angiograms, Eckstein et al. (1999) found the channelized
Hotelling model to be predictive of human performance in detecting simulated ab-
normalities. Bochud et al. (1995, 1999a, 1999b) studied human performance using
simulated nodules in mammographic and angiographic backgrounds and compared
their results to a non-prewhitening observer with and without an eye filter (a sin-
gle channel). They found that, owing to the nonstationarity of the images, the
models must be allowed to adapt to the statistics of the local background around
the signal in order to better predict human performance. Interestingly, the data
of Bochud et al. (1999b) suggest that the clinical backgrounds have higher-order
statistical properties used by the human observer, although not by the Hotelling
observer. Similarly, Caelli and Moraglia (1986) showed that a cross-correlator does
not predict human performance when the background is a natural scene.

Signals of large spatial extent The inability of human observers to efficiently detect
signals of large spatial extent described in Sec. 14.2.1 has direct ramifications on the
task-based assessment of the quality of images derived from systems with significant
artifact content. For example, the effective point response function (PRF) for im-
ages reconstructed from limited-angle tomographic data can be quite noncompact,
yielding long-range streak artifacts. The images of compact objects are thus quite
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extended and human efficiency for detecting such objects suffers a penalty (Wagner
et al., 1992; Myers et al., 1993). These studies found that human performance
is modeled quite well by an observer that performs only linear operations on the
images. These studies involved signals at random locations, leading to location-
dependent artifacts; the ideal observer is nonlinear in this case if the problem is
cast as a binary signal-detection problem.

A long-tailed PRF can also arise when veiling glare is present in a display
device or gamma rays penetrate the collimator in gamma-ray imaging. Rolland et
al. (1989) has shown that human classification performance is inefficient for images
formed by a system with a long-tailed PRF, consistent with the earlier literature
on the inefficient spatial integration properties of the human. Rolland found that
human performance is improved by linear filtering designed to narrow the overall
system PRF, even though the ideal observer performance is unchanged by image
processing (Sec. 13.2.6), as long as it is invertible.

Texture perception In some special circumstances the human can detect signals of
large spatial extent quite efficiently. An example is the detection of a known grid
of bright lattice points on a noisy background (Wagner et al., 1990a). Another ex-
ample is the detection of mirror symmetry patterns of dots (Barlow, 1978; Barlow
and Reeves, 1979) buried in a background of random dots (Glass patterns). These
results can be explained by an observer who uses the strategy of performing a series
of local template-matching operations, skirting the need for integration over a large
area (Wagner et al., 1989).

A particular form of extended signal is a pattern of a different texture than
the texture of the background in which the signal is embedded. In tasks where such
an extended signal is to be detected, human efficiency can be extremely low. For
example, the detection of a regular grid or lattice of objects, where some randomiza-
tion of the object locations is involved, results in low human efficiency (Wagner et
al., 1990a). Similarly, the detection of random dot patterns (Maloney et al., 1987;
Tapiovaara, 1990) and the detection of diffuse liver disease (Garra et al., 1989)
can also be low-efficiency tasks. While many investigators have considered human
performance in texture discrimination tasks (Julesz, 1981), these studies are rarely
placed in the context of ideal-observer performance. Much more work is needed to
understand human performance in textured tasks on an absolute scale.

Nonlinear tasks While the channelized Hotelling observer has been found to predict
human performance over a wide range of experimental paradigms, that observer is
constrained to perform linear operations on the data. In addition, as the previous
section describes, there are ample examples of psychophysical studies showing low
human efficiency relative to the ideal observer for nonlinear tasks. The question
then arises, can the human do nonlinear operations?

There are many examples of tasks for which human efficiency is fairly high even
though the optimal strategy is nonlinear. One example is the task of noise variance
discrimination, wherein observers are asked to determine which of two scenes has
higher pixel variance. The optimal discrimination strategy is quadratic in the data
as seen in (13.163). In unpublished studies, we found that humans were able to
perform this task quite efficiently. Does this mean the humans are able to do the
computations of (13.163)? Maybe not. It can be shown (Wagner et al., 1990b) that
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a combination of linear and logic operations can approximate this ideal nonlinear
strategy quite efficiently.

Similarly, the detection of 1 of M orthogonal signals in white noise is optimally
performed with a nonlinear strategy [see (13.159)]. However, Nolte and Jaarsma
(1967) showed that a series of linear operations, followed by the nonlinear operation
of selecting the filter with the maximum output, approximates the ideal nonlinear
strategy well over much of the signal parameter space of interest (the range of con-
trasts of use for psychophysical study). Other investigators have also shown that
the “maximum-of” detector gives performance predictions very close to those of the
optimal observer in the SNR ranges of experimental interest (Pelli, 1985; Wagner,
1990b).

Burgess and colleagues (Burgess and Ghandeharian, 1984a, 1984b; Burgess,
1985a) measured human efficiency in studies with signal uncertainty in white noise.
To approximate ideal-observer performance, they computed the performance of an
observer that compared the maximum of a series of matched-filter outputs to a
threshold, following the theory of Nolte and Jaarsma (1967). Human observer per-
formance was well predicted by this model observer, with an efficiency around 50%.
Judy et al. (1997) found little degradation in human performance for the detec-
tion of sharp-edged disks and Gaussian signals when the disk diameter or Gaussian
width was variable, relative to the SKE task.

Since selecting the maximum of a set of outputs from linear filters is a nonlin-
ear or logical operation, we call this model a linear+logic observer. The closeness
of the optimal observer to the linear+logic model may preclude one model being
rejected in favor of the other using psychophysical data.

The field of neural networks sheds some light on the similarity of these mod-
els. A fully connected neural network can be shown to approximate ideal-observer
performance. The neural network applies a series of filters in the form of weights
to each input value, followed by a sigmoidal nonlinearity—a neural network is a
linear+logic observer. As described earlier, there is good evidence that neural re-
sponses in the human visual system can be represented by a set of linear filtering
operations followed by thresholding, and neural networks represent this scheme.
Thus, when the human observer performs nonlinear tasks efficiently, we must be
cautious before concluding the human can perform the optimal higher-order (in the
data) nonlinear operations. It may well be that the human is smartly perform-
ing a series of linear operations, followed by a threshold nonlinearity, to obtain
near-optimal performance.

Optimal processing of channelized data As demonstrated in Fig. 14.2, the addition
of a channel mechanism to a model observer can be visualized by adding a block
to the processing steps shown in Fig. 13.1. In the figure we suppose there are P
channels, each represented by the column vector up. The output of the channels is
given by

v = Utg , (14.7)

where U is the M × P matrix whose columns are the channel profiles up, and v is
the P×1 vector of channel outputs. The up represent the channel profiles, which we
assume to be real. Processing the images through channels reduces the dimension-
ality of the data set from M to P. Possible choices for channel profiles are presented
below. In some applications, P can be as small as 3.
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Each channel output vp is a random variable, made random by measurement
noise and object variability—whatever sources of randomness are in the raw data.
The probability density of each channel output is obtained using the methods for
transforming random vectors presented in Sec. 8.1.5. Life is usually simpler, though,
because in most models each channel output is the sum of multiple data values; the
central-limit theorem tells us that the resulting random variable tends to be Gaus-
sian distributed in that case.

Fig. 14.2 Block diagram of a channelized observer.

Given the {vp}, a strategy must be defined by which the channel outputs
are combined to arrive at a decision that a stimulus either is or is not present.
Possible options include adding the responses of the channels or using only the
channel with the maximum response (Graham and Nachmias, 1971). Alternatively,
the channel outputs may be combined via probability summation (Pirenne, 1943).
Pirenne conjectured that binocular vision yields lower detection thresholds than
monocular vision because the probabilities of detection from the left and right eyes
are independent, and signals are detected if they are detected by the right eye, the
left eye, or both. Formally, he suggested that the probability of detecting a signal
using both eyes is

Pr(D|L+R) = 1− [1− Pr(D|L)][1− Pr(D|R)] , (14.8)

where Pr(D|L) and Pr(D|R) are the probabilities of detecting the stimulus with the
left and right eyes, respectively. While probability summation has been rejected as
an explanation for the relative performance of binocular to monocular vision, it is
encountered in some vision-system models as a means of combining the outputs
of parallel channels (Daly, 1993). Combinations of differences in channels at each
location/pixel have also been suggested (Lubin, 1993; Lloyd and Beaton, 1990;
Zetzsche and Hauske, 1989). In some channel models, the sigmoidal form of (14.4)
is imposed on the outputs of the frequency- and orientation-selective filters at each
location (Legge and Foley, 1980) before the decision-making step.

Optimal methods for combining channel outputs The human observer can also be
modeled as a quasi-ideal observer, that is, an observer who is constrained to process
visual scenery through channels, but who is otherwise optimal in how the channel
outputs are used to perform the task. If the human is modeled as a channelized
ideal obsever, the model will achieve maximal AUC among all observers constrained
to process data through the visual channels. A channelized ideal observer forms the
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likelihood ratio of the channel outputs under each hypothesis, giving

Λ(v) =
pr(v|H2)

pr(v|H1)
. (14.9)

The model observer’s decision strategy is to compare Λ(v) to a threshold, choosing
H2 when Λ(v) is greater than this value, and H1 otherwise. As detailed in Chap. 13,
the ROC curve and related performance measures for the channelized ideal observer
can be determined using (14.9) as a starting point.

Alternatively, a channelized Hotelling observer (CHO) model might be invoked,
thereby assuming that the human observer forms an optimal linear combination
of the channel outputs. As described in Sec. 13.2.12, there is a well-established
theory for determining the optimal linear combination of the channel outputs and
the resulting CHO figure of merit using the statistical properties of the channel
outputs. For a binary discrimination task, the Hotelling observer’s template in the
channel space is given by

wHot,v = S−1
2v∆v , (14.10)

where S2v is the P×P intraclass scatter matrix of the channel outputs [cf. (13.187)]
and ∆v is the expected difference in the channel outputs under each hypothesis.

The separability of the data in channel space is written in terms of the interclass
and intraclass scatter matrices for v:

Jv = tr[S−1
2v S1v] = tr[(U†S2gU)−1(U†S1gU)] , (14.11)

where S1v is the interclass scatter matrix of the channel outputs [cf. (13.186)].
While (14.7) has the form of the linear transformation given in (14.10), including a
dimensionality reduction, these expressions differ significantly because transforma-
tion using the matrix of visual channel functions U may result in the separability of
the channel outputs being less than the separability of the data, while the operation
of (14.10) generates a test statistic that preserves the separability in the channel
outputs.

When the channel outputs are Gaussian random variables with equal covari-
ance under the hypotheses, the channelized Hotelling observer and the channelized
ideal observer are equivalent. In Sec. 14.3 we shall discuss methods for computing
performance measures for channelized model observers.

Channel choices The nature of the signal and the background play a significant role
in determining an appropriate choice for the channel profiles {up} and the way they
are imposed on the data. For example, in an SKE task the channels are centered
at the known signal location and the sum represented by (14.7) is done. If, on
the other hand, the signal can be located at N multiple orthogonal locations, the
channels could be centered at each location to give an N × P vector of outputs for
decision-making purposes. When the signals and background are rotationally sym-
metric, the channels do not require any angular dependence; orientation-dependent
signals and backgrounds require channels with orientation-selective responses.

The channelized ideal-observer model of Myers and Barrett (1987) incorpo-
rated radially concentric channels to predict human performance in correlated noise.
The model’s predictive ability was found to be insensitive to channel width and low-
frequency turn-on parameters for the tasks considered in that work. The simplicity
of this channel structure was possible because the task was the detection of radially
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symmetric signals at known locations. Because the signals were low contrast and
the image noise was a filtered Gaussian random process, the model was equivalent
to a channelized Hotelling observer.

More complex tasks involving asymmetric signals at varying locations may
require more complex channel models. A variety of approaches for representation
of channel mechanisms have been pursued by the developers of models of the vi-
sual system; these approaches can be incorporated into a CHO framework. Models
based on Gabor functions (Daugman, 1988; Lloyd and Beaton, 1990; Watson, 1987)
and wavelets (Daugman, 1985; Mallat, 1989; Marcelja, 1980; Watson, 1983) can be
made to have both spatial and location specificity. Other options include ratio-of-
Gaussian channels (Zetzsche and Hauske, 1989) and difference-of-Gaussian (DOG)
models (Wilson and Bergen, 1979). Difference-of-mesa (DOM) filters can be used
to model radial-frequency filters as well (Daly, 1993). “Mesa” is Spanish for table;
a difference of two mesa functions gives a filter with a flat passband, a transition
region, and a flat no-pass band. To give radial-frequency filters orientation selectiv-
ity, they can be multiplied by a set of functions tuned to orientation. For example,
Daly uses what he calls fan filters to model the orientation-selective response. The
product of the DOM and fan filters are termed cortex filters.

Once a selection has been made of the functions to be used to create a family
of channels tuned to an array of orientations and frequencies, the next question is
the number of such channels to include in the model. Many studies have indicated
that only a fairly small number of channels is required for adequate modeling of
human data. Myers and Barrett (1987) found good agreement between human data
and CHO predictions with about 6 radial channels. The Daly visual-difference pre-
dictor model, designed to predict human performance for JND tasks (Sec. 14.1.3),
uses only 6 DOM filters, combined with as few as 6 fan filters (30 degrees each),
leading to 31 cortex filters in all [(# of fans) × (# of DOMs −1) + 1], since the
lowest frequency filter has no orientation specificity). Wilson and Gelb (1984) also
suggested the use of 6 spatial-frequency selective DOG filters, each with a range of
orientations. There seems to be reasonable consensus that only about 6 channels
are needed to cover frequency space; adding about 6 orientation-specific channels
to each frequency-selective filter gives a complete model.

Internal noise To achieve even better matching between CHO and human data, the
internal noise of the visual system must also be addressed. One way to account for
internal noise is to scale the detectability of the human observer to that of the model
observer (Burgess et al., 1997; Burgess, 1999), giving SNRhuman = κSNRmodel,
where κ represents the impact of internal noise on detectability. From (14.5) it can
be seen that the scaling factor is related to observer efficiency according to η = κ2.

Another approach is to add noise injectors to the channel model, as shown in
Fig. 14.3, giving a modified definition of the channel outputs of (14.7):

vp = u†
p g+ εp , (14.12)

where εp is an additive Gaussian noise contribution in channel p (Legge and Foley,
1980).

For a channelized linear observer, (14.12) is equivalent to adding noise to
the decision variable (Abbey and Bochud, 2000). In particular, the channelized
Hotelling observer forms the scalar test statistic t according to

t = wt
Hotv = wt

Hot[U
tg+ ε] = ṽ + ε̃ , (14.13)
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where the tildes represent the transformation to the decision-variable space. Both ṽ
and ε̃ are scalar random variables, and both can usually be assumed to be Gaussian.
The point of (14.13) is that a single Gaussian-noise injector at the decision variable
level can model additive internal noise.

Observer uncertainty acts as a source of internal noise. It might be expected
that observer uncertainty about parameters of the signal would result in a signal-
dependent noise contribution, or a channel-dependent noise contribution. For ex-
ample, one might hypothesize that the magnitude of a matched-filter’s template un-
certainty would depend on actual signal size, which would result in signal-dependent
internal noise. However, Eckstein et al. (2000a) note that signal uncertainty is most
often modeled as statistically independent of the signal.

Fig. 14.3 Block diagram of a channelized observer including an internal noise
mechanism.

Observer efficiency revisited The efficiency of the human observer relative to any
model observer can be defined via (14.5). Choices for the denominator include the
full ideal observer, the PWMF in SKE/BKE tasks in Gaussian noise, the NPWMF
in SKE tasks, and the channelized Hotelling observer. A growing volume of psy-
chophysical data, combined with model-observer calculations, is establishing the
channelized Hotelling observer as an excellent predictor of human classification per-
formance over a wide range of experimental paradigms, including ones in which the
PWMF and NPWMF models are far less able to predict human performance. For
this reason the remainder of this section will emphasize human efficiency relative to
the CHO and review some of the many additional studies that have demonstrated
the predictive capacity of the CHO model.

CHO success stories Many of the first comparisons of Hotelling and human per-
formance involved the assessment of image quality in nuclear medicine. Fiete et
al. (1987) investigated human performance in detecting simulated lesions in simu-
lated liver scans and found excellent correlation with the Hotelling observer. Cargill
(1989) used a more elaborate simulation for nuclear medicine, involving the detec-
tion of abnormalities in simulated images of a computer-generated 3D model of the
liver with several possible disease states. She found excellent correlation between
human performance and Hotelling predictions of image quality for 9 different colli-
mator designs.

The CHO has also been shown to correlate well with human performance in
the assessment of acquisition systems and reconstruction algorithms in tomographic
imaging. Abbey and Barrett (1995) found good agreement between the human and
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CHO across a range of linear iterative reconstruction algorithm parameters. Gif-
ford et al. (1999, 2000a) used human and model observers to evaluate the impact
of detector-response compensation on tumor detection in SPECT.

Acceptable levels of lossy image compression have been hotly debated for years.
When the compressed images will be used by human observers, the evaluation of
the compression algorithms must involve the assessment of the impact of the com-
pression on human performance. Observer models can play a significant role in the
evaluation of the large number of potential compression algorithms and the many
parameters defined by each, provided the model observer predicts human perfor-
mance. Eckstein et al. (1999) found the CHO and the NPWE to correlate well with
human observer performance in the evaluation of image-compression algorithm set-
tings. Based on this fact these investigators used a model observer to optimize
the quantization parameters of the JPEG algorithm (Eckstein et al., 2000b); the
optimized parameter settings were then validated by psychophysical determination
of improved human performance.

Human observers are known to be adaptive to noise level and image content,
among other things. The CHO is also adaptive, with a decision strategy that
changes when the signal or noise characteristics of the images are altered. Rolland
and Barrett (1992) demonstrated that the adaptation of the human observer can
be predicted by the CHO. In nuclear medicine, increasing exposure time shifts the
dominant source of variability in the data from quantum noise toward the contri-
bution from object variability. Rolland showed that human detection performance
improves as exposure time increases, providing evidence of the human’s ability to
incorporate improved quantum statistics into its decision strategy. Similarly, the
Hotelling observer’s performance increases with increasing exposure. The correla-
tion between the CHO predictions and the human data was extremely high, over
several decades of observer performance. Conversely, the NPWMF strategy is not
adaptive; the NPWMF applies a template determined by the difference of the sig-
nals under each hypothesis without regard for the character of the background. This
observer’s performance saturates as exposure time increases, failing to predict the
performance of the human observer. No nonadaptive model could possibly predict
human performance in this study.

A number of studies have extended the body of knowledge regarding CHO
performance in random backgrounds. In addition to the work involving lumpy
backgrounds of Rolland, Yao and Burgess discussed previously, it has been shown
that the CHO correlates well with human performance in the presence of anatomical
backgrounds (Eckstein and Whiting, 1995). Abbey and Barrett (2001) measured
human-observer performance in several SKE tasks to investigate the effects of reg-
ularization and object variability in tomographic image reconstructions. Across a
range of experiments that investigated parameters determining the signal profile,
exposure time, and data covariance, the channelized-Hotelling observer was most
able to predict the array of human data.

Abbey et al. (1999) give an elegant theoretical derivation of an unbiased pro-
cedure for determining the template of a linear observer for a detection task. The
only inputs to the procedure are the images presented to the observer on each
trial and the observer’s decision as to which image was deemed “signal-present.”
The procedure requires the means and covariances of the data under each hypoth-
esis. While the template-estimation procedure is applicable to any linear observer,
Abbey et al. made use of the procedure for estimating the templates of human
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observers and comparing them to the templates of model observers. Edwards et al.
(2000) extended the template-estimation procedure to the case where the noise is a
mixture distribution of Gaussians. Recently, Abbey and Eckstein (2001) suggested
the use of Bayesian template-estimation methods; the reduction in variance ob-
tained through these methods may outweigh the small bias that also results. These
template-estimation methods are pointing the way toward a better understanding
of the human-observer’s decision strategy. Perhaps in the future they may even find
use in the development of improved methods for computer-aided diagnosis (CAD).

14.2.3 Psychophysical methods for image evaluation

Psychophysical methods are used to measure human-observer performance and as-
sess diagnostic accuracy. In this section we shall review the history of the devel-
opment of ROC methodology as a tool for understanding the visual system and
assessing imaging technologies. We shall then describe methods for the conduct of
psychophysical studies.6

Early applications of ROC analysis ROC techniques were initially developed during
World War II for analyzing the performance of radar systems for detecting aircraft.
One of the earliest applications of psychophysical methods to a medical applica-
tion was the work of Garland (1949), who investigated the diagnostic accuracy of
roentgenographic and photofluorographic techniques and presented some of the ear-
liest evidence of reader error and variability. The cross-fertilization that brought
ROC methods to visual science was greatly facilitated when W. P. Tanner, a grad-
uate student in psychology at the University of Michigan, was assigned a desk in
the office of T. G. Birdsall, one of the early pioneers of ROC methods (Cohn, 1993).
In 1954, Tanner and J. A. Swets, also of the University of Michigan, published a
seminal paper in which statistical decision theory was first applied to the study
of visual performance, even including a section entitled, “A new theory of visual
detection.” This paper demonstrated that the core principles of statistical decision
theory were applicable to observer performance. Most notably, the mathematical
model of Fig. 13.4 is applicable to human decision variables, and human observers
can control their decision criterion and manipulate it in response to information re-
garding the prior probability of each hypothesis and the decision costs. The paper
presented data collected by yes-no and forced-choice experiments and showed them
to be consistent.

It took some time for the perception community to relinquish the theory of an
absolute detection threshold for “seeing.” In 1963, Nachmias and Steinman pub-
lished an ROC study meant to determine whether humans have a decision criterion
that could be altered by directives from the investigator. The paper concluded
that the data supported the variable-criterion hypothesis, but did not rule out the
absolute-threshold theory entirely. Finally, in 1969, Kratz published an analysis of
the Nachmias and Steinman data that concluded that the absolute-threshold theory
could be rejected.

6We gratefully acknowledge the presentation materials made available to us by Charles Metz for
use in writing this section.
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While the variable-threshold theory was being established, Swets and his col-
leagues were working with great gusto at extending the use of statistical decision
theory to the study of decision processes in perception (Swets et al., 1961; Swets,
1964; Green and Swets, 1966). Another mathematical psychologist at the University
of Michigan, D. D. Dorfman, and his colleague E. Alf, Jr. published a maximum-
likelihood method for estimating ROC curve parameters and determining confidence
intervals (1968, 1969). In the same timeframe, L. Lusted became the first investiga-
tor to apply ROC methods to medicine in general and medical imaging in particular
(1968, 1971). Also, in 1960, the First Freiburg Conference on the Neurophysiology
and Psychophysics of the Visual System was held, creating a forum for the move-
ment toward combining and correlating information about the visual system derived
from electrophysiological investigation with that derived using ROC methods (Jung
and Kornhumber, 1961). This was a time of tremendous growth in methodology
and accumulation of data in visual science.

The next decade saw a shift in the center of the ROC universe from the Univer-
sity of Michigan to the University of Chicago, where ROC analysis was applied to a
variety of problems in medical imaging. Metz et al. demonstrated the relationship
between ROC analysis and Shannon’s information theory (1973) and published a
tutorial on the basic principles of ROC analysis for a medical imaging audience
(1978). Goodenough (1975) made use of an L-alternative forced-choice paradigm.
Starr et al. (1975) investigated the detectability of low-contrast disks and spheres
on uniform backgrounds in radiography. The early work of Starr et al. was one of
the first of a set of studies that together demonstrated the limitations of using sin-
gle measures of imaging system performance like resolution as a measure of image
quality. It was also one of the first investigations of the effect of search-region size
on ROC curves.

In the 1980s, the advent of relatively inexpensive, fast computers enabled the
development and dissemination of free software for curve-fitting of ROC data, mak-
ing ROC analysis much more widely utilized for image evaluation.7 Software for
statistical testing also became available. There is now a wide variety of free pack-
ages available for the analysis of data acquired under a variety of experimental
paradigms and providing an assortment of possible model fits, as well as the statis-
tical comparison of results across imaging systems, observers, and tasks.

The last decade has seen continued development of numerical tools for the
analysis of ROC data, the generalization of ROC methods to more complex and
clinically relevant tasks, and a significant increase in the utilization of ROC-based
methods for studies of image evaluation and observer performance. In the next
sections we shall describe in more detail how ROC experiments are designed and
performed and the methods for data analysis that are available to investigators to-
day. Our purpose is not to provide a complete “how-to” manual, but rather to give
an idea of the many options available to the investigator and the relevant literature
where more specific experimental and analytical tools can be found.

The yes-no experiment A single point on an ROC curve can be determined for a
given observer on a given binary-classification task using a simple “yes-no” exper-
iment. In each experiment, an observer is presented with a set of images one at a

7Some twenty years later, the number of registered users of the free Metz software package is close
to 4000!
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time, and the observer responds either “yes – the signal is present” or “no – the sig-
nal is absent.” (More generally, “yes – class 2 is true” or “no – class 2 is not true.”)
By tabulating the fraction of true and false responses at the end of the experiment,
a single point on the ROC curve is determined. By instructing the observer to use
a different mindset on each of a set of yes-no experiments, a set of points on the
ROC curve is found, as depicted in Fig. 13.5. The finer the curve desired, the more
yes-no experiments that must be performed.

Rating-scale approach Swets et al. (1961) showed that a single rating-scale experi-
ment gives equivalent ROC estimates to that obtained via the inefficient process of
repeated yes-no experiments. The rating-scale approach involves the presentation
of single images to the observer at a time, with each image presentation referred
to as a “trial.” The data collected on each trial is the observer’s certainty that the
image belongs to class 2. Table 14.1 gives an example rating scale.

There are many variations on this theme. At one extreme, class 2 can be de-
fined by the presence of an exactly-specified object at an exact location, while at
the other extreme it can encompass the presence of any pathology of any kind, with
the range of object variability in the middle ground. The number of rating levels
can be as few as 5, although 6 or 7 is more commonly encountered, or the experi-
ment can use a continuous rating scale. The use of a continuous rating scale, first
advocated by Rockette et al. (1992) and validated by King et al. (1993), allows for
finer distinctions of certainty levels by the observer, and a smaller chance of degen-
erate data (where the cells of the rating scale are not fairly evenly distributed with
responses) in the analysis stage (Wagner et al., 2001). However, some investigators
shy away from this method because of a concern that diligent observers will find
it difficult to report their rating so finely, and the concern that the intra-observer
variability will be increased (the likelihood that the observer will rate the same case
at the same level on two independent trials will be infinitely small).

A current controversy is the use of action scales like the BI-RADS scale (ACR,
1998) for classification of mammographic images. Action scales incorporate patient
management as well as the reader’s level of suspicion. Some investigators have rec-
ommended that a pure probability-of-disease rating be acquired in addition to an
action rating to avoid the bias that can occur when using an action rating alone for
ROC purposes.

Table 14.1 Example rating scale

Rating Description of certainty level

1 Object is definitely a member of class 1

2 Object is likely to belong to class 1

3 Object is equally likely to belong to class 1 or class 2

4 Object is likely to belong to class 2

5 Object is definitely a member of class 2
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Relationship to contrast-detail (CD) diagrams An early paradigm for image assess-
ment was the contrast-detail approach. In this method the observer is shown an
image containing multiple signals with a range of contrasts and sizes. The observer
reports the smallest detectable signal at each contrast. A plot of the detection-
contrast versus size (detail) is then generated. When a set of CD diagrams are
plotted as a function of exposure or dose, it is termed a CDD diagram (Cohen et
al., 1981).

There are several difficulties with the CD-diagram approach. One is that the
approach is subjective because it does not control for the observer’s variable deci-
sion criterion; different observers can be lax or strict in their judgment and even the
same observer’s criterion for “seeing” the signal can vary. Also, there is no ability to
correct for “wishful thinking” on the part of the observer, and without signal-absent
locations there is no ability to determine the trade-off with false-positive responses.
Thus, while the CD-diagram approach is routinely used as a quality-assurance pro-
tocol in many imaging applications, it is not recommended as a quantitative tool
in the assessment of imaging systems unless the aforementioned concerns are ad-
dressed in the study.

The CD-diagram can be of use when machine observers are used in place of
humans. Then the observer’s threshold can be set to a fixed level, and the algo-
rithm can be forced to evaluate both signal-present and signal-absent locations.
Chakraborty and Eckert (1995) have developed a procedure for the machine evalu-
ation of phantom images for use in the evaluation of image quality.

Forced-choice experiments We first encountered the forced-choice (FC) experimen-
tal paradigm in Sec. 13.2.5. In a forced-choice experiment, an observer is forced
to make a decision in favor of one of the alternative hypotheses. In the binary-
classification task, a pair of images is presented to the observer, either at the
same time or sequentially, one from class 1 and the other from class 2. The or-
der/placement of the images is randomized, and usually there is no restriction on
viewing time. The observer must decide which alternative belongs to class 2. As
derived in Sec. 13.2.5, the percentage of correct responses in a two-alternative forced
choice (2AFC) experiment equals the area under the ROC curve. We shall have
more to say on this when we discuss the analysis of forced-choice data in Sec. 14.2.4.

The generalization of the FC paradigm to the L-alternative task requires the
observer to state which of L-alternative signals is present in a signal-present image,
or which of L regions contains a specified signal, for example.

Generalized ROC methods In a classic ROC experiment designed to evaluate an
SKE binary classification task, the observer records a single rating on each trial de-
scribing his or her certainty that the image belongs to class 1 or class 2 (see Table
14.1). The application of this experimental paradigm to more realistic problems
in which the signal is not known exactly is problematic. When there are multiple
possible signals, or multiple locations, a single probability score does not capture
all the data available from the observer. Most notably, the observer may indicate
a high certainty that a signal is present in a signal-present image, but in fact the
observer may have missed the true signal and be responding to a noise-only location
that is perceived to be signal. Without requiring the observer to provide location
data along with the probability rankings, there is no ability to correct for this effect.
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An alternative is to require the observer to point to the signal that is detected
on an image, and rate the probability that it is there. A localization ROC (LROC)
curve is a plot of the actually positive images detected with the lesion correctly lo-
calized vs. the fraction of actually negative images falsely called positive (Swensson,
1996). The x axis of an LROC curve is thus the same as in a conventional ROC
plot. On each image there is either a single signal at an unknown location or there
is no lesion. An example LROC curve is shown in Fig. 14.4.

Fig. 14.4 An example LROC curve.

Free-response ROC curves (FROC) were introduced by Bunch et al. (1978)
to enable the detection-and-localization analysis of images with an arbitrary num-
ber of signals. An FROC curve is a plot of the fraction of lesions detected vs. the
average number of false-positive detections per image. FROC curves are often used
in the assessment of CAD algorithms, where the number of false positives can be
high. An example FROC curve is shown in Fig. 14.5

Fig. 14.5 An example FROC curve.

The alternative free-response ROC or AFROC curve is a plot of the fraction
of lesions detected vs. the fraction of actually negative images falsely called positive
(Chakraborty and Winter, 1990). An actually negative image is included in the
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fraction of those called positive whenever one or more false-positive locations are
identified on it. The x axis of an AFROC curve is similar to the x axis of ROC and
LROC curves, only now the ability to mark more than one location on an image is
allowed. An example AFROC curve is shown in Fig. 14.6.

Fig. 14.6 An example AFROC curve.

14.2.4 Estimation of figures of merit

Once the experimental procedure has been run and the observer-response data
have been collected, the question arises as to how best to analyze the data. In this
section we shall describe methods for the analysis of ROC and related data, and
the estimation of figures of merit for summarizing image quality for classification
tasks.

Analysis of conventional ROC data The foundation for the analysis of ROC-like
data is the analysis of conventional rating data. The simplest approach to the gen-
eration of an ROC curve from rating data is to determine the number of true- and
false-positive responses associated with each rating level. For a rating scale with N
levels, this will give a graph with N − 1 TPF-FPF pairs, plus the (0, 0) and (1, 1)
anchors for the plot. An empirical ROC curve is obtained by “connecting the dots”
to generate a stairstep plot consisting of vertical and horizontal line segments ob-
tained by adding true and positive responses to the curve as a threshold is swept
across the response data. For continuous rating data, the AUC estimate obtained
by integrating the area under an empirical ROC curve is a Wilcoxon statistic (Bam-
ber, 1975).

When the number of rating levels is small, the empirical ROC curve will be
jagged, but a fitting approach can yield a smooth estimate of the curve. However,
the assumptions of conventional least-squares curve fitting are invalid, owing to the
joint dependence of the ratings on the observer’s mindset (Metz, 1986a). Hence a
maximum-likelihood estimation procedure must be used instead. Dorfman and Alf
(1968) published the first ML solution to the analysis of rating data.

The most widely used ML method assumes that the data underlying the rat-
ings take on a parametric form with adjustable parameters under each hypothesis.
Fig. 13.4 helps to make this concept more concrete: the fitting procedure assumes
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the distributions for the decision variable conditioned on each hypothesis take on a
particular form, most commonly a Gaussian, and the goal of the estimation proce-
dure is to estimate the parameters of the two distributions given the rating data.
The assumption that the two distributions are Gaussians is the so-called binormal
model (Swets et al., 1961). The binormal model does not limit the decision-variable
data to Gaussian distributions; all that is required is that the data obtained under
each hypothesis be transformable to Gaussian distributed random variables by the
same unknown transformation.

The binormal model yields an estimated ROC curve with a straight-line plot
on double-probability paper; the axes are given by the normal deviates zTPF and
zFPF [cf. (13.15)]. The conventional ML procedure estimates the slope and inter-
cept of this line, which can be related to the difference in means and the ratio of the
variances of the two underlying distributions (Dorfman and Alf, 1969). Methods for
obtaining ML binormal fits to ROC curves are also available for continuous rating
data (Metz et al., 1998b).

A large number of experiments have demonstrated the validity of the binor-
mal model (Swets, 1986; Metz, 2000). Hanley (1988) has shown that ROC curves
obtained from ML parameter fits to a variety of non-Gaussian distribution mod-
els, including binomial, Poisson, gamma, χ2, rectangular, and triangular forms, are
indistinguishable from the Gaussian-based curve, provided the number of data sam-
ples is large. Nevertheless, the standard binormal model can result in fitted ROC
curves that cross the chance line and have a slope that does not decrease mono-
tonically as the FPF increases (Berbaum et al., 1990). These so-called “improper”
ROC curves can be obtained from the standard binormal model when the num-
ber of cases is low, the data scale is discrete, or the operating points are not well
distributed (degenerate data). To avoid this outcome, the “proper” ROC analysis
was introduced by Dorfman et al. (1996). Proper ROC curves are constrained from
crossing the chance line. Proper models based on bigamma distributions (Dorfman
et al., 1996) and binormal distributions (Pan and Metz, 1997; Metz and Pan, 1999)
have been investigated. The proper binormal model transforms the data by form-
ing the likelihood ratio associated with the two underlying normal distributions;
the result is an ROC curve with a monotonically decreasing slope. An objection to
this procedure is that the calculation of the likelihood ratio is not something that
the actual observer under test is hypothesized to do. Rather, it is an additional
transformation applied to the observer data and thus may not be representative of
the observer to which the ROC curve applies.

An alternative fitting approach for ROC rating data is the “contaminated”
binormal model (Dorfman et al., 2000a). This model assumes the distribution of
decision variables is the bimodal sum of two Gaussians under the signal-present al-
ternative (Dorfman and Berbaum, 2000b). The model has been found to be useful
in the analysis of data with small false-positive fractions and to give results very
similar to those of the standard binormal fitting procedure for nondegenerate data
(Dorfman and Berbaum, 2000c).

Analysis of forced-choice data We described the 2AFC experiment mathematically
in Sec. 13.2.5 as one in which the observer is presented with two images g and g′,
where g is drawn from pr(g|H1) and g′ is drawn from pr(g|H2). The images are
presented simultaneously in different spatial locations or separately in time at the
same location. The assignment of the two underlying sources of images to the two
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presentation locations is randomized. The observer’s task is to choose the image
from class 2. To make the decision, the observer computes two test statistics T (g)
and T (g′), and the data vector that gives the higher value is assigned to H2. This
assignment is correct if T (g′) > T (g). By (13.39), the probability of a correct
decision on any trial is AUC. Viewed this way, AUC is a criterion-free parameter-
free distribution-independent figure of merit for a classification task (Massof and
Emmel, 1987).

To estimate AUC from a forced-choice experiment, the percentage of correct
decisions over a large number of trials is determined. To keep score of the number
of correct responses, let ni take on the value 1 for a correct response on trial i and
0 for an incorrect response. Mathematically, ni = step[T (g′

i) > T (gi)], where the
subscript i denotes the ith trial. Thus ni is a Bernoulli random variable (see Sec.
C.6.1). Over N trials, the AUC estimate is the proportion of correct responses
(PC):

ÂUC = PC =
1

N

N∑

i=1

ni . (14.14)

If we assume the response variables are independent from trial to trial, (14.14) is
the sum of N i.i.d. Bernoulli random variables. From (C.159) we know that the
summand must be a binomial random variable with parameters N and the true
AUC. It is well known that (14.14) is an unbiased ML estimate of AUC.

The early work of Tanner and Swets (1954) demonstrated the consistency of
data collected in yes-no and forced-choice experiments. While an FC experiment
yields an estimate of AUC, it has the disadvantage of not providing any informa-
tion regarding the shape of the underlying ROC curve. Burgess (1985b) compared
ROC and FC experimental methods and concluded that ROC methods make more
efficient use of the available images, giving AUC estimates with lower variance,
while FC methods make more efficient use of observer time. In an effort to make
more efficient use of the available images, some experimenters use a multiple-pass
paradigm in which different images from each hypothesis are paired for presentation
in each pass. It can be shown that the full ROC curve can be obtained in the limit
of every image being paired with every other. Note that the response variables are
no longer independent Bernoulli random variables in this case.

Analysis of generalized-ROC experiments The primary advantage of the generalized-
ROC approaches described above is their applicability to tasks in which signal un-
certainty, usually location uncertainty, plays a key role. Many advances have been
made in the last decade toward the development of robust procedures for the anal-
ysis of generalized ROC data from LROC, FROC, and AFROC experiments.

Maximum-likelihood methods have been introduced for the fitting of LROC
data (Swensson, 1996). An ROC curve can be obtained from LROC data. Swensson
(1996) gives the following relationship between the area under the ROC curve and
the area under the LROC curve: ALROC = 0.5(AUC+ 1).

ML analysis tools for FROC data have been introduced by Chakraborty (1989).
The procedure assumes that the underlying signal and noise distributions are Gaus-
sians and the number of false-positive responses per image follows a Poisson dis-
tribution. The assumptions underlying the analysis of FROC and AFROC are de-
tailed and their validity argued thoroughly in a recent book chapter by Chakraborty
(2000), who also suggests that the FROC analysis gives estimates of system perfor-
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mance with greater statistical power than those obtained using conventional ROC
analysis.

While the use of localization brings a significant degree of reality to the task,
compared to the classical ROC experimental design, there is also the added require-
ment for deciding what region around a signal will be considered a “true-positive”
response in the analysis. The choice for this tolerance is arbitrary; yet it has ramifi-
cations on the results of the data analysis. There is yet no consensus on the appro-
priate localization tolerance to use in the analysis of LROC, FROC, and AFROC
experiments.

There are few resources for the analysis of more complex experiments involv-
ing multiple hypotheses. Kijewski et al. (1989) developed an analysis procedure
for determining the parameters specifying ROC curves between all pairs of classes
in an L-class problem given ratings of the multiple alternatives. Still needed is a
practical method for the analysis of multi-alternative tasks using ROC analysis.

Summary measures Once a satisfactory fit to the ROC rating data has been ob-
tained, summary measures of performance can be derived. Global measures of
system performance include the AUC, the detectability measure dA obtained from
AUC via (13.21), or the parameters of the binormal model. If it is known that a
certain operating point on the ROC curve is more significant for the intended use of
the system than others, a local measure of performance might be reported at that
operating point; that is, the TPF at a given FPF or the FPF at a given TPF might
be reported. Partial area measures giving either the area to the right or below the
ROC curve from a specified operating point give a regional measure of performance
(McClish, 1989). Jiang et al. (1996) provided an extension to partial-area index
analyses for systems with high AUC. Finally, if sufficient information is available
regarding the cost and benefit of decisions is known, these can be reported at the
optimal operating point, or a full cost/benefit curve can be reported and summa-
rized. There are many open questions regarding the best approach to summarizing
performance. The AUC is the most widely used figure of merit today.

The ML theorem of (13.378) enables us to say something about the ML es-
timates of other performance measures based on the ML estimate of AUC. For

example, an ML estimate of the observer SNR can be derived from ÂUCML by
inverting (13.20). An ML estimate of the observer’s squared SNR can be obtained
by similar reasoning and used in an ML estimation of observer efficiency.

When more than one observer has participated in an ROC study, there are
two options for deriving an overall figure of merit. The first is to derive estimates of
the binormal model parameters for each observer and average the parameters. The
second is to pool the rating data and then perform the ML estimation procedure.
Metz (1986b) has discussed the advantages and disadvantages of these alternatives.
When multiple observers are used in the evaluation of multiple imaging systems,
correlations in the data result. Tools for the analysis of multiple-reader, multiple-
case experiments are discussed below.

Error analysis and the comparison of imaging performance When a measure of imag-
ing performance is obtained, it is natural to ask how large the error bars are about
that estimate. Moreover, when two imaging systems are being compared, we seek
methods for determining the significance of the difference between figures of merit
for the competing systems. In Sec. 13.1.1 we discussed a number of drawbacks to
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the use of statistical tests of the null hypothesis. These same drawbacks are equally
applicable to tests of the null hypothesis using estimated figures of merit for imaging
systems.

In his 1920s work on estimation, R. A. Fisher (see Sec. 13.3.6) set the stage
for randomized clinical trials by discussing randomized experiments in agricultural
research. The analysis of independent imaging modalities was firmly established
in the late 1970s, when the National Cancer Institute funded a contract to J. A.
Swets and R. A. Pickett of Bolt, Beranek and Newman to develop methods for
the assessment of diagnostic technologies. The outcome was a landmark text that
presented computer code for the analysis of ROC data, including an analysis of the
error in the the estimate of AUC for a single modality (1982).

Soon after, Metz and Kronman (1980) and Hanley and McNeil (1982) proposed
methods for the comparison of ROC curves for which the data were assumed to be
independent. In 1983, Hanley and McNeil extended their work to the situation
where the data were obtained from the same set of patients. In 1984, Metz et al.
provided a method for analyzing differences between ROC curves measured from
correlated data. Differences could be given in terms of the difference in AUC, the
TPF at a specified FPF, or the parameters of the standard binormal model. Non-
parametric methods for comparing the areas under correlated ROC curves based on
Wilcoxon statistics have been presented by DeLong et al. (1988) and Campbell et
al. (1988). These early methods for estimating the uncertainty in AUC and com-
paring ROC curves took into account the variability in the data resulting from the
measurement noise and the object variability sampled by the finite set of cases but
did not describe or compensate for the contribution from observer variability.

Observer variability is a complex, multivariate phenomenon that was under-
stood in principle as early as the text by Swets and Pickett (1982), which contains
two chapters on the subject. Observers respond differently to different cases, and
even the same observer’s responses are not 100% correlated across repeated readings
of the same data set. As we have seen, a reader’s response depends on the latent
decision criterion, but it also depends on the observer’s training, experience, age,
fatigue, and other factors. Readers have different skill levels, and some readers are
better at some case sets or modalities than others. An excellent example of reader
variability due to differences in decision criteria is contained in data published by
Elmore et al. (1994) and the subsequent commentary by D’Orsi and Swets (1995).
Beam et al. (1996) have published the largest study to date demonstrating radi-
ologist variability in skill level and decision criterion in the case of mammographic
interpretations.

The first practical multivariate method for the analysis of the variance in AUC
estimates for correlated tests with the assumption that both observers and images
(readers and cases in the medical literature) are random effects was the multi-
reader, multi-case (MRMC) method of Dorfman, Berbaum and Metz (Dorfman et
al., 1992), now commonly referred to as the DBM MRMC method. The method
makes use of a jackknife procedure to generate multiple estimates of AUC, each de-
rived by leaving out one of the observations and analyzing those that remain. The
results of each leave-one-out procedure are termed pseudovalues. An analysis of
the variance in the pseudovalues gives an estimate of the variance in the estimate of
AUC. By analyzing the statistics of pseudovalues, the contribution to the variance
in the estimate of AUC from the cases or the readers can be obtained.
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The DBM MRMC method was first developed for the analysis of discrete rat-
ing data. Roe and Metz (1997a, 1997b) further developed and validated the DBM
method and made software freely available for either continuous or discrete rating
data. An alternative, nonparametric method for analyzing the components of vari-
ance in ROC studies based on bootstrapping has been suggested by Beiden et al.
(2000a). Gifford et al. (2001) have recently simulated the application of the DBM
method to LROC studies and found it to be useful for studies with low numbers of
readers and cases.

In some countries, double reading of certain clinical images is the standard, as
a method for reducing the number of incorrect interpretations and reducing reader
variability. In the U.S., several commercial CAD systems are now available for use
as a second reader to the radiologist. The analysis of adjunctive systems requires
careful consideration of the appropriate assumptions regarding the variability of
the readers (for example, no threshold variability for a computer) and the means
for combining their interpretations. The overall performance of the system will be
dependent on these considerations. A method for analyzing the improvements in
the accuracy of imaging studies derived by repeated observations was suggested by
Metz and Shen (1992). Beiden et al. (2001a, 2001b) have presented a nonparamet-
ric estimate of the components of variance of AUC for comparing two modalities
with different variance structures, for example, where one modality involves a CAD
adjunctive device and the other does not.

The original MRMC method required every reader to interpret every image in
each modality. Recently, the statistical analysis of “partially paired” data sets has
been presented (Zhou and Gatsonis, 1996; Metz et al., 1998a).

Ordinal regression Standard ROC methodology reports the performance of a par-
ticular observer on a particular task given a specified imaging system. The depen-
dence of the performance measure on a parameter describing the object (size or
amplitude, say) or observer (age or number of years of training) would require a
series of studies across the range of the parameter of interest. Given the time and
cost required for a single psychophysical study, the notion of performing repeated
studies of this sort is daunting.

Tosteson and Begg (1988) proposed the use of ordinal-regression techniques for
combining studies of multiple object and observer characteristics in a single study.
Toledano and Gatsonis (1995, 1996, 1999) have further developed the method and
provided extensions for handling incomplete data. The use of ordinal-regression
methods in the optimization of imaging system parameters using realistic models
for the imaging process deserves greater attention.

Sources of bias We have described methods for analyzing the uncertainty in es-
timated measures of system performance without mention of possible sources of
error in the estimated mean system performance. There are many sources of bias
that can creep into the evaluation of an imaging system (Begg and Greenes, 1983).
Probably the most significant is the ground-truth problem, which we shall address
again in Sec. 14.4.5. It is difficult in real imaging applications to know the true
status of an object, be it an enemy aircraft in a reconnaissance image, a stellar ob-
ject in astronomy, or an unknown feature in a medical image. Knowledge of ground
truth can require expensive verification procedures like long-term follow-up, biopsy,
or imaging using an alternative system. Thus, in order to know the truth status
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required for scoring observer responses in an ROC study, the investigator might
design the study with an absence of subtle objects or confounding cases (Rockette
et al., 1995, 1998). Without these cases in the study, the results of the study will
not describe the performance of the system on these kinds of cases. Similarly, bias
can also result from the skill of the observers involved in the study. In the design
of the study, the investigator should carefully consider whether to use experts vs.
nonexperts and the extent that they represent the intended use of the system.

In summary, the estimated AUC is a joint description of the performance of
the imaging system and the population of images and observers used in the study.

Field tests vs. stress tests A field test samples the objects and observers as they
are expected to be sampled in routine use. A stress test limits the objects or
the observers (or both) in order to “challenge” the performance of systems where
differences are expected. Studies over subpopulations of observers or objects can
potentially enable significant differences in system performance to be demonstrated
for those subpopulations. For example, it may be that expert and nonexpert radi-
ologists utilize the output of a CAD algorithm differently, but a study that averages
over the two sets of readers would possibly miss this important finding. In another
example, the fraction of women with dense/heterogeneous breasts is small; a study
comparing film-screen to digital mammography using a broad sample of patients
might not uncover a significant advantage of one system over the other for that
subpopulation of women.

As described in Sec. 13.1.1, the diligent investigator can always increase the
number of cases in a study until a statistically significant result is obtained. How-
ever, a judicious selection of the cases used in the study can sometimes reduce the
number of images required to show significant differences in system performance, by
taking into account known differences in the physical performance characteristics
of the imaging systems under comparison.

Summary of process Although there are many open areas of research, methods
based on ROC analysis are still the best approach for evaluating classification tasks
performed by human and model observers. Before beginning a psychophysical in-
vestigation, a few questions should be considered. The first is the nature of the
classification task—will standard ROC methods suffice, or is a generalized method
that incorporates localization/search needed? Consideration should be given to the
need for realism and the adequacy of the information that will be gained, the avail-
able methods for data analysis as well as methods for statistical analysis.

Careful consideration should be given to sampling issues for images and read-
ers, recognizing the impact these will have on the conclusions that can be drawn
from the study.

The specific viewing conditions should be considered, including the degree of
observer adaptation, the display settings, the observation distance, and so on. The
human-machine interface is critical; small numbers of observer mistakes due to a
poor interface can impact the data appreciably.

It is recommended that a block design be used to avoid image-order effects.
Observers can read a subset of the images representing one imaging system, then
another, then back to the first, until the entire set under all conditions has been
read. Randomize the ordering across readers. Do not expect observation sessions
to last more than about an hour, or fatigue can degrade observer performance.
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Pilot studies can be used to determine the imaging conditions that will yield
the best study power and highest efficiency of observer effort. Staircase methods
have been described for determining the object contrast that will give high statis-
tical power (Watson and Pelli, 1983; Watson and Fitzhugh, 1990). These methods
adjust the object contrast iteratively over a sequence of 2AFC trials to find the
signal contrast that yields a SNRhuman of ∼ 0.75 by decreasing the signal ampli-
tude when the observer is correct, and increasing it after decision errors. Once the
contrast has been determined that corresponds to that level of performance, the
final study can make use of a fixed signal at that contrast— the method of constant
stimulus— to give a more precise measure of system performance for that stimulus.
Alternatively, the method of ordinal regression allows the evaluation of system per-
formance across a range of stimuli.

Once the data are collected, they can be analyzed by the chosen fitting method.
Free software packages are readily available on the worldwide web for this purpose.
Then the figure of merit can be estimated along with its confidence interval. Tests
for the differences between estimates of figures of merit are also included in several
of the freeware packages.

14.3 MODEL OBSERVERS

Model observers serve many purposes. They can be used as tools in the study of the
human visual system; by comparing the results of psychophysical studies to model-
observer performance measures, researchers gain insights into human perception
that can lead to improved models of the human visual system. Such studies give
information regarding what tasks the human performs well and what image char-
acteristics impact the human most significantly, potentially leading to improved
imaging system designs for generating images for human interpretation. Model ob-
servers can also act in place of humans, or in concert with them, in which case we
refer to the model as a computer-aided diagnosis (CAD) system.

Above and beyond the use of model observers as tools for understanding the
visual system, model observers are an extremely valuable tool in the objective as-
sessment of image quality. Model observers that operate on raw images or detected
data enable the objective evaluation and optimization of image acquisition systems.
Model observers designed to operate on reconstructed or processed images are useful
for the assessment of image-processing algorithms without lengthy human-observer
experiments. Because our emphasis in this text is on the design and evaluation of
imaging systems, and not on the development of a better understanding of human
perception, we shall focus on the use of model observers for the purpose of OAIQ—
the objective assessment of image quality— in what follows.

Many of the same statistical methods used to evaluate imaging systems with
human observers are applicable to the evaluation and comparison of model ob-
servers. The goal of this section is to present methods for determining the perfor-
mance of a model observer for a given study. As we shall see, the particular model
observer chosen and the method of determining its figure of merit will depend on
the task as well as the extent to which we know or can characterize the statistics of
the data.

We shall begin in Sec. 14.3.1 with a brief review of selected model observers
for classification tasks and the requirements for determining each model observer’s
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performance. We shall then discuss how one chooses a model observer for system
evaluation based on classification performance. Sec. 14.3.2 deals with the particular
issues involved in the determination of classification performance by linear model
observers. The determination of performance measures for ideal observers is the
subject of Sec. 14.3.3. Finally, in Sec. 14.3.4, we shall discuss the use of estimation
tasks in the objective assessment of image quality.

14.3.1 General considerations

Structure of observer models All model observers used in the objective assessment
of imaging systems have a similar structure, illustrated in Fig. 13.1. As described
in Sec. 13.2, for classification tasks every model observer computes a scalar test
statistic t of the form

t = T (g) , (14.15)

where gmight be either the raw data or a processed image and T (g) is the observer’s
discriminant function. A decision is made in favor of hypothesis H2 if t is greater
than some threshold; otherwiseH1 is selected. By determining the number of images
classified correctly for all threshold settings, an ROC curve can be generated.

The performance of the model observer can then be summarized using some
metric related to the ROC curve. The area under the ROC curve (13.18) and
the detectability dA derived from AUC via (13.21) are common figures of merit.
Alternatively, the SNR associated with the test statistic (13.19) can be determined
from the first- and second-order statistics of t as a measure of the separability of
the data from the two classes. The SNR and the detectability are the same when
the test statistic is Gaussian under the two classes.

Categories of observer models for classification Observers can be classified according
to whether T (g) is optimal or suboptimal and whether it is a linear or nonlinear
function of g. By definition, optimal observers are the best possible in some sense.
The Bayesian or ideal observer makes optimal use of all available information in the
data and any additional nonimage information to achieve the highest AUC attain-
able. The ideal observer’s test statistic is the likelihood ratio. In general, the ideal
observer’s discriminant function is a nonlinear function of the input data.

The Hotelling observer is the ideal linear observer; this observer’s discriminant
function is optimal in the sense that it achieves maximum SNR amongst all linear
observers. The AUC-optimal linear observer is another privileged linear observer;
as the name suggests, this observer employs the linear discriminant that achieves
the highest possible AUC of all linear discriminants for the task.

Because of the large dimensionality of modern images, it may be necessary to
make use of “efficient” features, or channels, that preserve the information in the
data while enabling the determination of observer performance. Sec. 13.2.12 de-
scribes a method for deriving information-preserving linear features from an analy-
sis of the known first- and second-order statistics of the data. Thus we can design
a channelized Hotelling observer (CHO) such that it is still the optimal linear ob-
server in spite of the reduced dimensionality.

The objective assessment of image quality may involve suboptimal model ob-
servers, particularly when the goal is to predict human performance. From Sec. 14.2
we know that the human observer has been modelled as an observer that processes
images through frequency-selective and orientation-selective channels. The chan-
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nelized Hotelling observer has been shown to be a useful predictor of the human
observer for a variety of tasks, where the channels in this case are not efficient, but
are instead chosen to predict human performance. Alternatively, more mechanistic
models of the human visual system might be employed as surrogates for the human.
These “anthropomorphic” models can incorporate highly nonlinear building blocks
such as adaptive gain and contrast nonlinearity. Such models reduce the dimen-
sionality of the data and incur an information loss as well.

Table 14.2 summarizes the types of model observers that can be employed in
the objective assessment of image quality.

Table 14.2 Classification of observer models used in OAIQ

Computation vs. estimation As noted in Sec. 14.2, the goal of a psychophysical ex-
periment is the estimation of human performance from a finite sample of images.
This is in contrast to the methods presented in Chap. 13, which addressed the com-
putation of ensemble performance measures for model observers. In this chapter
we are concerned with the issues that arise when limited data are available for the
estimation of observer performance. As we shall see, we might estimate the model
observer’s decision function from finite samples, and use that function to estimate
the model’s performance from the same or another set of finite data. Alternatively,
a finite data set might be utilized to estimate the statistics of the data under com-
peting hypotheses, with this information then used to estimate a figure of merit for
the model observer’s performance directly.

Why OAIQ is easier than pattern recognition While the objective assessment of im-
age quality has striking similarities to classical pattern recognition, the two prob-
lems are significantly different. Whenever we evaluate an imaging system we do so
in terms of a particular task and a specific observer performing the task; thus we
have considerable prior information regarding the objects to be classified and the
discriminant function to be utilized. In many circumstances we can make use of a
signal-known-exactly task, where the background might be simulated or might be
a real clinical background. In contrast to most pattern recognition problems, we
also have tremendous knowledge of the physics and statistics of the imaging system
under evaluation that we can exploit to simulate noise-free training images. Thus
the mean data under each hypothesis is fairly easily determined. Furthermore, the
noise PDF pr(g|f ) is usually known from the physics; hence the noise covariance
matrix is also known. With this information we are well positioned for determining
a linear observer’s discriminant function. Note also that we can avoid the gold-
standard problem to be discussed in Sec. 14.4.5 by using simulated images; then we
always know the underlying truth status of each image.

While we might estimate the model observer’s template and evaluate the model
observer’s performance from finite data, the feature-extraction step is not ad hoc. It
is dictated by the statistics of the data. If the purpose of the study is the prediction
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of human performance, the features are further dictated by physiology—a channel
model representing the visual system is then used as well.

In OAIQ the amount of prior information we bring to bear on the problem is
tremendous relative to various approaches found in pattern recognition and data
mining, where the statistics of the data may be completely unknown, the features
are unspecified, and even the number of classes is uncertain. Moreover, OAIQ often
makes use of simulated images, so there is no limitation to the number of images
available, and there is no issue about their true classification.

Basic equations describing the ideal observer As derived in Sec. 13.2.6, the ideal
observer achieves maximum AUC, maximum TPF at any FPF, and minimum Bayes
risk. The ideal observer’s test statistic is the likelihood ratio, given by

Λ(g) ≡
pr(g|H2)

pr(g|H1)
. (14.16)

To classify a data set, the ideal observer compares Λ(g) to a threshold.
Alternatively, the ideal observer forms the log-likelihood ratio, given by

λ(g) ≡ ln[Λ(g)] = ln

[
pr(g|H2)

pr(g|H1)

]
, (14.17)

which is then compared to a threshold to classify an image. Because the log-
likelihood ratio is a monotonic function of the likelihood ratio, the AUC of the ideal
observer is unchanged by this transformation.

Data needed for ideal-observer studies We see from (14.16) or (14.17) that the com-
putation of the ideal observer’s performance requires full knowledge of the probabil-
ity density function for the data under the competing hypotheses. In general, these
are high-dimensional functions, describing the full joint statistical behavior of M
data values. There are well-known examples for which the ideal-observer’s perfor-
mance is calculable, most notably the SKE case in Gaussian noise (Sec. 13.2.8) and
some non-Gaussian noise models as well (Sec. 13.2.9). However, for random signals
and backgrounds, (see Secs. 13.2.10 and 13.2.11), the ideal observer’s decision vari-
able takes the form of an integral of huge dimensionality over the posterior density
of the data conditioned on known signals and backgrounds. In Sec. 14.3.3 we shall
consider various techniques for estimation of the ideal observer’s performance.

Basic equations describing linear observers We may not be able to evaluate ideal-
observer performance because of the computational complexity or because we simply
do not have the statistical information required to use those tools. Or, we may not
want to estimate the performance of the ideal observer because the goal of the
assessment process is the prediction of human, rather than ideal, performance. For
these reasons the assessment effort may focus on the estimation of the performance
of linear model observers.

In a binary classification problem, an arbitrary linear discriminant computes
a scalar test statistic t from the M × 1 data vector g using a transformation of the
form

t = wtg , (14.18)

where w is an M × 1 template. The observer classifies each data set by comparing
the value of t to a threshold. The statistics of t determine the performance of the
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observer, as measured by AUC or SNRt. When t is Gaussian-distributed, AUC and
SNRt are related according to (13.20). Given that the linear observer’s test statistic
is a linear weighted sum of many random variables, the Gaussian assumption for
the PDF of t is usually valid as a result of the central-limit theorem.

Optimal linear (Hotelling) observer When the ensemble mean and covariance for
g are known, the observer that maximizes SNR can be derived according to the
procedure presented in Sec. 13.2.12. By (13.177) the Hotelling observer’s template
is known to be

wHot = K−1
g ∆g , (14.19)

where Kg is the ensemble data covariance, assumed to be the same under each hy-
pothesis, and ∆g is the difference in the mean data vector under the two hypotheses.
The assumption of equal data covariance under each hypothesis is a reasonable ap-
proximation for weak signals, even though the signals may be random under each
hypothesis. The subscript g on the covariance matrix, which refers to the raw data,
is required because we shall later encounter covariance matrices that describe chan-
nel outputs, which will be subscripted accordingly. It can be seen that the Hotelling
test statistic is the output of a prewhitening matched filter operation that attempts
to compensate for all contributions to the correlations in the data.

The performance of the Hotelling observer is given by [cf. (13.178)]

SNR2
Hot = ∆gtK−1

g ∆g = tr
[
K−1

g ∆g∆gt
]
. (14.20)

In the SKE detection problem this expression simplifies to

SNR2
Hot = stK−1

g s , (14.21)

where we denote the signal to be detected by s in the data domain. Note that the
data covariance matrix is assumed to be the same under each hypothesis in (14.20)
and (14.21) because the contributions from background variations and measurement
noise are assumed to dominate contributions from signal variability in the random-
signal case.

The Hotelling observer achieves maximum SNR of all linear observers. An
alternative approach is to determine the template w that gives maximum AUC of
all linear observers. In Sec. 13.2.12 we presented the problem of classification in
Poisson noise as an example for which the ideal observer is linear (without actu-
ally imposing a linearity requirement); this is the observer that achieves maximum
AUC as discussed in the previous section. However the ideal observer is not the
linear observer that achieves maximum SNR for this task. There is a much smaller
literature on the AUC-optimal linear observer relative to the large literature on the
Hotelling or max-SNR observer. In the case of a normally distributed test statistic,
these two observers coincide.

Data needed for Hotelling-observer studies We see from (14.20) and (14.21) that
computation of the performance of the Hotelling observer requires knowledge of the
ensemble first- and second-order statistics of the data under each hypothesis. When
information regarding the mean and covariance of g is unavailable, we must resort
to procedures for estimating the performance of the optimal linear observer from
samples.
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The difference in the class means under each hypothesis, ∆g, is an M × 1 vec-
tor, where each element ∆gm = g2m − g1m is the difference in the average value in
the mth pixel in the image or data set under the two hypotheses. Its estimate can
be obtained by determining the sample mean from sets of images known to be from
each class; the behavior of the sample mean as an estimator is well-understood.
Moreover, in many studies the signal is simulated and nonrandom, so that (14.21)
is relevant and no estimation of the mean is required. Thus the determination of
the mean data under each hypothesis is not a major stumbling block in most ap-
plications.

The most daunting issue in imaging applications is the determination of an
estimate of Kg, which we shall denote K̂g. A natural inclination is to assume that

K̂g is the sample covariance matrix, but the reader is cautioned against acting on
this impulse. If the number of image samples, Ns, is less than the number of pixels
in each image, M will be singular and noninvertible. This option therefore requires
Ns ≥ M.

Consider the number of elements of a covariance matrix to be estimated in
typical imaging scenarios. A flat-panel digital x-ray imager can have 1024 × 1024
elements. A SPECT system with a 128 × 128 detector that collects data over 64
projection angles has the same number of elements. Thus these systems have a data
vector with ∼ 106 data elements, so Kg is a 106 × 106 matrix with about a trillion
elements. The symmetry of this matrix allows us to reduce the number of elements
to be estimated by about a factor of 2, but a half trillion is still a large number.

The linear discriminant based on sample means and covariances for the pixels
in the raw data set is the approach commonly referred to as the Fisher discriminant.
Because the number of values to be estimated to form the sample covariance matrix
is almost always far greater than the number of samples available for the estimation
procedure, the Fisher discriminant is rarely a useful estimate of the optimal linear
discriminant in imaging applications.

We shall discuss several alternative approaches to the estimation of the Hotelling
observer’s performance in Sec. 14.3.2.

Basic equations describing channelized linear observers Any linear channel model can
be represented by a matrix-vector multiplication like the one given in (14.7):

v = Utg , (14.22)

where U is an M × P matrix whose columns are the channel profiles up, and v is
the P × 1 vector of channel outputs. The up represent the channel profiles, which
we have assumed to be real. Each channel output vp is a number.

While both (14.7) and (14.22) represent a reduction of the dimensionality of
the data set, the critical difference is that we are free to choose the channel profiles
in (14.22) to suit our purpose. The channels could be designed to be efficient, giving
minimal loss of detectability and thereby providing an estimate of the separability
inherent in the data. Alternatively, the channels could be designed to estimate the
separability of the data after processing through visual-system channels to predict
human performance, which may or may not be efficient depending on the task. A
number of possible channel profiles used in the vision literature are described in
Sec. 14.2.
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The performance of a channelized observer is given by the SNR associated with
the channel outputs under each hypothesis:

SNR2
v = ∆vtK−1

v ∆v = ∆gtU[UtKgU]−1Ut∆g . (14.23)

Data needed for channelized-observer studies The information required to evaluate
the performance of a channelized observer is the first- and second-order statistics of
the data as seen through the channels. We see immediately from (14.23) that the
channel covariance matrix to be inverted is much smaller than the data covariance
matrix. If the number of channels is P, then Kv is a P × P matrix, where P can
be as small as 3 to 6. Even if P is 30 to 50, the matrix to be inverted is still a
reasonably manageable size.

The second advantage to the use of a channelized model is the flexibility we
have in choosing the channel profiles. As we shall see, prior knowledge of the
characteristics of the signal and background can suggest particular forms for efficient
channels. Alternatively, the channels can be chosen to model human performance.
Given the nontrivial time required to perform psychophysical evaluations, the ability
to evaluate a set of imaging system parameters using a model that predicts human
performance can offer significant advantages.

Which model observer? The question of which model observer to employ is an-
swered by the objective of the evaluation study. If the goal is to evaluate or op-
timize the hardware of the data acquisition system, then the ideal observer is the
model of choice. Optimization with this observer will result in a system with the
maximum information in the raw data in the sense of being able to perform the
specified task. If it is not possible to compute ideal-observer performance because
the calculation of the likelihood of the data under each hypothesis is not tractable,
then the ideal linear observer is a useful alternative for use in hardware evaluation
and optimization.

When the task is the evaluation of image-processing algorithms, ideal observers
are of no use, because they are invariant to invertible image processing (see Sec.
13.2.6). Image processing algorithms, reconstruction methods and display devices
exist for presenting images to human observers; thus the appropriate model should
be one that predicts human performance. The model might be a highly detailed,
mechanistic model of the visual system or a simpler linear channel model like the
CHO.

In the next subsections we discuss in more detail each of these model observers
and methods for estimating their classification performance.

14.3.2 Linear observers

In this subsection we shall present a number of approaches for determining the
performance of linear model observers from finite data sets. We shall first consider
the Hotelling observer that makes use of the raw data and describe several methods
for estimating the SNR of this observer. As suggested by (14.20) and the discussion
that followed, the estimation of this Hotelling observer’s SNR must involve some
method for dealing with (or circumventing) the need to estimate the inverse of Kg.
Once we have exhausted our list of possible approaches to this problem, we shall
explore methods that invoke dimensionality-reducing linear channels.
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In many instances, image quality can be ascertained through a classification
task involving nonrandom signals that are added to real or simulated backgrounds.
Thus we shall first assume that the problem is the detection of a known signal, the
so-called SKE problem, while allowing for a random background. In this case there
is no need to estimate ∆g in (14.20); it is known, and our goal is to find an estimate
of the SNR given in (14.21). This objective is only hampered by the fact that Kg

is unknown. Subsequently, we shall consider methods for estimating linear-observer
performance for random signals.

We shall then briefly discuss the characteristics of the estimated figures of
merit. Finally, the subsection concludes with a short discussion of methods for
determining the AUC-optimal linear observer. Throughout this subsection we make
the assumption that the truth status of each image sample is known; methods for
dealing with the no-gold-standard problem are presented in Sec. 14.4.5.

Nonrandom signals We consider the object to be the sum of a known signal and a
random background according to the decomposition introduced in (8.306):

f = fs + fb . (14.24)

In the detection task, fs is zero under H1. The backgrounds are assumed to be
random and drawn from the same ensemble under each hypothesis.

From (14.24), the mean data for a fixed object and a linear imaging operator
H can be written as a linear superposition of signal and background [cf. (8.352)]

g(f ) = Hfs +Hfb ≡ s+ b , (14.25)

where b is the image of the particular background realization.
Without signal variability, the covariance matrix Kg describes the randomness

in the data due to background variability and measurement noise. It can be written
formally in terms of an expectation of the covariance of the data about the mean
taken first over the noise for a single background, followed by an average over all
backgrounds:

Kg = 〈〈(g− g)(g− g)t〉n|b〉b . (14.26)

In the absence of object variability the data covariance matrix reduces to the noise
covariance matrix, an entity that is usually known or computable through our knowl-
edge of the image-formation process. Nonrandom backgrounds can be very useful
in the validation of software intended to simulate realistic noise properties of an
imaging system. However, the objective evaluation of imaging systems in the ab-
sence of object variability can yield misleading conclusions; thus image evaluation
should employ a random background model if at all possible. Sec. 14.4 describes a
number of approaches for simulation of random objects and images.

We have cautioned against the use of sampling methods to directly estimate
the sample covariance matrix, and the use of exactly-specified backgrounds in the
objective assessment of image quality. How, then, to simplify the calculation of
Hotelling SNR in the presence of a random background? One assumption that is
often made is that the background is stationary.

Stationarity? A stationarity assumption is attractive because the covariance matrix
is then diagonalized by an appropriate Fourier transformation. For example, we
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know from Sec. 7.4.4 that a circulant covariance matrix that satisfies Kmm′ =
K[m−m′]M (where the subscript indicates modulo-M arithmetic in both components
of the multi-index) is diagonalized by a discrete Fourier transform. And from Sec.
8.2.8 we know that an infinite covariance matrix that satisfies Kmm′ = Km−m′

for all m and m′ is diagonalized by a discrete-space Fourier transform. Following
diagonalization by Fourier methods, K−1

g can be found by taking the reciprocal of
each diagonal element.

While Fourier methods based on stationarity assumptions may seem attractive,
this approach is fraught with problems. Real covariance matrices are neither infinite
nor circulant. The assumption that Kg is circulant implies digital wrap-around,
meaning the statistical correlation of two pixel values representing adjacent detector
elements is assumed to be equal to the correlation of two elements on opposite sides
of the detector, or even in different projections. In an investigation of image quality
in digital radiography, Pineda and Barrett (2001) have shown that stationarity
assumptions can give misleading results.

Local stationarity Requiring stationarity of any sort over the whole image field is
not only unrealistic, it is also unnecessary if our goal is to compute the SNR of a

spatially localized lesion. Since (14.21) is the norm of the vector K
−1/2
g s, we can

compute it by summing over only those pixels for which the vector is substantially
different from zero. Typically, in direct imaging systems, those pixel elements cor-
respond to a restricted region in data space. If so, we can express the SNR in
terms of the Wigner distribution function computed over this region, as discussed
in Sec. 13.2.13.

For indirect imaging systems, a spatially localized lesion can contribute to a
very nonlocalized set of detector elements. In this situation it is unlikely that an
assumption of approximate stationarity would hold over the entire region for which

K
−1/2
g s is significantly greater than zero. Thus for tomographic systems it is neces-

sary to perform a reconstruction first to restore the local nature of the signal to be
detected and allow the use of methods that invoke an assumption of approximate
stationarity. The argument of the previous paragraph holds if we let g be the re-
construction and s be the reconstructed signal.

If Kg were diagonal (in the multi-indices8), the region where approximate sta-
tionarity is required would be the same as the subset of pixels for which s is nonzero,

but a nondiagonal covariance means that some elements of K−1/2
g s are nonzero even

if the corresponding elements of s are zero. Moreover, the range of the correlations

is only a rough guide to selecting the correct subset of pixels; the matrix K
−1/2
g can

occupy a substantially larger band around the diagonal than Kg.

We do not know the width of this band if we cannot compute K
−1/2
g , but we

can proceed experimentally. If we start with a measured covariance matrix, or one
computed on a realistic nonstationary model, we can select an L × L subset of it
centered on the signal location. Calling this matrix KL, we can compute stK−1

L s,
which would be an estimate of the Hotelling SNR without any stationarity assump-
tion if we were given only this subset of the data. We can then vary L and observe
the behavior of this SNR; when it no longer changes, we can assume that we have

8See Sec. 8.2.8 for a discussion of discrete random processes and diagonality in multi-index nota-
tion.



MODEL OBSERVERS 961

found the band containing the nonzero elements of K−1/2
g , and we can compare the

resulting SNR to that computed with the Wigner distribution function. If agree-
ment is good, we can use the Wigner expression to compute SNR for a variety of
signals and all positions in the field and to define local NEQ and DQE as functions
of spatial frequency and signal location (see Sec. 13.2.13). This approach may result
in a number of nonzero elements in need of estimation that is small enough that
the finite number of image samples can support their estimation.

Decomposition of the covariance matrix Another approach is to make use of our
knowledge of the physics of the imaging process, which often gives us powerful infor-
mation regarding the distribution of data for a fixed object. Statistically speaking,
we often know pr(g|f ), from which we can determine the conditional mean g(f ) and
the conditional covariance Kn|f.

Key to making use of this prior information is a decomposition of the overall
data covariance given in Sec. 8.5.3; we know from (8.347) that Kg is the sum of two
terms, written

Kg =
〈〈
[g− g(f )] [g− g(f )]t

〉
n|f

〉
f
+
〈 [

g(f )− g
] [

g(f )− g
]t 〉

f

= 〈Kn|f〉f +Kg ≡ Kn +Kg , (14.27)

where Kn represents the noise covariance averaged over all objects. While both Kn

and Kg are influenced by object variability, we emphasize that they are covariances
for vectors in data space.

When the signal is random but statistically independent of the background,
we can write the covariance matrix for g as [see (8.359)]

Kg =
〈 [

g(f )− g
] [

g(f )− g
]t 〉

f
= HKfH

†

= HKfsH
† +HKfbH

† ≡ Ks +Kb , (14.28)

where Ks and Kb are the covariance of the data about the conditional mean result-
ing from signal and object variability, respectively. When the signal is nonrandom
(14.28) simplifies to Kg = Kb. Even in the random-signal case this simplification
can be relevant; if the signal is of sufficiently low contrast, then Kg ≈ Kb because
the contribution due to the random background dominates.

Much of what follows on estimation of linear-observer performance is based on
the decomposition of (14.27). Though we shall often use the approximation that
Kg ≈ Kb, we note that (14.27) itself is exact; it requires no Gaussian assumptions
regarding either the objects or the noise, and it does not assume that the noise is
object-independent. Alternative forms for the object-variability term that make use
of alternative ways of expressing the autocovariance of the object in object space
are given in Sec. 8.5.3.

Role of the measurement noise To be more explicit aboutKn, we need to distinguish
direct from indirect imaging and object-dependent from object-independent noise.

The simplest case is direct imaging with additive Gaussian measurement noise.
As discussed in detail in Chap. 12, electronic noise in different detector elements is
usually statistically independent and hence uncorrelated. If every detector element
has the same noise variance σ2, which is independent of the object f, then

Kn = Kn|f = σ2I . (14.29)



962 IMAGE QUALITY

Thus Kn is a multiple of the unit matrix and hence full rank.
The situation is only slightly more complicated with Poisson noise. Since Pois-

son measurements are conditionally statistically independent with variance equal
to the mean, we can write

[
Kn|f

]
mm′

= gm(f ) δmm′ = [Hf ]m δmm′ , (14.30)

where the last form is for a linear digital imaging system characterized by the CD
operator H. Averaging over object variability is now straightforward:

Kn = 〈gm(f )〉f δmm′ = gm δmm′ =
[
Hf
]
m
δmm′ . (14.31)

Thus the average noise covariance matrix is diagonal in spite of the object variability,
though of course the overall covariance matrix Kg is not diagonal.

It is not immediately obvious, however, that Kn is full rank. Indeed, the
conditional noise covariance Kn|f is not full rank if any of the gm is zero. Similarly,

Kn is not full rank if any of the gm is zero, but this turns out to be of much less
concern; the only way a particular gm could be zero is if the mth detector element
never receives radiation for any object in the ensemble, and in that case we might
as well delete that detector element from the data set. Thus we can always assume
that Kn is full rank for direct imaging, even with Poisson noise.

For indirect imaging the measurement noise is modified by the reconstruction
algorithm. This issue will be discussed at length in the next chapter, but for now we
note that analytic expressions for Kn|f can be developed, where n refers to the noise
in an image reconstructed by a linear algorithm from either Gaussian or Poisson
data (see Sec. 15.4.2). For nonlinear algorithms, analytic covariances are generally
not possible, but practical computational methods are available for determining
Kn|f numerically; for details, see Sec. 15.4.7. These numerical expressions can then

be averaged over f to obtain Kn.

Sample averages In Sec. 8.4 we discussed a variety of statistical models for objects
and found that there were many circumstances where we could generate samples
of f; more discussion of methods for simulating random objects is also given in
Sec. 14.4. However, it is usually not possible to determine pr(f ) from samples, and
we almost always have to resort to the use of sample averages to determine the
statistical properties of the data resulting from random objects.

Consider again the case of nonrandom signals (or where the signal is random
but of low contrast), so that Kg = Kb, and we want to estimate this covariance
matrix. From Sec. 13.2.12 we know that the data covariance resulting from a general
random background is given by

[Kb]mm′ =
〈
(bm − bm)(bm′ − bm′)

〉
b
, (14.32)

where bm is the mean contribution of the random background to detector element
m. This expression describes the fluctuations in the data that would be observed
over a large set of simulated or real noise-free images.

One approach to finding an estimate of Kb is to use a theoretical object model
such as a lumpy background (Sec. 8.4) for which the autocovariance function can
be specified. This function is then mapped through the blur associated with the
imaging system to produce the covariance matrix Kb. If we choose some functional
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form (e.g., fractal) for the autocorrelation, we can use sample images to estimate
any unknown parameters in the function.

Another approach is to acquire a set of low-noise images and estimate the
covariance matrix for the background (in data space) from them. If we do not want
to make any assumptions about the form of the autocovariance, we can simply
form the sample covariance matrix as a low-rank approximation to the desired
ensemble covariance. The samples might be simulated noise-free backgrounds, or
they might be experimental background images with low but nonzero noise, obtained
with image-averaging or high-dose techniques. Methods for simulating noise-free
backgrounds are discussed in Sec. 14.4.

Suppose we have a set of sample background images {gj , j = 1, ..., Ns}, which
are either noise-free (simulated) or for which the noise is negligible compared to the
effects of object variability (perhaps because the images were acquired with a long
exposure time). We can array each of these images asM×1 column vectors. We can
then subtract the sample mean from each image to form the set {δgj , j = 1, ..., Ns},
and the covariance matrix Kg can be estimated by

K̂g = WWt , (14.33)

where W is the M ×Ns matrix with columns given by sample images:

W =
1√
Ns

[
δg1, δg2, ..., δgNs

]
. (14.34)

The sample covariance matrix of (14.33) is equally applicable when the set of sample
images contains random signals of unknown statistical description as well as random
backgrounds.

Once the background covariance matrix is estimated, the noise contribution
can be determined (if it is not already known) to yield the full data covariance
matrix. For example, we can make use of (14.31) to write the covariance of the
data in the weak-signal approximation under Poisson measurement noise as

[K̂g]mm′ = 〈〈(gm − b̂m)(gm′ − b̂m′)〉n|b〉b

= b̂m δmm′ + [K̂b]mm′ . (14.35)

The first term in the last line is K̂n, which in this case is a diagonal matrix with
elements given by sample averages of the mean background. The second term K̂b

is an estimate of the covariance Kg due to the random backgrounds.
Other non-Poisson forms of object-dependent measurement noise can be simu-

lated to generate noisy images once the simulation of random objects and noise-free
data sets is achieved satisfactorily. These images can be used to determine the first-
and second-order statistics of the data necessary to determine the SNR of the linear
observer, using methods described below.

Matrix-inversion tools Once we are assured that we have a covariance matrix with
full rank, the next step is to compute the SNR. Given the size of K̂g, direct inver-
sion of the estimated covariance matrix to estimate the detectability via (14.20) or
(14.21) is not feasible. We shall consider the following alternative approaches, none
of which assumes stationarity in any sense:
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1. Iterative computation of the template;

2. Neumann series;

3. Matrix-inversion lemma.

Iterative computation When the observer’s template is known, it can be applied to
a set of sample images (for which the ground truth is known) to yield a set of test
statistics under each class that can be used to compute the observer’s AUC or SNR.
The optimal linear observer has a template given in (14.19); thus it would appear
that the determination of wHot also requires the inversion of Kg. Not so! Fiete et
al. (1987) suggested that the Hotelling template could be calculated iteratively.

Finding the template amounts to solving the equation Kgw = s, where the
signal s is assumed known and Kg is either known or estimated. This equation is
analogous to the imaging equation Hf = g, where the unknown template takes the
place of the unknown object and the covariance matrix plays the role of the imaging
system. However, the covariance matrix is square, making it invertible in principle,
unlike the system operator in most imaging problems.

The solution can be found by any of the iterative methods enumerated in Chap.
1 or by the regularized methods to be discussed in Chap. 15. One possible solution
is given by the Landweber algorithm (1.231), which gives the following template
estimates at each iteration:

ŵn+1 = ŵn + α[K̂n]
−1[s− K̂gŵn] , (14.36)

where n denotes the iteration number and we have made use of the knowledge that
the noise contribution to the covariance matrix is full rank. The beauty of this
iterative approach is that no inversion of the full K̂g is required.

Once the template has been estimated, the SNR can be found by applying
the template to a set of sample images, determining the mean and variance of the
resulting scalar test statistic under each hypothesis, and computing the observer’s
performance via (13.19). Alternatively, we can directly estimate SNR2 by (14.21)
as stŵ.

Neumann series The covariance matrix may not be diagonal in real situations,
but it may be nearly diagonal (at least with the multi-index convention). For
example, as we shall see in Chap. 16, for direct imaging applications using x rays
the nondiagonal contributions to the data covariance are due to correlations in the
object statistics and physical processes like escape of K x rays from the phosphor.
When these contributions are not very long-range, the Neumann series approach
can be advantageous.

To see why the near-diagonal character of Kg is useful, suppose initially that

Kg = σ2I+A = σ2

[
I+

1

σ2
A

]
, (14.37)

where A describes the off-diagonal elements. Then we can use the Neumann series
(A.59) to write the inverse covariance as

K−1
g =

1

σ2

∞∑

j=0

[
−

1

σ2
A

]j
=

1

σ2
I−

1

σ4
A+

1

σ6
A2 − ... . (14.38)
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The Hotelling SNR then becomes

SNR2
Hot = stK−1

g s =
||s||2

σ2
−

stAs

σ4
+

stA2s

σ6
− ... . (14.39)

Formally, the Neumann series will converge if ||A||/σ2 < 1, but that require-
ment is too stringent for our purposes since it takes no account of the nature of the
signal. By the ratio test, the series in (14.39) will converge if

stAn+1s

σ2stAns
< 1 (14.40)

for all n, and it may still converge (because of the alternating signs) even if (14.40)
is violated. In practice, convergence will be rapid if the correlations are weak and
short-range and the signal is spatially compact.

More generally, we can always decompose Kg into a diagonal part D plus a
matrix A with only off-diagonal terms. Assuming convergence, we then have

Kg = D+A = D
[
I+D−1A

]
; (14.41)

K−1
g =




∞∑

j=0

[
−D−1A

]j


D−1 ; (14.42)

SNR2 = stK−1
g s = stD−1s− stD−1AD−1s+ stD−1AD−1AD−1s− ... . (14.43)

The first term in this expansion, stD−1s, is what we computed above when we
assumed there were no off-diagonal terms, and the remaining terms are the cor-
rections arising from correlations induced by the detector. If these correlations are
sufficiently weak, we may be able to truncate the series after a few terms, making
the calculation of SNR easy.

The banded character of the covariance is especially useful if we are trying
to detect a spatially compact signal. At the extreme, suppose s is confined to a
single detector element, say m = n. Then SNR2 is simply s2n [K−1

g ]nn, and the first
correction term in (14.43) becomes

st D−1AD−1s =
∑

j

∑

k

sn [D−1]nj [A]j k [D
−1]kn sn =

s2n
D2

nn

Ann = 0 (14.44)

since the diagonal elements of A are zero by definition.
The next term in the series is also simplified if we consider a signal confined

to a single pixel:

stD−1AD−1AD−1s =
s2n
D2

nn

[AD−1A]nn =
s2n
D2

nn

∑

k

[Ank]2

Dkk
. (14.45)

If we say that Ank * 0 when |n − k|ε > δ, then the number of terms we have
to sum is of order [δ/ε]2, which could be quite small. Moreover, if the elements of
A are small compared to Dnn, then the correction terms are small and the series
converges rapidly.

If the signal covers P pixels, the number of computations required is increased
by a factor of P 2, and a convergence condition analogous to (14.40) must be satisfied.
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Matrix-inversion lemma Suppose we want to invert an overall covariance matrix of
the form

Kg = Kn + K̂g = Kn +WWt , (14.46)

where we have assumed that K̂g is given by (14.33). For electronic or Poisson noise
Kn will be diagonal, but in some applications correlations will be introduced by the
detector and Kn will be a nearly diagonal, banded matrix (see, for example, the
discussion of x-ray detectors in Sec. 12.3.8).

By the matrix-inversion lemma (A.56a), we see that

[
Kn +WWt]−1

= K
−1
n −K

−1
n W

[
I+WtK

−1
n W

]−1
WtK

−1
n . (14.47)

The advantage of this form is that [I + WtK
−1
n W] is an Ns × Ns matrix, where

Ns is a few hundred in practice, rather than an M ×M matrix, where M may be
106. Moreover, since WtK−1

n W is positive-semidefinite, the inverse of the Ns ×Ns

matrix will always exist. Thus, if Kn can be inverted, either trivially because it is
diagonal or by use of a rapidly convergent Neumann series, then it becomes feasible
to add the sample covariance representing object variability.9

The matrix-inversion lemma reduces the size of the required inverse from M ×
M to Ns ×Ns but it is not a dimensionality-reduction method in the sense that it
does not entail potential information loss.

Dimensionality reduction using efficient channels The previous approaches depend
upon writing the data covariance matrix as the sum of a full-rank, near-diagonal
component representing the measurement noise and a low-rank contribution ob-
tained from samples. When we do not have access to low-noise or noise-free sam-
ples from which to estimate the second term, an alternative approach is to make
use of efficient channels that allow us to estimate the Hotelling observer’s SNR in
a lower-dimensional space.

In Sec. 13.2.12 we showed that a limited set of features, when properly cho-
sen, preserves the information in the data in terms of yielding the same SNR for a
linear observer. We found that an eigenanalysis of the inter- and intra-class scatter
matrices results in full preservation of the separability using only (L − 1) features
for optimal linear discrimination between L classes. In the binary classification
problem, a single feature is all that is needed—quite a dimensionality reduction.

The requirement for finding that single privileged feature is that complete
knowledge of the scatter matrices is available in order to do the eigenanalysis.
Without such complete knowledge, we must judiciously apply whatever prior in-
formation we have regarding the signals to be discriminated and the background
statistics to find channels that reduce the dimensionality of the problem with lim-
ited loss of detectability.

For a particular set of channel profiles, the Hotelling formalism can be applied
in the channel space to determine the wv, which is the vector of optimal channel
weights. By analogy with (14.19), we write the template in the channel space as

wv = K−1
v ∆v , (14.48)

9This idea was suggested to us by Brandon D. Gallas (see Barrett et al., 2001).
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where ∆v is the difference in channel outputs under the two hypotheses,

∆v = Ut∆g , (14.49)

and Kv is the P × P covariance matrix of the channel outputs:

Kv = UtKgU . (14.50)

The SNR on the channel outputs is given by

SNR2
v = ∆vtK−1

v ∆v . (14.51)

From Sec. 13.2.12 we know that efficient features are ones that preserve the sepa-
rability of the data in a space of reduced dimensionality, achieving SNR2

v = SNR2
g.

Laguerre-Gauss channels Consider the example of a detection task in which the
detected signal is approximately radially symmetric, centrally peaked and smooth,
and situated at a known location on a stationary background with a correlation
that has no preferred orientation. With these assumptions it can be expected that
the ideal linear template will be centered at the known position of the signal, rota-
tionally symmetric and smooth before discretization to match the CD nature of the
imaging system.10 Laguerre-Gauss channel profiles have been proposed by Barrett
et al. (1998c) for this task because they form a basis on the space of rotationally-
symmetric square-integrable functions in R2.

The Laguerre polynomials are defined in (4.57) as

Lp(x) =
p∑

k=0

(−1)p
(
p

k

)
xk

k!
. (14.52)

The orthogonality relation for these polynomials is given by (4.58):
∫ ∞

0
dx e−xLp(x)Lp′(x) = δpp′ . (14.53)

We can transform this relationship to a two-dimensional form with the change of
variables x = 2πr2/a2u, where r is the radial distance and au plays the role of a
scaling factor, giving

1

2π

∫ 2π

0
dθ

∫ ∞

0

4πr dr

a2u
exp

(
−2πr2

a2u

)
Lp

(
2πr2

a2u

)
Lp′

(
2πr2

a2u

)
= δpp′ . (14.54)

We see that the exponential factor of (14.53) has been transformed to a Gaus-
sian factor in (14.54). From this equation we can define the Laguerre-Gauss (LG)
functions as

up(r|au) =
√
2

au
exp

(
−πr2

a2u

)
Lp

(
2πr2

a2u

)
, (14.55)

where the {up} are orthogonal (without weighting factors) over R2 by (14.54).
Figure 14.7 shows radial dependencies of the first, third, and ninth LG func-

tions, as well as their 2D forms. In order to apply these continuous functions to a

10Of course, a signal defined on a square pixel grid cannot be exactly rotationally symmetric, but
we can ignore this problem if the template covers many pixels.
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discrete data set, the functions must be sampled on the same grid used to discretize
the data.

Fig. 14.7 The first, third and ninth Laguerre-Gauss functions: Left: 2D
functions; Right: Radial forms. (Courtesy of Brandon Gallas.)

Because the LG functions form a basis for radially-symmetric functions in 2D,
they can be used to exactly represent any rotationally symmetric function f(r) by

f(r) = exp

(
−πr2

a2u

) ∞∑

p=0

αj Lp

(
2πr2

a2u

)
, (14.56)

where

αp =

∫
d2r up(r) f(r) . (14.57)

Knowledge of the signal and background can be used to choose au and estimate
the coefficients αp for a finite set of channels. Alternatively, a range of values for au
can be investigated, with the number of channels increased until the detectability
reaches a maximum over au and P. This approach has been investigated extensively
by Gallas and Barrett (2003) for an SKE task on a lumpy background with widely
varying statistical parameters. These authors found excellent agreement between
the channelized linear observer’s performance and the ideal linear observer’s per-
formance with a small number of channels (5 – 30). The number of channels needed
was found to depend on the complexity of the background statistics.
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Channel models for predicting human performance While the previous paragraphs
specifically address the considerations that come to the fore when using channels
to estimate the performance of the optimal linear observer, the advantages offered
by the dimensionality reduction of the channelized-Hotelling approach are common
to all linear channel models. As described in Sec. 14.2.2, a variety of linear channel
models have been proposed for use in the prediction of human performance. All
such models have the similar characteristic that they result in a calculable figure of
merit for model-observer performance based on dimensionality reduction.

All channels designed to model the human have another similarity: because the
human visual system is insensitive to broad, structureless regions, channel models
designed to predict human performance have zero response at zero spatial frequency.
As stated in Sec. 4.1.4, Laguerre-Gauss functions are eigenfunctions of the 2D ro-
tationally symmetric Fourier operator. Thus the LG channel profiles in the Fourier
domain have the same form as the space-domain channels shown in Fig. 14.7. The
LG channels are peaked at ρ = 0 in the Fourier domain, just as they are peaked at
r = 0 in the space domain. The LG channels are therefore not recommended for
use in modeling human performance.

The body of literature providing the range of applicability of the various can-
didate channel models for predicting human performance continues to grow. When-
ever a given model is utilized, it is important to validate the performance predictions
with psychophysical studies involving human observers if the task or the statistics of
the data sets are outside the range of experimental conditions for which the model
has previously been shown to be predictive of human performance.

Random signals We have described a variety of methods for estimating the Hotelling
observer’s performance for SKE tasks. Random signals present an additional level
of complexity (and realism). Even so, the generalization of the Hotelling approach
to random signals is often straightforward. In particular, when the signals are low
contrast, we have already stressed that the data covariance is approximately equal
to its composition in the SKE case. In that case the only new question that arises
is the estimation of the mean data vector that appears in (14.20).

Estimation of the mean data vector If the task is the detection of a random signal,
and there is no prior information regarding the signal distribution, it is straight-
forward to estimate the sample means for the two classes and subtract them to
determine ∆ĝ. The sample mean is the maximum-likelihood estimate of the true
mean. The number of values to be estimated is the number of nonzero elements
in the difference (ĝ2 − ĝ1), which is determined by the extent of the signal as seen
through the imaging system.

Prior information can be brought to bear on the estimation of the mean dif-
ference vector in a number of ways. If the signal is compact and there is prior
information regarding its location, this information can be used to limit the num-
ber of values to be estimated to those within a certain region of the image. In
the case of random signals of a specified shape, prior information regarding the
signal’s form can be used to reduce the number of parameters to be estimated to
a small set, for example, signal amplitude, width, or location. Furthermore, prior
information regarding the underlying distributions of the random parameters can
be used to form Bayesian estimation procedures according to the theory presented
in Chap. 13.
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It should be noted that Hotelling SNR may be a poor indicator of system per-
formance with large signal variability, as discussed in Sec. 13.2.12. If a signal can
be located anywhere within a wide field of view, the signal averaged over location
is a broad, structureless function and the detectability of the Hotelling observer, or
any linear observer, becomes very small. One way around this problem is to replace
the original two-alternative detection problem with an (L+ 1)-alternative problem
where the signal can be at one of L nonoverlapping locations. The simple detection
decision can then be made by choosing the location for which the response of the
Hotelling observer is maximum, but we also get information on lesion location this
way. Another possibility is to allow signal location to be a parameter in the SNR
and compute a detectability map as described next.

Signal known exactly, but variable Let us assume that the signal varies randomly
but is known to the observer on each trial (the only uncertainty being whether it
is present). This task is sometimes referred to as the signal-known-exactly-but-
variable, or SKEV, task (Eckstein and Abbey, 2001; Eckstein et al., 2002). Let the
randomness in the signal be captured by a random parameter vector θ. For each
value of θ, the optimum linear test statistic is given by [cf. (13.208)]

ŵ(θ) = [K̂g(θ)]
−1s(θ) , (14.58)

where the estimate of Kg and its inverse must be determined using the methods
described above. In particular, the method of template estimation given above may
be used to estimate (14.58) without the need for finding an inverse of Kg in some
cases.

The Hotelling SNR can be estimated for each value of the random parameter,
following (13.209):

ŜNR
2

Hot(θ) =
{[ŵ(θ)]ts(θ)}2

[ŵ(θ)]tK̂g(θ) ŵ(θ)
= [ŵ(θ)]ts(θ) , (14.59)

where the second form follows from (14.58).
A summary measure of observer performance can be obtained by averaging

(14.59) over θ if pr(θ) is known. Alternatively, a detectability map, which plots the
SNR2 as a function of θ, can be presented. Eckstein et al. (2002) have found that
the optimal parameters for image compression are the same when evaluated using
either an SKE or an SKEV paradigm.

AUC and the linear discriminant Thus far we have concentrated on the estimation of
the SNR for the Hotelling observer. As discussed in Chap. 13, the Hotelling observer
gives maximal SNR and maximal AUC when the data are Gaussian distributed. For
non-Gaussian data, the Hotelling observer may not give the best AUC that can be
achieved by a linear observer. It is therefore of interest to consider the behavior of
AUC for an arbitrary linear discriminant and investigate methods for maximizing
this alternative, and arguably superior, figure of merit.

It was shown in (13.44) that

AUClin =
1

2
+

1

2πi
P
∫ ∞

−∞

dξ

ξ
ψg1(wξ)ψ

∗
g2(wξ) , (14.60)

where w is the arbitrary M×1 template of (14.18) that generates the test statistic t
from each data vector g, and ψgj(·) is the characteristic function for the data under
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hypothesis j. Limiting forms of (14.60) for nonrandom signals and for weak signals
are given in Sec. 13.2.5. Note that (14.60) is just a 1D integral—only one line
through the multivariate characteristic function under each hypothesis is needed
once w is specified.

This formula for AUC is useful when we have analytic forms for the character-
istic functions of the data under the two hypotheses. In background-known-exactly
(BKE) problems, we might know the characteristic functions directly from the data
statistics, but if the background is random we have to first characterize the object
statistics and then propagate them into the data domain as discussed in Sec. 8.5.3.
If the object is regarded as a continuous function, we need first to obtain an analytic
expression for its characteristic functional, then apply (8.335) or (8.339) to obtain
the characteristic functions for the data. For example, lumpy and clustered lumpy
backgrounds were introduced in Sec. 8.4.4, and their characteristic functionals were
derived in Sec. 11.3.10. Additional examples of analytic characteristic functions will
be given in Chap. 18.

When the needed characteristic functions are available, an iterative search
can be used to maximize the AUC given by (14.60); useful search algorithms are
discussed in Sec. 15.4.3. Since the integral is one-dimensional, this search is not
particularly computationally expensive.

A major advantage of the approach suggested by (14.60) is that no matrix
inversion is required, unlike the determination of the full Hotelling SNR. While an
iterative approach can be used to determine the Hotelling SNR when the noise con-
tribution to the covariance matrix is known, it works by searching for the optimum
linear template and indirectly obtaining the SNR. An iterative solution for (14.60)
directly yields AUC.

The linear discriminant obtained by searching for the w that maximizes AUC
may differ from the Hotelling observer, as discussed in Sec. 13.2.12. When this
occurs, the linear discriminant that gives higher AUC is to be preferred whenever
our goal is the linear approximation to the ideal observer.

Errors in estimates of SNR for linear observers It is natural to ask how close the esti-
mated SNR is to the true SNR that would have been obtained with full knowledge
of the ensemble statistics of the data. That is, we would like to know the bias and
variance of the estimate. In this context, bias and variance refer to the first-and
second-order statistics of the estimate when different finite sets of images are used.
There are several methods, briefly surveyed below, to estimate the magnitude of
the bias and variance from this source.

As with any real-world estimation problem, however, there can also be a sys-
tematic bias arising from invalid assumptions or modeling errors, and this kind of
bias is much more difficult to assess. With computer-generated images, a major
source of systematic bias is unrealistic or oversimplified simulation; with real im-
ages, a major problem is uncertainty in the true diagnosis. Both of these issues are
discussed in Sec. 14.4; here we focus on statistical errors.

It is straightforward to estimate the variance of estimates of SNR or AUC
when simulated images are used; all that is needed is to repeat the simulation sev-
eral times with independent sets of images and compute the sample variance of
the values obtained. More sophisticated resampling methods (see below) can also
be used, but their only advantage is a saving in computer time, seldom a primary
concern these days. In fact, with simulated images the variance and the statistical
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bias can be made arbitrarily small simply by running the computer long enough. If
real images are used, however, the number of images might be quite limited, and it
becomes more critical to estimate the error associated with an estimate of SNR2.

Errors in direct estimation of SNR in channel space One situation in which we can
give not only the bias and variance but indeed the full probability density function
of the estimated SNR2 is when dimensionality reduction is performed with effi-
cient or anthropomorphic channels and the resulting channel outputs are normally
distributed. In that case we can estimate SNR2 by

ŜNR2 ≡ [∆̂v]t K̂−1
v [∆̂v] , (14.61)

where the hats here denote estimates obtained by sample averages; it is assumed
that the number of sample images is larger than the number of channels so that the
sample covariance matrix is invertible.

The estimator defined in (14.61) is precisely the one studied by Hotelling in
his classic 1931 paper, and it is often referred to as Hotelling’s T 2statistic. The
PDF of T 2 is closely related to the F distribution; for details see Hotelling (1931)
or Anderson (1971). The general behavior of the estimate is illustrated in Fig. 14.8,
where it is seen that the estimate is highly biased unless the number of sample
images is much larger than the number of channels (and of course it is not even
defined if the number of sample images is less than the number of channels).

Fig. 14.8 Schematic behavior of the Hotelling T
2 estimate of SNR2 as defined

in (14.61). The dashed horizontal line indicates the true value of SNR2 on
the channel outputs, and the solid curve shows the mean of the estimate.
The error bars are indicative of the variance. We thank Andy Alexander for
suggesting this kind of plot.

The basic problem with the Hotelling T 2 estimate is that it makes no use of
prior information about the quantity being estimated, namely the SNR2 on the
channel outputs. One key piece of prior information in many cases is knowledge of
the mean difference signal in data space, g, from which we can determine the mean
difference signal in channel space, ∆v, by (14.49). If we regard ∆v as known and
nonrandom, we can define a better estimate of SNR2 by

ŜNR2 ≡ [∆v]t K̂−1
v [∆v] . (14.62)
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Another key piece of prior information is the covariance decomposition (14.27).
If we regard Kn as known and nonrandom and use (14.51), the estimate in (14.62)
is modified to

ŜNR2 ≡ [∆v]t
[
Ut
(
Kn + K̂g

)
U
]−1

[∆v] . (14.63)

Note that the hat, denoting sample estimates, now appears over only K̂g, so only
that term contributes to the bias and variance of the estimate of SNR2.

The statistical properties of (14.62) and (14.63) have not yet been derived,
but they should offer substantially smaller bias and variance than the T 2 estimate
of (14.61) simply because they use more prior information. All of these estimates,
however, assume that the channel outputs are normally distributed; it is advisable
to plot experimental histograms to check this assumption.

Training and testing An alternative to direct estimation of SNR2 is first to estimate
the template w and then to apply it to a set of sample images. When only a
single, finite set of images is available, the experimenter must use the set of images
for two purposes: training the observer (choosing the number of channels, their
weights, and any parameters that characterize the channel profiles); and testing
the observer (estimating its performance). This is the so-called “training-testing”
paradigm. The training-testing label applies even without dimensionality-reducing
feature extraction. When we estimate the template from samples by any method,
we are training the observer.

There are two common ways to train and test an observer with a single set of
sample images. The first option is to split the data into two independent sets, one
set to be used to train the observer and the other to be used for testing the observer.
The split does not need to be into subsets of equal size. This approach is sometimes
referred to as the holdout method. A related method is the use of Ns − 1 images to
train the observer, with the final sample used to test the observer. This method is
known as the round-robin approach; by repeating the training/testing sequence Ns

times, keeping score of the observer’s decision variable each time, an estimate of the
observer’s performance is obtained over the entire data set. However, the round-
robin method does not yield a single observer, but rather, each held-out image is
tested on a different observer.

Gallas (2003) investigated various resampling approaches for determining the
bias and variance of the performance estimate for the channelized linear observer
trained and tested using variations on the hold-out method. Using a very large set
of independent estimates of observer performance (the beauty of Monte Carlo image
simulation), Gallas was able to determine the true performance of the channelized
observer and thus calculate the bias as well as the variance of the finite-sample
methods.

The second training-testing option is the resubstitution method, where the
observer is trained and tested on the same set of images. The use of a single set
of images to estimate the observer’s template, followed by an estimation procedure
that applies that template to the data to determine the first- and second-order
statistics of t under each hypothesis to derive an SNR, will give an optimistic result
(Wagner et al., 1997). The resulting estimates of observer performance correspond
to the results obtained via (14.61) and illustrated in Fig. 14.8.
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14.3.3 Ideal observers

We learned in Chap. 13 that the ideal observer for binary classification tasks is one
that bases its decision on the likelihood ratio. Many properties of the likelihood
ratio and its logarithm, and of performance metrics derived from them, were given
in Sec. 13.2. In this section we review a variety of approaches to using these often
abstract mathematical concepts in the practical assessment of image quality.

Analogies with the Hotelling problem The basic challenge in computing the test
statistic for both the Hotelling and the ideal observer is dimensionality. For the
Hotelling observer, we need to construct and invert a huge covariance matrix; for
the ideal observer, we need to form huge-dimensional multivariate probability den-
sity functions and take ratios of them. In neither case are brute-force methods likely
to be fruitful; in both cases we must make use of prior information about the task
and imaging system in order to make progress.

An important piece of prior information for the Hotelling problem is the condi-
tional covarianceKn|f, which is known from the physics of the measurement process.
For example, Kn|f for raw, unprocessed data and Gaussian noise is given in (14.29),
and for Poisson noise it is given by (14.30). The analogous prior information for
the ideal observer is the conditional PDF pr(g|f ), which is again known from the
physics. Before processing, pr(g|f ) is often multivariate Gaussian or multivariate
Poisson, and in both cases the multivariate PDF can often be written as a product
of univariate PDFs. The effect of processing is discussed in Secs. 15.2.6, 15.4.2
and 15.4.7.

In both Hotelling and ideal-observer studies, it is necessary to choose the object
model carefully, allowing enough complexity and variability to capture the essence
of real objects, yet retaining adequate mathematical tractability. In both cases,
object models such as the lumpy and clustered lumpy backgrounds introduced in
Sec. 8.4 are very useful.

The signal model, too, can be chosen to facilitate the computation. In par-
ticular, nonrandom signals are very attractive, though it remains an open question
how well conclusions from SKE studies can be applied to more realistic tasks.

Decomposition of the PDFs The likelihood ratio is the ratio of two PDFs, each of
which can be written somewhat abstractly as

pr(g|Hj) =

∫
df pr(g|f ) pr(f |Hj) , (j = 1, 2) . (14.64)

The notation pr(f ) is explained in Sec. 8.2.2 [see especially (8.78) and (8.81)]. In
brief, it denotes the density on the full (potentially infinite) set of parameters needed
to specify the object as a random process f(r).

The density on the data can also be written as

pr(g|Hj) = 〈pr(g|f )〉f |Hj
. (14.65)

Numerous alternative forms of pr(g|Hj), with various assumptions about the object
and the noise, are given in Sec. 8.5.4.

Thus, in order to determine the densities needed in the likelihood ratio, we
need both the conditional density on the data for a given object, pr(g|f ), and the
densities pr(f |Hj) on the object under the two hypotheses. Note that pr(g|f ) does
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not depend directly on the hypothesis Hj ; specifying the object specifies the mean
of g, and that in turn specifies the full density in most cases.11 Note also that we
do not refer to pr(g|f ) as a likelihood since it is never our goal to estimate f ; it is
not the goal in this section since we are discussing a classification problem, and it
is not even the goal in image reconstruction (see Chap. 15).

Conditional PDFs To be more specific about pr(g|f ), we need to distinguish direct
from indirect imaging and object-dependent from object-independent noise, just as
we did in Sec. 14.3.2 when we discussed Kn|f [see (14.29) and (14.30)].

Consider first the case of direct imaging with a detector array limited by Gaus-
sian electronic noise. If we assume that all elements in the array are identical and
that each generates its own noise independently of the other elements, then the
probability density function of n is

prn(n) = (2πσ2)−M/2
M∏

m=1

exp

(
−
n2
m

2σ2

)
. (14.66)

Since the electronic noise is independent of the mean detector output, the condi-
tional density on the data is just a shifted version of the noise density:

pr(g|f ) = prn[g− g(f )] = (2πσ2)−M/2
M∏

m=1

exp

{
−
[gm − gm(f )]2

2σ2

}
. (14.67)

For linear systems we can go a step further and write gm(f ) = [Hf ]m.
Similarly, with raw Poisson measurements we have

pr(g|f ) =
M∏

m=1

exp [−gm(f )]
[gm(f )]gm

gm!
. (14.68)

Thus in both of these cases the multivariate density is a product of univariate den-
sities.

The situation is more complicated if we regard g as the output of some data-
processing or image-reconstruction step. Linear processing leaves Gaussian data
Gaussian but introduces correlations. Nevertheless, it is straightforward to write
down a multivariate expression for pr(g|f ) since we know how to compute mean
vectors and covariance matrices after linear operations, and a multivariate normal
is fully specified by its mean and covariance. There is no simple way of expressing
pr(g|f ) after linear processing of Poisson data, but it may be valid to approximate
it with a suitably correlated multivariate normal (see Sec. 15.2.6).

Noise on the output of iterative reconstruction algorithms is discussed in Secs.
15.4.2 and 15.4.7. If the algorithm is nonlinear and enforces a positivity constraint,
then the noise cannot be Gaussian since negative values cannot occur. Specifically,
with multiplicative algorithms such as MLEM (maximum-likelihood expectation-
maximization), it often happens that the PDF on the reconstructed image is ap-
proximately a correlated log-normal (Wilson et al., 1994; Barrett et al., 1994).

11An exception to this statement will be given in Sec. 18.6.4 where we discuss speckle. As we shall
see there, in some speckle problems the variance of the data is different for the signal-present and
signal-absent hypotheses.
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To summarize, with raw, unprocessed data, pr(g|f ) usually has a simple an-
alytic form (independent Gaussian or Poisson). With processing, the elements of
g are no longer statistically independent, but it is usually possible to give at least
an approximate form for the conditional density. In what follows we shall assume
throughout that pr(g|f ) is known analytically.

As a notational point, we see from (14.66) and (14.67) that the conditional
density on unprocessed data g is completely determined by its mean with both the
Gaussian and Poisson noise models, so pr(g|f ) = pr[g|g(f )]. The same is true after
processing; if we know g, we can specify the density on g, and we know g if we
know f. We shall therefore write pr(g|f ) and pr(g|g ) interchangeably, depending
on which conditional variable we wish to emphasize.

Object statistics Statistical properties of objects were the subject of Sec. 8.4. The
viewpoint adopted there regards the object as a random process for which each
sample function is a vector in a Hilbert space. Since we are concerned only with
the measurement component of the object, the Hilbert space of interest has a finite
but huge dimensionality. We saw a few cases where the object statistics could be
specified analytically, for example as a Gaussian random process or a Gaussian mix-
ture, but in most cases analytic models are either unavailable or unrealistic. The
two main options in those cases are to reduce the dimensionality of the statistical
description of the object or to use a constructive model that allows us to simulate
sample objects even if we cannot specify their statistics.

Dimensionality reduction rests on the assumption that somehow the essential
features of a complicated random process can be captured with a relatively small
number of parameters. As discussed in Sec. 8.4.1, approaches to finding this low-
dimensional representation include principal components analysis (PCA) and inde-
pendent components analysis (ICA). When ICA is applied to images, it is found
that the independent components are the outputs of bandpass filters similar to
wavelets or the channels in the human visual system; indeed, some have speculated
that our visual system has evolved to extract approximately statistically indepen-
dent components of natural scenes, thereby permitting efficient transformation of
information to the brain.

We postulate that there exist similar low-dimensional representations of ob-
jects, as opposed to images, and that they again involve bandpass filters or channels.
We know from the discussion in Sec. 8.4.3 that the univariate PDFs on the channel
outputs have a long-tailed, kurtotic form. Sometimes they are described empirically
in terms of the Lévy family, defined not by the density but by the characteristic
function, which has the form ψ(ξ) = exp(−b|ξ|q). If the channels are chosen so
that the outputs are approximately statistically independent, the multivariate ob-
ject statistics are described by a finite product of characteristic functions of this
form.

The constructive models that have received the most attention in image-quality
studies are lumpy and clustered lumpy backgrounds. As defined in (8.303), a sample
function of a lumpy background is specified exactly by stating the lump positions
{rn} as well as the number of lumps N. The statistical properties are fully specified
by giving the probability laws for rn and N.

Alternatively, for many constructive models, the object statistics can be spec-
ified by giving an analytic form for the characteristic functional associated with the
random field. This concept was introduced in Sec. 8.2.3, and the specific forms
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for lumpy and clustered lumpy backgrounds were calculated in Sec. 11.3.9. Other
constructive models that can be used to synthesize texture fields, and for which
analytic characteristic functionals are available, will be introduced in Chap. 18.

To summarize, random objects may be specified by huge-dimensional PDFs,
by lower-dimensional PDFs on channel outputs, by rules that let us construct sam-
ple functions, and/or by characteristic functionals. In what follows we shall see how
each of these descriptions aids us in the computation of ideal-observer performance.

From object domain to data domain If we have either a statistical or a construc-
tive specification of a random object, the next step is to transform it into the data
domain. For constructive models, this step is straightforward in principle; one gen-
erates the random object and uses it to simulate the random image. Simulation
methods are discussed in Sec. 14.4.

To discuss transformation of the PDF, we need to distinguish linear from non-
linear imaging systems. A general rule for nonlinear transformation of bivariate
PDFs is given in (C.104), but it does not extend usefully to high-dimensional mul-
tivariate problems since the Jacobian cannot be evaluated. So far as the authors can
see, there is no hope of transforming an object PDF through a nonlinear imaging
system.

The transformation rules for linear systems are most easily expressed in terms
of characteristic functions and functionals. If g(f ) = Hf, with H a linear CD op-
erator, then we know from (8.96) that the characteristic function for the random
vector g under hypothesis Hj is given by

ψg|Hj
(ξ) = Ψf |Hj

(H†ξ) , (14.69)

where ξ is an M × 1 vector, ψg|Hj
(ξ) is the characteristic function for g, and

Ψf |Hj
(σ) is the characteristic functional of the object f, with σ being a vector in

the same Hilbert space as f, e.g., σ corresponds to a function σ(r).
If we write g = Hf + n and assume that n is object-independent, then we

know from (8.335) that

ψg|Hj
(ξ) = ψn(ξ)ψg|Hj

(ξ) = ψn(ξ)Ψf |Hj
(H†ξ) . (14.70)

For Poisson noise, (8.339) tells us that

ψg|Hj
(ξ) = Ψf |Hj

[H† Γ(ξ)] , (14.71)

where

[Γ(ξ)]m =
−1 + exp(−2πi ξm)

−2πi
. (14.72)

Expressions for the data PDFs can be obtained by performing an inverse MD
Fourier transform on each expression for ψg|Hj

(ξ).
For signal-known-exactly tasks, it follows from the Fourier shift theorem that

ψg|H2
(ξ) = exp(−2πiξts)ψg|H1

(ξ) , (14.73)

where s is the nonrandom signal in data space. Thus it suffices to know the no-signal
or background-only characteristic function in this case.
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Estimation of object statistics In many cases we can express the object statistics
in parametric form. For example, with stationary lumpy backgrounds the width
of a single lump and the number of lumps per unit area (or volume) fully describe
the random process. Similarly, if the object statistics are specified in terms of the
outputs of bandpass channels, we could assume that the univariate characteristic
function for the nth channel has the Lévy form ψn(ξ) = exp(−bn|ξ|qn); if we assume
further that the channel outputs are statistically independent, then the multivariate
object statistics are specified by the sets {bn} and {qn}.

We can use the freedom in choosing these parameters to create a wide variety of
random object fields. Moreover, if we can estimate the parameters from a training
set of real images, we can tailor the object description to a particular physical
situation. The problem is that the training set will consist of images, and we
want to find the parameters for describing objects, in spite of the blur and noise
associated with whatever imaging system was used to form the images.

A way of estimating the object parameters from blurred, noisy images was
devised by Kupinski et al. (2003a). They assumed that the object characteristic
functional under the no-signal hypothesis was known except for some parameter
vector α, so it could be written as Ψf |H1

(s;α). The corresponding characteristic
function in the data domain could then be obtained by one of the transformation
rules given above; for example, (14.71) applies with Poisson noise, and

ψg|H1
(ξ;α) = Ψf |H1

[
H

†Γ(ξ);α
]
. (14.74)

Given a set of signal-absent training images {gn, n = 1, ..., Ns}, Kupinski et
al. formed the empirical characteristic function for the data, which is basically
a Monte Carlo estimate of ψg|H1

(ξ;α), defined by

ψ̂(ξ) ≡
1

Ns

Ns∑

n=1

exp(−2πiξtgn) . (14.75)

The estimation procedure was then basically minimization of the norm of the differ-
ence between the known ψ̂(ξ) and the known analytic form ψg|H1

(ξ;α) from (14.74),
minimization being carried out by varying α. In practice a weighted least-squares
norm was used, taking advantage of the fact that all characteristic functions are
unity at ξ = 0, so the variance of the estimate ψ̂(ξ) is zero at that point. Moreover,
a set of channels was applied to each gn to reduce the dimensionality and ease the
computational burden. For details, see Kupinski et al. (2003a).

The beauty of this procedure is that it gives a statistical description of the
underlying objects, independent of the imaging system. Thus, even though a par-
ticular imaging system, say one described by an operator H0, was used to obtain
the training images, the characteristic function for another system, described by a
general H, can be found from (14.74) once α has been estimated. If we can devise
a way of computing ideal-observer performance from this information, we can in
principle vary H and optimize the imaging system for the class of objects from
which the training set was drawn.

Estimation of the likelihood ratio In an ideal-observer study, the basic quantity to
be calculated is the likelihood ratio, defined by

Λ(g) =
pr(g|H2)

pr(g|H1)
=

∫
df pr(g|f ) pr(f |H2)∫
df pr(g|f ) pr(f |H1)

. (14.76)
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The integrals here are over a potentially infinite-dimensional Hilbert space, but
they can be reduced to M dimensions (where M is the number of measurements)
by observing that pr(g|f ) = pr[g|g(f )]. If we use (8.351) to decompose the object
into background and signal parts,

f = fb + fs , (14.77)

and (for a linear system) transform the background and signal into data space as

g ≡ b+ s , b ≡ Hfb , s ≡ Hfs , (14.78)

then we can write the likelihood ratio as [cf. (13.166)]

Λ(g) =

∫
∞ dMb pr(g|H2,b) pr(b)∫
∞ dMb pr(g|H1,b) pr(b)

. (14.79)

A useful alternative form of the likelihood ratio is given by (13.169) and
(13.170) as

Λ(g) = 〈ΛBKE(g,b)〉b|g,H1
, (14.80)

where the subscript BKE indicates background-known-exactly, and

ΛBKE(g,b) ≡
pr(g|H2,b)

pr(g|H1,b)
. (14.81)

The advantage of this form is that ΛBKE(g,b) is easy to calculate. In fact, for
nonrandom signals it is just the ratio of two conditional densities like (14.67) or
(14.68). Note, however, that the required average in (14.80) is with respect to the
posterior density on the background, pr(b|g, H1); we shall learn shortly how to do
this average by Monte Carlo methods.

One way of evaluating the performance of the ideal observer on a signal-
detection task is to generate sets of signal-present and signal-absent sample im-
ages, estimate the likelihood ratio of each image and form an ROC curve. Methods
discussed in Sec. 14.2.4 can then be used to estimate the area under the curve or
ideal-observer AUC.

A useful surrogate for ideal-observer AUC is the likelihood-generating function
evaluated at the origin. We know from (13.97) that this quantity is given by

G(0) = −4 ln

{∫
dMg [pr(g|H1) pr(g|H2)]

1

2

}
. (14.82)

We can use G(0) to estimate AUC by [cf. (13.20) and (13.96)]

AUC ≈ 1
2 + 1

2 erf

(√
G(0)

2

)

. (14.83)

If the log-likelihood ratio is normally distributed or G(0) is large (which means that
AUC approaches 1), then this result is exact. Clarkson and Barrett (2000) have
found it to be an excellent approximation in a variety of cases with practical values
of AUC.



980 IMAGE QUALITY

Monte Carlo methods Perusal of expressions such as (14.79) or (14.82) shows that
computation of ideal-observer performance in nontrivial cases requires evaluation of
huge-dimensional integrals. In Sec. 10.4.5 we introduced the concept of Monte Carlo
simulation and commented that it was useful in numerical evaluation of multidimen-
sional integrals. As we shall show, Monte Carlo integration is a very valuable tool
in ideal-observer evaluations, but in fact we need to move beyond the simple Monte
Carlo methods of Sec. 10.4.5 to the more sophisticated and powerful approach of
Markov-chain Monte Carlo (MCMC). Book-length treatments of MCMC are given
by Robert and Casella (1999) and Gilks et al. (1996). We begin here, however, with
simple Monte Carlo integration to illustrate the principles and problems.

To evaluate the numerator or denominator in the likelihood ratio as given in
(14.76), we must in principle integrate over an infinite-dimensional space, though we
could also use (14.79) to reduce it to M dimensions (which is of little consolation if
M is of order 106). If, however, we can simulate a set of objects {fn , n = 1, ..., Ns},
then we can approximate those integrals by [cf. (10.300)]

pr(g|Hj) =

∫
df pr(g|f ) pr(f |Hj) ≈

1

Ns

Ns∑

n=1

pr(g|fn) , (14.84)

where the sample must be drawn from pr(f |Hj). That is, if H2 denotes signal-
present and H1 denotes signal-absent, the simulations must include the signal and
background for j = 2 but only the background for j = 1.

Recall that pr(g|fn) in (14.84) is a known function, for example given by (14.67)
or (14.68). In essence, the Monte Carlo integration associates this known function
with every sample point Hfn in the data space. The method is thus reminiscent
of kernel estimation, a technique often used to estimate probability densities from
a discrete set of samples. The key difference is that choosing the kernel in kernel
estimation is a black art. The kernel must be broad enough to fill in the gaps
between samples, yet not so broad as to smooth out essential details in the density
being estimated. No such issue arises with (14.84); the form of the kernel is dictated
by the physics of the problem, and its width is dictated by the noise level.

This is not to say that (14.84) is a panacea. The kernel pr(g|fn) falls off rapidly
as Hfn gets farther from the particular g for which Λ(g) is being calculated. If the
noise level is small, most randomly chosen Hfn will be so far from g that pr(g|fn)
will be zero to computer precision, and few of the samples will make any contribution
to the sum in (14.84). Even though the sum will asymptotically approach pr(g|Hj)
as Ns goes to infinity, and the estimator is unbiased for all Ns, the variance can be
huge for practical finite values of Ns. The problem gets worse as M gets larger or
as the noise level gets smaller.

One way to ameliorate this problem in some cases is by importance sampling.
Suppose we know an analytic form for pr(f |Hj), say as a Gaussian mixture or in
terms of independent components. Then we are free to rewrite the data density as

pr(g|Hj) =

∫
df

pr(g|f ) pr(f |Hj)

q(f )
q(f ) , (14.85)

where q(f ) is a probability density function (i.e., a nonnegative function normalized
to unity) with a support large enough that dividing by zero does not become an
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issue. We can then approximate the data density as

pr(g|Hj) ≈
1

Ns

Ns∑

n=1

pr(g|fn) pr(fn|Hj)

q(fn)
, (14.86)

where now the samples are drawn from q(f ). For this modification to be useful,
we must choose q(f ) so that the samples in data space, Hfn, are clustered near
the actual g. In simulation studies, we can do this by taking advantage of the
knowledge of how we produced g in the first place. If we did so by simulating some
particular object f0, then we know what this object was and can use this knowledge
in computing the likelihood ratio. For example, if we describe objects by their
independent components, with expansion coefficients {αk}, then the initial object f0
is described by {αk0}, and the importance sampler can generate random objects by
random perturbations about {αk0}. So long as the perturbations are large enough
to adequately sample the integrand, the sum in (14.86) is still an unbiased estimator
of pr(g|Hj), and the variance is greatly reduced by using the prior knowledge of the
point about which to take samples. A related approach, suggested by Zhang et al.
(2001a), is to draw the samples from pr(g|f ), renormalized as a density on f.

Markov-chain Monte Carlo Direct Monte Carlo integration as sketched above has
limited applicability because of the need for an analytic form for pr(f |Hj) in the
importance sampler. A more general technique is MCMC, which will be discussed
in the context of image reconstruction in Sec. 15.4.8. As we shall see there, the
essence of MCMC is to propose random perturbations in the vector that is the
variable of integration, and to accept or reject the proposed perturbations with
a carefully chosen rule such that the sequence of accepted perturbations forms a
Markov chain, and the equilibrium PDF for the chain is precisely the one from
which we wish to sample.

For ideal-observer studies, MCMC is particularly applicable to the expression
for the likelihood ratio given in (14.80). A Monte Carlo implementation of this
formula is

Λ(g) ≈
1

Ns

Ns∑

n=1

pr(g|H2,bn)

pr(g|H1,bn)
, (14.87)

where the samples bn are drawn from the posterior pr(b|g, H1).
To sample from the posterior, we can use a Metropolis-Hastings algorithm,

which we shall discuss in more detail in Sec. 15.4.8. As applied to the present
problem, the basic idea is to generate a sequence of samples of the background b
in such a way that the samples are drawn from some target density π(b) such as
the posterior pr(b|g). If the current background in the sequence is b(k), a new trial
background b′ is generated from a proposal density q(b′|b(k)), which can depend on
the current state. The probability of accepting this proposed change is [cf. (15.328)]

Pr(acc) = min

{
1,

π(b′) q(b(k)|b′)

π(b(k)) q(b′|b(k))

}
. (14.88)

If the change is accepted, we set b(k+1) = b′; otherwise b(k+1) = b(k). By a
detailed-balance argument (see Sec. 15.4.8), it can be shown that the equilibrium
distribution is indeed π(b). Note that only ratios of target densities are required; if
π(b) is the posterior, then we can write it as pr(b|g) ∝ pr(g|b) pr(b). The constant
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of proportionality cancels out in (14.88), and we do not need to know the normal-
ization of the posterior. We do, however, need to know the ratios pr(b′)/pr(b(k)).

Kupinski et al. (2003b) showed how this approach could be applied to likelihood-
ratio calculations with a lumpy background model. Two types of perturbations to
the background were allowed: changes in the location of a particular lump and
changes in the number of lumps. This procedure was used to compare three rather
stylized pinhole imaging systems in terms of ideal-observer AUC for an SKE task.
By running the Markov chain multiple times, the variance in the estimate of the
AUC was estimated. In subsequent work, Park et al. (2003) extended this method
to random signals.

Channelized ideal observer We have mentioned low-dimensional representations of
object statistics, but we can also consider dimensionality reduction in data space as
a way of facilitating ideal-observer studies. Though dimensionality reduction would
also be called feature extraction in pattern recognition, we have several advantages
in assessment of image quality that we do not have in pattern recognition. As we
discussed in the context of the channelized Hotelling observer in Sec. 14.3.2, we can
consider SKE tasks where all details of the signal are known, we can construct back-
grounds with known statistical properties, and we can simulate noise-free samples
with these statistics.

Armed with this information, we can construct so-called efficient channels in
such a way that the performance of the Hotelling observer operating on the channel
outputs is a good approximation to that of the true Hotelling observer operating
on the original data g. For example, if we consider a rotationally symmetric signal
in a known location in a statistically isotropic background, we can use rotation-
ally symmetric channels defined by Laguerre-Gauss functions. Gallas and Barrett
(2003) demonstrated that only 5–10 such channels were needed for good estimates
of Hotelling-observer performance; we anticipate that a similar result will hold for
ideal observers when we have a similar amount of prior information, but this hy-
pothesis has not yet been confirmed.

Suppose we have a set of linear channels that we believe, based on our knowl-
edge of the classification task, might be efficient with respect to the ideal observer.
To check this possibility, we need to compute the likelihood ratio on the channel
outputs for a training set of signal-present and signal-absent images and then cre-
ate an ROC curve. Recent work by Subok Park and Matthew Kupinski offers some
possible ways of computing the likelihood ratio. Though this work is unpublished at
this writing, we sketch the main ideas here with the permission of the originators.

The approaches suggested by Park and Kupinski apply to situations where
we have analytic expressions for the characteristic functions of the data g but no
PDFs, yet still want to compute a likelihood ratio (LR). The basic idea is to reduce
the dimensionality of the data by use of a set of P channels and then attempt to
compute the LR on the channel outputs rather than on g itself.

As Park formulated the problem, the PD channel output vector is given by

v = Tg = T {Hf + n} , (14.89)

and the characteristic function for v under hypothesis j (in the case of Poisson
noise) is given by an extension of (14.71) as

ψv|Hj
(ω) = Ψf |Hj

[
H

†Γ
(
T†ω

)]
, (14.90)
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where ω is a P×1 vector. It is assumed that P is relatively small and that ψv|Hj
(ω)

can be computed analytically. The likelihood ratio for a given v is12

Λ(v) =

∫
dPω ψv|H2

(ω) exp(2πiω†v)∫
dPω ψv|H1

(ω) exp(2πiω†v)
. (14.91)

Since P is small, Park proposed doing these integrals as FFTs. Kupinski
refined the idea by suggesting Monte Carlo integration with importance sampling:

∫
dPω ψv|Hj

(ω) exp(2πiω†v) =

∫
dPω

pr(ω)

pr(ω)
ψv|Hj

(ω) exp(2πiω†v)

≈
1

N

N∑

n=1

ψv|Hj
(ωn) exp(2πiω†

nv)

pr(ωn)
, (14.92)

where the samples ωn are drawn from pr(ω). Kupinski also suggested using a few
sample images to determine the mean and covariance of v and then constructing a
PD Gaussian with these estimated parameters to use as pr(ω).

Much further work is needed to validate this approach and explore possible
choices for the channels, but if efficient linear channels in the ideal-observer sense
exist, it opens up many new avenues for evaluating imaging systems with the ideal
observer and classification tasks.

Nonlinear features Several nonlinear approaches to dimensionality reduction have
been suggested by Hongbin Zhang. Zhang et al. (2001a) discusses features derived
from the ideal observer and based on ΛBKE(g,b) as defined in (14.81). Rather
than attempt to average this expression over the posterior on the backgrounds,
as required by (14.80), Zhang reasoned that a useful set of features for an SKE
classification task could be defined as

θp = ΛBKE(g, b̂p) , (p = 1, ..., P ) , (14.93)

where b̂p is some estimate of the background at the known signal location. Specif-
ically, he argued that the background was likely to be slowly varying compared to
a small signal, so he suggested that b̂p be taken as a smoothed version of g, with
different p corresponding to different widths of the smoothing filter. The resulting
values of θp would not immediately be the ideal-observer discriminant function, but
Zhang suggested that an artificial neural network might find a good approximation
to the likelihood ratio in the PD space.

In related work, Zhang also suggested using a set of wavelets centered on the
known signal location, followed by a nonlinear point transformation on each wavelet
coefficient (Zhang et al., 2001b). He suggested an iterative algorithm to train the
nonlinear transformation so that the outputs would follow a PD multivariate nor-
mal law. Then, when a new image is passed through the same transformation, the
likelihood ratio can readily be calculated (see Sec. 13.2.8).

12Even though the channels are linear, this likelihood ratio will usually be a nonlinear functional of
the channelized data v; it should not be confused with the AUC-optimal linear observer introduced
in Sec. 13.2.12.
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Checking the results We have sketched a number of approximate methods for es-
timating AUC for the ideal observer. How do we know if the results are correct?
That is, how can we estimate the bias and variance of an estimate of ideal-observer
AUC?

Variance in the estimate comes from two sources. First, as with any observer
study, there is a variance arising from the random selection of images, or cases
in medical parlance. Second, whenever the likelihood ratio is evaluated by using
Monte Carlo or Markov-chain Monte Carlo methods to average over backgrounds,
there is a variance associated with the random selection of backgrounds. This kind
of variance is analogous to internal noise in the human observer; if the Monte Carlo
calculation is repeated with the same image but a different random-number seed,
it will not return the same value for the likelihood ratio.

Both kinds of variance can be estimated in simulation studies just by repeating
the study many times, with different sets of images or with the same images but dif-
ferent random-number seeds. Alternatively, variance can be analyzed with MRMC
methods as discussed in Sec. 14.2.4 or by using resampling methods as discussed in
Sec. 14.3.2.

Bias is much more difficult to assess since we do not know what systematic
errors we might be making in the likelihood-ratio calculation. To study the bias,
Clarkson et al. (2003) proposed a set of consistency checks that must be satisfied
in an ROC study if the test statistic is indeed a likelihood ratio. For example, we
know from (13.85) that

pr(Λ|H2)

pr(Λ|H1)
= Λ , (14.94)

and in fact this relation holds if and only if Λ is a likelihood ratio (Clarkson and
Barrett, 2000). It follows from (14.94) that

2 (1−AUCΛ) =

∫ ∞

0
dΛt [FPF(Λt)]

2 , (14.95)

where FPF(Λt) is the false-positive fraction for threshold Λt. Again, this relation
holds if and only if Λ is a likelihood ratio (Clarkson et al., 2003).

Other useful relations are derived from moment-generating functions and from
the likelihood-generating function. The moment-generating function for the log-
likelihood ratio λ under hypothesis Hj is defined by (C.56) as

Mj(β) ≡ 〈exp(βλ)〉g|Hj
=
〈
Λβ
〉
g|Hj

. (14.96)

From (13.79) we know that Mj(β), must satisfy

M1(β + 1) = M2(β) , (14.97)

from which it follows that M1(1) = 1. Moreover, a plot of M1(β) vs. β must be
concave upward and pass through the points (0,1) and (1,1) as in Fig. 13.9. Once
again, these properties are unique to the ideal observer.

Finally, a number of investigators have derived inequalities relating AUC to
the likelihood-generating function (Clarkson, 2002; Clarkson and Barrett, 2000;
Shapiro, 1999; Burnashev, 1998).
One example is

1
2G(0) ≤ − ln[2(1−AUCΛ)] ≤ 1

2G(0) +
√
G(0)− 1

8G
′′(0) , (14.98)
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where G(β) is the likelihood-generating function and primes denote derivatives.
If we have a set of simulated or real sample images and a way of estimating

the likelihood ratio for each, we can check the validity of these relationships. For
example, we can use no-signal images to estimate M1(β) directly from its definition
(14.96) and see if it indeed passes through (1, 1). Similar numerical methods can
be devised for each of the relations that must be satisfied for the ideal observer.

If the relations are not verified, we must look for some error in our calculation
of the likelihood ratio. If they are satisfied, we can have confidence that the test
statistic we are calculating is some likelihood ratio, though not necessarily the
likelihood ratio we think we are calculating, namely the one applicable to the image
data. Clarkson et al. (2003) admit the possibility that the algorithm is finding a
good estimate of some other likelihood ratio, but say they have a “natural tendency
to regard (that) possibility as unlikely.”

One case where it is quite likely, however, is when linear or nonlinear features
have been extracted from the original image data for dimensionality reduction. Then
the Markov chain or other algorithm applied to the features may indeed give a good
estimate of the likelihood ratio on the features, and all of the consistency checks
mentioned above will be passed, but there is no guarantee that this likelihood ratio
will give the same performance as one calculated on the original image data; the
consistency checks do not ensure that the features preserve the information content
of the images.

14.3.4 Estimation tasks

Compared to the large literature on model observers for detection and classification
tasks in image-quality assessment, much less attention has been given to computa-
tional methods for estimation tasks, and there is much less agreement about what
one should be computing in the first place. Of course, there is a huge body of
work on estimation of pixel values in image processing and reconstruction, but we
have argued in Sec. 13.3.2 that there is no meaningful way of relating accuracy of
the pixel values to image quality. We shall discuss image reconstruction further in
the next chapter, but for now we concentrate on estimation problems other than
reconstruction.

Thus, by “estimation task” we mean estimation of one or a few parameters
characteristic of the object being imaged and (unlike pixel values) of direct rele-
vance to the purpose for which the image was obtained. Our goal here is to survey
some of the computational methods that can be used for assessment of performance
on such tasks.

Since the parameter being estimated is determined by the object being imaged,
we write it as Θ(f ). Boldface is used since the parameter will often be a vector,
though almost always a low-dimensional one; when we intend a scalar parameter,
we shall denote it as Θ(f ). Upper case is used for Θ(f ) since we use θ for several
other things, including expansion coefficients (e.g., pixel coefficients) in approxi-
mate object representations like (7.27), and that is definitely not what we mean
here.

We emphasize here that we are viewing the parameters to be estimated as
characteristics of the object. This is in contrast to the view of Sec. 13.3 where we
were concerned with parameters characterizing the probability density function of
the data. The relationship between the two viewpoints is subtle, yet critical for
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assessing image quality on the basis of estimation tasks; we shall return to it at
several points below.

Dichotomies Two useful dichotomies for the parameters are linear vs. nonlinear
and estimable vs. nonestimable. The imaging systems that deliver the data from
which the estimates are derived can also be categorized as linear or nonlinear. The
estimators themselves can be linear or nonlinear functionals of the data, and they
can be either biased or unbiased.

We encountered linear parameters in Sec. 7.1.4 when we discussed moment
errors. In brief, a linear parameter is a linear functional of the object. If the
components of Θ(f ) are derived linearly from the object, we know from (7.33) that
they can be written as

Θn(f ) =

∫

∞
dqr χ∗

n(r) f(r) = χ†
nf . (14.99)

Equations of this form will be used in Chap. 15 for discussing image reconstruction,
but here we should think of the components Θn merely as weighted integrals of
the object. If the weighting function χn(r) is constant over some spatial region, we
refer to Θn(f ) as a region-of-interest integral, and its estimate Θ̂n(g) as a region-
of-interest estimator. Of course, the estimate depends on the data g while the
parameter itself depends on f but not on g.

An important class of nonlinear parameters occurs in mensuration tasks,
where the goal is to measure some physical dimension of a portion of the object.
Examples include the area of an agricultural field in aerial photography, volume of
the left ventricle in cardiology, and distance to a target in radar.

As we saw in Sec. 13.3.1, a parameter is said to be estimable or identifiable
with respect to some data set if there is an estimator of it that is unbiased for all
true values of the parameter. In terms of the likelihood pr(g|Θ), a parameter is
estimable if different values of the parameter lead to different likelihoods.

The imaging system that acquires the data g may be linear or nonlinear as
defined in Chaps. 1 and 7. The distinction rests on the form of the mean data; the
system is linear if g is a linear functional of f. We denote a general linear system
by the operator H, so g = Hf.

For a linear system, we can be more precise about estimability, because in that
case we can divide object space U into subspaces called measurement space and null
space, and any object can be uniquely decomposed as

f = fmeas + fnull . (14.100)

We know from the discussion in Sec. 14.3.3 that the probability density function on
the data in most cases is fully determined by the mean data, so for a linear system
we have

pr(g|f ) = pr[g|g(f )] = pr(g|Hf ) = pr(g|fmeas) . (14.101)

A general definition of estimability in this case is that Θ(f ) is estimable if and
only if Θ(f ) = Θ(fmeas) for all f. If this condition is met, then a change in fmeas

leads to a different Θ(f ) and a different likelihood pr(g|Θ). Another definition of
estimability is that Θ(f ) is estimable if and only if pr(g|Θ1) = pr(g|Θ2) implies
that Θ1 = Θ2.
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We can go a step further for a linear parameter. We can decompose the
templates χn(r) into measurement and null components, and the nth component of
the parameter vector can be written as

Θn(f ) = χ†
n,measfmeas + χ†

n,nullfnull . (14.102)

Then Θ(f ) = Θ(fmeas) for all f if and only if χn,null = 0 for all n. Otherwise a
change in fnull would give a different value of the parameter but the same mean
data and hence the same likelihood. Note that it is not necessary that the system
have no null space, just that the templates have no components in that space. Since
null components tend to involve high spatial frequencies, linear parameters derived
from large, blobby templates are more likely to be estimable than ones derived from
small or highly structured templates. In particular, as we shall discuss in more de-
tail in the next chapter, integrals of the object over small pixels are almost never
estimable.

The final dichotomies involve the estimator itself, which can be linear or non-
linear and biased or unbiased. Linear estimators were discussed briefly in Sec. 13.3,
but considerable emphasis was placed there on maximum-likelihood (ML) estima-
tors. Like the likelihood ratio used in ideal-observer classification problems, ML
estimators are usually nonlinear functionals of the data. An exception in both cases
occurs with Gaussian data. For Gaussian data with equal covariances under the
two hypotheses, the ideal observer computes a test statistic (the log-likelihood ra-
tio) that is linear in the data, and for Gaussian data and any linear parameter, the
ML estimator is also linear in the data. In most interesting cases, however, neither
the log-likelihood ratio nor the ML estimator is linear.

If the parameter is estimable, there exists an unbiased estimator, but we may
not know it, or we may choose not to use it; Bayesian estimation, for example,
deliberately introduces a bias toward the prior. Thus we must distinguish biased
from unbiased estimators even for estimable parameters.

Performance metrics: MSE and EMSE From the discussion in Sec. 13.3.1, a natural
choice for a figure of merit is the mean-square error or MSE, defined for a scalar
parameter in (13.280) and for a vector in (13.286) or (13.287).

For estimable parameters, MSE has much to recommend it. It can be com-
puted for any chosen object and estimator, it takes into account both bias and
variance, and it is a scalar that can be used for system optimization. One drawback
is that MSE is defined by averaging the error with respect to the density pr(g|Θ),
so it will depend on the true value of Θ in general. One solution to this problem
is simply to plot MSE(Θ) vs. Θ, much in the same manner that one can plot SKE
detectability as a function of signal location or other parameters [see (13.209)].

With nonestimable parameters, MSE is more problematical. Since null compo-
nents of the object influence Θ(f ) but not g(f ) in that case, many different objects
can give the same mean data but different true values of Θ, and it is quite arbi-
trary which true value one associates with a given data set. Indeed, if there are no
other constraints, it is usually possible to find an object so that any estimator of a
nonestimable parameter is unbiased; whether that object is one that would ever be
encountered is another matter. As we shall see in Sec. 15.1.4, positivity constraints
limit the magnitude of null functions and alleviate issues of estimability, but they
don’t eliminate them.
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Perhaps the best solution to defining a scalar figure of merit for estimates of
nonestimable parameters13 is to use the ensemble mean-square error or EMSE
defined in (13.281) for scalars or (13.288) for vectors. The vector definition can be
rewritten for our purposes as

EMSE =
〈〈

||Θ̂−Θ||2
〉

g|Θ

〉

Θ
=
〈〈

||Θ̂−Θ(f )||2
〉

g|f

〉

f
. (14.103)

In the last form, the average is over some ensemble of objects. For any partic-
ular object in the ensemble, a bias and hence an MSE can be defined, and the
ensemble-average MSE is the quadratic error norm specific to the imaging system,
the estimator and the chosen ensemble. Note that the use of an average over objects
in the figure of merit does not imply that this same information was used in the
estimator. The quantity Θ̂(g) might have been obtained by Bayesian methods, but
it might also be an ML estimate or some other one that eschews prior information.

The question that remains is what ensemble to use in the averaging. The
Bayesian answer would be to average over the prior, and indeed to use that same
prior in the estimation process in order the minimize the EMSE. To a pragma-
tist, there are several difficulties with this approach. First, in practice we might
not have enough verifiable prior information (as opposed to subjective or noninfor-
mative priors) that we would be willing to build it into the inference process. In
practice, the only computationally tractable priors for Bayesian estimation might
be some noninformative prior like entropy or simple analytic expressions such as
conjugate priors14 or the regularizing functions to be discussed in Sec. 15.3.3. Even
if we were willing to use one of these analytic priors to do the estimation, there is
no reason to think that samples drawn from it would bear any relation to the true
distribution of Θ(f ) or f, so it would be hard to have any confidence (belief) in the
MSE computed from that prior.

What pragmatists can do well, however, is to perform realistic simulations
(i.e., ones consistent with a belief system honed in the field, laboratory or clinic),
and these simulations can be used to compute sample approximations to the EMSE
defined in (14.103). Specifically, if a set of sample objects {fn, n = 1, ..., Ns} is
generated, then we can approximate the EMSE by

ÊMSE =
1

Ns

Ns∑

n=1

〈
||Θ̂−Θ(fn)||2

〉

g|fn
. (14.104)

The remaining average can be performed either analytically or by additional Monte
Carlo simulations of g for a fixed fn.

Why ML? And how? As we saw in Secs. 13.3.4 – 13.3.6, ML estimators have many
desirable properties. We know that ML estimators are efficient (i.e., they achieve

13In spite of the terminology, nonestimable parameters can indeed be estimated. An estimate is
merely a number associated with a data set. To be perverse, one could associate the number 3
with any data set. Then an estimate would be given for all g no matter whether the parameter
was estimable, and in fact the variance of the estimate would be zero. The bias would, however,
be completely meaningless.
14A conjugate prior is one chosen purely for mathematical convenience, to make the posterior have
the same mathematical form as the prior. Unless one believes that nature is constructed for the
convenience of statisticians, there is no reason to ascribe any degree of belief to conjugate priors.
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the minimum possible variance as given by the Cramér-Rao bound) if any effi-
cient estimator exists. Also, ML estimators are asymptotically efficient, asymptoti-
cally unbiased and asymptotically normally distributed. In the statistics literature,
“asymptotic” refers to accumulating N i.i.d. data sets and letting N → ∞, but it
can have a broader meaning. All of the nice asymptotic properties of ML estimators
apply if the variance of additive Gaussian noise goes to zero or if the number of
counts in a photon-limited measurement gets large. Thus there is considerable moti-
vation for using ML estimators, especially if we can get into one of these asymptotic
regimes.

It is not obvious how we can perform ML estimation in general, since we sel-
dom know the likelihood pr(g|Θ) directly. Instead, as discussed in Sec. 14.3.3, we
usually know the conditional density pr(g|f ) or pr[g|g(f )]; for direct imaging and
Gaussian and Poisson noise, they are given by (14.67) and (14.68), respectively.

The general relation between the conditional densities on the data and the
likelihood can be expressed either as an integral over the object space or an integral
over data space:

pr(g|Θ) =

∫
df pr(g|f ) pr(f |Θ) =

∫
dMg pr(g|g) pr(g|Θ ) . (14.105)

These forms are equivalent whenever the conditional probability on the data is
determined solely by its mean, which is the case with our usual Gaussian or Poisson
noise models, with or without post-acquisition data processing (see Sec. 14.3.3).

One situation where we can easily go from these conditional densities to
the likelihood is in the estimation counterpart of the SKE/BKE problem. Suppose
we decompose the object into background and signal as in (14.77), and we assume
that the signal is known to be present but that it is characterized by some unknown
parameter vectorΘ. For a linear system, we can write the mean data for background
and signal, respectively, as

b ≡ Hfb , s(Θ) ≡ Hfs(Θ) . (14.106)

For example, in medical imaging fs(Θ) might describe a spherical tumor with un-
known center coordinates, gray level and diameter. In military reconnaissance, it
might refer to a tank with unknown coordinates and heading.

If the background is known exactly and the signal is known except for these
parameters, then

pr(g|Θ) = δ[g− b− s(Θ)] , (14.107)

and the likelihood becomes

pr(g|Θ) = pr(g|g)
∣∣∣
g=b+ s(Θ)

. (14.108)

Explicit expressions for the likelihood ratio in the case of direct imaging can be
found by substituting g = b + s(Θ) into (14.67) or (14.68). Since the number of
parameters is small, there is no difficulty in maximizing the likelihood numerically.

Random backgrounds Just as in the signal-detection problem, the BKE assumption
in estimation is oversimplified and can be misleading. It is much more realistic to
consider random, cluttered backgrounds when we want to estimate signal parame-
ters. We can regard the background components as a set of nuisance parameters,
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in the sense that they do not enter into the overall cost or Bayes risk associated
with the estimation problem. As we learned in Sec. 13.3.8, the optimal strategy for
this problem is to marginalize over the nuisance parameters, at least if we have a
believable way of generating or approximating the prior density or drawing realistic
samples. The likelihood is then given by

pr(g|Θ) =

∫
dMb pr(g|Θ,b) pr(b) , (14.109)

where pr(g|Θ,b) is to be computed from (14.108). This form is quite similar to the
likelihood expressions encountered in Sec. 14.3.3 [cf. (14.84) – (14.86)], and similar
Monte Carlo and Markov-chain Monte Carlo methods can be devised to evaluate it
(Kupinski et al., 2003c). As in the detection case, direct sampling of backgrounds
from pr(b) is unlikely to work well since a randomly chosen b will probably lead to
a vanishingly small pr(g|Θ,b), but importance sampling can be used as in (14.85).
If an analytic form is known for pr(b), samples bn can also be drawn from the BKE
likelihood pr(g|Θ,b), renormalized as a density on b, and the likelihood estimate

is proportional to 1
N

∑N
n=1 pr(bn).

For a detailed survey of Monte Carlo methods in ML estimation, see Geyer
and Thompson (1992).

PDFs of the estimates Monte Carlo methods can also be used to study the distri-
bution of the estimates themselves. If we simulate multiple data sets with the same
true value, say Θ = Θ0, and compute Θ̂ for each, then we have, in effect, drawn
samples from pr(Θ̂|Θ0). From these samples we can estimate the bias, variance,
MSE and any other figure of merit we might devise.

In many problems, it is also possible to compute pr(Θ̂|Θ0) directly. Building
on earlier work by Müller et al. (1990, 1995), Abbey et al. (1998) developed a
method for approximating the density of maximum-likelihood and MAP estimates
under a Gaussian noise model. They showed that the method was directly applica-
ble to estimating parameters such as tumor volume from medical images, and they
found that the predicted analytic PDFs were in good agreement with Monte Carlo
simulation.

Rogala and Barrett (1997, 1998a, b, c) applied Abbey’s method to a combina-
tion interferometer/ellipsometer where the goal was to estimate surface height and
the real and imaginary parts of the refractive index at all points on a metal surface.
Again, the analytic results were confirmed by Monte Carlo simulation.

Cramér-Rao bounds Rather than using the performance of a particular estimator as
a figure of merit, it is also possible to use various performance bounds that might
be easier to compute. In particular, the Cramér-Rao bound, introduced in Sec.
13.3.5, sets a lower limit to the variance of an unbiased estimator. For an unbiased
estimator, the Cramér-Rao bound is given in (13.371) or (13.372), and for a biased
estimator, the appropriate forms are (13.376) and (13.377). Both the biased and
unbiased form are derived from the Fisher information matrix.

Kupinski et al. (2003c) developed MCMC methods to estimate the Fisher
information matrix for the problem of estimating the position, width and amplitude
of a Gaussian signal in a lumpy background. They did not assume that the signal
was always present, so their treatment applied to a hybrid detection/estimation
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problem, but the figure of merit was based only on the estimation performance,
marginalized over the probability of detection.

Approaches based on the Cramér-Rao bound are attractive, but they have
their limitations. For one thing, if more than one parameter is to be estimated, it is
not clear how to combine the individual bounds into a single scalar figure of merit
that can be used for system optimization. Second, in many problems no efficient
estimator exists, and it is not clear in practice how far actual variance will be from
the bound. Similarly, it is often the case that no unbiased estimator exists, so use of
the unbiased form of the bound can be misleading; the biased form (13.376) is less
useful since it requires knowledge of the bias gradient (derivative of the bias with
respect to the parameter). Considerable work has been done at the University of
Michigan on variance bounds in which the norm of the bias gradient is constrained,
though mostly in the context of estimation of pixel values (Gorman and Hero, 1990;
Hero and Fessler, 1994; Hero et al., 1996).

14.4 SOURCES OF IMAGES

Simulated images play an important role in the practical assessment of image qual-
ity. They can be used to get a subjective impression of the effects of changing
parameters of the imaging system, and they can serve as input for objective studies
with either model observers or humans. If the simulations are realistic, they may
even be preferable to real images since there is no question about the true state of
the object. Most importantly, simulations can be used to assess imaging systems
that do not exist, so they are essential to any program of systematic optimization.

Realistic simulations involve computer implementations of the object, the
image-formation process and the detector, and they must accurately reflect both the
deterministic and stochastic aspects of each of these components. The art of good
simulation is thus necessarily specific to both the imaging system and the use to
which the simulation will be put. Nevertheless, it is our goal in this section to give
some general guidelines on the simulation process, with reference to specific systems
only as examples. We shall refer to the methods for representing deterministic and
random objects given in Chaps. 7 and 8, along with material on the simulation of
image formation provided in Chap. 10.

In Secs. 14.4.1 and 14.4.2 we survey methods for deterministic and stochas-
tic simulation of objects, and in Secs. 14.4.3 and 14.4.4 we treat deterministic and
stochastic simulation of image formation. Finally, in Sec. 14.4.5 we discuss the gold-
standard problem that arises when using real images instead of simulated ones.

14.4.1 Deterministic simulation of objects

In Sec. 7.1 we emphasized that real objects are functions, but we also acknowledged
that numerical computations require approximate discrete representations. In all
fields of image science, there is considerable emphasis on linear representations, and
we know from (7.27) that the general form of such a representation is

fa(r) =
N∑

n=1

θnφn(r) . (14.110)
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Thus object simulation involves two steps: choosing the expansion functions φn(r)
and choosing the coefficients θn.

It is all but universal in simulation studies to choose the expansion functions
as pixels or voxels, for two reasons. First, if we humans are simply inventing the
simulated objects, it is easiest for us to think in terms of spatial variables. Pixels
and voxels are discretizations of our natural visual domain, and it would be much
harder for us to think in terms of, say, Fourier basis functions. Second, as we
shall see below, we may also want to use images from some high-resolution imaging
system as objects for another system of lower resolution. Since the first system is
designed to present data to humans, it is likely to provide us with digital data in a
pixel or voxel representation. Thus we have a ready-made discrete simulation if we
stick with those expansion functions.

When the goal of the simulation is to evaluate imaging systems, it is not so
much the simulated objects as the resulting simulated images that interest us. Our
goal is to use the discrete representations of objects and systems to produce images
that are as near as possible to those that would be obtained with actual continuous
objects and continuous-to-discrete systems (see Sec. 7.4.3). That means that we
should take N in (14.110) as large as possible. The only cost to increasing the
number of pixels and voxels, in most cases, is increased computational time, and
that commodity continues to plummet in price. In particular, we do not need to
worry about whether the resulting system matrix is highly non-square and hence
leads to an underdetermined inverse problem. In this section we are concerned only
with accurate simulation of the forward problem; issues associated with choice of
representation in inverse problems are discussed in detail in the next chapter.

Geometric objects The easiest way to get started in object simulation is to use
superpositions of simple geometric shapes (circles, squares, ellipses...). In a pixel
representation, the coefficients θn are assumed to have the same value for all pixels
within one elemental shape, but generally different values within different elements.
If the number of pixels N is large, we need not worry too much about pixels that
straddle the border between elements. By using a range of sizes for the elemental
shapes, we can get a simulated object that has small structures to challenge the
spatial resolution of a simulated imaging system and large uniform structures with
which to study system uniformity, radiometric accuracy and noise properties.

Such seemingly naive simulated objects have proven particularly valuable in
tomographic imaging. They are known as mathematical phantoms in that field,
and some have been so durable that they are commonly referred to by the name(s)
of the investigators who devised them. Thus we have the Shepp-Logan phantom
(an arrangement of ellipses somewhat resembling a 2D cross-section of the human
brain; Shepp and Logan, 1974) and the Defrise phantom (a 3D set of thin paral-
lel disks meant to challenge certain cone-beam tomographic systems; Defrise and
Clack, 1994).

Geometrical shapes can also be manipulated to mimic much more complicated
objects. For example, Tsui et al. (1993) devised a 3D representation of the human
torso that includes a static model of the heart, and Pretorius et al. (1997) extended
the work to a beating heart. This so-called MCAT (mathematical cardiac torso)
phantom has become a de facto standard in simulation of nuclear-medicine cardiac
studies.
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The mathematical theory that treats efficient ways of representing and manip-
ulating geometrical forms within the computer is called computational geometry.
Two useful textbooks in this emerging field are O’Rourke (1998) at an undergradu-
ate level and the more comprehensive graduate-level text by Preparata and Shamos
(1985).

Digitized real objects Useful though these geometric objects may be, they do not
capture the complexity of object variation from pixel to pixel within a given geo-
metric element, and for this reason they may not give accurate results when used
for the objective assessment of image quality. One way around this difficulty is
stochastic simulation, discussed in Sec. 14.4.2, but another approach is use of real
image data.

As mentioned above, we might have access to high-resolution images of objects
that we also wish to image with a lower-resolution system. Often the high-resolution
system will measure fundamentally different parameters of the object, or it might
be that the higher-resolution system is more expensive or more invasive than the
system under development. Under these circumstances, the higher-resolution sys-
tem might not be one we would use in practice, but we can nevertheless use the
images it produces to guide the development of the new system.

An example of considerable interest for medical imaging is the Visible Human
Project. In this project a human cadaver was imaged with computed tomography
at high spatial resolution and high (but irrelevant) radiation dose. High-resolution
magnetic resonance imaging was also performed, and then literal tomograms15 were
obtained by slicing the cadaver into thin layers and photographing each.

The CT images obtained in this project have higher resolution and lower noise
than any obtainable with living patients, so they can serve directly as objects for
simulation studies of new CT systems. The MRI images are less useful for this
purpose since the object in MRI is specified in a complicated way by three distinct
scalar fields, the spin density and two relaxation times (see Prologue and Sec. 7.1.1).
Any particular image represents some nonlinear combination of these three compo-
nents and cannot be used to simulate objects for imaging systems that respond to
other combinations. The optical images are useful mainly because they accurately
delineate borders of the organs, so they provide an alternative to the stylized geo-
metric shapes discussed above. The actual gray levels (or colors) do not, however,
correspond to anything that would be seen with any real medical imaging system.

For many further details on the Visible Human images and their applications,
the reader may consult the proceedings of conferences that have been held on the
project (Banvard, 2000).

Similarly, Zubal et al. (1994) at Yale have developed torso and brain phan-
toms by starting with high-resolution CT images and painstakingly labelling dif-
ferent anatomical regions by hand. To simulate objects in lower-resolution nuclear-
medicine simulations, these labelled regions can be assigned different gray levels,
corresponding to uptakes of some radiopharmaceutical of interest.

Computer graphics Perhaps the greatest impetus to progress in image simulation
today is computer games and the closely related field of virtual reality. Since

15Greek τoµoσ = slice.
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the everyday reality we see around us consists mainly of surface reflections from
opaque objects, virtual reality and computer graphics are particularly useful for
simulating such objects. Useful books in this area include works by Neelamkavil
(1987), Anand (1993), Sillion and Puech (1994), Glassner (1995) and Rogers (1998).
Graphics-related journals and magazines include: IEEE Transactions on Visualiza-
tion and Computer Graphics, IEEE Computer Graphics and Applications and IEEE
Multimedia; ACM Transactions on Modeling and Computer Simulation and ACM
Transactions on Graphics, and Computer Vision, Graphics and Image Processing
(CVGIP).

14.4.2 Stochastic simulation of objects

In Sec. 8.4 we discussed a wide variety of statistical models for objects. Each of these
models provides a PDF that at least partially describes the random variation in
objects, and stochastic simulation of objects amounts to drawing sample functions
(or vectors) from those PDFs. Often the first thing we need to simulate is the
overall shape of the object or of key components in the object; see Chap. 8 for a
brief discussion of the statistical description of shape. Then we need to add in a
random texture.

Random textures Methods of generating samples of texture fields with specified
statistics were discussed in Sec. 8.4.4, and the literature on computer graphics can
provide additional approaches. A common approach in image simulation is to as-
sume that the texture is stationary within the boundaries of a single geometric
element of the simulated object.

How accurately the texture needs to be simulated depends critically on the
purpose of the simulation. If the task used to assess image quality is detection
of a low-contrast lesion in a medical image, then, as we have noted earlier in this
chapter, the texture results from anatomical variations that may, in fact, constitute
the main noise source limiting task performance, so accurate modeling is essential.
On the other hand, if measurement noise is high or if the task is estimation or
mensuration, then task performance might be relatively insensitive to fine details
of the object structure.

We urge the reader to be skeptical of simulations that omit texture modeling,
particularly if the goal of the simulations is to provide input for image reconstruc-
tion. As we shall see in the next chapter, any reconstruction algorithm involves a
choice of how much fine detail to attempt to reconstruct. Often this choice is made
on the basis of claimed prior information, and the most common such claim amounts
to saying that the object contains little or no fine detail. At the extreme, it may be
asserted that the object is piecewise constant within boundaries of regions such as
organs. Of course, it is easily possible to simulate objects and hence tomographic
data consistent with this assertion, but the simulations then provide essentially no
information about how the algorithms would perform on tasks that are sensitive to
fine details.

Random signals In signal-detection studies it is useful to think of the object as a
superposition of signal and background (see Sec. 8.4.5), and the signal component
might be particularly amenable to simulation. In medical imaging, for example, a
common task is tumor detection, and it might suffice to model the tumor as a small
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sphere or ellipsoid of low contrast. When the task is discrimination between types
of tumors or between benign and malignant lesions, however, it may be necessary
to include other features such as spicules (needle-like protrusions from the body of
the tumor), but these too can be incorporated in realistic simulations.

Simulated signals may be superimposed on simulated or real backgrounds. As
we saw in Sec. 8.4.5, the signal can sometimes be regarded as simply added to
background, and in those cases we can maintain separate files of simulated signals
and real or simulated backgrounds, adding them together in various combinations
as needed. Moreover, when we are dealing with linear systems, we can choose to
add the images rather than the objects (see Sec. 8.5.4). This makes it possible to
add simulated signals to actual images of normal (signal-absent) objects as seen
through real imaging systems. Since normal images are much easier to acquire and
verify than abnormal ones, this approach can be very beneficial in avoiding the
gold-standard problem.

14.4.3 Deterministic simulation of image formation

Linear systems Once we have a discrete object representation, it is generally straight-
forward to compute its mean image through a linear imaging system by matrix mul-
tiplication. The only real difficulty is in formulating the matrix, and that problem
is specific to the imaging modality. We shall give an example of how to construct
the matrix for emission computed tomography in Sec. 17.2.6.

We emphasize again, however, that it is important in simulation studies to
sample the object finely, especially in image-reconstruction problems. If the recon-
struction algorithm assumes that the object consists of voxels of a certain size, and
the data are generated on precisely this same assumption, then a false consistency
may result. When the same matrix is used in data simulation and reconstruction,
and the resulting images are good in some sense, all that has been proved is that
the matrix is nonsingular; no useful conclusions can be drawn about the true CD
system or about real data. Simulation studies that use the same matrix for both a
forward problem and its inverse problem should be regarded with strong suspicion.

Sparseness of the H matrix Though the H matrix used in simulation may be huge,
it is often very sparse, with most of its elements equal to or very near zero. In
direct-imaging systems, for example, the point response function hm(r) will tend
to be highly concentrated; for any chosen source point r, only a small subset of
the detector pixels will receive radiation. (Indeed, this is essentially a definition of
direct imaging.) When such systems are represented by matrices, the same thing
holds: for any chosen n, Hmn is nonzero for only a small subset of m. Put another
way, each column of H is mostly zero, no matter how many columns we choose to
use. The zero elements need not be stored, and of course there is never any point
in multiplying by zero.

Indirect-imaging systems may also result in sparse matrices. In tomography,
for example, radiation is received from points along or near a thin pencil through
the object (at least when scatter is neglected). Conversely, for any chosen object
point and any projection direction, only a small subset of the detector elements
receive radiation. In this case elements in one column of H are indexed by both the
detector index and the projection direction, but nevertheless only a small fraction
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of the elements in each column are nonzero. For more discussion of this point in
the context of emission computed tomography, see Sec. 17.2.6.

Shift-invariance Another structure that we might consider using is shift-invariance.
As we have discussed in Sec. 7.2.3, it may be reasonable to describe certain CC sys-
tems with shift-invariant point spread functions. When the output of such a system
is sampled with a regular detector array, and the object is represented by a regular
grid of the same spacing, it is tempting to say that the system exhibits discrete
shift-invariance and hence that the images are convolutions that can be computed
efficiently with fast Fourier transforms or FFTs.

There are several problems with this approach. The first is that discrete con-
volutions (with N samples in 1D) are described by modulo-N arithmetic (see Sec.
3.6.2). The result is an entirely unphysical wrap-around such that images that
disappear from one edge of the detector as the object point is shifted magically
reappear on the other side. Various stratagems can be employed to minimize this
effect, but their adequacy is seldom verified.

The second problem is that any real CC system must have some departures
from strict shift-invariance. In a lens system with aberrations, for example, the
form of the PSF varies with field angle. This problem is incompatible with any con-
volutional description. It can be minimized by restricting the object field and/or
the image field, but then wrap-around effects may become more significant.

Finally, a great hazard of working with FFTs and discrete convolutions is that
it entices the user to choose the number of samples in object space to be the same as
the number of samples in image space. As we stressed above, accurate simulation of
CD systems requires fine sampling of the object. The FFT approach to simulation
requires sacrificing accuracy for speed; this tradeoff becomes increasingly difficult
to justify as computers get faster, and it is especially questionable when only one
or a few images are to be simulated.

These warnings do not imply that we should ignore approximate shift-invariance
when constructing an H matrix or performing simulation studies. If neighboring
columns of H are nearly equal but for a shift, we can take advantage of this struc-
ture and reduce the computation time needed to find the matrix and the memory
needed to store it. For an example in the context of emission computed tomography,
see Sec. 17.2.6.

Deterministic transport calculations In principle, the Boltzmann transport equation,
discussed in detail in Secs. 10.3 and 10.4, allows us to compute the image of any
object where the radiation can be considered particle-like, which for electromag-
netic radiation means that interference and diffraction, polarization and quantum-
mechanical effects such as squeezing can be neglected. To oversimplify, the domain
of the Boltzmann equation is the same as that of geometric optics.

14.4.4 Stochastic simulation of image formation

Stochastic simulation was introduced in Sec. 10.4.5 as a broad class of methods
in which some quantity is estimated by performing random experiments, either
physically or in a computer. These methods can be applied to the generation of
samples of noisy data for use in psychophysical experiments and model observer
calculations.
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Detectors and image noise So far we have discussed ways of computing or estimat-
ing the mean data {gm}, but for many purposes we need to simulate the actual
noisy data {gm}, so we must also be able to simulate the noise contributions {nm}.

For simple noise processes, we can just call an appropriate random-number
generator to generate a noisy image. For example, many detector arrays are dom-
inated by electronic noise, which we know from the discussion in Chap. 12 to be
usually well described by Gaussian probability laws. Moreover, we can often argue
from physical grounds that the noise in different detector elements is statistically
independent, so the noise can be simulated by calling an independent Gaussian
random-number generator at each element. Similarly, if Poisson noise dominates,
we can first calculate the mean number of counts at each element by deterministic
methods and then call a Poisson random-number generator with this mean.

Some detectors generate excess noise as a result of a random amplification pro-
cess (see Secs. 11.4), and the detector therefore introduces noise correlations. To
accurately simulate a noisy image in this case, we must draw random vectors from
a multivariate PDF, or we must simulate the amplification process itself.

In summary, for the results of an evaluation study to be valid, it is crucial that
realistic object models and accurate models of the imaging system be employed.
Particularly when the investigation involves an imaging system or a task for which
model and human observer data have not been compared before, performance es-
timates based on simulated data sets and model observers should be verified using
real data and human observers.

14.4.5 Gold standards

Conventional ROC analysis requires knowledge of the truth status of the images
in order to score observer responses as correct or incorrect. Thus standard ROC
methods are not directly applicable when the truth status of the images is unknown.
The requirement that independent truth status be known can lead to case-selection
bias that can favor one system over another.

Even when a method for establishing the truth status of the images exists,
giving a so-called “gold standard,” the method is more often a bronze standard
rather than gold. New modalities are often evaluated with an older technology
as the gold standard, even though the new modality may allow for the detection
of subtle objects missed when using images from the older device. In medical
applications, biopsy proof is the gold standard, but even biopsy is not perfect.
Biopsy needles can miss their mark, and pathologists have been shown to make
mistakes as well. Pathologist is another name for a human observer performing a
classification task, so the process should be amenable to objective evaluation based
on task performance. But what would be the gold standard?

Given the need to keep score of the observer’s performance using a specified
figure of merit, it is clear that simulations offer an added advantage—they solve
the ground truth problem. For simulated images, the truth state of the objects are
known because this information is in the hand of the investigator.

In this section we shall describe the effect of inaccurate gold standards on
ROC methods and present approaches to the evaluation of imaging systems in the
absence of ground truth. As we shall see, methods for the assessment of imaging
systems in the absence of ground truth exist, but the uncertainty in the estimate of
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the system’s performance is much larger than what is achieved when ground truth
is known.

Truth by expert panel One approach to the establishment of truth is the use of an
expert panel of observers. This method raises a multitude of questions and concerns
regarding the number of experts to be used, how they will be chosen, and how their
responses will be combined to establish “truth.” Revesz et al. (1983) showed that
the ranking of 3 systems could be made to favor any one of the 3, depending on the
way in which the expert opinions were used to determine truth.

Mixture-distribution analysis Mixture-distribution analysis is based on the assump-
tion that experts are likely to be correct when they agree. Kundel and Polansky
(1997) suggested the use of a mixture-distribution analysis as an alternative to ROC
methods when ground truth is not available. The method is based on dichotomizing
the images into groups on the basis of the extent of a set of observers’ agreement
on them. It is assumed that the image groups represent different levels of case diffi-
culty; i.e., lower agreement indicates harder cases while higher agreement indicates
easy cases. The number of groups is arbitrary. Thus the underlying model is a
mixture distribution with a user-defined number of groups. Given the observer’s
ratings, an expectation-maximization (EM) method can be used to estimate the
proportion of images in each group and the probability of truth given a certain level
of agreement. Having estimated the truth status, the reader ratings can be used to
determine the ROC curve.

Kundel and Polansky (1997) have compared mixture-distribution analysis to
the results of an ROC analysis, where the ROC method used a separate expert
panel to determine truth. Both methods gave similar estimates for the percent-
age of correct diagnoses for the task of image interpretation in chest radiography.
Kundel and Polansky (1998) have shown that the results are fairly robust to the
number of groups used in the model. The method may be especially useful in the
evaluation of CAD algorithms; Kundel et al. (2001) recently demonstrated the use
of the mixture-distribution approach for the evaluation of CAD in mammography.
Recent emphasis on lung cancer screening programs using high-resolution CT raises
the spectre of a very large number of potential lesions in the images for each patient;
biopsy proof is simply not viable. Mixture-distribution analysis may be useful for
the assessment of adjunctive CAD algorithms for this application.

See Polansky (2000) for a tutorial on the mixture-distribution method and
other agreement-based approaches.

ROC analysis without truth of diagnosis It is not possible to perform an ROC evalu-
ation of a single imaging system in the absence of ground truth because the problem
is underdetermined. However, if each object has associated with it ratings from im-
ages obtained on two or more modalities, Henkelman et al. (1990) demonstrated
that an EM algorithm can be used to estimate the class prevalences and the model
parameters of a mixture distribution for the underlying objects.

The EM model makes the assumption that there are two underlying distribu-
tions for the decision variables, one for each class, and the distributions are corre-
lated by an unknown amount. The dimensionality of each distribution is equal to the
number of modalities under test. The EM algorithm estimates the relative propor-
tion of each distribution (the prevalences), the locations of the observer’s thresholds
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corresponding to each rating level along the decision axis for each modality, and
the parameters specifying the distributions. For example, the use of a 5-point rat-
ing scale for 2 medical imaging modalities involves the estimation of 10 category
boundaries, one disease prevalence and, in the case of a bivariate normal model for
the distributions, the difference in means of the two distributions, their widths in
two dimensions, and their correlations. Thus, given a sufficient number of images
and observers, the estimation problem becomes tractable.

In a commentary on the Henkelman approach, Begg and Metz (1990) point out
that the method breaks down if the imaging systems have low AUC (Henkelman et
al. restricted their investigations to systems with an AUC ≥ 0.92). Begg and Metz
suggest that each system must have an AUC of 0.80 or better for this technique to
be applicable.

The work of Henkelman et al. has been extended by Beiden et al. (2000b),
who performed Monte Carlo simulations to determine the uncertainties in the EM
estimates of AUC obtained in the absence of ground truth. These authors found
that many more patients were required in the truth-unknown case to yield estimates
of AUC with standard deviations of those determined in the truth-known case, for
the particular choice of true underlying distributions they investigated.

More investigation is required to better understand the usefulness of the EM
approach to the no-gold-standard problem in ROC analysis in order to better un-
derstand the impact of the forms of the underlying distributions, the number of
samples, the number of observers, the model assumptions made in the EM algo-
rithm, and so on. Henkelman et al. suggest that the estimation problem may
become better conditioned as the number of imaging modalities increases. More
research is required to investigate this issue as well. Nonimaging diagnostic tests,
including pathology readings, might also be included as additional modalities along
with one or more imaging tests in the EM procedure.

Evaluation of estimation performance without a gold standard The issue of ground
truth arises also in evaluating imaging systems on the basis of estimation tasks.
For example, cardiac ejection fraction (the fraction of the blood expelled on each
beat) can be measured by many different methods, including SPECT, planar nu-
clear medicine, MRI, ultrasound, CT and biplanar projection x rays. Each of these
methods has significant errors, and none is universally accepted (except by its prac-
titioners) as the “gold standard.” When a new method is developed, it is customary
(perhaps even mandatory) to publish a plot of ejection fractions obtained by the
new method against ones obtained on the same patients with some older method.
Ideally such plots would show a high correlation, with regression slopes near one
and intercepts near zero. It is not uncommmon, however to find slopes around 0.6-
0.8 and intercepts around 0.2-0.3. Something is wrong with one or both methods,
but there appears to be no way of telling which without a gold standard.

It would be desirable to regress the estimates obtained from each modality
against the true value of the parameter rather than against another estimate, and
in fact it is possible to do so if each patient is studied on each of two or more
modalities (Hoppin et al., 2002; Kupinski et al., 2002). The basic assumption is
that there exists a linear relation between the mean value of the estimates and the
true value for each patient (though nonlinear relations can also be used). If θpm is
the estimate obtained from patient p on modality m, and Θp is the true value for
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that patient, the assumed relation is

θpm = amΘp + bm + npm , (14.111)

where npm is a zero-mean random variable. For simplicity, Hoppin et al. assumed
that npm was normally distributed, but this does not appear to be critical. It was
also assumed that npm was statistically independent of np′m′ for p /= p′ or m /= m′,
and that the random variables for different patients but the same modality had the
same variance. If P patients are each studied on M modalities, there are a total of
PM measurements and 3M unknowns, namely the M values of am and bm as well
as the variances of npm for each m.

The basic idea is to estimate the 3M unknowns from the PM measurements
by maximum-likelihood methods. With the assumptions made about npm it is
straightforward to write down a probability density function on the measurements
conditional on the unknown parameters and on the true values Θp, but of course we
don’t know these true values. Therefore Hoppin et al. assumed that the Θp were
drawn independently from some parametric density pr(Θp|α), where α is a vector
of unknown parameters describing the density. For example, since ejection fraction
is defined on 0-1, a natural choice for pr(Θp|α) is a beta distribution, which has two
free parameters. These two parameters are of course unknown, so they are simply
added to the list of parameters to be estimated. For example, with three modalities
and the beta distribution, there are a total of 3M + 2 = 11 unknowns, but if 100
patients are studied, there are 300 measurements.

This method has been well validated in simulation studies, and it has been
placed on a firm theoretical footing by calculation of the Fisher information matrix.
Not only does it give accurate estimates for the desired regression parameters, it
also gives good values for the nuisance parameters contained in α.



15
Inverse Problems

In an imaging context, a forward problem is to determine the image produced by
a given object. One might think that the corresponding inverse problem would
be to determine the object that produced a given image. Were that so, this chap-
ter would be quite short. As we have emphasized in previous chapters, imaging
systems have null functions, and infinitely many different objects can produce the
same image. It is virtually never possible to determine the object. A less ambitious
goal is just to learn something about the object, perhaps to characterize it with
a finite set of parameters in an approximate object description. It is in this sense
that we shall understand the term inverse problem. Excellent general discussions
of inverse problems are given by Sabatier (1987, 1991), Bertero (1989), Pike and
Bertero (1992), Engl et al. (1996), Kirsch (1996), Glasko (1988) and Bertero and
Boccacci (1998).

Various terms are used for particular inverse problems. The term image re-
construction can be used quite generally for almost any inverse problem in imaging,
but it is usually used in a tomographic context, meaning reconstruction from pro-
jection data. An inverse-source problem (Baltes et al., 1978) is one where the
unknown object is a radiation source, and an inverse scattering problem (Fiddy,
1992) is one where the unknown is a distribution of scatterers, such as variations
in refractive index. When the object is reconstructed from a blurred and noisy
direct image, the terms deblurring and deconvolution are often used (even when
the forward problem is not a convolution). Closely associated with deconvolution is
system identification, which refers to a situation in which a signal from a known
source propagates through some linear system, and the problem is to characterize
the system. The even more difficult problem of blind deconvolution arises when
neither the input nor the system response is known, and it is nevertheless desired
to characterize the input, the system or both.

Many inverse problems can also be cast as estimation problems, especially
when the statistics of the data are taken into account. In this view, the goal is
usually to estimate pixel values or other parameters of the object. Many of the
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principles of estimation theory, introduced in Chap. 13, will recur in this chapter.
In Sec. 15.1, we give an overview of several basic issues in image reconstruc-

tion, including the key concept of estimability. In Sec. 15.2 we discuss various ways
of deriving linear operators that can be applied to image data to give a recon-
structed image in one step. In Sec. 15.3 we formulate solutions to inverse problems
as minimization of some functional of the solution and the data. One component of
this functional is a measure of the discrepancy between the actual measured data
and the data that would be produced by some approximate object representation.
Minimization of this term alone would force the solution to be consistent with the
data, but strict agreement with noisy data will inevitably yield noisy and unsatis-
factory images, so some means of backing off from strict data agreement is required.
The general term for noise control is regularization, and in Sec. 15.3 we impose
regularization by adding another term to the objective functional. In Sec. 15.4,
some specific iterative algorithms for finding this minimum are discussed, and the
statistical properties of the resulting images are derived.

15.1 BASIC CONCEPTS

Several basic concepts that run through this chapter are introduced here. In Sec.
15.1.1 we present a useful taxonomy of inverse problems. In Sec. 15.1.2 we recognize
that most inverse problems are approached by adopting a discrete representation of
the object, but a number of often overlooked problems arise when we do so. One
such problem is that the coefficients in this representation may not be uniquely
determined even by noise-free data. This leads to a discussion of estimability in
Sec. 15.1.3. In Sec. 15.1.4 we begin to examine some of the implications of the fact
that many physical objects cannot assume negative values. Finally, in Sec. 15.1.5
we present some remarks on applying the general principles of objective, task-based
assessment of image quality, as introduced in Chap. 14, to inverse problems.

15.1.1 Classifications of inverse problems

Classification by data type We have previously classified forward problems as CC,
CD and DD, depending on whether the object and the image data were discrete
vectors (D) or functions of a continuous variable (C). Usually nature dictates that
the object is continuous in this sense, and the nature of digital image acquisition
dictates that the image is discrete, so the CD model is the natural one. When we
want to include a reconstruction step, however, we can choose to produce either
a function or a finite vector. If we want to think of the data-acquisition system
plus the reconstruction algorithm as one big imaging system, we must expand our
classification scheme, adding another C or D to specify whether the output of the
reconstruction is continuous or discrete. Some interesting cases are:

CCC: This designation refers to a CC system for the forward problem fol-
lowed by a CC mapping to the reconstruction. Hence it applies to an
integral equation and its analytic solution.

CCD: Again we have a CC system for the forward problem, but now with a
reconstruction algorithm that produces a discrete vector. This designa-
tion would apply to numerical inversion of an integral transform.
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CDD: This is the usual case in image reconstruction, where discrete data are
reconstructed on a discrete grid.

CDDC: This designation could apply to image reconstruction on a discrete
grid followed by display as a continuous luminance pattern.

CDC: This refers to direct reconstruction of functions without adopting a
discrete object model (see Sec. 15.2.2).

DDD: Pure simulation.

DDDC: Simulation plus display.

Linear vs. nonlinear reconstructions We can further distinguish linear and nonlinear
operations in both the forward and inverse step. Linear and nonlinear forward
mappings were discussed in Chap. 7, so we concentrate here on the inverse mapping.

If we denote the reconstruction by f̂, whether it be continuous or discrete, and
if the reconstruction can be performed with a linear operator Olin, we can write

f̂ = Oling . (15.1)

For a discrete reconstruction from discrete data (CDD or DDD), the operator Olin

is a matrix; for a continuous reconstruction from discrete data, it is a DC operator
as discussed in Sec. 7.3.6.

If the operations involved in reconstruction of f̂ from g are nonlinear, we can
write generically

f̂ = Onlg , (15.2)

where Onl is some nonlinear operator. Nonlinear reconstruction operators can be
applied to data obtained from either linear or nonlinear imaging systems.

One example where it is possible to state a simple operational form for Onl is
when point nonlinearities are applied following an otherwise linear reconstruction.
In the notation of Sec. 7.5, we can write

f̂ = Φ{Oling} , (15.3)

where Φ{·} is a nonlinear functional applied pointwise. A simple example is where
Φ{x} = x step(x), so that the effect of Φ is to clip negative values.

Implicit and iterative solutions Equations (15.1) and (15.2) suggest direct, one-step
reconstructions, where some operator is applied once to the data to get a solution.
Often, however, the desired f̂ is found by minimizing some scalar-valued functional
Q(f,g) that depends on the object and the data. Various terms for Q(f,g) can be
found in the literature, including objective function (or functional), merit func-
tion, penalty function, cost function and energy (the latter designation arising
from analogies to statistical mechanics).

We encountered one example of an implicit reconstruction procedure in Chap. 1
when we discussed least-squares reconstruction in a DDD context. As we saw in
(1.191), the solution in that case can be written as

f̂ = argmin
f

Q(f,g) , (15.4)

where, in the least-squares case, Q(f,g) = ||g−Hf̂ ||2. The argmin notation means
that f̂ is the vector f for which Q(f,g) is minimum. Since this minimization is per-
formed for a given g, the resulting f̂ is a function of g. In the least-squares case,
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the f̂ found by minimizing Q is a linear (or at least affine) function of g [cf. (1.195)
or (1.200)], but more generally f̂ is a nonlinear function of g.

Implicit formulations often lead to iterative algorithms for finding the f̂ that
minimizes the functional. In these algorithms, successive estimates f̂ (k) are gener-
ated according to a recursion rule with the general form,

f̂ (k+1) = O(k)
{
f̂ (k),g

}
, (15.5)

where O(k){f̂ (k),g} is some operator with two operands, so that its output at each
step depends (often nonlinearly) on both the previous estimate f̂ (k) and the original
data g. The superscript on O indicates that the operator itself can change as the
iteration proceeds. Often the recursion rule (15.5) will be chosen so that the argmin
solution of (15.4) will coincide with f̂ (∞).

15.1.2 Discretization dilemma

In Chap. 7 we discussed in detail various approximate object representations. The
general form of a linear approximation to an object function was given in (7.27) as

fa(r) =
N∑

n=1

θnφn(r) , (15.6)

where the subscript a denotes approximate, and {φn(r), n = 1, ..., N} is any con-
venient set of expansion functions. In a more compact operator notation, (15.6)
becomes

fa = D
†
φθ , (15.7)

where Dφ is a CD discretization operator and D
†
φ is its adjoint (hence a DC opera-

tor).
If the coefficients {θn} in (15.6) are derived linearly from the object, we know

from (7.33) that they can be written as

θn =

∫

∞
dqr χ∗

n(r) f(r) , (15.8)

or in operator form as
θ = Dχf . (15.9)

Mapping a discrete object representation through a CD system In Sec. 7.3 we saw
how object functions map through a linear CD system to form discrete data. If the
CD system acquires M noisy measurements, the discrete data vector g is an M × 1
random vector given by

g = Hf+ n , (15.10)

where H is the linear CD operator defined in Sec. 7.3.1 and n is an M × 1 noise
vector. A simple mathematical tautology allows us to write

g = Hfa +Hf−Hfa + n ≡ Hθ + ε , (15.11)

where the overall error ε (modeling error plus noise) is given by

ε = Hf−Hfa + n , (15.12)
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and the system matrix H is given in operator form by (7.307):

H ≡ HD
†
φ . (15.13)

More specifically, the elements of H are given by (7.304):

Hmn =

∫

Sf

dqr hm(r)φn(r) . (15.14)

Thus the (mn)th element is the nth expansion function as imaged onto the mth

detector element.

Considerations on choosing a discretization scheme The linear discretization problem
boils down to selecting two sets of functions, {φn(r)} and {χn(r)}, or equivalently,
two sets of Hilbert-space vectors {φn} and {χn}. These vectors affect the accuracy
with which fa(r) approximates the actual object f(r), and they also affect the form
and dimensions of the system matrix H as well as the size and nature of the error
vector ε. Finally, through (15.8), the set {χn} affects the meaning of the parame-
ters {θn} that we want to determine.

There are several ways we can approach the problem of choosing {φn} and
{χn}. We might say at the outset that we are interested in certain functionals of
the object, such as pixel values, and select the functions {χn} accordingly. That
would leave us free to choose {φn} by some other criterion, such as minimizing
the data-space modeling error Hf − Hfa. Unfortunately, as we shall discover in
Sec. 15.1.3, most functionals that we might choose to estimate do not admit of an
unambiguous estimate. That is, we cannot determine them from the data even in
the absence of noise.

Alternatively, we might want to construct as accurate a representation of the
object as possible for a specified number of terms in the expansion (15.6). In Secs.
7.1.4 and 7.1.5, we learned how to choose {χn} for minimum object error once {φn}
was specified. In particular, if {φn} is an orthonormal set, then {χn} should be
chosen to be the same orthonormal set if representational accuracy is our concern.

The choice of {φn} itself might be dictated by statistical considerations. If
we consider a statistical ensemble of objects, then the ensemble-average represen-
tational error is minimized by using the N eigenfunctions of the object covariance
matrix corresponding to the N largest eigenvalues as {φn}. As noted in Sec. 7.1.4,
this representation is called the Karhunen-Loève or KL expansion. One problem is
that we do not usually have enough information about the ensemble to be able to
compute the eigenvectors needed in a KL expansion.

No matter how we choose {φn}, representational accuracy can be improved
by increasing the number of terms N in the representation. The rank of the matrix
H, however, cannot exceed the rank R of the CD operator H, which in turn cannot
exceed the number of measurements M. Whenever N exceeds R, therefore, the
problem of finding θ when given g is underdetermined. Moreover, the nature of the
effective noise term is unknown, except that ε → n as N → ∞ with any sensible
choice of expansion functions.

We are thus faced with a conundrum: If we use an accurate object model
(large N), we cannot possibly find all the coefficients, and if we use a less accurate
model (N ≤ R), we make unknown modeling errors before even starting to estimate
coefficients, and the approximate object fa may not resemble the actual object f,
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even if the coefficients can be determined exactly. It is the view of the authors that
the only satisfactory way to resolve this problem is via task-based assessment of
image quality, as introduced in Chap. 14 and discussed further in Sec. 15.1.5.

15.1.3 Estimability

If N < R in a linear expansion like (15.6), the number of unknowns is less than
the rank of the system operator, but it is still not evident that we can estimate
the coefficients {θn} from the data g, even in the absence of noise. The coefficients
may not be estimable parameters. The concept of estimability was briefly intro-
duced in Sec. 13.3; we shall revisit the subject here from the viewpoint of image
reconstruction.

Estimability of a single linear parameter Consider a scalar parameter θ defined by
the linear functional,

θ =

∫

∞
dqr χ∗(r) f(r) . (15.15)

For a mental image, think of θ as the integral of the object over a region defined
by a 0-1 function χ(r), but the mathematics will be more general. If we are given
a noise-free data vector g = Hf, where H is a linear CD operator, we would like
to know whether we can determine θ uniquely from g. An equivalent question is
whether we can find an unbiased estimate of θ when zero-mean noise is present.

To answer these questions, note that we can write θ as a scalar product in
object space:

θ = (χ, f ) . (15.16)

If the system operator H is linear, we can define two orthogonal subspaces of
object space, called measurement space and null space, with the latter defined as
the space of all vectors anull such that Hanull = 0. The vectors f and χ can be
uniquely decomposed as

f = fmeas + fnull , (15.17)

χ = χmeas + χnull . (15.18)

Since these two subspaces are orthogonal, we can write

θ = (χmeas, fmeas) + (χnull, fnull) . (15.19)

Since the data vector is insensitive to null components, the first term represents
what one can learn about θ from noise-free data, and the second term is the com-
ponent of θ that cannot cannot be measured with the system in question. This
term is zero if either fnull = 0 or χnull = 0. The first condition is often satisfied
in simulation studies but seldom in reality; we have no control over the object our
imaging system is pointed at, so we cannot assert that fnull = 0. We can, however,
choose the function χ(r) defining θ, so we can make the error zero by choosing it so
that χnull = 0.

If χnull = 0, the associated parameter θ is said to be estimable or identifiable.
If θ is not estimable, there is an inevitable error of unknown magnitude arising from
the second term in (15.19). Objects differing by null functions will give the same
data, and hence the same value for any estimate derived from the data, even though
they might have vastly different true values for θ.
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There are various equivalent mathematical statements of the estimability con-
dition. A linear parameter θ = (χ, f ) is estimable if and only if

χnull = 0 , (15.20)

or
Pmeasχ = χ , (15.21)

where Pmeas is the orthogonal projector onto measurement space. As we saw in
Chap. 1, this projector is given by H+H, where H+ is the Moore-Penrose pseu-
doinverse of the CD operator H. Thus we can also state the estimability condition
as

H+Hχ = χ . (15.22)

Finally, we can also say that θ is estimable if there exists a set of coefficients Bm

such that

χ(r) =
M∑

m=1

Bmhm(r) . (15.23)

This equation implies estimability since measurement space is spanned by the point
response functions {hm(r)}, so a function in the form of (15.23) lies entirely in
measurement space and cannot have null components.

Since null components of an imaging system usually contain high spatial fre-
quencies, a large blobby template will be more likely to lead to an estimable pa-
rameter than a small or structured one. In particular, integrals of the object over
small pixels are unlikely to be estimable.

Nonlinear parameters All of these conditions apply to linear functionals, which
are the subject of this section, but for completeness we also give an estimability
condition that is applicable to nonlinear parameters (see also Sec. 13.3.1). If θ(f )
is an arbitrary (possibly nonlinear) functional of f, we say that it is estimable if

θ(f ) = θ(fmeas) . (15.24)

That is, θ(f ) is completely determined by the measurement component of f, so the
null space is irrelevant. It is straightforward to show that (15.24) is equivalent to
(15.20) if θ is linear.

Vector of linear parameters So far, we have considered a single parameter θ, but
now we extend the discussion to the vector θ defined by (15.9). The estimability
conditions (15.21) – (15.23) now generalize to

Pmeasχn = χn , n = 1, ..., N , (15.25)

H+Hχn = χn , n = 1, ..., N , (15.26)

χn(r) =
M∑

m=1

Bnmhm(r) , n = 1, ..., N . (15.27)

In terms of the discretization operator Dχ, (15.26) can also be written as

DχH
+H= Dχ , (15.28)
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and (15.27) becomes
Dχ = BH , (15.29)

where B is the N ×M matrix with elements Bnm. By comparison of (15.28) and
(15.29), B is given explicitly by

B = DχH
+ . (15.30)

Since the dimensionality of measurement space is the rank R of the system
operator, it is not possible to satisfy these conditions for N linearly independent
parameters unless N ≤ R. Conversely, a set of N estimable parameters must be
linearly dependent if N > R.

Natural pixels in inverse problems It follows from (15.27) that all of the θn are
estimable if Bmn = δmn for n ≤ N ≤ M, so that χn(r) = hn(r). If we take N = M
and assume that hn(r) is real, this means that Dχ = H and B = HH+, and (15.29)
in this case is just the Penrose equation, H= HH+H. Thus, if we use the point
response functions to define our parameters, we need not worry about null functions
or estimability. Buonocore et al. (1981) refer to the hn(r) as natural pixels.

We encountered natural pixels in Sec. 7.4.3, where we showed that the modeling
error Hf−Hfa could be made zero if we chose the set {φn(r)} to coincide with the
natural pixels. Now we are using natural pixels for a different purpose, to ensure
estimability. These two goals are not contradictory; a set of estimable pixels with
zero modeling error can be achieved in two distinct ways:

Dχ = H , D
†
φ = H+, H = HH+ , (15.31)

or
Dφ = H , Dχ = H†+, H = HH† . (15.32)

The reader should prove that both of these options imply estimability and that both
allow us to write Hf = Hθ without approximation.

With (15.31), the parameters {θn} are easy to interpret, since they are just
scalar products with the natural pixels, but the matrix H may be hard to compute
since it requires a pseudoinverse of a CD operator. With (15.32), on the other hand,
the elements of H are given by [cf. (7.340)]

Hmn =
[
HH†

]
mn

=

∫

Sf

dqr hm(r) h∗
n(r) . (15.33)

Thus each Hmn is determined by the overlap between two natural pixels, so it is
relatively easy to compute since no pseudoinverse is needed, but it is not so clear
what the parameters mean. Even if hn(r) is nonnegative everywhere, some or all of
the kernels associated with H†+ will have negative values, and some of the resulting
integrals θ̂n may go negative as well (even for nonnegative objects).

Subspace constraints and estimability We have always taken object space to be some
L2 space, but we have acknowledged that not all vectors in this space should be
construed as realizable objects (see Sec. 7.1.2). As we shall discuss below, we may
know that real objects cannot be negative, and this constraint will cause us to revise
our view of estimability. Even without a positivity constraint, however, we may be
able to restrict our attention to some subset of the vectors in object space.
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For example, if an object is described by a spatio-temporal function f(r, t), we
may know on physical grounds that the rate of temporal change is bandlimited, in
which case we could restrict attention to a Paley-Wiener subspace (see Sec. 3.5.1).
Similarly, if f(r, t) represents the response to some stimulus applied at t = 0, then
we would know that the function is causal, so f(r, t) = 0 for t ≤ 0, and this also
limits the object to a subspace of the spatio-temporal L2 space.

It is more difficult to find examples of purely spatial functions that are limited
a priori to subspaces. Of course, it is often necessary to approximate the object by
a function in a subspace as in (15.6), but this is not the same thing as saying that all
realizable objects lie in this space. In particular, virtually all objects we might want
to image have sharp edges, so we cannot assume they are spatially bandlimited.

On the rare occasions where we do know with certainty that the object is
confined to some subspace, we can define a projector onto that subspace as Psub

and write f = Psubf. As an exercise, the reader may show that the estimability
condition in this case becomes PsubPnullχ = 0, which could be much easier to
satisfy than the original condition.

Bayesian view of estimability As discussed in the Prologue and in Sec. 8.4, we may
be able to make statements about the prior PDF on the object, pr(f ). Partial
information about this density is called a stochastic model. Sometimes there is
a frequentist justification for the stochastic model, and sometime it is a purely
Bayesian statement of beliefs. In either case, we may be able to use the model
to say something about the magnitude of the error term in (15.19). For example,
if a Bayesian believes that the objects of interest contain no null functions for
some particular imaging system, then there is no need for an estimability condition;
(χnull, fnull) is zero if either χnull or fnull is zero. An unfortunate corollary of this
belief is that it implies that it is not necessary to build better imaging systems. If
the system at hand captures all of the information about the objects, why attempt
to capture more? In particular, if the objects have no fine details beyond those in
some assumed prior, why try to build a system with better spatial resolution?

A Bayesian could also use the assumed prior to compute the average error
(χnull, 〈fnull〉). So long as this quantity is negligible, the Bayesian could assume
that the parameter (χ, f ) is estimable. The only hazard is in trying to convince
someone with a different belief system that the assumptions are valid. The skeptical
non-Bayesian would need only to collect a few sample objects and compute the scalar
product to check the model.

15.1.4 Positivity

As we discussed in Chap. 7, many physical objects are constrained by their nature to
be nonnegative functions. For example, the object being imaged in nuclear medicine
or fluorescence microscopy is the concentration of a tracer, and concentrations by
definition cannot be negative. Similarly, in incoherent optical imaging, the object
is a radiant exitance or a transmittance, neither of which can be negative. As we
shall see, many reconstruction algorithms enforce this physical reality and yield only
nonnegative images. Such algorithms are said to enforce a positivity constraint,
though strictly speaking it should be nonnegativity since most of them do admit
zero values. We shall often use a common but loose parlance and speak of positivity
when an object or image is restricted to be greater than or equal to zero.
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In Chaps. 1 and 7, we viewed a linear imaging system as an operator H that
maps from a Hilbert space U to a Hilbert space V. As we have noted many times,
the object space is divided into two subspaces, called measurement space and null
space, and the data space is divided into consistency space and inconsistency space.
In this section we discuss the implications of positivity for these spaces. Later,
in the context of specific algorithms, we shall consider the effects of a positivity
constraint on reconstructed images.

Positivity and null functions Consider an object function satisfying f(r) ≥ 0 for all
r. Like any other vector in U, this object can be decomposed uniquely into measure-
ment and null components. It is not true, however, that fmeas(r) and fnull(r) are
nonnegative; only their sum is so constrained. In fact, it is almost always the case
that the null component of a nonnegative object will contain negative values. The
reason for this statement can be seen by considering a Fourier decomposition of the
object (perhaps a Fourier series like (7.13) if the object has finite support). Almost
any imaging system is capable of correctly responding to the low-frequency terms,
so the null components will consist solely of higher frequencies. If the zero-frequency
term is in measurement space, all null functions must satisfy

∫

Sf

dqr fnull(r) = 0 , (15.34)

which implies that fnull(r) must have both positive and negative values.

Estimability revisited As we saw above, estimability is closely related to null func-
tions. Suppose f1 and f2 are two objects that differ by a null function, so that
Hf1 = Hf2. A linear parameter θ defined as in (15.16) can, in general, take on very
different values for these two objects. We can define θ1 = (χ, f1) and θ2 = (χ, f2).
If χ has a null component, then θ2 − θ1 can be arbitrarily large, and any estimate
derived from the data can have an arbitrarily large bias. To avoid this problem, we
must choose χ to be free of null functions.

The situation changes, however, if we consider only nonnegative objects. In
that case, there are various ways to set bounds on null functions, which in turn lead
to bounds on the bias of θ. Full details can be found in Clarkson and Barrett (1997,
1998a), and only a simple special case will be treated here.

We consider the usual linear CD system for which, in the absence of noise,

gm =

∫

Sf

dqr hm(r) f(r) , (15.35)

and we define the point sensitivity function s(r) as in (7.232) by

s(r) =
M∑

m=1

hm(r) . (15.36)

Suppose first that s(r) is a constant s0, independent of r. Then, if f1(r) and f2(r)
produce the same data, we have

M∑

m=1

gm = s0

∫

Sf

dqr f1(r) = s0

∫

Sf

dqr f2(r) . (15.37)
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Since the objects are nonnegative, we can add absolute-value signs inside the inte-
grals, obtaining ∫

Sf

dqr |f1(r)| =
∫

Sf

dqr |f2(r)| . (15.38)

Thus two nonnegative objects that give the same data must have the same L1 norm
if s(r) is a constant. Since the difference f2 − f1 is a null function fnull, it follows
from the triangle inequality (see Sec. 1.1.2) that

∫

Sf

dqr |fnull(r)| ≤ 2

∫

Sf

dqr |fj(r)| , (15.39)

where j can be either 1 or 2.
A more general expression that does not require s(r) to be constant was derived

by Clarkson and Barrett (1997); they found that

∫

Sf

dqr |fnull(r)| ≤
(
1 +

smax

smin

)∫

Sf

dqr |fj(r)| , (15.40)

where smax and smin are, respectively, the maximum and minimum values of s(r)
over the object support.

To relate this result to the parameter θ, note that

θ2 − θ1 = (χ, f2 − f1) = (χ, fnull) = (χnull, fnull) , (15.41)

where the last step follows since the measurement and null spaces are orthogonal.
Thus

|θ2 − θ1| = |(χnull, fnull)| =

∣∣∣∣∣

∫

Sf

dqr χnull(r) fnull(r)

∣∣∣∣∣

≤
∫

Sf

dqr |χnull(r) fnull(r)| ≤ max
r

{
|χnull(r)|

}∫

Sf

dqr |fnull(r)| . (15.42)

With (15.40), we have, finally,

|θ2 − θ1| ≤ max
r

{
|χnull(r)|

}(
1 +

smax

smin

)∫

Sf

dqr |fj(r)| . (15.43)

If χ(r) has no null component, the right-hand side is zero and we are back to
the usual definition of estimability: Two objects that give the same data give the
same value for the parameter θ. If χ(r) does have a null component, however, the
positivity constraint gives us a bound on how large the difference between θ1 and
θ2 can be. This bound gets smaller as the null component of χ(r) gets smaller (in
peak value), as the system sensitivity gets more uniform and as the object itself
gets weaker (and hence θ gets smaller).

Positivity and data consistency We have defined consistency space Vcon as the range
of H, which is a subset of the overall data space V. Every vector in consistency
space can be realized as the (noise-free) image through the operator H of some
object in the domain U of H. Fundamentally, this domain is constrained only by
the definition of the Hilbert space U; for example, it might consist of all square-
integrable functions of some specified support. Many of the vectors in this domain,
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however, may not be physically realizable objects. For example, we may know that
physical objects are nonnegative. We can define a positive consistency set V+

as the set of all noise-free images of nonnegative objects. Thus V+ is a subset of
Vcon. Note that it is not correct to say that V+ is a subspace of Vcon since it does
not satisfy the requirements for a linear vector space (see Sec. 1.1.1). In particular,
multiplying an image of a positive object by a negative number would remove it
from the set.

Moment cone Another name for V+ is moment cone. To see how this name arises,
consider first a unit point source δ(r−r0) (and ignore the fact that it is not square-
integrable). The image of this source is a point in V+. To be precise, for this object
and a CD model of the imaging system as in (15.35),

gm = [H δ(r− r0)]m = hm(r0) . (15.44)

If we vary r0, we generate a set of points in data space. For example, if we scan
object space in raster-like1 fashion, we generate a line of points in data space as
shown in Fig. 15.1a.

Fig. 15.1Construction of the moment cone. Three of the M dimensions of
data space are shown, and the object is a 2D delta function δ(r − r0). The
line shown is traced out as the point r0 is scanned back and forth over the
object space. As drawn, all three detectors receive radiation for all r0.

Now add a second point source and renormalize the object to unit strength.
The new object, β δ(r − r0) + (1 − β) δ(r − r1) with 0 ≤ β ≤ 1, is nonnegative
everywhere, so its image must lie in V+. This object is a convex combination of the
two point objects δ(r−r0) and δ(r−r1), and since the system is linear, the resulting
point in data space is the same convex combination, βH δ(r−r0)+(1−β)H δ(r−r1).
(Recall the definition of a convex set of points: If g0 and g1 are both in the set, then
so is βg0 + (1 − β)g1 for 0 ≤ β ≤ 1.) Thus we can include in V+ all image points
within the convex set generated this way with all r0, r1 and β (see Fig. 15.1b). We

shall call this set V(2)
+ since it is the set of image points generated by unit-strength,

nonnegative objects consisting of pairs of point sources.

1The word raster comes from the Latin rastrum, rake, so it suggests a set of lines all moving
in the same direction, as in a TV raster. The back-and-forth pattern in Fig. 15.1 is called a
boustrophedonic scan, referring to an ancient method of writing in which the lines run in alternating
directions. The root bou occurs also in bovine, and the boustrophedon is the pattern of an ox
plowing a field.
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If we add a third point source and renormalize the object to have an inte-

gral of unity, the new image point will also lie in V
(2)
+ since it is just a convex

combination of the image of the third point and the image obtained when the first

two are present simultaneously; both of these images are in the convex set V(2)
+ , and

by the definition of convexity the image of the new three-point object must lie in
it also. We can extend this argument to an arbitrary number of point sources and
hence to a general positive object of unit integral; the image of all of these objects

lies in V
(2)
+ .

To remove the restriction that the objects must integrate to one, consider what
happens when an object is scaled, f → αf, with α ≥ 0 so that a nonnegative ob-
ject remains nonnegative. Since the system is linear, the image is scaled similarly,
g → αg. Thus, when we consider all α from 0 to ∞, each point in the convex set
discussed above becomes a line extending from the origin through the original point

to infinity (see Fig. 15.1b). Carrying out this extension for all points in V
(2)
+ , we

generate a cone of points as shown in Fig. 15.1c. This cone is the positive consis-
tency set V+. It is known as the moment cone since each data component is a
weighted integral or moment of the object function.

In summary, the moment cone, a convex cone with vertex at the origin in data
space, is the set of all noise-free images of nonnegative objects. It is a subset of
consistency space or the range of H. Moreover, if each hm(r) is nonnegative for all
r, the moment cone is a subset of the positive orthant of data space, i.e., the set
of all g such that gm ≥ 0 for all m.

15.1.5 Choosing the best algorithm

We have already seen that there are many choices to be made in formulating and
solving an inverse problem. If we adopt a discrete model, we must directly or in-
directly select the sets {φn} and {χn}. If we use an implicit formulation, we must
choose the objective functional, and if we use an iterative algorithm, we must se-
lect the iteration rule and the number of iterations. We must choose whether or
not to enforce positivity. In addition, many algorithms have various other free pa-
rameters, called things like regularization parameters, acceleration parameters or
hyperparameters.

There is a large literature on choosing these parameters and optimizing a re-
construction algorithm, and we shall discuss several aspects of the problem in the
remainder of this chapter. In our view, however, any meaningful discussion of im-
age quality must ultimately relate back to the intended use of the image, that is,
to the task and the observer. The general principles enunciated in Chap. 14 on
assessment of image quality apply equally well to the assessment and optimization
of reconstruction algorithms.

For classification tasks, the observer is most often a human, and the recon-
struction algorithm serves only to transduce the original data into a form where it
is useful to a human observer. Under these conditions, assessment and optimization
of an algorithm must necessarily take into account the properties and limitations
of human visual perception. For classification tasks to be performed by human
observers, image quality can be measured only by psychophysical studies or math-
ematical model observers that predict the outcome of such studies.
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The ideal observer is generally useless for evaluating algorithms since its per-
formance is usually invariant to algorithm. The performance of the ideal observer on
a detection task can be evaluated on the raw data g, before any algorithm, and the
algorithm cannot improve the performance (see Sec. 13.2.7). Virtually by definition,
if the algorithm were useful, it would be incorporated into the detection strategy
employed by the ideal observer; otherwise, that observer would not be ideal.

A similar conclusion holds for the Hotelling observer. It was shown in Sec.
13.2.12 that the Hotelling trace is invariant to any invertible linear algorithm, i.e.,
one where it is possible to go backwards from the reconstruction to the original
data. Thus neither the ideal nor the Hotelling observer tells us very much about
the algorithm if the task is classification and the end user will be a human; their
only use in evaluating algorithms is to make sure that no information is lost.

The situation is rather different for estimation tasks, which are rarely per-
formed by humans. Instead, some kind of image-analysis program is used to ex-
tract quantitative information from images, i.e., to estimate some parameter of the
object. If we denote the parameter of interest by Θ(f ), where the capitalization
of theta serves to distinguish it from the vector of coefficients, then the output of
the analysis program is Θ̂. The input to the program could be the raw image data
g, in which case the output would be some (possibly nonlinear) function Θ̂raw(g).
Often, however, it is easier to perform the analysis using a reconstructed image as
the data. In that case, two successive estimation steps are needed, one to obtain
the input to the image-analysis program and one carried out in that program. The
final estimate would be written as Θ̂recon(θ̂), and its accuracy could, as usual, be
evaluated in terms of the bias, variance or mean-squared error (MSE). For more
on how to compute MSE, see Sec. 14.3.4. A unique specification of bias and MSE
presupposes, of course, that Θ(f ) is estimable, which pixel values rarely are. Some
of the problems in defining an MSE on pixel values are discussed in Sec. 13.3.2.

Since the accuracy of Θ̂(θ̂) depends on the noise in the data, on the recon-
struction algorithm and on the final estimation procedure, the MSE can be used to
assess the quality of any combination of these steps. If we consider a fixed imaging
system and reconstruction algorithm, for example, the MSE of Θ̂(θ̂) would be in-
terpreted, as it traditionally is in the statistics literature, as the performance of the
final estimate. For assessing reconstruction algorithms in terms of estimation tasks,
however, we can consider the imaging system and the image-analysis program as
fixed, and then the MSE is a figure of merit for the reconstruction.

No matter which task and observer we pick, task performance depends on the
statistical properties of the data. For tasks performed on reconstructed images, that
means that we need to know the statistical properties of the images, and much of
this chapter is devoted to this goal. In particular, for classification tasks and linear
observers, we know from Sec. 13.2.12 that the performance can be computed from
the mean vector and the covariance matrix, so we concentrate in what follows on
calculation of these quantities for reconstructed images.

15.2 LINEAR RECONSTRUCTION OPERATORS

We shall now discuss various linear operators that can be applied to a data set to
yield a reconstructed image in one step. Since the operators are linear, the resulting
images will seldom satisfy the positivity constraint.
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Section 15.2.1 deals with the CDD problem of finding the coefficients in an
approximate object expansion from discrete data. In Sec. 15.2.2 we look at var-
ious ways of getting a continuous estimate either from the discrete coefficients or
directly; thus this section deals with CDC inverse problems.

In Sec. 15.2.3 we consider a broad class of imaging systems that can be called
Fourier samplers since the data consist of discrete samples of the object Fourier
transform. These systems will provide a concrete example of the formalism devel-
oped in Sec. 15.2.2.

In Sec. 15.2.4 we begin to examine the relation between CC operators and CD
operators. Specifically, we consider situations where a CC operator with a known
inverse might be a reasonable description of an imaging system in the limit of very
fine sampling in the data space. We then investigate the actual CDD inverse prob-
lem using the known solution to the CCC problem as a starting point.

In Sec. 15.2.5, we examine CCC problems in which the adjoint operator H†

has a null space. Such operators arise frequently in tomographic problems, and their
properties have implications for practical (i.e., CDD) tomographic reconstruction
algorithms.

Finally, the effect of noise on estimates obtained with linear reconstruction
operators is discussed in Sec. 15.2.6.

15.2.1 Matrix operators for estimation of expansion coefficients

In this section we view the reconstruction process as estimation of the coefficients
{θn} in an approximate object expansion. Since there are N coefficients and M
measurements, we seek an N ×M reconstruction matrix that will yield an estimate
of θ in a single matrix-vector multiply. If the coefficients are estimable parameters
(see Sec. 15.1.3), it is reasonable to require that the matrix give the correct values
in the absence of noise; that condition will be the starting point for this discussion,
and it will lead to pseudoinverse matrices. As the reader might expect from Chap.
1, pseudoinverse solutions have poor noise performance, but we postpone until Sec.
15.2.6 a discussion of ways of dealing with this problem.

Let us suppose that the parameters {θn} are estimable and hence that (15.27)
holds. The matrix B defined in that equation and given explicitly in (15.30) is, in
fact, just the kind of reconstruction matrix we are seeking. We can define estimates
of θn by

θ̂n ≡
M∑

m=1

Bnmgm . (15.45)

In the absence of noise,

θ̂n =
M∑

m=1

Bnm

∫

∞
dqr hm(r) f(r) =

∫

∞
dqr

[
M∑

m=1

Bnmhm(r)

]

f(r)

=

∫

∞
dqr χn(r) f(r) = θn , (15.46)

where the last line has used (15.8). Hence the matrix B is the reconstruction
operator, yielding θ̂ = θ exactly in the absence of noise. With zero-mean additive
noise, θ̂ is an unbiased estimate, where 〈θ̂n〉 = θn for all n. These conclusions
require, however, that θ be estimable.
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We can restate the results of the last paragraph more succinctly in operator
form. With (15.30), (15.10), (15.28) and the assumption that n = 0,

Bg = DχH
+g = DχH

+Hf = Dχf = θ . (15.47)

Thus we can get θ by first applying the pseudoinverse operator H+ to g, then
discretizing the result with Dχ, but only if θ is estimable and there is no noise.

Bias for nonestimable parameters What happens if θ is not estimable, but we pre-
tend it is and apply B anyway? Then we get (still without noise)

Bg = DχH
+Hf = Dχfmeas *= θ . (15.48)

For some particular object, we can determine the error (bias) in this procedure.
The error norm is

||Bg− θ|| = ||Dχ(fmeas − f )|| = ||Dχfnull|| . (15.49)

To evaluate this expression exactly, we have to know fnull, but it is interesting
to try to set a bound analogous to (15.43) that involves only χnull and not fnull.
For a scalar parameter θ, Dχ = χ†, and

|χ†H+g− θ| = |χ†fnull| . (15.50)

Since null and measurement spaces are orthogonal, we can write the scalar product
as χ†fnull = χ†

nullfnull = χ†
nullf. Then we have

|χ†H+g− θ| =

∣∣∣∣∣

∫

Sf

dqr χnull(r) f(r)

∣∣∣∣∣

≤
∫

Sf

dqr |χnull(r) f(r)| ≤ max
r

{
|χnull(r)|

}∫

Sf

dqr |f(r)| . (15.51)

Note that we are now computing the error between θ for a particular object and its
pseudoinverse estimate, not between the θ values for two objects that give the same
data as in (15.43); this difference accounts for the absence of the factor involving
smax/smin here.

A tighter bound can be stated if χnull(r) has compact support, at least approx-
imately. If we can define a region S(χnull) in object space such that χnull(r) + 0
for r outside this region, then the integrals in (15.51) are restricted to this region,
and we find

|χ†H+g− θ| ≤ max
r

{
|χnull(r)|

}∫

S(χnull)
dqr |f(r)| . (15.52)

Note that the integral here is less than or equal to the one in (15.51), so the bound
is tighter.
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Matrix pseudoinverses In practice, it may be difficult to implement the pseudoin-
verse of the CD operator H, as required in (15.48), and we should not have to since
the objective is to go from one vector (g) to another (θ̂). It may be much more
convenient to compute the matrix H and try to solve the problem g = Hθ + ε
directly, without worrying about the meaning of θ, but what do we get this way?
It seems to be tacitly assumed in much of the literature that some sort of matrix
pseudoinversion will suffice to recover Dφf, at least from noise-free data. For ex-
ample, in a pixel basis one might hope that a matrix constructed from pixels will
suffice to recover integrals of the object over pixels. It is rarely the case that this
hope will be fulfilled.

Suppose we choose some arbitrary set of expansion functions {φn} and define
H = HD

†
φ. Even in the absence of measurement noise, all we can say in general

about the pseudoinverse solution is that

H+g =
[
HD

†
φ

]+
Hf . (15.53)

To the extent that this is an estimate of some parameter θ, it must be the one de-
fined by Dχ = [HD

†
φ]

+H, and there is no evident way to simplify this expression.

In particular, it is not true in general that [HD
†
φ]

+ is the same as D†+
φ H+.

There is, however, one circumstance under which H+g becomes more trans-
parent. Suppose {φn} is an orthonormal basis for measurement space, for example
the first R singular vectors of H (see Sec. 7.4.3). In that case, D†

φ = D+
φ (by the

orthonormality) and D+
φ Dφ = H+H = Pmeas, the projector onto measurement

space. Then we can apply a theorem quoted in Sec. 1.6.3 for the pseudoinverse of
a product:

(XY)+ = (X+XY)+(XYY+)+ . (15.54)

With this theorem and the assumption that {φn} is an orthonormal basis for mea-
surement space, we can rewrite (15.53) as

H+g =
[
HD+

φ

]+
Hf = Dφf . (15.55)

In this special case, therefore, application of a matrix pseudoinverse to noise-free
data yields scalar products of the object with the same expansion functions used
to form H. These scalar products are necessarily estimable parameters since the
functions {χn(r)}, which are the same as {φn(r)} in this case, lie entirely in mea-
surement space.

Natural pixels and matrix pseudoinverses We can also use the natural pixels as ex-
pansion functions, which is how they were introduced by Buonocore et al. (1981).
Since natural pixels span measurement space, we might expect them to simplify the
calculations in much the same way as the singular functions of H; we give up the
orthonormality but gain an advantage since the expansion functions are given up
front and it is easy to compute H.

If we take Dφ = H as in (15.32), the system matrix H = HH†. In the absence
of noise, application of H+ to g yields

θ̂ = H+g =
[
HH†

]+
Hf = H†+f , (15.56)
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where the last step follows from (1.148) with H and H† interchanged. The last form
in (15.56) will be recognized as the θ defined by the operator Dχ given in (15.32).
Thus application of the matrix pseudoinverse now yields the same result as a CD
pseudoinverse followed by discretization as in (15.47).

Because Dχ involves a pseudoinverse in this case, it is not easy to interpret the

resulting parameters θ̂n; in particular, they are not scalar products with natural
pixels. We shall return to the interpretation of (15.56) in Sec. 15.2.2.

15.2.2 Reconstruction of functions from discrete data

Since the object of interest in most imaging situations is a function f(r), one pos-
sible goal of image reconstruction would be to produce another function f̂(r) that
resembles f(r) in some way. If we have obtained estimates {θ̂n} of the expansion
coefficients, a straightforward way to construct such an estimate is [cf. (15.6)]

f̂(r) =
N∑

n=1

θ̂nφn(r) , (15.57)

or, in operator notation,

f̂ = D†
φ θ̂ . (15.58)

There is, however, no rule that says we have to use the functions {φn(r)} in
this step; we could use some entirely different set {ψn(r)} and define

f̂ = D
†
ψ θ̂ . (15.59)

For example, if we display a set of estimates {θ̂n} on a computer screen, the func-
tions {ψn(r)} might be uniform square pixels even if pixels played no role in defining
{θn} in the first place.

Moreover, it may not be necessary to perform the intermediate step of esti-
mating θ at all. If θ̂ is a linear function of g, then the f̂ defined in (15.59) is also a
linear function of g, so we can write

f̂ = Og , (15.60)

where O is a linear DC operator. Denoting the kernel of this operator as om(r), we
can write

f̂(r) =
M∑

m=1

gmom(r) . (15.61)

In this view, the reconstruction operator consists of the set of functions {om(r)}.

Backus-Gilbert method Backus and Gilbert (1968) proposed a method for obtaining
pseudoinverses of CD operators without adopting any discrete object representation.
They assumed that HH†was invertible, or that R = M, but this assumption is not
always warranted. Therefore the treatment here is based on the identity (1.149),
which allows us to write

H+g = H†
[
HH†

]+
g . (15.62)
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Since HH† is a matrix, its pseudoinverse can be computed by SVD (discussed later
in this section) or by iterative methods (discussed in Secs. 1.7 and 15.4). Then,
since H† is a DC operator, a reconstructed image is given by

f̂(r) =
[
H+g

]
(r) =

M∑

n=1

[
(HH†)+g

]
n
h∗
n(r) =

M∑

m=1

M∑

n=1

[
(HH†)+

]

nm
gmh∗

n(r) .

(15.63)
The last expression has the form of (15.61) with

om(r) =
M∑

n=1

[
(HH†)+

]

nm
h∗
n(r) . (15.64)

Thus a continuous reconstructed image can be obtained either by superimposing
the functions om(r) with data values gm as weights or by superimposing the point
response function hn(r) with pseudoinverse values [(HH†)+g]n as weights.

Relation of Backus-Gilbert to natural pixels There is no need to select a discrete
object representation in the Backus-Gilbert method, but it can be interpreted after
the fact in terms of natural pixels. In fact, (15.63) is just the natural-pixel ex-
pansion formed by using the estimated coefficients {θ̂n} specified in (15.56). If we
take the expansion functions {φn(r)} to coincide with the point response functions
{hn(r)} (or their complex conjugates if the PRFs are complex), then Dφ = H. The

adjoint operator D
†
φ is then the same as H†, which is often referred to as back-

projection, especially in a tomographic context; it serves to project a vector in the
M -dimensional data space back into the infinite-dimensional object space (see Sec.
7.3.2).

If we define H as HH† and apply its pseudoinverse to g, we obtain

f̂ = D
†
φθ̂ = H†θ̂ = H† [HH†

]+
g , (15.65)

which is identical to the Backus-Gilbert result. To gain more insight into this result,
suppose there is no noise so that g = Hf. Then we have

f̂ = H† [HH†
]+

Hf = H+Hf = fmeas , (15.66)

where we have used (1.149) and (1.166). Thus either the natural-pixel estimate θ̂
when backprojected into object space or the direct Backus-Gilbert estimate reduces
in the no-noise limit to fmeas, which is all we can ever expect from the given data.

SVD methods The Backus-Gilbert method can also be formulated in terms of
singular-value decomposition (Bertero et al., 1985, 1988). For background on SVD
of CD operators, see Secs. 1.6.2 and 7.3.2.

From (1.131) we know that

H+ =
R∑

n=1

1
√
µn

unv
†
n , (15.67)

where vn is an M × 1 eigenvector of the matrix HH†, un is an eigenfunction of
the CC operator H†H, and µn is their common eigenvalue. If we can find the
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eigenvectors ofHH† by numerical means, the eigenfunctions ofH†H corresponding
to nonzero eigenvalues can be found by (7.253):

1
√
µn

[
H†vn

]
(r) = un(r), n = 1, ..., R . (15.68)

Thus

f̂(r) ≡
[
H+g

]
(r) =

R∑

n=1

1
√
µn

(v†
ng)un(r) . (15.69)

Since v†
ng is just the coefficient βn in an SVD expansion of g, we see that we can

get a pseudoinverse reconstruction by superimposing the eigenfunctions with weight
βn/

√
µn.
Another way of looking at this result is to recall the SVD expansion for the

original object f(r):

f(r) =
∞∑

n=1

αnun(r) . (15.70)

To put (15.69) in a similar format, we write

f̂(r) =
R∑

n=1

α̂nun(r) , (15.71)

where α̂n is an estimate of the coefficient αn given by

α̂n =
βn√
µn

, n ≤ R . (15.72)

This estimate is plausible since we know from (1.209) that the imaging equation,
g = Hf+ n, in the SVD domain takes the form,

βn =
√
µnαn + γn , (15.73)

where γn is a coefficient in the SVD expansion of n. Thus

α̂n = αn +
γn√
µn

, n ≤ R , (15.74)

so α̂n = αn for n ≤ R in the absence of noise. That means, once again, that
f̂ = fmeas in the no-noise limit. With noise, however, the second term in (15.74) can
be quite large since µn will often be very small for n near R. Methods for dealing
with this problem are discussed in Sec. 15.3.

15.2.3 Reconstruction from Fourier samples

Many imaging systems, including various optical interferometers and most magnetic
resonance imagers, directly measure Fourier components of the object at discrete
spatial frequencies. In this section we analyze such systems as a way of illustrating
the ideas introduced in Sec. 15.2.2.

We assume throughout this section that the object f(r) has finite support Sf .
If we define a support function s(r) (not to be confused with the sensitivity function
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used earlier) that takes the value 1 for points r inside Sf and zero for points outside,
then f(r)s(r) = f(r). We now define a Fourier sampler as a CD system where

[Hf ]m =

∫

∞
dqr s(r) f(r) exp[−2πiρm · r] , (15.75)

where {ρm,m = 1, ...,M} is a set of discrete frequencies at which the system takes
measurements. There is no implication that these frequencies fall on a regular grid.

The kernel of H is given by

hm(r) = s(r) exp[−2πiρm · r] . (15.76)

The adjoint is given by

[
H†g

]
(r) =

M∑

m=1

gm s(r) exp[2πiρm · r] . (15.77)

The matrix HH† has elements

[
HH†

]
mk

=

∫

∞
dqr s(r) exp[−2πi(ρm − ρk) · r] = S(ρm − ρk) , (15.78)

where S(ρ) = Fq{s(r)}. If we define a matrix S (not to be confused with the
support set Sf ) with elements Smk = S(ρm − ρk), then

HH† = S . (15.79)

Since the Fourier transform of the support function is usually known analytically,
it is straightforward to compute this matrix.

Pseudoinverse Depending on the choice of the sample frequencies {ρm}, the matrix
S may be invertible, but in any case its pseudoinverse exists and can presumably be
computed with no great difficulty. Then the pseudoinverse of H can be calculated
from (1.149), which in the present problem becomes

H+ = H†(HH†)+ = H†S+ . (15.80)

A pseudoinverse reconstruction from a noise-free data vector g is thus

[
H+g

]
(r) =

M∑

m=1

[
S+g

]
m
s(r) exp [2πiρm · r] . (15.81)

We see that a superposition of plane waves, weighted by the values [S+g]m and
truncated by the support function, gives [H+g](r) at all points r.

Van de Walle et al. (2001) have used this approach to reconstruct magnetic
resonance images from Fourier samples on irregular grids.

Nyquist sampling Let us examine the solution (15.81) in the case where the Fourier
samples fall on a regular grid and satisfy the Nyquist condition. (Recall from Sec.
3.5.4 that the Nyquist condition for sampling in the Fourier domain depends on the
spatial support of the object; there is no need for the object to be bandlimited.)
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If the support is a cube of side L and if the sampled frequencies fall on a cubic
lattice of spacing 1/L, then S(ρ) is a qD sinc function, and S(ρm − ρk) vanishes
unless m = k, so we can write

[
HH†

]
mk

= Smk = Lq δmk . (15.82)

In this case, S is proportional to the M ×M unit matrix, so (15.81) becomes

[
H+g

]
(r) =

1

Lq

M∑

m=1

gm s(r) exp[2πiρm · r] . (15.83)

Now all we have to do is superimpose truncated plane waves weighted by data
values. If we are content to observe the resulting function on a regular grid of
points, the final formula is precisely a multidimensional discrete Fourier transform
as introduced in Sec. 3.6.6.

15.2.4 Discretization of analytic inverses

In many inverse problems, we would be able to perform the inverse if only we
sampled finely enough. An example is computed tomography, where the data are
samples of the Radon transform of a function. The inverse Radon transform was
derived in Sec. 4.4, but it requires that we know the data for a continuous set of
projection angles and as a function of a continuous variable at each angle; instead
we know only a discrete set of data values.

Another example occurs when a system performs a linear shift-invariant oper-
ation on the object. We know that the system operator, in a CC sense, is then a
convolution: g(r) = f(r) ∗h(r). If we knew the full function g(r), we could perform
a Fourier transform, obtaining G(ρ) = H(ρ)F (ρ), and then divide through by the
transfer function H(ρ) to get F (ρ), at least for frequencies where H(ρ) *= 0. An
inverse Fourier transform would then recover f(r) or a good approximation to it.
As in the Radon example, however, we need to consider what happens when we
have available only a finite set of points from the convolution output and when we
cannot neglect noise.

Consider the CC problem y = Lf, where L is a nonsingular linear operator
with a known inverse. Instead of observing the function y, however, we observe a
discrete, noisy data vector g given by

g = CDwy+ n , (15.84)

where C is a constant related to the sensitivity of the system and the exposure time,
and Dw is some appropriate discretization operator. In computed tomography, for
example, the operator Dw samples the projection angles and perhaps integrates
over finite detector apertures. The discretization functions associated with Dw are
thus delta functions in angle and rect functions in the detector plane.

Since we have only a finite-dimensional data vector, we cannot determine the
infinite-dimensional object; instead we attempt to estimate some vector related to
f by

θ = Dχf . (15.85)

The discretization functions associated with Dχ might, for example, be pixels.
Though we do not know y, we can nevertheless write θ as

θ = DχL
−1y . (15.86)
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We now insert the operator D†
wDw between L−1 and y and promptly subtract off

the error we make in doing so; the result is

θ = DχL
−1D†

wDwy+DχL
−1

[
I−D†

wDw

]
y . (15.87)

We can now define a matrix O by

O = DχL
−1D†

w . (15.88)

This matrix is a discretization of the (known) CC inverse operator L−1. Note that
the discretization functions in the continuous data domain are generally different
from those used in the object domain.

With this matrix, (15.87) becomes

θ = ODwy+DχL
−1

[
I−D†

wDw

]
y . (15.89)

Comparison of the first term in this equation with (15.84) suggests that we define
an estimate of θ by

θ̂ =
1

C
Og . (15.90)

Straightforward algebra shows that

θ̂ = ODwy+
1

C
On = θ +

1

C
On−DχL

−1[I−D†
wDw]Lf . (15.91)

This reconstruction procedure thus gives the correct answer θ plus a noise term
plus an error term related to the discretization.

To understand the error term, recall from Sec. 7.1.3 that D†
wDw = D+

w Dw

for orthonormal discretization functions. The operator D†
wDw is thus the projector

onto the space spanned by the discretization functions [cf. (7.38)], and I −D†
wDw

is the projector onto its orthogonal complement. The error term is approximately
zero if D†

wDw is a good approximation to the unit operator in the continuous data
domain.

We must emphasize, however, that (15.91) is based on the data model (15.84);
if that model is inaccurate, additional errors will arise. It is common to assume that
data are described by simple discretization of an idealized CC operator, neglecting
physical effects such as scattered radiation or detector blur. These effects must be
taken into account when computing the overall error associated with some recon-
struction matrix O. In Chap. 17 we shall discuss both types of error in the context
of emission computed tomography.

15.2.5 More on analytic inverses

In Sec. 15.2.4, we assumed that the inverse of the CC operator L existed. Strictly
speaking, all we really needed in that section was that the left inverse existed (see
Sec. 1.3.4). In other words, we required that L had no null functions so that we
could retrieve f uniquely from Lf. In many cases of interest in imaging, especially
in tomography, this condition is satisfied, but the adjoint operator L† does have
null functions. In the language of Sec. 1.5.2, there is a nontrivial inconsistency
space. For such operators, as we shall now show, any continuous noise-free data
must satisfy certain conditions called consistency conditions. As a consequence,
the left inverse is not unique.
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Consistency conditions Let ṽn(rd) denote a null function of L†, and let ṽn be the
corresponding vector in the Hilbert space V, so that

L†ṽn = 0 , (15.92)

where 0 is a vector of zero length in object space U. If we take the scalar product
of this zero vector with any object f, the result will be the scalar 0:

(L†ṽn, f )U = 0 . (15.93)

By the definition of the adjoint [see (1.39)],

(ṽn,Lf )V = 0 . (15.94)

That is, if g = Lf is a noise-free data vector, its scalar product with each of the
ṽn must vanish. Because of noise or other measurement errors, not all data vectors
will satisfy these consistency conditions.

Varieties of left inverses It is common to preprocess a data vector before perform-
ing an inversion. If A is a linear operator that maps data space V to itself, the
preprocessed data vector has the form

g′ = Ag . (15.95)

Applying L† to the modified data vector g′ yields

L†g′ = L†Ag = L†ALf , (15.96)

where the latter form applies only in the noise-free case. Note that L†ALf is in
object space.

If we restrict A so that L†AL is an invertible operator, then we can invert
(15.96) to get

f =
[
L†AL

]−1
L†Ag . (15.97)

Thus any choice of A satisfying the stated condition generates a left inverse. The
reader may show that all of these inverses are identical if L† has no null space.

Filtering before backprojection One interesting choice for A is

A=
[
LL†

]+
. (15.98)

With this choice, (15.96) becomes

L†Ag = L†
[
LL†

]+
g = L†

[
LL†

]+
Lf , (15.99)

where the latter form is valid for noise-free data. By (1.149) we have

L†Ag = L+Lf , (15.100)

which, without any assumptions on L, is the measurement component of f. If L has
no null functions, then

L†Ag = f . (15.101)
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Thus no further filtering is required in object space when this A is used; simple
application of L† to Ag yields f.

As discussed in Sec. 4.4, L† is referred to in the tomographic literature as back-
projection, and (15.101) is an abstract formulation of the filtered-backprojection
algorithm, with the data-space filter function given by (15.98). Explicit forms of
this algorithm were given in Chap. 4.

The similarity between (15.99) and (15.62) should be noted; filtered backpro-
jection is essentially the same thing as the Backus-Gilbert method, though the latter
designation is usually restricted to reconstruction from discrete data, so of course
the object is not recovered exactly.

15.2.6 Noise with linear reconstruction operators

All of the linear reconstruction operators discussed above were designed to extract
the maximum possible information from a data set in the absence of noise. In the
real world, of course, data are always corrupted by noise, and most of the art of
image reconstruction is in developing ways to control that noise. In this section we
begin to discuss the effects of noise on reconstructed images; the theme will continue
throughout the chapter.

Discrete linear reconstructions Consider a linear CDD reconstruction problem in
which an N × 1 vector θ of expansion coefficients is estimated by

θ̂ = Og , (15.102)

where O is an N ×M matrix and g is an M × 1 data vector. Our objective is to
derive the statistical properties of θ̂ from those of g.

For linear imaging systems, we know from (15.10) and (15.11) that g can be
expressed in two equivalent ways:

g = Hf+ n = Hθ + ε , (15.103)

where n describes the random measurement noise and ε describes both measurement
noise and modeling error. For present purposes the first of these forms is most useful
since the properties of n can be specified more easily than those of ε. In particular, n
is by definition a zero-mean random vector since Hf is the mean of g for a particular
object function f. The vector ε, on the other hand, depends in a complicated way
on the object and the system model.

Uncorrelated Gaussian noise In Chap. 12 we discussed a variety of noise mechanisms
in radiation detectors. Many of these mechanisms, especially those discussed in Sec.
12.2, are well described by normal (Gaussian) statistics. If we have a discrete detec-
tor array dominated by one of these mechanisms, and if we assume that all elements
in the array are identical and that each generates its own noise independently of
the other elements, then a good description of the probability density function of n
may be

pr(n) = (2πσ2)−M/2
M∏

m=1

exp

[
− n2

m

2σ2

]
. (15.104)
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This form assumes that the mean of each component nm is zero and that the
variance of each is the same constant σ2. Thus the covariance matrix of n is

Kn = σ2I , (15.105)

where I is the M × M identity matrix. Using a notation introduced in Chap. 8,
we say that n ∼ N (0,σ2I). In words, the noise is i.i.d. (independent, identically
distributed) normal. The data vector itself is also independent normal but not zero
mean; instead, g ∼ N (Hf,σ2I).

We know from Sec. 8.3.3 that a linear transformation of a normal random
vector yields another normal random vector. From (8.49) and (8.50), the mean and
covariance of θ̂ (both conditional on a specific f ) are given by

E
{
θ̂|f

}
= OE{g|f } = OHf , (15.106)

K !θ|f = OKnO
† = σ2OO† . (15.107)

Thus θ̂ ∼ N (OHf,σ2OO†). To be precise, this normal distribution describes the
conditional density pr(θ̂|f ). The mean of this density depends on the actual object
and the actual CD system operator H, and it is generally not true that Hf equals
Hθ, so we have not computed pr(θ̂|θ). On the other hand, for fixed f the modeling
error is nonrandom, so Kn = Kε, and (15.107) is correct no matter how bad our
system model is (so long as the noise model is correct).

In component form, the covariance matrix is

[
K !θ|f

]

nn′

= E
{
∆θ̂n∆θ̂n′ |f

}
= σ2

M∑

m=1

OnmO∗
n′m , (15.108)

where ∆θ̂n = θ̂n − E{θ̂n|f }. The conditional variance of θ̂n then takes the simple
form

Var
{
θ̂n|f

}
= σ2

[
OO†

]

nn
= σ2

M∑

m=1

|Onm|2 . (15.109)

Noise amplification — an example As an example of the formalism just developed,
suppose that O is the pseudoinverse of H, which we can express in SVD form as

O = H+ =
R∑

j=1

1
√
µj

ujv
†
j , (15.110)

where uj and vj are the singular vectors associated with H. With this form, (15.107)
becomes

K !θ|f = σ2OO† = σ2
R∑

j=1

1
√
µj

ujv
†
j

R∑

k=1

1
√
µk

vku
†
k . (15.111)

Since v
†
j vk = δjk by the orthonormality of the singular vectors, we have

K !θ|f = σ2
R∑

j=1

1

µj
uju

†
j . (15.112)
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The conditional variance of the component θ̂n is given by

Var
{
θ̂n|f

}
=

[
K !θ|f

]

nn
=

R∑

j=1

σ2

µj
|ujn|2 , (15.113)

where ujn is the nth component of uj . Since µj decreases (often rapidly) as j
increases, the variance is amplified because of division by small singular values.

Noise control in the SVD domain If we implement the pseudoinverse in the SVD
domain, we can control the noise either by truncating the sum over j at some
value less than R or by modifying the reconstruction operator in some way to avoid
division by small µj . One possibility is to define

O =
R∑

j=1

√
µj

µj + η
ujv

†
j , (15.114)

where η is a positive constant. With this approach, the variance of θ̂n becomes

Var
{
θ̂n

}
=

[
K !θ

]
nn

=
R∑

j=1

σ2µj

(µj + η)2
|ujn|2 . (15.115)

This option reduces the noise since the denominator is not allowed to approach zero;
larger values for η lead to smaller variances. (Recall from Chap. 1 that µj is real
and greater than zero for j ≤ R.)

The use of a large η suppresses the singular components corresponding to small
µj . These components usually correspond to fine details in the image since most
imaging systems function essentially as low-pass filters, showing smaller response to
higher spatial frequencies. Thus use of a large η will limit the spatial resolution in
the reconstructed image. As with virtually any inverse problem, there is a parameter
that sets the tradeoff between noise and resolution. (It would be a mistake, however,
to assert that η sets the tradeoff between bias and variance; as we have seen in Sec.
15.1, bias is usually not well defined, and setting η = 0 seldom produces an unbiased
estimate of anything.)

Noise control by smoothing Another way to control the noise with any reconstruc-
tion operator O is to smooth the image after reconstruction. A Hermitian smooth-
ing operator in the discrete reconstruction space is an N × N matrix S satisfying
S† = S. For simplicity, assume that S commutes with H†H; in that case, as we
saw in Chap. 6, S is diagonal in the basis formed by the right singular vectors of
H, and we can write

S =
N∑

j=1

sjuju
†
j . (15.116)

For S to serve as a smoothing filter, we should take sj to be positive and to decrease
with increasing j.

If we apply this operator after the reconstruction operator O, we get

θ̂
′
= Sθ̂ = SOg . (15.117)
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For the example used above, where O = H+, we have

SO =
R∑

j=1

sj√
µj

ujv
†
j . (15.118)

The rolloff of sj with increasing j can be used to counteract the noise amplification
associated with small µj , but of course it also limits the fine detail in the image.

An advantage of post-reconstruction smoothing is that we can implement it
without knowing the SVD of H or O. Any Hermitian operator, including simple
discrete convolution with a nonnegative blur function, will serve to limit the noise
amplification. Conversely, any modification of the SVD pseudoinverse that controls
the noise can be interpreted as an equivalent smoothing operator. For example,
(15.114) and (15.118) are identical if we take sj = µj/(µj + η).

Apodization A common name for a smoothing filter, especially when it is incor-
porated in the reconstruction operator, is apodizing function. In zoology, apodal
means without feet, so to apodize is to cut off the feet. In the early development
of radar, it was observed that some cutoff in the temporal frequency response was
needed to control noise, but that a sharp cutoff led to sidelobes (feet) on the impulse
response. Since these sidelobes could be confused with weak targets adjacent to a
strong one, a smooth rolloff of the frequency response was found to be preferable
to an abrupt cutoff. Much research has gone into studying the effects of different
apodizing functions on target detection, and many of the filters developed for radar
have found use in tomographic image reconstruction as well.

Poisson noise The discussion above requires some modification if the noise is Pois-
son rather than i.i.d. normal. As discussed in detail in Sec. 11.2, it is often an
excellent model for an array of photon-counting detectors to assume that the com-
ponents of g are independent Poisson, so that the covariance matrix is given by

[
Kg|f

]
mm′

= [Hf ]m δmm′ . (15.119)

With this covariance for the data, the covariance and variance in the reconstruction
are [cf. (15.108) and (15.109)]

[
K !θ|f

]

nn′

=
M∑

m=1

[Hf ]mOnmO∗
n′m , (15.120)

Var
{
θ̂n|f

}
=

M∑

m=1

[Hf ]m |Onm|2 . (15.121)

With Poisson noise, we cannot say rigorously that θ̂ is normally distributed,
but a normal distribution is usually an excellent approximation, for two reasons.
First, if [Hf ]m is large (greater than 10 or so), the Poisson can be well approximated
by a Gaussian with variance equal mean. In that case, the reconstruction is a linear
transformation of a normal random vector, yielding another normal random vector.
Second, even if some of the [Hf ]m are small, θ̂ may still be approximately normal
as the result of the central-limit theorem. A linear reconstruction is equivalent
to forming a weighted sum of the data values. The weighting changes the mean
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and variance, but as we discussed in Sec. 8.3.4 any sum of independent random
variables, not necessarily identically distributed ones, tends to a normal under broad
conditions [see (8.211) ff. and Shiryayev (1984)]. Since Poisson random variables are
inherently independent, we should expect to get a good approximation to a normal
when the reconstruction operator serves to add many Poisson data values with
some weights. Moreover, strict independence is also not required for the central-
limit theorem (Shiryayev, 1984), so a normal distribution for θ̂ can result from
linear reconstruction with almost any data statistics.

Noise kernel and point response The variance expression for Poisson noise, (15.121),
can be rewritten as

Var
{
θ̂n|f

}
=

∫

Sf

dqr ℵn(r) f(r) , (15.122)

where

ℵn(r) ≡
M∑

m=1

|Onm|2 hm(r) . (15.123)

Because of the Poisson character of the noise and the linearity of the processing
algorithm, there is a linear CD mapping from the object f(r) to the variance in the
reconstructed discrete image. The kernel of this mapping, ℵn(r), is called the noise
kernel (Barrett and Swindell, 1981, 1996). We emphasize that this linear mapping
from object to variance holds only for Poisson noise where the noise covariance is
given by (15.119). From (15.108), for example, we see that the variance in the
reconstruction is independent of the object for the noise model of (15.105).

Equations (15.122) and (15.123) should be compared to similar expressions for
the mean:

θ̂n =

∫

Sf

dqr pn(r) f(r) , (15.124)

where

pn(r) ≡
M∑

m=1

Onmhm(r) . (15.125)

Thus pn(r) is the overall CD point response function (PRF) mapping the object
function through the CD system and the DD processing algorithm to the mean
discrete image.

The formal difference between the noise kernel and the PRF is that |Onm|2
appears in the former and Onm in the latter. In more practical terms, Onm can
have both positive and negative values and hence the filter can serve a sharpening
function. In the noise kernel, on the other hand, |Onm|2 is confined to nonnegative
values, so the variance distribution will be a blurred and discretized version of the
object. We shall explore the nature of the noise kernel further in Sec. 17.3 in the
context of emission computed tomography.

15.3 IMPLICIT ESTIMATES

As we noted in Sec. 15.1.1, image reconstruction is often framed in terms of min-
imization of a scalar-valued objective functional. The resulting images are often
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referred to as implicit estimates or implicit reconstructions since there is no ex-
plicit formula for generating them. In Sec. 15.4 we shall discuss iterative algorithms
for finding implicit estimates, but in this section we study some of their properties
without regard to any particular algorithm.

15.3.1 Functional minimization

As given in (15.4), the objective functional depends on the data vector g and the
object f, where the latter notation implies a vector in an infinite-dimensional Hilbert
space. As we shall see in Sec. 15.3.5, it is indeed possible to carry out this minimiza-
tion and find a continuous estimate f̂ without ever adopting a discrete representa-
tion, but it is much more common in the literature to first choose a discretization
and then minimize with respect to the free parameters in that representation. With
a linear representation like (15.6), then, the functional is redefined so that it de-
pends on the coefficient vector θ rather than the function f.

An important consideration in choosing the objective functional is that it
should encourage agreement between the actual measured data vector g and the
approximate data vector ga generated when the exact system operator operates on
an approximate object representation. For a linear system, we know from (7.302)
and (7.305) that ga = Hfa = Hθ, where H is a matrix. A key component of the ob-
jective functional is thus some measure of the distance in data space between g and
Hθ, so we are led to define a data-agreement functional Qdata(g,Hθ). In least-
squares methods, this functional is just the squared Euclidean distance ||g−Hθ||2,
but many other choices are also possible. We shall survey some of them in Sec.
15.3.2.

Another key component of the functional is some means of controlling noise
amplification. As we saw in Secs. 1.7.5 and 15.2.6, forcing exact agreement with the
data is equivalent to dividing by small singular values, and any noise or other error
in the data is thus multiplied by large numbers. One way of controlling this noise
is to add another functional, called the regularizing functional to Qdata(g,Hθ).
Most often the regularizing functional depends only on θ, so we write

Q(θ,g) = Qdata(g,Hθ) + ηQreg(θ) . (15.126)

The parameter η adjusts the relative weights of the two functionals and hence serves
to control the tradeoff between data agreement and noise amplification. Several
common forms for Qreg(θ) will be discussed in Sec. 15.3.3.

Given the data-agreement and regularizing functionals, there are four distinct
ways in which they can be used. The most common is simply to minimize Q(θ,g),
so that the estimate of θ is given by

θ̂ = argmin
θ

[Qdata(g,Hθ) + ηQreg(θ)] . (15.127)

If Q(θ,g) is a strictly convex function of θ for fixed g, then the estimate θ̂ defined
by (15.127) will be unique. It will, however, be a random vector since different
realizations of g will yield different θ̂.

The other three approaches use Qdata and Qreg separately rather than in the
sum Q(θ,g). For example, we could minimize Qdata(g,Hθ) subject to the con-
straint that Qreg(θ) is less than some preset constant δ. Alternatively, we could
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minimize Qreg(θ) subject to a similar constraint on Qdata(g,Hθ). Finally, we could
minimize Qdata(g,Hθ) subject to the constraint that θ belong to some subset of
its possible values. Given the freedom in choice of Qdata(g,Hθ), Qreg(θ) and the
parameter η, there does not seem to be any particular advantage to these alter-
natives (other than possibly fitting into unexplored niches in the literature), so we
shall confine our attention here to estimates of the form (15.127).

Positivity As discussed in Sec. 15.1.4, we often know on physical grounds that the
object cannot be negative, and we may want to incorporate this information into our
reconstruction. The easiest way to do so is to first choose our expansion functions
φn(r) to be nonnegative and then to allow only nonnegative coefficients, θn ≥ 0
for all n. We can state the latter condition in vector form as θ ≥ 0. With this
constraint, we can restate the minimization principle as

θ̂ = argmin
θ ≥ 0

[Qdata(g,Hθ) + ηQreg(θ)] . (15.128)

This simple modification may require substantial changes in the algorithm used to
find the minimum, a topic taken up in Sec. 15.4.

Inversions from nonlinear data As written, (15.127) and (15.128) are applicable only
to linear systems for which the system operatorH can be approximated by a matrix,
but they are easily modified to apply to any of the nonlinear systems discussed in
Sec. 7.5. Let us write the noise-free mapping from object to image data as

g = N {f } , (15.129)

where N is some nonlinear operator2. For example, in electrical impedance tomog-
raphy, N represents the mapping by way of the Poisson equation from the object
impedance to the voltages at a set of surface points for specified current sources.

If we use (15.7) to construct an approximate object representation, then the
data-agreement functional can be chosen to enforce agreement between g and the
approximate data vector ga given by

ga = N
{
fa
}
= N

{
D

†
φθ

}
. (15.130)

Thus (15.127) becomes

θ̂ = argmin
θ

[
Qdata

(
g, N

{
D

†
φθ

})
+ ηQreg(θ)

]
. (15.131)

The same functional form for Qdata(g, · ) can be used for the linear and nonlinear
cases, though it may be more work to compute it if the system is nonlinear. For
example, a least-squares form is commonly used with nonlinear mappings, but com-
putation of N{D†

φθ} for a single θ may require numerical solution of a differential
equation.

Bayesian interpretation The estimate defined in (15.127) or (15.131) can be inter-
preted as a Bayesian MAP estimate as introduced in Sec. 13.3.3. We saw there that
the MAP estimate maximizes the log posterior, or

2The boldface should not be confused with the symbol N used to signify a normal distribution.
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θ̂MAP = argmax
θ

{ln[pr(g|θ)] + ln[pr(θ)]} . (15.132)

The first term agrees with (15.127) if we ignore issues of estimability and modeling
error and write the likelihood as

pr(g|θ) = 1

Z1
exp[−Qdata(g,Hθ)] , (15.133)

where Z1 is a normalizing constant required to make pr(g|θ) a probability density
function (or probability if g is discrete). The log-likelihood can now be written as

ln[pr(g|θ)] = −Qdata(g,Hθ)− ln(Z1) . (15.134)

Note that θ appears here only as Hθ since θ can influence the likelihood only
through its effect on the data vector.

Similarly, we can write an arbitrary prior as

pr(θ) =
1

Z2
exp[−ηQreg(θ)] , (15.135)

so that
ln[pr(θ)] = −ηQreg(θ)− ln(Z2) . (15.136)

The minus signs in (15.134) and (15.136) convert argmax to argmin, and the
logs of the normalizing constants do not affect the argmin. Thus minimization of
any functional of the form (15.127) or (15.131) can be interpreted as maximizing a
log-posterior. This observation reinforces the Bayesian conceit that any reasonable
estimation procedure can be interpreted as a Bayesian method with respect to some
prior.

It is not possible, however, to interpret (15.135) in frequentist terms since it
depends on the free parameter η, which is often called a hyperparameter. If pr(θ)
is to represent the frequency of occurrence of θ, its form and any parameters in
it must be determined (according to the frequentist) by direct observations of the
random vector θ. The parameter η, on the other hand, is set by the user of an
inversion algorithm as a means of controlling noise, and its value can (and usually
does) vary from image to image. A true frequentist prior distribution on the object
would be independent of noise in any particular image. A true Bayesian would
consider this point irrelevant and assert that one can choose any prior that reflects
one’s degree of belief, which may be influenced by noise, whim or any other factor.
Key among these factors is often mathematical simplicity since the Bayesian, like
the frequentist faced with the same inversion problem, must eventually find the
minimum of a complicated functional. One believes in what one can compute.

To reiterate a point from Sec. 15.1.5, the authors of this book believe in ob-
jective, task-based assessment of image quality, so their prior is one that maxi-
mizes task performance. Instead of being established prior to data collection, the
prior/regularizer in this pragmatist view is determined essentially by what one wants
to do with the data after acquisition.

Bayesians and modeling In Sec. 15.3.2, we shall give specific mathematical forms
for pr(g|θ), but in fact we rarely know this density. The difficulty is that the
data statistics are not determined by θ alone. As we emphasized in Chap. 7 and
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reiterated in Sec. 15.1.2, the mean of g is given by two terms, Hθ + H δf. In
image reconstruction we often assume that we can ignore the second term, but it
is worthwhile to try to articulate just what prior knowledge we are assuming when
we do so.

Let f = fa + f⊥, where f⊥ is the component of f in the (infinite-dimensional)
orthogonal complement of representation space. Then

Pr(g|θ) = Pr(g|fa) =
∫

U⊥

df⊥ Pr(g|fa, f⊥) pr(f⊥) . (15.137)

Hence, setting Pr(g|θ) = Pr(g|f ) is equivalent to adopting the prior that f⊥ is zero.
With this assumption, g = Hθ, and simple forms for the density Pr(g|θ) follow.

As with many other Bayesian priors, this one should more accurately be called
a prior desire rather than prior knowledge. We desire a solution where the modeling
error can be neglected (since otherwise we cannot solve the problem). Again, the
usefulness of this desire can be ascertained by task-based assessment methods.

15.3.2 Data-agreement functionals

In this section we survey a variety of data-agreement functionals that have been
used in the literature and comment on how each is related to a likelihood model.

Agreement in the least-squares sense The simplest data-agreement functional is the
L2 norm of the difference between g and Hθ. As discussed in detail in Sec. 1.7, this
choice leads to least-squares solutions of the set of linear equations g = Hθ.

As a log-likelihood, the least-squares functional stems from an independent
Gaussian noise model. Suppose we write

g = Hθ + ε (15.138)

and (ignoring modeling errors) assume that ε is an M × 1 multivariate normal
random vector with zero mean and covariance matrix σ2I. Then the likelihood is
given by

pr(g|θ) = (2πσ2)−
1
2M exp

[

− 1

2σ2

M∑

m=1

[gm − (Hθ)m]2
]

. (15.139)

The corresponding log-likelihood is

ln[pr(g|θ)] = − 1
2M ln(2πσ2)− 1

2σ2

M∑

m=1

[gm − (Hθ)m]2 . (15.140)

From (15.134), we have

Qdata(g,Hθ) =
1

2σ2

M∑

m=1

[gm − (Hθ)m]2 . (15.141)

The multiplicative constant 1/(2σ2) does not affect the position of the minimum as
a function of θ, so we may as well write

Qdata(g,Hθ) =
M∑

m=1

[gm − (Hθ)m]2 = ||g−Hθ||2 , (15.142)

which is the usual least-squares form.



1034 INVERSE PROBLEMS

Weighted least-squares In least-squares problems we may know that some measure-
ments are more reliable than others, so we weight them more heavily. For example,
suppose the components of ε are independent normals with different variances.
Then the covariance matrix of ε is given by

[Kε]mm′ = σ2
m δmm′ , (15.143)

and an argument similar to one just given shows that

Qdata(g,Hθ) =
M∑

m=1

[gm − (Hθ)m]2

σ2
m

. (15.144)

More generally, when ε is a real-valued normal random vector with covariance
Kε, we find

Qdata(g,Hθ) = (g−Hθ)tK−1
ε (g−Hθ) . (15.145)

This is still an L2 norm, but now one defined with respect to the weight K−1
ε .

An interesting way to rewrite (15.145) is

Qdata(g,Hθ) =
[
K

− 1
2

ε (g−Hθ)
]t [

K
− 1

2
ε (g−Hθ)

]
= ||K− 1

2
ε (g−Hθ)||2 , (15.146)

where K
− 1

2
ε is the prewhitening matrix discussed in Secs. 8.1.6 and 13.2.8. Thus

the data-agreement functional with any normal model for the noise is the L2 norm
of the prewhitened residual vector.

Gaussian approximation to Poisson likelihood One important situation where (15.144)
is used is when the data vector is Poisson but the mean number of counts per mea-
surement is large, say greater than about 10. In that case, it is an excellent approxi-
mation to ignore the discrete nature of the data and consider each gm to be a normal
random variable with conditional mean (Hθ)m (Barrett and Swindell, 1981, 1996).
As we emphasized repeatedly in Chap. 11, Poisson random variables are inherently
independent, so the covariance of (15.143) applies with σ2

m = (Hf )m + (Hθ)m,
and (15.144) becomes

Qdata(g,Hθ) =
M∑

m=1

[gm − (Hθ)m]2

(Hθ)m
. (15.147)

This functional is no longer quadratic in θ, so it does not, strictly speaking,
correspond to a least-squares problem. However, to the same degree of approxima-
tion that allowed us to replace the Poisson with a Gaussian in the first place, we
can replace (Hθ)m with the observed gm in the denominator, yielding

Qdata(g,Hθ) =
M∑

m=1

[gm − (Hθ)m]2

gm
, (15.148)

which is now quadratic in θ.
Even though gm will only rarely go to zero if (Hθ)m 0 1, as we assumed in

deriving (15.148), it is nevertheless good programming practice to avoid division
by zero, either by a conditional statement or by adding some small constant to the
denominator.
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Kullback-Leibler distance Of course, it is not necessary to approximate a Poisson
by a Gaussian. For independent Poisson data, the log-likelihood is given exactly by

ln[pr(g|θ)] = ln
M∏

m=1

{
exp[−(Hθ)m]

[(Hθ)m]gm

gm!

}

=
M∑

m=1

{−(Hθ)m + gm ln[(Hθ)m]− ln(gm!)} . (15.149)

Since ln(gm!) is a constant that does not affect the minimization, we can write

Qdata(g,Hθ) =
M∑

m=1

{(Hθ)m − gm ln[(Hθ)m]} . (15.150)

This form is closely related to the Kullback-Leibler distance, defined by3

DKL(g,g0) ≡
M∑

m=1

{
(g0m − gm + gm ln

[
gm
g0m

]}
. (15.151)

Thus
Qdata(g,Hθ) = DKL(g,Hθ) + const . (15.152)

The Kullback-Leibler distance is also known as Csiszár’s I-divergence or the
cross-entropy. It is not truly a distance metric, as defined in Sec. 1.1.2, since
DKL(g,g0) *= DKL(g0,g). Instead, it is an example of a generalized distance
or Bregman distance. The Kullback-Leibler distance will form the basis for the
expectation-maximization algorithm to be discussed in Sec. 15.4.6.

15.3.3 Regularizing functionals

This section surveys some choices for the regularizing functional and discusses how
each is related to a Bayesian prior.

Tikhonov regularization We encountered one example of a regularizing functional in
Chap. 1, though we did not call it that. In Sec. 1.7.5 we introduced the minimum-
norm, least-squares (MNLS) solution of g = Hθ as the unique least-squares solution
with no null functions. Alternatively, we could have defined it as [cf. (1.191)]

θ̂MNLS = lim
η→0

argmin
θ

{
||g−Hθ||2 + η||θ||2

}
. (15.153)

As an exercise, the reader should show that

θ̂MNLS = H+g , (15.154)

just as we found in Sec. 1.7.5.

3The sharp-eyed reader might note that a slightly different definition of the Kullback-Leibler
distance was given in (8.258), but in that case it was a distance between two probability density
functions. If we required gm and g0m to sum to unity, then (15.151) would reduce to (8.258).
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We also showed in Sec. 1.7.5, however, that the MNLS solution is very noisy
since we are forced, in the limit η → 0, to divide by very small singular values. An
interesting ad hoc solution to this problem is simply to forgo the limit and write

θ̂ = argmin
θ

{
||g−Hθ||2 + η||θ||2

}
. (15.155)

We have dropped the subscript MNLS here since this θ̂ is not a least-squares solu-
tion. For nonzero η, the regularizing term η||θ||2 drags the estimate away from the
least-squares point, suppressing noise in the process.

In fact, we have already analyzed the noise in this problem. An extension of
the discussion in Sec. 1.7.5 shows that (15.155) has the solution,

θ̂ = (HtH+ ηI)−1Htg . (15.156)

By using SVD relations derived in Chap. 1, we can show that this reconstruction
operator is exactly the one stated in the SVD domain in (15.114). Thus the modifi-
cation of the denominator in (15.114) to avoid division by zero is also accomplished
implicitly by this regularizer.

The functional ||θ||2 is widely known as the Tikhonov regularizer since its
properties have been studied in many contexts by A. N. Tikhonov. Tikhonov’s
original work was published in the Soviet Union during World War II (Tikhonov,
1943), but more recent accounts are given by Tikhonov and Arsenin (1979) and
Morosov (1993).

Tikhonov and Bayes The Tikhonov regularizer can be interpreted as a Bayesian
prior. From (15.135) we have

pr(θ) =
1

Z2
exp

[
−η||θ||2

]
, (15.157)

which implies that the components of θ are independent, zero mean normals, each
with variance 1/(2η).

In frequentist terms, this result is quite puzzling. Suppose, for example, that
the coefficients {θn} represent pixel values in a discrete object representation. There
is no reason to expect a priori that these pixels would be normally distributed, and
even if they were, they would hardly be zero-mean or uncorrelated. The zero mean
implies that negative values are as probable as positive ones, even though in most
situations θn is constrained to be nonnegative by its physical meaning. An ad hoc
fix for this problem is to assume that (15.157) applies only when θn ≥ 0 for all n,
with the probability of negative values being assigned zero prior probability.

This does not remove all of the objections to (15.157), however, since different
components are still uncorrelated. Correlations between different points are what
separate meaningful objects and images from snow on a television set tuned to an
inactive channel, so an uncorrelated prior model is a priori wrong, at least in a
frequentist sense. Nevertheless, the Tikhonov prior/regularizer can lead to quite
useful reconstructed images, so it cannot be ruled out a priori by a pragmatist.

Entropy Another regularizer, for which many Bayesians show great fondness, is
the entropy, defined by

Qreg(θ) =
N∑

n=1

θn ln(θn) . (15.158)
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The corresponding prior is

pr(θ) =
1

Z
exp

[

−η
N∑

n=1

θn ln(θn)

]

, θn ≥ 0 , (15.159)

where Z is a normalizing constant. Since this density is a product of factors that
each involve only a single θn, the a priori assumption is again that the components
are statistically independent. The density is defined only for positive values since
the logarithm is imaginary if its argument is negative, but we shall see in Sec. 15.3.4
that this condition is satisfied almost automatically for any implicit estimate based
on an entropy regularizer.

A more general form of entropy prior is

pr(θ) =
1

Z
exp

[

−η
N∑

n=1

θn ln

(
θn
mn

)]

, (15.160)

where mn is a component of a vector m known as the model. The model is not
the mean of the prior distribution, but instead is more closely related to the mode
(most probable value). The reader may show that the peak of pr(θ) occurs when
θn = mn/e for all n. As η → ∞, pr(θ) → δ(θ−m/e), so in this limit the mean equals
the mode, but for finite η the density is skewed and there is no simple relationship
between the model and the prior mean.

In practice, the most common model is a uniform field, mn = C for all n. This
prior pulls the reconstruction towards the point where each θn = C/e. If we really
knew a priori that θn was likely to be close to some value θ0, we would therefore set
mn = eθ0, but usually the only purpose of the flat model is to smooth the image,
so the actual value of C is of little import.

Why entropy? Many Bayesians argue fervently that the use of an entropy prior is
virtually a moral imperative. For example, Gull and Skilling (1984) assert that “the
maximum entropy method is ... the only consistent way of combining different
data into a single positive image” [emphasis added]. Several different lines of argu-
ment are used to justify this fervor.

One common Bayesian argument postulates a set of axioms which, they say,
any tenable prior must satisfy, and then they show that the axioms can be satisfied
only by entropy (Shore and Johnson, 1990; Tikochinsky et al., 1984; Skilling, 1988,
Csiszár, 1991). Upon examination, however, the axioms themselves seem to be un-
tenable since they require that the components of θ be statistically independent
a priori. As we noted above, statistically independent densities describe random
noise fields, not meaningful objects and images. The Bayesian reply is that if we
know something about correlations, we should construct the prior that has maxi-
mum entropy subject to the constraint of having a prescribed covariance matrix.
This approach leads to correlated normal models and Wiener filters (see Sec. 13.3.7),
topics that otherwise receive little attention in the Bayesian imaging literature.

The entropy distribution can also be derived on combinatorial grounds, as
in statistical mechanics. If we suppose (for some reason) that all objects are
constructed by randomly throwing indistinguishable elements of brightness called
grains into pixels, then the most probable object is the one that can be constructed
in the greatest number of ways.
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Let ε be the grain size and suppose that pixel n contains kn grains, so that
θn = εkn. Let pn be the probability that a grain thrown at random falls in pixel n,
and let K =

∑
n kn be the total number of grains thrown. For fixed grain size, the

probability law on θ is the same as the probability law on the vector k with com-
ponents kn. With the assumption that the grains are independent, that probability
is the multinomial [cf. (C.164)],

pr(k) = K!
N∏

n=1

pkn
n

kn!
. (15.161)

If ε is small, then each of the kn is large and we can use Stirling’s approximation,

k! ≈
√
2πk kke−k , (15.162)

to show that

ln[pr(k)] = −
N∑

n=1

kn ln

(
kn
pn

)
+ const

= −1

ε

N∑

n=1

θn ln

(
θn
mn

)
+ const . (15.163)

This form agrees with (15.159) with η given by 1/ε and the model components mn

given by pn/ε. From this observation it is argued that pr(θ) must have the entropy
form, even when θ takes on a continuous range of values.

Finally, one way in which Bayesians attempt to appeal to the broader imaging
community is to compare images reconstructed with an entropy prior to ones using,
say, a Tikhonov regularizer; they then assert that the ones based on entropy are
obviously superior on some subjective grounds. One problem with this comparison
is that the Tikhonov images are almost always produced without a positivity con-
straint, while the maximum-entropy algorithms build in this physical reality. When
constrained Tikhonov images are compared with maximum-entropy images, it is
very hard even to tell them apart, much less to say which is subjectively superior.
Moreover, when task performance is compared, even the unconstrained Tikhonov
images seem to be as useful to a human observer as the entropy images (Gooley
and Barrett, 1992).

Since none of these arguments for entropy says anything about its relation to
task performance, they imply that the same prior and regularizing parameter should
be used for all tasks and all observers. We have noted that the prior is irrelevant
for an ideal observer and classification tasks, so it cannot be argued that entropy
is in any sense optimal in that case. For the human observer, there is substantial
psychophysical evidence that detection performance is optimized with different de-
grees of regularization for different background structures and signals, neither of
which enter into the rationale for the entropy prior, so again it is difficult to argue
that entropy is optimal. In short, since the entropy approach takes no account of
task or observer, we fail to see why it should be accorded a privileged position in
image-reconstruction problems; it is simply one more tool to be used and evaluated
as any other method would be.

Nonlocal regularizers In practice, the Tikhonov and entropy regularizers usually
produce smooth images, simply because they suppress the recovery of singular vec-
tors that correspond to small singular values, which are the components that convey
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the fine detail about an object. Even though the Bayesian priors are uncorrelated,
they induce strong correlations in a reconstructed image. But if we know that adja-
cent points in an object are likely to be correlated, we can also build that knowledge
directly into the regularizer or prior. Haynor (1997) argues that the most important
function of a prior is to specify neighborhood relations since any decent imaging
system will get the large-scale features correct without prior information.

There are many ways to build neighborhood information into a regularizer.
For example, if we know that neighboring pixels are unlikely to have significantly
different values, we can define the regularizer to penalize deviations between a pixel
value and some average of its neighboring pixels. For real θ, one possible form is

Qreg(θ) =
N∑

n=1

[θn − (Sθ)n]
2 , (15.164)

where S is a local smoothing operator and hence (Sθ)n is a weighted average of θn
and its neighbors. A common choice in 2D imaging is to average over a 3×3 or 5×5
neighborhood, with weights chosen such that θn − (Sθ)n = 0 if the components of
θ are constant in the neighborhood. If the object is constant in this neighborhood,
there is no penalty.

General quadratic regularizer The regularizer defined in (15.164) is a quadratic func-
tional of θ. It can be rewritten as

Qreg(θ) = ||(I− S)θ||2 = θt(I− S)†(I− S)θ . (15.165)

The matrix (I−S)†(I−S) is positive-semidefinite and Hermitian, as any matrix of
the form A†A is. This observation suggests that we define the general quadratic
regularizer as

Qreg(θ) = θtCθ , (15.166)

where C is an arbitrary positive-semidefinite Hermitian matrix. We can define the
square-root of C as in Sec. A.8.3 and write

Qreg(θ) = ||C 1
2 θ||2 . (15.167)

If we choose C to be positive-definite rather than just positive-semidefinite, then
the θ̂ defined by (15.127) or (15.128) will be unique in spite of null functions in H.

The Tikhonov regularizer is a special case of (15.167) with C = I. The entropy
regularizer, however, does not fit this form since it is not quadratic in θ.

In Bayesian terms, the general quadratic regularizer amounts to choosing a
zero-mean multivariate normal as the prior, with the inverse covariance matrix
given by K−1

θ = 2ηC. If we wanted to include a nonzero prior mean θ, we would
write

Qreg(θ) = (θ − θ)t C(θ − θ) . (15.168)

Gradient norms One common quadratic approach to regularization is to penalize
large values of the image gradient. When dealing with digital images, the word
gradient must be understood in a discrete sense, but it is easiest to explain the
form of the regularizer in continuous terms and then worry about discretization
later. Therefore, consider an object f(r), where for definiteness r = (x, y) is a
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2D vector. The object is scalar-valued, and its gradient is a 2D vector field with
components

(∇f)x =
∂f(r)

∂x
, (∇f)y =

∂f(r)

∂y
. (15.169)

The norm of this vector field, defined in (7.7), is given by

||∇f ||2 =

∫

Sf

d2r

{[
∂f(r)

∂x

]2
+

[
∂f(r)

∂y

]2}

. (15.170)

Note that the norm here includes the sum of the squares of the components of the
vector field at each position as well as an integral over position.

One might be tempted to compare ||∇f ||2 with (15.167) and to identify C
1
2 as

a discrete gradient, but there are several problems with this approach. First, C
1
2

acts on an N × 1 vector and produces another N × 1 vector, each such vector being
the digital counterpart of a scalar field. The continuous gradient operator, on the
other hand, acts on a scalar field and produces two scalar fields, (∇f)x and (∇f)y.
Moreover, the gradient operator is neither Hermitian nor positive-semidefinite, and
both of these characteristics are required for C if we are to define its square root.

To make (15.170) look like (15.167), we must identify C not with the gradient
but with the square root of the Laplacian operator. The Laplacian of f(r) is defined
by

∇2f(r) =
∂2f(r)

∂x2
+
∂2f(r)

∂y2
. (15.171)

The 2D Fourier transform of ∇2f(r) is given by (3.236) as

F2

{
∇2f(r)

}
= −4π2ρ2F (ρ) , (15.172)

where ρ = (ξ, η) is the spatial frequency vector and hence ρ2 = ξ2 + η2. From this
form it can be shown that the CC operator C ≡ −∇2 is a positive-definite Hermitian
operator. Then we can define C

1
2 by

F2

{
C

1
2 f(r)

}
= 2πρF (ρ) , (15.173)

and we find from Parseval’s theorem that

||(∇2)
1
2 f ||2 = 4π2

∫

∞
d2ρ ρ2 |F (ρ)|2 . (15.174)

If we apply Parseval’s theorem to (15.170), we get the same Fourier-domain integral,
so ||(∇2)

1
2 f ||2 = ||∇f ||2.

In the frequency domain, this regularizer grows as ρ2 and hence suppresses
high spatial frequencies, giving smooth images. An even stronger bias against high
frequencies would be obtained by use of ||∇2f ||2 as the regularizer; in that case the
penalty grows as ρ4.

Discretization of these continuous norms is straightforward. For example, a
2D discrete Laplacian can be realized by discrete convolution with a 3 × 3 kernel
such as

1

12




−1 −2 −1
−2 12 −2
−1 −2 −1



 . (15.175)
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Nonquadratic regularizers A problem with quadratic regularizers is that they en-
courage smoothness even where the object itself may not be smooth, for example
at a boundary between organs in medical imaging. We would like to smooth out
small variations, which probably result from noise, but retain larger ones, which are
more likely to be true edges.

One way to construct an edge-preserving regularizer is to use a nonlinear func-
tion of a scalar argument, Φ{x}, and write

Qreg(θ) =
N∑

n=1

Φ
{[
C

1
2 θ

]
n

}
, (15.176)

where C
1
2 is a positive-definite operator chosen, as above, to sense differences be-

tween a pixel’s value and some average of its neighbors. If Φ{x} = x2, we are back
to the general quadratic regularizer, but if we choose Φ{x} to grow less rapidly than
x2 for large x, then large variations will be penalized proportionally less than with
the quadratic. For example, we can let Φ{x} = |x|2 for |x| ≤ 1 and Φ{x} = 2|x|−1
for |x| > 1.

Another approach to edge-preserving, nonquadratic priors is Markov random
fields, introduced in Sec. 8.4.4. In a pixel representation, the general form of the
regularizer associated with a Markov random field is

Qreg(θ) =
N∑

n=1

∑

j ∈Nn

U(θn, θj) , (15.177)

where Nn is a set of pixels in some suitably defined neighborhood of pixel n, and
U(θn, θj) is called the potential.

One commonly used potential has the form

U(θn, θj) = |θn − θj |p , (15.178)

where p is usually chosen to be in the range 1 < p ≤ 2. The corresponding prior
density is then

pr(θ) ∝
N∏

n=1

∏

j ∈Nn

exp[−η|θn − θj |p] . (15.179)

Densities of this form have a cusp at the origin and high kurtosis (long tails) com-
pared to a Gaussian. We saw in Sec. 8.4.3 that a similar behavior was often observed
experimentally and could be explained very broadly in terms of Gaussian mixtures.
Thus the prior of (15.179) has some frequentist justification, in that it exhibits
characteristics seen empirically in collections of images.

Data-dependent and space-variant regularizers We have denoted the regularizing
functional as Qreg(θ), but there is no reason why it cannot depend on g also. One
might object that it can then no longer be interpreted as a prior, but we lost that
feature anyway when we allowed the regularizing parameter η to be determined
from the data. In a sense, it is mandatory for the regularizing term to depend on
the data since the two terms in (15.126) are defined in different spaces. The data
agreement term is a norm or some other distance measure in data space while the
regularizing term is defined in the reconstruction space. If we scale the matrix H



1042 INVERSE PROBLEMS

by a constant, such that H′ = CH and g′ = Cg, then we change the ratio of the
two terms and hence the degree of regularization. To compensate for this effect, a
user of a regularizing functional would adjust η in accordance with the scaling of H.

This global adjustment alone may not achieve the desired result, however, if
the system sensitivity [defined in (7.232) or (15.36)] is a strong function of posi-
tion. The value of η that achieves a desired balance between data agreement and
smoothness at one point will lead to either oversmoothing or undersmoothing at
other points in the reconstruction. With pixels or other local representations, it
is straightforward to make η a function of position, thereby achieving a nonlocal
regularization.

An alternative approach suggested by Fessler (1994) is to make the regular-
izing functional depend on the data g as well as the reconstruction θ. Fessler has
demonstrated that this approach can yield a spatial resolution independent of po-
sition even when the system sensitivity varies with position. (See also Fessler and
Rogers, 1996, and Stayman and Fessler, 2000).

15.3.4 Effects of positivity

If there are no constraints on the value of θ, and if we assume that Q(θ,g) is every-
where differentiable with respect to its first argument, then the implicit estimate
must satisfy

∂

∂θn
Q(θ,g) = 0 , (15.180)

for all n at θ = θ̂. If we allow only nonnegative solutions, however, the minimum
may not occur at a point of zero derivative; it can also occur when one or more of
the components θn are zero, so long as the derivative is positive at this point (see
Fig. 15.2). We can allow for this possibility by requiring that

θn
∂

∂θn
Q(θ,g) = 0 and

∂

∂θn
Q(θ,g) ≥ 0 , (15.181)

for all n at θ = θ̂. The first condition says that the solution can occur when either
θn or the derivative is zero, and the second requires that the derivative be nonnega-
tive if the solution occurs at θn = 0, since otherwise there would be a smaller value
with θn > 0.

Fig. 15.2 Illustration of the Karush-Kuhn-Tucker conditions.
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These conditions are often ascribed to Kuhn and Tucker4 (1951), but in the
simple form given here they were published earlier in a master’s thesis by Karush
(1939), so we shall refer to (15.181) as the Karush-Kuhn-Tucker or KKT con-
ditions. More general Kuhn-Tucker conditions, some of which do not require the
existence of the derivative, are discussed in detail in Mangasarian (1994).

Tikhonov and KKT To illustrate the effects of the KKT conditions, consider a
least-squares data-agreement term and a Tikhonov regularizer. The derivative we
need was discussed in Sec. 1.7.4, where we showed that

∂

∂θn
Q(θ,g) =

∂

∂θn

[
||g−Hθ||2 + η||θ||2

]

= −2[Ht(g−Hθ)]n + 2ηθn . (15.182)

Since η > 0, the KKT conditions require that

θ̂n
[
Ht(g−Hθ̂)

]
n
− ηθ̂n = 0 and θ̂n ≥ η−1

[
Ht(g−Hθ̂)

]
n
. (15.183)

If we define a vector â in data space by

â =
1

η
(g−Hθ̂) , (15.184)

then (15.183) can be rewritten as

θ̂n
[
(Htâ)n − θ̂n

]
= 0 and θ̂n ≥ (Htâ)n . (15.185)

It is useful to define a nonlinear operator P+ that has the effect of clipping off
all negative values. Applied to a vector b, P+ is defined by

[P+b]m = bm step(bm) =

{
bm if bm ≥ 0
0 if bm < 0

. (15.186)

With this operator, (15.185) is formally solved by

θ̂ = P+H
tâ , (15.187)

where â must satisfy

HP+H
tâ+ ηâ = g . (15.188)

Of course (15.187) is not really a solution to our problem since it depends
on the vector â, which must be found by solving (15.188) by some iterative algo-
rithm. It does show, however, that the solution must have the form of the clipped
backprojection of some vector in data space.

4It was something of an accident that the topologist Albert W. Tucker (1905 – 1955) got into
mathematical programming. He happened to be free to give George Dantzig a ride to the Princeton
train station after Dantzig had made an unsuccessful trip to Princeton to try to interest John von
Neumann in the new field, and Dantzig ended up recruiting Tucker rather than von Neumann (S.
B. Maurer, SIAM News, July 1995).
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Relation to the unconstrained Tikhonov problem It is interesting to relate (15.187)
and (15.188) back to the corresponding equations for the same problem without the
positivity constraint. If we simply delete the clipping operator, (15.188) becomes

[
HHt + ηI

]
â = g . (15.189)

Since η > 0, HHt + ηI is a positive-definite (hence invertible) operator, and we can
write

â =
[
HHt + ηI

]−1
g . (15.190)

Thus (15.187) becomes

θ̂ = Ht
[
HHt + ηI

]−1
g =

[
HtH+ ηI

]−1
Htg , (15.191)

where the equivalence of these two forms can be demonstrated with SVD expressions
derived in Chap. 1. The second form agrees with (15.156).

Entropy and KKT The positivity constraint enters in a somewhat different way
with the entropy regularizer. Consider the implicit estimate defined by

θ̂ = argmin
θ ≥ 0

[

||g−Hθ||2 + η
N∑

n=1

θn ln

(
θn
mn

)]

. (15.192)

Now the required derivative is [cf. (15.182)]

∂

∂θn
Q(θ,g) = −2

[
Ht(g−Hθ)

]
n
+ η ln

(
θn
mn

)
+ η . (15.193)

This derivative vanishes if

θn =
mn

e
exp

(
2

η

[
Ht(g−Hθ)

]
n

)
, (15.194)

so this equation must be satisfied at the minimum if that minimum does not occur
when θn = 0. Note that θn → mn/e as η → ∞, in which case the prior dominates
the data-agreement term. For small η, on the other hand, the solution must have
gm close to (Hθ)m, emphasizing the data-agreement term.

In fact, the solution cannot be at θn = 0 since the derivative approaches −∞ at
this point and the second KKT condition cannot be satisfied there. Since entropy
is a convex regularizer, there must be at least one minimum, and it must occur
where (15.194) is satisfied. Moreover, (15.194) is automatically consistent with the
positivity constraint (if mn > 0) since the exponential lies between 0 and infinity,
never reaching either extreme for finite argument. We do not need to include a
clipping operator like P+ since there are never any negative values to clip.

Some in the Bayesian community regard the inability to get a zero value as a
virtue. Csiszár (1991) notes that “use of an entropy regularizer/prior ensures that
a nonnegative quantity is never inferred to be 0 when the available information
permits it to be positive, which is generally considered to be desirable” [emphasis
added]. Even from a Bayesian perspective, this feature seems to be at odds with
any reasonable prior. We often have the prior knowledge that many pixels in the
object representation will be zero. For example, a point outside the patient’s body
in medical imaging must be zero, though we do not know beforehand where these
points are located in the scene. A Bayesian could take this obvious fact into account
by including a delta function at the origin in the prior density, but we know of no
case where this has been done.
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15.3.5 Reconstruction without discretization

So far in this section we have discussed minimization of a functional involving the
vector θ of coefficients in an approximate discrete object representation. As we shall
show in this section, however, it is also possible to formulate the implicit reconstruc-
tion problem in continuous terms without ever adopting a discrete representation.
The results will be analogous to what we obtained with the Backus-Gilbert method
in Sec. 15.2.2, but with an implicit formulation and a positivity constraint. The
treatment here owes a great deal to the authors’ interactions with Eric Clarkson.

If we denote a continuous estimate as f̂(r), with the corresponding vector in
an infinite-dimensional Hilbert space denoted by f̂, then we can define the estimate
by [cf. (15.128)]

f̂ = argmin
f ≥ 0

[Qdata(g,Hf ) + ηQreg(f )] . (15.195)

Here, the constraint f ≥ 0 means f(r) ≥ 0 for all r in Sf, and H is a CD operator.
To find the minimum of this functional, we introduce the concept of a Fréchet

derivative (Stakgold, 1979). An ordinary gradient of a scalar-valued function with
a vector argument is a vector of the same dimensionality as the argument. The
same is true of the Fréchet derivative of a scalar-valued functional, even though the
argument is infinite-dimensional. The definition is also familiar; if the vector f is
perturbed to f+ εu, where u is some vector in the Hilbert space, then we can define
the Fréchet derivative δfψ of the scalar functional ψ(f ) via

lim
ε→0

ψ(f+ εu)− ψ(f )

ε
= (δfψ,u) . (15.196)

If u is a basis vector in the space, the right-hand side can be viewed as a component
of the vector δfψ. With only a slight loss of generality, we can restrict attention to
reproducing-kernel Hilbert spaces where functions can be evaluated pointwise (see
Sec. 1.8). Then if we let u correspond to the evaluation function for the Hilbert
space [analogous to δ(r − r0)], the scalar product on the right in (15.196) is the
function [δfψ](r) evaluated at r = r0. The Fréchet derivative of a scalar functional
is thus a function.

Two examples of (15.196) will prove useful. For the continuous Tikhonov
regularizer,

ψ(f ) =

∫

Sf

d2r [f(r)]2 , (15.197)

we can write the Fréchet derivative as a vector in Hilbert space,

δfψ = 2 f , (15.198)

or equivalently as a function,

[δfψ] (r) = 2f(r) . (15.199)

Similarly, for the continuous entropy regularizer,

ψ(f ) =

∫

Sf

d2r f(r) ln[f(r)] , (15.200)

we find
[δfψ] (r) = ln f(r) + 1 . (15.201)
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In both of these examples we have assumed that f(r) is real.
A somewhat more complicated example comes from a least-squares data-agreement

term. If we consider

ψ(f ) = ||g−Hf ||2 =
M∑

m=1

[
gm −

∫

Sf

d2r′ hm(r′) f(r′)

]2
, (15.202)

with all quantities being real, then we can show that

[δfψ] (r) = −2
M∑

m=1

hm(r)

[
gm −

∫

Sf

d2r′ hm(r′) f(r′)

]
. (15.203)

To get a more abstract operator form, we can use the definition of the adjoint of a
CD operator from (7.237) and write

δfψ = −2H†[g−Hf ] . (15.204)

Continuous Tikhonov reconstruction Consider the regularized least-squares problem
with the data-agreement functional (15.202) and the continuous Tikhonov regular-
izer (15.197). From results above, we see that the Fréchet derivative is a modest
generalization of (15.182):

δfQ(f,g) = −2
[
H†(g−Hf )

]
+ 2η f . (15.205)

Similarly, (15.183) becomes

f̂(r)
[
H†(g−H f̂ )

]
(r)− ηf̂(r) = 0 ; f̂(r) ≥ η−1

[
H†(g−Hf̂ )

]
(r) . (15.206)

Just as (15.183) had to hold for all n at the solution point, so too must these
continuous conditions hold for all r. They thus comprise a set of infinite-dimensional
KKT conditions.5

From this point it is just a matter of notational changes to get a set of equations
for the continuous estimate. Specifically, (15.187) becomes

f̂(r) =
[
P+H

†â
]
(r) , (15.207)

where â is still a finite-dimensional vector in data space and satisfies [cf. (15.188)]

HP+H
†â+ ηâ = g . (15.208)

From (15.207) we see that f̂(r) is simply a clipped backprojection of â, or equiva-
lently a clipped superposition of natural pixels with weights {am}. Thus the recon-
struction problem boils down to finding the M components of â by solving (15.208).
One approach would be a fixed-point iteration (see Sec. 15.4.4). In practice, the
nonlinear operator HP+H

† could be implemented by replacing the integral over
object space by a finely sampled sum, but this sampling would not imply that a
discrete object representation had been adopted.

5These conditions were originally derived by Eric Clarkson but have not been published elsewhere
at this writing.
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Other regularized reconstructions By arguments parallel to those leading to (15.194),
we can show that the continuous maximum-entropy solution must satisfy

f̂(r) =
m(r)

e
exp

{
2

η

[
H†(g−Hf )

]
(r)

}
. (15.209)

As in the discrete case, any solution to this equation automatically satisfies the
positivity constraint.

From (15.207) and (15.209), we see that the solution must have the form of
a nonlinear point operator acting on a superposition of natural pixels, at least for
least-squares problems with the Tikhonov or entropy regularizers. The same is true
for a wide variety of other continuous implicit estimates.6

Night skies The purpose of regularization in any inverse problem is to reduce noise
variance, but with implicit estimation of functions, a completely new class of solu-
tions arises if we do not regularize. In particular, we can have solutions that consist
of a finite number of delta functions:

f̂(r) =
K∑

k=1

αk δ(r− rk) , αk > 0 , K ≤ M . (15.210)

Since this set of delta functions might represent stars in the sky, solutions of this
form can be called night-sky reconstructions. Needless to say, a night-sky recon-
struction will usually not resemble the actual object, so solutions like (15.210) are
infinitely biased with respect to almost any real object, and they have infinite vari-
ance. Nevertheless, they can always occur if we do not regularize or discretize.

To understand the existence of night-sky reconstructions, consider the moment
cone, introduced in Sec. 15.1.4, and suppose first that g lies in its interior. Then
we can express g as a positive linear combination of points on the boundary of the
moment cone. Each of these points is the image of a unit delta function in object
space, so it is always possible to find an f̂ in the form of (15.210) that will give
H f̂ ≡ g. Any distance measure Qdata(g,Hf ) will be minimized when Hf = g,
so the night-sky estimate will necessarily minimize the distance. Since H has null
functions, it is also possible that there will be other objects f such that Hf ≡ g,
yielding the same value of zero for the data-agreement functional. Some or all of
these objects may not be night skies; which object is found depends on the specific
minimization algorithm and its initial estimate.

Because of noise, g may not lie in the moment cone. In fact, in many cases it is
overwhelmingly likely that g will not lie in the moment cone, because the moment
cone is a lower-dimensional manifold in the data space. If the DC operator H† has
null functions, then as we saw in Sec. 15.2.5 there are consistency conditions in data
space, and different components of noise-free data are not linearly independent. If
there are K consistency conditions and M components to the data vector, then con-
sistency space is an (M−K)-dimensional manifold in data space. Since the moment
cone is a subset of consistency space, it also has just M −K dimensions. A noisy
data vector, on the other hand, does not have the linear dependence, so it will lie at a
general point in data space, with a vanishingly small probability of hitting the cone.

6Unpublished results of Eric Clarkson.
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If a noisy g lies outside in the moment cone, and if the data-agreement func-
tional is strictly convex, then there must be a unique point g0 on the surface of the
moment cone such that Qdata(g,Hf ) is minimized (though not zero). Since g0 is
on the surface of the moment cone, it is either the image of a single point object
or a positive combination of at most M point objects. Thus the equation Hf = g0

can always be solved exactly by a night-sky object.
Moreover, if g is outside the moment cone, the night-sky object will be unique

in the absence of exact consistency conditions. Consider a CD imaging system with
three detectors viewing a 1D object function f(x). As shown in Fig. 15.3, moving a
delta function along the x-axis in object space traces out a curve C in data space,
and the moment cone is formed by taking the convex hull and drawing a line from
the origin through each point in the hull to infinity. As the figure is drawn, the cone
is a 3D manifold, so there are no consistency conditions. Nevertheless, two exam-
ples of data vectors, g and g′, outside the cone are shown. The point on the cone
nearest to g is g0 and the one nearest to g′ is g′

0. As shown, g
′
0 lies on the original

curve C, so it is uniquely the image of a single delta function. By contrast, g0 lies
on a flat (two-dimensional) face created when the convex hull was formed. This
face touches C at just two points, each of which is the image of a delta function, so
g0 is uniquely the image of an object consisting of two delta functions. The only
way in which a smooth object could produce g0 would be if the curve C itself had
a face, which would be the image of delta functions δ(r− r0) for a continuous range
of r0; then any point in the face could be the image of an integral superposition of
these delta functions, not just a finite sum.

Fig. 15.3 The moment cone for a linear system with three detectors viewing
a 1D object f(x).

In summary, there is always a nonnegative night-sky object that will minimize
the unregularized data-agreement functional. If there are consistency conditions,
the data vector g will usually lie outside the moment cone, and the night sky object
will usually be unique. Thus night skies are almost inevitable in unregularized pos-
itive reconstruction without discretization. Similar features occur in DD problems,
as discussed by Byrne (1993, 1995).
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15.3.6 Resolution and noise in implicit estimates

Sometimes the minimum of an objective function Q(θ,g) occurs at a point where it
is differentiable with respect to both its arguments. This is the case, for example,
with the least-squares data-agreement term and any popular regularizer if there are
no constraints on the solution, and even a positivity constraint may not spoil the
differentiability, as we saw in the case of the entropy regularizer in Sec. 15.3.4. In
this section we shall explore some properties of the argmin estimate when Q(θ,g)
is differentiable at the minimum with respect to both arguments.

Implicit derivatives If x and y are real scalars, the equation f(x, y) = 0 defines y as
an implicit function of x. The total differential of f is

df =
∂f

∂x
dx+

∂f

∂y
dy = 0 , (15.211)

from which we see that
dy

dx
= −∂f/∂x

∂f/∂y
. (15.212)

Now suppose x is a real M × 1 column vector and y is a real N × 1 column
vector. To define y as an implicit function of x, we need N linearly independent
equations of the form fn(x,y) = 0. Then, by the chain rule,

dfn =
∂fn
∂xt

dx+
∂fn
∂yt

dy = 0 , (15.213)

where ∂fn/∂xt is a row vector of partial derivatives. (For more discussion of the
vector notation used here, see Sec. A.9.2.) If we consider a vector dx where all
components except dxj are zero, we see that

∂fn
∂xj

= −
∑

k

∂fn
∂yk

∂yk
∂xj

. (15.214)

This result can be written in matrix-vector form by defining a matrix ∂y/∂xt with
jk th component given by ∂yk/∂xj , so that

∂fn
∂x

= − ∂y

∂xt

∂fn
∂y

. (15.215)

Application to implicit estimates Suppose that the minimum of Q(θ,g) occurs at
a point θ = θ̂(g) where ∂Q(θ,g)/∂θn = 0 for n = 1, ..., N. Then we can apply
(15.215) with fn = ∂Q(θ̂,g)/∂θ̂n, y = θ̂ and x = g, yielding

∂

∂g

[
∂Q(θ̂,g)

∂θ̂n

]

= − ∂θ̂

∂gt

∂

∂θ̂

[
∂Q(θ̂,g)

∂θ̂n

]

, (15.216)

or, in full matrix form,

∂2Q(θ̂,g)

∂g∂θ̂
t = − ∂θ̂

∂gt

∂2Q(θ̂,g)

∂θ̂∂θ̂
t . (15.217)
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The second derivative on the right is the Hessian matrix (see Sec. A.9.2), which will
be invertible whenever the objective function has a unique minimum. Multiplying
(15.217) from the right with the inverse Hessian and taking a transpose yields the
multivariate counterpart of (15.212):

∂θ̂

∂g
= −

[
∂2Q(θ̂,g)

∂θ̂∂θ̂
t

]−1
∂2Q(θ̂,g)

∂θ̂∂gt
. (15.218)

We can rewrite (15.218) as

dθ̂ =
[
A(θ̂(g),g)

]
dg , (15.219)

where A(θ̂,g) is the N ×M matrix defined by the right-hand side of (15.218):

A(θ̂,g) = −
[
∂2Q(θ̂,g)

∂θ̂∂θ̂
t

]−1
∂2Q(θ̂,g)

∂θ̂∂gt
. (15.220)

As it stands, (15.219) is a nonlinear mapping since A(θ̂,g) depends on θ̂. To
linearize it, let g be the mean data vector and let θ̂(g) be the argmin estimate
obtained when g = g ≡ Hf. [Note that θ̂(g) is not necessarily the mean of θ̂.] For
small deviations of the data vector from its mean, we can write

∆θ̂ =
[
A(θ̂(Hf ),Hf )

]
∆g . (15.221)

This formula, derived by Fessler (1996), is now a linearized mapping from ∆g to
∆θ̂, though the mapping operator depends on the actual object f. A change in g

can result from either a change in the object or from noise, so the formula can be
used to discuss the resolution and noise properties of implicit estimates.

Resolution Now suppose ∆g results from adding a weak delta function ε δ(r− r0)
to the object, where ε is small enough that ∆gm 4 gm for all m. For our usual CD
model, ∆gm = εhm(r0). The point response function for the overall system (CD
operator plus implicit estimator) is the N × 1 vector p(r0) defined as the image of
this point object divided by ε; it is given by

p(r0) =
[
A(θ̂(Hf ),Hf )

]
h(r0) , (15.222)

where h(r0) is a vector in data space with mth component given by hm(r0).
In practice, this PRF might be evaluated with the aid of a DD model for the

imaging system. If we neglect null functions and modeling errors, then Hf + Hθ.
If θ is perturbed by adding ε δnn0 , representing a change of ε in the element n = n0,
then the PRF in θ̂ is

p(n0) =
[
A(θ̂(Hθ),Hθ)

]
h(n0) , (15.223)

where h(n0) is an M × 1 vector with the mth element given by Hmn0 . If h(n0) is a
good approximation to h(r0), then the PRF of (15.223) could accurately represent
(15.222), but the assumptions should be checked in particular cases. An additional
possible simplification is that the noise-free reconstruction θ̂(g) accurately repro-
duces θ, in which case A(θ̂(Hθ),Hθ) + A(θ,Hθ), but again this step should be
taken with caution.
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Variance and covariance in the estimate The linearized mapping of (15.221) allows us
to use the formalism of Sec. 15.2.6 to discuss the statistical properties of θ̂. From
(15.107) and (15.221), the conditional covariance matrix for the reconstruction,
given a specified object, is

K!θ|f = AKgA
† , (15.224)

where A = A(θ̂(Hf ),Hf ), but it might be approximated as in (15.223) if a DD
model is used.

As discussed in Secs. 12.2 and 15.2.6, it is frequently a good model to as-
sume that g ∼ N (Hf,σ2I), and in that case the conditional covariance matrix, in
component form, is given by

[
K!θ|f

]

nn′

= σ2
M∑

m=1

AnmA∗
n′m , (15.225)

and the corresponding conditional variance is

Var
{
θ̂n|f

}
= σ2

[
AA†

]

nn
= σ2

M∑

m=1

|Anm|2 . (15.226)

These expressions are very similar to (15.108) and (15.109), respectively, but there
is a key difference. Since A is a function of f (or approximately, θ), the noise in the
reconstruction depends on the object and hence on position in the image.

The term signal-dependent noise is often encountered in the literature, and
it can be applied here if the signal is construed to be the object itself. By the
terminology introduced in Chap. 8, however, signal refers to a part of the object
that we might be interested in detecting. If the signal in this sense is a small
perturbation to the object, then it may have little influence on the statistics of θ̂,
so we would say that the noise is object-dependent but signal-independent.

This same argument applies even in the case of Poisson noise, which is often
called signal-dependent. In that case the conditional covariance and variance of θ̂
are given by (15.120) and (15.121) (with O replaced by A). Then the noise depends
on position in the image for two reasons: the data covariance depends on the object,
and the implicit reconstruction procedure also introduces an object dependence.
Nevertheless, if we think of a signal as a small perturbation to an object, then the
noise in the reconstruction is signal-independent but object-dependent.

Example 1: Tikhonov regularization and least-squares Within the linearized approx-
imation, computation of resolution and noise in the reconstruction requires only
that we be able to compute the N ×M matrix A defined in (15.220). We shall now
show how to do that for two special cases.

First, consider a least-squares data-agreement term and a Tikhonov regular-
izer. The first derivative of the objective function with respect to θ is given by
(15.182), and the Hessian matrix is obtained by differentiating (15.182) again; the
result is

∂2

∂θn∂θm
Q(θ,g) = 2

[
HtH

]
nm

+ 2η δnm . (15.227)

The requisite cross-derivative is

∂2

∂θn∂gm
Q(θ,g) = 2Hmn . (15.228)
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Thus (15.220) takes the familiar form,

A(θ̂,g) =
[
HtH+ ηI

]−1
Ht , (15.229)

which is identical to the regularized least-squares operator derived in Sec. 1.7.5
and reproduced in (15.156). Since this operator is independent of θ̂ and g, the
linearization is exact in this case.

Example 2: Entropy regularization For a least-squares data-agreement functional
and the entropy regularizer of (15.158), the Hessian is

∂2

∂θn∂θm
Q(θ,g) = 2

[
HtH

]
nm

+ 2
(η
θ n

)
δnm . (15.230)

The cross-derivative is still given by (15.228), so

A(θ̂,g) =
[
HtH+ ηD(θ̂)

]−1
Ht , (15.231)

where
[
D(θ̂)

]
nn′

=
1

θ̂n
δnn′ . (15.232)

Now the matrix A depends on θ̂, so different mappings apply at different points in
the image. Since the regularizing parameter is divided by θ̂n, the qualitative effect
is to reduce the variance in regions of the image where θ̂n is small.

15.4 ITERATIVE ALGORITHMS

Once we have chosen an objective functional to minimize, we next need an algorithm
to find the minimum. In one sense, this choice is more a matter of computer science
than image science. If the functional is strictly convex, then the minimum is unique
and all algorithms should obtain the same image if run to convergence. The only
issues are which algorithm will find the minimum most efficiently and with the least
computing resources, and those questions are peripheral to the goal of this book.

In practice, however, iterative algorithms may not be run to convergence. In
that case, the resulting image depends on the algorithm, the initial estimate and
the stopping rule (as well as the data and the model, of course). One focus in
this section, therefore, will be on the properties of images produced by iterative
algorithms as a function of iteration number.

We shall distinguish linear from nonlinear algorithms, depending on whether
the update rule gives the next estimate as a linear (or at least affine) functional
of the previous estimate. Linear algorithms are, of course, easier to analyze, but
nonlinear algorithms may offer considerable advantages. For example, imposition of
a positivity constraint at each iteration requires nonlinearity, but it may be effective
in controlling noise and artifacts in the image.

We begin in Sec. 15.4.1 with a survey of linear iterative algorithms, building
on the discussion of iteration computation of the pseudoinverse in Sec. 1.7.6. Noise
properties of linear iterative algorithms are derived in Sec. 15.4.2.

In Sec. 15.4.3 we give a rapid survey of optimization methods. Some emphasis
is placed on conjugate-gradient methods, but mainly for pedagogical purposes; as
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we shall see, conjugate gradients are closely related to two main themes of this book,
pseudoinverses and prewhitening.

In Sec. 15.4.4, we shall see how to introduce nonlinear constraints into iterative
algorithms, and we shall revisit the KKT conditions in the context of a specific class
of nonlinear algorithms, fixed-point iterations. Another important general class of
algorithms is projections onto convex sets, surveyed briefly in Sec. 15.4.5.

The popular expectation-maximization (EM) algorithm is introduced in Sec.
15.4.6, and its relation to Poisson likelihood is discussed, and in Sec. 15.4.7, we
discuss noise propagation in nonlinear iterative algorithms, using the EM algorithm
as an example.

Finally, in Sec. 15.4.8 we consider iterative algorithms in which the update
step is random. Starting with an algorithm called simulated annealing, we discuss
a general class of algorithms called Markov-chain Monte Carlo. Applications of
this algorithm to image-quality assessment have already been mentioned in Sec.
14.3.3 and 14.3.4.

15.4.1 Linear iterative algorithms

In Sec. 1.7.6 we introduced several iterative methods for minimizing a quadratic
data-agreement functional; included there were the Landweber, Gauss-Seidel and
Jacobi methods. For these algorithms and many others, the iteration rule has the
general form [cf. (1.236)]

θ̂(k+1) = θ̂(k) +B
[
g−Hθ̂(k)

]
, (15.233)

where B is an N ×M matrix. Since the correction term is added to the previous
estimate, (15.233) is often referred to as an additive algorithm. It is also called a
linear algorithm since only linear operations are performed on the kth estimate to
obtain the correction term; the relation between θ̂(k+1) and θ̂(k) is, however, affine
rather than strictly linear.

The choices to be made in using this kind of algorithm are the matrix B, the
starting estimate θ̂(0) and the number of iterations K. For example, a modified
Landweber algorithm can be defined by taking B = αHt, where α is called an
acceleration parameter since it controls the rate of convergence. Common choices

for θ̂(0) are Htg or a uniform field (i.e., θ̂(0)n = c for all n).
Conditions under which algorithms like (15.233) converge were discussed in

Sec. 1.7.6. For present purposes, let us simply assume that the algorithm converges
and see what it gives when it does. Convergence means that θ̂(k+1) − θ̂(k) → 0,
or B[g − Hθ̂(k)] → 0. If the rank of B is the data dimension M, then B has no
null functions in data space, so convergence can occur only if g = Hθ̂(k). Thus the
algorithm attempts to enforce agreement between the actual noisy data g and the
estimated data Hθ̂; as we have seen several times, strict agreement with noisy data
results in a very noisy image, so this algorithm is almost never run to convergence.

A more general linear algorithm has the form

θ̂(k+1) = θ̂(k) − ηCθ̂(k) +B
[
g−Hθ̂(k)

]
, (15.234)

where C is an N × N matrix. Now the algorithm no longer forces g = Hθ̂(k) but
instead converges (if it does so at all) to a θ̂(k) such that
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ηCθ̂(k) = B
[
g−Hθ̂(k)

]
. (15.235)

Equivalently, the algorithm converges to

θ̂(k) = (BH+ ηC)−1Bg , (15.236)

provided the indicated inverse exists. If C = I and B = Ht, then we are back to
the regularized least-squares solution of (15.156). In any case, C controls the form
of the regularization and η controls the amount.

The algorithm of (15.234) can be written as

θ̂(k+1) = Ωθ̂(k) +Bg , (15.237)

where
Ω = I− ηC−BH . (15.238)

Since (15.237) has the form of a general linear (more precisely, affine) mapping,
any linear iterative algorithm with a fixed update rule can be put in this form with
proper choice of Ω and B.

The only possible remaining generalization is to let the update rule vary with
iteration number. For example, the regularizing constant η or the accelerating
parameter α could vary with k. The general form of the algorithm then becomes

θ̂(k+1) = Ω(k)θ̂(k) +B(k)g . (15.239)

This form can encompass algorithms, called row-action methods, that use only
a subset of the data at each iteration. We have already encountered one impor-
tant row-action method in Chap. 1, where we introduced the Gauss-Seidel or ART
method in the context of pseudoinverse calculations. For a detailed survey of row-
action methods, see Censor (1981).

15.4.2 Noise propagation in linear algorithms

Since (15.239) describes the most general linear algorithm, we shall now use this
equation to discuss the evolution of the covariance matrix with iteration number, a
process sometimes referred to as noise propagation.

The first step is to find an expression for the evolution of the mean vector.
If we take a conditional average of both sides of (15.239) for a fixed object f, the
result is

〈θ̂(k+1)〉g|f = Ω(k)〈θ̂(k)〉g|f +B(k)Hf , (15.240)

where, as discussed in Sec. 15.2.6, 〈g〉g|f = Hf. In practice (or at least in simulation
studies), this mean vector can be found as a function of k simply by running the
iterative algorithm on a noise-free data set.

Subtraction of (15.240) from (15.239) yields

∆θ̂(k+1) = Ω(k)∆θ̂(k) +B(k)n , (15.241)

where n ≡ g−Hf, and ∆θ̂(k) indicates the deviation of the estimate from its mean.
If the initial estimate θ̂(0) is nonrandom, the deviation after the first iteration

is
∆θ̂(1) = Ω(0)∆θ̂(0) +B(0)n = B(0)n . (15.242)
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The next two iterations yield

∆θ̂(2) = Ω(1)∆θ̂(1) +B(1)n = Ω(1)B(0)n+B(1)n . (15.243)

∆θ̂(3) = Ω(2)∆θ̂
(2)

+B(2)n = Ω(2)B(1)n+Ω(2)Ω(1)B(0)n+B(2)n . (15.244)

By extension (or induction), the general form is

∆θ̂(k) = U(k)n , (15.245)

where
U(k+1) = B(k) +Ω(k)U(k) . (15.246)

With the initial condition U(1) = B(0), (15.246) constitutes an iterative algorithm
for the matrix U(k) that relates the deviation ∆θ̂(k) back to the noise vector n.
Even with large images, the algorithm is feasible in practice since it requires only a
single matrix-matrix multiply and a matrix addition at each step.

If we have computed U(k) by (15.246), we can immediately determine the
conditional covariance matrix for θ̂(k). From (8.50) we know how to transform a
covariance matrix through a linear transformation, so we have

K!θ
(k)

|f
= U(k)KnU

(k)† . (15.247)

For i.i.d. noise, [cf. (15.107)], we have

K !θ
(k)

|f
= σ2 U(k) U(k)† . (15.248)

The covariance expression (15.248) must be modified if the data noise is Pois-
son. By comparison to (15.120), we see that

[
K!θ

(k)
|f

]

nn′

=
M∑

m=1

[Hf ]m U (k)
nm

[
U (k)
n′m

]∗
. (15.249)

Conditional PDFs and optimization of algorithms If the noise in the data is nor-
mally distributed, then any linear transformation leaves it normal, so (15.240) and
(15.247) are sufficient to specify fully the statistics of the linear reconstruction at
each iteration. For Poisson noise, the reconstruction is not exactly normal, but as
we argued in Sec. 15.2.6, the normal law will often be an excellent approximation.
Thus in either case we have good knowledge of the conditional statistics for any
linear algorithm and number of iterations. This statistical description can be used
in conjunction with any of the task-based figures of merit developed in Chap. 14 to
optimize the number of iterations and other free parameters of the algorithm.

15.4.3 Search algorithms for functional minimization

As we saw in Sec. 15.3, image reconstruction is often formulated as minimization of
some functional Q(θ,g). A host of methods for performing this minimization can
be found in the literature on optimization, and only a brief overview will be given
here. For more details, see Golub and van Loan (1989), Scales (1985), Pierre (1986)
or Gill et al. (1981).
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A general approach to functional minimization is to choose a search direc-
tion in the reconstruction space, take a step in that direction, and then repeat the
process iteratively. The iteration rule for algorithms in this class is thus

θ̂(k+1) = θ̂(k) + h(k)s(k) , (15.250)

where the vector s(k) specifies the search direction for the kth iteration, and h(k) is
the corresponding step size. Each algorithm is specified by the initial estimate, a
procedure for setting the sequence of directions {s(k)} and a rule for determining
the step sizes {h(k)}.

The most common initial estimates are a uniform field (all components equal)
and the discrete backprojection Htg. If enough iterations are used and Q(θ,g) has
a unique minimum, the final solution does not depend on the initialization, but
with a finite number of iterations the solution is biased towards the initial estimate,
which can thus be regarded as a kind of regularization or prior knowledge.

Common choices for {s(k)} lead to algorithms known as iterative coordinate
descent, steepest descent and conjugate gradient, all of which will be summarized
below, but first we look at ways of choosing the step size.

One-dimensional minimization algorithms Since the objective of the search is to find
a minimum of Q(θ,g), it is usual (though not mandatory) to choose h(k) at each
step so that Q(θ̂(k+1),g) ≤ Q(θ̂(k),g). Colloquially, the step is in a downhill direc-
tion. For example, we could choose a step size h0 and take each h(k) to be either
h0 or −h0, depending on which direction is downhill. If neither h0 nor −h0 results
in a reduction in the functional, no change is made. If few changes are made in the
course of many iterations, we can change h0, for example by halving it, and repeat
the process.

Rather than just moving in the direction of the minimum, one can also at-
tempt to come as close as possible to the minimum along each search direction
before moving on to a new direction. Many methods for finding this minimum are
available. The brute-force method is just to take many small steps in the down-
hill direction until you start uphill again. More sophisticated methods such as the
golden-section search (Pierre, 1986) vary the step size in an attempt to bracket
the minimum.

Other methods such as Newton-Raphson (Pierre, 1986; Scales, 1985) attempt
to estimate the location of the minimum from the gradient and/or Hessian (cur-
vature) of the functional. All of these methods approximate the functional at its
current estimate by means of a multivariate Taylor series as discussed in Sec. A.10.2.
From (15.250) and (A.181), we can write

Q(θ̂(k+1),g) = Q(θ̂(k),g) + h(k)s(k)t∇Q(k) + 1
2

[
h(k)

]2
s(k)tA(k)s(k) + ... , (15.251)

where ∇Q(k) and A(k) are, respectively, the gradient vector and Hessian matrix
evaluated at θ = θ̂(k); in the notation of App. A,

∇Q(k) =

[
∂

∂θ
Q(θ,g)

]

θ=
!θ
(k)

, A(k) =

[
∂2

∂θ∂θtQ(θ,g)

]

θ=
!θ
(k)

. (15.252)

If we truncate the Taylor series at the quadratic term, the minimum of
Q(θ̂(k+1),g) in direction s(k) occurs when
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h(k) = − s(k)t∇Q(k)

s(k)tA(k)s(k)
. (15.253)

This is the univariate Newton-Raphson formula, and in the local quadratic approx-
imation to the functional it provides a way to reach the minimum in direction s(k)

in a single step. If the functional is not locally quadratic, then (15.253) may still
be a reasonable choice when the gradient and Hessian can be computed. It is easy
to compute the gradient and Hessian for some functionals, such as the Tikhonov-
regularized least-squares one, but difficult or impossible for others, so (15.253) and
its variants are not universally applicable.

Iterative coordinate descent When we adopt an approximate object representation
fa(r) in the form of (15.6), the functions φn(r) are the basis vectors in the repre-
sentation space, and the coefficients θn specify the components of the vector fa in
this basis. Thus, if we vary one coefficient at a time, we are sequentially moving
along the different coordinate axes in representation space. Algorithms that use the
coordinate axes as the search directions and that reduce the functional at each step
are known generically as iterative coordinate descent. Their advantage is that
no computation is needed to determine the search directions, and in particular no
knowledge of the gradient or Hessian is required for this purpose.

If iteration k varies the component nk of the estimate, then the update has
the form [

θ̂(k+1)
]
nk

=
[
θ̂(k)

]
nk

+ h(k) , (15.254)

and all other components are left unchanged at this iteration. If the estimate has
N components, the index nk should cycle through all N of them in the course of
N iterations. The sequence of components {nk} is called the control sequence. It
can be some natural order such as lexicographic ordering of pixels, or it can assure
that adjacent pixels are not altered in immediate succession, or the order can even
be chosen randomly.

Any of the one-dimensional minimization techniques mentioned above can be
used to determine the step size h(k). For example, the step can be fixed at each
iteration as±h0, whichever is downhill. Alternatively, we can make a fixed fractional
change in the component at each step, so that

[
θ̂(k+1)

]
nk

=
(
1± α(k)

)[
θ̂(k)

]
nk

, (15.255)

with 0 < α(k) < 1 and the sign chosen so that the step is downhill. Again, if neither
sign results in a downhill step, then no change is made, and the size of α(k) can be
reduced when this happens for many components. Both of these coordinate-descent
algorithms are conceptually simple and easy to code, requiring only the ability to
compute the functional rather than its gradient or Hessian; both will find the min-
imum if it is unique and computational time is not a limitation.

If we actually find the minimum in one coordinate direction (for example by
Newton-Raphson) before moving on to the next direction, the algorithm is called
iterative conditional modes. This term arises from the interpretation of Q(θ,g) as
the negative logarithm of a posterior (see Sec. 15.3.1), so that minimizing it is equiv-
alent to maximizing the probability density, pr(θ|g). Similarly, minimizing Q(θ,g)
along the nth coordinate axis is the same as maximizing pr(θn|g, {θj , j *= n}). Since
the peak of a probability density function is called its mode, all coordinate-descent
methods that minimize the functional individually for each direction iteratively
determine this conditional mode.



1058 INVERSE PROBLEMS

Steepest descent The coordinate-descent algorithms are usually slow since most
directions chosen do not point very close to the minimum. Another general approach
is try to choose the direction optimally at each iteration. For example, one might
choose to go downhill as steeply as possible. Since the direction in which a scalar
functional changes most rapidly is the direction of its gradient, the new search
direction in this approach is taken as the negative of the local gradient. This
method is called steepest descent or gradient descent. Typically it is combined
with one of the search methods mentioned above so the actual minimum in the
gradient direction is found or estimated.

Steepest descent is particularly simple when it is applied to a functional that
is either exactly or approximately quadratic. Dropping the dependence on g for
notational convenience, we consider a general quadratic functional of the form

Q(θ) = 1
2θ

tAθ − btθ . (15.256)

This form could represent a least-squares problem with a quadratic regularizer, or
it could be the local quadratic approximation to a more general functional as in
(15.251).

The gradient of Q(θ) is given, from (A.126) and (A.127), as

∇Q(θ) = Aθ − b . (15.257)

Finding the minimum of Q(θ) requires setting the gradient to zero, which we see
is equivalent to solving the set of linear equations Aθ = b. If A is positive-
definite (hence nonsingular), then Q(θ) has a unique minimum at θ = A−1b, but
in large problems it is not feasible to compute this inverse even though it exists.
In nonsingular quadratic problems, therefore, steepest-descent is a way of finding
A−1b without knowing A−1.

If we have a current estimate θ̂(k), the next search direction is parallel to
−∇Q(θ̂(k)), which we called −∇Q(k) earlier. Thus

∇Q(k) = Aθ̂(k) − b , (15.258)

which is just the residual vector r(k) specifying the difference between Aθ and b

at the current estimate. The descent direction is the negative of the residual, and
finding the overall minimum of Q(θ) is equivalent to driving the residual to zero.

Conjugacy Though steepest descent sounds appealing, it may converge slowly when
the functional has long regions (canyons) where it varies slowly in one direction but
rapidly in another (see Fig. 15.4). An alternative approach which may converge
more rapidly is the conjugate-gradient method, described below.

Fig. 15.4 (a) Illustration of a situation where steepest descent converges very
slowly. (b) Convergence of the conjugate-gradient algorithm for the same
situation.
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To explain the conjugate-gradient method, we must first explain the concept
of conjugacy. Let A be a real N ×N Hermitian matrix of rank R. Two real N × 1
vectors pj and pk are said to be A-conjugate (or conjugate with respect to A) if

pt
jApk = dj δjk . (15.259)

One possible choice for the set {pj, j = 1, ..., R} is the set of eigenvectors of A,
but there are many other possibilities. As shown in Sec. 1.4.4, the eigenvectors
are mutually orthogonal (or can be chosen to be via Gram-Schmidt if there are
degeneracies). Conjugate vectors can be shown to be linearly independent (Scales,
1985), but they are not necessarily orthogonal.

Conjugacy is formally related to the idea of prewhitening, introduced in a
statistical context in Sec. 8.1.6. Here we do not need any particular statistical
interpretation; we simply define7

p̃j = A
1
2pj , (15.260)

where A
1
2 is the square root of the Hermitian matrix A (see Sec. A.8.3). With this

transformation and the definition of the adjoint in (1.39), the conjugacy condition
(15.259) can be written as

pt
jApk = (A

1
2pj)

t(A
1
2pk) = p̃t

jp̃k = dj δjk . (15.261)

Thus the prewhitened vectors {A 1
2pj , j = 1, ..., R} form an orthogonal set, and they

can be normalized to yield the orthonormal set, {d−
1
2

j A
1
2pj , j = 1, ..., R}.

Conjugate vectors and minimization of a quadratic Let us return to the quadratic
problem of (15.256) and assume for simplicity that A is Hermitian and positive-
definite. As applied to this problem, conjugate-gradient algorithms all have the
general iteration rule

θ̂(k+1) = θ̂(k) + h(k)pk , (15.262)

where each pk is conjugate (with respect to A) to all previous pj , j < k. For an

exact linear search, h(k) is chosen by (15.253) to minimize Q(θ̂(k+1)):

h(k) = −pt
k∇Q(k)

dk
. (15.263)

The advantage of choosing conjugate vectors to define the search directions
can be seen by applying the prewhitening transformation A

1
2 as in (15.260). If we

define
θ̃ = A

1
2 θ and b̃ = A− 1

2b , (15.264)

then the functional to be minimized becomes

Q̃(θ̃) = b̃tθ̃ + 1
2 θ̃

t
θ̃ . (15.265)

7When Q(θ ,g) is the negative of a multivariate Gaussian log-likelihood, then A = K−1, where K
is the covariance matrix. In that case, (15.249) is identical to what we called prewhitening in Sec.
8.1.6 and 13.2.18.
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Thus the transformation converts the isocontours of the functional into N -
dimensional spheres in the prewhitened space. It follows from (15.261) that any
algorithm of the form (15.262) will make a succession of minimizations along mu-
tually orthogonal directions in the prewhitened space if the vectors {pk} satisfy
the conjugacy condition (15.259). This search will reach the overall minimum in
at most N steps; zig-zagging along the canyon as in Fig. 15.4 does not occur after
prewhitening. Of course, a steepest-descent algorithm would reach the minimum in
one step after prewhitening, but we would need to know the operator A

1
2 in order

to find the steepest-descent direction. For large problems we must assume that A
1
2

and A−1 are not accessible.

Generating conjugate vectors To generate a sequence of conjugate vectors, we can
in principle generate a sequence of orthogonal vectors in the prewhitened space and
then apply the operator A− 1

2; fortunately, as we shall see, we can do this without
actually knowing A− 1

2.
To set notation, let Ũ(k) be the kD space spanned by {p̃j , 0 ≤ j ≤ k− 1}, and

let U(k) be the kD space spanned by {pj , 0 ≤ j ≤ k − 1}. Since A
1
2 is square and

nonsingular, there is a 1:1 correspondence between these two spaces.
If we know the vectors {p̃j , 0 ≤ j ≤ k − 1}, we can generate a new vector p̃k

orthogonal to all of them by choosing a vector q̃k, which is arbitrary except that
it cannot lie entirely in Ũ(k), and projecting it onto the orthogonal complement of

Ũ(k), denoted Ũ
(k)
⊥ . Since the set {d−

1
2

j A
1
2pj , 0 ≤ j ≤ k−1} is an orthonormal basis

for Ũ(k), the projector onto Ũ
(k)
⊥ has the form [cf. (1.60)]

p̃k ≡ P̃
(k)

⊥ q̂k =



I−
k−1∑

j=0

1

dj
p̃jp̃

t
j



 q̃k

= q̃k −
k−1∑

j=0

1

dj
(A

1
2pj) (A

1
2pj)

tq̃k . (15.266)

Letting qk = A− 1
2 q̃k and multiplying (15.266) by A− 1

2, we find

pk = qk −
k−1∑

j=0

pt
jAqk

dj
pj . (15.267)

Note that A
1
2 no longer appears in this expression.

To show explicitly that this pk is conjugate to the previous pi(i < k), we take
the scalar product of pk with Api, yielding

(pk,Api) = qt
kApi −

k−1∑

j=0

pt
jAqk

dj
(pt

jApi) = qt
kApi − qt

kApi = 0 , (15.268)

where we have used the conjugacy condition to set pt
jApi to zero for j *= i and

i, j ≤ k − 1. Thus, with any choice of qk, pk as defined by (15.267) can be used as
the next conjugate vector, provided only that pk is nonzero.

Figure 15.5 provides a geometrical interpretation of (15.267). Since each
pk is built from qk and the previous pi, the space U(k) is spanned either by
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{pj , 0 ≤ j ≤ k − 1} or by {qj , 0 ≤ j ≤ k − 1}. The figure is drawn for N = 3 and
k = 2, so U(k) is an ordinary 2D plane, but in general it is a hyperplane. The vector
pk is conjugate (not orthogonal) to this hyperplane.

Fig. 15.5 Illustration of the conjugate-gradient algorithm in 3D.

When the sequence of vectors {pk} is used with the exact linear search algo-
rithm of (15.262) and (15.263), the residual r(k) is systematically reduced. Recalling
that the residual r(k) is the same thing as the gradient ∇Q(k), we see from (15.258)
and (15.262) that

r(k+1) = r(k) + h(k)Apk . (15.269)

In fact, r(k+1) turns out to be orthogonal to U(k). We know thatApk is orthogonal to
all previous pj and hence orthogonal to the subspace U(k), and a proof by induction
can be used to show that r(k) is orthogonal to U(k) (see Scales, 1985).

Hestenes-Stiefel algorithm The algorithm implied by (15.267) is not an efficient
way of generating conjugate vectors since each term in the sum requires a matrix-
vector multiplication, and the number of terms increases with k. Hestenes and
Stiefel (1952) realized that a recursive algorithm requiring only one matrix-vector
multiplication for each new conjugate vector could be obtained by choosing qk to
be specifically the steepest-descent direction:

qk = −∇Q(k) = −r(k) . (15.270)

The algorithm is initialized by performing the initial search in the steepest-descent
direction:

p0 = −r(0) . (15.271)

With these choices and (15.267), the kth conjugate vector is given by

pk = −



I−
k−1∑

j=0

1

dj
pj(Apj)

t



 r(k) = −r(k) +
k−1∑

j=0

(Apj)tr(k)

dj
pj . (15.272)
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The key observation in the Hestenes-Stiefel approach is that

(Apj)
tr(k) = 0 if j < k − 1 , (15.273)

which follows from (15.269) since Apj ∝ r(j) − r(j−1), a vector in U(j), and we have
already noted that successive residuals are orthogonal. Thus only one term in the
sum in (15.272) survives, and we have

pk = −r(k) + βkpk−1 , (15.274)

where

βk =
(Apk−1)tr(k)

dk−1
. (15.275)

Hence computation of pk requires knowledge of only the current residual and the
immediately preceding conjugate vector, pk−1.

Quadratic termination An often-cited advantage of conjugate-gradient algorithms
is their quadratic-termination property: If the functional is strictly quadratic,
the true minimum will be reached in at most N steps. This property follows from
(15.269); the residual is reduced component-by-component at each iteration and
must be zero after N iterations.

As applied to image reconstruction, however, where N can be of order 105 or
106, this property is not very useful. We can virtually never afford the computing
resources to run this many iterations of any algorithm. Typically, reconstruction
algorithms are run for only 10–100 iterations.

Conjugacy and pseudoinverses Conjugate vectors are also related to pseudoinverses
of A (Hestenes, 1975). Suppose A is an N ×N matrix of rank R. If we have a set
of conjugate vectors, we can form the pseudoinverse of A via

A+ =
R∑

j=1

1

dj
pjp

t
j . (15.276)

It follows from (15.259) that A+ constructed this way is a (1,2)-pseudoinverse (as
defined in Sec. 1.6.1), and Hestenes shows that it is a Moore-Penrose pseudoinverse
if and only if all of the pj are orthogonal to the null space of A. Thus any algorithm
for generating a sequence of conjugate vectors also generates a pseudoinverse of A.

Moreover, if we have an arbitrary N × K matrix M of rank R and wish to
generate its pseudoinverse, we can simply form the K×K square matrix A = MtM

and generate the A-conjugate K × 1 vectors {pj , j = 1, ..., R}. The pseudoinverse
of M is then given by (Hestenes, 1975)

M+ =
R∑

j=1

1

dj
pj(Mp)tj . (15.277)

This result can be compared to (1.131); the structure is the same but we do not
need to find the singular vectors and singular values in order to use (15.277).
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15.4.4 Nonlinear constraints and fixed-point iterations

Linear algorithms or search methods can always be used to minimize the functional
Q(θ,g) if there are no constraints on the solution, but often we want to impose
some nonlinear constraints, the most important of which is that the solution cannot
go negative. In this section we first discuss some simple modifications of linear
algorithms to incorporate such constraints. Then we introduce a broad class of
algorithms that will often converge to a solution satisfying the constraints.

Modified linear algorithms As a starting point, consider the form of linear algorithm
given in (15.233), which is general enough to encompass the Jabobi, Gauss-Seidel
and Landweber algorithms, among others. As we discussed in Sec. 15.4.1, when this
algorithm converges it ensures that g = Hθ̂(k), but it places no other constraints on
the solution. It can be very useful to modify the algorithm so as to enforce prior
knowledge such as positivity or finite support.

One way to enforce a positivity constraint is to clip off negative values at each
iteration. Then (15.233) is modified to

θ̂(k+1) = P+

{
θ̂(k) +B

[
g−Hθ̂(k)

]}
, (15.278)

where P+ is the positivity operator defined in (15.186). At each iteration the es-
timate is nonnegative, so if the algorithm converges it must do so by finding a
nonnegative solution such that B[g−Hθ̂(k)] = 0. If B has no null functions in data
space, that means that g = Hθ̂(k).

Other constraint operators can be used in addition to or in place of the oper-
ator P+ in (15.278). For example, if we are working in a pixel representation and
we know that the object is zero outside a support region S, we can use an operator
PS that sets pixel values to zero outside this region.

A general framework for successively enforcing constraints such as positiv-
ity and support is the method of projections onto convex sets, to be discussed in
Sec. 15.4.5.

Fixed-point iterations As we saw in Sec. 15.3.4, it is often possible to work from the
KKT conditions to an implicit equation that must be satisfied when the functional
Q(θ,g) is minimized; an example is given in (15.194). The general form of this
implicit equation is

θ̂ = T{θ̂,g} , (15.279)

where T{θ̂,g} is some vector-valued (and usually nonlinear) functional of its argu-
ments.

To convert (15.279) to an iterative algorithm, we can define a sequence of
estimates θ̂(k) by a fixed-point iteration of the form

θ̂(k+1) = T{θ̂(k),g} . (15.280)

It is not obvious that this sequence will converge, but if it does the convergent point
must satisfy (15.279); this point is called the fixed point of the nonlinear equation.

A sufficient condition for the convergence of a fixed-point iteration is provided
by the contraction-mapping theorem generally attributed to Banach (see Stak-
gold, 1979; Kreysig, 1978). For fixed g, the mapping T{θ,g} is called a contraction
if

||T{θ1,g}−T{θ2,g}||2 < ||θ1 − θ2||2 , (15.281)
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for any vectors θ1 and θ2. That is, the effect of the mapping is to bring two
arbitrary points closer together. The contraction-mapping theorem states that the
algorithm (15.280) will converge to the fixed point for all starting points if T{θ,g}
is a contraction. A graphical way of understanding this theorem is given in Fig.
15.6. Weaker versions of the theorem that require the operator to be a contraction
only within some local region are given by Kreysig (1978).

An example of a fixed-point iteration is (15.278). For the special case where
B = H†, it can be shown (details are left to the reader) that the mapping in that
algorithm is a contraction provided µ1 < 2, where µ1 is the largest eigenvalue of
H†H. This is precisely the condition derived in Sec. 1.7.6 for the convergence of the
linear Landweber algorithm, and now we see that it is sufficient for the nonlinear
version as well.

Fig. 15.6 Illustration of a fixed-point algorithm in 1D.

15.4.5 Projections onto convex sets

As we have seen, image reconstruction often seeks to find an image that satisfies
certain constraints such as positivity, support, smoothness or agreement with the
data. Many of these constraints can be formulated as convex sets (defined more
precisely below), and a satisfactory image can be regarded as one that satisfies all
of the constraints and hence lies in the intersection of these sets. The method of
projections (MOP) and more specifically projections onto convex sets (POCS) is
a very general tool for finding such a satisfactory image.

MOP was originated by John von Neumann (1950) who considered projections
onto closed linear manifolds. The extension to convex sets was made by Bregman
(1965), and the potential of POCS for signal processing was enunciated by Youla
(1978). Applications to imaging were discussed by Youla and Webb (1982). Levi
and Stark (1987) extended MOP to nonconvex projections, yielding the method of
generalized projections. Excellent reviews are given by Sezan (1992), Combettes
(1993) and Stark and Sezan (1994).

Convexity A convex set is defined as follows: If θ and θ′ are members of the set,
so is αθ + (1 − α)θ′ for 0 ≤ α ≤ 1. The geometric interpretation of this condition
is that all points along the line joining θ and θ′ are members of the set if θ and θ′

are members (see Fig. 15.7). The set of all nonnegative objects is a convex set, as
is the set of all objects with a specified support region.

The operators P+ and PS defined in Sec. 15.4.4 are projectors onto convex sets.
Acting on a θ that is not a member of the set, they produce the member of the set
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that is nearest to θ in the sense of minimizing the L2 norm ||Pθ − θ||. Projectors
onto convex sets are not necessarily projectors onto subspaces as discussed in Sec.
1.3.6. The set of vectors with nonnegative components, for example, is not a linear
vector space.

Fig. 15.7 Examples of convex and nonconvex sets.

Besides positivity and support, many other convex sets have been proposed in
the imaging literature (Stark and Sezan, 1994). For example, if the object is defined
as a transmittance, it can take on values only between 0 and 1, and the upper limit
as well as the lower limit defines a convex set. Smoothness can be enforced by
setting an upper bound to the norm of some derivative of the image.

Data agreement Agreement with the data also defines a convex set. Strict agree-
ment implies the set of all θ such that Hθ ≡ g, so members of the set differ by null
functions. Since linear combinations of null functions are null functions, it follows
readily that this set is convex.

To discover the form for the projector onto this set, recall from (1.188) that
the general exact solution to Hθ = g is

θ = H+g+
[
IN −H+H

]
y , (15.282)

where y is an arbitrary N×1 vector and [IN −H+H]y is the component of y in the
null space (if any) of the M ×N matrix H. Projection of an arbitrary θ̂ onto the set
of functions of this form is accomplished by replacing the measurement component
of θ̂ with H+g and leaving the null component unchanged; in this way we find the
vector in the convex set that is closest (in a Euclidean sense) to the original θ̂.
Explicitly, if we denote the projector onto the set defined by Hθ = g as Pg, then

Pg

{
θ̂
}
= H+g+

[
IN −H+H

]
θ̂ . (15.283)

We shall illustrate the use of this equation below when we discuss the Gerchberg-
Papoulis algorithm.

We can also define the set of all θ such that ||g −Hθ|| ≤ ε. To see that this
set is convex, note that

||g− αHθ − (1− α)Hθ′|| = ||α(g−Hθ)− (1− α)(g−Hθ′)||

≤ α||g−Hθ||+ (1− α)||g−Hθ′|| ≤ αε+ (1− α)ε = ε , (15.284)

where we have used some properties of the norm, including the triangle inequality
(see Sec. 1.1.2).
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Another convex set related to data agreement is the set of all θ such that
(Hθ)m = gm for a particular m. Derivation of the projectors for these latter two
sets will be left as an exercise.

Fundamental theorem of POCS Suppose we have J different convex sets Cj , j =
1, ..., J, with corresponding projectors Pj , j = 1, ..., J. Suppose also that the inter-
section of these sets is not empty. If we apply each of the projectors sequentially
(in any order), so that the update rule is

θ̂(k+1) = PJPJ−1 · · ·P2P1θ̂
(k) , (15.285)

then the iteration will converge, regardless of the initialization, to a point in the
intersection of the sets (Youla, 1978). This result is illustrated geometrically in Fig.
15.8.

Fig. 15.8 Illustration of successive projections onto convex sets.

Corresponding to the projector Pj , there is a relaxed projector defined by

Pλj = I+ λj(Pj − I) , (15.286)

where λj ≥ 0 and I is the identity operator. The iteration rule for the relaxed
projectors is

θ̂(k+1) = PλJP
λ
J−1 · · ·Pλ2Pλ

1 θ̂
(k) , (15.287)

and this iteration can be shown (Youla, 1978) to converge to a point in the inter-
section of the sets provided 0 < λj < 2 for all j.

Example of POCS: Gerchberg-Papoulis algorithm Suppose we have acquired image
data with a diffraction-limited lens and a discrete detector array such as a CCD
(charge-coupled device). We know from the discussion in Sec. 9.7 that this system
is approximately shift-invariant and bandlimited, and we know how to compute its
presampling transfer function P (ρ). If the detector array samples finely enough,
simple inverse filtering will allow us to estimate accurately the object Fourier com-
ponents for ρ < ρc, where ρc is the cutoff frequency and ρ = |ρ|. Can we also
recover components with ρ > ρc, which lie in the null space of the imaging system?
Doing so is often referred to as superresolution.

One approach that has had a modicum of success in achieving superresolution
is a form of POCS known as the Gerchberg-Papoulis algorithm (Gerchberg, 1974;
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Papoulis, 1975). It successively enforces data agreement and positivity and support
constraints in the hope that the prior information infused by the latter two con-
straints will help to fill in the null space.

Fig. 15.9 Illustration of the Gerchberg-Papoulis algorithm.

In practice, the Gerchberg-Papoulis algorithm uses a DFT (discrete Fourier
transform) of θ and assumes that the components are known (after inverse filtering)
within the system passband. The algorithm, illustrated in Fig. 15.9, is specified by

θ̂(k+1) = PgP+PSθ̂
(k) , (15.288)

where the three projection operators have been defined above. Agreement with the
data is enforced in the discrete Fourier domain by replacing the Fourier components
within the band with their known values but retaining the current estimates for
out-of-band components. Roughly speaking, out-of-band Fourier components are
identified with null functions, and Fourier-domain inverse filtering is essentially
the pseudoinverse for shift-invariant systems, so this projection operation is an
implementation of (15.283). Then the estimate is transformed back to the (discrete)
space domain so that the positivity and support constraints can easily be enforced.
The algorithm will converge to a θ̂ satisfying all three constraints if such a solution
exists.

Gerchberg-Papoulis and Fourier crosstalk The discussion above glossed over the CD
nature of the imaging system and the distinctions between continuous and discrete
Fourier transforms. It was also based implicitly on a finite-dimensional object rep-
resentation with coefficients specified by the N × 1 vector θ. We shall now sketch
a treatment based on the infinite-dimensional Fourier-series representation of the
object and the Fourier crosstalk matrix. Essential background information will be
found in Sec. 7.3.3.

Consider a spacelimited object but a bandlimited imaging system consisting
again of a lens and a detector array, and assume that the system is linear and shift-
invariant (LSIV) before sampling. The system thus maps a 2D object f(r) into a
2D irradiance distribution on the detector plane.
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If the noise is negligible (as it must be for superresolution to work), then
the data can be expressed as [cf. (7.260)]

gm =
∑

k

ψmkFk , (15.289)

where Fk is the doubly infinite vector of object Fourier coefficients. In vector form,
(15.289) is g = ΨF. We know from (7.274) that

ψmk = exp(2πiρk · rdm)P (ρk) , (15.290)

where rdm is the location of the mth detector element and P (ρ) is the presampling
transfer function of the overall LSIV system (including the finite size of the detector
elements). Since the system is bandlimited, P (ρ) = 0 if ρ is greater than some cutoff
frequency ρc.

It often happens that a useful first step in an inverse problem is to apply an
adjoint operator to get back to the object domain. If the object is specified by its
Fourier coefficients, the relevant adjoint is Ψ†; applying Ψ† to g yields

Ψ†g = Ψ†ΨF = BF , (15.291)

where B is the Fourier crosstalk matrix. As discussed in Sec. 7.3, B is an infinite
matrix, but in the present problem all of its elements are zero except within a
finite-dimensional submatrix. Moreover, if the pitch of the detector array satisfies
the Nyquist condition8 for sampling the irradiance pattern incident on the detector,
this submatrix is strictly diagonal, and its elements are known from (7.276) to be

βkk = M |P (ρk)|2 , (15.292)

where M is the total number of detector elements.
With these assumptions, the pseudoinverse of Ψ consists of division by the

nonzero diagonal elements. If we assume that P (ρk) is not exactly zero at any
in-band sampling frequency ρk, the in-band Fourier coefficients are given by

Fk = Ψ+g =

[
Ψ†g

]
k

βkk
=

P ∗(ρk)
∑

m gm exp(−2πiρk · rdm)

M |P (ρk)|2
, |ρk| < ρc .

(15.293)
To get an infinite-dimensional form of Gerchberg-Papoulis, the projector Pg

defined in (15.283) is replaced by the infinite-dimensional operator Pg that projects

a function f̂ onto the subset of U for which Hf = g or equivalently, ΨF = g. By
analogy to (15.283), this operator is formally

Pg

{

F̂
}

= Ψ+g+
[

I−Ψ+Ψ
]

F̂ . (15.294)

Operationally, this projector can be implemented at each POCS iteration by replac-
ing in-band Fourier coefficients with the known values from (15.293) and leaving

8There are two distinct Nyquist conditions in this problem, one for the object and one for the
system, and both can be exactly satisfied simultaneously. The finite spatial support of the object
sets the required sampling in the Fourier domain (see Sec. 3.5.4), and the finite bandwidth of the
system before sampling sets the required pitch of the CCD to avoid aliasing. We do not need to
assume that the object is bandlimited or that the irradiance pattern on the CCD plane is spatially
limited.
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the out-of-band ones alone.
Positivity and support constraints cannot be implemented readily on Fourier

coefficients, so transformation back to the space domain is still required. The exact
transformation rule is

f̂(r) =
∑

k

F̂k exp(2πiρk · r) , (15.295)

where the sum is, in principle, infinite in two dimensions. In practice, of course, a fi-
nite sum must be used, with the range determined by the amount of superresolution
desired. To transform back to Fourier coefficients, the exact equation is

F̂k =
1

L2

∫

Sf

d2r f̂(r) exp(−2πiρk · r) , (15.296)

where the object support Sf is assumed to be a square of side L. In practice the
integral would be implemented as a sum, most likely as a DFT (though one with
many more than M elements).

15.4.6 MLEM algorithm

An important iterative technique is the maximum-likelihood expectation-
maximization or MLEM algorithm, so called because it can be derived by al-
ternating expectation (E) and maximization (M) steps, and because it maximizes
the likelihood for a Poisson data model. MLEM has been rediscovered several times.
To the authors’ knowledge, the earliest paper to present the algorithm was by Metz
and Pizer (1971) at the second international conference on Information Processing
in Medical Imaging (IPMI). Unfortunately, the untimely death of the conference
organizer, Eberhard Jahns, led to the promised Proceedings of IPMI II never ap-
pearing and thus the Metz and Pizer paper never being published.

In the optics literature, the MLEM algorithm was presented independently by
Richardson (1972) and Lucy (1974), and it is still referred to often as the Richardson-
Lucy algorithm. The paper that ignited widespread interest for tomographic appli-
cations was by Shepp and Vardi (1982). Another important early contribution to
the tomographic literature was Lange and Carson (1984).

MLEM is but one example of a broad class of algorithms that alternate ex-
pectation and maximization steps. A rigorous treatment of these more general EM
algorithms was given in an important paper by Dempster, Laird and Rubin (1977),
and an excellent monograph on the subject is McLachlan and Krishnan (1997). In
this section, however, we consider only the MLEM algorithm.

MLEM as a multiplicative algorithm The iteration rule for the basic MLEM algo-
rithm is

θ̂(k+1)
n = θ̂(k)n

1

sn

M
∑

m=0

gm

(Hθ̂(k))m
Hmn , (15.297)

where sn is the nth component of the point sensitivity vector, defined in (7.312) as

sn =
M
∑

m=0

Hmn . (15.298)

To interpret sn, consider the usual voxel description of a source where θn is the mean
number of photons emitted from the nth voxel and Hmn is the probability that a
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photon from voxel n is detected in detector m. Then snθn is the mean number of
photons from that voxel detected by all detectors, and sn is the probability that
a photon emitted from voxel n is detected somewhere. We need not worry about
dividing by zero in (15.297) since voxels with sn = 0 have zero probability of ever
contributing to the data and should not be included in the representation in the
first place.

Unlike the linear algorithms discussed in Sec. 15.4.1 and the modified linear
algorithms discussed in Sec. 15.4.4, MLEM is a multiplicative algorithm where
an estimate is modified by multiplying it by a correction factor rather than adding
a correction term. Other important examples of multiplicative algorithms include
multiplicative ART or MART (Gordon et al., 1970) and its variants (Byrne, 1993;
1995) and the SAGE (space-alternating generalized EM) algorithms (Fessler and
Hero, 1994), but we shall not discuss any of these methods further.

The MLEM algorithm preserves positivity; that is, if the initial estimate θ̂(0)

is nonnegative, and if all elements of g and H are nonnegative, then all subsequent
iterations remain nonnegative since we always multiply by a nonnegative factor.
By the same token, however, a component of the estimate will seldom be driven
exactly to zero; if Hmn is nonzero for any m for which gm is nonzero, then the

correction factor for θ̂(k)n will not be zero. In this respect, the MLEM algorithm
is like maximum entropy in that it tends to drive the estimate towards zero but
never quite gets there. The exception would be if gm = 0 for all detectors for which

Hmn != 0 for a given n; in that case θ̂(k)n would be immediately set to zero.
If we know the support of the object a priori, on the other hand, we can set

the elements of the estimate (in a voxel representation) outside the support to zero
in the initial estimate and they will remain zero for all subsequent iterations.

Finally, note that the algorithm strives for agreement between the actual data
and the image of the estimate. If (Hθ̂(k))m = gm for all m, then the correction
factor is unity and no further change in the estimate occurs. Of course, it may not
be possible to find an estimate such that (Hθ̂(k))m = gm for all m, and in that case
it turns out (as we shall see below) that the algorithm converges to an estimate that
minimizes the Kullback-Leibler distance (see Sec. 15.3.2) DKL(g,Hθ̂) between the
data and the image of the estimate.

Poisson likelihood As presented so far, the MLEM algorithm is just a convenient
way of finding an estimate that agrees as well as possible (in the Kullback-Leibler
sense) with the data. It has no particular relation to the statistics of the data and
in fact will work with many different kinds of data. We know from Sec. 15.3.2,
however, that the Kullback-Leibler distance is closely related to the log-likelihood
for Poisson data, and we shall now explore this relation further.

If we consider an MD Poisson random vector g with mean Hθ, then

Pr(g|θ) =
M
∏

m=1

exp[−(Hθ)m]
[(Hθ)m]gm

gm!
, (15.299)

and Pr(g|θ) is the likelihood of θ for a given g. One must view this equation
with caution, however, since we are free to choose any representation we like for
the object, with any number of components N. It is only when the finite object
representation is an adequate representation of the data, in the sense that Hθ is a
good approximation to Hf, that Pr(g|θ) is really the likelihood of θ. [See (15.137)
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and the associated discussion.]
With this caveat, the logarithm of the likelihood is given by (15.149), repeated

here for convenience:

ln[Pr(g|θ)] =
M∑

m=1

{−(Hθ)m + gm ln[(Hθ)m]− ln(gm!)} . (15.300)

An extremum of this function occurs at a point where the derivative with respect
to all components vanishes:

∂

∂θj
ln[Pr(g|θ)] =

M∑

m=0

{

−Hmj +
gm

(Hθ)m
Hmj

}

= 0 , j = 1, ..., N . (15.301)

To see whether the extremum is a minimum or a maximum, we take another deriva-
tive:

∂2

∂θj∂θk
ln[Pr(g|θ)] =

M
∑

m=0

{

− gm

[(Hθ)m]2
HmjHmk

}

. (15.302)

All components of g and Hθ must be nonnegative for the Poisson law to be ap-
plicable; a negative number of counts makes no sense. Moreover, all elements of
H must be nonnegative, since otherwise a negative component of Hθ could occur
for some nonnegative θ. Thus the second derivative is negative everywhere (i.e.,
the log-likelihood is concave), and any extremum must be a maximum. Maximiz-
ing the likelihood is thus equivalent to solving the implicit equation (15.301) for θ.
Moreover, from the discussion in Sec. 15.3.2, it is also equivalent to minimizing the
Kullback-Leibler distance DKL(g,Hθ).

MLEM as a fixed-point iteration We can rewrite (15.301) (with the dummy index
j changed to n) as

1

sn

M
∑

m=0

gm
(Hθ)m

Hmn = 1 , (15.303)

where sn is defined in (15.298). We now multiply both sides of (15.303) by θn,
yielding

θn = θn
1

sn

M
∑

m=0

gm
(Hθ)m

Hmn . (15.304)

To get an iterative algorithm, we replace θ by a succession of estimates θ̂(k) and
use the fixed-point iteration procedure introduced in Sec. 15.4.4; the result is the
MLEM algorithm:

θ̂(k+1)
n = θ̂(k)n

1

sn

M
∑

m=0

gm

(Hθ̂(k))m
Hmn . (15.305)

If this algorithm converges, it must find a maximum of the log-likelihood (and hence
of the likelihood itself).

Convergence and stopping rules The mapping defined by (15.305) is not a contrac-
tion and hence does not necessarily converge to a fixed point independent of the
initial estimate. It can, however, be shown to converge in the sense that the likeli-
hood increases monotonically at each step (Dempster et al., 1977). Of course, just
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because the algorithm approaches a specified likelihood (the maximum value) does
not mean it approaches a specified image. The likelihood is a function of Hθ, not
θ alone. If H has null functions, many different θ can give the same Hθ and hence
the same likelihood; which one is obtained by the algorithm depends on the null
components of the initial estimate.

Moreover, maximum likelihood is seldom a desirable end point in image recon-
struction. As we have stressed repeatedly, forcing agreement with noisy data (in
any sense) results in noisy images. In practice, running the MLEM algorithm for
a large number of iterations usually results in a virtually useless image, often one
consisting of a few bright pixels like the night-sky reconstructions discussed in Sec.
15.3.5. (For an example, see Fig. 17.9.)

The most common way of avoiding these problems is just to stop the algo-
rithm before it gives a poor image in some sense. In this case, the image is not a
maximum-likelihood estimate, and it depends on the number of iterations and the
initial estimate. The choice of stopping point is usually made purely subjectively,
though various statistical stopping rules have been proposed (see, for example,
Llacer and Veklerov, 1989) as a means of avoiding excessive noise amplification.
The stopping point should ideally be chosen to optimize some objective measure
of image quality, such as the ability of a human observer to detect an abnormality
(see Sec. 14.2), but in practice it is usually done without regard to task.

15.4.7 Noise propagation in nonlinear algorithms

We have already discussed the noise properties of reconstructed images in several
cases in this chapter. In Sec. 15.2.6 we treated the effect of a linear reconstruction
operator on noise in the data, and in Sec. 15.3.6 we considered implicit estimates
and found that we could get useful analytical forms for the covariance without
specifying the algorithm for actually finding the estimate. Then, in Sec. 15.4.2 we
studied noise propagation through linear iterative algorithms. Now we shall show
how that analysis needs to be modified for nonlinear iterative algorithms. The
main difference will turn out to be that constant matrices are replaced by ones that
depend on the current estimate.

Differentiable update rules All of the iterative algorithms considered in this chapter
have the general form,

θ̂(k+1) = D(k){θ̂(k),g} , (15.306)

where D(k){· , ·} is a vector-valued functional of its two arguments. The fixed-point
iteration of (15.280) is immediately in this form, and POCS, MLEM and conjugate-
gradient fit as well.

It will be very useful to assume that D(k){· , ·} is differentiable with respect to
both arguments. That assumption is justified by inspection for MLEM, conjugate-
gradient and many other algorithms, but it may not hold for POCS or other al-
gorithms that employ a clipping operator such as P+ as defined in (15.186). To
get around this difficulty, we can redefine P+{x} as the limit of a differentiable
functional, for example,

P+{x} = x step(x) = lim
β→∞

x

1− exp(−βx) . (15.307)
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Basic propagation equations Assuming the update operator D(k){θ̂(k),g} is differ-
entiable, we want to expand it in a Taylor series and retain only terms linear in
small perturbations of both arguments. For the perturbation of the second argu-
ment, we have two options: we can write either g = Hθ + ε or g = Hf + n, and
therefore we can consider either ε or n to be the perturbation. As we did in earlier
noise analysis in this chapter, we shall choose n because we know a great deal more
about its statistics: it has zero mean by definition, and its covariance can usually
be determined from the physics of the imaging process.

Similarly, we have some options about how we expand the first argument. A
natural choice would seem to be to consider small perturbations about the true
θ, but that runs afoul of what we have learned in this chapter about estimability.
We know that many different objects can give the same data and hence the same
sequence of estimates {θ̂(k)}, yet they may have quite different true θ; a small
perturbation about one of them might be a large perturbation with respect to an-
other. Another option would be to expand about the final estimate, θ̂(∞) or some
approximation to it, but this is not wise either; the algorithm may not converge at
all (which is precisely why we need to know the statistics as a function of iteration
number), or it may converge to a solution that is substantially different from θ̂(k)

at earlier iterations, so θ̂(∞) is a poor choice for the center of expansion.
A better choice is to expand θ̂(k) about its mean at each iteration (Barrett

et al., 1994). We thus use a different Taylor series for each k, and so long as n is
small enough compared to Hf, we can be confident that truncation of the series
with linear terms is valid.

To simplify the notation, we denote the conditional mean of θ̂
(k)

(for specified
f ) as a(k) and write

θ̂(k) = a(k) +∆θ̂(k) . (15.308)

The linearized Taylor expansion is then

θ̂(k+1) = D(k){θ̂(k),g} + D(k){â(k),Hf }+Ω(k)∆θ̂(k) +B(k)n , (15.309)

where Ω(k) is an N ×N matrix with components

[Ω(k)]nn′ =
∂

∂θ̂n′

D(k)
n {θ̂(k),Hf} , (15.310)

and B(k) is an N ×M matrix with components

[B(k)]nm =

[

∂

∂gm
D(k)

n {θ̂(k),g}
]

g=Hf

. (15.311)

Within this linearized formulation, therefore, the mean estimate evolves as

â(k+1) = D(k){â(k),Hf } (15.312)

and the deviation from the mean evolves as

∆θ̂(k+1) = Ω(k)∆θ̂(k) +B(k)n . (15.313)

These results should be compared to (15.240) and (15.241), which were derived for
linear iterative algorithms. Like (15.240), (15.312) shows that the sequence of mean
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values {â(k)} can be generated by running the algorithm on noise-free data, g = Hf,
which can be simulated or obtained experimentally by frame-averaging or by using
a long exposure time (in the case of Poisson noise).

The equations for propagation of the deviations through linear and nonlinear
algorithms, (15.241) and (15.313) respectively, have identical forms, but the matri-
ces Ω(k) and B(k) have somewhat different meanings. They are independent of g
and θ(k) in the linear case, and they are also independent of k unless the update rule
itself varies with iteration number. In the nonlinear case, by contrast, the matrices
depend on the current estimate θ(k), so they must vary with k.

Since (15.241) and (15.313) have the same form, the remainder of the deriva-
tion in Sec. 15.4.2 still holds, and in particular the expressions (15.247) – (15.249)
for the covariance matrix are still valid. As noted in Sec. 15.4.2, computation of
the covariance requires running a recursive algorithm based on (15.246) to compute
U(k), but this turns out to be computationally feasible even for large images and
nonlinear algorithms.

Application to the MLEM algorithm Wilson et al. (1994) applied a recursive scheme
analogous to (15.246) to the MLEM algorithm, (15.305). Because MLEM is a mul-
tiplicative algorithm, they took the logarithm of both sides of (15.305) and obtained

an update rule for ŷ(k)n ≡ ln θ̂(k)n ; they then recursively computed the matrix U(k)

relevant to the covariance matrix for ŷ(k).
Because the update rule for ŷ(k)was nearly linear, it could be argued from the

central-limit theorem that ŷ(k) should be a multivariate-normal random vector, so
its mean and covariance as computed by the recursion should fully specify its statis-
tics. Moreover, if ŷ(k) is normal, it implies that θ̂(k) is multivariate log-normal. As
a consequence, the univariate PDF on each pixel value is also a log-normal, exhibit-
ing the characteristic long tails of that density. Finally, it was predicted that a map
of the pixel variance would resemble the mean image, with low variance in regions
of low object brightness. These predictions were borne out to high accuracy in a
detailed Monte Carlo study performed by Wilson and in later studies by Wang and
Gindi (1997) and Soares et al. (1998).

15.4.8 Stochastic algorithms

All of the iterative algorithms discussed so far will converge to the minimum of the
functional if there is only one such minimum. Sometimes, however, we are interested
in functionals with multiple local minima, such that small changes in any direction
about a local minimum will increase the value, yet there may be a distant point
with a lower value. If an iterative algorithm is initialized with an estimate that is
near one of the local minima, straightforward minimization (say by gradient descent
or conjugate gradient) may draw it towards this point even if a distant minimum
would result in a lower value.

In image reconstruction, multiple minima can occur with Bayesian priors based
on mixture models, where it is assumed that the object can be drawn from one of
two or more classes, with each class having its own prior density. Thus we write

pr(θ) =
J∑

j=1

pr(θ|Cj) Pr(Cj) , (15.314)
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where pr(θ|Cj) is the density associated with class Cj , and Pr(Cj) is the prior
probability that the object came from that class. A mixture prior is often multi-
modal (exhibiting multiple maxima), and the posterior can also be multimodal if
the likelihood is not too sharply peaked. Since the objective functional Q(θ,g) can
be interpreted as the negative logarithm of the posterior (see Sec. 15.3.1), it can
have multiple local minima.

Another way in which local minima can occur is with parametric object de-
scriptions (see Sec. 7.1.6) where the mean data vector is a nonlinear functional of
the parameters. For example, if we describe an astronomical object as a set of N
stars at locations {rn, n = 1, ...N} and brightnesses {bn, n = 1, ...N}, we may want
to estimate the N locations and brightnesses as well as N itself; for one choice of
N, there is a minimum of the objective functional with respect to the locations and
brightnesses, but a different N might give a lower minimum.

Yet another way in which local minima can arise is when the gray levels are
quantized. In the extreme where only black or white pixels are allowed, it often
happens that an estimate will be reached where changing the state of any one pixel
will increase the objective functional, but some entirely new configuration may have
a lower value.

This section describes several methods for dealing with local minima, with em-
phasis on the simulated-annealing algorithm. Simulated annealing was developed
initially by Metropolis et al. (1953) in the context of statistical mechanics, but its
general applicability to optimization problems was later recognized by Kirkpatrick
et al. (1983, 1984). Following quickly after Kirkpatrick, the method was applied
to imaging by W. E. Smith et al. (1983), Geman and Geman (1984) and Geman
and McClure (1985). For a detailed treatment of simulated annealing in a variety
of problems, see van Laarhoeven and Aarts (1987).

As we shall see, simulated annealing is a special case of a very powerful tech-
nique known as Markov-chain Monte Carlo or MCMC. We have already al-
luded to MCMC in Chap. 14 as a tool for computing averages needed in observer-
performance studies, and more detail on this use is also given in this section. Ex-
cellent books on MCMC include Robert and Casella (1999) and Gilks et al. (1996).

The approach taken here will be first to provide some background on statistical
mechanics, then specifically describe the simulated-annealing algorithm and its use
in both statistical mechanics and image reconstruction. Finally, we shall describe
the more general construct of MCMC and briefly mention some of its applications
in imaging.

Basic results from statistical mechanics Consider a gas of N particles, where the
state of the nth particle is described by its 3D position rn and 3D velocity vn. The
complete state of the system is thus described by 6N coordinates, and the system
can be represented as a point in a 6N -dimensional phase space. The total energy
of the system can thus be written as E({rn}, {vn}) (where the brackets denote sets
with N members). Since the positions and velocities are random, the energy fluc-
tuates about some mean E ; we assume that the system is coupled to a heat bath
that fixes the temperature, so the mean energy is a constant.
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For bookkeeping purposes, we sample the phase space on a regular 6N -
dimensional grid,9 so the system has a finite (but immense) number of possible
states. In the jth state, rn = rnj , vn = vnj and Ej = E ({rnj}, {vnj}). A fundamen-
tal result of statistical mechanics (Reif, 1965) is that the probability of occurrence
of this state in thermal equilibrium is given by

Pr(j) =
1

Z
exp

(

− Ej
kBT

)

=
1

Z
exp (−βEj) , (15.315)

where T is the absolute temperature, kB is Boltzmann’s constant, and

β ≡ 1

kBT
. (15.316)

The normalizing constant Z, called the partition function, is given by

Z =
∑

j

exp (−βEj) , (15.317)

where the sum is over all possible states of the system.
All important thermodynamic quantities can be expressed in terms of deriva-

tives of the partition function with respect to β. For example, as the reader may
show, the mean energy is given by

E = − 1

Z

∂Z

∂β
= −∂ lnZ

∂β
, (15.318)

and the thermodynamic entropy (the quantity that appears in the second law of
thermodynamics) is given by

S ≡ −kB
∑

j

Pr(j) lnPr(j) = kB lnZ +
E
T

. (15.319)

We know from Sec. 15.3.3 that −
∑

j Pr(j) lnPr(j) is (within constants) the loga-

rithm of the number of ways10 that the state can be constructed from indistinguish-
able molecules [cf. (15.163)]; the mythical grains used to justify entropy priors in
image reconstruction correspond to actual molecules in statistical mechanics.

The equation of state is the relationship between mean pressure p, volume V
and temperature T. In terms of the partition function,

p =
1

β

∂ lnZ

∂V
. (15.320)

9In classical statistical mechanics, the phase-space sampling interval is arbitrary and can eventually
be allowed to go to zero, so that sums become integrals. In quantum statistical mechanics, on the
other hand, there is a natural interval set by the uncertainty principle. For more discussion, see
Reif (1965).
10The number of ways the state can be constructed is frequently denoted W, and the equation
S = k logW appears on Ludwig Boltzmann’s gravestone. For a photograph, see Cercignani (1998).
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Metropolis algorithm in statistical mechanics Since the partition function is very
difficult to calculate for complex systems, Metropolis et al. (1953) proposed esti-
mation of the equation of state by Monte Carlo sampling. If we can generate many
random samples of the configurations {rn,vn, n = 1, ..., N}, then properties of the
system can be estimated by replacing ensemble averages by sample averages. In
Sec. 10.4.5, we discussed ways of producing the samples by generating and tracing
individual particles, but this method does not correspond to thermal equilibrium
where the probability of occurrence of different states must obey (15.315). The
problem addressed by the Metropolis paper was to generate configurations {rn,vn}
from this probability law.

The Metropolis algorithm starts with a system in some initial state i with
particle configuration {rni,vni} and energy Ei. It then proposes a change to the
configuration by altering one or more rn or vn, so the proposed new state j has
configuration {rnj ,vnj} and energy Ej . If Ej < Ei, the proposed change is accepted
and the system makes a transition to the new configuration. If Ej > Ei, however,
the change is not necessarily rejected; instead it is accepted with a probability

Pr(i → j) = exp[−β (Ej − Ei)] , Ej > Ei . (15.321)

In practice, the decision to accept or reject the proposed change is made by
drawing a random number t uniformly distributed on (0, 1) and accepting the change
if exp[−β (Ej − Ei)] > t. Since β > 0, this condition is always satisfied for any t on
(0, 1) if Ej < Ei, so we can write

Pr(i → j) = min{1, exp[−β(Ej − Ei)]} . (15.322)

This process is then repeated iteratively, generating many successive configura-
tions. Though we won’t attempt to prove it, eventually an equilibrium is reached.
Equilibrium means that any two states i and j satisfy the condition of detailed
balance, so that

Pr(i) Pr(i → j) = Pr(j) Pr(j → i) . (15.323)

A more verbose way to state this condition is in terms of joint probabilities:

Pr(state i at iteration k, state j at iteration k + 1)

= Pr(state j at iteration k, state i at iteration k + 1) . (15.324)

Were this condition not satisfied, the relative probabilities of the two states would
change with iteration number and the system would not be in equilibrium. (Note
that one cycle through the process described above is counted as one iteration,
whether or not the proposed change is accepted; thus iteration number is discretized
time, and equilibrium means that all probabilities are independent of time.)

The beauty of the Metropolis algorithm is that the basic relation of statistical
mechanics, (15.315), is satisfied at equilibrium. To see this, consider two states i
and j for which Ej > Ei. Then (15.323) and (15.322) require that

Pr(i) exp[−β (Ej − Ei)] = Pr(j) · 1 , (15.325)

in accord with (15.315).
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Simulated annealing in optimization problems As described so far, the Metropolis
algorithm is concerned with systems in thermal equilibrium (in spite of its origins
in the Manhattan project). It is also possible, however, to gradually reduce the
temperature T (increase β) so that the system evolves through a series of near-
equilibrium states. In this fashion properties such as specific heat and thermal
expansion can be studied.

In materials science, a gradual reduction in temperature is called annealing;
its opposite, an abrupt reduction in temperature, is called quenching. Suppose,
for example, that one wants to make a sample of silicon for use in manufactur-
ing semiconductor devices. Basic solid-state physics tells us that the lowest-energy
configuration of silicon atoms at T = 0 is a perfect crystal with discrete trans-
lational symmetry. At room temperature the equilibrium configuration involves
small fluctuations (phonons) around the ideal lattice, but it is nevertheless a good
approximation to consider silicon in thermal equilibrium to be nearly a regular
crystal lattice with a high degree of translational order. If excess electrons or holes
are somehow produced in such a crystal, they exhibit very high mobility (see Sec.
12.1.2) and lead to excellent device properties.

On the other hand, the equilibrium state of silicon at very high temperature
is a liquid with little translational order and poor electrical properties. When the
liquid is cooled below the melting point, the silicon atoms are not initially arranged
into a regular lattice, but instead inherit the disorder of the liquid. If the solid is
held at a temperature just below the melting point, the atoms gradually approach
an equilibrium where the atoms fluctuate around the ideal lattice points, and if the
temperature is gradually reduced, so too are the fluctuations. If the temperature
reduction is too rapid, however, the atoms get frozen into non-equilibrium posi-
tions, and the deviations from ideal translational symmetry degrade the electrical
properties at room temperature. Thus physical annealing is a way of assuring that
the material finds its way to its lowest-energy state.

Kirkpatrick et al. (1983, 1984) proposed using the Metropolis algorithm as a
way of simulating the physical annealing process in problems having nothing to do
with thermodynamics. Specifically, he was interested in the design of integrated cir-
cuits consisting of many electrical gates and a complex system of interconnections.
The locations of the gates on the silicon crystal were the main design variables,
and he defined a cost function involving both performance and actual cost of man-
ufacture. The objective was to choose the gate location so as to minimize the cost.
Thus the analogy to thermodynamics: gate locations correspond to coordinates in
a gas, and the cost function corresponds to an energy.

Kirkpatrick began with some initial configuration of gates, just as Metropolis
began with an initial configuration of gas molecules, and he proposed a change in
the configuration at each step. The change was accepted or rejected according to
(15.322) with the cost function in place of the physical energy. Since the probability
of accepting a transition to a higher-cost design depends on β (or equivalently T ),
choice of this free parameter is critical. If β is large (T small), then there is very
little chance of getting out of a local minimum, and if β is small there are large
fluctuations around a minimum and the algorithm explores many high-cost designs.
The solution is to increase β gradually, always remaining near equilibrium. Then, as
illustrated qualitatively in Fig. 15.10, the equilibrium probability density function
approaches a delta function centered on the true optimal configuration.
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Fig. 15.10 Illustration of a cost function in 1D and the corresponding equi-
librium probability density function at three different temperatures.

The art of simulated annealing Many questions arise in actually implementing sim-
ulated annealing for optimization problems, and many relevant theorems have been
derived. In practice, however, simulated annealing remains more art than science.

The first concern is how rapidly the temperature should be reduced. The true
minimum will be attained so long as the temperature is proportional to the recip-
rocal of the logarithm of the iteration number, but this is an extraordinarily slow
approach to the optimum, and to the authors’ knowledge never used. Instead, vari-
ous ad hoc annealing schedules are used in an effort to trade off computational time
and final cost (another optimization problem). One useful technique is to monitor
the cost function and change the temperature when it seems to be fluctuating about
some constant value.

Another open question is how the proposed changes to the system should be
chosen. In one sense, this choice doesn’t matter; so long as all possible states of
the system can eventually be reached, the equilibrium distribution will be (15.315).
Practically, however, the approach to equilibrium following a temperature change
can be slow if only small changes are proposed.

Simulated annealing in image reconstruction Since we have presented image recon-
struction as an optimization problem, it is natural to consider simulated annealing
whenever there might be multiple minima. In image reconstruction, the state of
the system is specified by the estimated coefficient vector θ̂. At the kth iteration,
a change to the state is proposed in which one or more pixel values are altered in
some way, so that the proposed new configuration is given by

θ̂(k+1) = θ̂(k) + h(k) . (15.326)

By analogy to (15.322), this proposed change is accepted with probability

Pr(acc) = min
{

1, exp
[

−β
(

Q
(

θ̂(k+1)
)

−Q
(

θ̂(k)
))]}

. (15.327)

As in the Kirkpatrick application, the temperature can be gradually lowered in or-
der to entice the reconstruction into the true minimum of Q(θ̂).
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As with any other image-reconstruction algorithm, there are free parameters
to set and choices to be made. The strategy for choosing the proposed changes h(k)

must be specified, the annealing schedule must be chosen, and of course the cost
function itself must be selected. In principle, all of these choices should be made
in such a way as to optimize observer performance, though in practice this nested
optimization would be very difficult to carry out.

Metropolis-Hastings algorithms Hastings (1970) proposed a generalization of the
Metropolis algorithm. In a general notation, let us assume that the goal is to
generate a sequence of samples of a parameter θ from a density π(θ) and that the
current value of the parameter is θ(k). A new trial parameter θ′ is generated from
a density q(θ′|θ(k)), which can depend on the current state. The probability of
accepting this proposed change is11

Pr(acc) = min

{

1,
π(θ′) q(θ(k)|θ′)

π(θ(k)) q(θ′|θ(k))

}

. (15.328)

If the change is accepted, we set θ(k+1) = θ′; otherwise θ(k+1) = θ(k). By a detailed-
balance argument similar to the one used in (15.323), the equilibrium distribution
is indeed π(θ); details are left as an exercise.

Comparison of (15.328) and (15.323) shows that the original Metropolis algo-
rithm is a Hastings algorithm with a symmetric proposal density, q(θ′|θ) = q(θ|θ′).
In terms of proposed changes h(k) as in (15.326), the proposal density is symmetric
if +h(k) and −h(k) are equally likely. When this condition is satisfied, (15.328)
becomes

Pr(acc) = min

{

1,
π(θ′)

π(θ(k))

}

, (15.329)

which is the general form of a Metropolis algorithm. The specific form (15.322) is
recovered by choosing π(θ) ∝ exp[−βE(θ)] as in (15.315). Note that the partition
function Z is not required since it cancels out in (15.328) and (15.329); Metropolis
and Metropolis-Hastings algorithms can be used for drawing samples from densities
that we cannot normalize.

Another special case of interest is the single-component Metropolis-Hastings
algorithm in which only a single component of the vector is altered at a time. In an
imaging context, for example, the candidate image differs from the current image
at only a single pixel.

To describe the single-component algorithm, we need some additional notation.
Let θn denote the nth component of the N×1 vector θ, and let θ−n be the (N−1)×1
vector obtained by deleting θn from θ. Thus the set {θn,θ−n} is the same thing
as θ.

With this notation, proposal of a new vector θ′ is equivalent to proposing a new
value for θn, and we write the proposal density as qn(θ′n, |θ), where the subscript on
qn indicates that different proposal densities can be used for different components.

11We use π(θ ) and q(θ ′|θ (k)) here instead of our usual notations, pr(θ ) and pr(θ ′|θ (k)), respec-
tively, since we mean specific functional forms, not generic densities. To see what would happen
without this notational distinction between π(·) and q(·|·), see the discussion below of the Gibbs
sampler.
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Thus (15.328) becomes

Pr(acc) = min

{

1,
π(θ′) qn(θ

(k)
n |θ′)

π(θ(k)) qn(θ′n|θ
(k))

}

. (15.330)

An advantage of this algorithm is that the samples are drawn from a univariate
density, so any of the methods discussed in Sec. C.7 can be used.

A succinct tutorial on Metropolis-Hastings algorithms is given by Chib and
Greenberg (1995), and a collection of practical papers on the subject is found in
Gilks et al. (1996).

Gibbs sampler In a general Metropolis-Hastings algorithm, the proposal density
q(θ′|θ) need not have anything to do with the density π(θ) from which we wish to
draw samples. All that is required is that it be possible to generate any θ in the
sample space by a sequence of proposals. In a Gibbs sampler, on the other hand,
the proposal density is a conditional density derived from π(θ). Specifically,

qn(θ
′
n|θ) = π(θ′n|θ−n) , (15.331)

where π(θn|θ−n) is the full conditional, defined by [cf. (C.76)]

π(θn|θ−n) =
π(θ)

∫

dθn π(θ)
. (15.332)

Note carefully that the quantity that appears on the right in (15.331), namely
π(θ′n|θ−n), is simply π(θn|θ−n) evaluated at θn = θ′n; this substitution causes no
notational problems since π(·), unlike pr(·), denotes a specific functional form.

If we use (15.331) and (15.332), the ratio that appears in (15.330) becomes

π(θ′) qn(θ
(k)
n |θ′)

π(θ(k)) qn(θ′n|θ
(k))

=
π(θ′)π(θ(k))

/ ∫

dθ(k)n π(θ(k))

π(θ(k))π(θ′)
/ ∫

dθ′n π(θ
′)

= 1 , (15.333)

where the integrals cancel since θ′ and θ(k) are identical except for the nth compo-
nent, which is integrated out. Thus the probability of acceptance is given by

Pr(acc) = min{1, 1} = 1 , (15.334)

and no proposal is ever rejected in a Gibbs sampler.
In summary, Gibbs samplers always draw univariate samples from the full

conditionals. They are very efficient since no proposal is ever rejected, but they
require that the conditionals be known. For a survey of methods of drawing the
samples, see Gilks et al. (1996), Chap. 5. For a tutorial on Gibbs samplers, see
Casella and George (1992).

Markov chains A Markov chain is a sequence of random vectors {θ(k)} in which
the probability of occurrence of one value depends only on the immediate previous
value in the chain, i.e., pr(θ(k+1)|θ(k),θ(k−1),θ(k−2), ... ) = pr(θ(k+1)|θ(k)). All of
the stochastic algorithms described above generate Markov chains, and the general
term for these methods is Markov-chain Monte Carlo. If the proposal density and
acceptance rule are independent of iteration number k, the Markov chain is station-
ary. Thus the basic Metropolis-Hastings and Gibbs algorithms generate stationary
chains, but simulated annealing is at best quasistationary since the temperature
parameter changes as the iteration proceeds.
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Bayesian applications MCMC methods can in principle be used for drawing samples
from any PDF, but for Bayesian applications the important PDF is the posterior.
Indeed, a good working definition of a Bayesian is that it is someone who draws
inferences only from posteriors.

In the context of Bayesian image analysis, we can identify four distinct uses
of MCMC. The first is to find a MAP estimate where the posterior pr(g|θ) is
maximized with respect to θ. As noted above, this is an optimization problem
that can be solved by simulated annealing or a more general Metropolis-Hastings
algorithm in the limit as T → 0.

The second use of MCMC is to derive other point estimates from the posterior.
For example, we noted in Sec. 13.3.3 that a posterior-mean estimator minimizes a
quadratic loss function. Except for the case of Gaussian noise and a Gaussian object
model, where the posterior mean leads to the Wiener filter, this estimator is rarely
used in image analysis, largely because of computational difficulties. MCMC offers
a potential way of overcoming these difficulties.

The third Bayesian application of MCMC is to study uncertainties in estimates.
Uncertainties in the Bayesian world are based on the posterior, so posterior variance
and covariance are regarded as measures of accuracy of estimates. It must be noted,
however, that Bayesian priors reflect belief rather than any sampling properties of
real-world objects, so posterior variance can be reduced arbitrarily just by adopting
a stringent prior— if the prior is sharply peaked, so too is the posterior. Many
Bayesians avoid this trap by using neutral or noninformative priors such as entropy,
but they then face computational difficulties in actually determining the posterior
variance.

Finally, MCMC can be used to study the prior itself. It is rarely the case that
samples drawn from the prior used in image reconstruction bear any resemblance
to real objects, but we might hope that they capture certain local features such as
the joint density of neighboring pixels (Herman and Chan, 1995). MCMC applied
to the prior offers a way of determining if this hope is justified.

For an excellent treatment of Bayesian applications of MCMC, see Besag et al.
(1995)—and don’t overlook the 25 pages of lively comment following the article.



16
Planar Imaging with

X Rays and Gamma Rays

This chapter is the first of four that provide detailed case studies of selected imaging
modalities. The goal of these applications chapters is to illustrate how the math-
ematical techniques developed in earlier chapters can be used in the analysis and
optimization of real-world imaging systems. The applications have been chosen to
illustrate specific mathematical methods, with the hope that these case studies will
provide templates for the reader to use in extending the analysis to other imaging
realms.

Specifically, this chapter covers two distinct modalities in medical radiological
imaging. Both modalities are direct imaging, in the sense that the measured data
are immediately the desired image without the need for image reconstruction or
further processing. Both produce 2D projection images of 3D objects, and for this
reason they are referred to as planar imaging. Tomographic methods, where 3D
objects yield 3D images, are treated in the next chapter.

The first modality considered here, in Sec. 16.1, is digital radiography, where
discrete arrays of detectors are used to sense the distribution of x rays transmitted
through a patient’s body. We chose to include this application because of high cur-
rent interest in the medical community, but also because it is an excellent vehicle
to elucidate many aspects of imaging introduced earlier. Digital radiography is fun-
damentally a continuous-to-discrete mapping, but only approximately a linear one;
thus it provides an object lesson on how to apply the linear deterministic descrip-
tions of Chap. 7 as well as an illustration of their limitations. Image formation in
radiography is most rigorously described by the Boltzmann transport equation of
Chap. 10, and the relation of that approach to linear methods is described in this
chapter.

In stochastic terms as well, digital radiography provides concrete illustrations
of many subtle points. X-ray images suffer from Poisson noise, so the whole theoret-
ical structure developed in Chap. 11 comes into play, but the detectors themselves
have excess, non-Poisson, noise as treated in Chap. 12.

1083
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Finally, digital radiography provides a excellent application of our general ap-
proach to objective assessment of image quality. Image quality in radiology is closely
linked to the radiation dose given to the patient; Poisson noise can be reduced by
using more intense x-ray beams, but the potential biological damage cannot be
ignored. Therefore it is crucial to provide quantitative assessments of task perfor-
mance and to identify the system components that limit that performance. The
methodology of Chaps. 13 and 14 will stand us in good stead in this endeavor.

The second modality considered here, in Sec. 16.2, is planar nuclear medicine.
In brief, nuclear medicine is the use of radioactive tracers to follow some physio-
logical pathway or to identify tumors or other pathologies. The tracers can have
exquisite biological specificity, targeting specific cell-surface receptors or disease-
specific antigens. Indeed, a whole new approach to biology and medicine, referred
to as molecular imaging, is now emerging, and nuclear imaging is one of the key
technologies making it possible.

In physical terms, a key distinction between radiography and nuclear medicine
is that the radiation source is outside the body in the former, inside the body in
the latter. In radiography the object is the distribution of x-ray attenuation co-
efficient, while in nuclear medicine the object is the radiation source itself. Thus
radiography is transmission imaging while nuclear medicine is emission imaging.
Both, however, use high-energy photons; there is no essential distinction between
the x rays used in radiography and the gamma rays used in nuclear medicine except
that x rays result from electronic transitions and gamma rays come from nuclear
transitions during radioactive decay.

Another difference between the two modalities is the method of image forma-
tion. In transmission radiography the image is produced by simple shadow casting,
but in nuclear medicine some image-forming element is required. Since gamma rays
are not appreciably refracted or reflected by matter, image formation must rely on
absorption. Options include pinholes, multibore collimators and coded apertures,
but we concentrate here on collimators.

Many of the same mathematical themes adduced in Sec. 16.1 will recur in
Sec. 16.2 in the context of gamma-ray emission imaging, but some differences are
worth noting. The Boltzmann transport equation is again the rigorous means of
describing deterministic image formation in nuclear medicine, but the scattering
term is more important than in transmission radiography. CD imaging models are
again required, but linearity is much more justifiable in nuclear medicine than in
radiography. Both x-ray and gamma-ray detectors respond approximately linearly
to the flux incident on them, and that flux is linearly related to the object in the
case of emission imaging. In transmission radiography, on the other hand, the flux
is nonlinearly related to the object, which is the distribution of x-ray attenuation
coefficient.

Stochastically, Poisson noise is paramount in nuclear medicine, and it is still
closely linked to the radiation dose given to the patient. In nuclear medicine, how-
ever, there is an important trade-off between noise and spatial resolution; coarser
collimators collect more photons but produce blurrier images. Moreover, the detec-
tors used in nuclear medicine, unlike those used in digital radiography, are essentially
ideal photon counters, so non-Poisson noise seldom arises in gamma-ray images.
Instead, photon-counting gamma cameras require an estimation step to relate the
observable output signals to position and energy of the individual gamma-ray pho-
ton. These differences will lead to rather different assessment methodologies and
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design considerations when we discuss image quality in nuclear medicine at the end
of Sec. 16.2.

16.1 DIGITAL RADIOGRAPHY

From Roentgen’s discovery of x rays at the end of the 19th century through the end
of the 20th century, x-ray imaging was predominantly based on fluorescent screens
and photographic film. At the beginning of the 21st century, however, film-based
radiography is giving way to fully electronic systems. Farsighted prognosticators
(e.g., Capp, 1981) who have been heralding the all-digital radiology department for
decades may soon be proven correct.

Many technological advances have contributed to this change, including com-
puters to process the images, large disks to store them, and high-resolution image
displays to reproduce fine details. The enabling technology, however, has been large-
area digital x-ray detectors with spatial resolution comparable to that of film-screen
systems.

Before launching into the mathematical analysis of digital radiography sys-
tems, we present a qualitative discussion of the underlying physical principles that
impact the imaging performance. In Sec. 16.1.1 we give a brief account of x-ray
sources and some considerations on the object being imaged. In Sec. 16.1.2 we de-
scribe the main detectors used for digital radiography, and in Sec. 16.1.3, we discuss
an important practical issue, scattered radiation.

In Sec. 16.1.4, we begin the mathematical analysis, starting with deterministic
properties. One goal here is to see what approximations are needed if we wish to
use linear systems theory. In Sec. 16.1.5, we treat the stochastic properties of digital
radiographs in detail. Sections 16.1.6 and 16.1.7 bring together the deterministic
and stochastic properties and show how they influence image quality for detection
and estimation tasks, respectively.

Essential background material for this discussion is found in Chaps. 10 and
12, especially Secs. 10.3, 10.4 and 12.3. An excellent general reference is the three-
volume SPIE Handbook of Medical Imaging.

16.1.1 The source and the object

X-ray sources Though radioisotope sources and synchrotrons have been used for
x-ray imaging, by far the most common source today is the one used by Roent-
gen himself, a vacuum tube in which high-energy electrons bombard a metal anode
and create x rays. Two kinds of x rays are produced, Bremsstrahlung (German for
braking radiation) and characteristic x rays. Bremsstrahlung arises from the decel-
eration of the electrons in the anode material and has a continuous energy spectrum
extending up to the electron energy. The characteristic radiation is produced when
the electron collides with an atom in the anode and creates a vacancy in an inner
electron shell; this vacancy is then filled by an electron dropping into it from a
higher energy level, liberating energy in the form of an x ray. X rays produced
in this way by transitions between discrete energy levels have a discrete spectrum
characteristic of the anode material. As discussed in Sec. 12.3.1, characteristic x
rays are also produced in x-ray detectors, though there the initial inner-shell va-
cancy is produced by photoelectric absorption rather than electron impact.
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As a numerical example, suppose the anode is tungsten (W), for which the
K-shell binding energy is about 70 keV, and that the applied potential across the
x-ray tube is 100 kV. Since the electrons are produced thermally, they have very
low energy when they exit the cathode, but they are accelerated toward the anode
and have an energy of 100 keV when they arrive there. This energy is sufficient to
create a vacancy in the K shell, and a transition from the L shell to the K shell will
then produce an x ray of about 59 keV. Vacancies in the L shell itself result in x rays
around 8–9 keV. The 100 keV electrons also produce Bremsstrahlung photons with
energies ranging up to 100 keV. Thus the overall energy spectrum, shown in Fig.
16.1, consists of discrete lines characteristic of W plus a continuous Bremsstrahlung
spectrum depending mainly on the electron energy (or accelerating voltage).

Fig. 16.1 Energy spectrum for a tungsten-target x-ray tube operated at 100
kV.

To get sharp images, it is necessary to focus the electrons tightly so that the
x-ray source approximates a point source, but it is also desirable to use a large
current in order to get a large x-ray flux. These two conditions are contradictory
since forcing a large amount of current into a small area can result in strong local
heating of the anode, possibly even to the melting point. One way to minimize this
problem is to use a tilted anode as shown in Fig. 16.2 and to focus the electrons
into something approximating a line rather than a point; viewed end-on, the line
looks like a small point, but from other directions it has a greater extent. Another

Fig. 16.2 Illustration of an x-ray imaging system using an x-ray tube with

a tilted anode. The anode may rotate to spread the heat load over a larger
area.
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common measure to allow greater current and hence greater x-ray flux is to rotate
the anode, spreading the heat over a much larger area. As we shall see in Sec.
16.1.4, tilting the anode leads to a strongly shift-variant blur, but the rotation has
no effect on the blur because the electron focal spot does not move.

Objects At the energies used in radiography, x-ray wavelengths are very small
compared to resolvable image details; for example, 60 keV x rays have a wavelength
of about 0.2 Angstrom or 0.02 nm, and digital radiography systems have spatial
resolutions around 50–100 µm, so diffraction in the object is negligible on this scale.
Moreover, the refractive index of all materials for x rays is very close to unity, so
refractive effects are negligible as well. The physical effects that we do have to
consider are photoelectric absorption and Compton scattering. (See Sec. 12.3.1 for
a brief review of the x-ray physics.) The object is thus described by the distribu-
tion of x-ray absorption and scattering coefficients, and the propagation of x rays
through the object is well described by the Boltzmann transport equation (Chap.
10).

A transmission image of a scattering and absorbing object, obtained with a
point-like x-ray source, consists of two components. First, an x-ray photon may
travel without scattering along a straight line from the source point to the detec-
tor, but the probability of this happening depends on the total x-ray attenuation
(absorption plus scattering) along the line. The unscattered photons thus produce
a 2D shadow image of the 3D object on the detector. The shadow is sharp if the
x-ray source is small.

The second component of the image consists of photons that have undergone
one or more Compton-scattering events in the object. These photons form a diffuse
background that reduces the contrast of the shadow image and increases the noise
level.

Motion of the object is also an issue in medical imaging. Beating of the heart,
respiration in the lung or peristalsis in the esophagus during an exposure time
can blur the images of these organs, and patient fidgeting can also be problematic.
Breath-holding and various Torquemadian restraint devices will reduce motion blur,
but the best solution is to shorten the exposure time; unfortunately this requires
an increased current through the x-ray tube if the same total number of photons
are to be detected.

Radiation dose In any imaging application, we need to know how the object affects
the image, but in medical radiography we also need to know how the imaging system
affects the object. X-ray photons that are absorbed or scattered in a patient’s body
deliver energy to it and can cause biological damage. A full analysis of the system
should therefore include computation of the radiation dose (absorbed energy per
unit mass) along with some assessment of the biological hazards from the dose.
Part of the problem of system design is to choose the total x-ray flux and the
energy spectrum in such a way as to minimize patient dose while maximizing the
image information (as measured by task performance).

16.1.2 X-ray detection

X rays are detected either by converting them to light and detecting the light
or by converting them to electrical charge and detecting the charge. Detectors
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operating on the first principle include film-screen systems, x-ray image intensi-
fiers, scintillator-photodiode arrays, systems in which a lens or mirror couples light
from a scintillator to an optical detector, and photostimulable phosphors. Systems
that avoid the conversion to light include semiconductor detector arrays and x-ray-
sensitive television cameras such as vidicons.

All of these detectors involve an amplification process: one x-ray photon pro-
duces a large number of secondary particles, either optical photons or electrons and
holes. The randomness in this amplification process, discussed in general terms in
Sec. 11.4 and specifically for x-ray detectors in Sec. 12.3, contributes to the image
statistics and the resulting image quality. Whatever detector is used, it is always the
goal to have the final image quality limited only by the inevitable Poisson statistics
of the x-ray beam. If this happy condition is achieved, we say that the detector is
quantum limited.

In the remainder of this section, we shall sketch the operation of each of these
detectors and comment on the major contributions to blur and image statistics.

Film-screen detectors In a film-screen detector, shown in Fig. 16.3, the fluorescent
screen absorbs an x-ray photon and produces hundreds of optical photons, which
then diffuse out of the screen and expose the film placed in contact with the screen.
It is also possible for x rays to be photoelectrically absorbed in the film itself, in
which case the exposure is produced by the high-energy photoelectron, but this pro-
cess is much less probable than absorption in the screen since the screen is usually
much thicker than the photographic emulsion and has a higher atomic number.

Fig. 16.3 Film-screen detector.

Since thin photographic emulsions have very high spatial resolution, blur in a
film-screen detector is dominated by the diffusion of the light from the interaction
point to the emulsion. The screen usually consists of relatively small (1–10 µm)
fluorescent crystallites or grains in a transparent or translucent binder, so the diffu-
sion of light can be controlled to a degree by varying the grain size and the optical
properties of the binder. When these properties are optimized, the only way to get
better resolution is to use a thinner screen, but this increases image noise by reduc-
ing the number of x-ray photons absorbed. For this reason practical x-ray detectors
often use two screens and films with emulsions on both sides, thereby doubling the
total screen thickness for a given spatial resolution.

Major statistical limitations in a film-screen detector arise from the random
x-ray absorption process, random conversion of the x-ray energy to light, and ran-
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dom conversion of light to latent (developable) photographic grains. We refer to
these noise sources, respectively, as quantum noise, amplification noise and film-
grain noise. For an excellent treatise on these topics, see Dainty and Shaw (1974).

The developed x-ray film can, of course, be digitized with a scanning microden-
sitometer, in which case the overall system—film-screen, development process and
microdensitometer—could be considered as a digital radiography system, but we
shall understand that term in a narrower sense and not consider film-based systems
any further in this chapter.

X-ray image intensifiers In an x-ray image intensifier, illustrated in Fig. 16.4, the
initial x-ray absorption again takes place in a fluorescent screen, but now the light
from the screen impinges on a photocathode rather than a photographic emulsion.
Electrons emerging from the photocathode are accelerated and focused by an elec-
trode structure serving as an electron lens, and they then impinge on a second
fluorescent screen known as the output phosphor. The physical processes in the
output phosphor are essentially the same as in the first fluorescent screen except
that there the x-ray photon produces a high-energy photoelectron that excites the
luminescence, while in the output phosphor the high-energy electron impinges from
the outside.

Fig. 16.4 An x-ray image intensifier.

The x-ray image intensifier thus involves two separate amplification steps. Each
x-ray photon produces many photoelectrons in the photocathode, and each photo-
electron is accelerated to high energy and can produce many optical photons in the
output phosphor. The overall gain—optical photons per x-ray photon— is quite
high, so there are many options for reading out the final optical image. One impor-
tant method, known as fluoroscopy or ciné-radiography, records the output with a
movie camera so that dynamic images of moving objects can be captured.

There are several sources of blurring in an image intensifier. As with a film-
screen system, the light diffuses in the input screen before reaching the photocath-
ode. Then the photoelectrons are not focused perfectly by the electron lens, and the
diffusion of light in the output phosphor increases the blur still further. Sometimes
the input screen consists of columnar structures such as long, thin crystallites of CsI
or hollow tubes loaded with a polycrystalline scintillator material. If these columns
are oriented perpendicular to the photocathode, they restrict the lateral diffusion of
the light and reduce the blur in the input screen. Also, the output phosphor can be
made relatively thin since it must absorb only electrons, not x-ray photons. Under
these conditions, the blur may be dominated by the electron optics.
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An insidious source of blur in many image intensifiers is the thin glass window
that separates the input screen from the photocathode. Light that strikes this win-
dow near normal incidence passes through with relatively little reflection loss, but
at greater incidence angles the reflection coefficient increases and the light might
be reflected several times before finally emerging from the glass. These multiple
reflections produce long tails on the point spread function. Even though the tails
have fairly low amplitude, they can greatly reduce the contrast of a small detail in
a large background since the convolution of the tails with the background can be
large. A common term for this phenomenon is veiling glare.

Factors influencing the image statistics in an image-intensifier system include
the statistics of light production in both the input screen and the output phosphor,
the quantum efficiency of the photocathode and, of course, the Poisson statistics of
the x-ray flux. Further noise can, in principle, be contributed by the movie camera
or other optical device used to record the output image, but noise from this source
is usually negligible because of the high gain of the intensifier.

Fluorescent screens with optically coupled readouts Because of the cost and com-
plexity of image intensifiers and the blur in the electron optics, there is an incentive
to eliminate the optical intensification and couple the light from a fluorescent screen
directly to a CCD camera or other optical readout with a lens, focusing mirror or
fiber optics.

The basic problem with this approach is that optical readouts have a small
area, while the fluorescent screen must have a large area to cover the desired field
of view. If a lens or mirror is used to image the large screen onto the small readout,
the optical magnification M must be small. For a simple lens, we know from Sec.
9.6.2 that M = −q/p, where p is the distance from the object to the lens and q is
the distance from the lens to the image plane. To make M small and still satisfy the
imaging equation (9.169), we must take q ≈ f and p ≈ −f/M (where f is the focal
length of the lens). The lens-to-screen distance p must increase as M gets smaller
(larger demagnification). As a result, the lens subtends a smaller solid angle at
the screen and hence collects fewer of the optical photons emitted by it. A similar
conclusion holds for more complicated lenses, mirror systems and even fiber optics;
large demagnifications always mean inefficient photon collection.

In fact, the photon collection efficiency in these systems may be so poor that
less than one optical photon is collected per absorbed x-ray photon. Since photon
collection is a rare event, the statistics of the collected photons approaches Poisson
(see Sec. 11.4.1) as M gets small, and in this limit the image noise is much larger,
relative to the mean image, than when the Poisson statistics of the x-ray beam
dominate. Moreover, even if we succeed in getting the collection efficiency up to
the point where more than one optical photon is collected per absorbed x-ray pho-
ton, the optical image on the readout is still weak, and noise in the readout itself is
more important than it would be with an image intensifier.

Scintillator-photodiode arrays One way to improve the optical collection efficiency
is to make a large-area readout such as a photodiode array and place it in contact
with the fluorescent screen, thereby producing the electronic counterpart of a film-
screen detector. One of the more promising configurations at this writing is a CsI
screen and an amorphous-Si photodiode array. These photodiodes are noisier than
ones made of crystalline Si, but they are much easier to fabricate into large arrays.
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The amplifiers for each photodiode can also be fabricated in the same amorphous-Si
structure.

With any kind of integrated-circuit detector array, there is an inevitable prob-
lem with variations in gain of the amplifiers. In addition, there can be variations
across the array in the mean dark signal because of variations in dark current
through the photodiode and offset voltages in the amplifiers. If left uncorrected,
these gain and offset variations would show up as an objectionable structure, called
fixed-pattern noise, superimposed on the desired x-ray image. Fixed-pattern noise
can be removed by measuring the gains and offsets of each element in the array and
applying the appropriate correction during readout, but one must then be cognizant
of the effect of the correction on the image statistics.

Semiconductor detector arrays In any x-ray detector with optical readout, the x-
ray photon first produces a high-energy photoelectron (or Compton electron) which
then generates a large number of electron-hole pairs. These electrons and holes
recombine at a luminescent center and produce optical photons, which are collected
with some efficiency in an optical detector where they again produce electron-hole
pairs. In a semiconductor detector array, the initial electron-hole pairs produced
by the photoelectron are sensed directly with an electrode array.

Detectors based on this principle were treated in detail in Sec. 12.3. As dis-
cussed there, trapping of the charge carriers before they reach the electrodes con-
tributes in a complicated way to both the image statistics and the blur.

Other readout mechanisms have also been proposed for semiconductor detec-
tors. One approach is to use a semiconductor with no electrode on one side and
to charge this surface with an electron beam or corona discharge. The charge will
leak off as a result of the finite conductivity of the material, but absorbed x rays
will create free carriers and increase the conductivity, so the remaining charge after
some exposure time will be related to the x-ray exposure. This charge can be sensed
with a moving electrode scanned over the free surface or with a scanning electron
beam as in a vidicon. It is also possible to read out the charge pattern by converting
it into a pattern of toner particles as in the Xerox copying process.

Photostimulable phosphors Though trapping is generally deleterious in semiconduc-
tor detectors, it is essential in x-ray detectors based on photostimulable phosphors.
In these materials an absorbed x ray produces many hole-electron pairs, just as in
a semiconductor detector, but they are trapped in impurity levels deep within the
bandgap. Because the binding energy of these traps is so large, thermal detrapping
essentially does not occur, and the spatial pattern of trapped charge is a latent
image of the pattern of absorbed x rays. To read out this pattern, the phosphor
is scanned with a focused laser beam, usually red light. The energy of a red pho-
ton is sufficient to excite a trapped carrier to the conduction band, from which
there is some probability that it will recombine and produce an optical photon with
approximately the bandgap energy, which makes it blue or ultraviolet. A simple
optical detector such as a photomultiplier can then be used to detect this shorter-
wavelength light, with a spectral filter to reject the red excitation light. No imaging
optics are needed on the collection channel since the emitted light must have come
from the point illuminated by the scanning red beam.

Digital imaging systems based on photostimulable phosphors are known com-
mercially as computed radiography or CR systems. This is an unfortunate mis-
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nomer since the computer plays very little role in this kind of imaging. Of course,
the image is stored digitally, possibly manipulated in the computer and then dis-
played on a CRT screen, but the image-formation process is purely analog. Unlike
computed tomography, where no image at all could be formed without computation,
computed radiography could have been invented before the computer.

The main sources of blur in CR systems are the finite focal spot of the scan-
ning beam and diffusion of the red light into the photostimulable phosphor. Image
statistics are again determined by amplification processes; we must consider the
random number of trapped carriers per x-ray photon, the probability of detrapping
under red excitation and the probability that a short-wavelength optical photon
will be registered in the collection detector. These processes are complicated but
understandable within the framework presented in Sec. 11.4.

16.1.3 Scattered radiation

So far we have considered only unscattered radiation, but in many practical sit-
uations the majority of x-ray photons arriving at the detector plane have been
scattered at least once in the object. These scattered photons reduce the image
contrast and increase the noise level. Methods for computing the scatter distribu-
tion function were discussed in detail in Chap. 10, so here we confine the discus-
sion to methods for minimization of the scatter component of radiographic images.
The photon flux at the detector plane is characterized by the distribution function
w(r, ŝ,E , t), and we shall discuss in turn how each of the variables in this function
can potentially be used to distinguish scattered from unscattered photons.

Temporal gating The time variable is of interest only if the source is pulsed rapidly
compared to the transit time of photons across the object and if the detector has
similar time resolution; neither of these conditions is satisfied in systems designed
for medical radiography. Since the speed of light in American units is one foot per
nanosecond, and typical clinical objects are a foot or so across, we would need a
subnanosecond source and detector. Such rapid pulses of x rays can be created
with pulsed beams of electrons or pulsed lasers, but the technology required is too
expensive for the medical market, and it would be of no use without a detector with
nanosecond resolution.

An individual x-ray detector can indeed have the requisite response time, but
it requires a fast amplifier and electronic gate or sample-and-hold circuit, which
would then have to be duplicated for each element in a detector array. There is no
reason in principle why this could not be done with an array of gated integrators
as discussed in Sec. 12.2.4, but the detector arrays being developed at this writing
have much slower response.

The other option to consider is a rapid shutter that admits photons to the
detector surface for only a brief time. Optical detectors can be gated in this way
by use of electro-optic shutters, but no comparable shutter exists for x rays. An
x-ray image intensifier could, in principle, be gated either by putting an optical
shutter between the output phosphor and the final optical readout or by gating the
electron-amplification stage, but the response time would always be limited by the
input fluorescent screen. Current scintillators have an optical rise time of at least
a few nanoseconds and decay times up to a microsecond or more, so it is unlikely
that subnanosecond response could be obtained by gating an image intensifier.
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Energy discrimination The energy variable is potentially useful for discriminating
against scattered radiation since photons lose energy upon Compton scattering (see
Sec. 10.3.7). As with the time variable, however, energy is useful only if the source
has a narrow spread in energies and the detector has good energy resolution. As
seen in Fig. 16.1, commonly used x-ray sources have both a discrete line compo-
nent and a continuous spectrum. With judicious choice of operating voltage and
filtration in the x-ray beam, the relative strength of the discrete component can
be enhanced, but some continuum background will always remain with electron-
beam tubes. Heavier charged particles such as protons or heavy ions can also be
used to excite x rays, and they produce a higher ratio of characteristic radiation to
Bremsstrahlung, but the expense is prohibitive for clinical use. Finally, synchrotrons
can produce quite monoenergetic x-ray beams, but again the issue is expense.

The energy resolution of semiconductor and scintillation detectors was dis-
cussed in Sec. 12.3. Since energy discrimination depends on the ability to analyze
an individual photon absorption event, energy information is useless if more than
one event occurs in a detector element during one readout period. Moreover, as dis-
cussed in Sec. 12.3, an event can produce signals in neighboring readout channels
as a result of light spread in scintillators or charge trapping in semiconductors, so
the requirement is really that there be no more than one event per readout period
in some cluster of detector elements. Furenlid et al. (2000) have analyzed the prob-
ability of this happening as a function of input flux rate, detector element size and
readout time. As a rule of thumb, the flux should be kept to less than 0.1 x-ray
photons per cluster per readout period.

Even if a monoenergetic source could be used and the input flux could be kept
low enough to resolve individual photons, it is still not evident that energy discrim-
ination would be useful in digital radiography. The problem is that the fractional
energy loss upon Compton scattering, ∆E/E0, is small at energies much less than
mc2, where m is the mass of the electron [see (10.226)]. Since mc2 = 511 keV and
diagnostic radiology mainly uses photons in the 10–100 keV range, the energy loss is
small, and excellent energy resolution would be required to distinguish a scattered
photon from an unscattered one.

While photon-by-photon energy discrimination is probably not useful for scat-
ter rejection, it may still be advantageous to modify the energy-dependence of the
source function Ξp,E(r, ŝ, E , t) and the detector response dm(r, ŝ, E). For example,
if the x rays are produced by bombarding a W target, we can place a tantalum (Ta)
sheet in front of the x-ray tube. Since Ta has a K absorption edge of 67.4 keV, it
has a relatively low absorption for W characteristic x rays of energy around 58 keV,
and the relative strength of the line spectrum will be increased. Then, if we use
Gd2O2S (gadolinium oxysulfide) as the detector material, the detector will be very
efficient for the unscattered W characteristic photons, but relatively inefficient for
scattered radiation that falls below the Gd K edge at 50 keV. The thicknesses of
the Ta sheet and the Gd2O2S then become parameters to be optimized in terms of
task performance.

Angular discrimination The angular distributions of scattered and unscattered ra-
diation are quite different. All of the unscattered photons travel along straight lines
from the focal spot to the detector, so the radiance at any point on the detector is
nearly an angular delta function. The scattered photons, on the other hand, have
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a very broad angular distribution, and they can be rejected by making dm(r, ŝ,E)
a sharp function of ŝ.

One way to do this is to to use an anti-scatter collimator as shown in Fig. 16.5.
The bores in the collimator point to the focal spot, so they do not impede any un-
scattered photons that hit the open areas, but they have a narrow acceptance angle
and reject most of the scattered photons. Sometimes the collimator is moved during
the exposure to wash out moiré effects between the collimator and the detector array.

Fig. 16.5 Illustration of the use of an anti-scatter grid in a film-screen x-ray
imaging system.

A related approach is to confine the x-ray beam to a thin slab with a slot
collimator placed between the x-ray source and the object as shown in Fig. 16.6.
With a similar slot collimator in front of the detector, unscattered photons pass
unimpeded from source to detector, but scattered photons are likely to scatter out
of the slab and miss the detector. Even if they scatter back into the slab, they are
likely to be out of the angular acceptance of the detector collimator. The desired
field of view is then covered by scanning the entire structure— source, detector and
two collimators— in the direction perpendicular to the slab. A side benefit of this
geometry is that the required detector area is much less than the area of the field
of view; even 1D detector arrays can be used.

Fig. 16.6 Slot-scanning system.
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Spatial filtering The final variable we can use for discriminating against scattered
radiation is spatial position. There is nothing useful we can do to modify the depen-
dence of dm(r, ŝ, E) on r since scattered and unscattered photons occupy the same
area on the detector face, but we can operate on the recorded data as a function of
the spatial index m. That is, we can spatially filter the digital image.

One approach to spatial filtering is to recognize that scattered radiation con-
tains no fine details, hence consists mainly of low spatial frequencies, so a high-pass
filter implemented in the discrete Fourier domain should preferentially exclude scat-
tered radiation and preserve the interesting image details. On average, this state-
ment is true, but scattered radiation also has spatially uncorrelated fluctuations or
noise associated with it, and this noise will pass through the filter. Moreover, the
relative contribution of primary and scattered radiation will vary over the image,
so shift-invariant filtering may not be optimal.

Another approach, which sounds different but turns out to be equivalent to
Fourier-domain filtering, is unsharp masking. In this approach, a local estimate of
the low-frequency background is made by averaging the image over a region and
then subtracting the average from the original image. The result is equivalent to
convolving the image with a digital filter having a central positive core one pixel
wide and a small negative value over the averaging region.

A more sophisticated approach is to estimate the amount of scatter locally and
subtract off just that component of the background rather than all low-frequency
components. This estimate could be obtained from an approximate solution of the
Boltzmann equation or through a Monte Carlo simulation. In both cases a greatly
simplified model of the object, such as a uniform cylinder, might give an adequate
estimate of the scatter image. If there are unknown parameters such as the diameter
of the cylinder, they could be estimated from the measured image data.

16.1.4 Deterministic properties of shadow images

As noted above, propagation of x-ray photons through an object can be described
by the Boltzmann transport equation (10.132), with terms accounting for the x-
ray source, photon propagation, Compton scattering and photoelectric absorption.
In this section we shall ignore the scattering term and compute the mean image
produced by unscattered photons.

Since the x-ray source is pulsed in digital radiography, it is necessary in general
to use the full time-dependent Boltzmann equation, but we can usually assume that
the pulse width is long compared to the propagation time of the x rays across the
object. For simplicity, we shall also assume that the object is independent of time
over the pulse duration. With these assumptions, we can use the steady-state
equation even with a time-dependent source, and (10.132) takes the form

−cµtot(r, E)w(r, ŝ, E , t) + Ξp,E(r, ŝ,E , t) + [Kw](r, ŝ, E , t)− c ŝ ·∇w(r, ŝ, E , t) = 0 ,
(16.1)

where c is the speed of light (recall that the refractive index is near one for x rays,
so cm ≈ c), and the other quantities are defined in Chap. 10.

If a solution to (16.1) has been found for a given object and source-detector
configuration, the next step is compute the mean output of each detector. It will be
convenient to designate the detector elements by the 2D multi-index m = (mx,my),
where the components take on integer values. If the detector is linear, then the mean
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output of the mth detector is given by (10.239) as

gm =

∫

P

d2r

∫ ∞

0
dE

∫

2π
dΩ

∫ τ

0
dt dm(r, ŝ, E)w(r, ŝ, E , t) , (16.2)

where τ is the exposure time, dm(r, ŝ, E) is the detector response function (assumed
independent of time), and the spatial integral is over a plane immediately adjacent
to the detector. Recall from Chap. 10 that we use the 2D vector r and the 3D
vector r to refer to the same spatial point. Thus, if we take the plane P to be
z = 0, then r = (x, y, 0), r = (x, y) and d2r = dx dy. Note also that we have added
an overbar to gm to emphasize that the Boltzmann equation gives the mean photon
distribution and hence the mean detector output.

The unscattered image If we consider only the unscattered photons, the Boltzmann
equation takes the form of (10.147):

ŝ ·∇w =
1

c
Ξp,E − µtotw . (16.3)

We know from Sec. 10.3.3 that the general solution to this equation is the attenuated
x-ray transform of the source distribution. An explicit solution was given in that
section for an ideal point source, and an ideal detector model was discussed in Sec.
10.4.2; in this section we extend the discussion to more realistic source and detector
models.

To describe the source, we assume that the anode of the x-ray tube lies in the
plane defined by r · n̂a = pa (where subscript a indicates anode), n̂a is a unit vector
normal to the anode and pa specifies the location of the anode along the line defined
by this unit vector. We assume also that the temporal and spectral dependences of
the source function are independent of the spatial and angular dependences, so we
can write

Ξp,E(r, ŝ, E , t) = A(t)N(E) (n̂a · ŝ)Lp(r, ŝ) δ(pa − r · n̂a) , (16.4)

where N(E) is a normalized spectral function satisfying
∫∞
0 N(E) dE = 1, and

A(t)Lp(r, ŝ) is the photon radiance of the source. The factor (n̂a · ŝ) is discussed in
Sec. 10.4.3 [see (10.269)].

With this source model and (10.151), the distribution function is given by

w(r, ŝ, E , t) =
1

c
A(t)N(E)

×
∫ ∞

0
d# (n̂a · ŝ)Lp(r − ŝ#, ŝ) δ[pa − (r − ŝ# ) · n̂a] exp

[

−
∫ #

0
d#′ µtot(r − ŝ#′, E)

]

.

(16.5)
The argument of the delta function vanishes when

# =
n̂a · r − pa

n̂a · ŝ
≡ #0 , (16.6)

which occurs when a ray extended along −ŝ from point r intersects the anode plane.
The delta function transforms via (2.28) to (n̂a · ŝ) δ[pa − (r− ŝ# ) · n̂a] = δ(#− #0),
so (16.5) integrates to

w(r, ŝ, E , t) =
1

c
A(t)N(E)Lp(r − ŝ#0, ŝ) exp

[

−
∫ #0

0
d#′ µtot(r − ŝ#′, E)

]

. (16.7)
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The interpretation of this equation is straightforward when one recalls from Sec.
10.2 that c times the distribution function is the spectral photon radiance, and that
radiance is conserved along rays in free space; thus (16.7) says that the radiance at
point r and direction ŝ is the source radiance along the same ray but attenuated
by passage through the object. Note that the factor (n̂a · ŝ) has cancelled out; we
do not need to know the tilt angle of the anode explicitly if we know the source
radiance.

With this distribution function and (16.2), the mean output of themth detector
is

gm =
1

c

∫ ∞

−∞
dt A(t)

∫ ∞

0
dE N(E)

×
∫

P

d2r

∫

2π
dΩ dm(r, ŝ, E)Lp(r − ŝ#0, ŝ) exp

[

−
∫ #0

0
d#′ µtot(r − ŝ#′, E)

]

. (16.8)

This is the general nonlinear mapping from the object, described by the function
µtot(r, E), to the digital data.

To simplify this equation a bit, we can assume that the spectral response of
the detector is the same for all m and is independent of direction and position of
the radiation, so we can write

dm(r, ŝ, E) = dm(r, ŝ)Sd(E) , (16.9)

where Sd(E) is the spectral response function. If we also assume that the x-ray
attenuation coefficient is approximately independent of energy, we have

gm = C

∫

P

d2r

∫

2π
dΩ dm(r, ŝ)Lp(r − ŝ#0, ŝ) exp

[

−
∫ #0

0
d#′ µtot(r − ŝ#′)

]

,

(16.10)
where

C ≡
1

c

∫ ∞

−∞
dt A(t)

∫ ∞

0
dE N(E)Sd(E) . (16.11)

The object is now described by the purely spatial function µtot(r), and (16.10) is
the mapping of this object to the mean data.

Linearization In spite of the simplifications, (16.10) is still highly nonlinear. To
secure the blessings of linear systems theory, we might consider expanding the ex-
ponential in (16.10) and retaining only linear terms in µtot(r), but this approxi-
mation is rarely valid; the x-ray attenuation coefficient in soft tissue is about 0.2
cm−1 for energies used in diagnostic radiology, so 10 cm of tissue corresponds to an
attenuation of e−2.

A better way to linearize is to consider a thick object to be made up of thin slabs
parallel to the detector and to look at the image of one slab at a time. To do this, we
adopt a coordinate system in which the detector lies in the plane z = 0 and the x rays
propagate generally in the +z direction. In this plane, then, r = (x, y, 0) ≡ (r, 0),
and dm(r, ŝ) becomes dm(r, ŝ). Also, if ŝ = (sx, sy, sz), we define the 2D vector
s⊥ = (sx, sy). Note that s⊥ is not a unit vector and that sz = cos θ, where θ is
the angle between ŝ and the z axis. With these definitions, the argument of µtot in
(16.10) is r − ŝ#′ = (r− s⊥#′,−sz#′).
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We can now divide the object into slabs of thickness ∆z and approximate the
integral in the exponential factor of (16.10) with a Riemann sum:

exp

[

−
∫ #0

0
d#′ µtot(r − ŝ#′)

]

≈ exp



−∆#
J∑

j=1

µtot(r − ŝj∆# )





=
J∏

j=1

exp

[
−
∆z

sz
µtot

(
r+ s⊥

zj
sz

,−zj

)]
, (16.12)

where J = #0/∆#, zj = −jsz∆# and ∆z/sz = ∆#. Each factor in this product can
be expressed in terms of the transmission of the slab for x rays travelling in the ŝ
direction. Since this transmission depends on the angle θ between the slab normal
and ŝ, we write it as

t(θ)j (r) ≡ exp

[
−

∆z

cos θ
µtot(r,−zj)

]
, (16.13)

and (16.10) becomes

gm = C

∫

P

d2r

∫

2π
dΩ dm(r, ŝ)Lp(r − ŝ#0, ŝ)




J∏

j=1

t(θ)j

(
r+ s⊥

zj
sz

)

 . (16.14)

If we are interested in one particular slab, say j = k, we can factor out the trans-
mittance of that slab and write

gm = C

∫

P

d2r

∫

2π
dΩ dm(r, ŝ)Lp(r− ŝ#0, ŝ)




J∏

j %=k

t(θ)j

(
r+ s⊥

zj
sz

)

 t(θ)k

(
r+ s⊥

zk
sz

)
.

(16.15)

This equation is now a linear mapping from t(θ)k (r) to gm, but it is is highly shift-

variant since the effective source distribution depends on all of the other t(θ)j (r). In
fact, (16.15) is a good example of an object-dependent system function as intro-
duced in Sec. 7.5.3.

Note that the linearization has been obtained without expanding the exponen-
tial; gm is a linear functional of the transmittance of the slab of interest, though it
is still a nonlinear functional of the attenuation coefficient in the slab. If we choose
∆z small enough, of course, we can expand the exponential and retain only the
constant and linear terms. Then we find that gm is an affine functional of µtot in
the slab.

Another way to attempt to linearize the imaging equation is to take its log-
arithm. It is not obvious that this will work since we cannot take the logarithm
under the integral sign in (16.10), but it often leads to a good linear approximation.
We shall discuss this option in more detail in Sec. 16.1.7 in the context of estimation
tasks.

Spatial resolution in a single slab To better understand (16.15) and the spatial-
resolution limitations in digital radiography, let us consider an object consisting of
just one slab. In fact, radiographic systems are often evaluated with test patterns
consisting of fine openings in a thin slab of lead, tungsten or other highly absorbing
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material. This test pattern then mimics the transmittance of a single slab out of
a thick object, but at much higher contrast and without the confusion caused by
overlying layers.

With an object consisting of a single slab in the plane z = −z0 and specified

by the transmittance t(θ)obj(r), (16.15) becomes

gm = C

∫

P

d2r

∫

2π
dΩ dm(r, ŝ)Lp(r − ŝ#0, ŝ) t

(θ)
obj

(
r+ s⊥

z0
sz

)
. (16.16)

This expression is now strictly linear in the object transmittance t(θ)(r); the system
function no longer depends on the object in any way, though the measured object
property depends on the system since the transmittance depends on ray angle θ in
general. (The transmittance is approximately independent of θ for a test pattern
consisting of openings in a thin plate if the size of the openings is large compared
to the thickness, but continuous slabs of attenuating material such as tissue will
always exhibit some angular dependence.)

To simplify the integrals in (16.16), we can take advantage of the small size of
the detector elements in practical digital radiography systems and the small solid
angle subtended by practical focal spots. Even though the integral over solid angle
allows a range of 2π ster in general, the spatial dependences (the first arguments)
of the functions dm and Lp restrict the range to rays close to ŝm, the unit vector
directed from the center of the focal spot to the center of the mth detector element.
If the angular dependences (the second arguments) of dm and Lp are weak over this
range, then dm(r, ŝ) ≈ dm(r, ŝm) and Lp(r − ŝ#0, ŝ) ≈ Lp(r − ŝ#0, ŝm) in (16.16).

Fig. 16.7 Geometry for imaging a thin slab object with a tilted-anode x-ray

source.

We can now erect a plane normal to the z axis and passing through the focal
spot. We denote this plane by z = −za and let transverse position in the plane
be specified by the 2D vector ra (see Fig. 16.7). We know that #0 is the distance
along direction −ŝm from a general point r in the detector plane (z = 0) to a point
on the anode plane, and we can approximate it with #0m, the distance from the
center of the mth detector element to the center of the focal spot. Noting also that
za ≈ −#0m cos θm, where θm is the angle between the z axis and the line from the
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focal spot to the mth detector, we can write the element of solid angle as

dΩ =
cos θm
#20m

d2ra =
cos3 θm

z2a
d2ra . (16.17)

Moreover, ra = #0 s⊥ ≈ #0m s⊥. Thus, since r = (r, 0) in plane P, we can rewrite
the 3D spatial argument of Lp as

r − ŝ#0 = (r− ra,−za) . (16.18)

With these approximations and substitutions, (16.16) becomes

gm =
C cos3 θm

z2a

∫

∞
d2r

∫

∞
d2ra dm(r, ŝm)Lp(r− ra,−za, ŝm) t(θm)

obj

(
r− ra

z0
za

)
.

(16.19)
Note that we have extended the ranges of integration to the infinite planes, assured
that the functions dm and Lp will limit the integrands to small portions of the
planes.

Magnification To help interpret (16.19), consider a point source of x rays and a
small point-like detector element. Without loss of generality, we can put the point
source at the 2D origin of coordinates in the plane z = −za, so Lp(r′,−za, ŝm) ∝
δ(r′) and dm(r, ŝm) ∝ δ(r − rm), where rm is the 2D location of the mth detector
in the plane z = 0. Then (16.19) becomes

gm ∝
∫

∞
d2r

∫

∞
d2ra δ(r− rm) δ(r− ra) t

(θm)
obj

(
r− ra

z0
za

)
= t(θm)

obj

[
rm

(
1−

z0
za

)]
.

(16.20)
Thus the image, as a function of the detector coordinate rm, is a magnified version
of the object transmittance. The magnification M is

M =

(
1−

z0
za

)−1

=
za

za − z0
, (16.21)

which is the source-to-detector distance divided by the source-to-object distance. If
the object is in contact with the detector (z0 = 0), then M = 1, but if the object is
close to the source there is a large geometric magnification. Since za and z0 are both
negative numbers with our conventions, M is always positive (there is no inversion),
and in fact M ≥ 1.

Point response function If we allow a finite extent for the source and detector
element, then the image of a slab object is not just a magnified version of the
object, but it can always be cast into our usual form of a linear CD mapping. If we

define the object as f(r) ≡ t(θ)obj(r), then by a change of variables we can write

gm =

∫

∞
d2r′ hm(r′) f(r′) , (16.22)

where

hm(r′) =
C cos3 θm

z2a

∫

∞
d2ra dm

(
r′ + ra

M − 1

M
, ŝm

)
Lp

(
r′ − ra

1

M
,−za, ŝm

)
.

(16.23)
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In essence, this kernel is the cross-correlation of the detector response function and
the spatial part of the source function, though these two functions appear with
different magnifications in the integrand.

Two limits of (16.23) are of interest. First, if the object is in contact with
the detector so that z0 = 0 and M = 1, then dm is independent of ra and can be
removed from the integral, and the integral of Lp becomes independent of r′ by a
change of variables. In that limit, therefore hm(r′) ∝ dm(r′, ŝm). In other words,
the size of the source is of no importance for contact printing, and the PRF is simply
the detector function.

The opposite limit is when the object is placed close to the source and a long
distance from the detector. The magnification is large in this case, so Lp is a broad
function of ra, and the width of the detector response contributes little to the width
of hm.

16.1.5 Stochastic properties

Many different random phenomena can affect the statistical properties of digital ra-
diographic images. A convenient organization is to consider separately noise mech-
anisms that produce no correlations among the elements of g, ones that produce
short-range correlations and ones that produce long-range correlations.

As we know from Chap. 11, the x-ray photons produce uncorrelated noise if we
can argue that they are described by Poisson statistics; we make that argument be-
low in the context of x-ray production by electron bombardment. Other sources of
uncorrelated noise include various kinds of electronic noise such as amplifier noise,
shot noise due to dark current and kTC noise (see Sec. 12.2.4).

The gain processes in scintillation and semiconductor x-ray detectors produce
both uncorrelated and correlated noise components. There is an uncorrelated com-
ponent since the secondary particles (optical photons or charge carriers) form a
point process, but there is a correlation since the secondaries produced by a single
primary x ray are not independent. In the limit of a very large number of secon-
daries per primary, the gain mechanism is just a deterministic blur, so it produces a
correlation over a scale approximately equal to the blur width as determined by the
spread of the secondaries before detection. In practical detectors, this blur is only
a few pixels, so the correlations associated with the gain process are short range.

Not all blur mechanisms produce correlation, however. If we consider an op-
tically coupled scintillation detector with poor collection efficiency, for example, so
that less than one optical photon is collected per x-ray photon, the rarity of sec-
ondary collection converts the statistics to Poisson and destroys the correlation in
spite of the blur. As another example, blurring before detection by the finite size
of the focal spot leaves the x-ray photons independent and does not introduce any
correlation.

Another important source of short-range correlations is production of sec-
ondary x-ray photons in the detector by Compton scattering or K x-ray emission.
These secondaries produce a correlation over a scale related to the mean distance
they travel before reabsorption in the detector (see Sec. 12.3.9).

Long-range correlations can arise from blur mechanisms with long tails on their
point response functions, such as veiling glare in image intensifiers. They can also
arise, however, when the object being imaged is considered to be random, so that
the image is doubly stochastic (see Sec. 11.3.6). Almost by definition, interesting
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objects have long-range correlations, so this component of the image covariance is
usually long-range.

All of these random phenomena have been discussed in previous chapters; in
this section we shall try to bring the pieces together and present a comprehensive
statistical model for digital radiographic images.

Poisson statistics The starting point for discussion of the statistical properties of
digital radiographs is the statistics of the incident x-ray beam. We would like to
assume that the number of photons detected during the exposure time is a Poisson
random variable and that the pattern of photoelectric interactions in the detector
is a Poisson random process, but we should look critically at the conditions that
must be satisfied for the Poisson models to hold.

As we saw in Chap. 11, Poisson statistics can arise from two different principles:
independence and rarity. X rays are produced by electron bombardment of an
anode, and the number of emitted x-ray photons will obey Poisson statistics if the
electrons act independently, but that requires that the mean current be constant; as
illustrated qualitatively in Fig. 11.2, a random current makes the overall strength
of the x-ray source random and the photon statistics non-Poisson.

The effect of a random source strength on image statistics for an array of ideal
photon-counting detectors was discussed in Sec. 11.2.2. In particular, (11.56) shows
that the covariance matrix of the data consists of two terms, a diagonal matrix
accounting for the Poisson statistics and a nondiagonal one arising from the source
fluctuations:

[Kg]ik = PkM δik + PiPk

[
Var(M)−M

]
, (16.24)

where, in digital radiography, M is the mean number of x-ray photons emitted by
the tube, and the average is over both the random photon-generation process and
fluctuations in the tube current; Pk is the probability that an emitted photon is
detected in the kth detector. Physically, if the current in the x-ray tube is high on a
particular exposure, all signals in a detector array tend to fluctuate high together,
and conversely if the current fluctuates low.

We argued in Sec. 11.2.2 that the nondiagonal term was likely to be small if
the probability of an x-ray photon being detected in a given detector element was
small, but this argument is hard to sustain in digital radiography, as a numerical
example will show.

Typical x-ray images are taken with integrated currents of ∼10–100 mA-s, or
1017–1018 electrons incident on the anode of the x-ray tube during the exposure
time. Only about 1% of the electrons produce x rays, and only a small frac-
tion of the emitted x rays reach an individual detector element. If we consider
a 100µm× 100µm detector element 1 m from a source, it collects ∼ 10−9 of the
emitted photons if there is no intervening object; attenuation in the object reduces
the number detected even further, say by a factor of 100–1000. With all of these
factors, we might get ∼ 104 detected photons in each detector element. even though

M ∼ 1015–1016. Thus photon detection in this element certainly sounds like a rare
event, but a flux of 104 photons has an associated standard deviation that is 1% of
the mean; the nondiagonal term in the covariance is negligible only if the current is
stable to much better than 1%, which is very difficult to accomplish in practice.

One might question whether this effect is of any practical concern. Since only
a single image is collected for a given patient, a small change in the current for that
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image is equivalent to a small change in exposure time, the effect of which would be
hard to discern. The only way to observe the nondiagonal term in the covariance
matrix (11.56) would be to do repeated measurements on the same patient and
compare the results.

In the spirit of this book, however, we pose the question differently: Does
the departure from Poisson statistics and the resulting nondiagonal term in the
covariance have any effect on task performance? We shall return to this point in
the context of specific tasks in Secs. 16.2.5 and 16.2.6, but for now we make two
remarks. First, an overall fluctuation in the strength of the x-ray beam arriving
at the detector could have arisen from a spatially uniform change in transmittance
through the object, so the second term in (16.24) can be lumped into object vari-
ability. Second, the nondiagonal term in the covariance is a rank-one matrix, and
we will see that it has little effect on the performance of detection or estimation
tasks. In terms of task performance, we shall show that we can treat the x-ray tube
as a Poisson source, and we make that assumption for the remainder of this section.

Poisson random processes If we neglect the current variations, the total number
of x-ray photons incident on the detector plane is well approximated by a Poisson
random variable, and if we assume that the spatial position, angle of arrival and
energy of one photon are independent of the properties of all other photons, then
the pattern of photoelectric interactions in the detector is a Poisson random process.
The particular Poisson process we should consider depends on what detector model
we want to use, but in all cases the statistics of a Poisson random process are fully
determined by its mean.

The simplest model of the detector is that the mth element responds with some
quantum efficiency η to each x-ray photon that hits it, so the mean output gm is
just η times the integral of the x-ray fluence b(r) across the area of that element.
There are no correlations from element to element with this model, so the image
statistics are fully determined by the incident fluence, a 2D function.

In more realistic x-ray detectors, as discussed in Sec. 12.3.8, the important
Poisson process is the spatio-spectral random process gss(R), defined in (12.295),
which specifies the spatial distribution of photoelectric interactions in the volume of
the detector and the energy deposited in each interaction. In the argument of this
process, R is a 4D vector consisting of the 3D interaction position r and energy E.

All statistical properties of gss(R) are determined by its mean, the spatio-
spectral fluence bss(R). To calculate this mean, we can first solve the Boltzmann
equation for the distribution function wdet(r, ŝ, E , t) inside the detector, subject
to a boundary condition obtained by solving the Boltzmann equation outside the
detector. For example, if the detector is adequately modeled as a homogeneous slab
and the only interaction process considered is photoelectric absorption, then the
Boltzmann equation consists of just the propagation and absorption terms. The
distribution function inside the detector is then given by [cf. (10.148)]

wdet(r, ŝ, E , t) = w(rP − ŝ|r − rP |, ŝ, E , t) exp (−αpe|r − rP |) , (16.25)

where w(rP , ŝ, E , t) is the distribution function on plane P (the entrance face of the
detector) and αpe is the photoelectric attenuation coefficient1 in the detector.)

1We use α for attenuation coefficients in the detector material for consistency with Chap. 12 and
to distinguish them from attenuation coefficients in the object, which we are denoting as µ.
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It then follows from the definitions of wdet and bss that

bss(R) = bss(r, E) = c

∫ τ

0
dt

∫

4π
dΩ αpewdet(r, ŝ, E , t) . (16.26)

Statistics of the detector output For a given object, the spatio-spectral fluence can
be determined (albeit by a complicated nonlinear equation), and the mean vector
and covariance matrix for the digital images can be found if we specify the detector
readout mechanism. For example, for a scintillation detector read out by an array of
photodiodes and gated integrators, the conditional covariance matrix for a specified
object is given by (12.302), which we repeat here for convenience with a slight
change in notation:

[Kg(bss)]mm′

=

{
Γ2
m

∫

m

d2r [H1bss](r) + σ2
m

}
δmm′ + ΓmΓm′

∫

m

d2r

∫

m′

d2r′ [H2bss](r, r
′) ,

(16.27)
where Γm is the gain of the mth photodiode as defined in (12.301), and σ2

m is the
variance of its excess noise (electronic, dark current and kTC). The operators H1

and H2, originally introduced in Sec. 11.4.3, are given explicitly in (12.297) and
(12.298), respectively, which we repeat here as

[H1bss](r) =

∫

D

d4Rn pd(r,Rn) bss(Rn) ; (16.28)

[H2bss](r, r
′) =

∫

D

d4Rn pr∆r(r−rn|Rn) pr∆r(r
′−rn|Rn) bss(Rn) s(Rn) , (16.29)

where pd(r,Rn) is the mean number of secondaries per unit area on the output plane
if the nth x-ray interaction is at the 4D point Rn = (rn, zn, En); pr∆r(r − rn|Rn)
is the probability density function for the lateral displacement of the secondaries
about the interaction position as they propagate to the output plane, and s(Rn) is
defined in (11.219) as

s(Rn) = E
{
k2n − kn|Rn

}
= Var{kn|Rn}+

[
E
{
kn|Rn

}]2 − E
{
kn|Rn

}
, (16.30)

where kn is the number of secondaries produced by the nth primary. The 4D
integrals in (16.28) and (16.29) run over the volume of the detector and all energies
from 0 to ∞. Since the x rays are presumed to be indistinguishable, the integrals
are independent of the index n.

The operator H1 serves also to express the mean output. From (11.214) as
generalized to the spatio-spectral case, we have that

gm = Γm

∫

m

d2r [H1bss](r) . (16.31)

Expressions very similar to (16.27) and (16.31) apply to semiconductor detectors
with an array of pixel electrodes.

To make contact with Sec. 16.1.4, note that bss is a linear functional of its
boundary condition, specified by the distribution function w on the entrance face,
and (16.31) shows that gm is a linear functional of bss, so gm is linear in w. From
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these nested functionals we can derive the measurement function dm(r, ŝ,E); the
reader is invited to do so for the detector model of (16.25).

If we consider only unscattered photons, then (16.31) is equivalent to (16.8) or
(16.10), depending on what we want to assume about the detector response, but the
spatio-spectral fluence must, in general, include contributions from both scattered
and unscattered photons. Actually computing the input quantity bss in (16.27) and
(16.31) is thus a daunting task, requiring solution of the Boltzmann equation with
a scatter term in the region between the source and the detector and then solving
the Boltzmann equation again in the detector material.

One might worry that scatter in the object would introduce correlation in the
data since scattered photons could enter the detector far from normal incidence,
even if the unscattered ones are nearly normal. Fortunately, this complication does
not occur since bss is the mean of a Poisson random process if the x rays obey
Poisson statistics. Each impulse in the spatio-spectral random process produces
an independent response, and the only correlation is the result of the correlated
secondary particles (e.g., optical photons) reaching different detectors.

On the other hand, the spatio-spectral distribution can influence the form of the
correlation function. For example, if the incident photons are mainly of low energy
and therefore absorbed near the entrance face of the detector, then secondary optical
photons in a scintillation detector can spread out as they propagate through the full
thickness of the detector and therefore contribute to several adjacent photodiodes.
X-ray photons of higher energy, however, may be absorbed much closer to the
photodiode plane and therefore spread less.

Random objects If we consider random objects, then the spatio-spectral fluence
becomes a doubly stochastic random process and g becomes a doubly stochastic
random vector. By generalizing (11.233) and integrating over detector areas, we
find

[Kg]mm′ =

[
Γ2
m

∫

m

d2r [H1bss](r) + σ2
m

]
δmm′

+ ΓmΓm′

∫

m

d2r

∫

m′

d2r′
{
[H2bss](r, r

′) +
[
H1Kbss

H
†
1

]
(r, r′)

}
, (16.32)

where Kbss
is the covariance for the random spatio-spectral fluence, which must

in general be calculated from the properties of the random object by use of the
nonlinear equation (16.7). Note that the object randomness has the same qualitative
effect as blur in the detector, introducing off-diagonal terms in the data covariance
matrix.

Nonlocal charge deposition The effect of reabsorption of Compton-scattered or K x-
ray photons on the image statistics was discussed in Sec. 12.3.9. The key result there
was the autocovariance function (12.321) for the spatio-spectral random process
gss(R). That formula states that

Kgss
(R,R′|bss) = [bpriss (R) + bsecss (R)] δ(R−R′)

+ pp→s[prp→s(R
′|R) bpriss (R) + prp→s(R|R′) bpriss (R′)] , (16.33)

where pp→s is the probability that a primary x-ray photon will produce a secondary
event somewhere in the detector, and prp→s(R|R′) is the probability density func-
tion for a secondary x ray to be absorbed at the 4D point R given a primary x-ray
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interaction at R′, or vice versa. The delta-correlated terms represent the indepen-
dent Poisson-noise contributions of the primary and secondary x rays, and the next
two terms represent their correlation.

Overall covariance To summarize this section, the physical effects that contribute
to the noise in digital radiography are not all statistically independent, but it is
nevertheless possible to write the overall covariance matrix in the form:

Kg = K(elec)
g +K(x)

g +K(gain)
g +K(Kx)

g +K(obj)
g , (16.34)

where the terms represent, respectively, the electronic noise; the Poisson statistics
of the x rays as reflected through the gain mechanism; the excess noise of the gain
mechanism; the effect of reabsorbed Compton-scattered and K x rays, and the effect
of object randomness

The first two terms in (16.34) are diagonal matrices, even in the presence of
noisy gain, object randomness or secondary x-ray events. As we have noted, the
electronic noise has a covariance of the form

[
K(elec)

g

]

mm′

= σ2
m δmm′ , (16.35)

which is independent of the x-ray exposure, the object and the gain mechanism in
the detector.

On the other hand, the second term, K(x)
g , does depend on the x-ray exposure,

the object and the gains. It can be read off explicitly as the term involving H1 in
(16.27) or (16.32), but with (16.31) it can also be summarized as

[
K(x)

g

]

mm′

= Γm gm δmm′ . (16.36)

The covariance K
(gain)
g refers specifically to the term involving H2 in (16.27)

or (16.32). It can be thought of as the correlated part of the gain process, but in
fact it may also be a diagonal matrix, or nearly so. In a scintillator-photodiode
detector, for example, the random process y(r) describing optical photons on the
photodiode plane has a correlated term involving H2 [see (12.299)], but the range
of this correlation is approximately the range over which the optical photons spread
in propagating to the output plane, which in turn is approximately the detector
thickness. This range might be small compared to the size ε of a photodiode, and

if so, then K
(gain)
g will be diagonal even though y(r) is not delta-correlated. If the

spread of the optical photons is comparable to ε, then a correlation will be induced
in g between adjacent photodiodes but not between more distant ones.

The situation is only slightly more complicated in semiconductor detectors. As
discussed in Sec. 12.3, the charge carriers not only spread out as they propagate
to the electrode plane, but they can also be trapped en route. Trapped carriers
can induce correlated charges on neighboring electrodes, but there is no significant
correlation from this effect on two electrodes that are separated by several times
the detector thickness.

Our use of the multi-index m to denote the detector elements makes it very

simple to characterize the short-range correlations associated with K
(gain)
g . We can

say that [
K(gain)

g

]

mm′

≈ 0 if ε |m−m′| > δgain , (16.37)
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where δgain is the correlation length of the secondary process y(r). If we had not
used multi-indices, it would have been more complicated to state which elements

of K(gain)
g were zero; with multi-indices, we can think of this covariance matrix as

confined to a narrow band around the diagonal, and we shall refer to it as a banded
matrix.

The covarianceK(Kx)
g is the covariance associated with reabsorption of K x rays

or Compton-scattered photons. If they don’t escape from the detector material,
the secondary x rays have a pathlength of order 1/αtot, where αtot is the total
attenuation coefficient for the secondary photons in the detector material, and twice
this pathlength is a reasonable estimate for the correlation range for this term. We
can thus say, roughly, that

[
K(Kx)

g

]

mm′

≈ 0 if ε αtot|m−m′| > 2 . (16.38)

Often this condition will lead to the conclusion that K
(Kx)
g is confined to a band

one or two elements wide around the diagonal (in the multi-index notation).

Finally, K(obj)
g in (16.34) refers to the term involving Kbss

in (16.32). A ran-
dom object creates a random spatio-spectral fluence, which is then transformed
through the amplification process to the output data. A key point about this term
is that it varies quadratically with the x-ray exposure (since H1 varies linearly with
exposure), so at large exposures it will be the dominant noise contribution. The
range of the correlations associated with this term might be quite large since object
structures can have large scales.

Estimating the covariance In order to make use of the covariance in image-quality
assessment, we must be able to evaluate or estimate each of the five terms. Possible
methods include model-based theoretical calculation, theory augmented by mea-
surement, Monte Carlo simulation, and collection of sample images.

To evaluate the expressions for K(x) and K(gain), we need to know the first
two moments of the random number of secondaries as well as how the secondaries
are distributed on the readout plane of the detector. These unknowns can be deter-
mined from theoretical models or Monte Carlo simulation, but simple measurements
with tightly collimated x-ray beams can be used also.

Similarly, K(elec) can be computed theoretically from knowledge of the circuit
design and standard electronic simulation software. If we know that this component
matrix is diagonal as in (16.35), then the only unknowns are the variances, and we
can also get those by direct measurement with no x-ray beam.

The contribution K(Kx) is probably best determined by Monte Carlo simu-
lation. Alternatively, the combination K(elec) + K(x) + K(gain) + K(Kx) can be
measured directly by using a uniform x-ray fluence and acquiring a large number
of image frames. All of these terms are diagonal or banded around the diagonal, so
only a very small subset of all possible elements in the covariance matrix needs to be
computed; elements far from the diagonal are zero a priori by (16.37) and (16.38)
and do not need to be computed or measured. Once the diagonal and near-diagonal
terms are established, we have a full-rank estimate of the sum of the first four terms

in (16.34). We denote that estimate as K̂(noise)
g .

The most difficult term is K(obj)
g , which is simply neglected in many detectabil-

ity studies. Any covariance matrix can be estimated from samples, but if we want

the resulting sample covariance matrix to represent K(obj)
g , the other noise sources
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must be negligible. To achieve this goal, we can take advantage of the fact that

K
(obj)
g is the only term that varies quadratically with the x-ray exposure. If clinical

(or animal or cadaver) images can be taken at high enough exposure, the resulting

sample covariance matrix on the images is directly an estimate of K(obj)
g , denoted

K̂
(obj)
g . Alternatively, several images of each object can be taken at lower exposures,

and the sample covariance matrix can be analyzed element by element to tease out

K̂
(obj)
g separately.

Another useful approach is to simulate realistic objects and then simulate their
images without the other noise sources being present. Methods of simulation were
discussed in Sec. 8.4. In the context of digital mammography we mention particu-
larly the clustered lumpy background of Bochud et al. (1999a), which gives quite
realistic simulated mammograms.

Whether actual images or simulated ones are used to estimate K
(obj)
g , it is im-

portant to note that the overall covariance estimate K̂
(noise)
g + K̂

(obj)
g will have full

rank even if the number of sample images is small. The great advantage we have in

this application is that K
(elec)
g and K

(x)
g are diagonal (hence full rank) and do not

have to be estimated from samples.

16.1.6 Image quality: Detection tasks

We shall begin the discussion of image quality in digital radiography with the sim-
plest of detection tasks, SKE/BKE (signal known exactly, background known ex-
actly). As we saw in Sec. 13.2.12, the Hotelling observer is ideal if the noise is
Gaussian and independent of the signal. We shall argue below that these condi-
tions prevail, to a good approximation, and the Hotelling SNR is the relevant figure
of merit for this task in digital radiography.

Computation of this SNR requires knowledge of the mean signal in the data
and the covariance matrix, along with some method for performing the inversion
of the covariance. We shall show how to carry out this computation first for an
an x-ray detector that has no element-to-element noise correlation and then with
short-range correlations of the sort that can arise from reabsorption of secondary x-
ray photons or spread of optical photons. Then we shall allow random backgrounds
and signals, and in Sec. 16.1.7 we shall discuss estimation tasks.

The signal To derive an SNR for an SKE/BKE task, we must first define precisely
what we mean by the signal. In medical radiography, the signal is the result of a
local change in the x-ray attenuation coefficient in the patient’s body. Such local
changes, known generically as lesions, may result from tumors, cysts, blockages in
blood-vessels, etc., and it is of great clinical importance to be able to detect them.

A change in x-ray attenuation in the object will, in general, cause rather com-
plicated changes in the detector output. First, it will change the mean signal from
the unscattered radiation since it changes the mean number of unscattered x-ray
photons reaching the detector as well as their spatial distribution. Second, it will
also change the mean distribution of scattered radiation. And finally, since the noise
properties of the image all depend on the x-ray distribution function on the detector
face, any change in x-ray attenuation coefficient will change the noise covariance.

To make the problem of computing the SNR tractable, we assume that the
lesion makes only a small change in the unscattered x-ray distribution function on
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the detector face and therefore only a small change in the mean detector outputs.
Moreover, we shall neglect any changes in the scattered distribution on the basis
that small changes in scatter properties of the object result in changes in the dis-
tribution function spread out over the entire detector surface and hence of very low
contrast.

If we specify the lesion by a change in attenuation coefficient ∆µ(r, E), and
if we ignore any changes in the scattered radiation, then the change in gm can be
computed from (16.8). If we make a few simplifying assumptions about the detec-
tor, as indicated in (16.9), and if we also assume that the attenuation coefficients of
the lesion and the background object are independent of E, we can use the simpler
form (16.10). We can then define the mean signal as

sm ≡ ∆gm = C

∫

P

d2r

∫

2π
dΩ dm(r, ŝ)Lp(r − ŝ#0, ŝ)

×

{

exp

[

−
∫ #0

0
d#′ [µ0(r − ŝ#′) +∆µ(r − ŝ#′)]

]

− exp

[

−
∫ #0

0
d#′ µ0(r − ŝ#′)

]}

,

(16.39)
where µ0(r) is the total attenuation coefficient of the object in the absence of the
lesion.

A useful alternative way to write (16.39) is

sm = C

∫

P

d2r

∫

2π
dΩ dm(r, ŝ)Lp(r − ŝ#0, ŝ)

×

{

exp

[

−
∫ #0

0
d#′′ ∆µ(r − ŝ#′′)

]

− 1

}

exp

[

−
∫ #0

0
d#′ µ0(r − ŝ#′)

]

. (16.40)

The factor in large curly brackets can be interpreted as tles − 1, where tles is the
relative transmission of the lesion (possibly greater than one if the lesion exhibits
reduced attenuation compared to the background object). The signal is thus a line-
integral projection image of tles−1 modulated by the projection of the background
object and blurred by the finite focal spot and detector response function. The
modulation is similar to what we saw in (16.15) when we divided the object into
slabs and considered the effect of all other slabs on the slab of interest. Here the
slab of interest is defined by the lesion, and there is no requirement that the slab
be physically thin.

If the lesion has sufficiently low contrast that
∫ #0
0 d#′′ µ0(r− ŝ#′′) * 1 for all r

and ŝ, then we can expand the first exponential in (16.40) and write

sm ≈ −C

∫

P

d2r

∫

2π
dΩ dm(r, ŝ)Lp(r − ŝ#0, ŝ)

[∫ #0

0
d#′′ ∆µ(r − ŝ#′′)

]

× exp

[

−
∫ #0

0
d#′ µ0(r − ŝ#′)

]

. (16.41)

With this approximation, the signal is linear in the attenuation coefficient of the
lesion rather than its transmission minus one.
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SKE/BKE detectability for detectors with uncorrelated noise Consider a detector in
which the gain process entails a negligible blur and in which reabsorption of Comp-
ton and K x rays can be neglected. Then the first three covariance terms in (16.34)
are diagonal matrices, the fourth is neglected and the fifth is absent for a BKE
task. The noise sources we retain in this model are all well described as Gaussian.
Electronic noise is certainly Gaussian, as discussed in Chap. 12, and the terms asso-
ciated with the x-ray flux are Gaussian if the number of absorbed x-ray photons per
detector element is larger than 10 or so. The term associated with object variability
can be decidedly non-Gaussian (see Sec. 8.4), but we are not considering that term
here, and we are also neglecting signal variability. Thus an overall Gaussian noise
model is accurate, and the Hotelling SNR is the relevant figure of merit.

We know from Sec. 13.2.12 how to compute the Hotelling SNR for an SKE/BKE
task with signal-independent noise, and we have argued above that the noise is inde-
pendent of the signal if the latter results from a small change in the x-ray attenuation
coefficient of the object. We know also from (13.123) that the Hotelling SNR is par-
ticularly simple if we can choose a data representation, called the Karhunen-Loève
or KL domain, where the data covariance matrix is diagonal. The KL domain is the
original data domain (the detector pixel domain) under the present assumptions,
and we have at once from (13.134) that2

SNR2 =
M∑

m=1

s2m
Var(gm)

. (16.42)

The only remaining problem is to compute Var(gm). We know from (16.27)
that, for the present noise model,

Var(gm) = σ2
m+Γ2

m

∫

m

d2r [H1bss](r)+Γ2
m

∫

m

d2r

∫

m

d2r′ [H2bss](r, r
′) . (16.43)

To evaluate this expression, we need to know the quantities pd(r,Rn) and
pr∆r(r− rn|Rn) that appear in the definitions of H1 and H2. If there is no blur in
the gain process, then pr∆r(r− rn|Rn) is the 2D delta function δ(r− rn), and

pd(r,Rn) = E{kn|Rn} δ(r− rn) , (16.44)

where kn is the number of secondaries produced in the nth x-ray interaction. With
a little algebra, we then find

Var(gm) = σ2
m + Γ2

m

∫

m

d2rn

∫ Lz

0
dzn

∫ ∞

0
dE bss(rn, zn, En) E{k2n|Rn} , (16.45)

where Lz is the thickness of the detector.

If the gain process were noise-free, then E{k2n} would be the constant k
2
n, in-

dependent of Rn, and we could remove it from the integral. The product Γ2
mk

2
n is

then the square of the overall gain, including (for scintillation detectors) the pro-
duction of optical photons, the photodiode and any electronic gain. Therefore, in

2The summation convention used here is the one introduced in Sec. 7.1.2: letting m go from 1
to M means letting each component of the vector run over this range, so (16.42) applies to an
M ×M detector array, with M2 total elements.
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this unrealistic case, (16.45) just says that the variance of gm is the mean number of
absorbed x-ray photons times the gain squared, plus the variance of the electronic
noise.

With realistic models for the amplification noise, even without blur, the vari-
ance of gm is increased by the random variation of the number of secondaries with
depth of interaction and deposited energy. We encountered this situation in Sec.
11.4.1 where we initially discussed random amplification in single-element detec-
tors, and it should be no surprise that the same mathematics recurs here since an
array without blur or correlation is just a collection of independent single-element
detectors. From (11.183) we know that the variance of the number of secondaries
is the mean number of primary x-ray absorptions times the second moment of the
gain distribution, and (16.45) generalizes that statement to include random depth

of interaction and energy per event. Moreover, if we factor out k
2
n, we can rewrite

(16.45) as

Var(gm) = σ2
m + Γ2

mk
2
n

∫

m

d2rn

∫ Lz

0
dzn

∫ ∞

0
dE bss(rn, zn, En)

[
E{k2n|Rn}

k
2
n

]

,

(16.46)
and the factor in square brackets can be interpreted as the reciprocal of a Swank
factor, as introduced in Sec. 11.4.1.

To summarize, the Hotelling SNR for this case is

SNR2 =
M∑

m=1

s2m

σ2
m + Γ2

m

∫
m
d2rn

∫ Lz

0 dzn
∫∞
0 dE bss(rn, zn,En) E{k2n|Rn}

. (16.47)

For sufficiently small x-ray fluences, σ2
m will be larger than the second term in the

denominator, and the detectability will be determined solely by the signal strength
and the electronic noise. A similar limit can occur if the gain factor Γmkn gets small,
as it might, for example, in an optically coupled detector with large demagnification.
For sufficiently large fluences, on the other hand, the SNR becomes independent of
the gain factor Γmkn since sm is also linear in this factor.

The dependence of the SNR on the background object is contained in the
spatio-spectral fluence bss(rn, zn, En). The gross effect is that thicker objects absorb
more x rays and reduce the value of both s2m and the second term in the variance.
Since s2m is quadratic in bss, the net effect is the expected one: thicker objects lead
to fewer detected x rays and a smaller SNR for the same signal. In addition, thicker
objects usually produce more scatter, increasing that component of bss(rn, zn, En)
and reducing the SNR further.

Effect of correlations on SKE/BKE tasks When we consider nondiagonal covariance
matrices, we can no longer simply write down the Hotelling SNR. Instead we must
somehow compute or estimate stK−1s. Direct inversion loses its appeal when one
contemplates the size of K in digital radiography; for a 1, 000× 1, 000 detector, K
is 1, 000, 000 × 1, 000, 000! Therefore we must look for methods that bring in prior
information and thereby reduce the computational burden; several ways of doing so
were developed in Sec. 14.3.2. As we saw there, useful prior information can include
signal location (in an SKE problem), smoothness and symmetry of the Hotelling
template, and knowledge of the structure of the covariance matrix.
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For SKE/BKE problems in digital radiology, one key piece of prior informa-
tion is that the noise correlations have short range. Since the background is being
treated as nonrandom for now, we are considering the first four terms in the over-
all covariance (16.34). We argued in Sec. 16.1.5 that these covariance components
are likely to be nearly diagonal (at least with the multi-index convention), and we
should take advantage of that fact.

Two methods from Sec. 14.3.2 that are particularly useful for a nearly diagonal
covariance matrix are iterative estimation of the Hotelling template and Neumann-
series expansion for the SNR. Estimation of the template by, say, the Landweber
algorithm works for any covariance matrix, but it is much more efficient for nearly
diagonal ones since a large fraction of the elements are zero.

The Neumann series makes use of the decomposition of the covariance K into
a diagonal part D plus a matrix A with only off-diagonal terms. Conditions for
convergence of the series are discussed in Sec. 14.3.2. If the series converges, we
know from (14.43) that

SNR2 = stK−1s = stD−1s− stD−1AD−1s+ stD−1AD−1AD−1s+ ... . (16.48)

The first term in this expansion, stD−1s, is what we would get if there were no off-
diagonal terms, and the remaining terms are the corrections arising from correlations
induced by the detector. If these correlations are sufficiently weak, we may be able
to truncate the series after a few terms.

If we keep only the first two terms in this expansion, we can see that the effect
of the off-diagonal terms is to reduce the SNR; the expression stD−1AD−1s is
nonnegative and it appears with a negative sign in (16.48). In fact, this is a general
result: for fixed signal s and fixed diagonal part A, addition of off-diagonal terms
can only reduce the SNR. One should not conclude, however, that radiographic
detectors should never have correlations. Using a thicker detector, for example,

increases the correlations associated with K
(gain)
g and K

(Kx)
g , but it also increases

the mean number of detected photons; detecting more photons increases SNR, but
increasing blur could reduce SNR. In short, changing detector characteristics can
have complicated effects on the SNR, perhaps increasing it overall for some tasks
and decreasing it for others (Pineda et al., 2003).

Random signals and backgrounds To be more realistic, we need to move away from
SKE/BKE tasks and consider random signals and backgrounds.

Random signals do not pose any special difficulties with the Hotelling observer.
We know from Sec. 13.2.12 that we merely have to replace the known signal in an
SKE task with the average signal. As we discussed in that section, this approach is
likely to work well for variations in signal size or shape, but randomness in signal
location can greatly degrade the performance of any linear discriminant.

Random backgrounds arising from spatial inhomogeneity in the object can be
treated by methods developed in Sec. 14.3.2. When we add in the object-variability
part of the covariance, we inevitably introduce longer-range correlations; meaningful
radiographic objects are almost always correlated over distances of many detector
pixels. Therefore we cannot assume that the overall covariance (or an estimate of
it) is nearly diagonal. Of the methods developed in Sec. 14.3.2, the one that is
most appealing in this case is iterative estimation of the Hotelling template. Use
of the Woodbury matrix-inversion lemma as in (14.47) greatly reduces the size of
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the matrices involved. Another viable option is to use Laguerre-Gauss or wavelet
filters to reduce the dimensionality.

Source fluctuations One extreme case of random backgrounds with long-range cor-
relations is when there are fluctuations in the strength of the x-ray source. In this
case, the number of x-ray photons impinging on the detector is not Poisson, even for
a nonrandom object, but the signals from all detector elements fluctuate together,
and the range of the correlations is the whole width of the detector array. Mathe-
matically, as we saw in Sec. 16.1.5 [cf. (16.24)], the effect of source fluctuations is to
add a rank-one matrix to the covariance matrix associated with Poisson statistics.

We analyzed a similar problem in Sec. 13.2.12. For a spatially uniform back-
ground fluence of mean b and variance σ2

b and an array of ideal photon counters, we
found that the SKE discriminability for a difference signal ∆s was given in (13.216)
by

SNR2 =
||∆s||2

b
−

[∆stu]2

b
2
+Mbσ2

b

, (16.49)

where M is the total number of detector elements and u is an M × 1 vector with
all elements equal to σb. Note that both ∆s and b are dimensionless numbers,
representing detected photons per pixel; for this discussion we are neglecting the
subtleties of real x-ray detectors and just considering the SNR as limited by Poisson
noise and current fluctuations in the x-ray tube.

As a numerical example, suppose we have b ∼ 104 photons per pixel and
M ∼ 106 pixels in the array, and that the tube current fluctuates by 1% so that

σb ∼ 100. Then Mbσ2
b is 106 times larger than b

2
. With any similar assumptions

about the number of pixels and number of photons per pixel, we will always have

Mbσ2
b + b

2
, and we can write

SNR2 =

∑M
m=1 ∆s2m

b
−

1

Mb

[
M∑

m=1

∆sm

]2

, (16.50)

The first term in this expression is the detectability as limited only by photon-
counting statistics, and the second term represents the reduction in detectability
arising from source fluctuations. The key point is the factor of 1/M ; the ideal ob-
server can look over the whole array and estimate the background on a particular
x-ray exposure with high precision. For any practical number of elements in the
array, the effect of source fluctuations is completely negligible for this task and ob-
server.

Human observers, too, are quite insensitive to fluctuations in the source strength.
We know from Sec. 14.2 that human observers are very insensitive to low spatial
frequencies, and that is what we have in this problem since all elements in the ar-
ray fluctuate together as the source strength varies. By contrast, the Poisson term
corresponds to completely uncorrelated fluctuations in different detector elements,
hence high spatial frequencies that do go through the human visual system.

Finally, we note that the second term in (16.50) is absent if
∑

∆sm ≡ 0. This
condition holds for the Rayleigh discrimination task, to be discussed in Sec. 16.2.5
and illustrated in Fig. 16.15. In general, the Rayleigh task (or any task where the
difference signal sums to zero) is a good way of assessing SKE detectability without
having to worry about source fluctuations.
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Why not Fourier? By far the most common way of attempting to estimate an SNR
in digital radiography is to assume stationarity and then assume implicitly that the
covariance matrix is diagonalized by a discrete Fourier transform. Both parts of
this assumption are usually wrong: digital radiographs are not really stationary in
any sense, and even if some degree of stationarity can be justified, the covariance
may not be diagonalized by a DFT.

The first problem is that the Poisson noise is never stationary for interesting
radiographic images. An interesting image, virtually by definition, is one where the
x-ray fluence conveys interesting information and hence varies spatially. The x rays
constitute a random point process, and the mean and autocovariance function of this
process are functions of position on the detector. For a stationary random process,
by contrast, the mean would have to be constant, and the autocovariance function
could depend only on the relative location of the two points to which it refers, not
the absolute position. Thus the very fact that we are imaging an actual object, as
opposed to just a uniform x-ray beam, immediately invalidates stationarity, even if
we regard that object as nonrandom. Moreover, the simple fact that radiographs
have finite size also spoils strict stationarity; the autocovariance between two image
points cannot be invariant when one or both of the points falls off the detector.

The stationarity assumption runs into several additional difficulties for digital
radiography. The sampling of the x-ray beam by an array of detector elements con-
verts the autocovariance function to a covariance matrix, and we need to assume
that this matrix is stationary in some sense. One sense of stationarity in a discrete
image is that the covariance matrix is Toeplitz, so that the covariance between the
signals from two detector elements depends on their relative position in the array,
not on absolute location. For an ideal detector that simply samples a continuous
random process, the covariance matrix is Toeplitz if the random process is station-
ary, in the sense that the autocovariance function depends only on relative position.
If we ignore the anatomical noise and consider only the Poisson noise of the x rays,
then the covariance matrix is diagonal, and if we further assume that the x-ray
fluence does not depend on position across the array, then the covariance matrix is
a multiple of the unit matrix, hence Toeplitz.

As we know from the discussion above, digital x-ray detectors involve a gain
mechanism where each x-ray photon is converted to many secondary optical pho-
tons or charge carriers, which are then detected. This gain process is random and
hence a source of noise. Moreover, there is electronic noise in the amplifiers as-
sociated with each detector element, and additional noise arises from production
and possible escape of Compton-scattered or K x rays. All of these effects must be
stationary for the overall system to be stationary.

The Poisson and electronic contributions to the covariance are diagonal, so
they are Toeplitz only if they are multiples of the unit matrix. That means that
not only must the x-ray fluence be constant, but also the electronic noise variance
must be the same in every element. The random gain mechanism and Compton and
K x rays introduce short-range correlations between neighboring detector elements,
and these effects must also be be invariant to absolute location for stationarity to
hold. Again, this can happen only if the x-ray fluence is spatially uniform, but it
also requires that the detector itself be uniform from element to element, which real
detectors never are.

Finally, the inevitable departures from stationarity in the anatomy induce a

departure from Toeplitz character in the covariance term K
(obj)
g . There is no reason
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at all to regard anatomy as stationary in any global sense, though local stationarity
may sometimes describe the local texture (see Sec. 8.4).

The Toeplitz assumption, questionable though it may be, is still not strong
enough for Fourier methods to be useful. To diagonalize a matrix by a discrete
Fourier transform (DFT), we must assume that it is circulant, not Toeplitz. For
a circulant covariance matrix, two elements at opposite sides of the array have the
same covariance as two adjacent elements in the center. This “digital wrap-around”
has no physical basis, but it is what we must assume if we want to diagonalize the
matrix with DFTs. Fourier aficionados skirt the Toeplitz-vs.-circulant issue by
arguing that the correlations are short range, but this statement is not true for
anatomical noise. Moreover, even if one considers only BKE problems without
anatomical noise and does a simulation in which all of the other requisite assump-
tions are valid, substantial errors can still be made in the computation of SNR by
approximating a Toeplitz matrix by a circulant one (Pineda et al., 2003).

NEQ and DQE In spite of these difficulties, Fourier methods are firmly entrenched
in the digital radiography community, and it is common, even mandatory in some
circles, to express the performance of digital x-ray detectors in terms of a frequency-
dependent NEQ (noise-equivalent quanta) or DQE (detective quantum efficiency).
We defined DQE as a ratio of squared SNRs for single-element detectors in Sec.
12.1.1, and the concept was extended to continuous shift-invariant systems with
stationary noise in Sec. 13.2.13. For such systems and SKE/BKE tasks, we found
that the ideal-observer SNR is given approximately3 by [cf. (13.242)]

SNR2
λ = |H(0)|2

∫

∞
d2ρ |∆Frel(ρ)|2 NEQ(ρ) , (16.51)

where H(0) is the system transfer function at zero spatial frequency, ∆Frel(ρ) is the
difference signal expressed as a fractional or relative change in the Fourier transform
of the nonrandom object, and NEQ(ρ) is defined in (13.243) as

NEQ(ρ) =
b20MTF2(ρ)

Wg(ρ)
=

b20MTF2(ρ)

b0 +Wexc(ρ)
. (16.52)

Here, Wg(ρ) is the noise power spectrum (NPS) of the data (treated as a stationary
random process), b0 is the Poisson contribution to this power spectrum from a non-
random photon stream, and Wexc(ρ) is the excess noise arising from amplification
processes or electronics, but again treated as stationary random processes. The
frequency-dependent DQE is just NEQ(ρ) normalized by the photon fluence [cf.
(13.244)]:

DQE(ρ) =
NEQ(ρ)

b0
=

[
b0

b0 +Wexc(ρ)

]
MTF2(ρ) . (16.53)

One challenge in applying the NEQ and DQE concepts to digital radiogra-
phy—or any other digital imaging system— is knowing how to interpret the NPS

3As discussed in Sec. 13.2.12, the expression in (16.49) is the correct SNR for the log-likelihood
ratio if the noise is Gaussian, but it is approximately correct if the noise is Poisson and the fluence
is large and/or the signal is weak. It is the correct expression for the Hotelling observer whenever
the task is SKE/BKE, the system is CC and shift-invariant, and the noise is stationary, without
regard to whether the noise is exactly or approximately Gaussian.
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when the data are discrete. It is always tacitly assumed that Fourier transforms are
to be replaced with discrete Fourier transforms and hence the integral in (16.51)
is replaced by a sum. Most methods then simulate or measure x-ray images of a
uniform object, perform the DFT and interpret the variance of the DFT values as
an NPS.

This interpretation is analogous to the situation with Fourier transforms (not
DFTs) of continuous random processes; we know from Sec. 8.2.7 that Fourier trans-
formation is also Karhunen-Loève transformation for stationary random processes,
and we saw in (8.181) that

〈F (ρ)F ∗(ρ′)〉 = S(ρ) δ(ρ− ρ
′) , (16.54)

where S(ρ) is the NPS of a random process f(r), whose Fourier transform is F (ρ).
Practitioners of digital DQE analysis implicitly assume that DFTs are Karhunen-
Loève transformations for discrete images, and they define a discrete NPS as

〈FnF
∗
n〉 ≡ Sn , (16.55)

where Fn is the DFT value associated with the discrete spatial frequency ρn.
A complete analogy with the continuous result in (16.54) would require, in

addition to (16.55), that
〈FnF

∗
n′〉 ≡ Sn δnn′ , (16.56)

but this additional requirement is seldom checked. A simple example will reveal
why. Suppose that we have an x-ray detector array with electronic and Poisson
noise but no other noise sources. We know from (16.35) and (16.36) that the
covariance matrix in this case is

[Kg]mm′ = σ2
m δmm′ + Γm gm δmm′ . (16.57)

Thus the covariance matrix is diagonal without any need for Fourier or any other
transformation, and the ideal-observer SNR for a SKE/BKE task can be written
down immediately from (16.42). In fact, performing a DFT will serve only to
undiagonalize the covariance unless σ2

m, Γm and gm are all independent of the
pixel index m, in which case the covariance matrix is a multiple of the unit matrix,
so the DFT and all other unitary transforms are simply irrelevant. It is a useful
exercise to compute the exact Hotelling SNR for this problem and to compare it
to some version of SNR based on (16.56). As a side benefit, this computation will
demonstrate why it is not useful to normalize the gain variations.

Other difficulties with the Fourier methods have already been mentioned and
need not be reiterated, but we can take a broader look. The basic assumption
underlying all uses of Fourier transformations for computing detection-based SNRs
is that the same transform diagonalizes both the deterministic imaging operator
and the noise covariance matrix. Since the imaging operator is fundamentally a CD
mapping and the image is fundamentally a discrete array of finite extent, no single
transform can perform both functions.

Some recommendations regarding Fourier analysis One can, of course, regard dig-
ital NPS, NEQ or DQE as empirical characterizations of digital x-ray detectors,
much the same as quantum efficiency, uniformity, pixel size or even cost. These
are things we want to know before buying a detector, and they should be reported
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in a standardized way for ease of comparison. To the extent that detective quan-
tum efficiency is to be associated with detection tasks, however, some additional
considerations arise. We offer the following recommendations:

• Check the off-diagonal elements. If measured or simulated images are avail-
able, one can estimate the covariances of the DFT components as well as
the variances. A full row of the DFT covariance matrix can be computed
for no more effort than computing the diagonal elements, the so-called
digital NPS.

• Determine whether the off-diagonal elements are significant for detection
tasks. For some methods of doing this, see Pineda et al. (2003) and
Gallas et al. 2003.

• Check other measures of stationarity. Stationarity requires that the mean
image, the noise variance and the pixel-to-pixel covariances should all be
independent of the absolute position in the array. These items can be
studied empirically.

• Check boundary effects. Since the distinction between Toeplitz and circu-
lant matrices disappears as the array size goes to infinity, it is advisable
to treat array size as an experimental variable. It is difficult to make the
array larger, but straightforward to mask the array and use fewer pixels.

• If only local stationarity applies, use local Fourier methods. As we have
noted in Chaps. 13 and 14, the stochastic Wigner distribution describes
the frequency content of the noise as a function of location and can be
related to variations of SKE-detection SNRs with position.

• Check the result against other methods for computing SNR. In Chap. 14
we surveyed methods for computing SNRs for ideal, Hotelling and chan-
nelized Hotelling observers. The researcher who doubts the validity of
Fourier-based methods can check it against one of these methods.

• Consider the use of more realistic tasks. At best, Fourier methods apply
only to SKE/BKE tasks in noise that is stationary in some sense. There
are numerous examples in the literature where such idealized tasks can
give misleading conclusions, even when the figure of merit is computed
correctly. As facility is gained with other methods, the researcher will
be able to explore the limits of this task choice.

Detectability by a human observer Methods for measuring and predicting lesion
detectability by a human observer were discussed extensively in Chap. 14, and there
is relatively little to add that is specific to digital radiography. Human detection
performance can be assessed by psychophysical methods and analyzed in terms
of ROC curves, even for complex random signals and background, so long as the
task is posed as a binary decision. For simple signals and backgrounds, at least,
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the outcome of these psychophysical experiments can be predicted with observer
models such as the channelized Hotelling observer.

One factor that is prevalent in radiographic images, and that can degrade
the performance of a human observer, is the low contrast of the lesion images.
The Hotelling and channelized Hotelling observers are sensitive to this contrast
since low contrast means low SNR, but it would make no difference to them if the
signal and noise were both reduced by the same factor. For the human, on the
other hand, there is an additional randomness, which we described in Sec. 14.2.1
as internal noise. If the signal and the noise in the image are reduced in the same
proportion, the internal noise becomes more significant and human performance
degrades relative to that of models without internal noise. To make the models
predict this behavior, we must include internal noise in them as discussed in Sec.
14.2.2.

To minimize the degradation of human performance, we must take care to
display the images at adequate contrast. Interactive contrast manipulations and
automatic ones such as histogram equalization can be very useful in this regard. The
qualitative guidelines given in Sec. 14.2.3 for the conduct of psychophysical studies
are equally applicable to the display of real images in real clinical settings: the
dominant image noise, whether it be the anatomical background or the measurement
noise, should be readily apparent to the observer, and the lesion should be readily
detectable if it were displayed without image noise.

Another aspect of the human observer that is not accounted for in our models,
yet which is important in making real radiological diagnoses, is the human search
strategy. If the lesion is randomly located within the image field, a physician will
have some prior knowledge on anatomical and physiological grounds of where to
look for it and will search this field in a way that attempts to optimize detection
performance for a limited total viewing time. Radiologists differ greatly in their
ability to carry out this optimization, and the relation of their performance to our
objective measures of image quality has not been elucidated at this writing.

16.1.7 Image quality: Estimation tasks

Though the task in radiology is usually detection or classification, there are some
circumstances where the task is estimation. For example, a radiographic contrast
agent might be injected into the left ventricle of the heart with the goal of estimating
the volume of the chamber or the volume of blood expelled on each beat. The
interest might also be in whether the diameter of a tumor is decreasing in response
to therapy, or in the degree of stenosis (narrowing) of a blood vessel.

Performance on an estimation task is specified in terms of the bias and variance
of the estimator, but we have stressed in Chaps. 13 and 15 that bias is not well
defined if the parameter is not estimable (see Secs. 13.3.1 and 15.1.3). The linear
tests of estimability stated in Sec. 15.1.3 are not applicable here since the data are
not linearly related to the object distribution, and in many cases the parameter
of interest is not linearly related to the object either. We shall therefore consider
various situations where estimability holds, at least approximately, in spite of the
nonlinearity.

Estimability in the absence of blur If there were no blur from the detector or the
focal spot, then certain line integrals of the object attenuation coefficient would be
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estimable. Suppose

dm(r, ŝ)Lp(r − ŝ#0) ∝ δ(r− rm) δ(ŝ− ŝm) . (16.58)

Then (16.10) would become

gm ∝ exp

[

−
∫ #0

0
d#′ µtot(rm − ŝm#′)

]

, (16.59)

and the simple operation of taking a logarithm would recover the line integral of
µtot along a line determined by the positions of the detector and focal spot.

Thus, in the absence of blur, a parameter of the form

Θ =

∫

∞
d3r µtot(r)χ(r) (16.60)

is estimable4 if χ(r) can be written as a linear superposition of line delta functions
corresponding to the measured projections. If only a single image is taken from a
single focal-spot location, then these line deltas form a cone, and χ(r) must be a
weighted sum of the rays in this cone. In computed tomography, however, many
different source locations are used, and a much wider variety of parameters is at
least approximately estimable.

Subtraction imaging A common technique in digital radiography is subtraction
imaging in which two images are recorded, one before and one after administration
of a contrast agent that locally increases the x-ray attenuation coefficient. The most
important applications of this method are to visualize blood vessels or the cardiac
chambers.

To isolate the structure of interest, the logarithm of each image is computed
pixel-by-pixel, and the second logarithmic image is subtracted from the first. When
there is no blur, the difference of the logarithmic images is directly related to the
change in line integrals of the attenuation coefficient. Denoting the elements of the
first image by gm and those of the second by g′m and ignoring noise, we see from
(16.59) that

ln g′m − ln gm =

∫ #0

0
d#′ ∆µtot(rm − ŝm#′) , (16.61)

where ∆µtot(r) is the change in attenuation coefficient between the two images.
This difference image is thus a projection of the change in µ from the point source
to the detector plane.

Often the parameter of interest in subtraction imaging is the total amount of
contrast agent in a volume of interest, such as the left ventricle. If one assumes that
the agent is mixed thoroughly with the blood, then the total amount of the agent is
proportional to the blood volume. One way to attempt to estimate this parameter

4Note that the estimate is a nonlinear function of the data because of the logarithm. The statistics
literature usually says that a parameter is estimable (identifiable) if there exists a linear unbiased
estimator for all values of the parameter, but here we must consider nonlinear estimators and a
more general definition of estimability.
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is to sum both sides of (16.61) over m. If we assume that the detector spacing is
sufficiently small that we can replace the sum by an integral, we have

∑

m

[ln g′m − ln gm] ≈
1

ε2

∫

P

d2rm

∫ #0

0
d#′ ∆µtot(rm − ŝm#′) , (16.62)

where ε2 is the area of a detector element. We next make the change of variables
r
′ = (rm − ŝm#′). The volume element is

d3r′ =
|r′ − ra|2

z2a
cos3 θm d2rm d#′ . (16.63)

If we incorporate the factor cos3 θm into the sum, (16.62) becomes

∑

m

cos3 θm [ln g′m − ln gm] ≈
z2a
ε2

∫

V

d3r′
1

|r′ − ra|2
∆µtot(r

′) , (16.64)

where V is a conical volume defined by the detector elements chosen and the source
location. Thus, even without noise, blur or finite detector sampling, the integrated
change in µ is still not determined. All we can get is the weighted integral indicated
in (16.64); no choice of weighting factors in the sum will remove the weighting in the
integral since we cannot synthesize a constant from rays emanating from a single
point. Even if we assume that ∆µ is spatially compact, so that |r′ − ra|2 is nearly
constant over the volume of interest, we seldom know accurately how far this volume
is from the detector, so we do not know |r′ − ra|2 and hence cannot estimate the
integral of ∆µ. The only recourse is to place the source at a large distance from the
object and detector so that |r′ − ra|2 ≈ r

2
a. Absent this approximation, even the

simplest of parameters, an integral over the object, turns out not to be estimable
from a single radiograph.

Effects of blur We now return to the more realistic situation where the image is
blurred by the detector response and the focal spot, but we shall continue to ignore
noise for a while longer. If we take a logarithm of (16.10) in an attempt to linearize,
we obtain

ln gm = lnC+ln

∫

P

d2r

∫

2π
dΩ dm(r, ŝ) = Lp(r−ŝ#0, ŝ) exp

[

−
∫ #0

0
d#′ µtot(r − ŝ#′)

]

.

(16.65)
Since we cannot take the logarithm inside the integral, the second term on the right
is not a linear transformation of the line integral of µtot, but a linear approximation
might be valid. Two such approximations will now be described.

The exponential is a function of r and ŝ, which can be written as exp[f(r, ŝ)].
If this function varies sufficiently slowly compared to dm(r, ŝ)Lp(r − ŝ#0, ŝ), it can
be replaced by the constant exp[f(rm, ŝm)] and pulled out of the integral, and
application of the logarithm then yields a linear functional of µtot.

Instead of just replacing the exponential by a constant, a better approximation
can be obtained by expanding it in a Taylor series and retaining the constant and
linear terms. To simplify the notation temporarily, consider the expression

ln[gm] = ln

∫

∞
dx pm(x) exp[f(x)] , (16.66)
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where pm(x) is peaked around x = xm and normalized such that
∫
∞ dx p(x) = 1.

We can write the exponential as

exp[f(x)] = exp[f(xm) + f(x)− f(xm)] = exp[f(xm)] exp[f(x)− f(xm)]

= exp[f(xm)]
{
1 + f(x)− f(xm) + ...

}
. (16.67)

If exp[f(x)] varies slowly in the vicinity of xm, we can drop the unstated terms,
all of which are nonlinear in f(x). Inserting the truncated version of (16.67) into
(16.66), we find

ln[gm] ≈ ln

{
exp[f(xm)]

∫

∞
dx pm(x)[1 + f(x)− f(xm)]

}

= f(xm) + ln

{
1− f(xm) +

∫

∞
dx pm(x) f(x)

}
, (16.68)

where we have used the normalization of p(x). If we now use ln(1 + ε) ≈ ε, we see
that

ln[gm] ≈
∫

∞
dx pm(x) f(x) . (16.69)

Up through terms linear in f(x), therefore, the logarithm commutes with blurring,
and a linear functional results. Note that this kind of linearization is rather different
from the ones we discussed in Sec. 16.1.4. We do not require here that exp[f(x)] be
near one or have small total variation; it suffices if it varies slowly over the range of
x where p(x) is nonzero.

Applying a similar argument to (16.65), we see that

ln gm ≈ Am −
∫

P

d2r

∫

2π
dΩ dm(r, ŝ)Lp(r − ŝ#0, ŝ)

[∫ #0

0
d#′ µtot(r − ŝ#′)

]

,

(16.70)
where Am is a constant. We can define ym ≡ Am − ln gm, and within the stated
approximations ym is a blurred version of the line integral of µtot.

To see the implications of this result for estimability, we apply a change of
variables similar to the one that led to (16.63) and obtain

ym ≈
∫

∞
d3r′ χm(r′)µtot(r

′) . (16.71)

It will be left as an exercise to determine the mathematical form of χm(r), but phys-
ically it describes a blurred ray extending from the focal spot to the mth detector.
The line integral of µtot is not itself an estimable parameter, but the integral of µtot

over this blurred ray is approximately estimable, and so is any linear parameter
formed from a linear combination of the functions {χm(r)}. This observation is
critical to the success of computed tomography, but it is seldom stated explicitly.

Effects of noise So far we have neglected noise in the discussion of estimation
tasks, but we shall now remedy this defect. The actual measured data from the
mth detector can be written, as usual, as

gm = gm + nm . (16.72)
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If the noise level is low enough, ym can be approximated as

ym ≈
∫

∞
d3r χm(r′)µtot(r

′) +
nm

gm
. (16.73)

To the extent that the modeling error attributable to neglecting terms nonlin-
ear in µtot is negligible, the mean of nm is zero and ym is an unbiased estimator of
the indicated integral. The variance of this estimate is given by

Var{ym} =
Var{nm}

g2m
. (16.74)

If the only noise in the data were the Poisson noise of the x rays, then we would
have Var{nm} = gm and Var{ym} = 1/gm. If the dominant noise is independent of
the x-ray flux, as it would be for dark current or electronic noise, then Var{ym} ∝
1/g2m. In both cases, increasing the mean number of detected photons decreases
the variance in the estimate of the integral.

Effect of source fluctuations In Sec. 16.1.5 we pointed out that fluctuations in the
current in an x-ray tube can lead to an additional term in the data covariance matrix
[see (16.24)]. The elements in this extra part of the covariance might be comparable
to or even larger than those that we have been discussing, but the matrix has rank
one, and we showed in Sec. 16.1.6 that its contribution to SKE detectability was
negligible [see (16.50)]. Now we need to see what effect it has on estimation tasks.

Suppose the goal is to estimate the average x-ray transmittance of an object
over some large area, so that issues of estimability do not arise. If the area covers
many pixels, a reasonable estimator is just the sum of the pixel values over the
region of interest. Consider the limit of large x-ray flux so that the only limitation
is variations in source strength. Since all pixels fluctuate together as the source
strength varies, a change of x% in current through the x-ray tube leads to an x%
change in the estimated transmittance.

If this number is too large, we need to take some auxiliary measurement in
order to normalize for the source strength. A separate detector in the x-ray beam
can be used, or the imaging detector can be used by looking at x rays that miss
the object. Since the auxiliary detector can have large area, Poisson noise in the
estimate of source strength should be small. The situation is analogous to the SKE
detection problem discussed in 16.1.6 where the ideal observer could average over
the entire array and estimate and correct for the source fluctuations.

Similar considerations will apply to other detection or estimation problems. In
short, even though fluctuations in tube current lead to large variance and distinctly
non-Poisson statistics, they can almost always be overcome by making good use of
the measured data or by acquiring auxiliary data for normalization. In terms of
task performance, we can almost always assume that the x-ray tube is a Poisson
source.

16.2 PLANAR IMAGING IN NUCLEAR MEDICINE

The second direct-imaging method we discuss in this chapter is gamma-ray imaging
of radioactive sources, especially for diagnosis in clinical nuclear medicine. We
begin in Sec. 16.2.1 with a qualitative overview of the modality and the basic issues
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affecting image quality. In Secs. 16.2.2 and 16.2.3 we analyze the image-formation
and detection processes deterministically. Stochastic considerations are added in
Sec. 16.2.4, and objective measures of image quality are developed in Secs. 16.2.5
and 16.2.6.

For an excellent, succinct introduction to clinical aspects of diagnostic nuclear
medicine, see Alazraki (1988), and for a not-so-succinct survey of instrumentation
issues, see Barrett and Swindell (1981, 1996).

16.2.1 Basic issues

The tracer principle In biology and medicine, a tracer is a fluorescent or radioactive
marker that can be attached to a biologically important molecule without altering
its biological properties. When the tracer is subsequently detected, its location and
strength convey information about the function of the tagged molecule.

The advantage of radioactive tracers over fluorescent ones is that gamma rays
are more penetrating than optical photons. Therefore gamma-ray imaging can be
used to study physiological function deep within a patient’s body. For this reason,
nuclear medicine is often called functional imaging; it gives information about the
function of the body as opposed to the anatomical or morphological information
provided by transmission radiography or ultrasound. In addition, since the tracer
acts at a molecular level, nuclear medicine is a form of molecular medicine.

The earliest use of radioactive tracers in biomedical research was by the Hun-
garian chemist George Charles de Hevesy. Working with Ernest Rutherford in 1911,
de Hevesy was staying at a boarding house in Manchester. The guests strongly sus-
pected that the landlady was serving them leftovers, but she insisted she was not.
One night, de Hevesy surreptitiously sprinkled an “isotopic indicator,” as he called
it, into some leftover beef pie, and several days later he was able to detect the tracer
in a soufflé (de Hevesy, 1962; Patton, 2000). In 1943, de Hevesy received the Nobel
Prize in Chemistry, but this initial experiment was not cited.

Radioisotopes The radioisotopes used in nuclear medicine can emit gamma rays,
beta particles (electrons) or positrons (anti-electrons). Beta particles have very
short range in tissue, a few millimeters. They have found some use for imaging
superficial structures or during surgery where a detector can be placed in the body,
but they are not useful for imaging deeper structures with detectors outside the
body. Positrons also have short range, but they can annihilate by interacting with
electrons, producing high-energy gamma rays that can be detected outside the body
in a technique called positron emission tomography or PET. In this chapter we con-
sider only isotopes that emit low-energy gamma rays, typically in the range 100–400
keV.

Most tracers used in nuclear medicine are labelled with an isotope of tech-
netium, 99mTc (where m stands for metastable). This isotope has a half-life of 6
hours and emits a single gamma ray of energy 140 keV. We shall use this energy
when we give numerical examples in this section.

Technetium, especially in the form of the pertechnetate ion TcO−
4 , can be used

to label a wide variety of pharmaceuticals, some with exquisite biological specificity.
As an example, a tracer called sestamibi has an affinity to mitochondria in cells.
Since the mitochondria are the cell’s power plants, they are found in abundance in
hard-working cells as in the heart muscle (myocardium) or in rapidly dividing cells
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as in tumors. Thus sestamibi has found use in studying myocardial perfusion and
in detecting breast cancer.

Attenuation and scatter Photons of energy 140 keV have an attenuation coefficient
of about 0.14 cm−1 in soft tissue, so they travel about 7 cm on average before in-
teracting with the tissue. The predominant interaction is Compton scattering, in
which the photon changes its direction by scattering from a free electron, transfer-
ring some of its energy to the electron in the process. See Secs. 10.3.7 and 12.3.1
for more discussion of the physics of Compton scattering.

At 140 keV, about 1% of the interactions in soft tissue are photoelectric absorp-
tion rather than Compton scattering. In photoelectric absorption, as discussed in
Sec. 12.3.1, the gamma-ray photon disappears, transferring all of its energy to a pho-
toelectron.5 The relative probability of photoelectric absorption increases rapidly
as the photon energy decreases, so after multiple Compton scatters, the photon is
likely to be absorbed if it has not escaped the body. The primary mathematical
tools for accounting for all of these possible events are Monte Carlo simulation and
the Boltzmann transport equation (Sec. 10.3).

Radiation dose to the patient Both Compton scattering and photoelectric absorp-
tion result in a high-energy electron in the patient’s body. This electron is absorbed
in the body very near the interaction point, possibly causing local biological dam-
age.

Though the basic interaction mechanisms are the same for x rays and gamma
rays, there is an important difference between transmission radiography and emis-
sion imaging in terms of radiation dose. In transmission imaging, dose is delivered
to the patient while the x-ray source is turned on, but dose delivery ceases instan-
taneously when the source is turned off. In emission imaging, the source cannot
be turned off; it is injected into the body and delivers dose continuously until it
decays or is biologically excreted. In transmission imaging, therefore, an increased
exposure time or a stronger source will give more dose to the patient, but it will
also result in more collected photons and hence better image quality. In emission
imaging, on the other hand, the dose to the patient depends on the quantity of
radiotracer used, but it has nothing to do with exposure time.

Usually the allowed exposure time in nuclear medicine is limited to a few min-
utes by patient motion or economic considerations, and relatively few gamma-ray
photons can be collected in this time with allowable radiation dose. Typical planar
nuclear medicine images consist of only 100,000 to 1,000,000 detected photons; the
resulting Poisson noise is the main limitation to image quality, as we shall see in
more detail in Secs. 16.2.5 and 16.2.6.

Collimators For all practical purposes, gamma rays are not reflected or refracted by
matter, so all image-forming apertures in nuclear medicine must work by selective
absorption of the photons. The two major alternatives are pinhole apertures and

5As discussed in Sec. 12.3.1, the energy imparted to the photoelectron is the gamma-ray energy
minus the electron binding energy [see (12.160)], but in soft tissue this binding energy is less than
1 keV and can easily be neglected. For the same reason, we do not have to consider emission of K
x rays in the body, though they are important in the detector material as we saw in Sec. 12.3.
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multibore collimators. Pinholes were discussed in Sec. 10.4.2 as an illustration of
the Boltzmann equation in imaging, and collimators will be analyzed below.

Collimators are basically just slabs of lead or other highly absorbing material
with multiple bores through which gamma rays can pass. The bores may be parallel
to one another, in which case we have a parallel-hole collimator (see Fig. 16.8),
or they may be slanted in some manner.

Fig. 16.8 Illustration of a parallel-hole collimator.

For a parallel-hole collimator, key design parameters are the shape and size
of each bore, the thickness of the septa between bores and the overall thickness or
length of each bore. To a first approximation, only photons that pass down the
bore without hitting any absorbing material can reach the detector. Making the
bore size larger or the bore length smaller increases the number of photons that
get through but reduces the spatial resolution, so these parameters provide a way
of controlling the tradeoff between resolution and noise. The septal thickness and
the collimator material are chosen to minimize penetration of gamma rays through
nominally opaque portions of the collimator.

Typical bore diameters are 1–2 mm for 140 keV radiation, and typical bore
lengths are 2–4 cm. With these numbers only about 10−4 of the emitted photons
pass through the collimator.

Detectors Almost all commercial nuclear-medicine systems at this writing use an
Anger scintillation camera as the detector. This detector is analyzed in Secs. 12.3.5
and 12.3.6, and the statistical properties of images obtained with it are discussed
in Sec. 12.3.7.

There are several salient points to recall from Chap. 12 about the Anger cam-
era. It counts individual gamma-ray photons and hence suffers from photon noise,
but it has no other significant noise source. It provides continuous estimates of the
2D position and energy of each absorbed gamma-ray photon. Each photon is ac-
cepted into the final image based on its estimated energy, which is an indication of
whether or not the photon has undergone a scattering event in the patient’s body.
This scatter-rejection technique is not perfect, however, and some scattered photons
will contribute to the image.
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Even with the position and energy estimation and rejection of some events, the
continuous image can still be described as a sample function of a Poisson random
process. If the continuous image is binned into a pixel array for storage, processing
or display, the resulting discrete image is a Poisson random vector. It is only when
the effects of object randomness are considered that the Poisson character is lost.

In spite of the widespread use of anger cameras, there is considerable interest
in discrete detector arrays such as semiconductor devices or scintillator-photodiode
arrays, discussed in Secs. 12.3.3 and 12.3.4. Major advantages of discrete arrays
are that the element size can be smaller than the spatial resolution of the Anger
camera and (at least for the semiconductor devices) the energy resolution can be
better, improving the ability to reject scattered radiation.

16.2.2 Image formation

The mathematical tools needed to analyze gamma-ray imaging systems were devel-
oped in Chap. 10. Since gamma rays have very short wavelength (less than 10−9

cm at 140 keV), they behave as particles, and their transport is well described by
the Boltzmann equation as derived in Sec. 10.3.

Specifically, if we assume that scattered radiation is rejected by the detector
and hence is effectively absorbed, the steady-state Boltzmann equation is given by
(10.147) as

ŝ ·∇w =
1

c
Ξp,E − µtotw , (16.75)

where c is the speed of light, µtot is the total attenuation coefficient (arising mainly
from Compton scattering), w ≡ w(r, ŝ, E) is the distribution function and Ξp,E ≡
Ξp,E(r, ŝ, E) is the source distribution. For nuclear imaging with a monoenergetic
radioisotope, the source has the form (10.253):

Ξp,E(r, ŝ, E) =
1

4π
f(r) δ(E − E0) . (16.76)

The function f(r) describes the spatial distribution of the radiotracer and hence
conveys the functional information that we want to extract. We can interpret f(r)
as the mean rate of photon emission per unit volume; i.e., f(r)d3r is the mean
number of photons per second emitted in all directions from a volume element d3r
centered at point r. This density is assumed to be independent of time over the
exposure time for an image.

As in Sec. 10.4.2, we set up a reference plane P somewhere between the ob-
ject and the detector. The photon distribution function on that plane is denoted
w(r, ŝ, E). Since we are assuming for now that scattered photons are rejected, all
photons of interest have the original energy E0, and we must have

w(r, ŝ, E) = w0(r, ŝ) δ(E − E0) . (16.77)

The factor w0(r, ŝ) is given from (16.76) and (10.151) as

w0(r, ŝ) =
1

4πc

∫ ∞

0
d# f(r − ŝ# ) exp

[

−
∫ #

0
d#′ µtot(r − ŝ#′, E0)

]

, (16.78)

where the 2D vector r and the 3D vector r denote the same point on plane P.
The photon distribution at this point is thus given by a line integral of the source
distribution weighted with an attenuation factor.
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Mathematical description of the collimator Given an expression for the photon dis-
tribution on a plane P, the next step is to analyze the effect of the collimator. The
first comprehensive analysis of properties of collimators was performed by Robert
Beck (Beck, 1964a, 1964b, 1968a, 1968b). More recent treatments can be found in
Barrett and Swindell (1981, 1996), Gunter (1996) and Tsui et al. (1996).

A convenient place to put plane P is behind the collimator, in which case
w0(r, ŝ) is the distribution in that plane when the collimator is not present. The
actual distribution on P with the collimator in place has the form

wc(r, ŝ) = w0(r, ŝ)T (r, ŝ) , (16.79)

where T (r, ŝ) is the transmission of the collimator for photons travelling in direction
ŝ and striking plane P at point r.

To obtain an expression for T (r, ŝ), we need a geometrical model for the colli-
mator. We consider a parallel-hole collimator with bores on a regular grid indexed
by the 2D vector index n, and we let rn denote the center of the nth bore. We
define β(r − rn) as a function that is unity within the open area of that bore and
zero otherwise.

If we neglect penetration through the septa, T (r, ŝ) is unity only if the point
where the photon exits the collimator and the point where it enters both lie within
the same bore. The exit point is just r since the reference plane is the exit plane,
but the entrance point is found by tracing backward from the exit point along di-
rection −ŝ. The 2D vector specifying this point is r− s⊥

Lb

sz
, where s⊥ = (sx, sy) if

ŝ = (sx, sy, sz) and plane P is z = 0. Thus we have

T (r, ŝ) =
∑

n

β(r− rn)β

(
r− s⊥

Lb

sz
− rn

)
, (16.80)

where the sum is over all bores in the collimator.

Photon distribution on the collimator exit plane Combining (16.79) and (16.78), we
arrive at the CC mapping from f(r) to wc(r, ŝ):

wc(r, ŝ) =
1

4πc
T (r, ŝ)

∫ ∞

0
d# f(r − ŝ# ) exp

[

−
∫ #

0
d#′ µtot(r − ŝ#′, E0)

]

. (16.81)

We can use this expression to compute the photon irradiance (mean number of
photons per unit area) in plane P. In (10.140) we saw that the spectral photon
irradiance Ip,E (photons per unit area per unit energy) is obtained from the spec-
tral photon radiance Lp,E (photons per unit projected area per steradian per unit
energy) by multiplying by a cosine factor (to convert projected area to true area)
and then integrating over solid angle. We also know from (10.98) that Lp,E is c
times the distribution function wc. In the present problem the cosine factor is near
unity, and the spectral dependence is simple because Lp,E(r, E) = Lp(r) δ(E − E0),
so we can also write Ip,E(r, E) = Ip(r) δ(E − E0). Thus we have

Ip(r)

=c

∫

2π
dΩ wc(r, ŝ) =

1

4π

∫

2π
dΩ T (r, ŝ)

∫ ∞

0
d# f(r−ŝ# ) exp

[

−
∫ #

0
d#′ µtot(r − ŝ#′, E0)

]

.

(16.82)
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To interpret this expression, we make a change of variables that proved useful
several times in Chap. 10; we define r

′ = r − ŝ# and recognize that #2 d# dΩ = d3r′

and # = |r − r
′|, yielding

Ip(r)

=
1

4π

∫

∞

d3r′

|r − r′|2
T

(
r,

r − r
′

z′

)
f(r′) exp

[

−
∫ |r−r

′|

0
d#′ µtot

(
r −

r − r
′

|r − r′|
#′, E0

)]

.

(16.83)
Since we are concerned with the irradiance on the plane z = 0, the vectors r =
(x, y, 0) and r = (x, y) specify the same point. The vector r

′ is not confined to
z′ = 0, but we can write it as r

′ = (x′, y′, z′) ≡ (r′, z′); then, with (16.80) and a
little algebra, we have

Ip(r) =
1

4π

∑

n

β(r− rn)

∫ ∞

Lb

dz′

z′2

∫

∞
d2r′ β

[(
1−

Lb

z′

)
r+

Lb

z′
r′ − rn

]
f(r′, z′)

× exp

[

−
∫ |r−r

′|

0
d#′ µtot

(
r −

r − r
′

|r − r′|
#′, E0

)]

, (16.84)

where we have replaced 1/|r − r
′|2 with 1/z′2 since the collimator accepts only

photons that travel almost parallel to the z axis. In the z′ integral, we have set the
lower limit to Lb on the assumption that there is no radioactive material inside the
collimator bores (though this condition presumes some minimal care in laboratory
practice).

The transformation in (16.84) is a CC mapping from the 3D function f(r′, z′)
to the 2D function Ip(r); it has the general form

Ip(r) =

∫ ∞

Lb

dz′
∫

∞
d2r′ h(r; r′, z′) f(r′, z′) , (16.85)

where the kernel h(r; r′, z′) f(r′, z′) is the point response function (PRF) giving the
response at point r in the collimator exit plane to a point source at point (r′, z′) in
the 3D space. The remainder of this section is devoted to studying this PRF.

Point response function in air For a point source in air, where µtot ≈ 0, the PRF is
given by

h(r; r′, z′) =
1

4πz′2

∑

n

β(r− rn)β

[(
1−

Lb

z′

)
r+

Lb

z′
r′ − rn

]
. (16.86)

This PRF is highly shift-variant, depending in a complicated way on the lateral
source coordinates r′, the longitudinal position of the source z′, and the position on
the collimator exit face r. Some examples are shown in Fig. 16.9.
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Fig. 16.9 Illustration of photon paths through the collimator for different

source positions.

When the point source is on the collimator entrance face, we see graphically
from Fig. 16.9 that the PRF as a function of r is just the transmission function of
a single bore, so long as the source point lies over a bore; the response is zero if
the source is hidden behind a septum. We reach this same conclusion analytically
by setting z′ = Lb in (16.86), so that the summand becomes β(r − rn)β(r′ − rn).
The second factor is nonzero only when the source lies within bore n, and the first
factor requires that the output point r lie within that same bore.

For z′ substantially greater than Lb, however, photons can reach the exit plane
through several different bores, as shown graphically in Fig. 16.9. To understand
how this happens analytically, consider circular bores of diameterDb, so that β(r) =
cyl(r/Db). For simplicity, consider a point source centered laterally over the origin,
so that r′ = 0 but z′ > Lb. Then the summand of (16.86) can be rewritten as

β(r− rn)β

[(
1−

Lb

z′

)
r+

Lb

z′
r′ − rn

]

= cyl

[
1

Db
(r− rn)

]
cyl

{
1

Db

[(
1−

Lb

z′

)
r− rn

]}
. (16.87)

The first factor is nonzero when r lies within a circle of diameter Db centered on
rn. The second factor, however, is nonzero when r lies in a circle of diameter
Dbz′/(z′ − Lb) centered on z′rn/(z′ − Lb). The complicated PRF seen in Fig. 16.9
is the overlap of these two cylinder functions summed over bores.

Another way to think about h(r; r′, z′) is that it is the kernel of the adjoint
mapping (or backprojection) from the 2D collimator exit face to the 3D object
volume. In that view, we pick an r and study h(r; r′, z′) as a function of r′ and z′.
The first factor in (16.87) requires that only a single bore, or a single index n, can
contribute to h(r; r′, z′). The second factor defines a cone in the 3D space centered
on this bore, as shown in Fig. 16.10. On plane z′, this kernel is constant for points
r′ within a circle of diameter Dbz′/Lb centered on the origin.



1130 PLANAR IMAGING WITH X RAYS AND GAMMA RAYS

Fig. 16.10 Illustration of the kernel of the adjoint mapping from the collima-
tor exit plane to the 3D object space.

Average over collimator shifts The lateral shift variance of the PRF comes about
since it matters just where the point source is with respect to the center of a
collimator bore. Anger (1964) suggested that a more meaningful PRF could be
defined by averaging over all positions of the collimator. Since shifting the collimator
laterally is equivalent to shifting the object and detector together, the averaging
blurs out the fine structure of the collimator but does not blur the image.

Following Barrett and Swindell (1981, 1996), we compute the average PRF by
adding a 2D vector R to each bore position rn, integrating the PRF over all R
within a disc of radius Rmax, and dividing by the area of that disc. With the form
of PRF given in (16.86), the average PRF is given by

h(r; r′, z′)

=
1

4πz′2

∑

n

1

πR2
max

∫

disc

d2R β(r− rn −R)β

[(
1−

Lb

z′

)
r+

Lb

z′
r′ − rn −R

]
.

(16.88)
Making the change of variables R′ = r− rn −R and letting Rmax get large so we
don’t have to worry about limits of integration, we find

h(r; r′, z′) =
1

4πz′2

∑

n

1

πR2
max

∫

∞
d2R β(R′)β

[
Lb

z′
(r′ − r) +R′

]
. (16.89)

The integral is recognized as the autocorrelation integral of the bore function (see
Sec. 3.4.3); since this autocorrelation is independent of n, it can be taken out of the
sum, and we have

h(r; r′, z′) =
1

4πz′2
N(Rmax)

πR2
max

[β - β]

[
Lb

z′
(r− r′)

]
, (16.90)

where - denotes the autocorrelation integral as defined in (3.115), and N(Rmax)
is the number of bores within the disc. If the collimator bores are arranged on a
regular lattice with each bore lying in a unit cell of area Acell, then N(Rmax) =
πR2

max/Acell. The bore itself has an area Abore (equal to πD2
b/4 for circular bores),

and we can define the packing fraction αpf ≡ Abore/Acell, so that N(Rmax) =
πR2

maxαpf/Abore, and we obtain, finally,

h(r− r′, z′) =
1

4πz′2
αpf

Abore
[β - β]

[
Lb

z′
(r− r′)

]
. (16.91)
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Note that we have rewritten the average PRF as h(r−r′, z′) since the averaging
process has removed the shift-variance that came from the collimator structure. The
system is now an axial shift-invariant system of the kind discussed in Sec. 7.2.10,
where the mapping from 3D object to 2D image is a convolution in the lateral
variables x′ and y′ and an integration over depth z′.

Flood image and point sensitivity We know from Sec. 7.2.1 that the uniformity of a
CC imaging system can be specified by its flood image and point-source sensitivity.
The flood uniformity can be measured in practice by placing a uniform planar source
parallel to the collimator face and recording an image. In the present discussion,
the image is specified by the photon irradiance in plane P, and we denote the flood
image as Ifld(r). Mathematically, if f(r′, z′) = δ(z′ − z0), then [cf. (7.111)]

Ifld(r) =

∫ ∞

Lb

dz′
∫

∞
d2r′ h(r; r′, z′)

=
1

4πz20

∑

n

β(r− rn)

∫

∞
d2r′ β

[(
1−

Lb

z0

)
r+

Lb

z0
r′ − rn

]
. (16.92)

The integral can be performed if we again assume circular bores of diameter Db.
Since we know from Fig. 16.10 that the integrand is unity within a circle of diameter
Dbz0/Lb and zero otherwise, we find that

Ifld(r) =
D2

b

16L2
b

∑

n

β(r− rn) . (16.93)

Note that this result is independent of z0; you cannot tell how far you are from a
perfectly uniform source. The dependence on r is just the collimator bore pattern.

The point sensitivity is defined generally in (7.113), and in the present problem
it is given by

spt(r
′, z′) ≡

∫

∞
d2r h(r; r′, z′)

=
1

4πz′2

∑

n

∫

∞
d2r β(r− rn)β

[(
1−

Lb

z′

)
r+

Lb

z′
r′ − rn

]
. (16.94)

The integral is straightforward for circular bores and a point source on the collimator
entrance face (z′ = Lb), in which case we find

spt(r
′, Lb) =

D2
b

16L2
b

∑

n

β(r′ − rn) . (16.95)

Note that D2
b/(16L

2
b) can also be written as 1

4π (πD
2
b/4L

2
b); the factor in parentheses

in this form is the solid angle subtended by a bore on the exit face of the collimator
from a point within that bore on the entrance face, and 4π is the solid angle sub-
tended by a sphere centered on this point. Thus D2

b/(16L
2
b) is the fraction of the

photons emitted from the point that pass through the collimator on average. The
sum is unity unless the point is behind an opaque septum, in which case the sum
is zero.

Computation of the point sensitivity is more difficult for z0 .= Lb, but an in-
teresting insight can be obtained by considering z′ + Lb. In that case, photons
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from a point at (r′, z′) can pass through many different bores of the collimator (see
Fig. 16.9), and it may be a good approximation to replace the sum over n by an
integral:

∑

n

→
1

Acell

∫

∞
d2rn =

αpf

Abore

∫

∞
d2rn . (16.96)

With this approximation and a change of variables, we find

spt(r
′, z′) =

1

4πz′2
αpf

Abore

∫

∞
d2r [β - β]

[
Lb

z′
(r− r′)

]
, (16.97)

which we could also have obtained immediately from the average PSF of (16.91).
The remaining integral can be performed with the help of (3.135) and the central-
ordinate theorem, (3.229); the result is

spt(r
′, z′) =

1

4πL2
b

αpfAbore =
αpfD2

b

16L2
b

, (16.98)

where the last form is specifically for circular bores. Thus, when z′ + Lb so that
many bores can be seen from one source point, the point sensitivity is independent
of source position in both r′ and z′. In addition, this sensitivity is essentially the
same as that given in (16.91) even though that expression was for the opposite
limit of z′ = Lb; averaging (16.91) over r′ just introduces a factor of αpf since that
fraction of source positions fall in open collimator bores. In this average sense,
therefore, the point sensitivity is approximately independent of z′ for the full range
of depths. As we shall see in Chap. 17, this observation is important in SPECT
imaging.

Attenuation in the object The sensitivity is by no means independent of source
depth when attenuation is considered, and the PRF becomes difficult to analyze in
full generality in this case. Fortunately, it is often valid to assume that the atten-
uation coefficient is either constant within the object or at least a slowly varying
function of position.

When µtot(r′, z′, E0) varies slowly with r′ (perpendicular to the collimator
bores), the exponential factor in (16.84) can be approximated as

exp

[

−
∫ |r−r

′|

0
d#′ µtot

(
r −

r − r
′

|r − r′|
#′, E0

)]

≈ exp

[

−
∫ z′

0
d#′ µtot(r, #

′, E0)

]

.

(16.99)
Moreover, if µtot is a constant, this factor becomes exp[−µtotL(r′, z′)], where L(r′, z′)
is the total path length through the attenuating material from point (r′, z′) to the
collimator face.

It is straightforward to carry these attenuation factors along in an analysis of
the forward problem in gamma-ray imaging, but, as we shall see in Sec. 17.2, it is
very tricky to compensate for them in the inverse problem, SPECT.

Other effects The discussion to this point has left out several effects that can be
important in practical nuclear medicine systems. We have not yet explicitly in-
cluded Compton scatter in the formalism above; though its effects are implicitly
contained in the total attenuation µtot, we have not considered what happens to
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the scattered photons and how they might affect the image. In addition, we consid-
ered only an idealized collimator, neglecting septal penetration and scattering and
x-ray generation within the bore. All of these effects can, in principle, be analyzed
with the Boltzmann equation.

Scatter within the object can be analyzed as in Sec. 10.3.4, and the scattered
radiation can be treated as an additional emissive source to be imaged by the colli-
mator. Because of the energy loss on Compton scattering, this secondary source is
no longer monoenergetic, so the attenuation factors may be different for scattered
and unscattered photons, and the detector response will definitely be different.

To include septal penetration in the collimator description, we require a double
sum over bore indices n and n′ in the transmission expression (16.80), and we have
to compute the amount of absorbing material interposed between the exit point
and the entrance point. The formal expression is not difficult to obtain but it must
usually be evaluated numerically.

To include scatter in the collimator, we can use the bidirectional transmission
distribution function or BTDF, as defined in (10.86), in place of the transmission
T (r, ŝ). In fact, we could adopt the BTDF as the general description of the col-
limator, and in the limit of no scatter or x-ray generation it would be given by
BTDF(r, ŝ, ŝ′) = T (r, ŝ) δ(ŝ− ŝ′), with T (r, ŝ) given by (16.80).

16.2.3 The detector

Next we consider how a detector responds to the photons emerging from the colli-
mator. For simplicity we assume that the detector entrance face exactly coincides
with the collimator exit face (plane P ), though in practice there is always a small
gap. We assume also that the photons are normally incident on the detector since
they have passed down a bore of a parallel-hole collimator; thus we can adequately
specify the photon distribution by the irradiance on P rather than the full distri-
bution function. We consider separately the cases of discrete detector arrays and
Anger scintillation cameras.

Discrete detector array Consider first discrete detector elements, such as the photon-
counting semiconductor detectors analyzed in Sec. 12.3.2. Suppose each element
absorbs a fraction η(E) of the incident photons of energy E and that an absorbed
photon has a probability Pacc(E) of being accepted by the energy window and hence
contributing to the image; both η(E) and Pacc(E) are assumed for simplicity to be
independent of where the photon strikes the detector face. Thus the mean number
of photons accepted in the mth detector in some exposure time τ is

gm = τ

∫

m

d2r

∫ ∞

0
dE Pacc(E) η(E) Ip(r, E) , (16.100)

where the spatial integral is over the face of the detector. Note that τIp(r, E) is the
spectral photon fluence on the detector face.

If we consider only the unscattered photons, Ip(r, E) = Ip(r) δ(E − E0), and

gm = τη(E0)Pacc(E0)
∫

m

d2r Ip(r) . (16.101)
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Next we insert (16.85) into (16.101), yielding

gm = τη(E0)Pacc(E0)
∫

m

d2r

∫ ∞

Lb

dz′
∫

∞
d2r′ h(r; r′, z′) f(r′, z′) . (16.102)

We can put this result in our standard CD form,

gm =

∫

∞
d3r′ hm(r′) f(r′) , (16.103)

by noting that r
′ = (r′, z′) and defining

hm(r′) = τη(E0)Pacc(E0)
∫

m

d2r h(r; r′) . (16.104)

With h(r; r′) given by (16.86), this equation describes the overall mapping from
the emissive object to the detector output when attenuation and scatter can be
neglected. We shall put these effects back into the formalism shortly, but for now
we concentrate on the effects of the collimator and the detector.

Small detector elements To perform the integral in (16.104), we assume initially
that one detector element covers exactly one collimator bore, so that we can renum-
ber the collimator bores with the detector index m and drop the sum over bores.
Neglecting attenuation, we can use (16.86) and write

hm(r′) = ητPacc(E0)
1

4πz′2

∫

∞
d2r β(r− rm) β

[(
1−

Lb

z′

)
r+

Lb

z′
r′ − rm

]
,

(16.105)
where we have been able to extend the limits of integration to ∞ because of the
first factor in the integrand.

To visualize this kernel, recall from Fig. 16.10 that the integrand for fixed r

defines a cone in the 3D r
′ space; the integral in (16.105) merely adds a lot of

slightly tilted cones, fuzzing the edges as shown in Fig. 16.11.

Fig. 16.11 Illustration of the kernel of the adjoint mapping from a discrete

detector element to the 3D object space when the element covers exactly one
bore

Larger detector elements Now suppose that each detector element covers many
collimator bores. Let Sm denote the set of collimator indices n such that the open
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bore of collimator n falls entirely within the area of detector m; assume that no
bores fall partially on a detector element. Then (16.105) is modified to

hm(r′) = τη(E0)Pacc(E0)
1

4πz′2

∑

n∈Sm

∫

∞
d2r β(r−rn) β

[(
1−

Lb

z′

)
r+

Lb

z′
r′ − rn

]
.

(16.106)
This kernel is again a superposition of cones, as shown in Fig. 16.12, but now
cones associated with different bores are displaced laterally. Thus the resulting
kernel after integrating over each bore and summing over bores is more nearly a
cylinder with fuzzy edges. The spatial resolution, as measured by the width of the
intersection of the kernel with a plane of constant z′, is larger because the detector
element is larger, but it is less dependent on z′, which may be an advantage in some
applications. At the least, it will simplify the mathematics in SPECT imaging (see
Sec. 17.1).

Fig. 16.12 Illustration of the kernel for the adjoint mapping when one discrete
detector element covers several collimator bores.

Anger camera An Anger camera does not merely integrate the spectral photon
irradiance over a fixed area. Instead, as discussed in Sec. 12.3.6, it estimates the
position of each photon, and (in modern cameras, at least) it assigns the photon to
one bin in a digital matrix based on the estimated coordinates. We can now use the
index m to refer to a bin in the final digital image rather than a discrete detector
element.

We can describe the position-estimation process with a conditional probability
density function pr(r̂|r), where r is the actual position where the photon strikes
the camera face and r̂ is the estimated position. With the position-estimation step
included, gm is given by

gm = τη(E0)Pacc(E0)
∫

m

d2r̂

∫

∞
d2r pr(r̂|r) Ip(r)

= τη(E0)Pacc(E0)
∫

m

d2r̂

∫

∞
d2r pr(r̂|r)

∫

∞
d3r′ h(r; r′) f(r′) . (16.107)

The overall kernel for the CD mapping, in the absence of scatter and attenuation,
is thus

hm(r′) = τη(E0)Pacc(E0)
∫

m

d2r̂

∫

∞
d2r pr(r̂|r)h(r; r′) , (16.108)
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where h(r; r′) is given explicitly by (16.86). This kernel accounts for the projection
of the 3D object onto a 2D plane, collimator blur, blur introduced by position
estimation and integration over a bin. Of these effects, only the collimator blur
depends on depth in the object, z′; blurring by position estimation and discrete
binning occur after the 3D-to-2D projection.

Scatter and attenuation To include scattered radiation in the formalism, we must
consider the spectral photon irradiance Ip,E (or equivalently, the spatio-spectral flu-
ence b(r, E) ≡ τIp,E) incident on the detector. The first form of (16.107) generalizes
to [cf. (16.100)]

gm = τ

∫

m

d2r̂

∫ ∞

0
dÊ Pacc(Ê)

∫

∞
d2r

∫ ∞

0
dE pr(r̂, Ê |r, E) η(E) Ip,E(r, E) ,

(16.109)
where Pacc(Ê) is unity if Ê lies in the energy window and zero otherwise. (By con-
trast, Pacc(E) in (16.100) can take on a continuous range of values since it depends
on the actual energy rather than the estimated one.)

The spectral photon irradiance Ip,E can be found from the spectral photon
radiance by integrating Lp,E cos θ over solid angle, and Lp,E in turn can be found
by solving the Boltzmann equation. In this calculation, it may be a useful approxi-
mation to neglect photons that have undergone more than one scatter event on the
grounds that multiply scattered photons are likely to have lost enough energy that
they are rejected by the energy window. This approximation will break down for
large objects or cameras with poor energy resolution.

The Boltzmann equation is linear, so (16.109) is an overall linear mapping from
the source f(r) to the data value gm. Computation of the kernel for this mapping
without the position and energy estimation is treated in Sec. 10.4.1, and the inte-
grals over Ê and r̂ in (16.109) account for the estimation steps. It is a useful exercise
to derive an explicit expression for the kernel in the single-scatter approximation
with position and energy estimation.

16.2.4 Stochastic properties

We already have a comprehensive account of the stochastic properties of gamma-
ray images from the discussions in Chaps. 11 and 12. From Chap. 11 we know
that Poisson statistics arise whenever we are counting independent events. From
a nonrandom source, gamma rays are emitted independently, in full accord with
the postulates presented in Sec. 11.1.1. Position and energy estimation and energy
windowing do not introduce any dependence, and the postulates still apply after
these operations (see Secs. 12.3.6 and 12.3.7). It follows, then, that the number
of gamma rays emitted in some time interval is a Poisson random variable, the
pattern of photons incident on any plane is a Poisson random process, and a discrete
detected image is a Poisson random vector.

In this section we shall apply these general principles specifically to the case of
planar nuclear medicine, but we shall be looking ahead to Chap. 17, where we discuss
tomographic gamma-ray imaging; the stochastic models developed here will find
their full use in that reconstruction problem. Three distinct ways of representing
the random data— list, random process and image histogram—will be discussed,
and the statistical properties of each representation will be presented.
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List mode The first data representation to discuss is just a list of the raw data
values. In the nuclear-medicine literature, this form of data storage is known as list
mode. There is considerable freedom in choosing what information to include in
the list.

For a scintillation camera, the rawest data are the photomultiplier signals for
each absorbed events. If we wanted to preserve this information in its entirety, we
could just construct a list containing all of these values. Suppose that J photons are
absorbed in the scintillation crystal of an Anger camera, and that the jth photon
produces a peak voltage on the kth photomultiplier of Vk, (k = 1, ...K). We can
store these values in a list J elements long, with each entry in the list consisting of
K numbers. We might also add other information to each entry, such as the time of
arrival of the photon or an identifier specifying which of several cameras the photon
struck. With this form of storage, we have preserved all of the information in the
raw PMT data, but we must do substantial further processing to convert the list
into an image.

A less raw approach is to first estimate position and energy of each photon
and then to store these estimated values in a list. If the jth photon is estimated to
have a 2D position r̂j and an energy Êj , then each entry in the list consists of three
numbers, x̂j , ŷj and Êj , plus time and possibly other identifiers.

To be general about the statistics of list-mode data, we can define an attribute
vector Aj for the jth photon. For example, if we store raw PMT signals, the
attribute vector has K elements, and for position and energy estimates it has three
elements. Nonrandom parameters such as time might be included in the list but
are not considered to be part of the attribute vector; instead they can be lumped
into a parameter vector αj , and the full list is {Aj ,αj , j = 1, ..., J}.

Statistical independence Whenever the Poisson postulates of Sec. 11.1.1 are satis-
fied, the attribute vectors for different photons are statistically independent. This
is not a universally valid assumption, however, since it ignores some effects that can
occur in a detector at high count rates. As we noted in Sec. 11.1.1, if one photon
temporarily paralyzes the detector and there is a significant probability of another
photon arriving before it recovers, the probability of detection of the second pho-
ton is dependent on the presence of the first. By the same token, the measured
attributes of the second photon can depend on those of the first. For example,
PMT signals can have tails extending for a microsecond or so after the peak. If the
second photon occurs within a microsecond of the first, the observed signal will be
the second signal plus the tail of the first (see Fig. 16.13); the peak signal will be
altered, as will any position or energy estimates derived from the peak signals, and
the attributes will not be independent.

Fig. 16.13 Typical photomultiplier signals showing pulse pileup.
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If we neglect these high-count-rate effects, then we can assume that attribute
vectors for different photons are statistically independent, and we can write

pr({Aj}|f ) =
J∏

j=1

pr(Aj |f ) . (16.110)

Preset time vs. preset count As we discussed in Sec. 11.2.1, there are two different
ways of acquiring data in nuclear medicine; we can collect photons for a preset time
or until a preset number of counts is accumulated. If we collect for a preset time
τ , the number of items in the list is random, and J therefore becomes part of the
data. The overall data distribution is then6

pr({Aj}, J |f ) = pr({Aj}|J, f ) Pr(J |f ) = exp
[
−J(f )

]
[
J(f )

]J

J !

J∏

j=1

pr(Aj |f ) ,

(16.110)
where the last form recognizes that J is a Poisson random variable with mean
dependent on the object (and, of course, on the exposure time).

If we collect exactly J counts, the image itself contains no information on the
absolute strength of the source, but we might also record the time τJ needed to
collect the counts. In that case, the data set includes τJ as well as the attribute
list, and we can write the overall PDF as

pr({Aj}, τJ |f ) = pr({Aj}|f ) pr(τJ |f ) = pr(τJ |f )
J∏

j=1

pr(Aj |f ) . (16.111)

The time needed to collect J counts from a Poisson source is a random variable,
but for large J its density can be approximated by a delta function δ[τJ − J/a(f )],
where a(f ) is the overall object-dependent count rate.

To complete these statistical descriptions, we need a way of computing the
attribute density pr(Aj |f ); we shall return to this problem shortly.

Random process For theoretical analysis, it is convenient to represent the items in
a list in terms of a random process. For example, if the attribute vectors consist
of position and energy estimates, we can use them to construct a spatio-spectral
random process as in (12.277):

gdet(r̂, Ê) ≡
J∑

j=1

δ(r̂− r̂j) δ(Ê − Êj) , (16.112)

where r̂ is the estimated 2D position on the camera face and Ê is the estimated
energy.

All properties of a Poisson random process are fully determined by its fluence.
For the spatio-spectral random process gdet(r̂, Ê), the relevant fluence is given by
(12.282) as [cf. (16.109)]:

bdet(r̂, Ê) = τ

∫

∞
d2r

∫ ∞

0
dE pr(r̂, Ê |r, E) η(E) Ip,E(r, E) . (16.113)

6Recall that we use the lower-case pr(·) when we want to specify jointly a probability for a discrete
random variable and a PDF for a continuous one.
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This fluence is directly the mean of the random process, and it also specifies the
autocovariance function in position and energy by (12.285):

Kgdet
(r̂, r̂′, Ê , Ê ′) = bdet(r̂, Ê) δ(r̂− r̂′) δ(Ê − Ê ′) . (16.114)

PDF for the attribute vector We know from Secs. 11.3.2 and 12.3.7 that the spatio-
spectral fluence can be interpreted, after proper normalization, as the probability
density function on the estimated position and energy of any individual count.
Thus, if the attributes for an item in the list are estimated position and energy, the
PDF needed in (16.110) and (16.111) is [cf. (12.281)]

pr(r̂, Ê |f ) =
1

J(f )
bdet(r̂, Ê) . (16.115)

Image histograms In gamma-ray imaging with a scintillation camera, the final im-
age is usually obtained from the position and energy estimates by accepting photons
whose estimated energies lie in some energy window and binning or histogramming
the spatial positions as in (12.286). The integral of a Poisson random process over
any area is a Poisson random variable, so we know the statistics of the discrete data
vector at once. In particular, the covariance matrix is given by (12.288) as

[Kg]mm′ = gm δmm′ . (16.116)

If each gm is large, say greater than about 10, it is a good approximation to
consider the data to be normally distributed with this covariance.

Noise due to scatter Since it was couched entirely in terms of the spatio-spectral
fluence, this discussion on stochastic properties of gamma-ray images has made no
distinction between scattered and unscattered photons. The scattering does not
introduce any dependence among different photons and does not affect the Poisson
character of the spatio-spectral random process or the random vector that results
after binning. Each accepted photon contributes one count to the digital image; the
energy loss influences the probability of acceptance but not the contribution of the
photon to the image if it is accepted.

Object randomness Object randomness does lead to non-Poisson statistics in nu-
clear medicine. When the object varies, the spatio-spectral fluence varies also, and
gdet(r̂, Ê) becomes a doubly stochastic Poisson random process as discussed in Sec.
11.3.6. Similarly, the discrete image after energy windowing and spatial binning
becomes a doubly stochastic Poisson random vector (see Sec. 11.2.2).

16.2.5 Image quality: Classification tasks

Planar nuclear medicine affords a good opportunity to discuss basic issues in image
quality with relatively simple noise and system models. Unlike the discussion of
image quality in digital radiography in Sec. 16.1.6, we need not worry about non-
Poisson noise (other than object variability), and the system is strictly linear so we
do not need contorted discussions of linearization.

In this section we shall discuss image quality in planar nuclear medicine for
detection and discrimination tasks. We shall begin with SKE/BKE tasks, using
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them to discuss the importance of detector resolution. When we get to collimator
resolution, however, we shall see that it is hazardous to rely too much on SKE/BKE
tasks. At that point we shall turn to discrimination tasks and random backgrounds.

SKE/BKE tasks and the ideal observer SKE/BKE detection tasks in pure Poisson
noise were analyzed in Sec. 13.2.9. We know from (13.131) that the log-likelihood
ratio for this case is given by

λ =
M∑

m=1

gm ln
g2m
g1m

, (16.117)

and the ideal-observer SNR is given by (13.132) as

SNR2
λ =

[∑M
m=1(g2m − g1m) ln

(
g
2m

g
1m

)]2

1
2

∑M
m=1(g2m + g1m) ln2

(
g2m

g1m

) . (16.118)

Now suppose that the signal to be detected makes a small contribution to the
mean data, so that we can write g2m = g1m + sm, with sm * gjm for j = 1, 2 and
all m. As we saw in (13.135), a Taylor expansion of the logarithms through terms
linear in the signal yields

SNR2
λ ≈

M∑

m=1

s2m
gm

, (16.119)

where gm can be either g1m or g2m to this approximation.
An alternative way to arrive at this expression is to assume that the mean

number of counts in each bin is large enough that we can approximate the Poisson
law with a Gaussian (gm > 10 will suffice). In that case the Hotelling observer is
approximately ideal, and the Hotelling SNR for a weak signal is given by

SNR2
Hot = stK−1

g s . (16.120)

With the help of (16.116), this general expression again reduces to (16.119).
A useful approximation to (16.119) is obtained by considering a spatially com-

pact signal and a slowly varying object, such that gm is approximately the same
for all pixels where the signal sm is nonzero. If the signal is centered on pixel m0,
we then have

SNR2
λ ≈

1

gm0

M∑

m=1

s2m , (16.121)

and the sum is recognized as the L2 norm of the detected signal. Anything that re-
duces this norm, reduces the detectability of the signal in this approximation. More-
over, anything that increases gm0

without also increasing the sum also decreases
the detectability; an immediate implication is that background activity overlapping
the signal in the 2D projection must be deleterious.

As written, (16.119) is simpler than the corresponding expression for digital
radiography, (16.47), because the covariance matrix is simpler, but it hides some
essential factors that contribute to detection performance. We cannot see imme-
diately, for example, how the spatial and energy resolution of the detector or the
design of the collimator affect SNR2. We shall now consider each of these effects in
turn for the weak-signal SKE/BKE problem.
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Effect of position estimation In an Anger camera, the bins in the digital matrix can
be made arbitrarily small, but there is still a resolution limitation arising from the
position-estimation step, and this limitation can affect the detectability.

To isolate this effect, suppose that the bins in the digital image are so small
that a sum over bins can be approximated as an integral. Suppose also that the
estimation blur is shift-invariant, so that pr(r̂|r) = pest(r̂ − r). Then we can write
(16.121) as

SNR2
λ =

1

b0

∫

∞
d2r̂

[∫

∞
d2r pest(r̂− r)∆b(r)

]2
. (16.122)

The integral over r is recognized as a convolution, so we can use the convolution
theorem (3.243) and Parseval’s theorem (3.226) to write

SNR2
λ =

1

b0

∫

∞
d2ρ |Pest(ρ)∆B(ρ)|2 . (16.123)

Since pest(r̂−r) is a properly normalized probability density function, it follows from
the central-ordinate theorem (3.229) that Pest(0) = 1. Moreover, since pest(r̂ − r)
is nonnegative, it follows from the first inequality in (3.65) that |Pest(ρ)| ≤ 1 for all
ρ. Therefore,

SNR2
λ ≤

1

b0

∫

∞
d2ρ |∆B(ρ)|2 . (16.124)

The right-hand side is what one would get with no estimation error. Thus the finite
intrinsic resolution of the Anger camera will reduce the ideal-observer detectability
unless the blur is negligible compared to the width of the pre-detection difference
signal.

Effect of the collimator Another source of blur is the collimator; if we increase the
bore diameter or reduce the bore length, the mean image incident on the detector
plane is a more blurred representation of the 2D projection of the 3D object. Unlike
the blur due to detector resolution or post-detection processing, however, collima-
tor blur has a countervailing advantage: collimators with larger bore diameter or
smaller bore length collect more photons and hence reduce the Poisson noise relative
to the mean. It is not obvious how the collimator parameters should be chosen, but
in keeping with our general philosophy, the collimator should be designed to opti-
mize task performance. As we shall now see, this requirement leads to a surprising
result if the task is SKE/BKE detection.

Since the collimator blur depends on distance from the collimator, it is con-
venient for this discussion to consider a planar object parallel to the face of the
collimator. Thus we take f(r, z) = f(r) δ(z − z0) in the absence of a signal and
f(r, z) = [f(r)+∆f(r)] δ(z−z0) when a signal is present. We assume for simplicity
that z0 + Lb so that radiation can reach the detector plane through many bores.
In that case, we can approximate the sum over bores with an integral as in (16.96),
and the point response function is well approximated by the autocorrelation of the
bore function as in (16.91). Recall, however, that this PRF maps the object f(r)
to the photon irradiance Ip(r) incident on the detector plane P ; the corresponding
fluence for the detected photons requires some constants. Neglecting scatter and
attenuation, we obtain

b(r) = C

∫

∞
d2r′ [β - β]

[
Lb

z0
(r− r′)

]
f(r′, z0) , (16.125)
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where

C =
1

4πz20

αpf

Abore
τη(E0)Pacc(E0) . (16.126)

Note that the system is now shift-invariant since we have considered a planar object
sufficiently far away that the fine structure of the collimator bores is not important.
The same conclusion would hold for any z0 if we averaged the PSF over collimator
shifts.

To focus on the effect of the collimator, we assume an ideal detector and
compute the detectability associated with the continuous image on plane P. If we
consider a weak, spatially compact signal centered at r = r0 and assume that the
background object is slowly varying over the support of the signal, the expression
we must evaluate is [cf. (16.121)]

SNR2
λ =

1

b0
||∆b||2 . (16.127)

The denominator in (16.127) is given by

b0 = C f(r0)

∫

∞
d2r′ [β - β]

[
Lb

z0
(r− r′)

]
, (16.128)

and the numerator is given by

||∆b||2 = C2

∫

∞
d2r

{∫

∞
d2r′ [β - β]

[
Lb

z0
(r− r′)

]
∆f(r′)

}2

. (16.129)

Various Fourier theorems can be applied to simplify this expression; details
are left as an exercise, but hints can be found in Barrett and Swindell (1981, 1996).
The result is

SNR2
λ =

τηtot
f(r0)

∫

∞
d2ρ

∣∣∣∣Mcoll

(
z0
Lb

ρ

)
∆F (ρ)

∣∣∣∣

2

, (16.130)

where ηtot is the total efficiency of the collimator and detector, defined by

ηtot =
αpfAbore

4πL2
b

η(E0)Pacc(E0) , (16.131)

and Mcoll(ρ) is the collimator MTF, given by

Mcoll(ρ) =

[
2J1(πDbρ)

πDbρ

]2
. (16.132)

Two limits It is instructive to look at the behavior of the SNR for this problem
in the limits of large and small collimator bores. In the limit as Db → 0, we can
evaluate (16.130) by noting that the collimator MTF is a broad function compared
to the signal transform ∆F (ρ). Since Mcoll(0) = 1, we can then write

SNR2
λ →

τηtot
f(r0)

∫

∞
d2ρ |∆F (ρ)|2 =

τηtot||∆f ||2

f(r0)
, (16.133)

where the last step follows from Parseval’s theorem. In this limit, therefore, SNR2
λ

grows linearly with the efficiency and the exposure time, and it is directly propor-
tional to the squared L2 norm of the signal in the object domain.
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In the opposite limit, the signal transform ∆F (ρ) is large compared to
Mcoll(z0ρ/Lb), and we have

SNR2
λ →

τηtot
f(r0)

|∆F (0)|2
∫

∞
d2ρ

∣∣∣∣Mcoll

(
z0
Lb

ρ

)∣∣∣∣

2

=
τηtot
f(r0)

∣∣∣∣

∫

∞
d2r ∆f(r)

∣∣∣∣

2 ∫

∞
d2ρ

∣∣∣∣Mcoll

(
z0
Lb

ρ

)∣∣∣∣

2

, (16.134)

where now the last step has used the central-ordinate theorem. A change of variables
shows that the integral over ρ varies as 1/D2

b , cancelling the factor of D2
b in ηtot

and yielding an SNR that is independent of Db.
The factor |

∫
∞ d2r ∆f(r)|2 is also of interest. No longer does the L2 norm

of ∆f(r) appear in the SNR; instead we now have the integrated activity in the
difference object. If the difference object is nonnegative, then this integral is the
L1 norm, but there is no absolute value in the integral, and there is nothing that
requires ∆f(r) ≥ 0.

What collimator should be used? Knowing the limiting behavior of SNRλ, we can
now sketch its dependence on bore diameter as in Fig. 16.14. The main conclusion
from this plot is that the optimum collimator is no collimator at all! The bore
diameter should be as large as possible in order to collect as many photons as
possible, and there is no advantage in this task to getting good spatial resolution.
The explanation for this counterintuitive result is that the task is so tightly specified
that it is not necessary to resolve fine details; every detail of the two possible objects
is known in advance, and it is required only to decide which object (background
or signal plus background) is present. When the two objects differ by a known
amount in the total number of photons they emit, the best strategy for deciding
between them is just to reduce as much as possible the uncertainty in estimating
this number, which we can do by collecting as many photons as possible.

Fig. 16.14 Dependence of the ideal-observer SNR for detection of a disc signal

on diameter of the collimator bore.

Zero-DC tasks Since
∫
∞ d2r ∆f(r) is the zero-frequency or DC Fourier component

of the difference object, we can refer to tasks where this component vanishes as
zero-DC tasks. We see from (16.134) that the detectability goes to zero in the
limit of large collimator blur for a zero-DC task; task performance requires more
than just estimating the total activity in this case.
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The first use of a zero-DC task in image-quality assessment was by Harris
(1964), who suggested the Rayleigh task illustrated in Fig. 16.15. The goal in this
task is to discriminate between a single Gaussian blob and two separated blobs of
half the amplitude, so that the two signals have the same

∫
∞ d2r f(r), and hence∫

∞ d2r ∆f(r) = 0. Harris suggested using the minimum value of the separation at
some specified level of discrimination performance as a measure of spatial resolution.

Fig. 16.15 Illustration of the Rayleigh task, where the object is either two

Gaussian blobs or one Gaussian with the same integrated activity.

Wagner et al. (1981) used the Rayleigh task to evaluate nuclear-medicine imag-
ing systems, but they still found paradoxical results. In particular, they found that
coded apertures had no resolution advantage, in the Harris sense, over very large
pinholes that collected the same number of photons. Coded-aperture images can be
decoded to give a spatial resolution, as defined by the width of the point response
function, that is much better than that of a pinhole of equal collection efficiency.
Therefore the conclusion of Wagner et al. is equivalent to saying that spatial reso-
lution in this conventional sense is not important for the stylized SKE/BKE task
they considered. To get a more realistic assessment of the system, we must consider
more realistic tasks.

Random signals and backgrounds As discussed in Sec. 13.2.11, one way to make the
task more realistic is to consider detection on a random background. The first step
in this direction in emission imaging was taken by Tsui et al. (1978, 1983), who
considered detection of a spherical tumor of known size and location in a spatially
uniform background of unknown level. One observer model they considered closely
approximated the ideal Bayesian strategy for this task [see (13.215)]. The observer
estimated the random background level by integrating the counts over an annular
region surrounding the tumor and compared that value with the integrated counts
over the signal location. With this model, the optimum aperture size was approx-
imately equal to the size of the lesion to be detected, and increasing the aperture
size beyond this point resulted in reduced detectability in spite of increased counts.
When the background was assumed to be known, however, the optimum aperture
size increased to infinity, in accord with the ideal-observer analysis presented in
Fig. 16.14.

A somewhat more realistic background, the lumpy background described in
Secs. 8.4.4 and 13.2.12, was used by Myers et al. (1990) and Rolland and Barrett
(1992) to discuss aperture optimization in emission imaging. It was found that
spatial resolution in the conventional sense (width of the point response function)
was required to distinguish the signal from the background inhomogeneities. As in
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the Tsui work, the optimum aperture size was found to be approximately equal to
the size of the signal.

Still more realistic random backgrounds, and random signals, were used by
Fiete et al. (1987) and later by White (summarized in Barrett et al., 1992). Using
a 3D mathematical liver model developed by Cargill (1989), these authors stud-
ied both human and Hotelling detection performance as a function of collimator
bore diameter and bore length. Two key findings were that a long bore and small
bore diameter optimized Hotelling performance, in spite of the relatively low collec-
tion efficiency, and that Hotelling performance was an accurate predictor of human
performance in this case.

Psychophysical studies Psychophysical studies can be used without correlation with
model observers to evaluate components of nuclear medicine systems. One exam-
ple is the work of Buvat et al. (2001), who used a physical breast phantom and
human ROC studies to compare collimators in scintimammography. Breast tumors
were represented by hot spheres. It was demonstrated that ultrahigh-resolution
collimators were advantageous for this task in spite of reduced collection efficiency.

Detection tasks and list-mode data So far we have assumed that the detection or
discrimination tasks were performed by an observer with access to image histograms,
but there may be some loss of information in going from the raw list-mode data to
the binned histograms. For SKE/BKE discrimination tasks, the SNR for an ideal
observer operating on list-mode data was computed by Barrett et al. (1997b). For
preset time, they showed that

SNR2
λ =

[∫
∞ d2r̂

∫∞
0 dÊ (b2 − b1) ln

(
b2
b1

)]2

1
2

∫
∞ d2r̂

∫∞
0 dÊ (b2 + b1) ln

2
(

b2
b1

) , (16.135)

where we have simplified the notation by writing bj for bdet,j(r̂, Ê); with the j
subscript distinguishing hypothesis 1 from hypothesis 2.

If we consider weak signals, so that b2 = b1 +∆b, with ∆b * bj for j = 1, 2,
then we find

SNR2
λ ≈

∫

∞
d2r̂

∫ ∞

0
dÊ

(∆b)2

bj
. (16.136)

Comparing (16.135) and (16.136) with their binned counterparts, (16.118) and
(16.119), respectively, we see that the main difference is that the sum over bins has
been replaced by an integral over attribute space. Thus (16.135) and (16.136) are
the limits of the binned expressions as the bin widths go to zero. Recall, however,
that the binned expressions were derived on the assumption that there was only one
energy bin; either Ê fell in the energy window and the event was accepted, or it did
not and the event was rejected. In the list-mode expressions, there is no windowing
and every event contributes, in principle. Even scattered photons are useful to the
extent that ∆b is nonzero.

Linear discriminants and random processes If we wish to move away from SKE/BKE
tasks and consider random signals or backgrounds with list-mode data, we run into
difficulties computing the ideal-observer detectability. In that case, it is again useful
to consider the ideal linear or Hotelling observer. This observer is not defined as
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a linear functional of the attributes in the list, but rather as a linear discriminant
acting on the corresponding random process. For the spatio-spectral process given
in (16.112), the linear discriminant function has the form [cf. (13.9)]

T (gdet) = w†gdet =

∫

∞
d2r̂

∫ ∞

0
dÊ wdet(r̂, Ê) gdet(r̂, Ê) . (16.137)

To compute the SNR for this discriminant, we need to know the mean and
autocorrelation function for the random process. For the important special case of
a doubly stochastic spatial Poisson random process, these expressions are found in
Sec. 11.3.6, and they extend readily to the spatio-spectral case.

16.2.6 Image quality: Estimation tasks

Planar nuclear medicine is poorly suited to estimation tasks because of the 3D-to-2D
mapping. If, for example, we wanted to estimate the activity in the left ventricle of
the heart, counts from the ventricle would be confused with counts from tissues that
overlap the ventricle in a single 2D projection. We encountered a similar situation
in the context of digital radiography in Sec. 16.1.7, but there we avoided the issue
of overlapping tissues by considering only changes in x-ray attenuation coefficient
following injection of a contrast agent. The main problems that arose in that case
were the system nonlinearity and the variation of system sensitivity with depth. In
planar nuclear medicine, these two system problems do not come up, but we do not
usually have the possibility of doing subtraction imaging, and we must therefore
deal with the overlapping activity.

This fundamental difficulty can be solved only by tomographic imaging, which
is the subject of Chap. 17, but it is instructive to analyze the problem further in the
context of planar imaging. This discussion will illustrate the concept of estimability,
introduced in Secs. 13.3.1 and 15.1.3, and it will provide some insights into the role
of prior information in estimation problems.

Bias and estimability Suppose the task is to estimate the activity in a spherical
region of interest (ROI) of known location in the body. As usual, we would like to
assess performance on this task by bias and variance of the estimate, but we have
emphasized that bias is well defined only for estimable parameters. If the parame-
ter in question is the activity in an ROI, then the estimability condition is that the
template defining the ROI be a linear combination of system sensitivity functions
[see (15.23)]. For a parallel-hole collimator, the sensitivity functions are long, thin
cones parallel to the axis of the bores (the z axis). The spherical template cannot be
synthesized as a linear combination of such functions, so any estimate derived from
a single 2D projection will necessarily have a bias of unknown magnitude arising
from the overlapping tissue.

To discuss this problem quantitatively, we need to decompose the template
into null and measurement components. To see the essential features of the calcu-
lation, let us first ignore blur and attenuation. The kernel for the mapping from
the 3D object to the continuous 2D projection is obtained from (16.91) by letting
Db → 0; a factor of (z′/Lb)2 arises because of the scale factor in the argument of
the autocorrelation, and we see that

h(r− r′, z′) →
αpf

4πL2
b

δ(r− r′) . (16.138)
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There is no longer any dependence on z′; the system sensitivity is independent of
depth, so the projection is a simple line integral in the z′ direction.

We learned in Sec. 7.2.10 how to compute the SVD for axial systems, which blur
laterally and integrate along the z axis. For shift-invariant blur, we saw in (7.223)
that the object-space singular functions corresponding to nonzero singular values are
2D plane waves exp(2πiρ · r) modulated by the depth-dependent transfer function
H(−ρ, z). In the present problem, there is no lateral blur and no dependence on z,
so H(−ρ, z) is independent of ρ and constant over the region of support in the z
direction; if we take that support as 0 < z ≤ Lz , we get

uρ,j(r, z) =
1√
Lz

exp(2πiρ · r) rect
(
z − 1

2Lz

Lz

)
, (j = 1) . (16.139)

There is also an infinite set of functions {uρ,j(r, z)} with j > 1, but they are in the
null space; the measurement space is spanned by {uρ,j(r, z)} for all ρ and j = 1.

With these singular functions, the projection of the ROI template onto mea-
surement space is [cf. (1.165)]

χmeas(r, z) = [Pmeasχ](r, z) =

∫

∞
d2ρ uρ,1u

†
ρ,1χ

=
1

Lz

∫

∞
d2ρ

∫

∞
d2r′

∫ Lz

0
dz′ exp[2πiρ · (r− r′)]χ(r′, z′) =

1

Lz

∫ Lz

0
dz′ χ(r, z′) ,

(16.140)
where we have used the completeness relation (3.218) in the last step. Thus, not
surprisingly, the measurement component of the template is just the template av-
eraged over depth.

One way to restate this result is to use a Fourier series in z for χ(r, z):

χ(r, z) =
∞∑

n=−∞

χn(r) exp(2πinz/Lz) . (16.141)

As one might expect from the central-slice theorem (4.150), the measurement com-
ponent is just the zero-frequency term:

χmeas(r, z) = χ0(r) . (16.142)

The null component contains all other frequencies; it is given by

χnull(r, z) = χ(r, z)−
1

Lz

∫ Lz

0
dz′ χ(r, z′) . (16.143)

Integrating this expression over 0 < z ≤ Lz yields zero, so it is indeed a null func-
tion for the system model of (16.138).

With uniform attenuation but no blur, the measurement-space singular func-
tions are given by (16.139) with an extra factor of exp(−µz) and a modified nor-
malization. In that case,

χmeas(r, z) =
µ exp(−µz)

1− exp(−µLz)

∫ Lz

0
dz′ χ(r, z′) exp(−µz′) . (16.144)
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The reader may fill in the missing steps.
Knowing the decomposition of the template into measurement and null com-

ponents, we can now begin to make some statements about bias in an ROI estimate.
There are several ways to proceed. We can compute the bias (or bounds on the
bias) for particular objects as in Sec. 15.1.4, or we can assume some prior knowl-
edge about the class of possible objects. Prior knowledge can be either a statistical
model or a deterministic model with unknown parameters. We shall sketch each of
these approaches and then discuss objective evaluation of biased estimates.

Pseudoinverse estimators We shall first consider pseudoinverse estimators as dis-
cussed in Sec. 15.2.1 and see what we can say about bias for particular objects.
Since the parameters of interest and the estimators are linear, we do not have to
know anything about the noise in the data to compute the bias, but we note that if
the noise is i.i.d. normal, the pseudoinverse estimators are also maximum likelihood.

The general form of a pseudoinverse estimator is given in (15.47). For estima-
tion of a scalar parameter Θ ≡ χ†f, that equation reduces to

Θ̂ = χ
†H+g . (16.145)

This estimate is unbiased if and only if Θ is estimable, which it isn’t in the present
discussion.

We can construct H+ from what we know about the SVD of laterally shift-
invariant axial systems (see Sec. 7.2.10). It follows from (7.223), (7.224), (1.116)
and (1.121) that

[H+g](r, z) = rect

(
z − 1

2Lz

Lz

)∫

∞
d2ρ

H∗(ρ, z)
∫ Lz

0 dz′ |H(ρ, z′)|2
G(ρ) exp(2πiρ · r) .

(16.146)
If the transfer function is independent of z (as it would be for the intrinsic resolution
of an Anger camera), this equation expresses a lateral inverse filter7 followed by
backprojection in z. For depth-dependent blur, for example due to the collimator,
the pseudoinverse is not a separate inverse filter at each z.

To go fromH
+g to the desired Θ̂, we must take the scalar product with χ(r, z);

by Parseval’s theorem, the result is

Θ̂ =

∫ Lz

0
dz

∫

∞
d2ρ

H∗(ρ, z)
∫ Lz

0 dz′ |H(ρ, z′)|2
X∗(ρ, z)G(ρ) , (16.147)

where X(ρ, z) is the 2D Fourier transform of χ(r, z). (Note that X is capital χ.)
In the absence of blur and attenuation, H(ρ, z) = αpf/(4πL2

b), so (16.147)
simplifies to

Θ̂ =
4πL2

b

αpf

∫

∞
d2ρ

[
1

Lz

∫ Lz

0
dz X∗(ρ, z)

]

G(ρ)

=
4πL2

b

αpf

∫

∞
d2rd

[
1

Lz

∫ Lz

0
dz χ(rd, z)

]

g(rd) , (16.148)

7Note that H∗(ρ )/|H(ρ )|2 = 1/H(ρ).
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where the last step has again invoked Parseval. In this case, therefore, the pseu-
doinverse estimate is obtained essentially by taking the scalar product of the data
with the projection of the ROI template.

To determine a bound on the bias in the pseudoinverse estimate for some
particular object, we can use (15.52). We shall illustrate the procedure by again
neglecting attenuation and lateral blur. In that case, it follows from (16.143) that
maxr |χnull(r, z)| = 1, so the difference between the true Θ and its pseudoinverse
estimate is bounded by

|Θ− Θ̂| ≤
∫

S(χnull)
d3r |f(r)| . (16.149)

Since there is no lateral blur, the support of χnull is a cylinder parallel to the z
axis and encompassing the ROI; object activity outside this cylinder is irrelevant
to estimation of the activity in the ROI. Even with this restriction, however, the
bound in (16.149) is not very useful. It says merely that the bias in estimating an
integral of the object over an ROI cannot exceed the integral of the object over a
cylinder encompassing the ROI. The worst case is when all of the object activity is
outside the ROI.

Model-based background subtraction To get a better estimate of Θ in this grossly
underdetermined problem, we must have better prior knowledge of the object. One
form of prior information is a model for the object with a small number of free
parameters.

As an example, consider a spherical ROI immersed in a uniform slab of known
thickness but unknown background activity, so there are just two parameters of
interest: the integrated activity in the ROI and the activity per unit volume in the
background. We assume also, for now, that there is no blur from the detector or
collimator, no attenuation and no scattered radiation.

With this model, we can define an unbiased estimator of the ROI activity,
in spite of the lack of estimability, since we are not allowing much freedom in the
object being imaged. Though the object can have arbitrary structure over the ROI,
its behavior outside the region is specified by one number, the activity per unit
volume. Recall the basic argument for estimability from Sec. 15.1.3. If a parame-
ter θ is defined by a template χ(r) as in (15.15), it can be written via (15.19) as
θ = (χmeas, fmeas) + (χnull, fnull). The first term represents what we can learn
about θ from noise-free data, and the second term is zero if either fnull = 0 or
χnull = 0. We argued in Chap. 15 that we cannot be guaranteed that fnull = 0, so
therefore we must require χnull = 0; this requirement is unnecessary here since we
are, in essence, assuming that the portion of the object outside the ROI contains
no null components.

In the absence of blur and attenuation, unbiased estimators of the two un-
known parameters can be obtained rather simply. Both parameters contribute to
the counts in region A of the image (see Fig. 16.16), but only the background activ-
ity contributes to region B. Knowing the geometry, we can estimate the background
level from the pixels in B, and we can then construct a new image with no back-
ground contribution; summing the pixels in region A for this corrected image then
gives an estimate of the activity in the ROI. In terms of estimability, the ROI can
be taken as a cylinder in the corrected image rather than a sphere, and the template
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defining the cylinder is well approximated as a linear combination of the sensitivity
functions, so ROI activity is estimable within this model.

Attenuation can spoil estimability, even in this greatly oversimplified model,
since it causes the system sensitivity to vary with depth. In the digital radiography
problem discussed in Sec. 16.1.7, the integrated change in x-ray attenuation coeffi-
cient over a region of interest was not estimable, even in the absence of blur, because
the 1/R2 factor seen in (16.64) caused the system sensitivity to depend on depth.
For emission-imaging with a parallel-hole collimator, we know from (16.95) that
the system sensitivity in air is approximately independent of depth, but attenua-
tion causes a depth dependence. The sensitivity functions all contain an exponential
factor, and even a cylinder cannot be synthesized by superimposing them. In order
to ignore this effect, we must add more assumptions to our already overburdened
model. If we assume that the depth of the spherical ROI is known and the diameter
of the sphere is small compared to the reciprocal of the attenuation coefficient, we
can correct for attenuation.

Fig. 16.16 Slab geometry for an idealized estimation problem.

An attempt at being Bayesian Another form of prior information is statistical. A
Bayesian assumes that a prior PDF on the object is known and uses that infor-
mation to minimize some risk function. We shall now pursue this approach in the
context of ROI estimation with a quadratic risk.

As with most Bayesian analyses, we choose our prior knowledge not as some-
thing we really know but as something that will lead to a tractable solution. In
statistics, tractable is almost synonymous with Gaussian, so we begin by assuming
Gaussian statistics for the object and the measurement noise. Since we are regard-
ing the data as continuous here, the noise n(rd) is a 2D Gaussian random process
and the object f(r, z) is a 3D one. The object random process is fully specified by
the mean vector f(r, z) and the autocovariance function Kf (r, r′; z, z′), correspond-
ing to the autocovariance operator Kf . The noise is, by definition, zero mean, and
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its autocovariance function is denoted Kn(rd, r′d), with the corresponding operator
being Kn .

We wish to use this prior model to minimize the mean-square error (MSE),
averaged over both data realizations and the prior. The minimum-MSE estimate is
given in terms of the generalized Wiener filter (see Sec. 13.3.7) as

Θ̂MMSE = χ
† f̂MMSE = χ

†KfH
†
[
HKfH

† +Kn

]−1
(g− g) + χ

†f . (16.150)

Since we have assumed that the imaging system is laterally shift-invariant, the
only tractable way to proceed is to assume that the object and noise are laterally
stationary. Thus we assume that

Kf (r, r
′; z, z′) = Kf (r− r′; z, z′) , Kn(rd, r

′
d) = Kn(rd − r′d) . (16.151)

These assumptions are plausible since the template confines our interest in (16.150)
to a limited spatial region where the statistics might not vary too much.

Stationarity in z would be much more problematical. We are assuming a slab
geometry where the object is contained in 0 < z ≤ Lz, so we definitely cannot
assume strict stationarity. A common ruse in this situation is to assume cyclic
stationarity, as discussed in Sec. 8.2.8, so that a DFT can be used, but there is no
physical justification for this assumption either.

Fortunately, there is no need to assume anything about the z and z′ dependence
of Kf (r − r′; z, z′) if we are considering only LSIV axial systems. If we represent
this function by its 2D Fourier transform as

Kf (r− r′; z, z′) =

∫

∞
d2ρ Sf (ρ; z, z

′) exp[2πiρ · (r− r′)] , (16.152)

similarly represent H and Kn as 2D inverse Fourier transforms, and do a consider-
able amount of algebra, we find [cf. (16.147)]

Θ̂ =
¯̂
Θ+

∫ Lz

0
dz

∫

∞
d2ρ X∗(ρ, z)W (ρ, z) [G(ρ)−G(ρ)] , (16.153)

where
¯̂
Θ = χ†f is the prior mean of Θ, G(ρ) is the Fourier transform of [Hf ](rd)

(i.e., the prior mean of the data in the Fourier domain), andW (ρ, z) is a Wiener-like
filter defined by

W (ρ, z) =

∫ Lz

0 dz′ Sf (ρ; z, z′)H∗(ρ, z′)

Sn(ρ) +
∫ Lz

0 dz′
∫ Lz

0 dz′′ H(ρ, z′)Sf (ρ; z′, z′′)H∗(ρ, z′′)
. (16.154)

To understand the behavior of this filter, consider again the case of no blur or
attenuation, and suppose that the object has long-range lateral correlations so that
Sf (ρ; z, z′) is a sharply peaked function of ρ. By contrast, Sn(ρ) is a constant for
uncorrelated noise, so the denominator has a large value near ρ = 0, and it rapidly
approaches a smaller constant value as ρ increases. We saw just this behavior in
Sec. 13.2.12 when we discussed the form of the Hotelling observer for detection in
a lumpy background. As shown in Fig. 13.11, the space-domain counterpart of this
frequency-domain behavior is a positive peak at the origin and long negative tails.
The function of the tails is to estimate and subtract off the background, just as with
the Hotelling template. In other words, this Bayesian estimate is simply a more
formal way of arriving at the same sort of background subtraction we discussed
qualitatively above.
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Performance evaluation In both the background-subtraction and Bayesian
approaches, we had to make many simplifying assumptions in order to derive an
estimate. If we really believed these assumptions, we could use them to compute
figures of merit for image quality.

With the model used for background subtraction, the estimator is unbiased
and the only randomness arises from the Poisson noise, so we can readily compute
the variance in the estimate and use it as the figure of merit. Unfortunately this
model is far from reality. We oversimplified the system (neglecting attenuation and
blur) and we oversimplified the object description (assuming uniform activity out-
side the ROI).

With the Bayesian estimator, the objective was to minimize the posterior
mean-square error, and a pure Bayesian would then use this MSE as the figure
of merit. The difficulty in this approach is that we had to choose the prior for
mathematical tractability, not because it accurately represented the randomness in
real objects. Indeed, any object prior simple enough for incorporation in a Bayesian
estimator is almost certainly unrealistic, and posterior MSE based on this prior is
only a measure of self-consistency of our assumptions, not something indicative of
performance in practice.

There is, however, nothing that says the estimate has to be evaluated on the
basis of the same model under which it was derived. For any estimator, we can
simulate a large number of realistic 3D models for the objects, compute the cor-
responding images, and apply the estimator to each. Since we know the true ROI
activity for each simulated image, we can compute bias, variance and hence MSE
in a frequentist sense. This MSE is then a joint figure of merit for the estimator
and the imaging system.

Estimation of signal parameters So far we have been discussing estimation of pa-
rameters of the object, but we know from Sec. 8.4.5 that it is often useful to divide
the object into signal and background components; loosely speaking, the signal is
the component of the object in which we are most interested. Normally we talk
abut detection of signals, but there are many situations where we know the signal
is there and just want to estimate parameters associated with it (see Sec. 14.3.4).
For example, we may want to estimate the volume of a tumor to see if a patient is
responding to therapy.

In a series of papers, Müller, Moore, Kijewski and co-workers have used such
estimation tasks to evaluate and optimize collimators for planar nuclear medicine
(Müller et al., 1986; Müller et al., 1990; Moore et al., 1995). They use relatively
simple models for the background and signal, but reach important conclusions re-
garding the tradeoffs between resolution and sensitivity as bore length and diameter
and septal thickness are varied. Their modeling of the physical characteristics of the
collimator is quite detailed, taking into account septal penetration and scattering
and K x-ray production in the collimator material as well as the effects of multiple
energy emissions from some isotopes. Though much further work is needed, the
approach suggested by these workers is a model for the use of estimation tasks in
system optimization.



17
Single-Photon Emission
Computed Tomography

In the last chapter we considered two direct-imaging systems using high-energy radi-
ation; in this chapter we discuss an indirect method called single-photon emission
computed tomography, or SPECT. The modifier single-photon distinguishes it
from positron emission tomography, or PET, in which two photons are generated
simultaneously and the projection data are formed by coincident detection of both
photons. In SPECT, a single gamma ray is emitted for each nuclear disintegration,
and some sort of collimator is needed to form a projection image.

As in planar nuclear medicine, the object in SPECT is a self-luminous volume
source. Unlike the planar case, however, the goal in SPECT is to provide a 3D map
of the source, not a projection of it onto a 2D plane. We shall discuss SPECT in
detail here because it is an important modality in its own right, but also because it
serves as a vehicle for introducing many topics that are important in other kinds of
tomography.

As with all digital imaging, SPECT systems are most accurately described as
CD mappings from a continuous object function to a discrete data set. Much of
the literature on SPECT and other forms of tomography, however, is based on CC
formulations. This literature ignores data sampling (at least initially) and makes
various other simplifying assumptions in order to find a linear integral transform,
which we shall call the forward tomographic transform, that maps a continuous
object to continuous mean data. Depending on the geometric model and assump-
tions made, this forward transform might be the 2D or 3D Radon transform (Sec.
4.4.5), the x-ray transform (Sec. 10.3.2), the cone-beam transform (Sec. 17.1.5), or
attenuated versions of any of these.

The objective in this approach is to find another linear integral transform that,
under various idealized assumptions, will allow recovery of the object function from
the continuous data. We shall call this transform the inverse tomographic trans-
form. This inverse transform is then discretized in some manner to get a discrete
linear algorithm, which is applied to real, noisy, discrete data rather than to the ide-
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alized, noise-free, continuous data assumed in the derivation. This approach works
well, in the sense of giving useful images, in a surprisingly large number of cases.

There are two motivations for this emphasis on linear transforms and algo-
rithms. First, there is the basic mathematical understanding that can be obtained
from linear transforms. If we can see, based even on an idealized model, what
information is contained in our data and how to extract it, we can perhaps use
this understanding to improve the design of the imaging system and the algorithm.
Second, there is a computational and economic motivation. We can use nonlinear
iterative reconstruction algorithms (see Sec. 15.4) to account for factors such as
blur, sampling and noise that are necessarily left out of the integral transforms,
but iterative algorithms require more computation than one-step linear transforms.
Computed tomography came of age at a time when computational power was very
limited, and there was a strong motivation for noniterative linear algorithms. Of
course, this computational power has grown exponentially, but so too has the abil-
ity of practical tomographic systems to acquire data. With 3D data acquisition
and ever finer detector resolution, the demands on iterative algorithms have grown
apace, and the motivation for linear algorithms remains. It will be interesting to see
whether linear transforms or iterative algorithms win out in the decades to come.1

(The authors of this book believe that the choice must be based on objective mea-
sures of image quality as well as on economics.)

Though this chapter is essentially about an inverse problem, we take seriously
the maxim: If you want to solve an inverse problem, concentrate on the forward
problem. Accordingly, Sec. 17.1 is devoted to analysis of the forward problem for
several different data-acquisition geometries. The inverse problem is treated in Sec.
17.2, and issues of noise and image quality are in Sec. 17.3.

17.1 FORWARD PROBLEMS

Methods for the deterministic analysis of imaging systems were developed in Chaps.
6, 7 and 10, and in this section we apply those methods to the mathematical de-
scription of the forward problem in SPECT. Our goals are to provide concrete
applications of the mathematics from earlier chapters and to lay the ground work
for discussing image reconstruction and image quality later in this chapter.

Sections 17.1.1 – 17.1.4 are all devoted to one popular SPECT geometry, where
a gamma camera and parallel-hole collimator are rotated around the object. The
first three of these sections are based on CD models where a discrete set of projec-
tion angles is used, and the projection data at each angle are measured on a discrete
array. In particular, Sec. 17.1.1 develops a formal operator theory so that we can see
how the system operators H, H† and H†H for SPECT are related to their coun-
terparts for planar nuclear medicine as treated in Sec. 16.2. Then, in Sec. 17.1.2,
we consider specifically equally spaced angles and see some of the implications of

1The tension between linear transforms and iterative algorithms is seen historically as well. Some
would argue that tomography could not have existed without the fundamental work of Radon,
Bracewell and Cormack on integral transforms, but in fact it was an iterative algorithm imple-
mented by Godfrey Hounsfield that was used in the first commercial CT scanner, and Cormack
and Hounsfield shared the Nobel prize for tomography.
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group theory; acquaintance with Chap. 6 is essential for this discussion, but the
section can be skipped without loss of continuity.

In Sec. 17.1.3 we bring in a different mathematical tool and show how Fourier
analysis, in the form of the Fourier crosstalk matrix introduced in Sec. 7.3.3, can
be used to analyze practical SPECT systems. The interesting point here is that we
can make good use of Fourier analysis without assuming shift-invariance.

In Sec. 17.1.4, we continue the discussion of SPECT systems with parallel-hole
collimators, but now from a CC perspective. Our goal here is to relate the actual
data-acquisition process to the commonly used idealization, the 2D Radon trans-
form.

Continuing on the theme of forward problems, Sec. 17.1.5 considers 3D CC
formulations applicable to pinhole imaging and focused collimators. The goal in
this section is to relate the continuous data to the 3D Radon transform (Sec. 4.4.5)
and the x-ray or cone-beam transform (Sec. 10.3.2), and also to relate these two
apparently different transforms to each other. The effects of attenuation on the
forward tomographic operators are discussed in Sec. 17.1.6.

17.1.1 CD formulations for parallel-beam SPECT

The simplest way to acquire data for SPECT is to use a parallel-hole collimator
with any suitable gamma-ray detector, such as an Anger camera, and to rotate the
collimator-detector assembly around the patient as shown in Fig. 17.1. We already
know a great deal about this system from the discussion in Sec. 16.2 of planar
nuclear medicine with a parallel-hole collimator, so our main goal here is to see
how these planar results apply to rotating-camera SPECT. We shall discuss this
problem in the language of CD mappings, where the detector array is a discrete
set of elements and the data are acquired at discrete projection angles, but the
same formalism will prove useful in a CC context in Sec. 17.2.1. Only the forward
problem is discussed here; image reconstruction for this geometry is treated in Secs.
17.2.2 and 17.2.5.

Fig. 17.1 Configuration for acquiring SPECT data with a rotating gamma
camera and a parallel-hole collimator. The collimator and camera are rotated
as a unit around the patient.

Notation and conventions The formalism developed in Sec. 16.2 for planar imaging
with parallel-hole collimators is applicable to parallel-beam SPECT with minor
modifications. First, we need to add an index to denote the projection angle. One
way to do so is just to consider the vector index on gm to have three components,
two to index position on the detector as before and now a third, say j, to indicate
projection angle. To avoid confusion with previous notation, we shall use gothic
bold m to denote the 3D index and retain m as 2D; thus m = (mx,my, j) = (m, j).
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We also have to be more careful about the specification of the object support
now than we were in Sec. 16.2. There we considered the object support to extend
to ±∞ in x and y and from 0 to ∞ in z (where z is normal to the collimator face),
or we considered a slab of infinite lateral extent but finite thickness in z. Neither of
these options is viable here— it is hard to rotate a camera around an infinite slab.
We could consider a cube, but it is useful for the object support to have the same
projection for all angles. Therefore we define the region Sf as a cylinder whose axis
coincides with the axis of rotation of the camera, and we define a support function
Sf (r) to be unity within this cylinder and zero outside. There is no loss of generality
with this definition so long as all objects of interest fit entirely in the support.

With the cylindrical support, the projection operator at angle φj , denoted Hj ,
appears to be just a rotated version of the operator for φ = 0, which we denote H0.
This would be true if there were no attenuation, or if the attenuation coefficient were
uniform within the cylinder of support, but with a general attenuation distribution,
Hj depends in a more complicated way on the projection angle. We shall come
back to the subject of attenuation in Sec. 17.1.6, but for now we simply ignore it.

The forward operator With the cylindrical support and no attenuation, rotating the
detector and collimator by φj is equivalent to rotating the object by −φj . Either
the object function or the kernel function is transformed according to (7.198), and
the mean of the m

th measurement can be written in two equivalent forms as

g
m
=

∫

Sf

d3r hm(r) f(Rjr) =

∫

Sf

d3r hm(R−1
j r) f(r) , (17.1)

where Rj is a 3 × 3 rotation matrix,2 corresponding to rotation of the detector
about the x axis by an angle φj , and hm(r) (with a 2D subscript) is the kernel
for φj = 0. When convenient, we shall also denote g

m
by gmj , and if we wish to

consider a fixed j and all m, we can define a vector gj with M2 elements.
We can also express (17.1) in terms of functional operators defined as in Secs.

6.6.1 and 7.2.9. We let Tj be the functional transformation corresponding to the
geometric rotation Rj , so that

Tj t(r) = t(R−1
j r) (17.2)

for an arbitrary function t(r). Then, since Tj is unitary,

f(Rjr) = T
†
j f(r) , (17.3)

and (17.1) becomes
gj = H0T

†
j f . (17.4)

Thus the operator for projection with the camera at angle φj is

Hj = H0T
†
j . (17.5)

Note that it is not correct to write g as
∑

j gj or H as
∑

j Hj ; the vector gj has

M2 elements for an M × M detector array, but g has JM2 elements if there are
J projection angles; the individual projections are stored separately, not summed.
Mathematically speaking, the range of H is the direct sum of the ranges of the Hj .

2In Chaps. 6 and 7, rotation matrices were denoted by , but we reserve that symbol in this
chapter for the Radon transform.
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Adjoint operators Next we consider the adjoint or backprojection operator. From
(17.5) and property (c) of Sec. 1.3.5, the adjoint operator for a single projection is
given formally by

H
†
j = TjH

†
0 . (17.6)

The meaning of this operator was discussed in Sec. 16.2.2. If we think of Hj as
simple line-integral projection of the 3D object onto a 2D detector, then backpro-
jection amounts to smearing the 2D projection back into the 3D volume defined by
the support function. If there is blurring associated with the collimator or detector,
then there is an additional blurring in the backprojection step.

When all projections are considered, the adjoint operator is given by

H† =
J−1
∑

j=0

TjH
†
0 , (17.7)

or in detail as3

[

H†g
]

(r) =
J−1
∑

j=0

M
∑

m=1

hm(R−1
j r) gm . (17.8)

Now we do have the sum over j; all projections contribute to the backprojected
image at each r.

Projection-backprojection operator We can now write down expressions for the pro-
jection-backprojection operator H†H, which we know is fundamental to both SVD
and inverse problems. Formally,

H†H=
J−1
∑

j=0

H
†
jHj =

J−1
∑

j=0

TjH
†
0H0T

†
j . (17.9)

Explicitly, the kernel of the CC operator H†H is given by (7.238) and (17.1) as

k(r, r′) =
J−1
∑

j=0

M
∑

m=1

hm(R−1
j r)hm(R−1

j r
′) =

J−1
∑

j=0

k0(R
−1
j r,R−1

j r
′) , (17.10)

where k0(r, r′) is the kernel for H†
0H0.

Weighted Hilbert spaces In the analysis above we have taken both U and V as
simple Euclidean spaces, but in tomography it is often advantageous to use weighted
Hilbert spaces. As in (1.12), we can define the object space by means of the weighted
scalar product,

(f 1, f 2)U =

∫

Sf

d3r W (r) f∗
1 (r) f2(r) , (17.11)

where W (r) is an arbitrary real, nonnegative function; in the present problem it is
useful to assume that W (r) is invariant to rotations about the x axis. Similarly,

3Recall that the sum over the 2D multi-index m means that both components mx and my run
from 1 to M, so we are considering an M ×M detector array stepped to J angles.
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the finite-dimensional image space can be defined via

(g1,g2)V =
J−1
∑

j=0

M
∑

m=1

wmg∗1m
g2m , (17.12)

where {wm} is a set of real, nonnegative weights. It is convenient to choose these
weights to be independent of the angular index j.

Using the definition of the adjoint from Sec. 1.3.5, the reader may show that
(17.8) now becomes

[

H†g
]

(r) =
1

W (r)

J−1
∑

j=0

M
∑

m=1

wmhm(R−1
j r) gm . (17.13)

17.1.2 Equally spaced angles

So far we have not placed any restrictions on the J projection angles, but now we
assume that they are equally spaced around 360◦. We therefore let the angular
index j run from 0 to J − 1 and set φj = j∆φ ≡ 2πj/J. Our goal is to derive an
SVD for this system; group theory (see Chap. 6) will prove useful in this endeavor.

Symmetry considerations For J equally spaced angles, the matrices {Rj} form a
representation of the group CJ (see Sec. 6.4.1). If the support functions are in-
variant under any rotation about the axis, as we have assumed above, then the
transformation operators {Tj} also form a representation of CJ , and each of these
operators commutes with H†H (see Sec. 6.7.3).

Mirror symmetries may also be present. If the detector array is invariant
to reflection in a mirror plane passing through the axis of rotation, then the full
symmetry group is the dihedral group DJ , discussed in Sec. 6.4.2. The dihedral
groups are significantly more complicated than the rotation groups since they are
not Abelian. To avoid this complication, we can assume that the detector array is
offset laterally by a fraction of a pixel so that the mirror symmetry is broken.

If there are no other symmetries, then, in the language of Sec. 6.7.3, the sym-
metry group of the system is the Abelian group CJ . This simple statement allows
us to say a great deal about the eigenfunctions of H†H, which are also the object-
space singular functions in an SVD. We know from Secs. 6.7.5 and 7.2.9 that the
eigenfunctions are nondegenerate (i.e., all eigenvalues are distinct). Moreover, each
eigenfunction transforms under rotation according to a specific irreducible repre-
sentation of CJ . Since all of these irreducible representations are 1D, that means
that each eigenfunction of H†H is also an eigenfunction of every Tj .

These properties suggest that we denote the eigenfunctions with two indices
n and k, where k specifies the irreducible representation, and write the eigenvalue
equation for H†H as

H†Hunk = µnkunk . (17.14)

The eigenvalue equation for Tj is

Tjunk = χ(k)
j unk . (17.15)

We have written the eigenvalue here as χ(k)
j , which is also the character (see Sec.

6.3.3) for Tj in the kth irreducible representation; since the representation is 1D,
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matrix, character and eigenvalue are identical. Specifically, we know from (6.17)
that

χ(k)
j = exp(−2πikj/J) . (17.16)

Singular-value decomposition Suppose we have solved the eigenvalue problem for a
fixed projection angle, say φj = 0. That is, we know the solutions to

H
†
0H0un = µnun . (17.17)

We would like to use these single-view eigenfunctions to construct eigenfunctions of
H†H as given by (17.9).

As we have already noted, each of the eigenfunctions must transform under
rotation according to a specific irreducible representation of CJ , and we saw in Sec.
6.6.3 that we can construct functions with the desired transformation properties
by starting with an arbitrary function and projecting it onto the kth irreducible
representation. From (6.36), we know that the form of this projection is

unk(r) =
1

J

J−1
∑

j=0

[

χ(k)
j

]∗
Tj qn(r) =

1

J

J−1
∑

j=0

exp

(

2πikj

J

)

Tj qn(r) ≡ Pk qn(r) ,

(17.18)
where Pk is the projection operator and qn(r) is yet to be determined. The reader
can verify that this unk(r) satisfies (17.15) as required, and also that Pk is idem-
potent and Hermitian as required of all projection operators (see Sec. 1.3.6).

If we use (17.9) along with (17.18) and the spectral representation for H†
0H0,

the eigenvalue equation (17.14) becomes

H†Hunk =
1

J

R
∑

n′=1

J−1
∑

j′=0

J−1
∑

j=0

µn′ exp

(

2πikj

J

)

Tj′un′u†
n′T

†
j′Tj qn

= µnk
1

J

J−1
∑

j=0

exp

(

2πikj

J

)

Tj qn , (17.19)

where R is the rank of H†
0H0. If we make the change of variables $ = [j−j′] (where

the square brackets denote modulus-J arithmetic) and recognize that T
†
j′Tj = T!,

we can write the left-hand side of (17.19) as

H†Hunk =
1

J

R
∑

n′=1

J−1
∑

j′=0

J−1
∑

!=0

µn′ exp

[

2πik($+ j′)

J

]

Tj′un′u
†
n′T! qn

= J
R
∑

n′=1

µn′ [u†
n′Pk qn]Pkun′ . (17.20)

Thus the eigenvalue equation becomes

J
R
∑

n′=1

µn′ [u†
n′Pk qn]Pkun′ = µnkPk qn , (17.21)

and the objective is to find qn. In most cases numerical methods are necessary,
though we shall encounter a situation in Sec. 17.2.1 where a fully analytical solution
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is possible. To gain further insight at this point, however, we shall describe an
approximate analytic solution and argue qualitatively that the approximation is
reasonable.

Approximate SVD A useful first approximation is qn ∝ un. This choice is based
on numerical studies of parallel-hole collimators and multiple-pinhole systems4 that
indicate that, for all $,

u
†
n′T!un ≈ 0 if n '= n′ . (17.22)

If $ = 0, then u
†
n′T!un ≡ 0 since T0 is the unit operator and un and un′ are both

eigenvectors of the Hermitian operator H
†
0H0, hence orthogonal if n '= n′. For

$ '= 0, un′ and T!un may not be exactly orthogonal, but, as we shall see in an
example below, we expect their scalar product to be small.

If (17.22) is satisfied, it follows that u†
n′Pkun is approximately zero for n '= n′,

so we can dispense with the sum and set n′ = n in (17.21). By inspection, we then
have

µnk = Jµnu
†
nPkun = µn

J−1
∑

!=0

exp

(

2πik$

J

)

u†
nT!un (17.23)

and

unk = NnkPkun =
Nnk

J

J−1
∑

j=0

exp

(

2πikj

J

)

Tjun , (17.24)

where Nnk is a normalizing constant. Solution of the single-view eigenvalue prob-
lem thus gives us the solution of the J-view problem under CJ symmetry in this
approximation. As exercises, the reader may show that (a) µnk is real; (b) unk

and un′k′ are orthogonal unless n = n′ and k = k′; and (c) (17.23) and (17.24)
reproduce (17.9).

How good is the approximation? The essential step that led to (17.23) and (17.24)
is the assumption that Pkun is at least approximately orthogonal to un′ (which
follows from the stronger assumption that T!un is approximately orthogonal to
un′). To check these assumptions, we shall derive the single-view eigenfunctions
for a simple model of the imaging system. The model we choose is one treated
briefly in Sec. 16.2.3, where we considered a large detector element used with a fine
collimator bore, so that the collimator blur was negligible and the system response
function was a thin cylindrical ray. The key point of this model is that there is no
overlap of the system response functions in a single view.

With this assumption, the eigenfunction un is just the response function itself.
To demonstrate this point, we first note that the response functions are indexed by
detector elements, so we can replace the index n by the 2D multi-index m that we
customarily use in detector space. From (7.238) with hm(r) real, we then have

[

H
†
0H0

]

hm(r) =
M
∑

m′=1

hm′(r)

∫

Sf

d3r′ hm′(r′)hm(r′) . (17.25)

4Numerical and analytic SVDs of pinhole systems can be found in Aarsvold (1993), and some of
the results can be found in Barrett et al. (1991). Aarsvold has also done numerical studies of
collimator systems but they are unpublished at this writing.
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But if there is no overlap of the response functions, the integral is zero unless
m = m′, so

[

H
†
0H0

]

hm(r) = µmhm(r) , (17.26)

where

µm =

∫

Sf

d3r′ [hm(r′)]
2
. (17.27)

The normalized single-view eigenfunctions are given by

um(r) =
hm(r)

√

∫

Sf
d3r h2

m(r)
. (17.28)

Thus, as expected, the single-view eigenfunctions are proportional to the response
functions, provided only that the response functions are orthogonal. In particular,
attenuation does not invalidate (17.28). As an exercise, the reader may show that
(17.27) and (17.28) lead to the correct expression for H†

0H0.

Fig. 17.2 Illustration of the overlap of two single-view response functions.
The collimator is not shown, and only a single pixel of the detector is shown
at each angular position. It is assumed that the bores of the collimator are
very fine so that the response functions are defined by the width of the detector
pixel at all points in the object support.

We can now use this overlap-free model to check on the accuracy of (17.22).
With (17.28), we can write

u†
mT!um′ =

∫

Sf
d3r hm(r) [T!hm′ ] (r)

√

∫

Sf
d3r h2

m(r)
∫

Sf
d3r h2

m′(r)
. (17.29)

For $ '= 0, the integrand in the numerator is nonzero only where the single-view
response functions hm(r) and [T!hm′ ] (r) overlap. The overlap is identically zero
if m and m′ refer to different x-planes (i.e., mx '= m′

x), where the x-axis is the
axis of rotation. For m′

x = mx, the overlap is the shaded region of Fig. 17.2. For
simplicity, we consider a square bore of side ε, and we see that

u†
mT!um′ ≈

ε√
LmLm′ | sin(2π$/J)|

, $ '= 0 , m′
x = mx , (17.30)
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where Lm is the length of the intersection of the response function hm(r) and the
object support, and we have assumed that ε/| sin(2π$/J)| is less than either Lm or
Lm′ . The important point to note about (17.30) is that it goes to zero as ε → 0
(for fixed J).

To summarize, u†
mT!um′ is always identically zero if $ = 0 and m '= m′. If

there is no overlap of the single-view response functions, then the eigenfunctions
are the response functions, and in that case u†

mT!um′ = 0 if m′
x '= mx (for rotation

about the x-axis). If the single-view response functions do not overlap, the only
case where u†

mT!um′ is nonzero is when $ '= 0, m′
x = mx and there is overlap of the

rays from different views; even in that case u†
mT!um′ approaches zero when ε→ 0.

We shall revisit this approximation in Sec. 17.2.1 and give a condition under
which it is exact.

17.1.3 Fourier analysis in the CD formulation

Even though the system under consideration is not shift-invariant, we can never-
theless profitably use Fourier methods to describe it. We know from Sec. 7.3.3 that
a Fourier series is a useful description for a function of compact support and that
it leads to the Fourier crosstalk matrix as an exact description of the CD imaging
system.

From (7.261) we know that the first step in determining the crosstalk matrix
is to compute the response in the data to a single Fourier component, denoted by
the vector index5 k. In our present notation, this response is given by [cf. (17.1)]

ψmk =

∫

Sf

d3r hm(r) exp(2πiρk ·Rjr) =

∫

Sf

d3r hm(r) exp(2πiR−1
j ρk · r) , (17.31)

where the last form is valid since R
†
j = R−1

j . Note that we now have a total of six
indices on ψmk. In the data domain, mx and my specify location on the 2D detector
and j specifies projection angle; recall that m = (mx,my, j). In the object domain,
the three components of k are needed to specify the 3D spatial frequency.

To compute ψmk, we can use the same simple model as above where the re-
sponse function hm(r) is a thin cylinder of cross-sectional area ε2, with its axis
normal to the detector plane at location m. For this model and the coordinates we
are using (with the origin on the axis of rotation),

ψmk ≈ ε2 exp
[

2πi
(

R−1
j ρk

)

⊥
· rm

]

∫ Lm/2

−Lm/2
dz exp

[

2πi
(

R−1
j ρk

)

z
z
]

= ε2Lm exp
[

2πi
(

R−1
j ρk

)

⊥
· rm

]

sinc
[

Lm

(

R−1
j ρk

)

z

]

, (17.32)

where subscript ⊥ denotes the projection of the 3D vector onto the x-y plane.
We know from (7.263) that the crosstalk matrix B has elements given by

βkk′ =
M
∑

m=1

J−1
∑

j=0

ψ∗
mkψmk′ . (17.33)

5The reader should not confuse the index k used here with the k used above; both denote Fourier
series coefficients, but in different senses.
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The diagonal elements, which tell us how strongly particular Fourier components
are transferred into the data, are given by

βkk = ε4
M
∑

m=1

J−1
∑

j=0

L2
m sinc2

[

Lm

(

R−1
j ρk

)

z

]

. (17.34)

This equation is the CD counterpart of the central-slice theorem (see Sec. 4.4.2). It
says that the only Fourier components that contribute to the data, for each j, are
the ones for which the crests of the wave are nearly parallel to the z axis, so that
(

R−1
j ρk

)

z
is near zero .

The sum over m in (17.34) doesn’t do much since the summand depends only
weakly on that index. For the off-diagonal elements, however, the sum over detector
locations is critical. These elements are given by

βkk′ = ε4
M
∑

m=1

J−1
∑

j=0

L2
m sinc

[

Lm

(

R−1
j ρk

)

z

]

sinc
[

Lm

(

R−1
j ρk′

)

z

]

× exp
[

−2πi
(

R−1
j ρk −R−1

j ρk′

)

⊥
· rm

]

. (17.35)

Now the summand varies rapidly with the detector index m, and the sum exhibits
complicated aliasing behavior, as we shall see below.

Numerical study of the crosstalk matrix In Fig. 17.3 we show a sequence of crosstalk
matrices, generated by D. W. Wilson for various SPECT systems. The figure is
a plot of βkk′ as the gray level, with kx and k′x as the axes. All of the systems
used a detector with 64 elements in one dimension, and it acquired 64 projection
at equally spaced angles. The first figure (upper left) shows a nearly ideal system
with a parallel-hole collimator but no detector blur, no attenuation and no scatter.
In this limit the crosstalk matrix is nearly diagonal, indicating that H†H is nearly
shift invariant and that image reconstruction should be very easy. Then we progres-
sively add these various degrading effects, moving steadily away from the diagonal
condition.

Fig. 17.3 Crosstalk matrices for various SPECT systems, courtesy of D. W.
Wilson. Upper left: near-ideal system with no attenuation or scatter in the
patient. Upper right: near-ideal system with attenuation. Lower left: same
system with attenuation and detector blur. Lower right: same system with
attenuation, detector blur and scatter.
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17.1.4 2D Radon transform and parallel-beam SPECT

There are two ways we can pass to the limit of continuous data in SPECT or other
kinds of tomography. First, we can consider very fine sampling by the collimator and
detector, so that the discrete detector positions rm are replaced by the continuous
2D vector rd on the detector plane. Second, we can consider a very large number of
projection angles, so that J → ∞ and the discrete projection angle φj is replaced
by an arbitrary angle φ. If we take both of these limits, the mean data can be
denoted g(rd,φ).

It is also common in the literature to consider only one of the two continuous
limits, treating rd as continuous but still considering a discrete set of angles. From
an engineering perspective, this approach is really backwards: if we want to collect
more angles in a rotating-camera system, we can just do so, without any physical
or engineering limitation except that more storage space is required for the data.
If we want more detector elements, however, it is a major engineering effort, and if
we want finer collimators, not only must we be able to fabricate them, we must also
accept the inevitable loss of photon collection efficiency. Nevertheless, the hybrid
model of discrete angles and continuous detectors has been well studied, and like
the fully CC model, it often leads to useful linear algorithms.

Just formally passing to the limit of fine sampling is not sufficient if we want
to find a simple forward transform, and hence to have a chance of finding the
inverse transform. We must also ignore many physical effects such as detector and
collimator blur, attenuation and scatter. In this section we shall specify in detail
what assumptions and approximations are needed if we want to reduce the parallel-
beam SPECT problem to the 2D Radon transform.

2D Radon transform As discussed in Sec. 4.4.1, the 2D Radon transform consists
of 1D line-integral projections of a 2D function. Specifically, the definition is given
in (4.139) as

λ(p,φ) = [R2f ](p,φ) =

∫

∞
d2r f(r) δ(p− r · n̂) , (17.36)

or simply as λ = R2f, where R2 is the 2D Radon-transform operator. Recall that
p = r · n̂ is the equation of a line normal to the 2D unit vector n̂ and a distance
p from the origin (see Fig. 2.7) and that the origin coincides with the center of
rotation.

From irradiance to Radon We shall now build on the discussion in Sec. 16.2.2 to
show that the 2D Radon transform is applicable to rotating-camera SPECT if we
ignore attenuation in the object and blur from the detector and collimator. A
useful starting point for making the connection is (16.82); if we set µtot = 0 in that
equation, we can write the photon irradiance on the detector face as

Ip(r) =
1

4π

∫

2π
dΩ T (r, ŝ)

∫ ∞

0
d$ f(r − ŝ$ ) . (17.37)

In this expression, T (r, ŝ) is the transmission of the collimator, defined by (16.80)
as

T (r, ŝ) =
∑

n

β(r− rn)β

(

r− s⊥
Lb

sz
− rn

)

, (17.38)
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where the sum is over all bores in the collimator, β(r− rn) is a 2D function that is
unity within the open area of the nth bore and zero otherwise, and s⊥ = (sx, sy) if
ŝ = (sx, sy, sz) and the detector plane is normal to the z axis.

We pass to the limit of a very fine collimator by letting

β(r− rn) → Abore δ(r− rn) ,
∑

n

· · · →
αpf

Abore

∫

∞
d2rn · ·· , (17.39)

where Abore is the open area of the collimator bore and αpf is the packing fraction
as defined above (16.91). In this limit, we have

T (r, ŝ) → αpfAbore

∫

∞
d2rn δ(r− rn) δ

(

r− s⊥
Lb

sz
− rn

)

=
αpfAbore

L2
b

δ(s⊥) ,

(17.40)
since sz = 1 if s⊥= 0. The factor δ(s⊥) indicates that the collimator accepts only
the photons that travel normal to the detector face, in a direction that we can
denote by ŝd (d for detector). As a nontrivial exercise in delta functions, the reader
may show that

∫

2π
dΩ δ(s⊥) = 1 , (17.41)

so (17.37) becomes

Ip(r) →
αpfAbore

4πL2
b

∫ ∞

0
d$ f(r − ŝd$ ) . (17.42)

The factor in front of the integral is recognized from (16.98) as the point-source
sensitivity, which is independent of distance from the collimator face with a parallel-
hole collimator; it is this fact that makes the Radon transform useful for describing
projection data obtained with such collimators.

If there is no detector blur, then the detector measures the photon irradiance
directly, but we are not interested in the full 2D photon distribution in this discus-
sion. Instead, we consider a thin stripe of height εx (where the camera rotation is
about the x axis). Photons detected in this stripe originate from a thin slab parallel
to the y-z plane. If we denote the coordinates in the detector plane as (xd, yd), we
can choose the origin so that the center of this slab is at xd = 0. Then we can define
a linear photon density gφ(yd) at projection angle φ by

gφ(yd) ≡
∫ εx/2

−εx/2
dxd Ip(xd, yd) → εxIp(0, yd) , (17.43)

where the last form holds in the limit as εx → 0.
To finish forcing the data to look like a 2D Radon transform, we define a 2D

function f0(y, z) = f(0, y, z) and we let r now be (y, z). Then we see that

gφ(yd) =
αpfAbore εx

4πL2
b

∫

∞
d2r f(r) δ(yd − r · n̂) , (17.44)

where n̂ is a 2D unit vector in the y-z plane perpendicular to ŝd. Thus, finally, we
have something that looks like (17.36).

To summarize the assumptions and approximations needed to get (17.44), we
had to pass to the limit of vanishingly small collimator bores, we had to neglect
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detector blur and sampling, and we had to consider a thin stripe of the photon
irradiance on the detector plane. We also implicitly ignored septal penetration in
the collimator since (17.38) was derived earlier on the assumption that all photons
striking the collimator material were absorbed.

There are many obvious difficulties in these assumptions. Very fine collimators
have very little efficiency, as indicated by the factor of Abore in (17.44), and if we
chose to make a collimator with fine bores, we would run into problems of septal
penetration, invalidating (17.38). Moreover, selecting out a thin stripe of height εx
reduces the photon count further. Finally, we know from the discussions in Chap. 12
that gamma-ray detectors such as the Anger scintillation camera have fundamental
limitations on their spatial resolution.

17.1.5 3D transforms and cone-beam SPECT

One consequence of the collimator and detector blur in SPECT is that we cannot
really treat the problem as 2D, even with a parallel-hole collimator. When we
integrate over a stripe of the data, we are necessarily including contributions from
portions of the object outside the corresponding slab in object space. For realistic
systems, there is no good substitute for a fully 3D treatment.

For a fully 3D analysis of tomographic systems in CC terms, we have two
candidates for the idealized tomographic transform: the 3D Radon transform and
the x-ray transform. In this section we shall discuss each of them and show how
they relate to practical acquisition geometries. Then we shall show a way in which
they relate to each other.

3D Radon transform The 3D Radon transform is very similar in form to the 2D
version, (17.36). The definition of the 3D Radon transform is (4.173), but for clarity
we modify the notation slightly and write it here as

λ(p, n̂) = [R3f ](p, n̂) =

∫

∞
d3r f(r) δ(p− r · n̂) , (17.45)

where r and n̂ are 3D vectors (the latter a unit vector). In pure operator form,
λ = R3f.

In spite of the mathematical similarity of (17.36) and (17.45), they describe
rather different physical systems. The equation p = r ·n describes a line in 2D, but
p = r · n̂ is the equation of a plane in 3D. Thus the 2D Radon transform is a useful
description for systems where the data consist of integrals of the object over thin
tubes, approximating lines, while the 3D Radon transform is useful when the data
consist of integrals of the object over thin slabs, approximating planes.

One way to obtain data related to the 3D Radon transform is to acquire 2D line-
integral-like projections with a parallel-hole collimator and then to sum over stripes
in the 2D image. This is what we did in (17.43) to get to the 2D Radon transform,
but in that case the stripe of integration was perpendicular to the rotation axis (x),
and the corresponding slab of integration in object space reduced to the plane x = 0
as εx vanished. If we consider more general stripes, we can obtain integrals over
other planes. For example, if we integrate the 2D projection at angle φ = 0 over
stripes at all angles in the 2D data plane, we obtain the 3D Radon transform for all
n̂ lying in the x-y plane. If we then repeat the process for all projection angles, we
get the full 3D Radon transform of the object (neglecting attenuation and blur).
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A more direct way of acquiring the 3D Radon transform (and collecting more
photons in the process) is to use a slat collimator, as shown in Fig. 17.4. This
“collimator” actually collimates in only one direction, allowing photons travelling
near a plane defined by one of the openings to pass through unimpeded. Thus
the detector need not have any spatial resolution in the direction parallel to the
slats, and something approximating planar integrals of the object are obtained
immediately. It is an interesting exercise in radiometry to work out the precise
relation between object and image in this case.

Fig. 17.4 Slat collimator viewing a 3D radioactive object.

3D x-ray transform The x-ray transform, denoted by the operator X, was defined
in Chap. 10 by (10.136) and (10.137). For simplicity, we drop the factor 1/cm used
in Chap. 10 and define

[X f ](r, ŝ) =

∫ ∞

0
d$ f(r − ŝ$ ) , (17.46)

where ŝ is a 3D unit vector. (Note that we use n̂ or n̂ for a unit vector normal to
a line or plane, but ŝ for a unit vector in a ray direction.)

It is also useful to recast (17.46) into our standard form for a 3D integral
transform. By the change of variables r

′ = r − ŝ$ and some algebra, or more
directly by use of the identity (10.159), we can write

[X f ](r, ŝ) =

∫

∞
d3r′ f(r′)

δ
(

ŝ− r−r
′

|r−r′|

)

|r − r′|2
. (17.47)

In this form, X appears to map a function of three variables to a function of five
variables (x, y, z and two angles), but in practice some subset of these variables
will be addressed in any particular measurement geometry.

Like the 2D Radon transform, the x-ray transform involves line integrals.
Within the approximations that led to (17.42), each measurement taken with a
parallel-hole collimator is one sample of the 3D x-ray transform of the object (as
well as one sample of the 2D Radon transform). The difference is that the 2D Radon
transform involves lines in the plane of a 2D object, while the 3D x-ray transform
involves lines through a volume object. The 3D Radon transform, on the other
hand, appears rather different since it involves integrals over planes in the object,
but in fact there is an important relation between these two 3D transforms, as we
shall see below.
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Cone-beam geometries So far the 2D projection systems we have discussed have all
used parallel-hole collimators rotated in a circle around the object. An alternative
data-acquisition scheme is to acquire each 2D data set with a pinhole rather than
a collimator (see Sec. 10.4.2), and to attempt to acquire enough data for 3D recon-
struction by moving the pinhole-detector assembly through a sequence of positions.
The locus of all positions of the pinhole is called the trajectory or vertex path, and
data are usually acquired at a discrete set of positions along the trajectory (though
continuous acquisition is also possible). Many authors argue that a simple circular
trajectory is inadequate for 3D reconstruction and advocate more complicated tra-
jectories such as a spiral or a circle plus a line segment.

SPECT data can also be acquired with focused collimators. With both pin-
holes and focused collimators, the rays involved in each 2D projection of the 3D
object pass approximately through a point and hence form a cone. A similar situa-
tion occurs in x-ray computed tomography where the rays all emanate from a point
(the focal spot on the x-ray tube). The term cone-beam tomography is used to
describe all of these situations, and the point of the cone is often called the vertex.

The idealized CC description of the data in cone-beam tomography in all of
these geometries is the 3D x-ray transform (17.46) when we interpret the variable r

as the vertex position rv and ŝ as a unit vector along the line from the vertex to a
position on the detector.6 Since location of the vertex along the trajectory can be
specified by a single parameter (distance along the trajectory, say), the 3D x-ray
transform maps a function of three variables to another function of three variables
in this case.

Many authors refer to (17.46) as the cone-beam transform, reserving the term
x-ray transform for the special case where the unit vectors ŝ are all parallel. Phys-
ically, this would be appropriate if the vertex point rv were at an infinite distance
from the object support. We prefer not to make this distinction since we often want
to consider situations where the object support can be unbounded.

Relation to the Boltzmann transport equation Fundamentally, it is the law of con-
servation of radiance that makes the x-ray transform so widely applicable. In Sec.
10.3.2 we used the Boltzmann transport equation to show that radiance was con-
served at all points along a geometric ray in a non-attenuating medium. By properly
defining the source function, we showed in (10.136) that the radiance (cmw) was
just a line integral of the source distribution.

This result is exact and holds at all points in space for a non-attenuating
medium, but it takes no account of the effects of the detector and image-forming
aperture. For a pinhole of finite diameter, a conical set of rays through the object
reaches each point on the detector, as illustrated in Fig. 10.9. The irradiance at
that point is obtained from the radiance by integrating it over a range of angles
defined by the pinhole (see Sec. 10.4.2). Thus the irradiance at a point is an an-

6A minor difference between the pinhole and focused-collimator geometries concerns the direction
of #s. In (17.46), rv−#s! describes a point displaced from the vertex by an amount ! in the direction
−#s. If we think of #s as pointing generally to the right, that means that the source is to the left of
the vertex. Since the detector is to the right of the vertex for pinhole imaging, (17.46) is correct in
that case. With a focused collimator, on the other hand, the source is to the right of the vertex,
and rv − #s! would describe a point to the left, hence never passing through the source. We can
fix that problem either by regarding −#s as the ray direction or by changing rv − #s! to rv + #s! in
(17.46).
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gular integral of line integrals through the object. This cone must not, however,
be confused with the cone in cone-beam tomography. Even an ideal point detector
integrates the radiance over a cone of rays defined by the pinhole, but it is assumed
in cone-beam tomography that we can measure separately the radiance associated
with each ray. The only way to reconcile these views is to assume that the pinhole
diameter goes to zero, so that each point on an ideal detector is uniquely associated
with a single ray.

Relation between the 3D Radon and x-ray transforms Most approaches to recon-
struction from cone-beam data start with a mathematical relation between the 3D
Radon and x-ray transforms. That there should be such a relation is perhaps not
surprising since we can integrate a single 2D cone-beam projection over a stripe
in data space as shown in Fig. 17.5, and when we do, we see that the integral is
sensitive to source points on a slab, approximating a plane through the object.

Fig. 17.5 Integration of a single 2D cone-beam projection over a stripe in
data space.

One might think that we have, in fact, estimated one sample of the 3D Radon
transform in this way, just as we did when we integrated over a stripe in a parallel-
beam projection. The key difference, however, is that there is a Jacobian of the form
1/|r− r

′|2 in the integral over the plane in the cone-beam case [see (17.47)], but no
such factor with parallel projections. We encountered a similar Jacobian in (16.63)
when discussing another form of cone-beam imaging, transmission radiography, and
we noted there that we can get an unweighted integral over the object only if the
vertex is far away and/or the object is small, so that the cone-beam rays through
the object are approximately parallel. Since the vertex is usually placed close to
the object in SPECT in order to collect many photons, this is seldom a useful
approximation.

Nevertheless, it is possible to recover the 3D Radon transform of a function
from knowledge of an appropriate set of values of the x-ray transform. In fact,
many different formulas for making this conversion appear in the literature; for an
excellent survey, see Natterer and Wübbeling (2001). As this reference emphasizes,
all of these formulas can be derived from a single formula originally obtained by
Hamaker et al., (1980). In our notation, Hamaker’s result can be written as

∫

4π
dΩ!s [X f ](r, ŝ)h(ŝ · n̂) =

∫ ∞

−∞
dp [R3f ](p, n̂)h(p− r · n̂) , (17.48)

where h( · ) is any function of one variable that is homogeneous of degree −2, i.e.,

h(αx) =
1

α2
h(x) . (17.49)
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To derive (17.48), we substitute (17.46) into the left-hand side and use our favorite
change of variables, r

′ = r − ŝ$, yielding
∫

4π
dΩ!s [X f ](r, ŝ) h(ŝ · n̂) =

∫

∞
d3r′ f(r′)

1

|r − r′|2
h

(

r − r
′

|r − r′|
· n̂

)

, (17.50)

which, with the use of (17.45) and (17.49), gives the right-hand side of (17.48).

A derivative formula An important special case of Hamaker’s formula is where
h(x) is the derivative of a delta function, h(x) = δ′(x). This function satisfies the
homogeneity condition (17.49) for α > 0, which is all we need. With this choice
and (2.57), (17.48) becomes

∫

4π
dΩ!s [X f ](r, ŝ) δ′(ŝ · n̂) =

∫ ∞

−∞
dp [R3f ](p, n̂) δ

′(p− r · n̂)

= −
{

∂

∂p
[R3f ](p, n̂)

}

p=r·!n

. (17.51)

Geometrically, all three forms in (17.51) involve the neighborhood of the same plane,
namely the plane p = r · n̂. Since [X f ](r, ŝ) is measured only for r = rv, where rv is
one of the vertex positions, we must have p = rv · n̂, so the equation of the plane of
interest can also be written as (r−rv) · n̂ = 0. The derivative on the right-hand side
in (17.51) can be computed just from values of R3f arbitrarily close to this plane.
The delta derivative on the left-hand side then requires that ŝ · n̂ = 0, which means
that the only rays of interest are ones that travel in the plane from rv toward the
detector.

The derivative of a delta function in the middle form of (17.51) is essentially
the basis function for the dipole-sheet transform, introduced in Sec. 4.4.5.

17.1.6 Attenuation

Our discussion of ECT so far has consistently neglected attenuation of the radiation
in the object, but in practice attenuation can lead to serious image degradation.
Ways of compensating for attenuation during reconstruction are discussed in Sec.
17.2.4, but here we collect some mathematical properties of the forward transforms.

Attenuated x-ray transform The attenuated x-ray transform was originally defined
in (10.151), but we write it slightly differently here. We drop the factor of 1/cm,
which was handy in the radiometry discussion but superfluous here, and we drop
the subscript on the total attenuation coefficient µtot. Thus we define

[Xµf ] (r, ŝ) =

∫ ∞

0
d$ f(r − ŝ$ ) exp

[

−
∫ !

0
d$′ µ(r − ŝ$′)

]

. (17.52)

With the same manipulation as in (17.47), we can also write

[Xµf ] (r, ŝ) =

∫

∞
d3r′ f(r′)

δ
(

ŝ− r−r
′

|r−r′|

)

|r − r′|2
exp

[

−
∫ |r−r

′|

0
d$′ µ(r − ŝ$′)

]

. (17.53)

Thus, if we let r be the vertex position rv, radiation originating at point r
′ and

travelling toward the vertex is attenuated by a factor determined by the line integral
of µ along the line from r

′ to rv.
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Attenuated 2D Radon transform Since the 2D Radon transform is really the same
thing as the x-ray transform with rays confined to a plane, we can regard (17.52)
as also defining the 2D attenuated Radon transform if we simply treat r and ŝ as
2D vectors. To make the transform look like (17.36), however, we write

λµ(p,φ) = [R2,µf ](p,φ) =

∫

∞
d2r f(r) δ(p− r · n̂) exp

[

−
∫ ∞

0
d$′ µ(r+ n̂⊥$

′)

]

,

(17.54)
where n̂⊥ is normal to n̂ and in the 2D plane where f(r) is defined (see Fig. 17.6).
Since the delta function selects out a line perpendicular to n̂, it follows that n̂⊥ is
the ray direction. Specifically, if n̂ makes an angle φ with the y axis, then n̂⊥makes
an angle φ with the z axis in the 3D coordinate system where the axis of rotation is
the x axis. Now the line integral runs from the source point r to infinity, but that
really means to the boundary of the attenuating medium since µ(r) is zero beyond
that point.

Fig. 17.6 Geometry used in discussing the attenuated 2D Radon transform.

Exponential 2D Radon transform Sometimes it is useful to assume that the atten-
uation coefficient is constant within the object of interest. For example, in SPECT
imaging of the abdomen, the attenuating material is mostly soft tissue. Differ-
ences in attenuation among different soft tissues are small, so little error is made
by replacing the actual attenuation distribution µ(r) with a constant µ. Then the
attenuation factor in (17.54) becomes

exp

[

−
∫ ∞

0
d$′ µ(r+ n̂⊥$

′)

]

≈ exp [−µL(r,φ)] , (17.55)

where L(r,φ) is the total length of attenuating medium between point r and the
detector in direction n̂⊥. If we assume that the boundary of the attenuating medium
is convex, we can decompose this length further as (see Fig. 17.6)

L(r,φ) = L0(p,φ)− r · n̂⊥ , (17.56)

where L0(p,φ) is the distance to the boundary of the medium in direction n̂⊥

from a point on the line running through the center of rotation. Since L0(p,φ) is
independent of r, it can be taken out of the integral, and the attenuated 2D Radon
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transform becomes

λµ(p,φ) = exp[−µL0(p,φ)]

∫

∞
d2r f(r) δ(p− r · n̂) exp(µr · n̂⊥) . (17.57)

The first exponential factor is known if the object contour is specified, so we can
move it to the other side of the equation and define a modified projection,

gµ(p,φ) ≡ exp[µL0(p,φ)]λµ(p,φ) =

∫

∞
d2r f(r) δ(p− r · n̂) exp(µr · n̂⊥) . (17.58)

The right-hand side defines the 2D exponential Radon transform R2e,µ. The
reader is cautioned that this transform is often seen with a minus sign in the expo-
nent, but that comes about when n̂⊥ is taken to be antiparallel to the ray direction
instead of parallel.

Why not a 3D attenuated Radon? Since the 3D Radon transform involves integrals
of the activity distribution f(r) over planes and the attenuation factors involve
integrals of the attenuation distribution µ(r) along lines, there is no unique way
to define an attenuated 3D Radon transform. We noted in Sec. 17.1.5 that we
could get 3D Radon data by starting with line-integral projections taken with a
parallel-hole collimator and then integrating over a stripe in the 2D data space; in
this case the attenuation factors would be determined by lines of sight through the
collimator bores. Many different combinations of projection angles and stripes of
integration would, however, integrate the activity over the same plane, but with
different attenuation factors. For example, if we want to know the integral of f(r)
over the plane x = 0, we can get it by integrating the photon irradiance Ip(xd, yd)
over − 1

2 < xd ≤ 1
2 and over all yd in the detector plane [cf. (17.43)]. This procedure

gives the same answer for all projection angles φ in the absence of attenuation, but
the attenuation factors are different for different φ.

Similarly, if we consider other detection geometries such as the slat collimator
of Fig. 17.4, or if we derive the 3D Radon data by mathematical manipulation of
cone-beam data as suggested by (17.51), still other attenuation factors arise. In
short, as soon as we combine planar integrals of the activity with line integrals
of the attenuation, then many different versions of the attenuated transform can
occur; very few of them have been explored in the literature.

17.2 INVERSE PROBLEMS

Having catalogued the various formulations of the forward problem in SPECT, we
can now discuss inverse problems. The discussion will range from purely theoreti-
cal inversion formulas based on idealized models of the forward problem, through
practical issues of how the idealized expressions are discretized for computation, to
comprehensive iterative algorithms that make essentially no assumptions about the
data-acquisition process.

We begin in Secs. 17.2.1 – 17.2.3 by discussing the SVD of some specific CC
forward operators. The operator formalism from Sec. 17.1.1 and the group-theoretic
considerations from Sec. 17.1.2 recur in this discussion. In particular, Sec. 17.2.1
derives SVDs for the 2D Radon operator, first with infinite object support and con-
tinuous angular sampling, then with finite support and a finite number of projection
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angles. In Sec. 17.2.2, the SVD results are used to derive analytic inverses of the
full 2D Radon transform and pseudoinverses in the case of finite angular sampling.
In Sec. 17.2.3, we discuss inversion formulas for the 3D x-ray transform, and in Sec.
17.2.4 we consider transforms with attenuation factors.

In Secs. 17.2.5 and 17.2.6, we turn, at last, to practical reconstruction algo-
rithms that can be applied to discrete data. Linear algorithms obtained by dis-
cretizing analytic inverses are discussed in Sec. 17.2.5, and ways of forming system
matrices for iterative nonlinear algorithms are discussed in Sec. 17.2.6. The algo-
rithms themselves have previously been treated in Sec. 15.4.

17.2.1 SVD of the 2D Radon transform

Study of the properties of tomographic transforms is sometimes referred to as inte-
gral geometry. The ultimate goal of research in this field is the full singular-value
decomposition of each transform, from which one can discuss inversion formulas,
null functions, data-consistency conditions and ill-posedness. This goal represents
a rich source of papers since there are many different transforms, many specific
geometries for each transform (e.g., many trajectories in cone-beam tomography)
and many ways to define scalar products and hence Hilbert spaces.

In this section we look in some detail at SVD of the 2D Radon transform and
its close relatives; in the following section we shall use these SVDs to discuss inverses
and pseudoinverses in various 2D problems.

Radon transform on the infinite plane With what we have learned in previous chap-
ters, it is straightforward to give a singular-value decomposition of the 2D Radon
transform, so long as we do not impose any constraints on the object support. That
is, we use the Hilbert spaces defined as in Sec. 4.4.1, where the object is square-
integrable over the infinite plane7 and the scalar product in data space is defined
by the measure dp dφ; neither space involves any weighting function. We shall dis-
cuss this SVD problem first and then address finite object support, finite angular
sampling and weighted Hilbert spaces.

With infinite support and no weights, we know from (4.167) that the operator
R

†
2R2 is a 2D convolution:

[

R
†
2R2f

]

(r) =

∫

∞
d2r′

f(r′)

|r− r′|
. (17.59)

We know also from Sec. 7.2.4 that the eigenfunctions of convolution operators are
complex exponentials and that the eigenvalues are given by the transfer function; see
(7.140) and (7.141). For the 2D Radon transform, the relevant eigenvalue equation
is

R
†
2R2uρ = µρuρ . (17.60)

7Use of this Hilbert space does not imply that any actual object has infinite extent; objects with
finite support and finite values are, of course, square-integrable over the plane, hence members of
the space. The fact that some members of the space are not realizable objects should not concern
us. Any Hilbert space we choose will contain functions that cannot be objects, if for no other
reason than that objects in tomography are nonnegative.
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From (7.140), the Hilbert-space eigenvector uρ corresponds to the eigenfunction

uρ(r) = exp(2πiρ · r) , (17.61)

where ρ is a 2D spatial-frequency vector. The operator is not compact (see Sec.
1.3.3), so a continuous index ρ is needed, and the eigenfunctions span the space
L2(R2) but are not themselves square-integrable; see Sec. 1.4.4 for further discussion
of these subtleties.

From (7.141) and (4.169), the continuous eigenvalue spectrum is given by

µρ = F2

{

1

r

}

=
1

|ρ|
, (17.62)

where the absolute-value signs are needed if we allow ρ to be signed, so that ρ =
±|ρ|. Eigenfunctions of the Hermitian operator R†

2R2 are the same as the object-
space singular functions of R2, but we still need to determine the image-space
singular functions to complete the SVD.

To get the image-space singular functions corresponding to nonzero singular
values, we can use (7.122), which in the present case is written

vρ(p,φ) =
1

√
µρ

[R2uρ] (p,φ) . (17.63)

The reader with some degree of virtuosity in delta functions can show that

vρ(p,φ) =
√

|ρ| exp(2πipρ) δ(ρ · n̂⊥) =
1

√

|ρ|
exp(2πipρ) δ(ρ̂ · n̂⊥) , (17.64)

where ρ̂ is the unit vector parallel to ρ. A similar exercise shows that both sets of
singular functions are orthonormal, in the sense that

u†
ρuρ′ = δ(ρ− ρ′) , v†

ρvρ′ = δ(ρ− ρ′) , (17.65)

and that both sets of functions are complete,8 so that
∫

∞
d2ρ uρ(r)u

∗
ρ(r

′) = δ(r− r′) ,

∫

∞
d2ρ vρ(p,φ) v

∗
ρ(p

′,φ′) = δ(p− p′) δ(φ− φ′) .

(17.66)
Another interesting exercise is to show that (17.64) – (17.66) are dimensionally cor-
rect.

Note that the delta function in (17.64) is 1D, since its argument is a scalar
product. For fixed ρ, this delta function shows that the image-space singular func-
tion is zero unless ρ is normal to n̂⊥, which means that the line of integration is
parallel to the crests of the function exp(2πiρ · r). If we integrate in any other
direction, the line of integration will cut across positive and negative portions of
the function, giving a zero integral.

Since both sets of singular functions are complete, neither R2 nor R†
2 has null

functions for the present choice of Hilbert spaces. We shall soon see, however, that
R2 does have null functions if we consider a finite set of angles, and R

†
2 has null

functions if we impose a finite object support.

8Completeness of the image-space functions requires that ρ be allowed to take on positive and
negative values.
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Finite set of angles Suppose we acquire J 2D projections at the angles {φj , j =
0, ..., J − 1} (not necessarily equally spaced), so that we have a mixed CC/CD
problem: the projection data are functions of the continuous p variable and the
discrete angular index j. Then we can define a new Radon operator R2J by

[R2J f ](p,φj) =

∫

∞
d2r f(r) δ(p− r · n̂j) j = 0, ..., J − 1 , (17.67)

where n̂j makes angle φj with the x axis.
The projection-backprojection operator is given by

[

R
†
2JR2J f

]

(r) =
J−1
∑

j=0

∫ ∞

−∞
dp

∫

∞
d2r′ f(r′) δ(p− r · n̂j) δ(p− r′ · n̂j) . (17.68)

Using one of the delta functions to perform the p integral, we obtain

[

R
†
2JR2J f

]

(r) =

∫

∞
d2r′ f(r′)







J−1
∑

j=0

δ[(r− r′) · n̂j ]







. (17.69)

The key point here is that the kernel (the quantity in large curly brackets) is a
function of r− r′, so this operator is still a convolution. The PSF is a radial spoke
pattern that limits to a 1/r function as J → ∞.

SinceR†
2JR2J is a convolution, its eigenfunctions are still given by the complex

exponentials (17.61), and its eigenvalues are given by the Fourier transform of the
PSF as

µρ = F2







J−1
∑

j=0

δ(r · n̂j)







=
J−1
∑

j=0

∫

∞
d2r exp(−2πiρ · r) δ(r · n̂j) , (17.70)

where the delta function is 1D since its argument is a scalar. The integral can be
evaluated in a Cartesian coordinate system where r · n̂j = x, and the result is

µρ =
J−1
∑

j=0

δ(ρ · n̂⊥j) =
1

ρ

J−1
∑

j=0

δ[sin(θρ − φj)] , (17.71)

where n̂⊥j is the unit vector normal to n̂j . The delta function vanishes unless
ρ is perpendicular to one of the directions n̂⊥j , hence parallel to one of the n̂j .
As we would expect from the central-slice theorem (4.150), the eigenvalues µρ are
zero except for values of ρ along a set of radial spokes in the 2D frequency plane.
Frequencies not on these spokes correspond to null functions of R2J .

As a check on this formalism, we can compute the spectral representation of
the projection-backprojection operator, which is given abstractly by

R
†
2JR2J =

∫

∞
d2ρ µρuρu

†
ρ =

J−1
∑

j=0

∫

∞
d2ρ δ(ρ · n̂⊥j)uρu

†
ρ . (17.72)

Explicitly,

[

R
†
2JR2J f

]

(r) =
J−1
∑

j=0

∫

∞
d2ρ δ(ρ · n̂⊥j) exp(2πir · ρ)

∫

∞
d2r′ exp(−2πir′ · ρ) f(r′) .

(17.73)
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The integral over ρ can be performed in Cartesian coordinates with axes defined
by n̂j and n̂⊥j , and we obtain

[

R
†
2JR2J f

]

(r) =
J−1
∑

j=0

∫

∞
d2r′ δ[(r− r′) · n̂j ] f(r

′) , (17.74)

in accord with (17.69).
To complete the SVD of R2J , we need the image-space eigenfunctions. These

functions are given by (17.63), but there is a complication since µρ involves a
delta function, and we don’t know how to take the square root of a delta function.
We might solve this problem with limiting representations, but we can avoid it
altogether by going directly to the SVD representation of R2J . From (1.120) (as
extended to continuous indices) and (17.63),

R2J =

∫

∞
d2ρ

√
µρ vρu

†
ρ =

∫

∞
d2ρ

√
µρ

[

1
√
µρ

R2Juρ

]

u†
ρ =

∫

∞
d2ρ [R2Juρ]u

†
ρ .

(17.75)
Now the awkward square-root factor has cancelled,9 and we need only compute
R2Juρ, which is given by

[R2Juρ] (p,φj) =

∫

∞
d2r δ(p−r·n̂j) exp(2πiρ·r) = exp(2πiρp) δ(ρ·n̂j⊥) . (17.76)

The reader should verify that (17.75) gives the right answer when applied to an
arbitrary f(r).

Finite support and finite angular sampling Next we consider the case of finite object
support and J equally spaced angles around 2π (CJ symmetry). We laid much of
the groundwork for this problem in Secs. 17.1.1 and 17.1.2, and we now apply that
treatment to the 2D Radon transform.

Specifically, the operator H used in those sections is now to be identified with
R2J , and the single-view projection operator H0 is defined by

λ0(p) = [H0f ] (p) =

∫

Sf

d2r f(r) δ(p− r · n̂0) , (17.77)

where n̂0 is parallel to the x axis if r is chosen to lie in the x-y plane.
As in Sec. 17.1.2, we suppose that we have solved the eigenvalue problem for

H0, so we know the solutions to

H
†
0H0un = µnun . (17.78)

We would like to use these single-view eigenfunctions to solve the eigenvalue problem
for H†H, which is now the same as R

†
2JR2J . The solution is given by (17.23)

and (17.24), but these results were based on the approximation in (17.22) that
u
†
n′T!un ≈ 0 if n '= n′. We shall now show how this approximation can be made

exact in the Radon problem.

9Equivalently, we could have derived the final form of (17.75) immediately by writing 2J =

2JI and using the completeness of the object-space eigenfunctions to express the unit operator I.
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Weighted Hilbert spaces Weighted Hilbert spaces, which we first mentioned in a
CD context in Sec. 17.1.1, are a great help in finding an SVD of R2J . If the object
support Sf is the disk of radius R, a general weighted scalar product is defined
similarly to (17.11) as

(f1, f2)U =

∫

Sf

d2r W (r) f∗
1 (r) f2(r) , (17.79)

where W (r) > 0 for all r < R.
For a finite set of angles {φj , j = 0, ..., J − 1}, the scalar product in 2D Radon

space can be defined by

(λ1,λ2)V =
J−1
∑

j=0

∫ R

−R
dp w(p)λ∗1(p,φj)λ2(p,φj) . (17.80)

(Note that we have maintained the rotational symmetry by making the weighting
functions independent of angle.) With these scalar products, the single-view adjoint
operator is given by [cf. (17.13)]

[

H
†
0λ0

]

(r) =
1

W (r)

∫ R

−R
dp w(p)λ0(p) δ(p− r · n̂0) =

w(r · n̂0)

W (r)
λ0(r · n̂0) . (17.81)

Davison and Grunbaum (1981) suggest that the weights be chosen such that

1

w(p)
=

∫

Sf

d2r
1

W (r)
δ(p− r · n̂) (17.82)

for all n̂. The beauty of this condition is that it turns the single-view operator
H0H

†
0 into the unit operator, as we can see by calculating the kernel:

[

H0H
†
0

]

(p, p′) =

∫

Sf

d2r
w(p′)

W (r)
δ(p− r · n̂0) δ(p

′ − r · n̂0)

= δ(p− p′)w(p′)

∫

Sf

d2r
1

W (r)
δ(p− r · n̂0) = δ(p− p′) . (17.83)

Thus any function of p is an eigenfunction of H0H
†
0, and if we want the full set of

single-view image-space eigenfunctions, we need only pick a complete set of functions
that are orthonormal on −R < p < R with respect to the weight w(p), i.e.,

∫ R

−R
dp w(p) v∗n(p) vn′(p) = δnn′ . (17.84)

An important example, treated by Logan and Shepp (1975) and Hamaker
and Solmon (1978), is W (r) = 1 over the support disk. In this case, w(p) =
[

2
√

R2 − p2
]−1

, a weighting function that we encountered in connection with Cheby-
shev polynomials in Sec. 4.1.4 [see (4.60) and (4.61)].
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A commuting family Weights satisfying (17.82) have a second salutary effect; in
addition to converting H0H

†
0 to the unit operator, they simplify the entire family

of operators of the formH0T!H
†
0. With these weights, Davison and Grunbaum have

shown that each member of this family commutes with every other member. As we
shall now show, this is precisely what we need in order to make the approximate
SVD expressions from Sec. 17.1.2 exact.

If every member of the family commutes with every other member, then it is
possible to find a set of vectors vn in data space that are simultaneously eigenvectors
for each member of the family, including H0H

†
0. The eigenvalue equation is

H0T!H
†
0vn = µ(! )

n vn . (17.85)

Note that µ(0)
n is what we called µn above, and note also that there is no index $ on

vn. We shall verify (17.85) for one choice of weights below, but for now we simply
assume it is true.

From Sec. 1.5.1 we know that the eigenvectors of H†
0H0 with nonzero singular

values are given by

un =
1

√

µ(0)
n

H
†
0vn , (17.86)

but µ(0)
n = 1 here since H0H

†
0 is the unit operator in the single-view data space.

Thus

u†
nT!un′ =

[

H
†
0vn

]†
T!H

†
0vn′ . (17.87)

By an elementary property of the adjoint (see Sec. 1.3.5) and (17.85), we have

u†
nT!un′ = v†

nH0T!H
†
0vn′ = µ(! )

n v†
nvn′ = µ(! )

n δnn′ , (17.88)

which is just the condition we needed in Sec. 17.1.2 to derive (17.23) and (17.24).

Computation of eigenfunctions Next we need to find the eigenfunctions that satisfy
(17.85). For simplicity, we take W (r) = 1 on the object support, so that w(p) =
[

2
√

R2 − p2
]−1

. With this choice of weights, one might think we should take vn(p)
to be a Chebyshev polynomial of the first kind [see (4.60)], but there is a less-obvious
choice that is needed if we want to satisfy (17.85) for all $. Following Davison and
Grunbaum, we take

vn(p) =
2

R
√
π

√

R2 − p2 Un

( p

R

)

, (17.89)

where Un(p/R) is the Chebyshev polynomial of the second kind. With (4.61) and a
change of variables, we can see that these functions are orthonormal with respect to

the weight
[

2
√

R2 − p2
]−1

on (−R,R); in essence, we have artificially introduced

a factor of
√

R2 − p2 in each of the functions, and one of these factors cancels

the weight, leaving an orthogonality integral with weight
√

R2 − p2 rather than its
reciprocal.

To verify that these eigenfunctions satisfy (17.85), we shall apply each of the
three operators in that expression in turn. The first of these operators is H†

0, which

is defined by (17.81). Since µ(0)
n = 1 in (17.86), application of this operator gives
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the single-view, object-space eigenfunctions un(r); thus

un(r) =
[

H
†
0vn

]

(r) =
1

R
√
π
Un

(

r · n̂0

R

)

. (17.90)

The rotation operator T! simply replaces n̂0 with n̂!, so the left-hand side of (17.85)
becomes

[

H0T!H
†
0vn

]

(p) =
1

R
√
π

∫

S

d2r δ(p− r · n̂0)Un

(

r · n̂!

R

)

. (17.91)

To perform the integral, we take r in the x-y plane and choose the x axis parallel
to n̂0, so that r · n̂0 = x and r · n̂! = x cosφ! + y sinφ!. The delta function takes
care of one integral, and we see that

[

H0T!H
†
0vn

]

(p) =
1

R
√
π

∫

√
R2−p2

−
√

R2−p2

dy Un

(

p cosφ! + y sinφ!

R

)

. (17.92)

Next we define cos θp ≡ p/R and

α ≡
p cosφ! + y sinφ!

R
, (17.93)

so that
[

H0T!H
†
0vn

]

(p) =
1√
π

1

sinφ!

∫ cos(φ!+θp)

cos(φ!−θp)
dα Un(α) . (17.94)

With the definition of the Chebyshev polynomial from (4.63) and some trigonome-
try, we obtain

[

H0T!H
†
0vn

]

(p) =
sin[(n+ 1)φ!]

(n+ 1) sinφ!
vn(p) . (17.95)

This result confirms (17.85) and shows that

µ(! )
n =

sin[(n+ 1)φ!]

(n+ 1) sinφ!
. (17.96)

The limit φ! → 0 shows that µ(0)
n = 1 as expected.

The eigenvalue spectrum Now we can put the pieces together and compute the
eigenvalues and eigenfunctions needed in the full SVD of R2J with circular support
and the chosen weights.

The eigenvalue spectrum is found from (17.23), which contains the factor

u†
nT!un. From (17.88), this factor is just µ(! )

n in the present problem, so we have

µnk =
J−1
∑

!=0

exp

(

2πik$

J

)

sin[2π(n+ 1) $/J ]

(n+ 1) sin(2π$/J)
. (17.97)

This sum can be performed numerically by an inverse DFT, but special attention
must be given to the points where the denominator vanishes ($ = 0 for any J and
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also $ = J/2 for J even). The eigenvalue µ(! )
n limits to 1 at these points.

Davison and Grunbaum (1981) point out that µnk can also be expressed as

µnk =
J

n+ 1

n
∑

!=0

δ[n− k, 2$ ]J , (17.98)

where the delta function is a modulo-J Kronecker function, i.e., it equals one when
the modulo-J difference of the two arguments is zero, and zero otherwise. This form
can be verified by taking the DFT of both sides and summing a geometric series.

Several features of the spectrum can be seen without numerics. First, as noted
in Sec. 17.1.2, all µnk must be real and nonnegative, though some can be zero. Next,
if k = 0, then the Fourier kernel is always 1, and if n = 0, the ratio of sines is also
1, so µ00 is equal to the number of projections J.

We can also get an analytic result if n and k are nonzero but J > n+ k. As $
ranges from n to 0 in (17.98), the difference of arguments n − k − 2$ ranges from
−(n + k) to n − k. If J > n + k, the negative values can never be brought back
to zero by addition of a multiple of J, so the modulo-J condition never comes into
play. We need only consider n − k ≥ 0, and the Kronecker delta takes the value
unity exactly once in the range of summation if n− k is even, and never if n− k is
odd. Thus, for J > n+ k,

µnk =







J
n+1 if n ≥ k , n− k even
0 if n ≥ k , n− k odd
0 if n < k

. (17.99)

This form is useful in regularized pseudoinverses where the sums over n and k are
truncated so that n+ k < J. It will also prove useful in Sec. 17.2.2 when we discuss
the limit J → ∞.

At the opposite extreme, if n - J and J is odd, then only the $ = 0 term
contributes much to the sum [cf. (2.47)], and this term limits to 1 as n

J → ∞.
Thus µnk → 1 in this limit for all k. If J is even, then there is also a contribution
from $ = J/2, so µnk → 2 as n

J → ∞. (The 2 comes in since the list of angles is
redundant for J even.)

Eigenfunctions We get the multiple-view, object-space eigenfunctions from (17.24)
and (17.90) as

unk(r) =
1

R
√
π

Nnk

J

J−1
∑

j=0

exp

(

2πikj

J

)

Un

(

r · n̂j

R

)

. (17.100)

Calculation of the normalizing constant Nnk follows the same lines that led to
(17.97); when µnk '= 0, the result is

Nnk =

√

J

µnk
. (17.101)

Each multiple-view, image-space eigenvector vnk comprises a set of projections
of the corresponding object-space eigenvector unk; the jth member of the set is given



INVERSE PROBLEMS 1181

by

vnkj(p) =

√

1

µnk

[

H0T
†
j unk

]

(p) =

√

1

µnk

∫

Sf

d2r δ(p−r·n̂j)unk(r) , (µnk '= 0) .

(17.102)
By use of (17.24), (17.85) (with the recognition that H†

0vn = un) and a change of
variables, we find

vnkj(p) =
1√
J
exp(2πikj/J) vn(p) . (17.103)

This remarkably simple result is actually mandated by group theory. Since the
projection data are stored separately rather than summed (see Sec. 17.1.1), the
effect of a rotation is to permute the projections cyclically, and any function that
transforms according to the kth irreducible representation must have the form of
(17.103).

Null functions of the adjoint With continuous angular sampling, the forward oper-
ator R2 is nonsingular, but the adjoint may nevertheless have null functions. The
procedure used in (17.63) gives only the image-space singular functions correspond-
ing to nonzero singular values. To complete the analysis, we must also find the null
functions of the adjoint. This task is sometimes referred to as characterizing the
range of the operator, since the null space of the adjoint (inconsistency space) is
the orthogonal complement of the range of the forward operator (consistency space)
as discussed in Sec. 1.5.2 (see especially Fig. 1.5).

Group theory provides us some assistance in finding null functions of the ad-
joint operator (Clarkson and Barrett, 1998b). From representation theory, it is
known (Naimark and Stern, 1982) that any subspace of V invariant under all rota-
tions and dilations must have basis functions of the form

ṽmk ∝ pm exp(ikφ) . (17.104)

Applying the adjoint operator to these functions, we see that

[

R
†
2 p

m exp(ikφ)
]

(r)=

∫ ∞

−∞
dp

∫ π

0
dφ pm exp(ikφ) δ(p−r·n̂)=

∫ π

0
dφ (r·n̂)m exp(ikφ) .

(17.105)
The integral is invariant to the orientation of r in the x-y plane, so we may as well
take r to be parallel to the x axis (from which φ is measured). Then we have

∫ π

0
dφ (r · n̂)m exp(ikφ) = rm

∫ π

0
dφ (cosφ)m exp(ikφ) . (17.106)

This integral vanishes if m + |k| is even and 0 ≤ m < |k|, so functions ṽmk(p,φ)
with m and k satisfying this condition are null functions of R†

2.
The existence of these null functions does not contradict the earlier claim that

the image-space eigenfunctions given in (17.64) form a complete set if we define the
Hilbert spaces without an object support. Functions proportional to pm are not
square-integrable over the infinite line, so are not part of the Hilbert space V if we
impose no support limitation. If we limit the object support to the disk of radius
R, then the projection is restricted to −R < p < R, so pm becomes integrable.
The math leading to (17.106) is still the same (so long as r < R) and the functions
ṽmk(p,φ) are still null functions, but now part of the data space.
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Consistency conditions We saw in Sec. 15.2.5 that any null function of the adjoint
leads to a data-consistency condition. In the present problem, we have

(

R†
2ṽmk, f

)

= 0 = (ṽmk,R2f ) , (17.107)

provided m + |k| is even and 0 ≤ m < |k|. Thus any vector in consistency space
(i.e., one that can be written as R2f for some f ) must be orthogonal to pm exp(ikφ)
under the stated conditions on m and k. Noisy data will generally not lie entirely
in consistency space.

For finite support and equally spaced angles (CJ symmetry), the consistency
conditions are derived by Clarkson and Barrett (1998b) using group-theoretic con-
siderations. They show that the null functions of the adjoint R†

2J are ṽmk(p,φj) ∝
pm exp(ikφj), but now the restrictions on m and k must be stated differently for J
even or odd; see Clarkson and Barrett for the details. Again, any consistent data
vector must be orthogonal to these functions.

17.2.2 Inverses and pseudoinverses in 2D

Some of the 2D transforms treated in Sec. 17.2.1 are singular and some are nonsin-
gular. Our goal in this section is to show how SVD methods can be used to find
inverses of the nonsingular transforms and pseudoinverses of the singular ones.

Inverse 2D Radon transform From Sec. 4.4, we already know various forms of the
inverse 2D Radon transform with infinite object support, but we shall now show
how some of them are related to the SVD expressions above. We begin by rederiv-
ing (4.155).

Since R2 is nonsingular, its inverse is the same as its pseudoinverse; one oper-
ator form is found from (1.131) with the discrete index k replaced by the continuous
vector index ρ:

R−1
2 =

∫

∞
d2ρ

1
√
µρ

uρv
†
ρ . (17.108)

With (17.61) – (17.64), we obtain the explicit expression,

f(r) =
[

R−1
2 λ

]

(r)

=

∫ ∞

−∞
|ρ| dρ

∫ π

0
dθρ exp(2πiρ · r)

∫ π

0
dφ δ(ρ · n̂⊥)

∫ ∞

−∞
dp exp(−2πipρ)λ(p,φ) .

(17.109)
The integral over p yields the 1D Fourier transform of the projection, Λ(ρ,φ), and
the integral over dθρ can be performed by using (4.166), resulting in

f(r) =

∫ π

0
dφ

∫ ∞

−∞
|ρ| dρ exp(2πir · n̂ρ)Λ(ρ,φ) . (17.110)

This expression is equivalent to (4.155).

Filtered backprojection We can also express the inverse 2D Radon transform in the
filtered-backprojection form of (4.161). To derive this form from the SVD, we write
the inverse Radon operator as

R−1
2 = R

†
2

(

R2R
†
2

)−1
. (17.111)
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In this expression, R†
2 is the backprojection operator, and (R2R

†
2)

−1 is the filter
applied to the projections before backprojection.

The filtering operator is given in SVD form as

(

R2R
†
2

)−1
=

∫

∞
d2ρ

1

µρ

vρv
†
ρ . (17.112)

The kernel of this operator is

[

(

R2R
†
2

)−1
]

(p,φ; p′φ′) =

∫

∞
d2ρ

1

µρ
vρ(p,φ) v

∗
ρ(p

′,φ′) . (17.113)

With (17.62) and (17.64), we see that

[

(

R2R
†
2

)−1
]

(p,φ; p′φ′)

=

∫ ∞

−∞
|ρ| dρ exp[2πi(p− p′)ρ]

∫ π

0
dθρ δ [cos(φ− θρ)] δ [cos(φ

′ − θρ)] . (17.114)

Performing the angular integral as in (4.166) and using (3.169) for the integral over
ρ, we get

[

(

R2R
†
2

)−1
]

(p,φ; p′φ′) = −
1

2π2

1

(p− p′)2
δ(φ− φ′) , (17.115)

where 1/p2 is the strange generalized function discussed in detail in Sec. 2.3.3. Thus
the filtered projection is given by

[

(

R2R
†
2

)−1
λ

]

(p,φ) = −
1

2π2

∫ ∞

−∞
dp′

λ(p′,φ)

(p− p′)2
, (17.116)

and application of the backprojection operator R†
2 then yields (4.161).

Apodization Though the inverse 2D Radon transform exists, it involves dividing
by singular values that tend to zero as ρ → ∞, leading to a large noise amplifica-
tion for image components associated with small singular values. As we know from
Sec. 15.2.6, this amplification can be controlled—at the expense of spatial resolu-
tion—by regularization in the SVD domain [see (15.114)]. Such regularization is
also called apodization, especially in a tomographic context.

Since the singular values in the 2D Radon transform with infinite object sup-
port are indexed by the spatial frequency ρ, apodization amounts to weighting each
component with a function that tends to 0 as the frequency gets large. For example,
(17.110) can be modified to

f̂(r) =

∫ π

0
dφ

∫ ∞

−∞
|ρ| dρ exp(2πir · n̂ρ)A(ρ)Λ(ρ,φ) , (17.117)

where the apodizing function A(ρ) is typically unity at ρ = 0. Note that this
expression is no longer an exact inverse, hence the hat on f̂(r).
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Pseudoinverses with finite angular sampling? In Sec. 17.2.1, we derived the SVD for
a 2D Radon transform with infinite object support and J angular samples, but it
is not obvious whether a pseudoinverse exists in this case. The difficulty is that
the eigenvalues µρ are angular delta functions. They vanish unless ρ is parallel
to one of the projection directions n̂j , but in a sense they are infinite along these
directions. This problem prevented us from defining properly normalized singular
functions in the image space; an expression like (17.63) does not work since the
eigenvalues involve delta functions. This same problem comes up again in trying to
define a pseudoinverse, which necessarily involves dividing by µρ or its square root.

There is no theorem that says a pseudoinverse has to exist in this problem. We
noted in Sec. 1.6.1 that a pseudoinverse exists for any bounded linear operator with
closed range, and in particular when the range is a finite-dimensional space. The
operator R2J has an infinite-dimensional range, however, and with infinite support
R

†
2J is unbounded; backprojection of any function into the infinite plane yields a

function of infinite L2 norm. (Of course, both of these problems apply also to the
full 2D Radon operator R, and in that case there is not only a pseudoinverse but
even a true inverse.)

If a Moore-Penrose pseudoinverse of R2J exists, it must also be a 1-inverse and
satisfy the first Penrose equation, R2JR

+
2JR2J = R2J (see Sec. 1.6.1). To check

this equation, consider first the operator R+
2JR2J , which is the projector onto the

measurement space of R2J . Measurement space in this problem is defined by the
radial spokes parallel to n̂k in the 2D Fourier plane, so the projection operator must
have the form,

[

R+
2JR2J f

]

(r)=
J−1
∑

k=0

∫

∞
d2ρ C(ρ) δ(ρ · n̂⊥k) exp(2πiρ · r)

∫

∞
d2r′ exp(−2πiρ · r′) f(r′)

=
J−1
∑

k=0

∫ ∞

0
dρ C(ρ) exp(2πiρ n̂k · r)F (ρ n̂k) . (17.118)

Applying R2J to both sides, we obtain

[

R2JR
+
2JR2J f

]

(p,φj) =
J−1
∑

k=0

∫

∞
d2r δ(p−n̂j ·r)

∫ ∞

0
dρ C(ρ) exp(2πiρ n̂k·r)F (ρ n̂k) .

(17.119)
Next we interchange the order of integration,10 so that

[

R2JR
+
2JR2J f

]

(p,φj) =
J−1
∑

k=0

∫ ∞

0
dρ C(ρ) exp(2πiρ n̂k · r) δ(ρ n̂k · n̂⊥j)F (ρ n̂k) .

(17.120)
What we would like to get this way is

[R2J f ] (p,φj) =

∫

∞
d2ρ exp(2πiρn̂j · r) δ(ρ · n̂⊥j)F (ρ n̂j)

=

∫ ∞

0
dρ exp(2πiρ n̂j · r)F (ρ n̂j) . (17.121)

10If this step is not legal, then the projection operator did not exist in the first place.
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To make (17.120) the same as (17.121), we would have to make C(ρ) δ(ρ n̂k · n̂⊥j)
be the Kronecker delta δkj, which isn’t possible. Hence no 1-inverse of R2J exists.

It is instructive to repeat this exercise with R2 instead of R2J and to find
C(ρ) in that case.

Finite support, finite angular sampling The issue of existence of a pseudoinverse
disappears if we consider a finite object support. In Sec. 17.2.1, we derived an SVD
for J angles equally spaced around 2π, objects supported on a disc of radius R,
and weighted Hilbert spaces with W (r) = 1 on the object support and w(p) =
[

2
√

R2 − p2
]−1

in the projection data. With these choices, the singular functions
in object and image space are given by (17.100) and (17.103), respectively, and the
singular values are found by taking the square root of (17.98). Using these pieces
in (1.138) (again extended to continuous indices), we can write the pseudoinverse
as

[

R+
2Jλ

]

(r)

= lim
η→0+

1

πR2

∞
∑

n=0

J−1
∑

k=0

1

µnk + η





1

J

J−1
∑

j=0

exp(2πikj/J)Un

(

r · n̂j

R

)





∫ R

−R
dp Un

( p

R

)

λk(p) ,

(17.122)
where

λk(p) ≡
J−1
∑

j′=0

exp(−2πikj′/J)λ(p,φj′) . (17.123)

Thus SVD inversion in this problem begins by performing a DFT in the angular
variable to yield a function of the index k, then using a Chebyshev polynomial of
the second kind to transform from the resulting function of p to a function of order
number n. Filtering takes place in this n-k domain, and transformation back to the
object domain is performed by multiplying by a Chebyshev polynomial with r · n̂j

in its argument, doing an inverse DFT on the j index, and summing over n and k.

Limit of infinite angular sampling More insight into (17.122) can be obtained by
considering the limit of very fine angular sampling (J → ∞). In this limit, the
eigenvalues are given by (17.99), and we can write

[

R+
2Jλ

]

(r)

=
1

πR2

∞
∑

n=0

J−1
∑

k=0

n+ 1

J





1

J

J−1
∑

j=0

exp (2πikj/J)Un

(

r · n̂j

R

)





∫ R

−R
dp Un

( p

R

)

λk(p) .

(17.124)
One might think it would be necessary to modify the summation limits here since,
according to (17.99), the sum includes only the terms for which n ≥ k and n− k is
even, but in fact no modification is needed; in the absence of noise, the consistency
condition (17.107) causes the integral over p to vanish for the terms we would like
to leave out. (Recall that Un(p/R) is a polynomial of degree n, containing terms in
pn, pn−2, and so on.)

We can now reinsert (17.123) and do the sum over k, yielding Jδjj′ , and we can
use this delta function to do the sum over j′. We then take advantage of the limit
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J → ∞, where the discrete angle φj (or 2πj/J) becomes the continuous variable φ,

to replace the sum over j with an integral:
∑J−1

j=0 → J
2π

∫ 2π
0 dφ. Thus

[

R+
2Jλ

]

(r) =
1

πR2

∞
∑

n=0

(n+ 1)
1

2π

∫ 2π

0
dφ Un

(

r · n̂
R

)
∫ ∞

−∞
dp Un

( p

R

)

λ(p,φ) .

(17.125)
To put this expression into a more familiar form, we write

[

R+
2Jλ

]

(r) =

∫ 2π

0
dφ

∫ ∞

−∞
dp h(r · n̂, p)λ(p,φ) , (17.126)

where

h(r · n̂, p) ≡
1

πR2

1

2π

∞
∑

n=0

(n+ 1)Un

(

r · n̂
R

)

Un

( p

R

)

. (17.127)

Comparing these expressions to (4.159) and (4.160), we see that (17.126) is the shift-
variant, finite-support counterpart of filtered backprojection. The order n of the
Chebyshev polynomial is the counterpart of spatial frequency, and the factor (n+1)
is the counterpart of the factor |ν| that occurs in ordinary filtered backprojection.

Large object support To make further contact with filtered backprojection, consider
what happens when R gets large. Intuitively, the inverse operator should become
shift-invariant in this limit.

Recall the definition of the Chebyshev polynomial from (4.63):

Un

( p

R

)

≡
sin[(n+ 1) cos−1(p/R)]

sin[cos−1(p/R)]
. (17.128)

If R - p, then

cos−1
( p

R

)

≈
π

2
−

p

R
. (17.129)

Thus the denominator in (17.128) is approximately unity, and

Un

( p

R

)

≈ sin
[

(n+ 1)
π

2

]

cos
[

(n+ 1)
p

R

]

− cos
[

(n+ 1)
π

2

]

sin
[

(n+ 1)
p

R

]

.

(17.130)
With this approximation and a little trigonometry, the sum in (17.127) becomes

∞
∑

n=0

(n+ 1)Un

(

p′

R

)

Un

( p

R

)

=
∞
∑

n even

(n+ 1) cos
[

(n+ 1)
p

R

]

cos

[

(n+ 1)
p′

R

]

+
∞
∑

n odd

(n+ 1) sin
[

(n+ 1)
p

R

]

sin

[

(n+ 1)
p′

R

]

. (17.131)

If p and p′ are both small compared to R, the sines and cosines vary slowly with
n, and it is valid to replace the sums with integrals. If we define 2πν = (n+ 1)/R
and note that n changes in steps of 2 in each sum, then ∆ν = 1/(πR). With some
more trig, the filter function is given in the limit by



INVERSE PROBLEMS 1187

h(p′, p) = lim
R→∞

1

2π2R2

∞
∑

n=0

(n+ 1)Un

(

p′

R

)

Un

( p

R

)

=

∫ ∞

0
ν dν cos[2πν(p′ − p)] =

1

2

∫ ∞

−∞
|ν| dν exp[2πiν(p′ − p)] . (17.132)

As expected, the filter function is now a function of only p′ − p. Moreover,
we recognize the integral as the 1D Fourier transform of |ν|, so it is precisely the
filter function that always occurs in filtered backprojection. We have succeeded in
reproducing the results from Sec. 4.4.3 by a very round-about route,11 but along the
way we also found an expression for the pseudoinverse of the 2D Radon transform
with J equally spaced angles and finite object support.

17.2.3 Inversion of the 3D x-ray transform

The 3D x-ray transform is defined in (17.46), and an equivalent form is given in
(17.47). As we discussed in Sec. 17.1.5, the main application of this transform is in
cone-beam tomography, where the vector r in the transform is interpreted as the
position of the vertex of the cone. In most data-collection geometries, this vertex
moves along a path called the trajectory, and position along the trajectory can be
specified by a scalar parameter τ . Thus the vertex position can be written as rv(τ ),
and the continuous data can be expressed by a slight modification of (17.46) and
(17.47) as

g(τ, ŝ) =

∫ ∞

0
d$ f [rv(τ )− ŝ$] =

∫

S
d3r′ f(r′)

δ
[

ŝ− rv(τ)−r
′

|rv(τ)−r′|

]

|rv(τ )− r′|2
, (17.133)

where S is the object support.
Our goal in this section is to discuss conditions under which the object f(r′) can

be recovered from the continuous, noise-free data g(τ, ŝ) and then to find explicit
inversion formulas. Key to this effort will be the Hamaker formulas (17.48) and
(17.51); these formulas establish a close relation between the 3D x-ray transform
and the 3D Radon transform, and all known inversion formulas exploit this relation
in some way.

Completeness conditions An excellent historical and mathematical account of data
completeness in cone-beam tomography is presented by Defrise and Clack (1994).
As these authors point out, the literature on this subject begins with the pioneering
mathematical investigations of A. A. Kirillov (1961). If we translate his work into
the language of cone-beam tomography, he concludes basically that any object can
be recovered from cone-beam data if all planes in space pass through a trajectory
point. This condition takes no account of finite object support and therefore leads
to the impractical conclusion that the trajectory must be unbounded. B. D. Smith

11The sharp-eyed reader will note that there is an extra factor of 1

2
in the final form of (17.132)

that does not appear in Sec. 4.4.3. It arises since the integral over φ in (17.126) runs from 0 to
2π, while the corresponding integral in (4.155) runs from 0 to π.
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(1985a) showed that any object of finite support could be reconstructed if all planes
through the support contain at least one trajectory point.

Chen (1992) gave a completeness condition applicable when the object has
finite support but we are interested in recovering the object only within some region
of interest (ROI) contained in the support. This condition was improved by Tuy
(1983) who showed that the object could be recovered within the ROI if all planes
passing through the ROI contain at least one trajectory point. Another condition,
given by Grangeat (1987, 1990), allows for the possibility that projections from
some of the trajectory points are truncated by a finite detector size. We shall not
make use of these alternative conditions here. Instead, we assume, following Smith,
that all planes through the object contain at least one trajectory point.

General approach to inversion formulas Many papers on cone-beam reconstruction
adhere to a four-step paradigm originated by Smith (1985b). The steps can be
enumerated as:

1. Transform to the 3D Radon domain;

2. Reparameterize;

3. Filter;

4. Perform Radon backprojection.

Each of these steps can be formulated as a linear integral transform, so the overall
sequence is another linear transform, mapping g(τ, ŝ) to a continuous object es-
timate f̂(r). For noise-free continuous data satisfying the completeness condition
discussed above, we arrive at f̂(r) = f(r). This inverse tomographic transform can
then be used as a starting point to derive practical reconstruction algorithms to be
applied to noisy, discrete data.

Step 1: Transformation to the Radon domain The first step is application of the
Hamaker formula (17.48). Following the notation of Smith, we denote the result
of this step as G(τ, n̂) (where here the capital letter does not denote a Fourier
transform) and write

G(τ, n̂) =

∫

4π
dΩ!s g(τ, ŝ) h(ŝ · n̂) . (17.134)

As in Sec. 17.1.5 we require that h(·) be a function of one variable that is homoge-
neous of degree −2, i.e., h(αx) = 1

α2h(x). Candidate functions are the derivative
of a delta function and the generalized function −1/x2, which we know from (3.169)
to be the 1D inverse Fourier transform of the ramp function 2π2|ν|.

The usefulness of homogeneous functions of degree −2 becomes apparent when
we substitute the final form of (17.133) into (17.134), obtaining

G(τ, n̂) =

∫

4π
dΩ!s

∫

S
d3r′ f(r′)

δ
[

ŝ− rv(τ)−r
′

|rv(τ)−r′|

]

|rv(τ )− r′|2
h(ŝ · n̂) . (17.135)
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With a wave to Fubini, we interchange the order of integration and use the definition
of the angular delta function, (2.155), to see that

G(τ, n̂) =

∫

S
d3r′ f(r′)

h
[

rv(τ)−r
′

|rv(τ)−r′| · n̂
]

|rv(τ)− r′|2
. (17.136)

Now, because of the homogeneity, we can write

G(τ, n̂) =

∫

S
d3r′ f(r′)h {[rv(τ)− r

′] · n̂} . (17.137)

In particular, if h(x) is the derivative of a delta function, then

G(τ, n̂) =

{

∂

∂p
[R3f ](p, n̂)

}

p=rv(τ)·!n

. (17.138)

Thus we have related the cone-beam data to the derivative of the 3D Radon trans-
form by using the homogeneity of the delta derivative to get rid of the 1/r2 Jacobian
factor inherent in cone-beam projections. We recall that the plane of integration for
the Radon transform has normal n̂ and is a distance p from the origin; the vertex
point must lie on this plane since p = rv(τ ) · n̂.

We note also that (17.138) is essentially the dipole-sheet transform of the object
(see Sec. 4.4.5), so recovery of the object from this stage amounts to implementing
the inverse dipole-sheet transform. To do so, however, we must express G(τ, n̂) in
terms of the Radon parameter p rather than the trajectory parameter τ .

Step 2: Reparameterization If Smith’s data-completeness condition is satisfied, it
is always possible to find one or more values of τ such that p = rv(τ ) · n̂ for any
plane through the object defined by p and n̂. Many papers then simply define a new
function F (p, n̂) (where the capital letter again does not denote Fourier transform)
by writing

F (p, n̂) ≡ G(τ, n̂) , (17.139)

with the side condition that τ signifies one of the solutions of p = rv(τ) · n̂. This
step is often called rebinning, even though neither F (p, n̂) nor G(τ, n̂) refers to
binned data in any way.

Semantic issues aside, (17.139) presents both mathematical and practical diffi-
culties. The practical problem is that several different values of τ correspond to the
same p and n̂ if the plane intersects the trajectory in several places. In that case
it is at best arbitrary to choose one such point, and when we consider noisy data
there may be a noise advantage to averaging over the trajectory points. Mathemat-
ically, there are two difficulties. First, we would like to obtain an overall integral
transformation that maps the data (a function of τ ) to the final image, so we need
an integral over τ . Second, it is not just the isolated point τ that is important with
continuous data, but rather some infinitesimal neighborhood of that point; in other
words, we must consider the Jacobian of the transformation from a function of τ to
a function of p.

One way we might consider defining the required function of p is by

F (p, n̂)
?
=

∫

dτ G(τ, n̂) δ[p− rv(τ ) · n̂] . (17.140)
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By (2.33), the result of this integral is

F (p, n̂) =

K(p,!n)
∑

k=1

G(τk, n̂)
∣

∣

∂
∂τ rv(τ ) · n̂

∣

∣

τ=τk

, (17.141)

where {τk, k = 1, ...,K(p, n̂)} are the solutions to p = rv(τ ) · n̂. This formula prop-
erly includes the Jacobians (the denominators in the summand), but it is awkward
and unaesthetic.

A cleaner definition, and the one we shall adopt, is

F (p, n̂) ≡
1

K(p, n̂)

∫

dτ G(τ, n̂)

∣

∣

∣

∣

∂

∂τ
rv(τ ) · n̂

∣

∣

∣

∣

δ[p− rv(τ ) · n̂] . (17.142)

The integral now gives

F (p, n̂) =
1

K(p, n̂)

K(p,!n)
∑

k=1

G(τk, n̂) . (17.143)

Though (17.143) looks like (17.139) except for the averaging over equivalent
trajectory points, we have the advantage from (17.142) that we now know how to
express the reparameterization as an integral transform. The Jacobians have not
been neglected but instead have been cancelled out by a judicious definition of the
kernel of this transform.

Steps 3 and 4: Filtering and backprojection If we choose h(x) as the derivative of a
delta function, then (17.138) applies, and we see that

F (p, n̂) =
∂

∂p
[R3f ](p, n̂) . (17.144)

We know from (4.186) how to go from the derivative of the 3D Radon transform
back to the original function; we need only differentiate again and backproject. 3D
Radon backprojection can be conceptualized as smearing back over the plane of
integration and integrating over all orientations of the plane. Since the plane is
defined by p = r · n̂, backprojection is realized mathematically by substituting r · n̂
for p and then performing an angular integral. Thus we have [cf. (4.186)]

f̂(r) = −
1

4π2

∫

2π
dΩ!n

[

∂

∂p
F (p, n̂)

]

p=r·!n

. (17.145)

If the data are given by (17.133), then f̂(r) = f(r). This formula was first derived
by Grangeat (1987).

Reconstruction operator Since we performed a sequence of linear transformations
to get from the continuous data g(τ, ŝ) to the reconstruction f̂(r), there must be
a single linear operator that performs the same task. In abstract form, there is an
operator O such that f̂ = Og. We shall now work out the kernel of that operator.

For generality, we let the filter used in Step 3 be denoted by h̃(·), which could
be different from the filter h(·) used in Step 1. With this notation, (17.142) can be
merged with the more general form of (17.145) to yield
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f̂(r)=

∫

2π
dΩ!n

∫ ∞

−∞
dp′ h̃(r ·n̂−p′)

1

K(p′, n̂)

∫

dτ G(τ, n̂)

∣

∣

∣

∣

∂

∂τ
rv(τ ) · n̂

∣

∣

∣

∣

δ[p′−rv(τ) · n̂]

=

∫

2π
dΩ!n

∫

dτ h̃[r · n̂− rv(τ) · n̂]
1

K[rv(τ) · n̂, n̂]
G(τ, n̂)

∣

∣

∣

∣

∂

∂τ
rv(τ ) · n̂

∣

∣

∣

∣

. (17.146)

Inserting the definition of G(τ, n̂) from (17.134) gives

f̂(r) =

∫

dτ

∫

4π
dΩ!s

∫

2π
dΩ!n h̃[r · n̂− rv(τ ) · n̂]h(ŝ · n̂)

∣

∣

∂
∂τ rv(τ ) · n̂

∣

∣

K[rv(τ ) · n̂, n̂]
g(τ, ŝ) .

(17.147)
Thus, if we write

f̂(r) =

∫

dτ

∫

4π
dΩ!s o(r; τ, ŝ) g(τ, ŝ) , (17.148)

the kernel must be given by

o(r; τ, ŝ) =

∫

2π
dΩ!n h̃[r · n̂− rv(τ ) · n̂]h(ŝ · n̂)

∣

∣

∂
∂τ rv(τ ) · n̂

∣

∣

K[rv(τ ) · n̂, n̂]
. (17.149)

Choice of filter functions We still need to determine what filter functions can be
used if we wish to have an exact inversion formula, where f̂(r) = f(r). To this end,
we look at the overall transformation from object to reconstruction. Writing this
transformation as

f̂(r) =

∫

∞
d3r′ k(r, r′) f(r′) , (17.150)

we see from (17.133) and (17.148) that

k(r, r′) =

∫

dτ

∫

4π
dΩ!s o(r; τ, ŝ)

δ
[

ŝ− rv(τ)−r
′

|rv(τ)−r′|

]

|rv(τ )− r′|2
=

∫

dτ
o
[

r; τ, rv(τ)−r
′

|rv(τ)−r′|

]

|rv(τ )− r′|2
.

(17.151)
Inserting (17.149) and using the homogeneity of h(·), we find

k(r, r′) =

∫

dτ

∫

2π
dΩ!n h̃[r·n̂−rv(τ )·n̂]h[rv(τ )·n̂−r

′ ·n̂]
∣

∣

∂
∂τ rv(τ ) · n̂

∣

∣

K[rv(τ ) · n̂, n̂]
. (17.152)

Now we make the change of variables p = rv(τ) · n̂. Recognizing the last factor in
(17.152) as the Jacobian of this transformation, we see that

k(r, r′) =

∫ ∞

−∞
dp

∫

2π
dΩ!n h̃(r · n̂− p)h(p− r

′ · n̂) . (17.153)

As an exercise, the reader can show that k(r, r′) = δ(r− r
′), yielding an exact

inversion formula, if the Fourier transforms of the filter functions satisfy

H(ν) H̃(ν) = ν2 . (17.154)

This condition is satisfied if h(x) = δ′(x) and h̃(x) = −δ′(x)/(4π2), and it is this
choice that gives (17.145). Another choice is ramp filters, H(ν) = H̃(ν) = |ν|.
Clack and Defrise (1994) have shown that the filters can also be certain linear
combinations of derivatives and ramp filters. (Cross-terms in ν|ν| cancel out by
symmetry arguments.)
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17.2.4 Inversion of attenuated transforms

We have encountered several tomographic transforms that include an exponential
factor in the integrand. These attenuated transforms include the 2D attenuated
Radon transform, the 2D exponential Radon transform and the 3D attenuated x-ray
transform. (The 2D attenuated x-ray transform is the same as the 2D attenuated
Radon transform, and the 3D attenuated and exponential Radon transforms are of
little interest for reasons discussed in Sec. 17.1.6.)

As we saw in Sec. 17.1.6, the 2D exponential Radon transform, (17.58), ap-
plies when the attenuation coefficient is constant over a convex region. Inversion
formulas for this case were found by Bellini et al. (1979) and Tretiak and Metz
(1980). Over the next fifteen years, several other inversion formulas were found,
and eventually Metz and Pan (1995) showed that all of them were special cases of
a general formalism. (see also Pan and Metz, 1995).

Inversion formulas for the more general attenuated Radon transform, (17.54),
were much more difficult to find, and many observers (including one author of this
book) had thought they might not exist. Finally, however, an approach to a solu-
tion was suggested by Arbuzov (1998), and Novikov (2002a, 2002b) developed an
explicit inversion formula. Implementations of this formula were presented by Kun-
yansky (2001) and Natterer (2001), and the latter author also presented a simpler
derivation and an alternative inversion formula.

The key problem that remains unsolved at this writing is the attenuated x-
ray transform. We know from Sec. 17.2.3 that inversion of the unattenuated x-ray
transform is all about dealing with a weighting factor in the integrand, namely the
factor 1/|rv(τ ) − r

′|2 in (17.133). Similarly, any attenuated transform brings in
another weighting factor, the exponential attenuation factor. Real cone-beam data
must necessarily involve both weighting— inverse-square and exponential attenua-
tion—so it would be of some importance to devise continuous inversion formulas
that include both.

Inversion of the 2D exponential Radon transform Because the inversion formulas
for nonconstant attenuation are complex (in both senses of the word), we shall
concentrate here on the 2D exponential Radon transform. For notational simplicity
in what follows, we denote the operator for this transform as Rµ rather than R2e,µ

as used in (17.58); thus

gµ(p,φ) = [Rµf ](p,φ) =

∫

∞
d2r f(r) δ(p− r · n̂) exp (µr · n̂⊥) . (17.155)

It turns out to be useful to include R−µ in our theory along with Rµ. In par-

ticular, as we shall see below, the operator R†
−µRµ turns out to be shift-invariant

in spite of the fact that both the attenuating medium and the axis of rotation
establish a preferred origin in object space. Moreover, the convolutional relation
(4.194), which we derived in a signal-processing context in Sec. 4.4.6, generalizes to
(Natterer, 1986)

(

R
†
−µh

)

∗ f = R
†
−µ[h ∗ (Rµf )] , (17.156)

where h denotes an arbitrary function in data space, h(p,φ). Thus the asterisk on
the left denotes 2D convolution but the one on the right denotes 1D convolution
with respect to p for each φ. Derivation of (17.156) is left as an exercise.
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Unfiltered backprojection Let us first examine the case h(p,φ) = δ(p), so that the
right-hand side of (17.156) becomes simply R

†
−µRµf. Explicitly, from (17.155) and

the definition of the adjoint [cf. (4.144)], we have

[

R†
−µRµf

]

(r)=

∫

∞
d2r′ f(r′)

∫ 2π

0
dφ δ[(r−r′)·n̂] exp[−µ(r−r′)·n̂⊥]=[f ∗(R†

−µh)](r) .

(17.157)
Since the integral over φ covers a full circle, we can without loss of generality choose
r to lie along the x axis and write

[

R
†
−µh

]

(r) =

∫ 2π

0
dφ δ(r cosφ) exp(−µr sinφ) . (17.158)

The integral can be performed with the help of (2.33), and we find

[

R
†
−µh

]

(r) =
coshµr

r
, (17.159)

where r = |r|. Note that this expression reduces to 1/r if µ → 0, and we know that
1/r is the PSF for unfiltered backprojection with the ordinary 2D Radon transform
[see (4.167)].

We might think about performing a deconvolution in the 2D Fourier domain,
but the exponential growth of coshµr means that the Fourier transform of (17.159)
cannot be defined in conventional terms, or even in terms of tempered distributions
(see Sec. 3.3.4).

Exact filter function Another way to use (17.156) is to try to find the function
h(p,φ) that yields a 2D delta function when backprojected with R

†
−µ; that is,

[

R†
−µh

]

(r) = δ(r) . (17.160)

With this function, (17.156) becomes

f = R
†
−µ[h ∗ (Rµf )] . (17.161)

If the filter function is independent of φ, it can be written as h(p); the function
[R†

−µh](r) is rotationally symmetric in this case, and the left-hand side of (17.160)
becomes [cf. (17.158)]

[

R
†
−µh

]

(r) =

∫ 2π

0
dφ h(r cosφ) exp(−µr sinφ) . (17.162)

Representing h(p) in terms of its 1D Fourier transform H(ν), we obtain

[

R
†
−µh

]

(r) =

∫ ∞

−∞
dν H(ν)

∫ 2π

0
dφ exp(−µr sinφ+ 2πir cosφ) . (17.163)

A tabulated integral (Gradshteyn and Ryzhik, 1980, formula 3.937) yields

[

R
†
−µh

]

(r) = 2π

∫ ∞

−∞
dν H(ν) J0

[

2πr
√

ν2 − (µ/2π)2
]

. (17.164)
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This form immediately suggests the change of variables ρ =
√

ν2 − (µ/2π)2. If we
take H(ν) to be zero for |ν| < µ/2π, then there is no worry about the argument of
the Bessel function becoming imaginary. Since the integrand is even, we can write

[

R
†
−µh

]

(r) = 4π

∫ ∞

0
dρ H

[

√

ρ2 + (µ/2π)2
]

J0 (2πρr) . (17.165)

We can now satisfy (17.160) almost by inspection. We know from (3.248) and
(3.254) that

2π

∫ ∞

0
ρ dρ J0 (2πρr) = δ(r) , (17.166)

so (17.160) holds if we take

H(ν) =







1
2 |ν| if |ν| > µ/2π

0 if |ν| ≤ µ/2π
. (17.167)

This function, the familiar ramp filter with the center portion deleted, is plotted in
Fig. 17.7. It was first derived by Tretiak and Metz (1980).

Fig. 17.7 The Tretiak-Metz filter function, expressed in the 1D frequency
domain.

Neumann-series approach Yet another use of (17.156) was suggested, in a slightly
different context, by Wagner et al. (2001). They inquired what would happen if
one applied the filter function for the ordinary 2D Radon transform (i.e., a ramp
filter) to data from the exponential Radon transform and then followed it with the
exponentially weighted backprojection R

†
−µ. If we denote the ramp filter by h0

(the subscript indicating µ = 0), then we can define

f̂0 ≡ R
†
−µ[h0 ∗ gµ] , (17.168)

where gµ = Rµf is the (noise-free) exponential-Radon data.
Since (17.156) holds for any filter function, we see that

f̂0 =
(

R
†
−µh0

)

∗ f =
[

(

R
†
−µh0

)

− δ
]

∗ f+ f ≡ −Kf+ f , (17.169)

where δ represents the 2D delta function δ(r) and K is the operator defined by the
next-to-last term of (17.169).

Since (17.169) is in the form of (A.59), we can apply the Neumann series to
write

f = f̂0 +K f̂0 +K2 f̂0.... . (17.170)
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Thus, if the series converges, we can find the actual object f from f̂0 in spite of
having used the wrong filter function. Convergence is problematical since R

†
−µ is

an unbounded operator if the object has infinite support, but Wagner et al. suggest
that the problem can be avoided by assuming a sufficiently small support.

Fourier-series approach An elegant general approach to the exponential Radon
transform was presented by Metz and Pan (1995). This approach begins by ex-
panding gµ(p,φ) in an angular Fourier series as

gµ(p,φ) =
∞
∑

k=−∞

gµk(p) e
ikφ (17.171)

and then further expands the coefficients in terms of their 1D Fourier transforms,
so that

gµ(p,φ) =
∞
∑

k=−∞

eikφ
∫ ∞

−∞
dν Gµk(ν) e

2πiνp . (17.172)

Thus the projection data are represented in a hybrid manner by a Fourier transform
on the p variable and a Fourier-series expansion in the angular variable φ. Explicitly,

Gµk(ν) =
1

2π

∫ 2π

0
dφ

∫ ∞

−∞
dp gµ(p,φ) e

−ikφe−2πiνp . (17.173)

We can also represent the Fourier transform of f(r) in an angular Fourier series
as

F (ρ) =
∞
∑

k=−∞

Fk(ρ) exp(ikθρ) , (17.174)

where the spatial frequency vector ρ has polar coordinates (ρ, θρ).
Following Tretiak and Metz (1980) and Metz and Pan (1995), we now seek a

relation between Gµk(ν) and Fk(ρ). For consistent (noise-free) data, we can express
gµ(p,φ) by (17.155) and represent f(r) by its inverse Fourier transform, which is
expressed by (17.174). Then (17.173) becomes

Gµk(ν) =
1

2π

∫ 2π

0
dφ

∫ ∞

−∞
dp

∫

∞
d2r

∫

∞
d2ρ

∞
∑

k′=−∞

Fk′(ρ) exp(ik′θρ) exp(2πiρ · r)

× δ(p− r · n̂) exp(µr · n̂⊥) exp(−ikφ) exp(−2πiνp) . (17.175)

The p integral can be performed by use of the delta function, and we recognize that
d2r = r dr dθ and d2ρ = ρ dρ dθρ, so we have

Gµk(ν) =
1

2π

∫ 2π

0
dφ

∫ ∞

0
r dr

∫ 2π

0
dθ

∫ ∞

0
ρ dρ

∫ 2π

0
dθρ

∞
∑

k′=−∞

Fk′(ρ) exp(ik′θρ)

× exp [2πiρr cos(θ − θρ)] exp [µr sin(θ − φ)] exp(−ikφ) exp [−2πiνr cos(θ − φ)] .
(17.176)

With the variable changes φ′ = θ − φ and θ′ = θ − θρ, the integral over θρ yields
2π δkk′ , so
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Gµk(ν) =

∫ ∞

0
r dr

∫ ∞

0
ρ dρ Fk(ρ)

∫ 2π

0
dθ′ exp(2πiρr cos θ′) exp(−ikθ′)

×
∫ 2π

0
dφ′ exp(µr sinφ′) exp(ikφ′) exp(−2πiνr cosφ′) . (17.177)

Using two tabulated integrals (Gradshteyn and Ryzhik, 1980, formulas 3.715 and
3.937), we find

Gµk(ν)=4π2

[

ν + µ
2π

√

ν2 − ( µ
2π )

2

]k
∫ ∞

0
r dr

∫ ∞

0
ρ dρ Fk(ρ) Jk(2πρr) Jk

[

2πr

√

ν2 −
( µ

2π

)2
]

.

(17.178)
Finally, we use the Fourier-Bessel theorem (Morse and Feshbach, 1953),

4π2

∫ ∞

0
r dr

∫ ∞

0
ρ dρ Fk(ρ) Jk(2πρr) Jk(2πζr) = Fk(ζ) , (17.179)

to obtain (for ν ≥ µ
2π )

Gµk(ν) =

[

µ
2π + ν

√

ν2 − ( µ
2π )

2

]k

Fk

[

√

ν2 −
( µ

2π

)2
]

. (17.180)

This is the desired relation between the mixed Fourier series-transform represen-
tation of the ERT data and the corresponding representation of the object. For
µ = 0, this relation is just a restatement of the central-slice theorem. An equivalent
relation is

Gµk(−ν) =

[

µ
2π − ν

√

ν2 − ( µ
2π )

2

]k

Fk

[

√

ν2 −
( µ

2π

)2
]

. (17.181)

We can use either of these relations to find the object coefficients Fk(ρ). From
(17.180) and a change of variables, we find

Fk(ρ) =

[

ρ
µ
2π +

√

ρ2 + ( µ
2π )

2

]k

Gµk

[

√

ρ2 +
( µ

2π

)2
]

, (17.182)

and from (17.181) we find

Fk(ρ) =

[

ρ
µ
2π −

√

ρ2 + ( µ
2π )

2

]k

Gµk

[

−
√

ρ2 +
( µ

2π

)2
]

. (17.183)

With noise-free, continuous data, we can use either (17.182) or (17.183) to recon-
struct the object exactly via (17.174) and an inverse Fourier transform.

Noisy, continuous data The derivation of (17.182) and (17.183) used the defining
relation (17.155) for gµ(p,φ), and it was at that point that ideal, continuous, noise-
free data were assumed. As we shall discuss in more detail in Secs. 17.2.5 and 17.2.6,
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real data are both noisy and discrete. It is of some theoretical interest, however, to
imagine that the data are noisy but not discrete, in which case gµ(p,φ) is not given
by (17.155) but instead by

gµ(p,φ) =

∫

∞
d2r f(r) δ(p− r · n̂) exp (µr · n̂⊥) +∆g(p,φ) , (17.184)

where ∆g(p,φ) is some random process.
The immediate consequence of (17.184) is that gµ(p,φ) is not in consistency

space (the range of Rµ) since there is no reason to believe that ∆g(p,φ) is the
projection of some object. Nevertheless, we can still apply all of the manipulations
used above. That is, we can use the noisy, continuous data to compute the Fourier
coefficients Gµk(ν) by means of (17.173), and we can then compute the right-hand
sides of (17.182) and (17.183). What we cannot do, however, is claim that we
have thereby found the actual object coefficient Fk(ρ). Instead, we have found

noisy estimates, denoted F̂ (1)
k (ρ) when (17.182) is used and F̂ (2)

k (ρ) when (17.183)
is used. Because of the noise, these two estimates will not be identical.

Metz and Pan (1995) showed that different linear combinations of F̂ (1)
k (ρ)

and F̂ (2)
k (ρ) reproduced different ERT inversion formulas previously found in the

literature and also led to many new formulas. Clarkson (1999) showed how the
different formulas correspond to different ways of projecting the inconsistent data
onto consistency space.

17.2.5 Discretization of analytic reconstruction algorithms

So far in this chapter we have discussed the forward problem for SPECT in both
CD and CC formulations, and we have discussed several analytic inversion formulas
applicable to the CC case. We have not yet introduced any practical reconstruction
algorithms that can be applied to discrete SPECT data, though general consider-
ations on this issue were given in Chap. 15. Our goal in this section and the next
is to show how the principles developed in Chap. 15 can be applied specifically to
SPECT. The focus in this section is one-step linear algorithms obtained by dis-
cretizing analytic transforms. In Sec. 17.2.6 we turn to iterative algorithms, and in
particular to formulating the requisite system matrix.

Discretization of analytic inverses In Sec. 15.2.4 we began with a CC operator L

with a known left inverse L−1 and investigated how it could be applied to noisy,
discrete data. The data model was assumed in (15.84) to be

g = CDwLf+ n , (17.185)

where C is a constant related to system sensitivity and exposure time, and Dw is a
CD operator that acts on the continuous data and produces discrete measurements.
The goal was to reconstruct the coefficients in some approximate object expansion;
these coefficients (e.g., pixel values) were assumed to be related to the object by
(15.85):

θ = Dχf or θn =

∫

∞
d2r χn(r) f(r) . (17.186)

For more discussion of this equation, see Sec. 7.1.3.
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It was suggested in Sec. 15.2.4 that a reasonable (not necessarily optimal)
way of estimating θ is to define the matrix O by (15.88),

O = DχL
−1D†

w , (17.187)

and use it to reconstruct the object coefficients as in (15.90):

θ̂ =
1

C
Og . (17.188)

Discretization of the 2D inverse Radon transform To see how to apply these for-
mulas to SPECT, consider first the situation where collimator blur and attenua-
tion are neglected, so the irradiance on the detector plane is assumed to be de-
scribed by the 2D Radon transform of the object, λ(p,φ). We further assume
point sampling at uniform intervals in both p and φ, so we can index the discrete
measurements with one index j for the φ variable and a second index k for the
p variable. A convenient way to normalize the sampling operator Dw is to take
wjk(p,φ) = [∆p∆φ]

1
2 δ(p− pk) δ(φ− φj), where ∆p and ∆φ are the sampling inter-

vals in p and φ, respectively. With these definitions, the mean value of the (jk)th

measurement is given by

gjk = C ′

∫ ∞

−∞
dp

∫ π

0
dφ δ(p− pk) δ(φ− φj)λ(p,φ) = C′λ(pk,φj) = C[DwR2f ]jk ,

(17.189)
where C′ is a constant related to the system and exposure time but independent of
the definition of Dw, and C ≡ C′[∆p∆φ]−

1
2 .

With this data model and the inverse Radon transform as given in (4.161), the
reconstruction matrix O has elements given by

Onjk =

∫

∞
d2r χn(r)

∫ π

0
dφ

∫ ∞

−∞
dp h(r · n̂− p) δ(p− pk) δ(φ− φj)

=

∫

∞
d2r χn(r)h(r · n̂j − pk) , (17.190)

where h(p) is the generalized function −1/(2π2p2), i.e., the inverse Fourier trans-
form of a ramp filter. Thus, with point sampling, we need only evaluate the shifted
filter function at the sample points in data space, backproject, and then compute
its scalar product in object space with (say) a pixel function.

By expressing h(p) in terms of its Fourier transform, we can also write

Onjk =

∫

∞
d2r χn(r)

∫ ∞

−∞
|ν| dν exp[2πi(r · n̂j − pk)ν]

=

∫ ∞

−∞
|ν| dν X∗

n(n̂jν) exp(−2πiνpk) , (17.191)

where Xn(ρ) is the 2D Fourier transform of χn(r). We can include apodization
in this form by inserting into the integrand a factor A(ν) that goes to zero as
ν increases [cf. (17.117)]. On the other hand, choice of χn(r) itself is a kind of
apodization or regularization since Xn(n̂jν) → 0 as ν → ∞. The rolloff is more
rapid if χn(r) is smoother or wider.
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If we choose χn(r) to be the delta function δ(r − rn), then Xn(n̂jν) =
exp(−2πirn · n̂jν). In that case, it is imperative that we include an apodizing
factor to control noise amplification, and the matrix elements are given by

Onjk =

∫ ∞

−∞
|ν| dν A(ν) exp(2πirn ·n̂jν) exp(−2πiνpk) = hA(rn ·n̂j−pk) , (17.192)

where hA(p) = F−1
1 {|ν|A(ν)}. Application of this matrix implements the commonly

used filtered-backprojection algorithm.

Result of applying the discretized inverse If the data model (17.185) were accurate,
θ̂ would be expressed by [cf. (15.91)]

θ̂ = DχR
−1
2 D†

wDwR2f +
1

C
DχR

−1
2 D†

wn . (17.193)

The first term is the mean of θ since the mean of n is, by definition, zero. To be
explicit, we can write the mean of the nth component of θ as

θ̂n =

∫

∞
d2r

∫

∞
d2r′ χn(r) p(r, r

′) f(r′) , (17.194)

where p(r, r′) is the kernel of the CC operator R−1
2 D†

wDwR2, given by

p(r, r′) = ∆p∆φ
∑

j,k

hA(r · n̂j − pk) δ(pk − r′ · n̂j) . (17.195)

With the normalization we have adopted here, p(r, r′) → δ(r− r′) in the limit that
A(ν) → 1 and the number of samples in both p and φ goes to infinity so that the
sums can be replaced by integrals. Thus, if our data model is correct and there is
no noise, the discretized operator yields perfect reconstruction in that limit.

More realistically, however, we must recognize that the system operator H is
not simply CDwR2; there are other effects such as collimator blur and attenuation,
so we must write

θ̂ =
1

C
DχR

−1
2 D†

wHf+
1

C
DχR

−1
2 D†

wn . (17.196)

The general form (17.195) still applies, but now p(r, r′) is the kernel of the CC
operator 1

CR−1
2 D†

wH. Explicitly,

p(r, r′) =
1

C

∑

j,k

hA(r · n̂j − pk)hjk(r
′) , (17.197)

where hjk(r′) is what we usually call hm(r′), namely the kernel of the system op-
erator H. [The reader should not confuse hjk(r′) with the filter functions h(p) or
hA(p).]

Bias and estimability If p(r, r′) can be approximated by a delta function in (17.194),
then the estimate of θn is unbiased. Unfortunately, this happy condition almost
never occurs, for two reasons. First, there is no unbiased estimator for all true
values of θn unless that parameter is estimable, as defined in Sec. 15.1.3, and we
know from that section that it is estimable if and only if χn(r) can be written as
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a linear superposition of the sensitivity functions. For the data model of (17.185),
that means that χn(r) is a superposition of line delta functions—not something
one would ever be very interested in estimating. Second, even if θn is estimable,
the specific estimate obtained by applying the discretized inverse Radon transform
will still be biased in essentially every case since the discretized inverse Radon
transform is not the pseudoinverse of the discretized Radon forward operator of
(17.185), and that operator is not an accurate description of the real system in the
first place. In short, filtered backprojection will inevitably lead to biased estimates
of the parameters.

For any choice of χn(r) and any assumed object f(r), one can numerically
compute the bias in the estimate of θn, but the authors would discourage the readers
from following that route, at least if χn(r) represents a pixel or voxel. As we
have argued in Sec. 13.3.2, bias or mean-square error in pixel values is a virtually
meaningless measure of image quality. Instead, the values computed by (17.188)
should be regarded as merely a linear transformation of the raw data, and the
transformed data will then be used by some observer to perform some practical
task. We shall return in Sec. 17.3.4 to the question of how well the transformed
vector θ̂ captures the information content (in terms of task performance) of the
data g.

17.2.6 Matrices for iterative methods

The analytic inverses described above require discretization of a known inverse
operator L−1; iterative methods, on the other hand, require discretization of an
often poorly known forward operator H. To discretize L−1 in (17.187), we needed
two discretization operators, Dχ and Dw. The first served to map the continuous
output of the inverse into the desired reconstruction functionals, while the second, in
its adjoint form, served to convert the actual discrete data into a continuous form
where we could apply L−1. For modeling a forward problem as a DD or matrix
equation, the actual CD operator H already has the desired discrete output, so all
we need is a discrete representation of the object. Methods for constructing such
representations were introduced in Chap. 7 and used extensively in Chap. 15; we
shall review this material briefly here and transcribe it into the notation of Sec.
17.1.1.

We represent the 3D object f(r) approximately by

fa(r) =
N
∑

n=1

θnφn(r) , (17.198)

where subscript a denotes approximate and subscript n is a multi-index, a 3D vector
with integer components specifying location in a 3D array. The summation limits
run from 1 to N on each component, so we are here considering an N × N × N
object representation, but the formalism is easily generalized to other arrays. It
will be convenient to think of φn(r) as a voxel function, which is uniform within a
cube of side ε centered on point rn, but of course the math is more general.

The approximate object function fa(r) can be regarded as a vector in an
N3-dimensional Hilbert space which we call representation space (see Sec. 7.1.2);
when we take this view, (17.198) is written in operator form as

fa = D
†
φθ . (17.199)
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The system matrix H is defined by (7.307) or (15.13) as

H ≡ HD
†
φ , (17.200)

with elements given by (7.304) or (15.14). In the present notation, the elements are
expressed as

Hmn =

∫

∞
d3r hm(r)φn(r) , (17.201)

where m is the 3D multi-index defined in Sec. 17.1.2; it specifies the 2D location
on the detector face as well as the projection angle. This equation shows that a
column of H is the image of φn(r) for all projection directions. Note that the
functions {χn(r)} do not appear in H and that there is no need to introduce a
data-space discretization operator Dw since the data are already discrete.

Matrices specific to SPECT The great advantage of iterative algorithms is that one
can put all of one’s effort into accurate modeling of the forward problem, with no
worry about having to solve the corresponding inverse problem analytically. In
the case of SPECT imaging with an Anger camera, accurate forward modeling re-
quires accounting for attenuation and scatter of the radiation in the patient’s body,
radiometric factors (inverse-square and obliquity), depth-dependent blur by the col-
limator or pinhole, septal penetration, blurring associated with position estimation,
and binning the position estimates into a discrete data vector g. As we shall see
below, these effects can be taken into account by theoretical analysis, direct mea-
surement, Monte Carlo simulation or some combination of these methods.

All of these methods of determining the system matrix are facilitated by think-
ing of the matrix in terms of probabilities. We know thatHmnθn is the mean number
of photons detected in bin m of the data array when the object strength in voxel n
is θn. If we define θn to be the mean number of photons emitted by voxel n during
some exposure time, then Hmn is directly the probability that a photon emitted
from voxel n is detected in bin m.

This probabilistic viewpoint leads to several useful decompositions of the H
matrix. For example, if a photon is recorded in bin m, it may have arrived at the
detector without any scattering, or it may have been scattered one or more times.
Since these events are mutually exclusive, the probabilities add, and we can write

H = H(sc) +H(un) , (17.202)

where the superscript sc denotes scattered and un denotes unscattered. Both
matrices are M2J×N3 if we consider an M ×M detector array stepped to J angles
and an object decomposed via (17.198) into N3 expansion functions such as voxels.

Analytic approaches to the H matrix The unscattered component of H was studied
in detail in Sec. 16.2.2 for the case of a parallel-hole collimator, but in a CC for-
mulation rather than the matrix formulation we seek here. The main result from
that section was (16.82), which expressed the photon irradiance on the detector
plane. We can adapt that expression to SPECT by adding an index j (specifying
projection angle) to the photon irradiance Ip(r) and to the collimator transmission
T (r, ŝ). For simplicity, we drop the subscript p (which stood for photon), but, by
some sort of perverted conservation law, we add a superscript as a reminder that
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we are dealing only with unscattered photons. Thus we rewrite (16.82) as

I(un)j (r) =
1

4π

∫

2π
dΩ Tj(r, ŝ)

∫ ∞

0
d$ f(r − ŝ$ ) exp

[

−
∫ !

0
d$′ µtot(r − ŝ$′, E0)

]

.

(17.203)
The reader should recall our convention that the 2D vector r and the 3D vector r

refer to the same physical location.
The relation between the photon irradiance and the discrete detector output is

discussed in detail in Sec. 16.2.3. For an Anger camera, the key result is (16.1047),
which in the present notation becomes

g(un)m = τη(E0)Pacc(E0)
∫

m

d2r̂

∫

∞
d2r pr(r̂|r, E0) I

(un)
j (r) , (17.204)

where the range of the r̂ integral is over the 2D extent of the detector pixel in-
dexed by m = (mx,my). Continuing our probabilistic interpretation, we note that
∫

m
d2r̂ pr(r̂|r, E0) is the probability that a photon of energy E0 striking the detector

face at point r is estimated to fall in data binm, provided that it is absorbed [proba-
bility η(E0)] and that its estimated energy falls in the window [probability Pacc(E0)].
Combining (17.203) and (17.204) with (17.201) yields a complicated expression for
the elements of H(un):

H(un)
mn =

τ η(E0)Pacc(E0)
4π

∫

m

d2r̂

∫

∞
d2r pr(r̂|r, E0)

∫

2π
dΩ Tj(r, ŝ)

×
∫ ∞

0
d$ φn(r − ŝ$ ) exp

[

−
∫ !

0
d$′ µtot(r − ŝ$′, E0)

]

. (17.205)

We can put this expression into a more useful form by also adopting a discrete
model for the detector. If we imagine that there is a pixel grid on the camera
face, we can replace the integral over r with a discrete sum over points {rm

′}. For
simplicity we assume that these points have the same spacing εd as in the final image
array. Then we can define a block-diagonal M2J ×M2J matrix H(det) representing
the detector; its elements are given by

H(det)
mm

′ = δjj′ η(E0)Pacc(E0)
∫

m

d2r̂ pr(r̂|rm′ , E0) , (17.206)

where m = (m, j) and m
′ = (m′, j′). Thus H(det)

mm′ is the probability that a photon
striking the detector at point m′ is detected and assigned to binm. This probability
is assumed here to be independent of which projection is being measured—hence
the block-diagonal form—but there could also be a dependence on j if different
detectors were used for different projections.

Similarly, we can define an M2J ×N3matrix H(un,prop) representing propaga-
tion without scatter from the source location to the detector input; its elements are
given by

H(un,prop)
m

′n =
τ ε2d
4π

∫

2π
dΩ Tj(rm′ , ŝ)

∫ ∞

0
d$ φn(rm′−ŝ$ ) exp

[

−
∫ !

0
d$′ µtot(rm′− ŝ$′, E0)

]

.

(17.207)
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With these definitions, we see that

H(un) = H(det)H(un,prop) . (17.208)

A further factorization is achieved if we assume that the attenuation coefficient
µtot(·) is slowly varying over a distance scale defined by the size of the voxel. If the
voxel is small enough, then the function φn(rm

′ − ŝ$ ) is zero unless rm
′ − ŝ$ ≈ rn,

so we can write

exp

[

−
∫ !

0
d$′ µtot(rm′ − ŝ$′, E0)

]

≈ exp

[

−
∫ |rm′−rn|

0
d$′′ µtot

(

rn +
rm′ − rn

|rm′ − rn|
$′′, E0

)

]

,

(17.209)
where $′′ ≡ $−$′, and we note that $ ≈ |rm′ −rn| within the current approximation.
Since the right-hand side of (17.209) is independent of ŝ and $, we can remove it
from the integrals in (17.207) and write

H(un,prop)
m

′n = H(geom)
m

′n Am
′n , (17.210)

where

H(geom)
m′n =

τ ε2d
4π

∫

2π
dΩ Tj(rm′ , ŝ)

∫ ∞

0
d$ φn(rm′ − ŝ$ ) (17.211)

and

Am
′n = exp

[

−
∫ |rm′−rn|

0
d$′′ µtot

(

rn +
rm

′ − rn

|rm
′ − rn|

$′′, E0
)

]

. (17.212)

The first factor in (17.210) represents geometric or straight-line propagation from
the voxel location to the detector element without attenuation or scatter, and the
second factor is the attenuation along this path in the small-voxel approximation.
The element-by-element product in (17.210) is called a Hadamard product and
denoted / (see Sec. A.2.8), and we can write

H(un,prop) = H(geom) /A , H(un) = H(det)
[

H(geom) /A
]

. (17.213)

We might also be able to assume that the attenuation factor is slowly varying
over a scale defined by the spatial resolution of the detector or, in other words, that
the attenuation of a photon from any point in the object to the point where the
photon strikes the detector face is approximately the same as the attenuation to
the point where the detector thinks the photon strikes it. If that is the case, we
can replace rm

′ with rm in Am
′n, and we have

H(un) ≈
[

H(det)H(geom)
]

/A . (17.214)

The advantage of this form is that the productH(det)H(geom)depends on the system,
while A depends only on the particular patient being imaged. Thus, if we can
characterize the system response in air, then a simple element-by-element correction
yields a patient-specific H matrix, at least when scatter is neglected.

With scatter, the full H matrix is given by

H = H(sc) +
[

H(det)H(geom)
]

/A . (17.215)
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Now we have an additive patient-specific correction as well as a multiplicative one.
The scatter matrix H(sc) cannot, however, be decomposed as neatly as H(un). The
Hadamard factorization with an attenuation factor does not work since the scatter
arriving at a point on the detector face may come from many different points in the
object, each with its own attenuation factor. Moreover, the attenuation coefficient
depends on photon energy E , so different attenuation factors would have to be
applied for different scattered photons to be rigorous.

To understand the roles of detector and propagation with scatter, we can define
an energy-dependent scatter propagation matrix H(sc,prop)(E) in such a way that

H(sc,prop)
m

′n (E)∆E is the probability that a photon emitted from voxel n will undergo
one or more scattering events and arrive at point m′ on the discretized detector
face with energy in the small interval (E − 1

2∆E , E + 1
2∆E). With this definition,

the overall scatter matrix has elements given by

H(sc)
mn =

∑

m′

∫ E−

0

0
dE η(E)Pacc(E)

∫

m

d2r̂ pr(r̂|rm′ , E)H(sc,prop)
m

′n (E) . (17.216)

Because of the integral over energy, factorization into purely detector-dependent
and detector-independent factors is not possible. We may, however, be able to
assume that pr(r̂|rm′ , E) is approximately independent of E , at least for energies
such that Pacc(E) '= 0. In that case, we can write

H(sc) = H(est) H(sc,prop) , (17.217)

where H(est) is a matrix expressing the position-estimation process, with elements
given by

H(est)
mm

′ = δjj′
∫

m

d2r̂ pr(r̂|rm′) , (17.218)

and H(sc,prop) (without the energy argument) is defined by

H(sc,prop)
m

′n =

∫ E−

0

0
dE η(E)Pacc(E)H

(sc,prop)
m

′n (E) . (17.219)

Both of the factors in (17.217) involve characteristics of the detector, but the fac-
torization is still useful since H(est) expresses the spatial blur of the detector and
H(sc,prop) expresses its energy dependence. Moreover, H(est) is independent of the
patient being imaged, while H(sc,prop) does depend on the patient.

Measurement of H As suggested in Sec. 7.4.1, it is possible to measure an H
matrix by using a radioactive source with spatial distribution φ(r) and then sys-
tematically stepping it through the various positions {rn}, creating the functions
φn(r) = φ(r−rn). In principle, one could immerse this source in a medium with at-
tenuating and scattering properties similar to those of the patient, thereby directly
measuring Hmn, but the practical difficulties in doing so hardly require enumera-
tion.

A somewhat more practical method is to image the voxel source at various
positions in air, which estimates H(det)H(geom). The Hadamard product with a
patient-specific attenuation matrix as in (17.214) then gives an estimate of H(un)

completely empirically.
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This method is used routinely at the University of Arizona, but it produces
startingly large matrices. For example, when the FASTSPECT system (Rowe et
al., 1993) is configured for imaging human brains, a volume of at least 3000 cm3

must be mapped, requiring 375,000 values of n if 2 mm voxels are used. Since
FASTSPECT uses 24 small, modular scintillation cameras, with the output of each
discretized into a 64× 64 array, each source location gives 24× 64× 64 ≈ 100, 000
measurements, and the dimensions of H(un) are thus around 100, 000× 375, 000.

Sparseness Most iterative algorithms can be written to take advantage of sparse
matrices. In SPECT, H(un) is sparse since photons detected in bin m must have
originated somewhere near the line of sight from that detector location back through
the collimator or pinhole into the object space; most object voxels are far from this
line of sight and cannot contribute to gm. Thus most of the elements of H(un) are
near zero and do not have to be stored. In FASTSPECT, for example, only about
2% of the elements are stored.

Scattered photons, on the other hand, can in principle make it from any object
voxel to any data bin, so the sparseness is lost. Since iterative algorithms with sparse
matrices execute faster than ones with filled matrices, there is a practical incentive
to ignore scattering or to try to compensate for it somehow.

Approximate shift-invariance and interpolation of H In Sec. 16.2.2, we argued that
the point response of a collimator was approximately shift-invariant for lateral
translations of the point source [see (16.88)]. To be sure, this response depends
on distance from the collimator face, but only by means of a slowly varying scale
factor. Similarly, the point response of a pinhole aperture is also approximately
shift-invariant laterally and slowly varying longitudinally. Moreover, the detector
response is also approximately shift-invariant for most detectors. We can take ad-
vantage of these features to reduce the number of components of H(un) that must
be measured.

The trick is to decompose each column ofH(un) into its centroid on the detector
and a spread about the centroid by writing

H(un)
mn = hjn[m−mc(n, j)] , (17.220)

where the 2D index vectormc(n, j) denotes the centroid of the image of φn(r) on the
detector output for the jth projection angle. Because of the sparseness as discussed
above, hjn[m−mc(n, j)] is nonzero for only a small set of m near mc(n, j).

If hjn(m) and mc(n, j) are slowly varying functions of source location n, then

we may not need to measure H(un)
mn for all n; it might suffice to measure every other

point or every third point in each of the three directions. The matrix elements
for the unmeasured points can be recovered by interpolation of the centroids and
averaging the blur functions hjn(m) for the neighboring measured points. This
interpolation can be done on the fly during iterative reconstruction, so it is not
necessary to store the matrix elements for unmeasured points. If every other point
is measured, there is a savings of a factor of 8 in measurement time and storage
required, and if every third point is measured the savings is a factor of 27.

Monte-Carlo estimation of H The probabilistic interpretation of H suggests that
it can be usefully estimated by Monte Carlo methods. As we saw in Sec. 10.4.5,
the essence of a Monte Carlo calculation is simply to trace photons from a source
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to a detector in a computer. For Monte Carlo calculation of the nth column of H
with a voxel representation, the source in question is the nth voxel, and tracing
photons from this source is a computer simulation of the measurement process
described above. One difference between the computer simulation and an actual
measurement, however, is that we can choose to omit the effects of the detector in
the former. That is, we can choose to estimate H(un,prop) and H(sc,prop) by Monte
Carlo methods and then obtain the final H matrix by multiplying them by a sparse
matrix characteristic of the detector.

The interpolation methods described above for measured H matrices apply
also to Monte Carlo calculation, but now the savings are in computation time, not
measurement time.

17.3 NOISE AND IMAGE QUALITY

In order to discuss image quality in SPECT, we need an understanding of the noise
properties of the images, which means we must both characterize the noise in the raw
data and analyze how that noise propagates through the data processing, including
any preprocessing steps and the reconstruction algorithm itself. Basic tools for this
analysis were developed in Chaps. 8, 11, 12 and 15, and here we shall apply them
to SPECT.

In Sec. 17.3.1 we discuss the noise properties of the measured data and how it
is modified before being used in image reconstruction. In Sec. 17.3.2, we discuss the
effects of noise on reconstructed images, and in Sec. 17.3.3, we address the thorny
topic of reconstruction artifacts. Finally, in Sec. 17.3.4 we apply what we have
learned to objective assessment of image quality in SPECT.

17.3.1 Noise in the data

We know from the discussions in Chaps. 11 and 12 that the raw data in SPECT are
strictly Poisson, in spite of such complicated phenomena as attenuation, scatter,
depth-dependent blur and position estimation. That is, conditional on a particular
object, the measurements {gm} are independent of each other, and each is a Poisson
random variable (see also Sec. 16.2.4).

The mean of gm, however, is [Hf ]m, not [Hθ]m. As in (15.10), we can write

g = Hf+ n , (17.221)

but in terms of the approximate representation (15.6) or (17.198), we can also write
[cf. (15.11)]

g = Hfa +Hf−Hfa + n ≡ Hθ + ε , (17.222)

where the overall error ε (modeling error plus noise) is given by

ε = Hf−Hfa + n . (17.223)

There is no reason to believe that the modeling error is small compared to the
Poisson noise. Indeed, the Poisson contribution to ε can be made arbitrarily small
by increasing the exposure time and hence the mean number of photons collected.
(The modeling error can also be made arbitrarily small by increasing the number
of expansion functions in (17.198), but this is seldom practical.)
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Nevertheless, the covariance matrix of g is essentially unchanged by the mod-
eling error, at least so long as object randomness is not considered. Without ap-
proximation, we have that

[

Kg|f

]

mm
′
= [Hf ]

m
δmm

′ , (17.224)

where δmm
′ is really the product of three Kronecker deltas, one for each of the two

components of the detector index and one for the projection angles. Since Hθ is
usually a good approximation to Hf, there is probably no great error in writing

[

Kg|f

]

mm
′
≈ [Hθ]

m
δmm′ . (17.225)

In particular, the modeling error does not introduce any correlations since Hf−Hfa
is a nonrandom vector. We emphasize, however, that this is true only conditional
on a particular object; when object randomness is considered, the covariance of the
modeling error will not be diagonal.

Correction for detector imperfections Real detectors suffer from nonuniform re-
sponse and possibly geometric distortion, and it is common practice to correct
the raw projection data before applying a reconstruction algorithm. For example,
nonuniformity in the flood response of the detector can be corrected by dividing by
a stored flood image (see Sec. 7.2.1), and various interpolation algorithms can be
used to correct distortion. These corrections make most reconstruction algorithms
more accurate since the data after correction come closer to what was assumed in
the derivation of the algorithm, but they also alter the noise properties of the data.

Simple flood division can have a surprisingly complicated effect on the covari-
ance matrix of SPECT data. Since an experimental flood image itself suffers from
Poisson noise, the corrected measurements are ratios of two Poisson random vari-
ables, which are not themselves a Poisson random variable. The covariance matrix
for the corrected data in a single projection is still diagonal, but the diagonal ele-
ments are not equal to the mean. If, however, the same detector is used to record all
of the projections by rotating it to different angles, then the fluctuations introduced
by dividing by a common noisy flood are correlated from angle to angle, and the
covariance matrix is no longer diagonal in the angular variables j and j′. Fortu-
nately, this complication can be avoided by using a very large number of counts in
the reference flood image.

Distortion in scintillation cameras of the Anger type arises from bias in the
position estimation (see Sec. 12.3.6). With bias, detected events are not assigned to
their correct locations on the camera face, even on average. If we apply a discretized
analytic reconstruction to such distorted projection data, severe artifacts can result
from the mismatch between the actual data characteristics and those assumed in
derivation of the algorithm. Similarly, if we use an iterative algorithm with an an-
alytic H matrix that takes no account of the distortion, then again artifacts ensue.

There are essentially three ways to avoid problems with camera distortion: (1)
characterize it and incorporate it in the reconstruction algorithm; (2) avoid it in the
first place by using unbiased position estimators; or (3) correct the data after mea-
surement but before starting reconstruction. Options 1 and 2 require calibration
steps that would be onerous in routine clinical applications. We can characterize
the distortion by using a measured H matrix, but we saw in Sec. 17.2.6 that the
resulting matrix is huge, and it can be used only in time-consuming iterative algo-
rithms. Similarly, we know from Sec. 12.3.6 how to construct a maximum-likelihood



1208 SINGLE-PHOTON EMISSION COMPUTED TOMOGRAPHY

position estimator, which is unbiased in the limit of a large number of optical pho-
tons per scintillation event, but it also requires an additional calibration step to
determine the response functions of the individual photomultipliers.

Thus routine clinical practice currently uses some sort of distortion correction.
The usual procedure is to record a high-count image of a radioactive grid and then
interpolate the data so that the resulting image after interpolation is undistorted.
When this same interpolation is applied to actual, noisy projection data, distortion
is removed on average, but short-range correlations can be introduced. To the au-
thors’ knowledge, the effect of these correlations on the reconstructed images has
not been studied.

Scatter correction Since real gamma-ray detectors do not have perfect energy dis-
crimination, measured projection data will inevitably have contributions from both
unscattered and scattered photons. Almost all reconstruction algorithms are de-
rived on the assumption of no scatter, and severe quantitative errors can result
when such algorithms are applied to real data. Much effort has been expended
on ways of preprocessing the data to remove the effects of scatter on average, but
much less attention has been paid to the effect of these corrections on statistical
properties of the data.

One common way of removing scatter is to use two energy windows, one cen-
tered on the photopeak and one centered at a substantially lower energy, separated
from the photopeak by more than the energy resolution of the detector. With iso-
topes that emit only a single gamma-ray energy, there is very little probability that
an unscattered photon will contribute to the lower window, so the number of counts
in that window can be used to form an estimate of the mean number of scattered
photons contributing to a particular detector bin in a particular projection direc-
tion. This estimate can then be used along with some assumed scatter spectrum
and knowledge of Pacc(E) to compute an estimate of the scatter contribution in the
photopeak window and subtract it off.

Since the number of counts in the lower window is a Poisson random variable,
the corrected photopeak measurement is a weighted difference between Poisson ran-
dom variables. This difference is not itself Poisson, but it is statistically independent
from detector bin to detector bin and also from projection angle to projection angle.
Thus the covariance matrix of the corrected data remains diagonal, but the diagonal
elements are not equal to the mean.

Noise in the H matrix Up to here in this book, we have regarded the system matrix
H as a deterministic quantity; we may not know it very well, but it isn’t random.
When we either measure it directly or compute it by Monte Carlo simulation, how-
ever, H becomes random in a sense: if we were to repeat the measurement or
simulation, we would get a different matrix. On the other hand, if we use this
random matrix in any reconstruction algorithm, it becomes a fixed characteristic
of the algorithm. Errors of H arising from Poisson statistics in a measurement are,
in principle, no different from modeling errors. They do not contribute to the co-
variance of reconstructed images if we think of that covariance in terms of repeated
images, all reconstructed with the same H, but they do, of course, affect objective
measures of image quality.
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17.3.2 Noise in reconstructed images

As we know from Secs. 15.2.6, 15.3.6 and 15.4.7, Poisson noise in the raw data
can propagate in complicated ways through linear or nonlinear reconstruction algo-
rithms. In this section we point out some of the complications that are specific to
emission tomographic reconstruction.

Noise in one-step linear reconstructions The variance and covariance after applica-
tion of a linear reconstruction operator O were derived in Sec. 15.2.6. Transcribing
(15.120) and (15.121) into our multi-index notation and making the same approxi-
mation as in (17.225), we obtain

[

K!θ|f

]

nn′

=
∑

m

[Hf ]
m
OnmO∗

n′m
≈

∑

m

[Hθ]
m
OnmO∗

n′m
, (17.226)

Var
{

θ̂n|f
}

=
∑

m

[Hf ]
m
|Onm|2 ≈

∑

m

[Hθ]
m
|Onm|2 . (17.227)

The variance expressions can also be written as [cf. (15.122) and (15.123)]

Var
{

θ̂n|f
}

=

∫

Sf

dqr ℵn(r) f(r) ≈
∑

n′

ℵnn′θn′ , (17.228)

where ℵn(r) is the noise kernel, defined by

ℵn(r) ≡
∑

m

|Onm|2hm(r) , (17.229)

and ℵ is a matrix approximation to the noise kernel, with elements given by

ℵnn′ ≡
∑

m

|Onm|2Hmn′ . (17.230)

The noise kernel thus makes it possible to see how noise at different locations in the
reconstruction arises from different points in the object.

In evaluating these variance and covariance expressions, relatively crude ap-
proximations to [Hf ]

m
or [Hθ]

m
can often be used. Blurring of the data by the colli-

mator or detector is relatively unimportant in (17.227), for example, since |Onm|2 is
nonnegative and hence itself a blurring operator. In addition, small or low-contrast
features in the object can be ignored if they do not affect the mean data very much.
For example, suppose the object is a cylindrical phantom of diameter D with uni-
form activity f0 except for a small, hot sphere simulating a tumor. If the diameter
of the tumor is Dt and its activity is ft, then the tumor can be ignored for purposes
of computing the noise (though not for purposes of computing the mean image)
if Dtft 1 Df0. In this case, most of the counts come from the large cylindrical
region, so most of the noise comes from there as well.

Filtered backprojection To understand the implications of (17.226) – (17.230) for
SPECT reconstructions, let us consider filtered backprojection with the sampled
filter function of (17.192). That filter was derived for 2D reconstruction, but it is
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applicable to 3D rotating-camera SPECT with a parallel-hole collimator since the
3D volume can be reconstructed one 2D slice at a time (see Sec. 17.1.4).

The matrix elements of (17.192) are given by12

Onjk =

∫ ∞

−∞
|ν| dν A(ν) exp(2πirn ·n̂jν) exp(−2πiνpk) = hA(rn ·n̂j−pk) , (17.231)

where hA(p) = F−1
1 {|ν|A(ν)|}. This function (or actually, its negative) is plotted

in Fig. 2.6b for one particular choice of A(ν), but other choices will give similar be-
havior: the filter function h(p) will always have a central positive core and negative
wings that fall off as −1/p2.

With (17.229) and (17.231), the noise kernel for filtered backprojection is given
by

ℵn(r) =
∑

j

∑

k

h2
A(rn · n̂j − pk)hjk(r) . (17.232)

Similarly, the covariance matrix can be written as

[

K!θ|f

]

nn′

=
∑

j

∑

k

hA(rn · n̂j − pk)hA(rn′ · n̂j − pk)[Hf ]jk . (17.233)

As noted above, we do not need to be very precise in specifying the mean data
[Hf ]jk when computing the noise properties, so rough approximations to hjk(r)
can be used. In particular, if we ignore attenuation and all blurring processes, we
can write

hjk(r) ≈ C δ(pk − r · n̂j) , (17.234)

where [cf. (16.98) and (16.104)]

C = τ η(E0)Pacc(E0) ε2
αpfD2

b

16L2
b

, (17.235)

with τ being the exposure time for a single projection and ε2 the area of a bin in
the camera output.

Continuous data Though the discrete expressions (17.232) and (17.233) should be
used when accurate results are desired, considerable insight into the noise properties
of filtered backprojection can be obtained by regarding the data as continuous and
replacing the sums by integrals. First, we assume that very fine angular sampling is
used so that the sum over j can be replaced by an integral over projection angle φ.
With rotating-camera SPECT, this approximation can be realized in practice to an
arbitrary accuracy since the camera can be stepped in fine angular increments with
no difficulty. Second, we assume that the grid used to record the irradiance on the
detector is fine compared to the large-scale structure of the mean data; as noted
above, we do not need to worry much about small-scale structure in the mean data

12We are now using a mixed index notation, where the multi-index n specifies the voxel in the
reconstruction and the scalar indices j and k specify rotation angle and 1D position on the detector,
respectively. The reader should not confuse n with the unit vector #nj .
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when calculating the noise. Taking the sampling intervals in p and φ as ∆p and ∆φ,
respectively, and assuming 360◦ rotation of the camera, we can rewrite (17.233) as

[

K!θ|f

]

nn′

=
1

∆φ∆p

∫ 2π

0
dφ

∫ ∞

−∞
dp hA(rn·n̂−p)hA(rn′ ·n̂−p) [Hf ](p,φ) . (17.236)

With approximation (17.234), the covariance matrix becomes

[

K!θ|f

]

nn′

=
C

∆φ∆p

∫

∞
d2ro f(ro)

∫ 2π

0
dφ hA[(rn−ro)·n̂]hA[(rn′−ro)·n̂] . (17.237)

The variance is obtained by setting n = n′, or

Var
{

θ̂n|f
}

=
C

∆φ∆p

∫

∞
d2ro f(ro)

∫ 2π

0
dφ h2

A[(rn − ro) · n̂] , (17.238)

so the noise kernel is given by

ℵn(ro) =
C

∆φ∆p

∫ 2π

0
dφ h2

A[(rn − ro) · n̂] . (17.239)

An immediate conclusion from (17.238) is that the mapping from the object to
the variance distribution is shift-invariant under our assumptions of continuous data
and simple Radon system kernel (17.234). It does not follow, however, that the noise
is stationary; for a stationary random process, the variance must be independent of
position, while here it is given as a convolution of the noise kernel with the object.

Another useful form for the noise kernel can be obtained by the change of
variable u = |rn − ro| cosφ′, where φ′ is the angle between rn − ro and n̂. Then we
have

ℵn(ro) =
2C

∆φ∆p

∫ |rn−ro|

−|rn−ro|
du

h2
A(u)

√

|rn − ro|2 − u2
. (17.240)

To interpret this result, we recognize that h2
A(u) is nonnegative and falls off asymp-

totically as 1/u4, so it is highly concentrated near u = 0. The width of this function
is of order 1/νA, where νA is the width of A(ν). When |rn− ro| - 1/νA, we see that

ℵn(ro) ≈
2C

∆φ∆p

1

|rn − ro|

∫ ∞

−∞
du h2

A(u) =
2C

∆φ∆p

1

|rn − ro|

∫ ∞

−∞
dν ν2A2(ν) ,

(17.241)
where the last step follows from Parseval’s theorem, (3.80). To be explicit, if we
choose

A(ν) = exp

(

−
ν2

2ν20

)

, (17.242)

then
∫ ∞

−∞
dν ν2A2(ν) =

√
π

2
ν30 . (17.243)

This result shows that the variance at a point in the reconstruction varies as the
cube of the rolloff frequency of the filter function. Since the spatial resolution
varies only linearly with ν0, a two-fold increase in resolution is accompanied by an
eight-fold increase in variance (or 2

√
2-fold in standard deviation).
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Disk object Additional features of the noise in filtered backprojection can be dis-
cerned by considering a uniform disk object. For simplicity, we continue to assume
continuous data and the Radon kernel of (17.234).

For a disk object of radius Rd and activity f0, (17.237) becomes

[

K!θ|f

]

nn′

=
Cf0

∆φ∆p

∫ Rd

0
ro dro

∫ 2π

0
dθo

∫ 2π

0
dφ hA[(rn − ro) · n̂]hA[(rn′ − ro) · n̂] .

(17.244)
Representing the filter functions by their Fourier transforms and swapping integrals,
we obtain

[

K!θ|f

]

nn′

=
Cf0

∆φ∆p

∫ ∞

−∞
dν |ν| A(ν)

∫ ∞

−∞
dν ′ |ν′| A(ν′)

∫ Rd

0
ro dro

∫ 2π

0
dθo

∫ 2π

0
dφ

× exp{2πi[(rn − ro) · n̂ν]} exp{−2πi[(rn′ − ro) · n̂ν′]} , (17.245)

where the minus sign in the last exponential is allowed since hA(p) is real. The
integrals over ro and θo comprise the Fourier transform of the disk evaluated at
n̂(ν − ν ′), and the transform can be performed by (3.258). The integral over φ can
be performed by (3.247), so we find

[

K!θ|f

]

nn′

=
2πRdCf0
∆φ∆p

∫ ∞

−∞
dν |ν| A(ν)

∫ ∞

−∞
dν ′ |ν′| A(ν′)

×
J1[2πRd(ν − ν ′)]

ν − ν′
J0(2π|rnν − rn′ν′|) . (17.246)

As the disk radius goes to infinity, the besinc approaches a 1D delta function:

lim
Rd→∞

J1[2πRd(ν − ν′)]

ν − ν′
= 2 δ(ν − ν′) . (17.247)

Thus

[

K!θ|f

]

nn′

→
4πRdCf0
∆φ∆p

∫ ∞

−∞
dν |ν|2 A2(ν) J0(2π|rn − rn′ |ν) . (17.248)

Thus the covariance matrix has the form of a continuous stationary autocovariance
function sampled at rn − rn′ . Since this function is rotationally symmetric, and
since the 2D Fourier transform of a rotationally symmetric function is the Hankel
transform [see (3.248)], we can also write

[

K!θ|f

]

nn′

→
2RdCf0
∆φ∆p

F−1
2

{

|ν|A2(ν)
}
∣

∣

r=|rn−r
n
′ |
. (17.249)

By the Wiener-Khinchin theorem (8.133), it follows that the noise power spectrum
(before sampling on the reconstruction grid) is proportional to |ν|A2(ν). We must
remember, however, that the noise is stationary in this sense only in the limit
Rd → ∞; for a finite disk the noise is not stationary and the noise power spectrum
is not defined.



NOISE AND IMAGE QUALITY 1213

To see the lack of stationarity, we can rewrite (17.246) as

[

K!θ|f

]

nn′

=
2πRdCf0
∆φ∆p

∫ ∞

−∞
dν |ν| A(ν)

∫ ∞

−∞
dν ′ |ν′| A(ν′)

×
J1[2πRd∆ν]

∆ν
J0(2π|r∆ν −∆rν|) , (17.250)

where r ≡ 1
2 (rn+ rn′), ∆r ≡ rn − rn′ and similarly for the frequency variables. Be-

cause of the presence of r, this covariance matrix is no longer obtained by sampling
a stationary autocovariance function.

One qualitative observation from (17.250) is that the correlations tend to be
directed radially away from the center of the disk since the second Bessel function
has its maximum value when ∆r = r∆ν/ν or, in other words, when the vector ∆r

is parallel to r. This argument is confirmed by the reconstruction shown in Fig.
17.8 with its strong radial correlations.

Fig. 17.8 Reconstruction of a brain phantom by filtered backprojection. (a)
Simulated object. (b) Noisy sinogram. (c) Reconstruction. (Courtesy of Craig
Abbey).

Another qualitative observation is that the variance is quite spread out, ex-
tending well beyond the edges of the object in Fig. 17.8. In essence, this comes
about since the variance pattern is the object convolved with a noise kernel that
varies approximately as 1/ro as seen in (17.241). Moreover, because of this slow de-
cay, the variance at the center of the disk is proportional to the radius of the disk,
even when that radius is much greater than the spatial resolution of the system. In
short, noise in filtered backprojection is very nonlocal.

The reader who wishes to study this problem further— and perhaps remove
some of the approximations we made— is encouraged to use the stochastic Wigner
distribution function. Numerical evaluation of the integrals will be required, but the
results will explain the correlations seen in Fig. 17.8. Another very useful exercise
is to apply the methods developed here to the case where attenuation in the object
is modeled by the exponential Radon transform (see Sec. 17.1.6) and reconstruction
is performed by the Tretiak-Metz algorithm.

Noise in nonlinear reconstructions As we saw in Chap. 15, there are two general
approaches to nonlinear image reconstruction. One approach, called implicit esti-
mation, is to specify a functional, often called an objective functional, that should
be minimized by proper choice of the reconstruction vector θ̂. The objective func-
tional is frequently chosen so that the minimum is unique, and in that case it really
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doesn’t matter, except in terms of computational effort, what specific algorithm
is used to find the minimum. The other approach is to state a specific iterative
algorithm, such as the MLEM (maximum-likelihood expectation maximization) al-
gorithm of (15.305), and run it for some number of iterations. The algorithm need
not be one for which convergence is guaranteed, and it need not be related to a
specific objective functional.

Noise in implicit estimates was discussed in Sec. 15.3.6 under the assumption
that the objective functional is differentiable (with respect to both the data and the
reconstruction) at its minimum. This condition may not be satisfied if the func-
tional includes a positivity constraint, but if it is, then the final reconstruction is
approximately related to the data by a linear mapping as in (15.221). At this point
the methods derived above for analyzing noise in one-step linear reconstruction can
be applied, but the linear mapping depends on the object.

Noise in iterative algorithms can be analyzed by recursive methods described
in Sec. 15.4.7. Again a differentiability condition is required, but now it is only
the update rule that needs to be differentiable, not the functional at the final esti-
mate. Many popular iterative algorithms, including the MLEM algorithm, satisfy
this condition, and the recursive methods give highly accurate predictions of the
mean and covariance as a function of iteration number (Wilson et al., 1994; Wang
and Gindi, 1997; Soares et al., 1998).

Example: MLEM The MLEM algorithm, if ever run to completion, would maximize
the likelihood pr(g|θ). As we discussed in Sec. 15.4.6, however, maximum likeli-
hood is seldom a desirable end point in image reconstruction. Running the MLEM
algorithm for a large number of iterations usually results in a virtually useless im-
age, often one consisting of a few bright pixels like the night-sky reconstructions
discussed in Sec. 15.3.5.

Fig. 17.9 Sequence of reconstructions of a brain phantom by the MLEM
algorithm after 10, 20, 50, 100, 200, and 400 iterations (left to right, top to
bottom). (Courtesy of D. W. Wilson.)

This behavior is seen in the sequence of reconstructions shown in Fig. 17.9. As
the iteration proceeds, the image becomes sharper and noisier. When compared to
the reconstruction obtained by filtered backprojection in Fig. 17.8, the MLEM im-
ages have a much more localized variance pattern, with no significant noise outside
the boundaries of the disk. This point is reinforced by Fig. 17.10, where the mean
image of a brain phantom is shown along with a spatial map of the variance. The
variance pattern looks strikingly like the mean image, an effect that is predicted by
the recursive approach to noise propagation discussed in Sec. 15.4.7. An intuitive
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way to understand the variance structure in MLEM, or any other reconstruction
algorithm that enforces positivity, is to note that the constrained reconstruction
cannot go negative. Thus when the mean is small, the variance must be small also.

Fig. 17.10 Images illustrating the statistics of the MLEM algorithm. (a) Es-
timate of the mean image. (b) Estimate of the variance map. The object was
a Hoffman brain phantom, and noise-free data were simulated for a SPECT
system with 64 projection angles and 64 pixels per projection. Then 2,000
independent random data sets were generated by adding Poisson noise corre-
sponding to an average of 100,000 counts. Reconstructions were performed for
100 iterations, and the 2,000 images were used to compute the sample mean
and variance at each pixel, as shown. (Courtesy of D. W. Wilson.)

17.3.3 Artifacts

In addition to noise, there are also defects commonly referred to as artifacts13 in
reconstructed images. In general terms, artifacts are deviations between an object
and its image, but we know from Sec. 7.1.4 that some deviations are inevitable;
no digital image can ever exactly match a continuous object. Not all of these de-
viations, however, are called artifacts. We accept the fact that a digital image is
blurred, perhaps noisy, and displayed on a discrete pixel grid, but if the image
exhibits streaks or large areas of erroneous information, we refer to the defects as
artifacts.

We can distinguish two general classes of artifact, depending on whether they
are evident in the image of a point or require an object of large area. We shall call
these two classes point artifacts and areal artifacts, respectively.

Qualitatively, a point artifact is any nonlocal or long-range structure in the
overall system point response function (PRF), including the reconstruction algo-
rithm. Thus blur and pixellization, being short range, are not artifacts, but streaks
arising from inadequate angular sampling in tomography are. The scale that dis-
tinguishes local from nonlocal effects can be expressed in terms of the maximum
spatial frequency passed by the system, including any reconstruction algorithm or
post-processing filter used. If we denote this maximum frequency by ρmax, then
structures in the PRF extending beyond about 1/ρmax will be termed nonlocal and
hence artifactual.

13Etymologically, artifact (or artefact) derives from the Latin arte factum, something made with
skill. However, it is lack of skill in designing or modeling the system that leads to artifacts. Even
if we take the modern meaning of artifact as anything manmade, there is a logical problem since
the reconstruction is made by a computer, not a human.
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Areal artifacts can also be defined in terms of the system PRF, but they relate
to spatial variations in the strength of the PRF. If we denote the PRF for the overall
CD mapping from object function to discrete reconstructed image as pn(r), then
there are two distinct measures of the strength: the system sensitivity and the flood
response. These terms are discussed in Secs. 7.2.1 and 7.3.1, but in brief system
sensitivity is the sum of pn(r) over n and flood uniformity is its integral over r.
Nonuniformities in either of these measures will be called areal artifacts.

Of course, nonconstant sensitivity or flood response can be problematical in
direct imaging systems, but they can usually be corrected in those cases. For exam-
ple, a measured flood response can be used to renormalize the image as in (7.109).
With indirect imaging, on the other hand, we may not always know the cause of the
areal artifact, or we may not have enough information to correct it. As an example,
attenuation of the radiation in the patient’s body in SPECT can lead to an areal
artifact, and we cannot correct for it fully if we do not know the distribution of
attenuation coefficient.

In reconstructed images, both kinds of artifact are joint characteristics of the
imaging system and the reconstruction algorithm. They arise from null functions
of the system and/or errors in system modeling, but their nature and their effect
on objective measures of image quality depend on algorithmic issues such as nature
and degree of regularization, number of iterations, and whether the algorithm en-
forces positivity.

Both kinds of artifact are deterministic rather than stochastic properties of an
image. The term noise artifacts also appears in the literature, referring to long-
range noise correlations, but we have already discussed that effect in Sec. 17.3.2.

Null functions To isolate the effect of null functions on artifacts, we ignore noise in
the data, so that

g = Hf , (17.251)

and we assume for now that we know H perfectly. If we use this H to compute
a pseudoinverse estimate without adopting a discrete representation, say by the
Backus-Gilbert method described in Sec. 15.2.2, then

f̂ = H+g = H+Hf = fmeas = f− fnull . (17.252)

In many situations, including limited-angle tomography and aliasing, the term fnull
is not spatially localized, so it produces an artifact. Note, however, that it is really
the lack of null functions in the image that constitutes the artifact; the actual object
contains null functions, and eliminating them from the image is what gives nonlocal
structures.

Sampling and aliasing Sampling and aliasing were analyzed in Sec. 3.5, but from
the viewpoint of bandlimited functions. The main result from that section is that
a bandlimited function can be recovered exactly from its samples if the Nyquist
condition is satisfied. The interpolating function turned out to be a sinc function
of appropriate width. Given our definition of artifact, however, we should consider
the point response function of the overall process (sampling and interpolation), and
points are not bandlimited.

Suppose, for example, that we sample a 2D function f(r) with a regular array of
small detectors at locations r = mε, producing a data set {gm}. If f(r) = δ(r− r′),
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where r′ is the point location, then at most one of the data values is nonzero. Calling
that value gm′ , we can write the result of sinc interpolation as [cf. (3.298)]

f̂(r) =
∑

m

gm sinc

(

r−mε

ε

)

= gm′ sinc

(

r−m′ε

ε

)

. (17.253)

The long tails of the sinc function are the artifacts. Similar long tails occur in
tomographic reconstruction when the filter function has a sharp cutoff frequency.

Note that it was necessary to consider the interpolation or reconstruction step
before the artifacts became evident. The CD PRF of the sampling step alone
is compact since only a single detector element, m = m′, is activated by the point
object. Other interpolation functions, such as triangle functions or Gaussians, would
have produced more compact overall PRFs and weaker artifacts in the sense we have
defined them.

Another way to look at aliasing is in terms of null functions. Any CD system
has a null space, and any two objects that differ by a null function produce the same
data and cannot be distinguished by the system, so we say they are aliased. Figure
3.8 gives an example of two cosine function that differ in frequency by the reciprocal
of the sampling interval, so they agree exactly at the sample points. Neither of these
functions is a null function of the sampling operator, but the difference between
them is.

In tomography, aliasing occurs because there are a finite number of projections
and a finite number of measurements per projection, but again two objects are
aliased if they differ by a null function. This difference function is almost always
spatially extended, so aliasing produces artifacts.

Aliasing and Fourier crosstalk A convenient way of quantifying the degree of aliasing
is by the Fourier crosstalk matrix, introduced in Sec. 7.3.3 and applied to tomog-
raphy in Sec. 17.1.3. Unlike other Fourier methods, the Fourier crosstalk matrix
does not assume any form of shift-invariance, and it is motivated by CD system
models rather than CC ones. The Fourier crosstalk matrix is an exact description
of any CD system, fully equivalent to the integral operator H†H. Though it is
an infinite matrix, its elements have simple physical interpretations. The diagonal
elements tell us how well a particular Fourier-series coefficient is measured by the
system. More importantly for the present discussion, however, the off-diagonal ele-
ments specify the degree of aliasing between two different Fourier components.

The idea of degree of aliasing is seldom discussed in treatments of direct imag-
ing systems since it is not an issue for the idealized detector models usually used.
If we consider an infinite detector array with uniformly spaced elements on a reg-
ular grid, then the null functions of the detector are easy to characterize. Two
Fourier-transform kernels whose spatial frequencies differ by a multiple of the (vec-
tor) spatial frequency of the sampling grid produce the same data vectors (within
a constant related to the size of the detector elements), so the null functions are
differences between Fourier kernels. Loosely speaking, we say that the null func-
tions are differences in plane waves, though of course we are discussing irradiance
patterns and not waves at all.

In tomography, however, the null functions are not just differences between
plane waves, and in fact they are usually quite difficult to determine. In the Fourier-
series approach with the crosstalk matrix, we consider the action of the CD system
on plane-wave components, but we use plane waves with finite support, and we do
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not pretend that these functions are either null functions or singular functions of
the system. The degree of aliasing between two such components is measured by
the cosine of the angle between the resulting vectors in the Hilbert data space [see
(7.266)]. When these vectors are nearly parallel, then it is very difficult to distin-
guish the two Fourier-series components, and we say they are nearly aliased.

Examples of crosstalk matrices for cone-beam SPECT are given by Barrett
and Gifford (1994). We shall have more to say about aliasing in SPECT and its
relation to image quality in the next section.

Discretization errors Image reconstruction usually requires a discrete model of the
object. As we know from Chap. 7, any such discretization must produce errors, but
it not so obvious that these errors should be classified as artifacts. Discretization of
an object function produces short-range errors and thus is not artifactual by itself,
but when a discretized object is imaged (in the computer), then a kind of aliasing
or moiré pattern can result, and that is artifactual.

This kind of aliasing is not described by the Fourier crosstalk matrix, which
assumes that the object is a function of a continuous variable rather than a discrete
array. Instead it is the result of applying a DD reconstruction operator to the data
produced by a CD system.

For example, if the CD operator is the unregularized pseudoinverse of some
matrix representation of the system operator, we know from Sec. 15.2.1 that the
discrete reconstructed image in the absence of noise is given by [cf. (15.53)]

θ̂ = H+g =
[

HD
†
φ

]+
Hf . (17.254)

By our definition, this image contains artifacts to the extent that the CD kernel of
[

HD
†
φ

]+
H has long tails or areal defects.

For comparison, we also know from Sec. 15.2.2 that it is possible to perform a
reconstruction without adopting a discrete object representation or a system matrix.
In that case, with no noise we get the reconstructed function,

f̂ = H+Hf . (17.255)

We can sample this function for display purposes and smooth it in the process. If
we use the same smoothing functions here as in the object discretization leading up
to (17.254), the result is

θ̂ = DφH
+Hf . (17.256)

This time the reconstruction contains artifacts if the CC kernel ofDφH
+H has long

tails or areal defects. Since the operator Dφ is local and independent of location
in the reconstructed image, it does not by itself introduce artifacts; any artifacts in
(17.256) come from tails or areal defects of the CC operator H+H. Recall from Sec.

15.2.1 that
[

HD
†
φ

]+
H != DφH

+H except in special cases, so (17.254) can exhibit
artifacts even if (17.256) does not. In physical terms, some of the artifacts from
[

HD
†
φ

]+
H are the result of a moiré effect between the discretization grid and the

detector grid, but that effect is absent in DφH
+H. On the other hand, this latter

operator can also exhibit artifacts since H is sampled in angle and in the detector
plane.
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Errors in system modeling Another broad class of artifacts arises from inaccurate
modeling of the system. In general terms, we might collect data through an actual
system described by a CD operator H, but assume erroneously that the system was
described by some other operator Ha, where the subscript stands for approximate
or assumed. If we form a matrix representation of the system, it will be given by
H = HaD

†
φ rather than HD

†
φ. Depending on the nature of the error in H, a wide

variety of artifacts can be produced.
Examples of physical system errors that might be ignored in the formation of

the system matrix include alignment errors, such as tilt of the camera head or errors
in locating the center of rotation, or detector distortion or nonuniformity. Any of
these errors can produce long-range artifacts; for example, if the center of rotation
is not specified correctly, it produces a characteristic streak artifact resembling a
tuning fork around a point object.

Uncorrected detector nonuniformity can produce either streak or areal arti-
facts, depending on the nature of the nonuniformity. In general, if we define sm as
the sensitivity of the detector used in the mth measurement, we can write

gm = sm[Hf ]m + nm = s[Hf ]m + (sm − s)[Hf ]m + nm , (17.257)

where s is the average sensitivity of all detectors. This equation shows that the
variations in sensitivity act, in a sense, as an object-dependent noise term. If the
detector sensitivities are constant, this term is not stochastic, so this term does
not enter into the data covariance matrix for a fixed object. It does, however,
constitute a modeling error if we use an assumed H matrix that does not account
for the detector sensitivity in the reconstruction.

To see how detector nonuniformity can lead to streak artifacts, suppose that a
different array is used for each projection angle (as in some multi-camera systems
developed at the University of Arizona) and that one of the arrays has a single
bad element, say the one indexed by m = m0. Then the image reconstructed by a
matrix with elements Onm might look relatively artifact-free except that it would
contain the erroneous superimposed image Onm0

, which is just the DD PRF of
the reconstruction operator. Since this PRF is highly nonlocal, the detector defect
produces a streak artifact. If the same detector is used in all projections, as in
any single-head rotating-camera system, then a bad element will show up in all
projections and appear as a vertical line in the sinogram display of the data (see
Sec. 4.4.1). Because of the sharp discontinuity in the data, a streak artifact will
again result. On the other hand, slow variations in detector sensitivity will produce
areal artifacts.

Motion artifacts Often an object moves or changes in some way during data ac-
quisition, making it a spatio-temporal function, yet the reconstruction algorithm
attempts to recover a purely spatial function. For example, during a SPECT scan,
there is internal motion due to respiration, heart beats and peristalsis, and there
may be an overall motion simply because the patient fidgets. Moreover, the radio-
tracer can redistribute during acquisition, but the reconstruction algorithm usually
treats the object as static.

In some circumstances, temporal changes in the object do not cause artifacts.
For example, if we collect all of the data with a static imaging system, so that each
detector element is just a time integral of the radiation incident on it, then the data
come from a time integral of the spatio-temporal object, and the algorithm seeks to
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recover this integrated object in some sense. In other words, there is motion blur,
but no long-range structures that we would classify as artifacts.

If the detector system is also changing in time, however, complicated motion
artifacts can arise. In rotating-camera SPECT, for example, a single camera is
scanned to different projection angles. A fan-beam or cone-beam projection is ac-
quired at each detector location, but if the object changes during the scan, then
projections of different objects are acquired. Since the reconstruction algorithm is
based on the assumption that the projections come from the same object, there are
inconsistencies in the data that, in practice, lead to severe artifacts.

One might attempt to avoid this problem by doing a full spatio-temporal re-
construction, but the risk is that the motion artifacts would simply be replaced
by sampling artifacts; if only M measurements can be made during the exposure
time, then attempting to reconstruct the object at K time points means that only
M/K of the measurements correspond to each temporal frame. The strategy may
nevertheless succeed if there are strong temporal correlations.

Nonlinearities Many indirect imaging systems are really nonlinear but are modeled
as linear to facilitate image reconstruction. In Sec. 16.1, for example, we discussed
at length the nonlinear relationship between x-ray projection data and the object,
specified as a distribution of the x-ray attenuation coefficient. In Sec. 16.1.7 we
showed how the simple expedient of taking the logarithm of the data yields an ap-
proximate linearization, but we also discussed the residual errors. These errors can
lead to areal artifacts in computed tomography if they are slowly varying, but also
to streaks if a strongly absorbing point-like object is present.

In SPECT we do not have to deal with an inherently nonlinear relation be-
tween an object and its projections, but the detectors may exhibit nonlinearities
at high count rates. As noted in Sec. 11.3.1, these nonlinearities result since the
occurrence of one gamma-ray interaction can paralyze the detector and prevent the
detection of another occurring soon after. This effect spoils the independence of the
detected events and invalidates our Poisson data models, but even in the mean it
constitutes a modeling error that can produce artifacts.

The general mathematical description for data produced by a nonlinear detec-
tor is

g = N{Hf} = Hf+ [N − I]{Hf} , (17.258)

where N is a nonlinear operator. If N is a monotonic point operator, as defined
in Sec. 7.5.1, and if it is well characterized, then the effects can be corrected by
applying N−1 to the data before reconstruction. With Anger cameras, however,
the nonlinearity may be neither local nor monotonic. A high count rate anywhere
on the camera face can affect the entire detector, and the electronics might be
paralyzable so that the observed count rate will first increase and then decrease
with increasing photon flux. Such effects cannot be corrected by any data processing
before reconstruction, so they are almost always ignored, with potential artifactual
consequences.

Attenuation and scatter As we have discussed earlier in this chapter, attenuation
and scattering of gamma rays in the patient’s body are strong effects in SPECT,
and they are a prime source of artifacts. Many methods for correcting the effects of
attenuation and scatter have been described in the literature, but in every case they
involve many assumptions and approximations. Nevertheless, they can be useful in
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reducing if not eliminating the artifacts. For a comprehensive review, see King et
al. (2003).

Regularization and artifacts Regularization can cover up artifacts in some cases.
If the null functions are predominantly high-frequency, then any regularization or
post-reconstruction smoothing that eliminates high frequencies from the image also
eliminates artifacts arising from null functions. Of course, the smoothing also blurs
the image, but this blur can be local and hence not classified as an artifact. Similarly,
artifacts related to the sidelobes of the sinc function with sharp-cutoff reconstruction
filters are artifacts, but we know from Sec. 15.2.6 that they can be minimized or
eliminated by apodization or regularization. Sometimes, however, the artifacts have
significant low-frequency components, so regularization or smoothing does not help;
an example would be the streak artifacts resulting from limited-angle tomography
(Barrett et al., 1991).

On the other hand, regularization can interact with other sources of artifacts
and accentuate them. To see how, consider an iterative reconstruction with the
least-squares data-agreement functional and Tikhonov regularization, as discussed
in Sec. 15.3.3. If we neglect noise and discretization issues and presume perfect
knowledge of H, we know that the regularized least-squares solution is [cf. (15.156)]

f̂η =
[

H†H + ηI
]−1

H†g =
[

H†H + ηI
]−1

H†Hf . (17.259)

Now suppose that there are variations in detector sensitivity, so that

H = s#H0 , (17.260)

where s is a vector of sensitivity factors as in (17.257), # denotes the Hadamard
product, andH0 is an operator without sensitivity variations but otherwise identical
to H. With some abuse of notation, we can write

f̂η =
[

H
†
0s

2H0 + ηI
]−1

H
†
0s

2H0f , (17.261)

where H
†
0s

2H0f is to be interpreted as H†
0[s# s# (H0f )].

Each sensitivity factor gets squared in forming H
†
0s

2H0, but that would not
have much effect on the image in the absence of regularization since

lim
η→0

f̂η =
[

H
†
0s

2H0

]+
H

†
0s

2H0f . (17.262)

In this limit, the pseudoinverse enforces strict agreement with the (noise-free) data,
in the sense that ||H0(f̂ − f )|| = 0. Since the Hadamard product with a nonzero
sensitivity factor introduces no new null functions, this implies ||H(f̂ − f )|| = 0.
Thus, in the limits of no noise and no regularization, the pseudoinverse reconstruc-
tion from H0 is artifact-free if the one from H is. In essence, the s2 factor in the
forward operator is cancelled by the same factor in the pseudoinverse.

The situation is different, however, if the regularizing parameter does not ap-
proach zero. The effect of regularization is specifically to prevent complete agree-
ment with the data, since agreement with noisy data produces noisy images. We



1222 SINGLE-PHOTON EMISSION COMPUTED TOMOGRAPHY

are not considering noise here, but in the mean regularization prevents exact can-
cellation of the s2 factors and therefore makes the sensitivity variations visible in
the reconstructed image, even if they are properly modeled.

One way to avoid this pitfall is not to regularize, instead using a very small
value of η, but then to control noise by post-reconstruction smoothing of the image.
Another possibility is to use a regularizer such as the gradient or Laplacian of f that
is insensitive to the low spatial frequencies in the image. If the sensitivity is slowly
varying, the effect cancels out even though high-frequency noise is well controlled.

Positivity and support constraints As we discussed in some detail in Chap. 15, prior
information can often be put to very good use in indirect imaging. Though we may
make assertions about smoothness and norms, what we really know about an object
in most cases is just that it is nonnegative and has bounded support. In Sec. 15.4
we learned a number of methods for imposing positivity and support constraints.

As a general rule, constraints are useful to the degree that an unconstrained
reconstruction would violate them. A well sampled tomographic system with a well
characterized system operator and high-count data will produce a good image, with
few negative values and little activity outside the true boundary of the object, even
with algorithms that do not explicitly enforce positivity and support constraints.
With poor sampling or an imperfectly characterized system operator, however, the
images will contain artifacts. Streak artifacts often extend beyond the boundaries,
and artifacts associated with null functions almost always contain negative values.
In these cases, therefore, positivity and support constraints can be quite valuable.

We saw in Sec. 15.1.4 that positivity can place quantitative bounds on the
magnitude of null functions, and that in turn places bounds on the level of artifacts
in images obtained with algorithms that produce agreement with the data and
also enforce positivity. Similar quantitative bounds can be ascribed to support
constraints, but the details have not been worked out in the literature.

17.3.4 Image quality

In Sec. 16.2, we noted that a major limitation of planar nuclear medicine was
the basic fact that it mapped a 3D object to a 2D image. For estimation tasks,
attempts to quantify activity in a region of interest were thwarted by overlapping
activity contributing to the projection of the ROI, and for detection tasks this same
overlapping activity reduced the contrast and hence the lesion detectability. The
clinical goals of ECT are therefore to obtain more accurate quantitation, improved
contrast and hence improved lesion detectability.

The objective-assessment paradigm has been embraced enthusiastically by the
SPECT community, and there is now a large literature on objective comparisons
of different data-acquisition systems and algorithms. Ideal, Hotelling, channelized
Hotelling and human observers have been used for detection and classification tasks,
and variances, mean-square errors and Cramér-Rao bounds have been used for
estimation tasks.

Our goal in this section is to give a broad overview of objective assessment
of image quality as it has been applied to SPECT and to discuss some of the
considerations in choosing tasks and observers.
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SKE detectability in the raw data As in Sec. 16.2.5, we begin by considering the
SKE/BKE detection task. This task can be performed by an observer given access
to the raw, uncorrected data, to unreconstructed data after correction for distortion
and/or scatter, or to reconstructed images. The observer can be the ideal observer,
the Hotelling observer or even a human; for SKE/BKE tasks, humans can be trained
to read sinogram displays of projection data.

The simplest of these combinations is the ideal observer acting on the raw, un-
corrected data. The data are rigorously Poisson in that case, and the log-likelihood
ratio was given in (13.131) or (16.117). To apply that formula to SPECT, we need
only change the data index from m to m = (m, j), with j being the angular index
as before; thus

SNR2
λ =

[
∑

m
(g2m

− g1m
) ln(g2m

/g1m
)
]2

1
2

∑

m
(g2m

+ g1m
) ln2(g2m

/g1m
)
. (17.263)

In SPECT the signal to be detected usually makes a small contribution to the mean
data, in which case [cf. (13.135) or (16.119)]

SNR2
λ ≈

∑

m

s2
m

g
m

. (17.264)

At this point in Sec. 16.2.5, we considered a spatially compact signal and a slowly
varying object, such that g

m
was approximately the same for all pixels where the

signal sm is nonzero. This approximation is less plausible in SPECT because of the
angular variation; even if g

m
is approximately the same for all detector elements in

the vicinity of the signal in a single projection, it usually varies significantly from
projection to projection.

One immediate conclusion from (17.263) or (17.264) is that it is desirable to
have high uptake of the radiotracer in the lesion and low uptake (per unit volume)
in the background; this is a consideration for the biochemist designing the tracers
but not for the image scientist designing the system.

We can also use these formulas, as we did in Sec. 16.2.5 for the planar case,
to study how the spatial resolution of the detector and collimator affect SNR2. The
conclusions will be the same: it is advantageous to improve the detector resolution,
but a collimator with better resolution is detrimental to performance of this task
since it comes at the expense of photon collection. In both planar nuclear medicine
and SPECT, the optimum collimator for SKE/BKE lesion detection is no collimator
at all. This conclusion should have no effect at all on the choice of collimators; it
should affect our choice of task if the collimator is the element being evaluated.

SKE/BKE detectability in the reconstruction Though SKE/BKE tasks are not use-
ful for collimator optimization, they can be used to study the effects of algorithmic
parameters. In SPECT, the algorithm serves not only to provide a reconstructed
image but also to control the noise (through choice of apodization or regularization)
and to control artifacts by pre- or post-reconstruction data corrections and impo-
sition of constraints. All of these measures influence SKE/BKE detectability by a
human observer. They do not, however, influence the ideal observer, at least if we
posit that the ideal observer is given access to the same input information that goes
into the algorithm. To the extent that any of the data corrections or constraints
are useful, the ideal observer—being ideal—will use them.
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The Hotelling observer, on the other hand, does not have access to all possible
information about the data; it knows only the mean vectors and the covariance
matrices under the two hypotheses. We showed in Sec. 13.2.12 that the Hotelling
observer was invariant to any linear, invertible transformation of the data, but it
is not so obvious that Hotelling performance could not be improved by nonlinear
algorithms.

MLEM algorithm and local NEQ To investigate the usefulness of the Hotelling ob-
server in evaluating nonlinear algorithms, Donald Wilson (1994) used the MLEM
algorithm on an SKE/BKE task and determined the Hotelling SNR as a function of
the number of iterations. The MLEM algorithm was described in Sec. 15.4.6, and
Wilson’s methodology for computing the statistics of the images was described in
Sec. 15.4.7.

The Hotelling SNR was computed by a discrete version of (13.266), which
expresses the SNR for detection of a signal at location r0 in terms of the stochas-
tic Wigner distribution function (WDF). For evaluating an iterative reconstruction
algorithm, this formula can be written as

[

SNR(k)
Hot(r0)

]2
=

∫

d2ρ

∣

∣S(k)(ρ)
∣

∣

2

W (k)(r0,ρ)
, (17.265)

where S(k)(ρ) is the Fourier transform of the mean signal in the reconstructed image
at the kth iteration, and W (k)(r0,ρ) is the corresponding stochastic WDF. We use
continuous notations for these quantities here, but in practice both r and ρ are
measured on discrete grids and integrals are replaced by sums.

We know from Sec. 8.2.5 that the stochastic WDF can be interpreted as a local
noise power spectrum (LNPS), describing the frequency content of the background
texture in the vicinity of the signal location in the image. It would facilitate the
analysis if we could also define a local modulation transfer function (LMTF), but it
is not obvious how this can be done since the overall system—data acquisition plus
reconstruction algorithm—is neither linear nor shift-invariant. Two assumptions
are required. First, it is assumed, as above, that the signal in the raw data is weak
compared to the background, so that the response to the signal can be represented
as the linear term in a Taylor series. Then it is assumed that the signal is spatially
compact and that the blurring by system and algorithm is slowly varying over the
support of the signal.

With the weak-signal assumption, we can write the signal in the reconstruction
at the kth iteration as

s(k)(r) ≈

∫

d2r′ p(k)(r− r′; r′| fb) fs(r
′) , (17.266)

where fs and fb are the signal and background, respectively, in the object space, and
p(k)(r− r′; r′| fb) is the space-variant, object-dependent PSF for the overall system
after k iterations. Analytic expressions for such a PSF can be devised (see Secs.
15.3.6 and 15.4.7), but it can also be determined experimentally in simulation stud-
ies by forming two noise-free data sets, one where the object is fb and one where it
is fb plus a weak point source; after iterating for k steps, the difference between the
two images is proportional to p(k)(r− r′; r′| fb).
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The second assumption takes advantage of the small spatial extent of the
signal to write

s(k)(r) ≈

∫

d2r′ p(k)(r− r′; r0| fb) fs(r
′) , (17.267)

where the signal part of the object function, fs(r′), is centered at r′ = r0. A Fourier
transform yields

S(k)(ρ) = P (k)(ρ ; r0| fb)Fs(ρ) , (17.268)

where P (k)(ρ ; r0| fb) is a local transfer function, dependent on the known signal
location and the known background object as well as the iteration number.

We can now rewrite (17.265) as

[

SNR(k)
Hot(r0)

]2
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2
∫
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2
LNEQ(ρ) , (17.269)

where the local noise-equivalent quanta is defined by

LNEQ(ρ) ≡
[LMTF(ρ)]2

LNPS(ρ)
=

∣

∣
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2
1

W (k)(r0,ρ)
. (17.270)

Thus we have manipulated the Hotelling SNR into a form that looks just like the one
for linear, shift-invariant systems and stationary noise, yet we have not really made
any of these assumptions. Because of the MLEM algorithm, the overall system is
nonlinear, but it behaves linearly for weak signals; the nonlinear dependence on the
background component remains. Similarly, the system is not shift-invariant and the
noise is not stationary, but the signal is confined to a small spatial region and we
neglect the variations of system response and noise properties over this region.

Wilson computed the LMTF, LNPS and LNEQ as a function of k for several
objects and MLEM reconstructions. His results are shown in Fig. 17.11. As the
iterations proceed, the algorithm recovers finer details and the LMTF gets broader.
At the same time, however, the LNPS increases at all frequencies because of noise
amplification; Eventually the LNPS approaches the characteristic ramp-like power
spectrum that would be seen with filtered backprojection. If one looked only at
LMTF and LNPS, it would not be obvious what effect the iterations were having
on detectability, since both the signal and the noise are increasing at higher fre-
quencies as k increases.

The LNEQ, however, tells an interesting story. Though both [LMTF]2 and
LNEQ are increasing at all frequencies as k increases, their ratio is relatively un-
changed, especially at higher spatial frequencies. Thus, for any signal that satisfies
our assumptions, the Hotelling SNR is nearly invariant to iteration number. We
could not reach this conclusion analytically since we know only that Hotelling per-
formance is invariant to invertible, linear algorithms, and MLEM is nonlinear.

The conclusion to this point is that it doesn’t matter very much how many
iterations of MLEM are used, so long as the task is detection of a known, weak,
compact signal in a known background and the observer is either ideal or Hotelling.
To choose a stopping point for the MLEM algorithm, we must use a different task,
a different observer, or both.
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Fig. 17.11 Variation of local MTF, local noise power spectrum and local
noise-equivalent quanta with iteration number in the MLEM algorithm. (Cour-
tesy of D. W. Wilson.)

Effect of attenuation correction Another application of the Hotelling observer and
SKE/BKE tasks was to the comparison of various linear reconstruction algorithms
based on the exponential Radon transform (ERT). As we noted in Sec. 17.2.4, there
are many different versions of the inverse ERT, all of which give the same mean
image but which differ greatly in their noise characteristics.

The performance of the Hotelling observer on an SKE/BKE task was computed
for several different inverse-ERT algorithms by Soares (1994, 1995). The task was
detection of a small uniform signal disk superimposed on a larger background disk.
The Hotelling SNR was computed on both the raw data and on the output of each
of the algorithms. The key result was that all except one of the algorithms gave
an SNR identical to that in the raw data. The exception was the Tretiak-Metz
algorithm, described in Sec. 17.2.4, which showed much poorer performance. Since
the Hotelling observer is invariant to linear, invertible algorithms, we must conclude
that the Tretiak-Metz algorithm, though it is exact for continuous, noise-free data,
is not invertible in the sense that discrete, noisy data could be recovered from
the output of the algorithm. This conclusion is perhaps not surprising when one
recalls that the filter function for this algorithm, shown in Fig. 17.7, sets a range of
frequency components to zero.

This example illustrates one advantage of SKE/BKE tasks and the Hotelling
observer: they can be used to identify algorithms that remove information relevant
to a detection task from the data. However, the Hotelling observer provides no way
of choosing among algorithms that do not remove information.
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Random backgrounds We have seen that nonrandom, uniform backgrounds can
give very misleading results in planar nuclear medicine and SPECT. We can intro-
duce randomness in several ways, depending on whether the studies use physical
phantoms, simulated images or real clinical images.

Physical phantoms are usually plastic containers filled with radioactive water
and possibly various other plastic objects representing organs or lesions. The or-
gans and lesions can be more or less radioactive than the water depending on what
clinical application is under consideration. The background can be made random
by using random levels of radioactivity in the water or organ phantoms or by mov-
ing the organs around in the water. Randomness on a smaller spatial scale can be
incorporated by using many small vials with random activities or small nonradioac-
tive objects immersed in the radioactive bath; see for example, Sain and Barrett
(2003).

In simulation studies we have greater freedom in representing random back-
grounds than is possible with physical phantoms. Just as in planar nuclear medicine
(see Sec. 16.2.5), we can use the lumpy or clustered lumpy backgrounds described
in Sec. 8.4.4, but these models have free parameters that must be chosen, and there
can be concern that the conclusions of the image-quality studies might be affected
by the choices. Kupinski et al. (2003) have outlined a method of estimating the
parameters by using a relatively small number of actual images, provided they are
taken through a well characterized imaging system.

Another possibility in simulation studies is to use high-resolution digitized
anatomical images to define organ boundaries (see, e.g., Gilland et al., 1992) and
then to randomly assign activity levels to each organ. To make the simulation more
realistic, the statistics of these organ-to-organ activity variations can be determined
from pharmacokinetic studies in animals or humans, and the internal variations
within an organ can be simulated as above with a lumpy background.

Finally, for the ultimate in realism, clinical images can be used. For comparing
reconstruction algorithms, the same raw projection data can be processed in several
different ways, perhaps with or without attenuation correction or compensation for
other system properties. If different collimators or other hardware variations are to
be compared, the same patient must be imaged multiple times. Clinical images are
out of the question for systematic optimization of the data-acquisition hardware,
but they can be used to verify the results of a simulation-based optimization study.

Another practical issue with clinical images is obtaining an adequate number
of cases with verified pathology. For this reason some investigators have used im-
ages of normal volunteers or verified normal patients and then added the lesions
artificially. For example, Llacer (1993) used real PET projection data from normal
subjects and added simulated projections of a lesion to generate data for abnormal
cases. Chan et al. (1997) took this idea a step further by acquiring separate phys-
ical images of a small object representing a lesion and adding them to the normal
patient data.

Random signals The signals in a SPECT detectability study can vary in location,
size, shape and uptake of the tracer. In simulation studies, it is straightforward to
generate any of these variations, but the main question is how to model the signal
statistics.

Usually the main consideration in choosing the size and contrast of the lesion
is statistical power rather than clinical realism. In comparing collimators, for ex-
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ample, it does little good to include large, high-contrast lesions that would be easily
detected with any of the collimators under consideration, or small, low-contrast ones
that are never visible. The lesion size and contrast should be chosen to challenge
the systems and provide adequate statistical power in choosing one collimator over
another. A good rule of thumb is that the lesion size and contrast should be chosen
to yield an area under the ROC curve, for whatever observer is used, of about 0.85.
Since this criterion cannot be met for all collimators simultaneously, it is advisable
to use lesions of different sizes and contrasts, but there is little value in lumping
them into a single binary decision task. Rather than asking whether a lesion of
random size is present or absent, it is useful to conduct separate ROC studies with
each lesion size. If it should turn out that collimator A is better for small lesions
and collimator B is better for larger ones, that is valuable additional information
that would be lost if different lesion sizes were randomly chosen in a single study.
The only drawback is that more observer time is required for multiple ROC studies,
but that is not much of an issue with model observers.

Similar considerations apply to signal location. In SPECT, detectability of
a lesion is affected by its proximity to normal organ structures and by how deep
it is within the patient’s body, so it is useful to vary the signal location. It does
not follow, however, that the signal location must be unknown to the observer. As
discussed in Sec. 14.3.2, we can consider a sequence of SKE tasks and determine
the variations of detectability with signal location. With numerical observers, we
can even display these results as continuous maps of detectability as a function of
position.

It is true, however, that signal size and location are random and unknown in
clinical practice, and the practitioner cannot choose one collimator for superficial
lesions and another for deep lesions; some kind of average figure of merit must be
used. One approach that gives an overall figure of merit without sacrificing statisti-
cal power is to average the SKE detectability (SNR2) over a clinically relevant range
of lesion sizes and locations. An important question that has not been adequately
studied is whether this average can give a different rank ordering of systems than
would be obtained from a single ROC study with random locations.

Somewhat different considerations come into play when the reconstruction al-
gorithm is being studied. For one thing, algorithmic variations tend to have less
effect on detectability than do variations in the collimator, so there is less need to
vary the signal contrast. The contrast can be chosen, say by means of a pilot study,
and left at that value throughout a range of algorithmic variations.

Signal size is still important since almost any algorithm includes a regulariza-
tion or smoothing parameter that varies the tradeoff between spatial resolution and
noise, but again it is not necessary to vary the size randomly within a single ROC
study. Should it turn out that one regularizing parameter is better for large lesions
and another is better for small lesions, it would be possible in principle to allow the
clinician to vary the regularization during the reading session.14

Randomness in signal location could be more important for algorithmic com-
parisons than for hardware optimization. In Chap. 14, we emphasized that the
main function of an algorithm is to match the information in the raw data to the
capabilities and limitations of a human observer. One limitation of humans is that

14Analysis of the socio-economic issues involving increased reading time vs. improved diagnosis is
far too complicated for this book.
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they are inefficient in searching an image for a lesion in a random, unknown loca-
tion. Of course, ROC performance always degrades with location uncertainty, but
the amount of degradation can depend on the reconstruction algorithm or display
system. One algorithm could produce a lesion image of low contrast but also low
noise, such that a human observer concentrating on a known location would have a
good detectability. The same observer might have poor performance in a search task
with that algorithm but could conceivably do better with a different algorithm that
improved the contrast even at the expense of noise or resolution. The general ques-
tion, which needs much further study, is whether the rank ordering of algorithms
and displays is likely to be the same for SKE or SKEV (signal known exactly but
variable) tasks as it is for search tasks.

Representative studies with human observers Psychophysical studies have become
quite routine in nuclear medicine, and especially in SPECT. We cannot attempt
a comprehensive review of this rapidly changing literature here, but we mention a
few representative studies to indicate the general directions of the field. The stud-
ies listed under this heading involve just human observers without attempting to
correlate the results to model observers; comparisons of humans and models as well
as a few studies with model observers alone are discussed under the next heading.

Gilland et al. (1992) compared the filtered-backprojection (FBP) algorithm to
MLEM using simulated SPECT images, and Llacer (1993) compared the same two
algorithms for PET FDG (fluorinated deoxyglucose) imaging. In both cases MLEM
was somewhat better, probably because it incorporates a positivity constraint and
an accurate system model.

Gooley and Barrett (1992) compared a wide range of algorithms in a situa-
tion where even stronger prior information was available. They considered cardiac
imaging with a blood-pool tracer that filled the left ventricle, and the task was
to detect a wall-motion abnormality where a small region of the ventricle did not
contract and hence showed up as a protrusion on an image obtained when the heart
was maximally contracted (end systole). The strong prior information was that the
activity within the ventricle was essentially uniform, so a slice through the object
would show only two values, depending on whether the point was in the blood pool
or not. Many different algorithms were evaluated; some of them assumed that the
object was binary-valued and some did not. Algorithms that enforced this strong
constraint led to much better human performance than those that did not, but
there was little difference among algorithms that produced a continuous range of
gray values. Amusingly, maximum entropy was minimum image quality for this
task.

Numerous other human studies of cardiac imaging have been performed.
LaCroix et al. (2000) evaluated iterative algorithms with attenuation correction for
myocardial perfusion studies, where the tracer used went preferentially to perfused
regions and hence the signal to be detected was a cold region called a perfusion
defect. This study compared differences in defect detection between myocardial
SPECT images reconstructed using conventional FBP without attenuation correc-
tion and those reconstructed using MLEM with nonuniform attenuation correction.
It was found that MLEM with attenuation correction was superior, particularly for
patients with large breasts or with a diaphragm raised to the level of the heart. If
uncorrected, attenuation from these structures can produce cold regions similar to
perfusion defects, hence false positives.
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A similar study of the effects of attenuation correction in SPECT myocardial
imaging was performed by Jang et al. (1998), and Sankaran et al. (2002) studied
optimization of the regularization parameter and the detector-response compensa-
tion for the same application. Detector-response effects were studied with LROC
analysis by Gifford et al. (2000b).

Representative studies with human and model observers There has been consider-
able research, summarized in Sec. 14.2.2, on validating anthropomorphic observers
in general, but now there is also a substantial literature on this subject specific to
nuclear medicine. When both human and model observers are used in the same
paper and a high correlation between the results is found, it adds to our confidence
in the predictive power of the models. The most investigated and most successful
anthropomorphic models have been variants on the channelized Hotelling observer
(CHO). Much of the rationale for the use of this observer in SPECT comes from
work done at the University of Massachusetts, and we begin with a summary of
that effort.

King et al. (1997) studied different data-acquisition and processing strategies
for liver imaging. Both square, nonoverlapping (SQR) channels and difference-of-
Gaussian (DOG) channels were used for the CHO. Since the goal was to see if the
model observers predicted the human’s rank ordering of the different acquisition
strategies, the results were evaluated by Spearman’s rank correlation coefficient.
This coefficient turned out to be 0.94 for the SQR channels and 0.96 for the DOG
channels if no scatter correction was used; poorer correlation was found with scatter
correction. Using the same data, however, Gifford et al. (2000a) found much better
correlation in the latter case by slightly modifying the parameters of the CHOs and
by ensuring that the humans and CHOs operated on exactly the same images.

Gifford et al. (1999) compared the performance of human observers in an
LROC (localization-ROC) experiment to the CHO on a simple ROC experiment.
Of course the absolute performance of the humans, who had to contend with loca-
tion uncertainty, was much worse than than that of the CHO on the SKE task, but
surprisingly the rank ordering was excellent.

Other work by Gifford et al. (2002) studied the effects of subset size and num-
ber of iterations in block-iterative methods for tumor detection in thoracic SPECT.
Again excellent agreement between human and CHO was found, with a Spearman
rank correlation coefficient of 0.976.

Other groups have also successfully compared humans and CHOs. Wollenweber
et al. (1999) studied defect detection in myocardial SPECT. Chen et al. (2002a)
compared triple-head 360◦ vs. dual-head 180◦ acquisition, with and without at-
tenuation correction. The CHO and human results both showed better detection
performance in the 360◦ scan. The same group (Chen et al., 2002b) also extended
the CHO concept to 3D, giving the observers access to multiple tomographic slices
in three different orientations. Both multi-slice and single-slice CHOs showed good
correlation with humans.

A few papers have appeared (e.g., Chan et al., 1997, and Qi and Huesman,
2001) that use only model observers without checking the results against human
studies. As the literature validating the models grows and a consensus on which
model to use becomes firmly established, more such papers can be expected and
the full value of model observers will be seen.
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Computational issues with model observers The great advantage of model observers,
of course, is that they permit a much wider exploration of system parameters than
would be possible with psychophysical studies, but eventually computational limi-
tations will become apparent. A notable step towards more efficient computation
of CHO performance was taken by Bonetto et al. (2000). They used the approach
of Fessler (1996) described in Sec. 15.3.6 to approximate the mean vector and co-
variance matrix of a MAP (maximum a posteriori) reconstruction. The results
include the random effects of Poisson noise and background variations, but only to
the extent that the prior used in the reconstruction algorithm matches the actual
background randomness.

Artifacts and detectability In Sec. 17.3.3 we defined artifacts as nonlocal defects in
the deterministic point response function of the overall imaging system, including
the data acquisition and the reconstruction algorithm. Many artifacts can be char-
acterized loosely as long tails on the PRF, but it is not so obvious why long tails are
bad, in an objective sense. In fact, if we were considering an SKE/BKE detection
task and an ideal observer, the long tails on the PRF would not degrade perfor-
mance. The observer would know the PRF exactly and would be able to compute
the resultant signal in the image in spite of the tails.

Thus, as with collimator optimization, we must consider more realistic tasks
in order to see why the wide PRF is detrimental. Qualitatively, long tails are bad if
the background is random since they couple random variations in the background to
a distant signal location. A linear observer, whether Hotelling, CHO or human, will
center a template on a known signal location but have a variance from background
fluctuations that is much greater than it would be without the tails.

This effect can be seen neatly in the extensive work of Kenneth Hanson on
tomography with sparse angular sampling (Hanson, 1988, 1989, 1990a, 1990b). He
used typically just eight projections and an object consisting of a random collec-
tion of high-contrast discs. The signal to be detected was also a disc but with
just one-tenth the amplitude of the background discs. With linear reconstructions
algorithms, streak artifacts from the high-contrast discs were very evident and sig-
nificantly reduced the detectability of the low-contrast disc. With nonlinear itera-
tive algorithms such as ART (algebraic reconstruction technique), the artifacts were
suppressed and the detectability improved. Hanson then went on to optimize the
ART algorithm for task performance.

Much further work along these lines is needed to fully understand the role of
artifacts in lesion detectability.

Estimation tasks In one sense, estimation tasks are the very essence of tomography.
As we saw in Chap. 15, image reconstruction can be formulated in terms of estima-
tion of the expansion coefficients in an approximate representation of the object.
Usually a voxel representation is adopted, and the reconstruction is an attempt to
estimate the integrals of the object over voxels, or voxel values for short.

It is common in the SPECT literature to try to use the accuracy of these voxel
estimates as a measure of image quality. In this view, the goal of the imaging is not
to perform a particular task but to recreate the object as accurately as possible.
Fidelity rather than task performance is the measure of image quality. As we saw
in Sec. 13.3.2, however, there is considerable ambiguity in defining image quality in
terms of fidelity. We identified three different ways of defining the error between
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an object and an image and three different ways of averaging that error, so there
are nine possible definitions of the mean-square error (MSE) between object and
image.

Basically, this ambiguity arises because all real imaging systems have null func-
tions. Infinitely many objects can give exactly the same mean data and hence the
same values for any estimates derived from the data. If these objects have different
values for their integrals over voxels, then there is no unambiguous way of defining
the bias or MSE of the voxel estimates. As we phrased it in Sec. 15.1.3, voxel values
are almost never estimable parameters.

From a task-based viewpoint, the inability to define the bias or MSE of voxel
values is of no concern since the goal of imaging is never to determine even a single
voxel value, much less a set of them. In clinical SPECT, we are often indeed inter-
ested in estimating quantitative parameters, but never just voxel values. Instead
we might want to know the total uptake of a tracer in a region of interest in the
brain or the change in volume of the left ventricle when the heart contracts. Unlike
voxel values, these parameters are of direct medical interest, and mathematically
they are much more likely to be estimable (see Sec. 15.1.3 for a definition). Thus
estimation tasks, as we view them, are not about estimating a huge number of ir-
relevant and definitely unestimable parameters but rather a few highly relevant and
approximately estimable ones.

Viewed this way, there is a large literature on estimation tasks in SPECT. The
common term for an estimation task in that literature is quantitation or quantifi-
cation.15 The typical SPECT quantitation study uses a real or simulated phantom
with a uniform background and immerses into it a spherical or cylindrical container
with an activity higher than that of the background. Projection data are acquired
and an image is formed by the authors’ favorite reconstruction algorithm. Usu-
ally a fuzzy bump where the reconstructed gray values exceed those of the uniform
background is seen in the image, and from this bump it is desired to estimate the
activity in the container. A common approach is to define a region of interest the
same size as the container and sum up the gray values in the region to get the
activity estimate. The process can be repeated with many realizations of the raw
data for the same object, and a bias, variance and mean-square error of this scalar
parameter can be computed.

To put this discussion into the language of statistical estimation theory, the
region-of-interest procedure yields a linear estimate with a predefined template.
Unlike maximum-likelihood estimates it takes no account of the data statistics or
the characteristics of the imaging system, and unlike Bayesian estimates it makes
no assumptions about the prior distribution of parameter values. It is, nevertheless,
a valid and common estimate, and its mean and variance can be assessed as any
other estimate would be. If the container is large compared to the system resolu-
tion, the parameter is at least approximately estimable and a mean-square error
can be defined and estimated.

15To quantitate means to measure or determine the quantity of something, especially with preci-
sion. To quantify can mean the same thing, but it often means assigning a quantity to something
that has only quality. The reader can decide, on a scale of 1 to 10, which term is preferable in
nuclear medicine.



NOISE AND IMAGE QUALITY 1233

Recommendations Rather than evaluating a system on how well an estimation task
is performed by a suboptimal, ad hoc procedure, we can also evaluate it on how
well the task can be performed by an optimal procedure. Our recommendation is
to use the bias and variance of a maximum-likelihood estimator as the basic error
characterizations for an estimation task, combining them into an MSE when a scalar
figure of merit is desired. When there is difficulty in computing the variance of the
ML estimate, Cramér-Rao bounds can be used.

These estimates and error measures can be computed either from the raw
projection data or from the reconstructed image. The former is recommended if
the objective is to evaluate the data-acquisition hardware in terms of an estimation
task, while the latter is required if the algorithm is to be evaluated.

What limits task performance? In most discussions of estimator performance, the
emphasis is on characteristics of the estimator. Maximum-likelihood estimation is
preferred, for example, because it is known to be asymptotically unbiased, asymp-
totically efficient, and efficient in any case if an efficient estimator exists. These
issues tell only a part of the story, however, when ML estimation is used in SPECT.
The actual performance of the estimator is more likely to be limited by errors in
modeling the imaging system than by intrinsic properties of the estimator.

If the input to the ML estimator is the raw projection data, then the ML
estimator requires detailed knowledge of the image-forming process, including the
attenuation and scatter in the patient’s body and the space-variant blur of the
collimator. It also requires knowledge of the data statistics, but in this case the
data are pure Poisson. If, on the other hand, the input to the ML estimator is the
reconstructed image rather than the raw data, then the algorithm should take into
account attenuation, scatter and space-variant blur. In that case the deterministic
description of the overall system might be assumed to be a simple blur function,
but the noise on the input to the estimator is no longer Poisson (see Secs. 15.2.6,
15.3.6 and 15.4.7). In either case, errors in describing any aspect of the system
will introduce a systematic error or bias that cannot be erased by any of the nice
asymptotic properties of ML methods.

Practical examples Most of the practical work on evaluation and optimization of
nuclear imaging systems for estimation tasks comes from the group at Harvard,
which was previously mentioned in the context of planar imaging in Sec. 16.2.6.
Some of their recent work deals with joint estimation-classification tasks, and some
of it is ancillary work aimed at developing simulation tools, but we shall briefly
survey it all here.

One particularly complicated clinical situation this group has studied uses
tracers labelled with 67Ga. This isotope has a complicated emission spectrum, with
principal energies around 93, 185 and 300 keV, but also some higher-energy lines
that cause severe difficulties with septal penetration. Moore and El Fakhri (2001)
developed highly accurate and realistic Monte Carlo simulation methods in which
the patient’s anatomy is represented by segmented CT images of a commercial an-
thropomorphic torso phantom. With this tool, El Fakhri et al. (2002) studied the
effect of the energy window settings on the performance of estimation and detection
tasks. In other work, unpublished at this writing, these same authors have opti-
mized the design of collimators for this application.
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A related study (Kijewski et al., 2001) of considerable practical importance
applied similar ideas to analyzing the effects of the collimator and SPECT system
geometry on simulated but realistic tasks related to diagnosis and management of
Parkinson’s disease. Cramér-Rao bounds on estimates of activity concentration and
striatal volume were computed and related to the likelihood ratio for several binary
classification tasks. The authors compared three commercial SPECT systems, two
of relatively high spatial resolution and one of lower resolution. In all cases the
higher-resolution systems performed better.



18
Coherent Imaging and

Speckle

Coherent imaging modalities include holography, laser illuminators, radar and ul-
trasound. Images taken with these systems exhibit a phenomenon called speckle,
which is not seen in our everyday experience with incoherent light. Whenever a dif-
fuse object is illuminated with radiation that is spatially and temporally coherent,
its image will show high-contrast, fine-scale structures not related in any obvious
way to the characteristics of the object. This effect can be observed by shining a
laser pointer on a piece of paper and inspecting the spot visually.1 Even though the
irradiance profile of the laser beam is smooth and featureless, the image on your
retina will be highly noisy or “speckled.”

Further experimentation with the laser pointer reveals other characteristics of
speckle. It should be found that the size of the speckle blobs depends on the di-
ameter of the pupil of the eye; if the experiment is performed in a darkened room
where the pupil is dilated, the speckle blobs will be small, but if it is performed in
bright sunlight or with a pinhole in front of the eye, the blobs will be larger. The
contrast of the speckle patterns will, however, remain unchanged; unlike the kinds
of noise considered in Chap. 12, speckle noise does not depend on the light level.
If the laser beam is attenuated with a neutral-density filter or if a brighter laser is
used, the contrast in the speckle pattern remains the same. Moreover, laser speckle
is always in focus; the contrast does not depend on where you focus your eyes.

Our goals in this chapter are to understand these qualitative features of speckle
noise and to give mathematical descriptions of them, and in the process to show
how the mathematical methods of earlier chapters can be applied to coherent imag-
ing. The treatment of diffraction theory and coherent imaging in Chap. 9 will be
crucial, and some little-known aspects of random processes from Chap. 8 will find

1The reader is cautioned to observe only the reflected light and to obey Gaskill’s rule of laser
safety: “Never look down the laser beam with your remaining eye!!
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application here. Of course, the principles and methodology of objective assessment
of image quality, from Chaps. 13 and 14, will also be put to good use.

We begin in Sec. 18.1 by looking at the basic aspects of speckle with relatively
little mathematics. We show why statistical models are applicable to speckle, and
we state some well-known results for the univariate probability density function
(PDF) and autocorrelation function of the irradiance in an observation plane with
either imaging or nonimaging systems.

In Sec. 18.2 we analyze the statistical properties of speckle in detail. Our
goal in this section is nothing less than a full infinite-dimensional description of the
statistics of the irradiance in a simple nonimaging system. The main tool for this
investigation will be the characteristic functional, introduced in Sec. 8.2.3.

In Sec. 18.3 we extend the analysis to imaging systems and relate it to the fa-
miliar continuous-to-discrete (CD) model for digital imaging systems that we have
used often in this book. In this section our goal is characterize the multivariate
(but finite-dimensional) statistics of the digital image as fully as possible.

In Sec. 18.4 we acknowledge that speckle is not the only source of random-
ness in coherent imaging systems. We consider also measurement noise and the
stochastic nature of the objects being imaged, and we relate these effects to objec-
tive metrics of image quality.

In Secs. 18.2 – 18.4 we place considerable emphasis on object models that lead
to Gaussian statistics on the fields in an image or observation plane, but in Sec.
18.5 we look at models that lead to decidedly non-Gaussian fields. In particular
we consider objects that consist of randomly placed points, and we find a close
connection with Poisson point processes as analyzed in Chap. 11.

In Sec. 18.6 we look specifically at 3D imaging system such as medical ultra-
sound and radar where time of flight is used to encode the third dimension. The
systems discussed there use amplitude-sensitive detectors to detect the scattered
field, and the analysis is easier than for systems with irradiance sensitive detec-
tors because the step of conversion of amplitude to irradiance is nonlinear. Both
Gaussian and non-Gaussian speckle are treated.

18.1 BASIC CONCEPTS

Coherent light has a definite phase at each point on a surface, and in many sit-
uations that phase admits of simple mathematical descriptions. For example, a
monochromatic plane wave has a phase that is constant on a plane, and a spherical
wave has a phase that is constant on a sphere. If a coherent wave is reflected from
a rough opaque surface or transmitted through a rough transparent surface such
as a ground glass, it remains coherent but the phase is no longer simple, and in
almost all situations it is unknown. The best we can say in general is that it varies
rapidly and unpredictably from point to point. Speckle is the diffraction pattern
from such an irregular, rapidly varying optical field. The fine structure results from
interference of the light coming from different points on the rough object. The
object roughness makes the phase complicated but does not make it vary randomly
with time, so the light is still coherent and interference still occurs.

In this section we look qualitatively at some basic aspects of this phenomenon.
In Sec. 18.1.1 we first discuss the role of statistics in describing what is essentially
a deterministic problem. Then we review some basic results on the point statistics
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and correlation properties of speckle in a nonimaging context. In Sec. 18.1.2 we
bring in a lens and a discrete detector array and begin to come to grips with just
what it means to analyze speckle in an imaging system.

18.1.1 Elementary statistical considerations

If we knew the complex amplitude transmittance of a ground glass or the complex
amplitude reflectance of a rough surface, we could compute the diffraction pattern
by the methods developed in Chap. 9. Since we virtually never have that detailed
information, we must resort to statistical methods. For example, we can consider
a particular ground glass to be one realization of a spatial random process, and we
can then investigate statistical properties of the diffraction pattern such as its mean,
autocovariance function and various probability density functions. It is important
to emphasize, however, that all statistical properties must be interpreted in terms
of averages over ensembles of ground glasses, not as spatial or temporal averages.
The statistical averages may turn out to be functions of space or time, but they
are not averages over space or time. It can be quite misleading to invoke ergodicity
in speckle problems.

Light emerging from rough surfaces One simplifying assumption that we can make
regarding the statistical properties of the field emerging from a ground glass (or
other rough object) is that the phase is completely random. If the thickness of
a slab of glass changes by an amount ∆h, then the phase of the light, relative to
what it would be without the change in thickness, is ∆φ = k(n − 1)∆h, where
n is the refractive index of the glass and k = 2π/λ, with λ being the wavelength
in free space. Thus if the height variations are random with a standard deviation
of several wavelengths, the phases are approximately uniformly distributed over
(−π,π). Under this assumption a field of the form A(r) exp[iφ(r)] is a zero-mean
random process.

We can also say something about the autocorrelation function of this random
process. Diffuse objects are rough on the scale of the wavelength of light—or else
they wouldn’t be diffuse. We know from Sec. 10.2.7 that the spatial autocorrelation
function of an optical field is closely related to the angular distribution of the light.
For example, a Lambertian surface has a radiance that is independent of angle
and a radiant intensity proportional to the cosine of the angle of light propagation
measured from the surface normal. We saw in (10.110) et seq. that this angular
dependence is associated with a particular autocorrelation function, a sinc function
with width approximately equal to the wavelength. We also mentioned—and left it
to the reader to show—that any process that completely randomized the direction
of light led to precisely this autocorrelation function and hence a Lambertian angular
distribution.

Thus a natural statistical model of the light from a coherently illuminated
diffuse object is that it is a 2D spatial random process with completely random
phase and an autocorrelation function that is sharply peaked on the scale of a
wavelength. This simple statement will take us quite far in the analysis of speckle.

Light on an observation plane Suppose the light from a coherently illuminated rough
surface propagates through free space to an observation plane. We know from
diffraction theory that all points on the surface contribute to the field at each point
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on the observation plane, and this observation allows us to draw further conclusions
about the nature of speckle.

The elementary argument, to be made more precise in Sec. 18.2.4, is that many
statistically independent points on the rough surface contribute to the field at each
point on an observation plane. It then follows from the central-limit theorem that
the complex field at each observation point is Gaussian. If the ground glass is
rough enough that the phases of the light are uniformly distributed on (−π,π),
then the field at an observation point is a circular Gaussian, where the real and
imaginary parts are i.i.d. Gaussians (see Sec. 8.3.6). In this case, we know that the
the modulus of the complex field (square root of the irradiance) follows a Rayleigh
law [see (C.140) and (8.231)], while the irradiance or squared modulus follows an
exponential law [see (8.232)]. If the phase is not uniformly distributed on (−π,π),
there will be an undiffracted plane-wave component to the light, and the modulus
will follow a Rician law [see (C.141)].

Speckle contrast When the irradiance obeys an exponential law, we can make a
simple statement about the speckle contrast. We stated in Sec. C.5.3 (and the
reader may verify) that the variance of an exponential law is equal to the square of
the mean. Thus the standard deviation is equal to the mean, and the ratio of mean
to standard deviation, often called a signal-to-noise ratio, is unity. This explains
the observation, noted in the introduction of this chapter, that speckle contrast is
independent of light level.

Blob size The probability laws discussed above give only the univariate statistics
of the field or its modulus at a single point. A more complete statistical description
requires accounting for the correlations in the field and irradiance. We shall now
present a simple argument based on local spatial frequencies that will enable us
to estimate the range of these correlations, roughly corresponding to the size of a
speckle blob.

Consider a stationary ground glass in the plane z = 0 illuminated with a
monochromatic plane wave. For now, no imaging system is used, and the diffrac-
tion pattern is observed in a parallel plane z = z0. By Huygens’ principle, each
point on the ground glass emits a spherical wave, and since the light is coherent,
each spherical wave interferes with every other spherical wave. The spherical wave
coming from point r1 on the ground glass produces a wave at point r in the ob-
servation plane, a distance z from the ground glass, which is given in the Fresnel
approximation by [cf. (9.94)]

uz(r) ∝ exp

[
iπ

|r− r1|2

λz
+ iφ(r1)

]
, (18.1)

where φ(r1) is the phase of the light at point r1. By (5.35), the 2D local spatial
frequency of this wave at point r is given by

ρ1(r) =
1

2π
∇
[ π
λz

|r− r1|2 + iφ(r1)
]
=

1

λz
(r− r1) , (18.2)

where the subscript on ρ1(r) indicates that it is associated with the wave emanating
from r1. If we consider also a second point r2, then it generates a wave of local
spatial frequency ρ2(r), and the irradiance in the interference pattern between the
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two waves contains the difference frequencies2 given by

±[ρ1(r)− ρ2(r)] = ±
1

λz
(r2 − r1) . (18.3)

Thus the largest spatial frequency in the interference pattern is determined by the
largest separation of the two points on the ground glass, |r2 − r1|max. As a rule of
thumb, then, the correlation length or blob size of the speckle, denoted by $b, is
the reciprocal of the maximum spatial frequency, or

$b =
λz

|r2 − r1|max
=

λ

∆θ
, (18.4)

where ∆θ is the angular subtense of the object from a point in the observation
plane.

By considering the diffraction patterns of all pairs of points on the ground
glass and averaging over the random phases, we can derive an expression for the
autocorrelation function of the irradiance on the observation plane. This autocorre-
lation will be approximately zero when the distance between two observation points
exceeds the blob size $b.

Multivariate statistics of the irradiance The simple arguments above yield the mean
and autocorrelation function of the irradiance on the observation plane. If that ir-
radiance were Gaussian, we would have a full statistical description since all proper-
ties of a Gaussian random process are determined by its mean and autocorrelation.
Since an irradiance cannot be negative, however, it cannot be Gaussian, and we
have just argued that its single-point PDF is exponential. To get a full description,
therefore, we need all possible multi-point PDFs (see Sec. 8.2.2) or, equivalently, the
characteristic functional of the process (see Sec. 8.2.3). Deriving this description is
the major goal of Sec. 18.2.

18.1.2 Speckle in imaging

Consider a simple unit-magnification imaging system in which a lens of focal length
f is placed a distance 2f from a coherently illuminated diffuse object and the image
is observed a distance 2f behind the lens. To be definite, we can think of the object
as a ground glass with a photographic transparency laid over it.

With the lens between the rough object and the observation plane, we can no
longer say that all points on the object contribute to the field at each observation
point; instead, only points within an area defined by the coherent point spread func-
tion (PSF) contribute. If the lens is diffraction-limited, then a large lens aperture
means that a smaller area on the object contributes to each image point. If, on the
other hand, the lens is aberrated, then a larger aperture may mean a larger PSF
and more contributing area.

2One might wonder why there are no sum frequencies. The reason is that each wave has an
unstated temporal factor with temporal frequency ν. The sum of the two spatial frequencies
comes with a sum of the two temporal frequencies, and the difference of the spatial frequencies
comes with the difference in the temporal frequencies. The factor exp[−2πi(ν + ν)t] averages to
zero over any measurement time but exp[−2πi(ν − ν)t] does not.
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If the contributing area contains many statistically independent regions on the
ground glass, we can again invoke the central-limit theorem and claim that the field
in the observation plane is Gaussian. If we also assume that the phase variations
of the ground glass are approximately uniformly distributed on (−π,π), the field is
circular Gaussian.

The correlation length of this circular Gaussian is, however, no longer deter-
mined by the overall size of the ground glass; now the lens aperture controls the
correlations. One way to see this point is to consider a very large ground glass
with no photographic transparency. The field emerging from the ground glass is
a circular Gaussian with a very short correlation length, and when it has propa-
gated to the lens plane, it is still a circular Gaussian with a very short correlation
length. According to (9.163), the lens multiplies the field by a quadratic phase, but
adding a deterministic phase to one that is completely random leaves it completely
random. Thus the field emerging from the lens is a circular Gaussian with a very
short correlation length, but now it is nonzero only over the lens aperture. When it
propagates to the image plane, it is yet another circular Gaussian, this time with a
correlation length given approximately by (18.4), with ∆θ now being the solid angle
subtended by the lens aperture from a point in the image plane. Thus a smaller
lens aperture means larger speckle blobs.

This argument depends critically on the field emerging from the ground glass
having very short correlation length. At the opposite extreme, suppose the “ground”
glass is smooth and slowly undulating. It may still have a total phase variation that
is uniformly distributed over (−π,π), but now its amplitude transmittance contains
only relatively low spatial frequencies. We know from Sec. 9.2.1 that low spatial
frequencies in the transmittance imply low deflection angles for the light. We can
decompose the field into its plane-wave components, and most of those components
will be within the pass-band of the lens if the lens aperture is large and the phase
variations of the ground glass are slow. In that case, no speckle at all is observed;
instead, the lens gives a faithful image of the phase object, reproducing its phase
variations in the image plane. Speckle results when some of the light is deflected to
larger angles and misses the lens.

The image detector Optical detectors respond to irradiance, so it is important to
know the statistics of the irradiance. As we argued above, the irradiance at a point
follows an exponential law if the field is circular Gaussian. This observation does
not, however, take us very far towards the understanding of image statistics, for
several reasons.

First, an optical detector integrates the irradiance over its area, and there is
no guarantee that a single-point exponential law on the irradiance will lead to an
exponential law on the detector output. To the contrary, if the detector area is
large compared to the correlation length of the irradiance incident on the detector,
we can again invoke the central-limit theorem and argue that the detector output
is Gaussian, not exponential.

It is only when the detector is very small compared to this correlation length
that an exponentially distributed output would be seen; observation of point statis-
tics of the irradiance requires a point-like detector. Since, as noted above, the
correlation length is controlled by the lens aperture, the point-detector approxima-
tion could be invalidated in any optical imaging system simply by stopping down
the lens.
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The second reason why the exponential law on the irradiance is inadequate
for the analysis of imaging systems is that it is a univariate law, giving very little
information about the multivariate statistics on the output of a detector array. It is
tempting to assume that the outputs of different detector elements in an array are
statistically independent. In that case the multivariate PDF would be a product of
exponentials if each univariate PDF were exponential; this assumption is virtually
never valid in practical systems. As we just saw, getting the exponential univariate
PDF requires a detector small compared to the correlation length, but statistical
independence requires that these point-like detectors be far apart compared to the
correlation length. Practical detector arrays have contiguous detector elements with
very little gap between them, so both conditions cannot be satisfied simultaneously.

Other noise sources The final reason for the inadequacy of the exponential law
is that it describes only a single source of statistical variation. As we know from
Chaps. 11 and 12, real optical detectors are also afflicted by Poisson noise from
the discrete nature of photoelectric interactions and by Gaussian noise arising from
electronic sources.

Moreover, the randomness of the objects being imaged must be considered in
a full statistical description of the imaging process. In previous chapters we have
often encountered doubly stochastic processes where the Poisson law was correct for
a single object realization, but different objects gave different Poisson means. With
coherent illumination and a photon-counting detector, we have a triply stochastic
Poisson process. For a given object and speckle realization, the multivariate output
of a discrete detector array is a Poisson random vector, but our statistical view
of speckle considers an ensemble of ground glasses (or other fine-scale phase varia-
tions), and each of these realizations leads to a different mean vector for the Poisson
distribution. If there is also an ensemble of objects (say photographic transparen-
cies), each object produces its own PDF for the speckle distribution. The overall
PDF is an average over Poissons given the irradiance distribution, an average over
all irradiances given an object (but different ground glasses), and an average over
objects. Moreover, if the output of the detector is processed by noisy electron-
ics, both Gaussian and Poisson are present, and in that case we have a quadruply
stochastic process.

Characteristic functions and functionals A full statistical description of a discrete
image requires a huge multivariate PDF, or equivalently a huge multivariate char-
acteristic function. In Chap. 8 we learned a lot about calculating characteristic
functions for imaging systems, and we shall put that knowledge to good use in this
chapter.

As we saw in Sec. 8.2.3, the continuous irradiance distribution incident on a
detector array can be described by a characteristic functional (really an infinite-
dimensional characteristic function), and we also saw that characteristic functionals
can be propagated rather simply through linear imaging systems. The difficulty in
the present context is that speckle is essentially a coherent phenomenon, so we must
consider the imaging system as being linear in the field, but the detector responds
to irradiance, so we need the characteristic functional not only for the field but
also for its squared modulus. We shall see in Secs. 18.2 and 18.3 how to do this
conversion.



1242 COHERENT IMAGING AND SPECKLE

Field-sensitive detection Analysis of speckle would be much easier if detectors re-
sponded to field rather than irradiance, and indeed some detectors do just that.
For radio waves and microwaves we can build systems that respond directly to the
field—otherwise your television set wouldn’t work! As the temporal frequency of
the wave increases, however, it becomes increasingly difficult to build electronics
that will follow the rapid field variations, so field-sensitive detectors become less
feasible, and they are essentially nonexistent in the optical frequency range.

An exception to this statement is heterodyne detectors. Since the 1920s all
radio receivers have been built on the heterodyne principle in which the incoming
modulated radio signal is mixed with a local oscillator signal in a nonlinear (ideally,
square-law) detector. The nonlinearity produces sum and difference frequencies,
and typically the difference-frequency signal is amplified further before final detec-
tion to extract the desired modulation signal.

Homodyne detection is the special case of heterodyne detection where the fre-
quency of the local oscillator is the same as the center frequency of the incoming
radio signal. If there were no modulation on that signal, the homodyne detector
output would consist of two components, one at zero frequency and one at twice
the original frequency. Both heterodyne and homodyne techniques can be applied
to optical signals since the post-detection electronics needs only to be fast enough
to respond to the difference signal, not the original optical signal.

The archetype optical homodyne system is holography. Consider an opti-
cal system with coherent illumination, and denote the field at the image plane by
uim(r), and suppose we superimpose on it a local-oscillator wave (or reference wave
in holographic jargon) uref (r). If the two waves are completely coherent, then the
total irradiance in the detector plane is given by

I(r) = |uim(r) + uref (r)|2 = |uim(r)|2+|uref (r)|2+u∗
im(r)uref (r)+u∗

ref (r)uim(r) .
(18.5)

For homodyne detection, all four of these terms have the same temporal fre-
quency, but they may have different spatial frequencies. For example, if the ref-
erence wave is a tilted plane wave with 2D spatial frequency ρref in the detector
plane, then the first two terms in (18.5) are independent of ρref , the third is cen-
tered at ρref and the fourth is centered at −ρref . Because of this difference in the
spatial-frequency spectra, the four terms can be separated in subsequent process-
ing; holographic image reconstruction boils down to isolating the fourth term and
extracting or recreating the field uim(r).

Heterodyne detection works essentially the same way, except now the four
terms in (18.5) differ in their temporal frequencies. Post-detection bandpass filter-
ing can isolate the fourth term, provided that the detector is fast enough to respond
to the difference frequency.

With both homodyne or heterodyne detection, therefore, the combination of
a square-law (irradiance-sensitive) detector and suitable post-detection processing
results in a measured signal linear in the image field uim(r). Because the illumina-
tion is coherent in both cases, this field is speckled if it was the result of diffraction
from a rough object. One useful approximation in analyzing the speckle statistics
of homodyne and heterodyne systems, therefore, is to lump the square-law detector
and post-detection processing into a single box in the system block diagram and
assume that the output of the box is a linear functional of the input field, uim(r).

That this linearity is only an approximation can be seen by examining the
contents of the box in more detail. If the box contains a discrete detector array,
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each element integrates the irradiance over its face, and the output of the array is
a set of samples of the form

∫
m
d2r |uim(r) + uref (r)|2, where subscript m indicate

integration over the face of the mth detector element. This integral is nonlinear in
uim(r), and no amount of post-processing can fully undo the nonlinearity since the
continuous field uim(r) cannot be reconstructed exactly from a finite set of samples.
We might consider passing to the limit of an essentially infinite number of samples
by using film as detector (which we almost always do in holography), but even then
we have to assume that the film responds linearly to the irradiance.

Microwave and ultrasonic imaging The complications of heterodyne and homodyne
detection are needed only because we cannot build detectors that are fast enough
to respond to optical frequencies. This problem does not arise with radio waves
and microwaves, where we can indeed build systems that are linear throughout.
A microwave dish, for examples, integrates the field over its face and produces an
output voltage that is a linear functional of the field. An array of microwave dishes
is the analog of an optical detector array except that each element responds linearly
to field rather than irradiance.

Most ultrasonic transducers also respond linearly to field, though in this case
an acoustic or pressure field rather than an electromagnetic one. An ultrasonic
transducer is made of a piezoelectric material in which a strain produces a volt-
age. To a good approximation, the total voltage from a transducer of finite area is
proportional to the integral of the strain amplitude across that area. This strain
distribution can be produced by an acoustic wave that has been reflected from a
rough surface or a random volumetric distribution of scatterers, and in that case it
suffers from speckle just as an optical wave does. An important difference, however,
is that linear-systems theory can be used without approximation to analyze the
speckle statistics in ultrasound. If the speckle at any stage can be assumed on the
basis of central-limit arguments to be Gaussian, it remains Gaussian because any
linear transformation of a Gaussian is a Gaussian (see Sec. 8.3.3).

Nevertheless, most papers on speckle in ultrasonic and microwave imaging do
not use linear models, and most of them invoke Rayleigh or Rician rather than
Gaussian statistics. The reason for this is that, even though the detectors respond
linearly to the fields, the displayed image usually involves an envelope detection or
demodulation step. To the extent that the detector array samples uim(r) finely,
this post-detection processing is an attempt to compute |uim(r)| or |uim(r)|2. In
the former case, Rayleigh statistics are relevant, and in the latter case, exponential
statistics are applicable. In neither case, however, would the Rayleigh or exponen-
tial law provide the requisite information on the multivariate image statistics.

An additional complication in ultrasonic imaging, as usually practiced in med-
ical sonography, is that pulsed signals are used to obtain spatial resolution along
the direction perpendicular to the transducer face. In this case the system model
must include both temporal and spatial aspects. Suitable models will be derived in
Sec. 18.6.

18.2 SPECKLE IN A NONIMAGING SYSTEM

This section is devoted to the analysis of the simple system depicted in Fig. 18.1,
where a ground glass is illuminated with a monochromatic plane wave and the
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diffraction pattern is observed on a plane parallel to the ground glass. Both the
field and the irradiance in this diffraction pattern will be studied.

As noted in Sec. 18.1.1, we assume that the detailed properties of individual
ground glasses are not known and not even of interest; our results are couched in
terms of an ensemble of ground glasses. An individual ground glass is a sample
function of a random process corresponding to this ensemble, and both the field
and the irradiance in the observation plane are sample functions obtained by math-
ematical transformation of the ground-glass function.

Fig. 18.1 Geometry for analyzing the speckle pattern in a nonimaging system.

Our objective is to learn as much as possible about the statistics of the field and
irradiance random processes, while making as few assumptions as possible about
the ground-glass random process. Since sample functions of a random process are
vectors in an infinite-dimensional Hilbert space, we require an infinite-dimensional
statistical description. We shall use the characteristic functional for this purpose; for
important background information, see Secs. 8.2.3 and 8.3.5. Previous discussions
of the statistical properties of speckle in finite-dimensional terms have been given
by Dainty (1975, 1976, 1984), Goodman (1975, 1985) and Osche (2002). A previous
treatment based on the infinite-dimensional characteristic functional is Zardecki and
Delisle (1977).

18.2.1 Description of the ground glass

Descriptions of a ground glass (or other rough object) can be divided into three
categories: physical, operational and mechanistic. A physical description focuses
on how the ground glass is produced and what it looks like on a microscopic scale.
An operational description asks only how the ground glass modifies a light field.
A mechanistic description probes the interaction between the first two descriptions
and asks how the physical characteristics relate to the operational ones. Any of these
descriptions can be either deterministic or stochastic. A deterministic description
gives a precise description of one particular piece of ground glass, and a stochastic
description makes statements about ensemble averages.

We shall briefly survey all of these approaches but conclude at the end that
we can be satisfied with a stochastic operational description, namely the random
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amplitude transmittance. The reader who agrees with this conclusion a priori can
skip to Sec. 18.2.2.

What is a ground glass? Literally, a ground glass is a piece of glass that has been
roughened by grinding it with an abrasive such as emery or corundum. Physically,
its surface consists of irregular peaks and valleys. Operationally, it scatters light
and appears diffuse to the eye. Much the same effect can be produced by etching
the glass with hydrofluoric acid, so we may as well be discussing etched glass rather
than ground glass. Operationally, we could also use a translucent material such as
teflon or opal glass, which also scatter light and appear diffuse.

Surface-height profile If the light scattering takes place at a surface, as with a lit-
erally ground or etched glass, the physical quantity of interest is the profile of the
rough surface. If the glass is in the x-y plane, its surface is described by z = h(x, y),
where h(x, y) is usually referred to as the surface-height profile of the individual
ground glass.

This profile can be measured by various devices called profilometers; for ex-
ample, a fine stylus can be dragged over the surface and its deflection observed
electrically or optically. Thus the surface-height profile h(x, y), or h(r) in our usual
2D vector notation, is an observable property of an individual ground glass. A com-
mon summary description of an individual profile is its standard deviation, often
called the RMS roughness. Other measures obtainable by profilometry include the
mean peak-to-valley distance and the histogram of observed heights.

If we consider an ensemble of ground glasses that have all been roughened in
the same way, we can consider h(r) to be a sample function of a random process.
For a ground glass of finite size, this sample function is square-integrable and hence
a vector in an L2 Hilbert space.

It is neither uncommon nor unreasonable to assume that the individual h(r)
is a sample function of a stationary random process, truncated by a rect function
describing the overall support. We need not quibble over whether this statement
should be interpreted as wide-sense or narrow-sense stationarity (see Sec. 8.2.4)
since the same physical considerations justify both assumptions; we must assume
only that the grinding process does the same things to the glass at all points. If
one wanted to look in detail at this assumption, it would have to be admitted that
the physical grinding process behaves differently at the edges of a specimen than at
the center, so stationarity in either sense would be more applicable to etched glass
than to ground glass, but this level of detail is far beyond our needs.

If we do make the assumption that an individual ground glass is a truncated
sample from a stationary random process, the histogram of measured heights can
be regarded as a histogram estimate of the true single-point PDF on the height, and
the observed RMS roughness can be squared to get an estimate of the variance; both
single-point PDF and variance of the random process are independent of position r

under the assumption of stationarity. We can also use the profilometer data to get
an estimate of the autocorrelation function of the process, and we might even take
a discrete Fourier transform to estimate the power-spectral density. (See, however,
the caveats in Sec. 8.2.7, and especially Fig. 8.1.)

Operational descriptions based on radiometry We have already met one operational
description of a rough surface, the bidirectional transmittance distribution function
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(BTDF) defined in Sec. 10.2.4. This description is appropriate to a ground glass
since it is essentially a thin optical element with all of the scattering occurring at
the surface. It is not a stochastic description since it involves only the average
radiances of the incident and scattered light, and it is a very incomplete description
since it says nothing about fluctuations around these averages.

Operational descriptions based on the field When the complex field is of interest, thin
optical elements can be described deterministically by an amplitude transmittance
t(r), defined as in (9.153) by

u+(r) = u−(r) t(r) , (18.6)

where u+(r) is the field just after the optical element, and u−(r) is the field incident
on it. We can apply this idea to a ground glass simply by defining the transmittance
tGG(r) as u+(r)/u−(r). We don’t really need to know how the ground glass does
what it does, just how it modifies the field.

In this view, tGG(r) is one sample function drawn from the ensemble of ground
glasses. The statistics of tGG(r) can be described just as with any other random
process. Ideally we would like to know the characteristic functional, but as we shall
see below we can quite often get by with much simpler statistical statements.

Mechanistic models A simple mechanistic model is the one used in Sec. 9.6.1 to
describe the amplitude transmittance of a thin lens. As discussed in more detail in
that section, a thin optical element modifies the phase of the light by an amount,

φ(r) =
2π

λ
(ng − 1)h(r) , (18.7)

where λ is the free-space wavelength of the light and ng is the refractive index of
the glass. In this model, all of the light is presumed to pass through the element,
and the amplitude transmittance is

t(r) = exp [iφ(r)] . (18.8)

Though a useful mental picture, (18.7) should not be taken seriously for rough
surfaces. It ignores the fact that some light will be scattered or reflected in the
backward direction, and the whole idea of phase modulation by optical elements
stemmed from consideration of slabs of glass, not elements with structures com-
parable in size to a wavelength. Nevertheless, (18.7) does indicate that the phase
variations result from surface-height variations, and it shows that very rough sur-
faces can produce very large phase changes.

Another mechanistic model, frequently used in SAR and reflection-mode ul-
trasound, assumes that the object consists of discrete point scatterers. Since each
point is at a random location, it imparts a random phase to the wave. In its sim-
plest form, this model takes the amplitude transmittance (or reflectance) to be a
Poisson random process, but sometimes the scattering amplitude is also considered
to be random. We shall have much more to say about point-scattering models in
Sec. 18.5, but for now we shall think of the transmittance of the ground glass as a
general random process, not necessarily a point process.

For further discussion of possible mechanistic models, see Zhao et al. (2001)
and Osche (2002).
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18.2.2 Some simplifying assumptions

We shall model the ground glass operationally as a pure phase object, with a random
amplitude transmittance given by

tGG(r) = exp[iφ(r)]S(r) , (18.9)

where S(r) is a binary support function. The autocorrelation function of this com-
plex random process is defined by

RGG(r, r
′) = 〈tGG(r)t

∗
GG(r

′)〉 = S(r)S(r′) 〈exp{i[φ(r)− φ(r′)]}〉 . (18.10)

Two simplifying assumptions are commonly made with this model. One is
that the ground glass is sufficiently rough that it completely randomizes the phases.
In terms of the simple mechanistic model of (18.7), this amounts to assuming that
σh & λ, where σ2

h is the variance of the surface-height profile. We can state this
assumption in terms of the univariate or single-point PDF for the phase:

pr[φ(r)] =
1

2π
rect

[
φ(r)

2π

]
(for all r) . (18.11)

It follows that

〈tGG(r)〉 = 0 , (18.12)

where the average is over an ensemble of ground glasses. With this assumption,
autocorrelation and autocovariance are the same thing since the mean is zero, and
we denote the latter as KGG(r, r′).

The second useful assumption is that the autocovariance function is sharply
peaked compared to other functions of interest, such as the point spread function of
an imaging system. Thus, noting that KGG(r, r) = 1 within the support, we write

KGG(r, r
′) ≈ S(r) $ 2c δ(r− r′) , (18.13)

where $c is the correlation length,3 defined by

$ 2c ≡
∫

∞
d2r′ KGG(r, r

′) . (18.14)

This integral is independent of r if $c is small compared to the support and r is not
within $c of the border. In practice, we know from Sec. 10.2.7 that $c ≈ λ, where λ
is the wavelength.

With this zero-mean complex Gaussian random process, it is tempting to as-
sume further that circular Gaussian statistics apply (see Sec. 8.3.6), but that would
be an oversimplification; for a pure phase function, |tGG(r)| = 1, so Gaussian statis-
tics are definitely not applicable. Nevertheless, we shall show via the central-limit
theorem that the speckle field at an observation plane is very closely Gaussian.

3The reader should not confuse correlation length with coherence length. The latter term is often
used to describe polychromatic radiation (see Sec. 9.7.4), but here we are considering monochro-
matic radiation where the coherence length is infinite.
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Field emerging from the ground glass We assume for simplicity that the ground glass
is illuminated with a unit-amplitude plane wave propagating in the z direction. The
complex amplitude of this plane wave is exp(ikz), where k = 2π/λ. If we assume
that the ground glass lies in the plane z = 0, then u−(r) in (18.6) is unity, and the
field emerging from the ground glass is

u0(r) = tGG(r) . (18.15)

Thus the field has exactly the same statistical properties as the ground glass itself
with this illumination.

Propagation to the observation plane Our interest will be in the field in an observa-
tion plane parallel to the ground glass and a distance z away. We denote this field
as uz(r) and the corresponding irradiance as Iz(r) ≡ |uz(r)|2. We know from Sec.
9.4 how to compute uz(r) if we know u0(r). We can denote this relation abstractly
as

uz = Pzu0 , (18.16)

where Pz is a propagation operator (not to be confused with a projection operator).
Specifically, in the Fresnel approximation (see Sec. 9.4.6),

uz(r) =
exp(ikz)

iλz

∫

∞
d2r0 u0(r0) exp

(
iπ

|r− r0|2

λz

)
. (18.17)

If tGG(r) is a zero-mean random process, then so are u0(r) and uz(r). If, on
the other hand, 〈tGG(r)〉 )= 0, then there is a nonrandom component to uz(r). If the
support of the ground glass is large, this component is essentially an undiffracted
plane wave. It is common terminology to say that the speckle is fully developed if
〈u0(r)〉 = 0. If 〈u0(r)〉 )= 0 and there is an undiffracted plane-wave component, the
speckle is said to be partially developed.

18.2.3 Propagation of characteristic functionals

In a statistical context, (18.16) and (18.17) apply to sample functions of random
processes, and the theory of speckle boils down to analysis of the effects of various
transformations on random processes. The transformation in (18.17) is a linear
integral operator, but computation of the irradiance is a nonlinear point operation,
and detection of the irradiance with a discrete detector array is a linear CD map-
ping. A useful tool for analyzing all of these transformations is the characteristic
functional (see Secs. 8.2.3 and 8.3.5).

The characteristic functional for the transmittance of the ground glass is de-
fined as

ΨtGG
(ξ) =

〈
exp

[
−iπ

(
ξ†t

GG
+ t†

GG
ξ
)]〉

, (18.18)

where ξ is a vector in L2(R2) corresponding to the complex-valued, square-integrable
function ξ(r), and t

GG
corresponds to t

GG
(r). Similarly, the field emerging from the

ground glass in the plane z = 0 has a characteristic functional given by

Ψu0(ξ) =
〈
exp

[
−iπ

(
ξ†u0 + u0

†ξ
)]〉

. (18.19)
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The characteristic functional for the propagated field is given by

Ψuz(ξ) =
〈
exp

[
−iπ

(
ξ†uz + uz

†ξ
)]〉

=
〈
exp

{
−iπ

[
ξ†(Pzu0) + (Pzu0)

†ξ
]}〉

= Ψu0

(
P†

z ξ
)
. (18.20)

In Sec. 18.2.4, we shall use the central-limit theorem to argue that uz(r) is a circular
Gaussian random process under broad assumptions. When that conclusion holds,
we can give an explicit form for Ψuz(ξ); we know from (8.251) that it is given by

Ψuz(ξ) = exp
(
−π2ξ†Kuzξ

)
, (18.21)

where Kuz is the autocovariance operator, an integral transform with the autoco-
variance function as its kernel. To be explicit, the quadratic form in (18.21) is a
scalar given by

ξ†Kuzξ =

∫

∞
d2r

∫

∞
d2r′ ξ∗(r)Kuz(r, r

′) ξ(r′) . (18.22)

Since Kuz is positive-definite, ξ†Kuzξ is real even though all factors in (18.22) may
be complex.

We learned in Sec. 8.2.6 how to propagate autocovariance operators; with
(8.147) and (18.13) we see that

Kuz = PzKu0P
†
z ≈ $ 2c PzP

†
z . (18.23)

In the Fresnel approximation, the kernel of the operator Kuz is
4

Kuz(r, r
′) =

$ 2c
λ2z2

∫

A

d2r′′ exp
(
i
π

λz
|r− r′′|2

)
exp

(
−i

π

λz
|r′ − r′′|2

)

=
$ 2c
λ2z2

L2 sinc

(
L

λz
|r− r′|

)
, (18.24)

where A denotes the area of the ground glass, of dimensions L×L. The sinc function
has a width of λz/L, confirming the qualitative argument from Sec. 18.1.1 that the
correlation length in the diffraction pattern is inversely proportional to the size of
the ground glass.

18.2.4 Central-limit theorem

What follows is a fairly tedious derivation showing how the central-limit theorem
applies to the present problem. The reader who is content with handwaving can
skip this discussion and jump to Sec. 18.2.5.

The derivation here generally follows the development in Sec. 8.3.4, modified
for random processes rather than random variables. A key difference, however, is

4A quadratic phase factor exp
[
i π
λz

(r2 − r′2)
]
has been dropped in (18.24) since it is near unity

whenever the sinc function is appreciable.
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that we do not add multiple random processes, but instead consider a single random
process divided spatially into successively smaller component processes.

For generality we forego the zero-mean assumption and write

tGG(r) = tGG +∆tGG(r) , (18.25)

and similarly for the fields. We assume that ∆tGG(r) is rapidly varying so that
the ground glass can be written as a sum of nonoverlapping regions with negligible
statistical dependence. If the dimensions of the ground glass are L × L and those
of the regions in question are ε× ε, we write the random part of the field emerging
from the ground glass as

∆u0(r) =
∑

k

∆u(k)
0 (r) , (18.26)

where k is a 2D multi-index of integer components. Explicitly,

∆u(k)
0 (r) = ∆u0(r) rect

(
r− kε

ε

)
≡ w(k)(r)∆u0(r) , (18.27)

where the components of k run from −K to K, with K = (L− ε)/(2ε) and K odd.
Note that the sum of rect functions is unity within the L×L support of the ground
glass. We assume that we can choose $c + ε + L, and assume further that $c is
the characteristic length beyond which the random process is not just uncorrelated
but statistically independent; thus (18.26) represents a decomposition of the field
into statistically independent components.

Propagating to the plane z, we have

∆u(k)
z = Pz∆u

(k)
0 . (18.28)

The characteristic functional of ∆uz is

Ψ∆uz(ξ) =
〈
exp

[
−iπ

(
ξ†∆uz +∆u†

zξ
)]〉

=

〈

exp

{

−iπ
∑

k

[
ξ†
(
Pz∆u

(k)
0

)
+
(
Pz∆u

(k)
0

)†
ξ

]}〉

=
∏

k

〈
exp

{
−iπ

[
ξ†
(
Pz∆u

(k)
0

)
+
(
Pz∆u

(k)
0

)†
ξ

]}〉
=
∏

k

Ψ
∆u

(k)
0

(
P †

zξ
)
.

(18.29)
If we were following the flow of Sec. 8.3.4 exactly, we would at this point assume

that the the random processes ∆u
(k)
0 were independent and identically distributed,

but in fact they are not identically distributed because of the spatial offsets. We
can, however, expand Ψ

∆u
(k)
0

(ξ) analogously to (8.205), yielding

Ψ
∆u

(k)
0

(ξ) = 1− π2 ξ†
〈
∆u

(k)
0 ∆u

(k)
0

†
〉
ξ + ... , (18.30)

where we have made use of the facts that∆u
(k)
0 has zero mean and ξ†〈∆u

(k)
0 ∆u

(k)
0

†〉ξ
is real. We have also assumed that 〈[ξ†Pz∆u

(k)
0 ]2〉 and its complex conjugate are
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negligible. We return to this assumption below; making it uncritically for now, we
see that

Ψ∆uz(ξ) =
∏

k

[
1− π2

(
P†

z ξ
)† 〈

∆u
(k)
0 ∆u

(k)
0

†
〉
P†

z ξ + ...

]
. (18.31)

At this point we invoke the fact that the field on the ground glass has a very
short correlation length, much shorter than the region size ε and even shorter than
a wavelength. The propagator Pz, on the other hand, has a kernel that is slowly
varying compared to a wavelength in the Fresnel approximation. Thus, for present
purposes we can write

〈[
∆u(k)

0 (r)
] [

∆u(k)
0 (r′)

]∗〉
≈ $ 2c w(k)(r) δ(r− r′) (18.32)

or, in operator form,
〈[

∆u
(k)
0

] [
∆u

(k)
0

]†〉
= $ 2c W(k) , (18.33)

with W(k) being a multiplicative operator with kernel w(k)(r) δ(r−r′). Therefore,

Ψ∆uz(ξ) =
∏

k

[
1− π2$ 2c

(
P†

z ξ
)†

W(k)
(
P†

z ξ
)
+ ...

]

=
∏

k

{
1− π2$ 2c

(
ξ†
[
Pz W

(k)P†
z

]
ξ
)
+ ...

}
. (18.34)

Taking a logarithm yields

ln{Ψ∆uz(ξ)} =
∑

k

ln
{
1− π2$ 2c

(
ξ†
[
Pz W

(k)P†
z

]
ξ
)
+ ...

}
. (18.35)

The operator in square brackets here, [PzW
(k)P†

z ], has a kernel
[
PzW

(k)P†
z

]
(r, r′) =

∫

A

d2r1

∫

A

d2r2 pz(r, r1)w
(k)(r1) δ(r1 − r2) p

∗
z(r2, r

′)

=

∫

A

d2r1 pz(r, r1)w
(k)(r1) p

∗
z(r1, r

′) . (18.36)

This integral varies as ε2 and higher-order terms vary as higher powers. Thus, by
the same arguments as in Sec. 8.3.4, we can drop the higher terms and expand the
logarithm to obtain

ln{Ψ∆uz(ξ)} ∼ −
∑

k

π2$ 2c ξ
†PzW

(k)P†
z ξ . (18.37)

Finally, since
∑

kW
(k) is just the unit operator, we get

ln{Ψ∆uz(ξ)} ∼ −π2$ 2c ξ
†PzP

†
z ξ (18.38)

or
Ψ∆uz(ξ) ∼ exp

(
−π2$ 2c ξ

†
PzP

†
z ξ
)
. (18.39)

The conclusion is that ∆uz(r) is a circular Gaussian random process. If the
mean transmittance of the ground glass is zero, then uz(r) is a also circular Gaus-
sian. If the mean transmittance is not zero, we get

Ψuz(ξ) ∼ exp
[
−iπ

(
ξ†Pzu0 + u

†
0P

†
z ξ
)]

exp
(
−π2$ 2c ξ

†PzP
†
z ξ
)
. (18.40)
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A lapse of propriety Now let us return to (18.30), where we dropped 〈[ξ†Pz∆u
(k)
0 ]2〉

and its complex conjugate. This term can be written as
〈[

ξ†Pz∆u
(k)
0

]2〉
= ξ†Pz

〈[
∆u

(k)
0

] [
∆u

(k)
0

]t〉
P t

zξ
†t . (18.41)

We could drop this term immediately if we could argue that ∆u
(k)
0 was a proper

random process. Recall from Sec. 8.3.6 that a complex random vector or process z
is proper if the mean 〈z〉 and the pseudocovariance 〈zzt〉 both vanish; in that case
the second-order statistics are fully specified by the covariance defined as 〈zz†〉. A
sufficient condition for z to be proper is that it be zero mean and that the real and
imaginary parts of any component be i.i.d. Consideration of Fig. 18.2 shows, how-

ever, that ∆u
(k)
0 does not satisfy these conditions; its mean is zero by construction,

but its real and imaginary parts are neither independent nor identically distributed.
We therefore have to look further for the rationale for neglecting this term.

Fig. 18.2 (a) Diagram illustrating the statistical properties of the field in
the plane z = 0 when it cannot be assumed that the phase of this field is
uniformly distributed on (0, 2π). It is assumed here that 〈u0(r)〉 #= 0 and that
|u0(r)| = 1. Thus the allowed values of ∆u0(r) lie on the arc shown, and by
inspection the real and imaginary parts of ∆u0(r) are neither independent nor
identically distributed. (b) Similar diagram for the case where the phase is
uniformly distributed. Now the mean is zero, ∆u0(r) = u0(r), and the real
and imaginary parts of ∆u0(r) are i.i.d.

Since we have already assumed that the fields at two points on the ground
glass are statistically independent unless the points are within $c, and that this
distance is very small compared to the width of the kernel of Pz, we can write the
pseudocovariance function as [cf. (18.32)]

〈[
∆u(k)

0 (r)
] [

∆u(k)
0 (r′)

]〉
≈ ac w

(k)(r) δ(r− r′) , (18.42)

where ac ≤ $ 2c because of partial phase cancellation. Writing out (18.41) in integral
form and using (18.42) yields [cf. (18.36)]

〈[
ξ†Pz∆u

(k)
0

]2〉
= ac

∫

∞
d2r ξ∗(r)

∫

∞
d2r′ ξ∗(r′)

∫

A

d2r1 pz(r, r1)w
(k)(r1) pz(r1, r

′) .

(18.43)
The important point to note here is the absence of a complex conjugate on either
pz factor, so there is no cancellation of quadratic phase factors. After performing
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steps analogous to (18.36) – (18.38) and inserting the Fresnel propagation kernel, we
find that the r1 integral takes the form

1

λ2z2

∫

A

d2r1 exp
[
i
π

λz

(
|r1 − r|2 + |r1 − r′|2

)]
. (18.44)

Because of the oscillating factor of exp(2iπr21/λz), this integral will be very small
(compared to A) if the overall area of the ground glass covers many Fresnel zones,
or L2/λz & 1. This is the opposite of the Fraunhofer condition (see Sec. 9.5.2), so
the pseudocovariance term has a small effect in the near field of the ground glass,
in essence because the propagation introduces large phase variations.

In summary, we can overlook the impropriety if either the ground glass or the
propagation fully randomizes the phase of the field.

18.2.5 Statistics of the irradiance

We now know how to write the characteristic functional for the field uz(r) in
the observation plane. The next step is to study the statistics of the irradiance,
Iz(r) ≡ |uz(r)|2. Because of the nonlinear nature of the transformation from field to
irradiance, there is no general rule for transforming the characteristic functionals,
but we shall see that a useful expression is possible when the field is a circular
Gaussian.

Our approach will be to consider first a finely sampled but discrete field pattern
and compute its characteristic function, then pass to the limit of an infinitesimal
sampling interval and get the characteristic functional for the irradiance. Point
sampling causes no difficulty because the propagator Pz is a low-pass filter, blocking
all 2D spatial frequencies of magnitude greater than the reciprocal of the wavelength
(see Sec. 9.5.1).

We define an N × 1 complex vector uz with components uz(rn) and an N × 1
real vector Iz with components given by Iz(rn) = |uz(rn)|2. The characteristic
function (not functional, so we use ψ instead of Ψ) for Iz is defined by

ψIz(ζ) =
〈
exp(−2πiζtIz)

〉
, (18.45)

where ζ is an N × 1 real vector, and the average is over real and imaginary compo-
nents of uz.

If the field in plane z is circular Gaussian, then

ψIz(ζ) =
1

πN det(Kuz
)

∫

∞
d2Nuz exp(−u†

zK
−1
uz

uz) exp(−2πiζtIz)

=
1

πN det(Kuz
)

∫

∞
d2Nuz exp[−u†

z(K
−1
uz

+ 2πiZ)uz] , (18.46)

where Z is an N ×N diagonal matrix with elements given by

Zmn = ζm δmn . (18.47)

Simultaneous diagonalization Key to evaluation of the integral in (18.46) is finding
a representation where K−1

uz
and Z are simultaneously diagonal. We shall use the di-

agonalization procedure from Sec. 1.4.6; this procedure diagonalizes two Hermitian
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matrices A and B, even if they do not commute, by three steps. The first step is
to diagonalize A by a unitary transformation, then convert it to the unit matrix by
a nonunitary prewhitening transform, finally diagonalize the transformed matrix
B by another unitary transformation. The prewhitening step requires that A be
nonsingular.

To apply this procedure to the problem at hand, we take A = K−1
uz and B = Z.

Thus we first undiagonalize Z, then rediagonalize it. We cannot, however, choose
A = Z since assuming that Z is nonsingular is the same as requiring all ζn )= 0; in
fact, most of the interest in the characteristic function is at ζ = 0.

Following Sec. 1.4.6, we first do a Karhunen-Loève transformation (see also
Sec. 8.2.7) on Kuz :

KuzΥ = ΥM , Υ†KuzΥ = M , Υ†K−1
uz

Υ = M−1 , (18.48)

where Υ is a unitary matrix and M is a diagonal matrix with the eigenvalues of
Kuz along the diagonal.

Next we prewhiten K−1
uz

, obtaining

M
1
2Υ†K−1

uz
ΥM

1
2 = I . (18.49)

Finally, we rediagonalize Z to get

W†ZW = D , (18.50)

where D is diagonal and
W = ΥM

1
2Φ . (18.51)

Thus
W†K−1

uz
W = I , W†ZW = D . (18.52)

Note thatW†K−1
uzW = I does not imply thatW†KuzW = I sinceW is not unitary.

Evaluation of the integral We can now perform the integral in (18.46) by introducing
the change of variables:5

uz = Wũz . (18.53)

The expression for the characteristic function now becomes6

ψIz(ζ) =
1

πN det(Kuz)

∫

∞
d2Nuz exp[−u†

z(K
−1
uz

+ 2πiZ)uz]

=
| det(W)|2

πN det(Kuz)

∫

∞
d2Nũz exp[−ũ†

z(I+ 2πiD)ũz ] , (18.54)

where ζ is now hidden within D (we’ll retrieve it shortly), and | det(W)|2 is the
Jacobian of the transformation. Since Φ and Ψ are unitary, it follows from (A.78)
and (A.83) that

| det(W)|2 = [det(M
1
2 )]2 = det(K) , (18.55)

5Actually, this step is a bit tricky. With unitary transformations we would normally write ũ =
W†u, which is equivalent to (18.53) when W† = W−1. To get the exponent into a form where
our freshly diagonalized operators appear after a nonunitary transformation, however, we must
define the transformation as in (18.53).
6The reader should not confuse the unit matrix I in this expression with the irradiance Iz(r),
which we write as Iz when we regard it as a vector in Hilbert space.
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so the integral we need to evaluate is

ψIz(ζ) =
1

πN

∫

∞
d2Nũz exp[−ũ†

z(I+ 2πiD)ũz] . (18.56)

Since D is diagonal, this integral factors into a product of N 2D integrals of the
form

In =

∫ ∞

−∞
dxn

∫ ∞

−∞
dyn exp[−an(x

2
n + y2n)]

=

∫ ∞

−∞
dxn exp(−an x

2
n)

∫ ∞

−∞
dyn exp(−an y

2
n) , (18.57)

where
an = 1 + 2πiDnn . (18.58)

Gaussians with complex coefficients have occurred several times previously in this
book because of their role in Fresnel propagation problems (see Secs. 3.3.7, 4.3.2 and
9.4.6). By deforming the contour of integration as in (3.184), we find [cf. (3.185)
with ξ = 0]

In =
π

an
, (18.59)

and the original 2ND integral in (18.46) is

I =
N∏

n=1

In =
N∏

n=1

π

an
=

πN

det(I+ 2πiD)
. (18.60)

Thus

ψIz(ζ) =
1

det(I+ 2πiD)
=

1

det(I+ 2πiW†ZW)
, (18.61)

where, as a reminder,

W†K−1
uz

W = I , Zmn = ζn δmn , [W†ZW]mn = Dn δmn . (18.62)

Equivalent forms By judiciously inserting a couple of unit matrices, written as
I = Ψ†Ψ, we get another expression for the characteristic function of the irradiance:

ψIz(ζ) =
[
det
(
I+ 2πiU†K

1
2
uzZK

1
2
uzU

)]−1

, (18.63)

where U ≡ ΨΦ is the unitary operator that diagonalizes the Hermitian matrix

K
1
2
uzZK

1
2
uz . Since determinants are unchanged by unitary transformations, (18.63)

is equivalent to

ψIz(ζ) =
[
det
(
I+ 2πiK

1
2
uzZK

1
2
uz

)]−1

. (18.64)

With some identities on determinants from App. A, we get

det
(
I+ 2πiK

1
2
uzZK

1
2
uz

)
= det

[
K

1
2
uz

(
I+ 2πiK

1
2
uzZK

1
2
uz

)
K

− 1
2

uz

]
= det(I+2πiKuzZ) ,

(18.65)
so

ψIz(ζ) = [det(I+ 2πiKuzZ)]
−1 . (18.66)

This expression is consistent with the chi-squared characteristic function as
given in (C.139). Specifically, if there are no correlations and Kuz = 2σ2I, then
ψIz(ζ) is just a product of N factors like (C.139), each with 2 degrees of freedom.
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Expansion in traces Determinants can be related to traces by (A.114), reproduced
here for convenience:

− ln[det(I−A)] = trA+ 1
2 trA

2 + 1
3 trA

3 + ... . (18.67)

Using this relation with A = −2πiKuzZ, we get

ψIz(ζ) = exp
[
−2πi tr (KuzZ)− 2π2 tr (KuzZKuzZ) + · · ·

]
. (18.68)

As noted in App. A, this expansion converges if all eigenvalues of A are < 1 in
absolute value. Usually we want to use ΨIz(ζ) for calculating moments; convergence
is guaranteed in that case since the moments all involve derivatives evaluated at the
origin, and all eigenvalues of A approach zero as ζ → 0.

Writing out the first term in the exponent of (18.68) in detail yields

tr(KZ) =
∑

i,j

KijZji =
∑

i,j

Kijζi δji =
∑

j

Kjjζj . (18.69)

Similarly, the second term is

tr(KZKZ) =
∑

i,j,k!

KijZjkKk!Z!i =
∑

j,k

ζjKjkKkjζk =
∑

j,k

ζj |Kjk|2ζk . (18.70)

When these explicit expressions are used in (18.68), it is relatively straightforward
to carry out the necessary derivatives and compute moments.

The continuous limit We can pass to the infinite-dimensional limit where vectors
become functions by defining an integral operator Z with kernel ζ(r) δ(r − r′).7

Then the traces are interpreted as

tr(KZ)=

∫

∞
d2r ζ(r)K(r, r) , tr(KZKZ )=

∫

∞
d2r

∫

∞
d2r′ ζ(r) |K(r, r′)|2 ζ(r′) ,

(18.71)
and similarly for higher-order terms.

At this stage we have an expression (albeit in terms of an infinite product of
exponentials) for the characteristic functional of the irradiance for a nonimaging
system. Specifically,

ΨIz(ζ) = exp[−2πi tr(KuzZ )− 2π2 tr(KuzZKuzZ ) + · · ·] . (18.72)

Equivalently, we can use the determinantal expression (18.66) and pass to the limit
to obtain

ΨIz(ζ) =
1

det(I+ 2πiKuzZ )
, (18.73)

provided we interpret the determinant of an integral operator as the infinite product
of its eigenvalues. The factors in the product converge to unity as the eigenvalues
of Kuz approach zero, so the fact that the product is infinite causes no grief.

7This operator is the Hadamard product of the Hilbert-space vector ζ and the unit operator
(see Sec. A.2.8). We could have chosen to write it as = ζ " , but expressing it in terms of its
kernel may be clearer.
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Single-point statistics We can check our results by computing the univariate statis-
tics for the irradiance at a single spatial location. The univariate characteristic
function is given by

ψIz(r0)(ν) = 〈exp [−2πiνIz(r0)]〉 =
〈
exp

[
−2πiν

∫

∞
d2r Iz(r) δ(r− r0)

]〉
.

(18.74)
Integration against a delta function is permissible since the propagator is a low-pass
filter and hence Iz(r) is a function in a reproducing-kernel Hilbert space, specifically
Paley-Wiener space (see Secs. 1.8 and 3.5). Thus we can say that Iz(r0) is the scalar
product8 of δ(r−r0) and the random process Iz(r), and the univariate characteristic
function is related to the characteristic functional of the process by

ψIz(r0)(ν) = ΨIz [ν δ(r− r0)] . (18.75)

Now ζ(r) = ν δ(r− r0) and ν is real, so

tr(KuzZ ) = νKuz(r0, r0) ,

tr(KuzZKuzZ ) = ν2|Kuz(r0, r0)|2 = [tr(KuzZ )]2 , etc. , (18.76)

and the desired univariate characteristic function is

ψIz(r0)(ν) = exp[−2πiνKuz(r0, r0)− 2π2ν2[Kuz(r0, r0)]
2 + · · · ] . (18.77)

The exponent is recognized as an expansion for the logarithm, ln(1+z) = z− 1
2z

2+
1
3z

3 − ... , valid for |z| < 1; hence

ψIz(r0)(ν) = exp{− ln[1 + 2πiνKuz(r0, r0)]} , (18.78)

so

ψIz(r0)(ν) =
1

1 + 2πiνKuz(r0, r0)
, (18.79)

which is the characteristic function for a chi-squared random variable with two
degrees of freedom as given in (C.139), or equivalently for an exponential random
variable as in (C.121).

Bivariate statistics If the irradiance at two points is of interest, the bivariate char-
acteristic function is related to the characteristic functional for the random process
by an extension of (18.75):

ψIz(r1), Iz(r2)(ν1, ν2) = ΨIz [ν1 δ(r− r1) + ν2 δ(r− r2)] . (18.80)

One way to proceed is to use (18.73) with Z being the integral operator with kernel

Z(r, r′) = ζ(r) δ(r− r′) = [ν1 δ(r− r1) + ν2 δ(r− r2)] δ(r− r′) . (18.81)

To use (18.73), we first find the eigenvalues of KuzZ; the eigenvalue equation is
∫

∞
d2r′′ [KuzZ ](r, r′′)φ(r′′) = λφ(r) . (18.82)

8The scalar product we intend is in L2, not the one for the reproducing-kernel Hilbert space.
While the delta function is not in L2, we can realize the scalar product with a limiting argument.
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Writing out the product KuzZ explicitly and using the kernel for Z, we get

∫

∞
d2r′′

∫

∞
d2r′ Kuz(r, r

′′) [ν1 δ(r
′′ − r1) + ν2 δ(r

′′ − r2)] δ(r
′′ − r′)φ(r′′)

= ν1Kuz(r, r1)φ(r1) + ν2Kuz(r, r2)φ(r2) = λφ(r) . (18.83)

It follows that φ(r) must have the form αKuz(r, r1) + βKuz(r, r2); there are only
two linearly independent eigenfunctions and hence the rank of KuzZ is two in this
case.

Since (18.83) must hold for all r, including r1 and r2, we get two equations
that can be written in matrix form as




ν1K11 − λ ν2K12

ν1K21 ν2K22 − λ








φ(r1)

φ(r2)



 = 0 , (18.84)

where Kjk ≡ Kuz(rj , rk). The two possible values for λ in this equation (call them
λ1 and λ2) are found by setting the determinant of the 2×2 matrix to zero. Though
the notation does not show it, these eigenvalues depend on ν1 and ν2.

We can use the eigenvalues of KuzZ to construct the eigenvalues of the op-
erator in which we are really interested, I+ 2πiKuzZ. Two of the eigenvalues of
that operator are 1+2πiλ1 and 1+2πiλ2; there is also an infinite set of eigenvalues
equal to unity, but they contribute nothing to the determinant in (18.73). After a
bit of algebra we find

ψIz(r1),Iz(r2)(ν1, ν2) =
1

(1 + 2πiλ1) (1 + 2πiλ2)

=
1

[1 + 2πiν1 Kuz(r1, r1)][1 + 2πiν2 Kuz(r2, r2)] + 4π2ν1ν2|Kuz(r1, r2)|2
. (18.85)

The corresponding bivariate PDF can be obtained by performing a 2D inverse
Fourier transform; the result is given by Goodman (1975) in terms of I0 Bessel
functions. If Kuz(r1, r2) = 0, (18.85) reduces to the product of two chi-squared
characteristic functions, each with two degrees of freedom, so the PDF reduces to
the product of two exponentials.

18.3 SPECKLE IN AN IMAGING SYSTEM

Next we turn to speckle in optical imaging, adapting the analysis of Sec. 18.2 by
adding a photographic transparency to serve as the object, a lens system to form the
image, and a discrete detector array. The objective of the analysis is a statistical
description, in the form of a characteristic function, for the detector output. In
this section the only random effect we consider is speckle, but in Sec. 18.4 we shall
extend the analysis further by bringing in measurement noise and object variation.

The system under consideration is described and analyzed deterministically in
Sec. 18.3.1. The statistics are treated with the help of characteristic functionals in
Sec. 18.3.2, and the effect of the image detector is discussed in Sec. 18.3.3.
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18.3.1 The imaging system

The imaging system considered in this section is shown in Fig. 18.3. The object,
consisting of a photographic transparency with amplitude transmittance tobj , is
placed directly over a ground glass, which is then illuminated with a normally inci-
dent plane wave as in Sec. 18.2. A thin lens is placed a distance 2f from the object,
and a discrete detector array is placed in the focal plane, a distance 2f. This system
has a magnification of −1, but we shall avoid annoying minus signs by defining the
axes in the image plane oppositely to those in the object plane; thus the x0 direction
in the object plane is pointing upward in Fig. 18.3, but the x direction in the image
plane is pointing downward.

Fig. 18.3 Simple optical system with magnification of −1.

We can analyze this system in three stages. The first stage is the linear CC
mapping from object field to image field, the second is a nonlinear point transfor-
mation from image-plane field to image-plane irradiance, and the third is a linear
CD mapping from irradiance to the discrete detector outputs.

Coherent CC mapping The first stage is described by the integral transform

uim(r) =

∫

∞
d2r0 pcoh(r− r0; r0)u0(r0) , (18.86)

where uim(r) is the field in the image plane, u0(r0) is the field emerging from
the object transparency in the plane z = 0, and pcoh(r − r0; r0) is the coherent
point spread function (PSF). For the present problem, this PSF is given by (9.227);
modified for our inverted coordinate system and p = q = 2f, that equation becomes

pcoh(r; r0) =
1

(2λf)2
Tpupil

(
r

2λf
; r0

)
, (18.87)

where Tpupil(ρ; r0) is the Fourier transform with respect to the first variable of
the 2D Fourier transform of the pupil function, tpupil(r; r0). The second variable is
needed here if we wish to include the effects of field-dependent aberrations; for more
discussion of this point, see Secs. 9.6.3 and 9.7.1. If there are no field-dependent
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aberrations, both Tpupil(ρ; r0) and pcoh(r; r0) are independent of the second variable
and (18.86) is a convolution.

We can write the mapping of (18.86) in abstract form by defining a coherent
imaging operator Pcoh, so that

uim = Pcohu0 . (18.88)

Irradiance and CD mapping by the detector The second stage in the analysis is
conversion of image-plane field to irradiance, stated simply as

Iim(r) = |uim(r)|2 . (18.89)

The third stage is the CD mapping by the detector array. For simplicity, we assume
that the mean output of each detector element is proportional to the integral of the
irradiance over its face, so

gm =

∫

∞
d2r wm(r) Iim(r) , (18.90)

where wm(r) is a constant responsivity factor times a rect function describing the
spatial extent of the mth detector.

Object transparency The equations above relate the detector output to the field in
the plane z = 0. To bring in the object transparency explicitly, we write

u0(r) = uGG(r) tobj(r) , (18.91)

where tobj(r) is the complex amplitude transmission of the object, and uGG(r) is
the field emerging from the ground glass and incident on the object; uGG(r) is iden-
tical to the amplitude transmission of the ground glass if the initial illumination is
a unit-amplitude, normally incident plane wave.

We can put (18.91) into vector form by using the Hadamard notation intro-
duced in Sec. A.2.8, with the convention that an element-by-element product of
two vectors is denoted by simple juxtaposition. When the vectors in question are
in an L2 Hilbert space, the juxtaposition of two vectors connotes the product of the
corresponding functions, so (18.91) can be written as

u0 = uGG tobj . (18.92)

The CC propagation rule, (18.88), now becomes

uim = Pcoh{uGG tobj} . (18.93)

Where no confusion is likely to result, we may delete the braces and write uim =
Pcoh uGG tobj .

18.3.2 Propagation of characteristic functionals

The formulas in Sec. 18.3.1 describe the deterministic properties of the imaging
system. To describe the statistical properties, we use characteristic functionals and
basically retrace the steps of Sec. 18.3.1 with appropriate modifications.
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Characteristic functional for the input field The characteristic functional for u0 can
be written as

Ψu0(ξ) =

〈
exp

[
−2πi

∫

∞
d2r ξ∗(r) uGG(r) tobj(r)

]〉

=

〈
exp

[
−2πi

∫

∞
d2r [ξ(r) t∗obj(r)]

∗ uGG(r)

]〉
. (18.94)

Thus
Ψu0(ξ) = ΨuGG

(t∗objξ) . (18.95)

When tobj is moved to the other side of the scalar product in Hadamard notation, it
acquires an asterisk rather than a dagger; regarded as an operator, the Hadamard
product functions as scalar multiplication, and the adjoint of scalar multiplication
by something is scalar multiplication by its complex conjugate.

Characteristic functional for the image field With (18.20) and (18.95), the charac-
teristic functional for the field in the image plane becomes

Ψuim
(ξ) = Ψu0(P

†
cohξ) = ΨuGG

(t∗objP
†
coh ξ) . (18.96)

Thus if we know the characteristic functional for the ground glass (the only random
element being considered here), we can transform it to the characteristic functional
for the image field.

CLT revisited At this point in the derivation presented in Sec. 18.2, we invoked the
central-limit theorem to argue that the field in the observation plane was circular
Gaussian provided the ground glass fully randomized the input field. Key to the
argument was the assumption that many independent regions on the ground glass
contributed the field at any point in the observation plane.

That argument is less persuasive in an imaging context since the width of the
coherent PSF defines the contributing region on the ground glass. For well corrected
lenses of high numerical aperture, that width is of the order of a wavelength or two,
and the correlation length is of order half a wavelength, so it is problematical to
assume that the region defined by the PSF encompasses many independent regions.
Moreover, even if the width of the PSF were large enough, we would still have to
consider the effect of the object transparency. We cannot, for example, consider the
object to be a small pinhole with width comparable to a wavelength.

In spite of these caveats, we shall assume here that the image-plane field is
circular Gaussian, returning to the subject in Sec. 18.5 where we discuss object
models that lead to non-Gaussian fields.

Field in the image plane With the assumption of a circular Gaussian form, the
characteristic functional for the field in the image plane becomes

Ψuim
(ξ) = exp(−π2ξ†Kuim

ξ) , (18.97)

where
Kuim

= Pcoh tobj 〈u0u
†
0〉 t

∗
objP

†
coh . (18.98)

Thus, as with any circular Gaussian, all statistical properties of the image-plane
field are determined solely by the autocorrelation function, which is also the auto-
covariance since the mean is zero.
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If we assume that the correlation length of the field emerging from the ground
glass is small compared to the width of the coherent PSF and that the object
transparency is slowly varying, then we can represent the autocorrelation func-
tion of u0(r) by a delta function as in (18.13). In vector form, that means that
〈u0u

†
0〉 = $ 2c I, and we have

Kuim
= $ 2c Pcoh tobj t

∗
objP

†
coh = $ 2c Pcoh |tobj |2 P†

coh , (18.99)

where the last form uses a further embellishment on the Hadamard notation: |tobj |2
is the L2 vector corresponding to the function |tobj(r)|2.

The autocorrelation function of the image-plane field is the kernel of the inte-
gral operator (18.99). Using (18.86), we see that

Kuim
(r, r′) = $ 2c

∫
d2r0 pcoh(r− r0; r0) p

∗
coh(r

′ − r0; r0) |tobj(r0)|2 . (18.100)

Irradiance in the image plane Though the mean field in the image plane is zero,
the mean irradiance is not. In fact, the mean irradiance is obtained at once from
(18.100) since

〈Iim(r)〉 =
〈
|uim(r)|2

〉
= Kuim

(r, r) = $ 2c

∫
d2r0 |pcoh(r− r0; r0)|2 |tobj(r0)|2 .

(18.101)
This expression agrees with (9.284), which gives the mean irradiance in an incoher-
ent, quasimonochromatic imaging system. On average, a spatially incoherent source
and a coherent source modulated with a fine ground glass give the same irradiance,
though the meaning of mean is different. In incoherent imaging, the average is over
an ensemble of source realizations, and in speckle problems it is over an ensemble
of ground glasses. In the incoherent case, however, we can invoke ergodicity and
replace the ensemble average with a time average, and the time average is what
we observe with a temporally integrating detector (see Sec. 10.1.5). In the speckle
problem, on the other hand, the irradiance is a time-independent speckle pattern
and time averaging has no effect.

To study the statistics of the image-plane irradiance, we need its characteristic
functional. Since we are assuming that the field is circular Gaussian, just as we did
in Sec. 18.2.5, we can simply refer back to (18.73) and write

ΨIim
(ζ) =

1

det(I+ 2πiKuim
Z )

, (18.102)

where Z is the integral operator with kernel ζ(r) δ(r− r′), and the determinant of
an integral operator is interpreted as the product of its eigenvalues.

From this characteristic functional we can derive the univariate or single-point
characteristic function and the corresponding univariate PDF just as we did in Sec.
18.2.5. From (18.79) we see that

ψIim(r)(ν) =
1

1 + 2πiνKuim
(r, r)

, (18.103)

from which it follows that Iim(r) is a chi-squared random variable with two de-
grees of freedom, or equivalently an exponentially-distributed random variable (see
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Secs. C.5.3 and C.5.5). The mean irradiance at point r is Kuim
(r, r), or simply

〈|uim(r)|2〉.
The bivariate characteristic function for the image-plane irradiance is given by

an expression analogous to (18.85), with the substitution of (18.100) for the auto-
correlation function.

The autocorrelation and autocovariance functions for the irradiance can be
obtained several different ways. They can be computed from either the bivariate
characteristic function (18.85) or the infinite-dimensional characteristic functional
(18.102) by suitable differentiation. (In the latter case Fréchet derivatives, defined
in Sec. 15.3.5, must be used, but they behave very much like ordinary derivatives.)
A simpler route, however, is just to invoke the complex Gaussian moment theorem
discussed in Sec. 8.3.6. By (8.250) we find

〈Iim(r) Iim(r′)〉 =
〈
|uim(r)|2 |uim(r′)|2

〉
= Kuim

(r, r)Kuim
(r′, r′) +Kuim

(r, r′)Kuim
(r′, r)

= 〈Iim(r)〉 〈Iim(r′)〉+
∣∣Kuim

(r, r′)
∣∣2 . (18.104)

Thus the autocovariance of the irradiance is just the squared modulus of the auto-
covariance of the field:

KIim
(r, r′) = 〈Iim(r) Iim(r′)〉 − 〈Iim(r)〉 〈Iim(r′)〉 =

∣∣Kuim
(r, r′)

∣∣2 . (18.105)

Stationarity, real and quasi To better understand the nature of the field covariance
Kuim

(r, r′), we can write it out explicitly in terms of the pupil function of the
system. As in Sec. 9.6.3, we write the pupil function as [cf. (9.181)]

tpupil(r; r0) = exp[ikW (r; r0)] tap(r) , (18.106)

where tap(r) is unity inside the clear aperture of the lens and zero outside, and the
exponential factor accounts for the aberrations. With (18.87) and (18.100), we now
have

Kuim
(r, r′) =

$ 2c
(2λf)4

∫

∞
d2r0 |tobj(r0)|2

∫

∞
d2r̃

∫

∞
d2r̃′ tap(r̃) tap(r̃

′)

× exp[ikW (r̃; r0)] exp[−ikW (r̃′; r0)] exp

[
−i

2π

2λf
r̃ · (r− r0)

]
exp

[
i
2π

2λf
r̃′ · (r′− r0)

]
,

(18.107)
where all three integrals are formally over the 2D plane, but the integral over r0 is
constrained to the object support by the factor |tobj(r0)|2 and the other two integrals
are constrained to the clear aperture by the aperture transmittance factors. This is
as far as we can go without further assumptions or approximations (we have already
made the Fresnel approximation), but we shall consider several special cases.

First assume that the object transmittance |tobj(r0)|2 is a constant, which we
set to unity for convenience, and assume further that the system, though aberrated,
is shift invariant. This means that there can be field-independent aberrations such
as spherical aberration and defocus but not field-dependent ones such as coma and
astigmatism (see Sec. 9.6.4). Then W (r̃; r0) is independent of r0, so we can write
it as W (r̃), and the r0 integral becomes

∫

∞
d2r0 exp

[
i
2π

2λf
(r̃− r̃′) · r0

]
= (2λf )2 δ(r̃− r̃′) . (18.108)
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Now we can use this delta function to perform the integral over r̃′ in (18.107), and
we obtain

Kuim
(r, r′) =

$ 2c
(2λf)2

∫

∞
d2r̃ tap(r̃) exp

[
−i

2π

2λf
r̃ · (r− r′)

]
. (18.109)

Two key points are to be noted from this expression. First, the image-plane
field is a stationary random process since its autocovariance function depends only
on the difference r − r′. Second, the aberration factors have cancelled. Thus, by
comparing (18.109) with (18.87), we see that the autocovariance function of the
field in this case is the shift-invariant coherent PSF associated with an unaberrated
lens of the same aperture as the actual aberrated one. To get these results, however,
we had to assume that the object was a constant over an infinite field and that the
optical system was shift-invariant over this field; neither of these assumptions is
tenable.

To get a more realistic model, let us assume that the object is not constant
but slowly varying, and that the aberrations are field dependent and also slowly
varying. It is convenient to transform to sum and difference coordinates as in Sec.
8.2.4 or 13.2.13:

r = 1
2 (r+ r′) , ∆r = r− r′ , (18.110)

so that
r = r+ 1

2∆r , r′ = r− 1
2∆r . (18.111)

Note that the Jacobian of this transformation is unity. A similar transformation is
used for r̃ and r̃′, and the autocovariance function of the field becomes

Kuim
(r, r′) = Kuim

(r+ 1
2∆r, r− 1

2∆r) ≡ K̃uim
(r,∆r) . (18.112)

With these definitions, (18.107) takes the ungainly form,

K̃uim
(r,∆r) =

$ 2c
(2λf)4

∫

∞
d2r0 |tobj(r0)|2

∫

∞
d2r̃

∫

∞
d2∆r̃

× tap(r̃+
1
2∆r̃) tap(r̃+

1
2∆r̃) exp[ikW (r̃+ 1

2∆r̃; r0)] exp[−ikW (r̃− 1
2∆r̃; r0)]

× exp

[
−i

2π

2λf
(r̃+ 1

2∆r̃) · (r− r0)

]
· exp

[
i
2π

2λf
(r̃− 1

2∆r̃) · (r′ − r0)

]
. (18.113)

As in Sec. 9.6.4 (and, indeed, in most of the optics literature), we neglect all
aberrations beyond second order. That means that we can expand W (r̃± 1

2∆r̃; r0)
in a Taylor series (with respect to its first argument) and truncate the series after the
quadratic term. The terms constant and quadratic in ∆r̃ neatly cancel in (18.113),
and the integral over that variable becomes
∫

∞
d2∆r̃ tap(r̃+

1
2∆r̃) tap(r̃− 1

2∆r̃) exp[ik∆r̃·∇W (r̃; r0)] exp

[
−i

2π

2λf
∆r̃ · (r− r0)

]

≈ tap(r̃)

∫

∞
d2∆r̃ exp[ik∆r̃ ·∇W (r̃; r0)] exp

[
−i

2π

2λf
∆r̃ · (r− r0)

]

= (2λf)2 tap(r̃) δ[r0 − r+ 2f ∇W (r̃; r0)] , (18.114)

where the approximation on the second line assumes that the aperture function has
a large support and takes on only the values 0 and 1, while the last step involves



SPECKLE IN AN IMAGING SYSTEM 1265

some properties of delta functions. Recall from Sec. 9.6.6 that 2f ∇W (r̃; r0) is
the aberration-induced displacement of a ray originating from object point r0 and
passing through point r̃ in the pupil [cf. (9.210) and note that q in that equation is
2f in the present problem].

We can now use the delta function to perform the integral over r0. This delta
function is not immediately in the form where we can invoke the sifting property
of delta functions since its argument is a nonlinear function of r0 through the term
2f ∇W (r̃; r0), but it is a reasonable approximation to replace 2f ∇W (r̃; r0) with
2f ∇W (r̃; r) if the aberrations are slowly varying. (See Sec. 7.2.7 where we made
a similar approximation in discussing shift-variant magnifiers.) If the object is also
slowly varying over the scale of the aberration-induced displacement, we get, finally,

K̃uim
(r,∆r) ≈

$ 2c
(2λf)2

|tobj(r)|2
∫

∞
d2r̃ tap(r̃) exp

[
−i

2π

2λf
(r̃ ·∆r)

]

=
$ 2c

(2λf)2
|tobj(r)|2 Tap

(
∆r

2λf

)
. (18.115)

Again the aberrations play no role; the correlation length under the present approx-
imations is determined solely by the clear aperture of the lens.

In (18.115) we have cast the autocovariance function of the field into the qua-
sistationary form originally encountered in Sec. 8.2.4 [cf. (8.119)]. In that section,
however, we discussed only the second-order statistics of the random process. Here
we can make a much stronger statement. Since all statistical properties of both the
field and the irradiance are fully determined by the field autocovariance under the
circular Gaussian assumption, (18.115) gives us an approximation through which
we can compute the characteristic functionals of the field and irradiance and hence
any desired higher-order moments of either.9

18.3.3 Effect of the detector

So far we have discussed the image-plane field and irradiance as continuous random
processes. In practice the irradiance will be detected with one or more detectors of
finite area. In this section we shall learn how to incorporate the detectors into our
statistical descriptions of speckle under the assumption that the detection process
itself is noise-free. In Sec. 18.4 we shall integrate the results of this section with what
we know about measurement noise from previous chapters and get the complete
statistics of the output of real, noisy, discrete detector arrays.

Single-element detectors We shall model a detector here as a device that integrates
the irradiance over a finite area (see Sec. 10.1.5); real-world effects such as nonuni-
form response over this area and angular dependences are ignored. For now we
consider a single detector element, but the analysis will be extended to arrays be-
low.

9One might be tempted to take the approximation a step further and replace Tap(∆r/2λf) by a
delta function, but this step is not warranted since (18.115) will be used in integrals where other
factors might also be delta functions, as in (18.75). Moreover, we need the fact that the covariance
operator is compact and hence has a denumerable set of eigenfunctions. We know from Chap. 1
that an integral operator is compact if its kernel satisfies the Hilbert-Schmidt condition, which
Tap(∆r/2λf ) does (over a finite support) but δ(∆r) does not.
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As discussed qualitatively in Sec. 18.1.2, a key question is whether the detec-
tor area is smaller or larger than the speckle blob. If the detector is much smaller
than the blob, integration over the detector area is basically point sampling, so the
univariate PDF on the detector output (in the absence of measurement noise) will
be essentially the single-point PDF of the irradiance field, which is an exponential
under our circular-Gaussian assumptions. If the detector is much larger than the
blob, on the other hand, we expect the PDF on the detector output to be Gaussian
by dint of the central-limit theorem. We shall now learn how to make these quali-
tative observations quantitative.

Let gout denote the output voltage from a single-element detector of area Ad.
This voltage is related to the irradiance by

gout = C

∫

Ad

d2r Iim(r) , (18.116)

where C is the responsivity of the detector. It will prove useful to rewrite this
equation as

gout =

∫

∞
d2r w(r) Iim(r) = w†Iim , (18.117)

where w(r) takes on the value C within the area of the detector and zero otherwise,
and w is the corresponding vector in Hilbert space.

The mapping in (18.117) is linear, and we know from Sec. 8.2.3 how to trans-
form characteristic functionals through linear mappings. Specifically, from (8.95)
and (18.117), we can write the characteristic function for gout in terms of the
characteristic functional for Iim as

ψgout(ν) =
〈
exp

(
−2πiw†Iim ν

)〉
= ΨIim

(νw) . (18.118)

To be explicit, we can use (18.102) to write

ψgout(ν) =
1

det(I+ 2πiνKuim
W)

, (18.119)

where W is the integral operator with kernel w(r) δ(r − r′). Alternatively, we can
expand the determinant in traces as in (18.72) and write

ψgout(ν) = exp[−2πiν tr(Kuim
W)− 2π2ν2 tr(Kuim

WKuim
W) + · · · ] . (18.120)

This series will converge if ν is sufficiently small since the eigenvalues of 2πiνKuim
W

are all proportional to ν.

Two limits To better understand these characteristic functions, we shall consider
the limits of large and small detectors.

If the detector is very small compared to the correlation length of the speckle,
we can approximate w(r) by

w(r) ≈ CAd δ(r− rd) , (18.121)

where rd is the detector location. Thus the kernel of W is CAd δ(r− rd) δ(r− r′),
which can also be written as CAd δ(r− rd) δ(r′ − rd). Since the kernel factors into
a function of r times a function of r′, it follows that the operator has rank one (see
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Sec. 1.5.1), and since the constants are real, W is Hermitian. Moreover, a product
of a rank-one operator with any other operator also has rank one, and rank is the
number of nonzero eigenvalues for a Hermitian operator. Thus Kuim

W has only a

single-nonzero eigenvalue. The reader can verify that this eigenvalue is CAd Iim(rd)
and that the corresponding eigenfunction is φ(r) ∝ Kuim

(r, rd).
With this information, we can evaluate the determinant in (18.119). Recall

that the determinant of an integral operator is defined as the product of its eigenval-
ues; the operator I+2πiνKuim

W has one eigenvalue equal to 1+2πi CAd ν Iim(rd)
and an infinite set of unity eigenvalues, so

ψgout(ν) =
1

1 + 2πi CAd ν Iim(rd)
. (18.122)

This is the characteristic function for an exponentially distributed scalar random
variable of mean CAd Iim(rd). It is no surprise that gout is exponential since,
with point sampling and no measurement noise, it merely reflects the single-point
statistics of the irradiance.

Now consider the opposite limit of a large detector. This time the expansion
in traces, (18.120), is more useful than the determinantal form. For simplicity we
assume that the mean irradiance is approximately constant over the detector area
(even though the detector may cover many speckle blobs). Then, with the help of
(18.71) and (18.105),

tr(Kuim
W) =

∫

∞
d2r w(r)Kuim

(r, r) = CAd Kuim
(rd, rd) = CAd Iim(rd) = gout ;

(18.122)

tr(Kuim
WKuim

W) =

∫

∞
d2r

∫

∞
d2r′ w(r) |Kuim

(r, r′)|2 w(r′)

=

∫

∞
d2r

∫

∞
d2r′ w(r)KIim

(r, r′)w(r′) . (18.123)

To simplify this last form, let us assume that the irradiance is quasistationary
over the detector area so that its autocovariance function can be factored as [cf.
(18.112) and (18.115)]10

KIim
(r, r′) = K̃Iim

(r,∆r) =
[
Iim(r)

]2
a(∆r) , (18.124)

where r and ∆r are defined in (18.110), and the short-range factor is normalized
so that a(0) = 1; we have also used the fact that the variance of the irradiance
is the square of its mean for an exponential law. With this factorization, (18.123)
becomes

tr(Kuim
WKuim

W) =

∫

∞
d2r

∫

∞
d2∆r w(r+ 1

2∆r)
[
Iim(r)

]2
a(∆r)w(r− 1

2∆r) .

(18.125)

10The reader should not confuse the two meanings of the overbar in this equation. When placed
over a random variable as in Iim, the overbar implies an ensemble average, but over a spatial
variable as in r it implies a spatial average position as in (18.110).
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If the detector is large compared to the range of a(∆r) (which is also the blob size),
yet Iim(r) is still approximately constant over the detector, we can write

tr(Kuim
WKuim

W) ≈ C2Ad

[
Iim(rd)

]2
∫

∞
d2∆r a(∆r) . (18.126)

The remaining integral defines the blob area Ab, and we can multiply and divide
by the detector area to get

tr(Kuim
WKuim

W) ≈
(CAd )2

Nb

[
Iim(rd)

]2
=

1

Nb
(gout)

2 , (18.127)

where Nb is the mean number of blobs in the detector area:

Nb ≡
Ad∫

∞ d2∆r a(∆r)
=

Ad

Ab
. (18.128)

Now we can insert (18.122) and (18.127) into (18.120) to obtain

ψgout(ν) ≈ exp

[
−2πi gout ν − 2π2 (gout)

2

Nb
ν2 + · · ·

]
. (18.129)

If the higher-order terms can be ignored, (18.129) becomes the characteristic
function for a univariate normal random variable [cf. (C.116)]. This is the expected
result since, roughly speaking, each blob represents a patch of the detector with
irradiance independent of the irradiance in other patches. The detector sums the
outputs from each patch, and hence the total output is normal by the central-
limit theorem. It remains, however, to show that the higher-order terms are indeed
negligible if the detector is large enough. In lieu of a formal proof, we present a
heuristic argument.

The key is the second term in the exponent; since it has a negative, real
coefficient, this term corresponds to a Gaussian factor in ψgout(ν). As the detector
gets larger, Nb ∝ Ad but (gout)

2 ∝ A2
d, so the overall coefficient of ν2 also grows

linearly withAd. Since this coefficient is in the exponent, the Gaussian factor rapidly
gets smaller (for any given ν) as the detector gets larger. Conversely, a smaller ν
suffices to make the Gaussian factor attain whatever level we deem negligible (say,
0.01). There must therefore be some Ad such that the Gaussian factor has died off
to this level before the higher-order terms become appreciable.

The general case To determine the characteristic function and the PDF in the
general case where the detector is neither very small nor very large, we must solve
the eigenvalue problem for the operator Kuim

W. If we denote the nth eigenvalue

of this operator by λ(n)KW , then (18.119) becomes

ψgout(ν) =
∞∏

n=1

[
1 + 2πiν λ(n)KW

]−1
. (18.130)
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If the eigenvalues are distinct, the corresponding univariate PDF is (Goodman,
1975):11

pr(gout) =
∞∑

n=1

dn

λ(n)KW

exp

(

−
gout

λ(n)KW

)

, (gout ≥ 0) , (18.131)

where

dn =
∞∏

m=1
m !=n

(

1−
λ(m)
KW

λ(n)KW

)−1

. (18.132)

Thus the problem boils down to finding the eigenvalues, which usually must be done
numerically.

One example where the eigenvalues can be found analytically uses the quasis-
tationary covariance function of (18.115) and assumes that both the lens aperture
and the detector response are described by 1D rect function (see Scribot, 1974 and
Goodman, 1975). Thus the Fourier transform of the lens aperture is a sinc function,
and the eigenvalue equation simplifies to a 1D problem of the form [cf. (4.64)],

const ·
∫ 1

2 ε

− 1
2 ε

dx′ sinc [B(x− x′)] φ(n)
KW(x′) = λ(n)KW φ(n)

KW(x) . (18.133)

We know from Sec. 4.1.5 that the solutions to this equation are prolate spheroidal
wavefunctions. The abrupt cutoff of the eigenvalue spectrum, as seen in Fig. 4.2,
suggests other avenues for approximation, which the inquisitive reader may wish to
follow.

SNR on the detector output If Nb & 1, then the characteristic function of the
detector output is given by (18.129). Whether or not the higher-order terms are
negligible, we can write that result as

ψgout(ν) = exp
[
−2πi gout ν − 2π2σ2 ν2 + · · ·

]
, (18.134)

where σ2 is the variance of the output signal, given by

σ2 =
(gout)

2

Nb
. (18.135)

Thus the signal-to-noise ratio, defined here as the mean output divided by the
standard deviation, is given by

SNR =
√
Nb . (18.136)

For a small detector, the SNR on the output is unity since the output statistics are
just the point statistics of the irradiance, which is exponentially distributed and
hence has a standard deviation equal to its mean. For a large detector, however,
the SNR is improved since the speckle variations average out.

11The reader who wants to derive (18.131) should note that the eigenvalues are all nonnegative,
so the poles are all in the upper half plane, and the contour can be closed on an infinite semicircle
in the upper half plane since the exponential factor vanishes rapidly there.
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Arrays It is relatively straightforward to extend the derivations above from a single
detector to an array. The only difficulty is that we usually cannot assume that the
elements in the array are either large or small compared to the blob size. As a
numerical example, consider an array of 512 × 512 elements on a 1 cm2 detector.
The width of each element is thus about 2 µm. For an F/2 lens operating at a
wavelength λ = 0.5 µm, the correlation length of the speckle (which is also the width
of the diffraction-limited PSF), is about 1 µm, so the element size is comparable to
the blob size.

Suppose that the mth detector element in an array is located at position rm,
where m is a 2D multi-index with integer components. Generalizing (18.117), the
output of the detector element is given by

gm =

∫

∞
d2r wm(r) Iim(r) , (18.137)

where

wm(r) = C rect

(
r− rm

ε

)
. (18.138)

Here C is the responsivity of the detector element and ε is its width. The set of all
detector outputs is a vector g, and (18.137) defines the discretization operator Dw

in:

g = Dw Iim . (18.139)

Our objective is to understand the statistics of g.

Multivariate characteristic function The generalizations of (18.118) and (18.119) are

ψg(ξ) =
〈
exp

[
−2πi (DwIim)† ξ

]〉
= ΨIim

(D†
w ξ) =

1

det(I+ 2πiKuim
Wξ)

,

(18.140)
where Wξ is an integral operator with kernel

Wξ(r, r
′) = [D†

w ξ](r) δ(r− r′) =
∑

m

ξmwm(r) δ(r− r′) . (18.141)

The expansion in traces, (18.120), now becomes

ψg(ξ) = exp[−2πi tr(Kuim
Wξ)− 2π2 tr(Kuim

Wξ Kuim
Wξ) + · · · ] . (18.142)

Convergence of this expansion requires that all eigenvalues of 2πiKuim
Wξ be < 1

in absolute value, which will occur if |ξ| is small enough.
The first two traces in the expansion are [cf. (18.71), (18.122) and (18.123)]

tr(Kuim
Wξ) =

∑

m

ξm

∫

∞
d2r wm(r)Kuim

(r, r) ; (18.143)

tr(Kuim
Wξ Kuim

Wξ) =
∑

m

ξm
∑

m′

ξm′

∫

∞
d2r

∫

∞
d2r′ wm(r) |Kuim

(r, r′)|2 wm′(r′) .

(18.144)
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Relation to the object Though (18.140) and (18.142) purport to specify statistical
properties of an image, they do not explicitly show the effect of the object. To make
that connection, we need to use the operator relation (18.99) or its kernel (18.100).
Plugging (18.99) into (18.140) gives

ψg(ξ) =
1

det(I+ 2πi $ 2c Pcoh |tobj |2 P†
coh Wξ)

. (18.145)

Note that only the squared modulus of the amplitude transmittance of the object
appears. Recall that the object is a photographic transparency and that it is placed
over a ground glass that completely randomizes the phase of the light; any addi-
tional phase modulation by the object transparency is irrelevant.

To acknowledge this point, and to put our results here into a notation com-
patible with previous chapters, we define

f(r) ≡ |tobj(r)|2 or f = |tobj |2 . (18.146)

Thus the characteristic function is given by

ψg(ξ) =
1

det
(
I+ 2πi $ 2c Pcoh fP

†
coh Wξ

) . (18.147)

This characteristic function is conditional on a particular object, and we shall write
it as ψg|f(ξ) in Sec. 18.4.2 when we consider the object to be random.

Mean vector and covariance matrix The expansion in traces allows us just to read
off the mean and covariance of g. If we can write the characteristic function in the
form

ψg(ξ) = exp

[

−2πi
∑

m

bm ξm − 2π2
∑

m

∑

m′

ξm Amm′ξm′ + · · ·

]

, (18.148)

then we can show from (8.30) and (8.31) that bm is the mean of gm and Amm′ is the
(m,m′) element of the covariance matrix. Higher terms, which involve cubic and
higher powers of ξm, give no contribution to the mean or covariance after taking
the requisite derivatives and setting all ξm to 0. Thus

gm =

∫

∞
d2r wm(r)Kuim

(r, r) =

∫

∞
d2r wm(r)Iim(r) ; (18.149)

[Kg]mm′ =

∫

∞
d2r

∫

∞
d2r′ wm(r) |Kuim

(r, r′)|2 wm′(r′)

=

∫

∞
d2r

∫

∞
d2r′ wm(r)KIim

(r, r′)wm′(r′) . (18.150)

Neither of these results should be surprising; they are the usual expressions for
propagating means and covariances through linear CD mappings.
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Reduction to determinant of a matrix We began this section with the characteristic
functional for the irradiance in the image plane and converted it to the characteris-
tic function for the discrete data vector by using the rules for linear CD mappings,
yet the result was still expressed as the determinant of an integral operator. We
shall now show that it is possible to transform the characteristic function so that
it involves the determinant of a matrix rather than an integral operator, at least
for small detectors. The procedure is an extension of one we used in Sec. 18.2.5 to
derive the bivariate point statistics of the irradiance.

A detector element is considered small for this purpose if its width ε is much
less than the speckle blob size, which is approximately the width of the coherent
PSF. In that case we can write [cf. (18.138)]

wm(r) ≈ Cε2 δ(r− rm) , (18.151)

and hence [cf. (18.138)]

Wξ(r, r
′) ≈ Cε2

∑

m′

ξm′ δ(r− rm′) δ(r− r′) . (18.152)

The key point is that the rank of KWξ (where we have deleted the subscript on K

for notational simplicity) is less than or equal to the number of detector elements

with this approximation; to see this, let φ(n)KW(r) be an eigenfunction of KWξ with

eigenvalue λ(n)KW and write
[
KWξφ

(n)
KW

]
(r) ≈ Cε2

∑

m′

ξm′ K(r, rm′)φ(n)
KW(rm′) = λ(n)KW φ(n)KW(r) . (18.153)

Thus any eigenfunction of KWξ with nonzero eigenvalue is a linear combination of
the functions {K(r, rm′)}. For an M ×M detector array, there are M2 functions in
this set, and they are all linearly independent, so the rank of KWξ is ≤ M2, with
equality if and only if all ξm′ )= 0.

If we evaluate (18.153) at r = rm, we obtain
[
Cε2KΞ− λ(n)KWI

]
Φ

(n)
KW = 0 , (18.154)

where Φ
(n)
KW is an M2× 1 vector with components {φ(n)KW(rm)}, and K and Ξ are

M2×M2 matrices defined by

[K]mm′ ≡ K(rm, rm′) , [Ξ]mm′ ≡ ξm δmm′ . (18.155)

The eigenvalues are determined by solving

det
[
Cε2KΞ− λ(n)KWI

]
= 0 . (18.156)

Since the rank of the integral operator KWξ is ≤ M2, we can be assured that all
nonzero eigenvalues will be found by solving this equation.

The original characteristic function from (18.140) is thus given by

ψg(ξ) =
1

det(I+ 2πiKWξ)
=

M2∏

n=1

1

1 + 2πi Cε2λ(n)KW

=
1

det(I+ 2πi Cε2KΞ)
,

(18.157)
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where I is an M2×M2 unit matrix.
The matrix-determinant form is particularly useful if we want to know the

joint characteristic function for only a few detector outputs. For example, to get
the bivariate statistics for any two gm, we need only two nonzero ξm, so (18.156)
requires evaluation of just a 2 × 2 determinant. We remind the reader, however,
that the matrix form applies only with small detectors that provide essentially point
sampling of the speckle irradiance.

18.4 NOISE AND IMAGE QUALITY

Though speckle is a form of noise, we still need to consider measurement noise
(Gaussian or Poisson) as well as object randomness. In all, coherent imaging is
triply (or even quadruply) stochastic: the image is a random vector conditional on
the irradiance pattern, the irradiance pattern is a random process conditional on the
object, and the object itself is another random process. If we consider both kinds of
measurement noise—Gaussian electronic noise and Poisson photon-counting statis-
tics— there are altogether four random processes in the problem.

Before trying to express these ideas mathematically, let us recall the meaning
of randomness for each of these components. When we regard the object as random,
we are envisioning drawing many objects from some ensemble and imaging each in
turn. It may be difficult or even impossible to specify this ensemble, but in principle
we are thinking in frequentist terms about sampling from an infinite set of possible
objects. The objects discussed so far in this chapter have been photographic trans-
parencies, and we imagine laying one after the other over an illuminated ground
glass and imaging the emerging field. For each object, however, the irradiance pat-
tern is also random because we can consider an ensemble of ground glasses; indeed,
all statistical properties derived in Sec. 18.3 were for one object transparency and
infinitely many ground glasses. Finally, if we use one object transparency and one
ground glass but take repeated images, the data vector will be random because of
photon statistics and electronic noise.

The goal of this section is to incorporate measurement noise and object ran-
domness into our statistical analysis and then to use the results to discuss objective
assessment of image quality in coherent imaging. We shall continue to consider a 2D
imaging system where the object is a photographic transparency, but more general
situations will be treated in Sec. 18.5.

18.4.1 Measurement noise

In Chap. 11 we presented a detailed account of Poisson random variables and pro-
cesses, and in Chap. 12 we applied that knowledge to the analysis of photon noise
in optical detectors. We also saw in Chap. 12, however, that numerous electronic
noise processes could lead to Gaussian statistics instead of Poisson. We shall con-
sider both of these kinds of noise in a detector array sensing a speckle distribution.

Photon noise As the starting point for discussing combined speckle and photon
noise, we shall use (8.339), which expresses the transformation of the characteristic
functional of a random process through a CD mapping, with the output of that
mapping serving as the mean of a Poisson random vector. In the present discussion,
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the random process in question is the irradiance incident on the detector array, and
the CD mapping is the discretization operator Dw. Thus (8.339) becomes

ψg(ξ) = ΨIim
[D†

w Γ(ξ)] , (18.158)

where the operator Γ is defined by (8.338) as

[Γ(ξ)]m =
−1 + exp(−2πi ξm)

−2πi
. (18.159)

With this transformation, (18.140) becomes

ψg(ξ) =
1

det
(
I+ 2πiKuim

WΓξ

) =
1

det
(
I+ 2πi $ 2c Pcoh fP

†
coh WΓξ

) , (18.160)

where WΓξ is an integral operator with kernel [cf. (18.141)]

WΓξ(r, r
′) =

∑

m

[
−1 + exp(−2πi ξm)

−2πi

]
wm(r) δ(r− r′) . (18.161)

After a bit of manipulation, the kernel of the operator inside the determinant in
(18.160) takes the form

[
I+ 2πiKuim

WΓξ

]
(r, r′) = δ(r−r′)+Kuim

(r, r′)
∑

m

[1− exp(−2πi ξm)] wm(r′) .

(18.162)
The expansion in traces, (18.142), is still valid if it converges, but ξm must be

replaced by [Γ(ξ)]m in (18.143) and (18.144); the result is

ψg(ξ) = exp
{
− 2πi

∑

m

[Γ(ξ)]m gm − 2π2
∑

m,m′

[Γ(ξ)]m

[
K(nf)

g

]

mm′
[Γ(ξ)]m′ + · · ·

}

= exp
{∑

m

[−1 + exp(−2πi ξm)] gm

+ 1
2

∑

m,m′

[−1 + exp(−2πi ξm)]
[
K(nf)

g

]

mm′
[−1 + exp(−2πi ξm′)] + · · ·

}
, (18.163)

where we have used (18.149) and (18.150). Recall, however, that (18.150) did not
include the effects of Poisson noise, so the double integral in that equation is the
covariance of g with speckle but without Poisson noise, hence the superscript (nf )
for noise-free. With proper choice of the responsivity C, gm is measured in units of
detected events or counts, so gm can be interpreted as the mean number of counts
in element m during the measurement time.

The multivariate characteristic function given in (18.160) or (18.163) contains
all possible statistical information about the detector output when both speckle
and photon noise are present. It applies to an arbitrary array of detector elements
of arbitrary size. We shall now investigate several special cases and limits of this
general result.
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Mean vector and covariance matrix As we noted in Sec. 18.3.3, we can read off the
mean and covariance of a random vector if we can express its characteristic function
in the form (18.148). The characteristic function in (18.163) is not immediately in
that form since the coefficients of successive terms are nonlinear functions of the
frequency variables ξm. We can, however, expand the exponentials to obtain

−1 + exp(−2πi ξm) = −2πi ξm − 2π2 ξ2m + · · · . (18.164)

Thus, through terms quadratic in the frequencies, we have

ψg(ξ) = exp
{∑

m

(
−2πi ξm′ − 2π2 ξ2m

)
gm − 2π2

∑

m,m′

ξm
[
K(nf)

g

]

mm′
ξm′ + · · ·

}
.

(18.165)
Comparison with (18.148) shows that gm is indeed the mean, and the covariance
matrix is given by

[Kg]mm′ = gm δmm′ +
[
K(nf)

g

]

mm′
. (18.166)

This result is familiar from earlier chapters; it expresses the universal form for the
covariance matrix of doubly stochastic Poisson noise, as first derived12 in Sec. 11.2.2.

Large detector elements When we considered large detector elements with no Pois-
son noise in Sec. 18.3.3, we argued that the expansion in traces could be truncated
after the second term in the exponent since that term was quadratic in the fre-
quency variable and had a negative, real coefficient that increased with the detector
area [see (18.129)]. As a result, the speckle statistics approached Gaussian. The
coefficient of the first term in the exponent of the characteristic function was pure
imaginary and gave the mean of the Gaussian.

With Poisson noise, all of this changes. It is no longer true that the coeffi-
cient of the first term is pure imaginary and that of the second term is pure real.
In fact, both terms are complex and periodic in ξm with period 1, which tells us
immediately that gm can have only integer values. (We know from Sec. 3.3.8 that
periodicity of a function restricts its Fourier transform to a discrete set of points.)
Moreover, as noted above, we can no longer identify each term in the exponent with
a specific power of ξ; the Γ operator mixes the powers.

We can, however, terminate the series in the exponent of (18.163) with the
single-sum term if the detector is large enough. The noise-free part of the covari-
ance matrix approaches zero as Nb (the mean number of blobs across the detector)
gets large [cf. (18.135)], so the double-sum term in (18.163) becomes negligible if
Nb is large enough. In that case (18.163) becomes

ψg(ξ) = exp
{∑

m

[−1 + exp(−2πi ξm)] gm

}
=
∏

m

exp {[−1 + exp(−2πi ξm)] gm} .

(18.167)
This expression is recognized from (C.171) as the product of characteristic func-
tions for Poisson random variables. Thus the speckle averages out and the detector

12In those previous results, we would have written gm where we have gm here, but the first
average, over the speckle irradiances, is already implicit in the definition of gm in (18.149). We
shall reserve the double overbar for Sec. 18.4.2, where we consider the triply stochastic problem
of combined speckle, Poisson noise and object randomness.
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outputs revert to independent Poisson random variables as the detector gets large.
We encountered an analogous situation in Sec. 11.3.7 when we discussed photon-

counting statistics with incoherent light [see especially the discussion below (11.128)].
In that case we also had two covariance terms, but one of them averaged out when
we integrated over a long observation time, leaving us with just the Poisson com-
ponent. The same thing happens with speckle except that the averaging is spatial.
Large detectors give Poisson statistics in spite of speckle.

Gaussian limit of the Poisson If we insert (18.164) into (18.167), we get

ψg(ξ) =
∏

m

exp
[
−2πi ξm gm − 2π2 ξ2m gm + · · ·

]
. (18.168)

If gm is large enough, we can truncate this series after the first real term, the one
quadratic in ξm. Thus, if the detector elements are large and the mean counts
per element are also large, the statistics approach independent Gaussian with the
variance of each output equal to the mean.

Small detector elements, univariate statistics We can compute the univariate char-
acteristic function for a single output gm simply by setting ξm′ = 0 for all m′ )= m.
Then (18.160) becomes

ψgm(ξm) =
1

det
[
I+ 2πiKuim

Wm
Γξ

] , (18.169)

where Wm
Γξ is WΓξ with the summation sign in (18.161) omitted.

If the detector is much smaller than a blob and can be approximated with a
delta function as in (18.121), the operator in the determinant has rank 1, and the
determinant can be evaluated just as in Sec. 18.3.3. The univariate characteristic
function becomes [cf. (18.122)]

ψgm(ξm) =
1

1 + [1− exp(−2πi ξm)]gm
=

1

1 + gm − gm exp(−2πi ξm)
. (18.170)

We can get the corresponding univariate PDF by taking an inverse Fourier
transform. Temporarily dropping the subscript m for convenience, we must evalu-
ate:

pr(g) =

∫ ∞

−∞
dξ

exp(2πig ξ)

1 + g − g exp(−2πiξ)
. (18.171)

Contour integration suggests itself. The exponential factor is analytic in the upper
half plane and vanishes at infinity in that half plane (for g > 0). Thus we can close
the contour with an arc of infinite radius crossing the positive imaginary axis. It
remains to find the poles in the upper half plane and evaluate their residues.

The denominator vanishes when

ξ = n+
i

2π
ln

(
1 + g

g

)
≡ ξn , n integer . (18.172)

We can demonstrate that this singularity is a simple pole and find its residue by
use of (B.47) and L’Hôpital’s rule:

lim
ξ→ξn

ξ − ξn
1 + g − g exp(−2πiξ)

=
1

2πig exp(−2πiξn)
=

1

2πi(1 + g)
. (18.173)
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The residue of the integrand at the nth pole is thus

resn =
exp(2πiξng)

2πi(1 + g)
. (18.174)

There are an infinite number of poles within the contour; with (B.48) and a little
algebra, the integral becomes

∮

C

dξ
exp(2πig ξ)

1 + g − g exp(−2πiξ)
= 2πi

∞∑

n=−∞
resn =

∞∑

n=−∞
exp(2πing)

gg

(1 + g)1+g
.

(18.175)
The sum will be recognized from (2.50) as a comb function, so

pr(gm) =
∞∑

k=0

gkm
(1 + gm)1+k

δ(gm − k) , (18.176)

where we have now reinstated the m subscript, and we have deleted all negative-k
terms from the sum since gm cannot be negative and hence δ(gm−k) = 0 for k < 0.
By (C.24), the coefficient of the delta function is the probability of occurrence of
the discrete value gm = k, or

Pr(gm = k) =
g k
m

(1 + gm)1+k
. (18.177)

This probability is the Bose-Einstein law, and we know from Sec. 11.1.4 that
the Poisson transform of an exponential is a Bose-Einstein [see also (11.314)]. In
the present problem, the irradiance at a single point is exponential, and the small
detector samples the irradiance at a point and uses the result as the mean for
a Poisson, with the resulting photon-counting distribution being, therefore, Bose-
Einstein. It must be remembered, however, that this law applies only with small
detectors and even then only to the univariate statistics.

Electronic noise If there is an array of noisy amplifiers or other noise sources, one
for each detector element, then we can write

v = g+ n , (18.178)

where v is the vector of amplifier output voltages and n is the corresponding vector
of noise values. If n and g are statistically independent, we know from Sec. 8.5.3
that [cf. (8.335)]

ψv(ξ) = ψn(ξ)ψg(ξ) . (18.179)

If we neglect the Poisson noise and suppose that the electronic noise is the
only noise process associated with the detection of a speckle pattern, then we have
[cf. (18.140)]:

ψv(ξ) = ψn(ξ)ΨIim
(D†

w ξ) . (18.180)

To account for both electronic and Poisson noise, we write [cf. (18.158)]:

ψv(ξ) = ψn(ξ)ΨIim
[D†

w Γ(ξ)] . (18.181)
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The usual model (see Chap. 12) is that the electronic noise n is zero-mean i.i.d.
Gaussian, so

ψn(ξ) =
∏

m

exp(−2π2σ2
el ξ

2
m) . (18.182)

If we use the expansion in traces to cast ψg(ξ) into the form (18.148), then

ψv(ξ) = exp

[

−2πi
∑

m

gm ξm − 2π2
∑

m

∑

m′

ξm [Kv]mm′ξm′ + · · ·

]

, (18.183)

where

Kv = Kg + σ2
elI . (18.184)

Thus, given the characteristic function in the standard form (18.148), we need only
add a multiple of the unit matrix to the covariance in order to account for Gaussian
electronic noise; there is no implication that the statistics of g itself are Gaussian.

18.4.2 Random objects

All of the statistical analysis to this point has been for a fixed object, but we know
from Chaps. 13 and 14, that object variability is an important factor limiting task
performance. In this section we shall see how to extend the analysis to include
random objects.

Overall characteristic function Formally, the characteristic function of the data vec-
tor in the presence of speckle, Poisson noise and object variability is given by

ψg(ξ) =
〈
ψg|f (ξ)

〉
f
=

〈
1

det
(
I+ 2πi $ 2c Pcoh fP

†
coh WΓξ

)

〉

f

. (18.185)

For purposes of computing moments, the expansion in traces (18.163) is useful:

ψg(ξ)=

〈

exp
{
−2πi

∑

m

[Γ(ξ)]m gm− 2π2
∑

m,m′

[Γ(ξ)]m
[
K

(nf)
g|f

]

mm′
[Γ(ξ)]m′+ · · ·

}〉

f

,

(18.186)
where the superscript (nf) has been added to indicate that this covariance matrix
is computed without consideration of the Poisson noise, though of course it includes
speckle; specifically, it is given by (18.150).

If we wanted also to incorporate electronic noise into the characteristic func-
tion, we would use (18.179) and (18.185) to write

ψv(ξ) = ψn(ξ)ψg(ξ) = ψn(ξ)

〈
1

det
(
I+ 2πi $ 2c Pcoh fP

†
coh WΓξ

)

〉

f

. (18.187)

Since the electronic noise is assumed to be independent of the object, the factor
ψn(ξ) is outside the average over f. For simplicity, we shall omit any further dis-
cussion of electronic noise.
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Mean and covariance In order to compute the overall mean vector and covariance
matrix, we must carry out the expansion of the exponent in (18.186) through terms
quadratic in the ξm and then compute first and second derivatives. Cubic and higher
terms in the exponent will make no contribution to the mean and covariance.

The requisite expansion is [cf. (18.165)]

ψg(ξ)=

〈

exp
{∑

m

(
−2πi ξm′ − 2π2 ξ2m

)
gm− 2π2

∑

m,m′

ξm
[
K(nf)

g

]

mm′
ξm′ + · · ·

}〉

f

,

(18.188)
and the first two derivatives are

∂

∂ξm
ψg(ξ) =

〈[

−2πigm − 4π2ξmgm − 4π2
∑

m′

[
K

(nf)
g|f

]

mm′
ξm′

]

ψg|f (ξ)

〉

f

;

(18.189)
∂2

∂ξm∂ξm′

ψg(ξ) = −4π2
〈[

gm δmm′ +
[
K

(nf)
g|f

]

mm′
+ gmgm′

]
ψg|f (ξ)

〉

f
. (18.190)

The overall mean is obtained by evaluating the first derivative at the origin:

〈gm〉 = −
1

2πi

[
∂

∂ξm
ψg(ξ)

]

0

= 〈gm〉f ≡ gm . (18.191)

The unsubscripted angle brackets on the left and the double overbar on the right
imply an average over all random effects— speckle, Poisson noise and object vari-
ability—but the single overbar implies an average over only speckle and Poisson
noise. Thus, as before, gm is the mean of gm conditional on f.

The second moment is

〈gm gm′〉 =
1

−4π2

[
∂2

∂ξm∂ξm′

ψg(ξ)

]

0

= gm δmm′ +
〈[

K
(nf)
g|f

]

mm′

〉

f
+ 〈gm gm′〉f .

(18.192)
The overall covariance matrix is given by

[Kg]mm′ ≡ 〈gm gm′〉 − gm gm′ = gm δmm′ +K
(nf)
mm′ + [Kg]mm′ , (18.193)

where
K

(nf)
mm′ ≡

〈[
K

(nf)
g|f

]

mm′

〉

f
, (18.194)

and
[Kg]mm′ ≡ 〈gm gm′〉f − gm gm′ . (18.195)

Thus we now have three terms in the covariance matrix for this triply stochastic
random process. The diagonal term gm δmm′ comes from the Poisson noise averaged
over all objects and all speckle realizations. The “noise-free” term, (18.194), comes
just from the speckle but is averaged over all objects.

The final term, (18.195), represents the variations of the object function as
transferred through to the discrete data domain. It is identical to the covariance
one would get for this same optical system operated with a long exposure time to
average out the Poisson noise and a moving ground glass to average out the speckle.
Equivalently, it is the covariance for the system used with an incoherent source and
long exposure time, so that the only randomness left is the object variability.
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18.4.3 Task performance

In this section we survey methods for computing observer performance on various
tasks of interest. We rely heavily on Chap. 14, with the present goal being to see
how the techniques described there can be applied specifically to speckle problems.

Discrimination between known objects The simplest of discrimination tasks is when
the object must be either f1 or f2, both of which are nonrandom and known precisely
to the observer. For example, f1 could refer to a known background and f2 to that
same background plus a known signal, and in that case we refer to the task as
SKE/BKE. The only noise source we consider here is speckle.

We have already examined one special case of this problem in Sec. 13.2.9. As
an illustration of the ideal observer with non-Gaussian statistics, we considered
a simplified (but not uncommon) model of speckle in which the measurements are
statistically independent and exponentially distributed [see (13.136)]. We now know
that this model is applicable only when the detector elements are small compared
to the speckle blob size, yet separated by a distance large compared to the blob
size. We found in that case that the log-likelihood ratio (13.137) yielded a linear
discriminant, given in (13.217), though not the Hotelling discriminant, which for
comparison was given in (13.218). For later reference, we rewrite (13.137) here in
our multi-index notation as

λ(g) =
∑

m

(
1

g1m
−

1

g2m

)
gm . (18.196)

We shall now revisit the SKE/BKE detection problem in speckle noise without
these unrealistic assumptions. As in Sec. 13.2.12, we pose two questions: Is the log-
likelihood ratio a linear discriminant? What is the optimal linear discriminant in
the sense of maximizing the AUC? For background on these questions, see Sec.
13.2.12 and especially (13.219) – (13.226).

When is the log-likelihood ratio linear? The general answer to this question is that
the log-likelihood ratio is a linear discriminant of the form [cf. (13.221)]

λ(g) = ln

[
pr(g|H2)

pr(g|H1)

]
= atg+ c (18.197)

if and only if the characteristic functions satisfy (13.226):

ψg|H2
(ξ) = const · ψg|H1

(
ξ +

i

2π
a

)
. (18.198)

If we can put the characteristic functions in this form, we can read off the linear
discriminant a by inspection.

If the only noise present is speckle, then the characteristic function of the data
under the jth hypothesis (j = 1, 2) is given from (18.147) as

ψg|Hj
(ξ) =

1

det(I+ 2πi $ 2c Pcoh fj P
†
coh Wξ)

≡
1

det(I+ 2πiKj Wξ)
, (18.199)

where Kj is the covariance operator for the image-plane field under hypothesis j.
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The following manipulations will lead us in the direction of (18.198):

ψg|H2
(ξ) =

1

det
[(
K2 K

−1
1

) (
K1 K

−1
2 + 2πiK1Wξ

)]

=
1

det
(
K2 K

−1
1

)
det
(
I+ 2πiK1Wξ +K1 K

−1
2 − I

)

= const ·
1

det
{
I+ 2πiK1

[
Wξ +

i
2π

(
K−1

1 −K−1
2

)]} , (18.200)

where, as a reminder [see (18.141)], Wξ has the kernel

[Wξ](r, r
′) =

∑

m

ξm wm(r) δ(r− r′) . (18.201)

For comparison, the right-hand side of (18.198) can be written as

ψg|H1

(
ξ +

i

2π
a

)
=

1

det
{
I+ 2πiK1

[
Wξ +

i
2πWa

]} , (18.202)

where
[Wa](r, r

′) =
∑

m

am wm(r) δ(r− r′) . (18.203)

Thus the log-likelihood ratio is a linear discriminant if

det

{
I+ 2πiK1

[
Wξ +

i

2π
Wa

]}
= det

{
I+ 2πiK1

[
Wξ +

i

2π

(
K−1

1 −K−1
2

)]}
.

(18.204)
If the detector elements are small compared to the speckle blob size, then the

determinants of integral operators reduce to determinants of matrices as discussed in
Sec. 18.3.3 [see (18.157)]. In that case the log-likelihood ratio is a linear discriminant
if

det

{
I+ 2πiCε2K1

[
Ξ+

i

2π
A

]}
= det

{
I+ 2πiCε2K1

[
Ξ+

i

2πCε2
(
K−1

1 −K−1
2

)]}
,

(18.205)
where Kj and Ξ were defined in (18.155), and

[A]mm′ = am δmm′ . (18.206)

Linear log-likelihoods: Example 1 As a first example of the use of this formalism,
suppose that the detectors are small compared to a speckle blob, but sufficiently far
apart that the measurements are uncorrelated. In that case we know already that
the log-likelihood ratio is given by (18.196), but it is instructive to rederive that
result from (18.205).

For uncorrelated measurements, we can write13

Cε2[Kj ]mm′ = gjm δmm′ . (18.207)

13The reader who was expecting a variance instead of a mean on the right-hand side of (18.207)
should recall that Kj is the covariance of the field, not the covariance of the data. Thus [Kj ]mm =
〈|u(rm)|2〉j , and the factor of Cε2 accounts for integration across the detector face and conversion
of the result to an output signal.
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Thus (18.205) is satisfied if A =
(
K−1

1 −K−1
2

)
/(Cε2), or

am =
1

g1m
−

1

g2m
, (18.208)

in agreement with (18.196).

Linear log-likelihoods: Example 2 Next we consider small detectors without assum-
ing they are widely spaced compared to a blob size. In this case the measurements
are correlated, and we cannot satisfy (18.205) by taking A ∝ K−1

1 − K−1
2 since

the former is diagonal by definition but the latter is not diagonal. We can, how-
ever, show that the determinants are equal even though the operators are not if
we assume that the difference signal is slowly varying on the spatial scale of the
correlations, so we can use the quasistationary approximation of (18.115).

To be specific, suppose the lens has a square aperture of side Lap, so that
(18.115) becomes

Kj(r, r
′) ≈ $ 2c fj(r)β

2 sinc [β(r− r′)] , (18.209)

where the sinc function with a vector argument is just a product of two 1D sinc
functions, and

β ≡
Lap

2λf
. (18.210)

Note that the argument of fj( · ) is written as r in (18.209) and r in (18.115); this
difference is insignificant if fj(r) is slowly varying on the scale of the lens resolution,
as it must be for (18.115) to be valid in the first place.

For detectors that are small compared to the blob size, the argument of the
operator Kj Wξ becomes

[Kj Wξ] (r, r
′) ≈ $ 2c Cε

2
∑

m

ξm fj(rm)β2 sinc [β(r− r′)] δ(r′ − rm) . (18.211)

Applied to an arbitrary image-plane irradiance Iim(r), this operator yields

[Kj WξIim] (r) = $ 2c Cε
2
∑

m

ξm fj(rm)β2 sinc [β(r− rm)] Iim(rm) . (18.212)

This expression is a linear combination of the sinc functions, so the range of Kj Wξ

is spanned by the set of functions {vm(r)}, where

vm(r) ≡ β sinc [β(r− rm)] . (18.213)

The orthonormality of this set,

(vm, vm′) ≡
∫

∞
d2r vm(r) vm′(r) = δmm′ , (18.214)

can be verified by use of Parseval’s theorem. (It helps to assume that βε is an
integer, though it suffices to say that βε is large.)

Since sinc [β(r− rm)] is reproduced by convolving it with β2 sinc(βr), the range
of Kj Wξ is a finite-dimensional reproducing-kernel Hilbert space (see Sec. 1.8),
which we shall denote by K. The projector onto K is given by

PK =
∑

m

vmv†
m , [PK] (r, r

′) = β2
∑

m

sinc [β(r− rm)] sinc [β(r′ − rm)] .

(18.215)
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Thus (18.199) becomes

ψg|Hj
(ξ) =

1

det(I+ 2πiPK Kj Wξ)
=

1

det(I+ 2πiPK Kj Wξ PK)
, (18.216)

where the last step follows from (A.85) and the fact that P2
K = PK.

Retracing the steps leading up to (18.204), we see that the log-likelihood ratio
is a linear discriminant in the present problem if

PK K1Wa PK = PK K1

[
(PK K1)

−1 − (PK K2)
−1
]
. (18.217)

The kernel of the left-hand side of this equation is

[PK K1Wa PK] (r, r
′) = $ 2c Cε

2β4
∑

m

amf1(rm) sinc [β(r− rm)] sinc [β(r′ − rm)] .

(18.218)
To find the kernel of the right-hand side, note that

[PK Kj ] (r, r
′)

= $ 2c Cε
2β4

∑

m

sinc [β(r− rm)]

∫
d2r′′ sinc [β(r′′ − rm)] fj(r

′′) sinc [β(r′′ − r′)]

≈ $ 2c Cε
2β2

∑

m

fj(rm) sinc [β(r− rm)] sinc [β(r′ − rm)] . (18.219)

It follows from the orthonormality of the basis functions that

[
(PK Kj)

−1
]
(r, r′) =

β2

$ 2c Cε2

∑

m

1

fj(rm)
sinc [β(r− rm)] sinc [β(r′ − rm)] ,

(18.220)
with the obvious assumption that fj(rm) )= 0.

With these kernels, (18.217) becomes

∑

m

[
$ 2c Cε

2amf1(rm)− 1 +
f1(rm)

f2(rm)

]
sinc [β(r− rm)] sinc [β(r′ − rm)] = 0 .

(18.221)
Thus

am =
1

$ 2c Cε2

[
1

f1(rm)
−

1

f2(rm)

]
, (18.222)

which is equivalent to (18.208) since gjm = $ 2c Cε
2fj(rm) for a slowly varying object.

Thus the log-likelihood ratio is obtained by a simple matched filter, but matched
to the difference in the reciprocal objects rather than the difference object itself. If
the object has low contrast, so that f2(rm)−f1(rm) is small and f1(rm) and f1(rm)
are approximately constant over the signal region, then the log-likelihood is a simple
non-prewhitening (NPW) matched filter. Perhaps surprisingly, no prewhitening is
needed in spite of the correlations, basically because a sinc correlation corresponds
to a flat power spectrum.

For examples of the use of NPW matched filters in SKE/BKE detection prob-
lems in speckle, see Smith et al. (1983) and Silverstein and O’Donnell (1988).
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Gaussian approximations As we have just seen, it can be quite difficult to manip-
ulate the expressions for speckle characteristic functions when the detectors are
pointlike and there is no electronic or photon noise. Fortunately, the problems
get easier, not harder, when some of these other effects are included, mainly be-
cause Gaussian statistics rapidly become applicable. We saw in Sec. 18.3.3 that
the statistics of the detector output approach Gaussian when the detector area is
much larger than the speckle blob size, essentially because the detector averages
over many independent regions. In this same limit, as we saw in Sec. 18.4.1, the
photon-counting statistics become Poisson, but Poissons are well approximated by
Gaussians if the mean number of counts in an observation time is large. Finally, if
we consider additive electronic noise as in Sec. 18.4.2, there is an additional Gaus-
sian PDF to be convolved with the PDF of the detector output, making the overall
PDF more nearly Gaussian.

Thus, the main use of the elegant characteristic functions presented here may
be nothing more than providing expressions for the covariance matrix in many prac-
tical circumstances. Much further work is needed, however, to determine when more
detailed statistical knowledge is useful in task performance.

Hotelling observer When the data statistics are Gaussian and the signal is weak
enough that the covariance is the same under both hypotheses, we know that the
ideal observer is the linear Hotelling observer, and the relevant figure of merit is the
Hotelling trace or SNR. As we have seen in earlier chapters, however, we often use
the Hotelling observer even when we cannot argue convincingly that the data are
Gaussian. In the speckle context, that situation could arise with small detectors
or short exposure times, and it almost certainly arises when object variability is
considered.

If the BKE statistics are Gaussian but the objects demonstrate complicated,
non-Gaussian statistics, then we must have recourse to sampling methods as dis-
cussed in Sec. 14.3.2. In applying these methods to speckle problems, the decom-
position of the covariance matrix in (18.193) is useful since the Poisson term in
that expression is diagonal and will usually be known analytically. Similarly, the
second term in (18.193)— the so-called noise-free covariance—can often be ana-
lyzed by the methods of this chapter; though it is not diagonal, it will have only
short-range correlations. That leaves the object-variability term to be estimated
by sampling methods. There is nothing special about applying these methods to
speckle problems, and they will not be discussed further here.

Channelized observer models As we know from Sec. 14.3.2, estimation of compu-
tation of the performance of the Hotelling observer (or optimal linear discriminant
function) purely by sampling methods is difficult if the dimensionality of the data
vector is large, as when the input to the discriminant is the output of a large detector
array. Similarly, as we discussed in Sec. 14.3.3, computation of the performance of
the ideal observer is difficult in high-dimensional problems since huge multivariate
probability density functions are required. In both cases, dimensionality reduction
or feature extraction is very helpful. Linear features derived from channels are par-
ticularly useful since the statistics of the channel outputs are readily related to the
statistics of the data or even the underlying object.

In particular, (14.88) gives the transformation law for determining the charac-
teristic function of a channel output vector when the characteristic functional for
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the objects is known and the system is linear. How this transformation rule is used
in speckle problems depends on whether the detector integrates amplitude or irra-
diance. In the optical case, with irradiance-sensitive detectors, we can transform a
characteristic function like (18.216) through the linear channels. With amplitude-
sensitive detectors like the ones to be discussed in more detail in Sec. 18.6, we can
go from the characteristic functional for the field distribution at the detector face
all the way to the channel outputs.

In either case we can use the statistics of the channel outputs to compute the
performance of channelized Hotelling or channelized ideal observers. Though this
program has not yet been implemented, it appears to be an excellent way of taking
advantage of the analytical results of this chapter.

Hybrid estimation-classification tasks As we discussed in Secs. 13.1.1 and 13.3.8,
classification tasks are often performed with estimated object parameters as fea-
tures. In many pattern-recognition problems, we are interested in small-scale fea-
tures or texture of the object, but it is not obvious how coherent imagery can give
us that kind of information. Indeed, as far as our analysis to this point goes, all
rough objects are essentially equivalent. They all fully randomize the phase of the
transmitted or reflected wave, and they all give rise to circular Gaussian statistics
for the field.

Nevertheless, there is a huge literature on extracting texture information from
coherent imagery, especially in the context of medical ultrasound or synthetic-
aperture radar. The key to that endeavor is to recognize the limitations of the
circular-Gaussian models. As we shall see in Sec. 18.5, many interesting new sta-
tistical distributions arise when we do not assume that the number of independent
scattering elements within the area of the coherent PRF is large.

18.5 POINT-SCATTERING MODELS AND NON-GAUSSIAN SPECKLE

The development in this chapter so far has been based on the assumption that a
ground glass completely randomizes the phase of a light wave and that the autoco-
variance function of the ground-glass transmittance is sharply peaked and can be
approximated as a delta function. In other words, we have regarded the transmit-
tance as a white-noise random process, and we haven’t been very specific about the
point statistics of that process. We were able to avoid being more specific about
the ground glass since we invoked the central-limit theorem to argue that the field
in an observation plane was always circular Gaussian. As we noted, however, that
argument is suspect in an imaging system if the area of the PSF encompasses only
a few correlation lengths of the ground glass.

In this section we shall adopt a different view of the object, assuming that it
consists of a set of discrete point scatterers at random locations and possibly with
random scattering amplitudes. A natural mathematical description of the object is
thus a random point process, a topic we discussed at considerable length in Chap.
11. If we assume that the scattering points are statistically independent, we are
led to describe the object as a Poisson point process, though necessarily a nonsta-
tionary one in interesting imaging situations. As in Chap. 11, however, there is
also considerable interest in doubly stochastic point processes where the density of
points is itself a random process.
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Point-scattering models may be more applicable to reflection imaging than to
transmission through a ground glass. Consider, for example, airborne imaging of
a field of grass with a laser illuminator or microwave radar. Most of the radiation
emitted from the aircraft will be forward scattered and eventually absorbed in the
grass. Occasionally, however, a blade of grass will be oriented approximately normal
to the incident direction and reflect the radiation back towards the imaging system
in the aircraft. The object being imaged thus consists effectively of bright points or
glints, and the amplitude and phase of each glint depend on the random position
and orientation of the blade of grass.

Point-scattering models are also frequently used in medical ultrasound of soft
organs. Red blood cells and liver lobules, for example, might be modeled as scat-
tering points if they are small compared to the ultrasound wavelength. Phantoms
consisting of small, dense points in gelatinous media can produce ultrasound speckle
patterns that mimic well the speckle seen in actual tissue.

Our goal in this section is to recapitulate Sec. 18.3 but with point-scattering
models in place of the delta-correlated ground glass assumed there. The result will
be that the speckle field is not circular Gaussian, so we refer to the subject of this
section as non-Gaussian speckle. Another common term is non-Rayleigh speckle,
which refers to the fact that the square root of the irradiance does not follow a
Rayleigh law, so the irradiance itself is not exponentially distributed.

Sec. 18.5.1 provides a general point-process description of the object field,
states some statistical assumptions and derives the characteristic functional for the
field. In Sec. 18.5.2 we propagate this object field to an image plane and determine
its characteristic functional, but without the Gaussian approximation used in Sec.
18.3.2. Sec. 18.5.3 specializes the infinite-dimensional statistical description of the
field in the previous section to univariate statistics of the field and irradiance at a
single point.

18.5.1 Object fields and objects

All treatments of point-scattering models in the speckle literature express the object
field as

uobj(r) =
N∑

n=1

an exp(iφn) δ(r− rn) , (18.223)

but different physical situations require different mechanistic justifications of the
model and different interpretation of the parameters. Key to all interpretations,
however, is the realization that the delta function does not represent literally an
object of infinitesimal width but merely something small compared to the resolution
of the imaging system.

Consider, for example, a reflecting surface consisting of small flats or facets
as shown in Fig. 18.4. For simplicity, we assume that all facets are parallel to the
plane z = 0 and that the nth facet is a distance hn from that reference plane. If this
surface is illuminated by a unit-amplitude plane wave at normal incidence, then the
wave propagates a distance 2hn from z = 0 to the facet and back to z = 0. The
phase shift relative to the phase of the incident wave at z = 0 is thus

φn =
2π

λ
2hn , (18.224)
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where λ is the free-space wavelength of the radiation. Comparing this result to
(18.7) we see that the phase shift in reflection is several times larger than in trans-
mission for the same surface relief; in reflection the light travels twice as far, and
in transmission the phase shift is reduced by a factor of ng − 1 (with ng being the
refractive index of the glass, a number around 1.5) since phase is measured relative
to what it would be in the absence of the ground glass.

Fig. 18.4 Facet model for a reflecting surface.

If each facet is small compared to the resolution of the imaging system, then
the field reflected from the facet can be treated as a spatial delta function. The
amplitude an can then be interpreted as the amplitude reflectivity of the facet times
its area. If the facets are at different angles, then an can also include the fraction
of the light reflected towards the detector.

Another common situation where the point-scattering model of (18.223) is
invoked is in scattering from aerosol particles in the atmosphere. In this case the
phase shift arises, at least in part, from the random position of the aerosol particle
in the illuminating field. We can write

uobj(r) = uinc(r)
N∑

n=1

an δ(r− rn) =
N∑

n=1

an exp[iΦ(rn)] δ(r− rn) , (18.225)

where we have assumed that the incident wave is described by the pure-phase func-
tion uinc(r) = exp[iΦ(r)] and used a property of delta functions, (2.119). Thus the
phase φn in this view is simply the phase of the illumination at the scattering point.

Defining the object Whatever the interpretation of the parameters in the object
field, we must still specify just what we mean by “the object.” One approach would
be to identify f(r) as the mean number of scattering points per unit area, which we
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denoted in Chap. 11 as b(r). From (11.83), we know that b(r) is the mean of the
random sum of delta functions with unit weights:

b(r) =

〈

N
∑

n=1

δ(r− rn)

〉

. (18.226)

In the present problem with complex weights, even if we define the object by f(r) =
b(r), we cannot say that it is the mean of the object field; in fact, 〈uobj(r)〉 = 0 if
the phases are uniformly distributed on (−π,π).

An alternative is to associate the object with the squared modulus of the
scattering amplitude. Then the object field would take the form,

uobj(r) =
N
∑

n=1

√

f(rn) exp(iφn) δ(r− rn) =
√

f(r)
N
∑

n=1

exp(iφn) δ(r− rn) . (18.227)

This definition is appealing since it expresses the object field as something associated
with the object of interest times a random point process that we want to regard
as noise; exactly this motivation led us in Sec. 18.3 to think of the object as a
transparency placed over a ground glass. A disadvantage of (18.227), however,
is that the object is independent of the density of scatterers, which might be of
considerable interest.

We can combine the ideas behind (18.226) and (18.227) by defining the object
as the mean density of scattering points times the average of the square of the
scattering amplitude: f(r) ≡ b(r) 〈a2n〉, where the expectation is defined with respect
to a spatially varying PDF so it is a function of r. As we shall see in Sec. 18.5.2,
this quantity arises naturally when we study the statistics of the image field.

A more general way of modeling an object as a random point process is to give
up on the scalar description and say that more than one characteristic of the object
at each point is of interest, in which case the object is a vector-valued function (see
Sec. 7.1.1). We could, for example, consider both the density of scattering points
and the mean scattering amplitude as object characteristics of interest and define
the components of an object vector by f1(r) ≡ b(r) and f2(r) ≡ 〈an〉.

We shall not pursue the idea of a vector-valued object further, but instead
focus on the scalar object field in what follows.

Statistical assumptions Since the object field is a complex random process, its char-
acteristic functional is defined as in (18.19) by

Ψuobj
(ξ) ≡

〈

exp
[

−iπ
(

ξ†uobj + uobj
†ξ
)]〉

, (18.228)

where the average in its most general form is over {rn}, {an}, {φn}, N itself, and
the density b(r). Once we have this characteristic functional, we can get the one for
the image-plane field by use of (18.96), so our immediate task is to specify proba-
bility laws for the random variables and carry out the average in (18.228).

As usual in dealing with point processes, we assume that the points are sta-
tistically independent and identically distributed. If we assume further that the
parameters of an individual point, rn, an and φn are independent of each other,14

14The assumption that φn is independent of rn does not hold if the phase is determined simply
by the position of the scattering point in the illumination field. In that case it might be valid to
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the conditional density on these variables for a fixed N becomes

pr [{rn}, {an}, {φn}|N ] =
N
∏

n=1

pr(rn) pr(an) pr(φn) . (18.229)

The joint density on all variables, including N, is thus

pr [{rn}, {an}, {φn}, N ]

= pr [{rn}, {an}, {φn}|N ] Pr(N) = Pr(N)
N
∏

n=1

pr(rn) pr(an) pr(φn) . (18.230)

To specify the problem fully, we need to give the component PDFs in this
product. From (11.84), we know that b(r), with proper normalization, is the PDF
for the locations of the scattering points, so

pr(rn) =
b(rn)

∫

S
d2r′ b(r′)

=
1

N
b(rn) , (18.231)

where S is the support of the object.
If we assume that the phases are fully randomized on (−π,π), we can write

pr(φn) =
1

2π
rect

(

φn
2π

)

. (18.232)

Various forms might be used for pr(an), but since an is the magnitude of a
complex scattering amplitude, we must choose one that is defined for 0 ≤ an < ∞;
log-normal, gamma and K-Bessel densities are possibilities. If the object is a collec-
tion of identical particles with scattering cross section σ, we would take pr(an) =
δ(an −

√
σ).

A natural choice for Pr(N) is a Poisson of mean N, but for more generality
we can treat N as random and write Pr(N) in the form of a Poisson transform as
defined in (11.25):

Pr(N) =

∫ ∞

0
dN Pr(N |N) pr(N) =

1

N !

∫ ∞

0
dN exp(−N)N

N
pr(N) . (18.233)

Like pr(an), pr(N) must be defined on (0,∞). The Poisson is recovered by taking
pr(N) as a delta function.

Characteristic functional for the object field Having assembled the needed probabil-
ity laws, we turn next to computation of the characteristic functional for the object
field. The development is similar to that in Sec. 11.3.10 but with the added com-
plication of random amplitudes and phases.

In full generality, (18.228) can be written in the nested form,

Ψuobj
(ξ) ≡

〈〈〈

exp
[

−iπ
(

ξ†uobj + uobj
†ξ
)]〉

{an},{φn},{rn}|N

〉

N|N

〉

N
. (18.234)

assume that the actual position of the point was rn + ∆rn, where ∆rn was several wavelengths
but nevertheless small compared to the system resolution. Then the independence of φn and rn

would be a reasonable model.
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By use of the delta function in (18.223), we can rewrite the quantity being averaged
as

exp
[
−iπ

(

ξ†uobj + uobj
†ξ
)]

=
N
∏

n=1

exp {−iπan [exp(iφn) ξ
∗(rn) + exp(−iφn) ξ(rn)]}

=
N
∏

n=1

exp {−2πian|ξ(rn)| cos [φn − φξ(rn)]} , (18.235)

where ξ(rn) = |ξ(rn)| exp[iφξ(rn)].
Since we are assuming that the point parameters are independent and identi-

cally distributed, the innermost expectation in (18.234) becomes

〈

exp
[

−iπ
(

ξ†uobj + uobj
†ξ
)]〉

{an},{φn},{rn}|N

=

[

〈

exp {−2πian|ξ(rn)| cos [φn − φξ(rn)]}
〉

an,φn,rn

]N

. (18.236)

This step does not imply that the process is stationary in any sense, just that the
individual scatterers are indistinguishable; in other words, pr(rn) is not necessarily
constant over the support.

With (18.232) and a change of variables, the average over φn yields

1

2π

∫ π

−π

dφ exp(−2πian|ξ(rn)| cosφ) = J0 (2πan|ξ(rn)|) , (18.237)

where J0( · ) is the zeroth-order Bessel function of the first kind. Note that the
phase of ξ(rn) has disappeared.

With (18.231) as the PDF on rn and a generic PDF for an, we can now write

〈

exp {−2πian|ξ(rn)| cos [φn − φξ(rn)]}
〉

an,φn,rn

=
1

N

∫ ∞

0
dan pr(an)

∫

S

d2rn b(rn) J0 (2πan|ξ(rn)|) . (18.238)

Combining (18.234), (18.236) and (18.238), we obtain

Ψuobj
(ξ) =

〈〈

[

1

N

∫ ∞

0
dan pr(an)

∫

S

d2rn b(rn) J0 (2πan|ξ(rn)|)
]N

〉

N |N

〉

N

.

(18.239)
The expectation over N for fixed N can be performed as in Sec. 11.3.10, with the
result

〈

{

1

N

∫ ∞

0
dan pr(an)

∫

S

d2rn b(rn) J0[2πan|ξ(rn)|]
}N

〉

N |N

= exp

{

−N +

∫ ∞

0
dan pr(an)

∫

S

d2rn b(rn) J0[2πan|ξ(rn)|]
}

. (18.240)
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Since N is determined by the integral of the density of scatterers [see (18.231)], the
remaining expectation is really over realizations of b(r), so we can write

Ψuobj
(ξ)=

〈

exp

{

−
∫

S

d2r b(r) +

∫ ∞

0
dan pr(an)

∫

S

d2rn b(rn) J0[2πan|ξ(rn)|]
}〉

b

.

(18.241)
Sometimes we want to regard b(r) as nonrandom; for example, if we define

the object by f(r) = b(r) and consider just a single object, the average over b

in (18.241) is not needed. In those cases, we shall use a conditional characteristic
functional given by

Ψuobj|b(ξ) = exp

{

−
∫

S

d2r b(r) +

∫ ∞

0
dan pr(an)

∫

S

d2rn b(rn) J0[2πan|ξ(rn)|]
}

= exp

{

−N +

∫

S

d2rn b(rn) 〈J0[2πan|ξ(rn)|]〉an

}

. (18.242)

This form should be compared to the characteristic functional for a Poisson point
process with constant weights, given in (11.150) and rewritten here as

Ψg(s) = exp

{

−N +

∫

S

d2rn b(rn) exp[−2πi s(rn)]

}

. (18.243)

The key differences are the additional average over an in (18.242), the appearance
there of the Bessel function rather than the complex exponential, and the use of
a complex argument ξ(r) in place of the real function s(r) in (18.243). Curiously,
(18.242) is pure real even though ξ(r) is complex, and (18.243) is complex even
though s(r) is real.

18.5.2 Image fields

Since coherent imaging is a linear transformation of the object field to the image
field, the characteristic functional for the latter can be found from a transformation
rule like (18.96). For an arbitrary coherent imaging system with space-variant PSF
pcoh(r− r′; r′), we can write

uim(r) =

∫

S

d2r′ pcoh(r−r′; r′)uobj(r
′) =

∑

n

an exp(iφn) pcoh(r−rn; rn) . (18.244)

In terms of the coherent imaging operator Pcoh, we have

uim = Pcohuobj or uim(r) = [Pcohuobj ](r) . (18.245)

With this operator and (18.96), we see that

Ψuim
(ξ) = Ψuobj

(P†
cohξ) . (18.246)

Explicitly, with (18.241),

Ψuim
(ξ)=

〈

exp

{

−N +

∫ ∞

0
dan pr(an)

∫

S

d2rn b(rn) J0
[

2πan
∣

∣[P†
cohξ](rn)

∣

∣

]

}〉

b

.

(18.247)
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This result is our most general statement of the statistics of the image-plane field.
It is a modest extension of an expression obtained by Zardecki and Delisle (1977),
who considered only free-space propagation and not an imaging system. In what
follows we shall consider some additional approximations and special cases of this
result.

The Gaussian limit In Sec. 18.2.4 we went through a lengthy derivation of the
central-limit theorem for a coherently illuminated ground glass. The result was
that the image-plane field approached a circular Gaussian random process if the
ground glass had many independent regions within the area defined by the coherent
PSF. A similar derivation for the present object model would show that the image
field was circular Gaussian if the number of scattering points within the PSF area
was large. Rather than presenting that derivation, however, we give here a heuristic
argument which will suffice to determine the form of the circular Gaussian.

The starting point for the heuristic argument is that Ψuim
(ξ), like all char-

acteristic functionals, must be unity when ξ(r) = 0 for all r. To see this point
for (18.247), note that the Bessel function is identically one if ξ(r) = 0 and hence
[Pcohξ](r) = 0. Then the integral over an yields unity and the one over rn yields N,
neatly cancelling the other N in the exponent. If there are some regions for which
[Pcohξ](r) )= 0, however, the cancellation is not exact, and in that case the exponen-
tial rapidly approaches zero as N gets large. Thus, as in our previous treatments
of the central-limit theorem (see Secs. 8.3.4 and 18.2.4), the basic calculation is to
expand the exponent in a power series and retain terms linear and quadratic in the
frequency variable.

The requisite expansion for the present problem is

J0(z) =
∞∑

k=0

(

−1
4z

2
)k

(k!)2
= 1− 1

4z
2 + · · · . (18.248)

If we truncate this expansion, then the conditional characteristic functional of the
image field for fixed b, i.e., (18.247) without the final average, becomes

Ψuim|b(ξ) = exp

{

−N +

∫ ∞

0
dan pr(an)

∫

S

d2rn b(rn)
[

1− π2a2n
∣

∣

[

P
†
cohξ

]

(rn)
∣

∣

2
]

}

= exp

{

−π2〈a2n〉
∫

S

d2rn b(rn)
∣

∣

[

P
†
cohξ

]

(rn)
∣

∣

2
}

, (18.249)

where in the last step we have used the fact that b(rn) is the mean number of
points per unit area, so its integral over the whole field is just N. The integral in
the exponent can be written in detail as

∫

S

d2rn b(rn)
∣

∣

[

P
†
cohξ

]

(rn)
∣

∣

2

=

∫

S

d2r ξ∗(r)

∫

S

d2r′ ξ(r′)

∫

S

d2rn b(rn) pcoh(r−rn; rn) p
∗
coh(r

′−rn; rn) . (18.250)

Thus (18.249) becomes [cf. (18.97)]

Ψuim|b(ξ) = exp
(

−π2ξ†Kuim
ξ
)

, (18.251)
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where Kuim
is the autocovariance operator for the image field, with a kernel given

by

Kuim
(r, r′) = 〈a2n〉

∫

S

d2rn b(rn) pcoh(r− rn; rn) p
∗
coh(r

′ − rn; rn) . (18.252)

This result is identical with (18.100) if we replace $ 2c |tobj(r)|2 with 〈a2n〉 b(r). Thus
a natural quantity to call an object is the mean density of scattering points times
the average of the square of the scattering amplitude.

For a more formal discussion of the Gaussian limit, see Zardecki and Delisle
(1977); they in turn cite Lord Rayleigh (1919).

Gaussian mixtures To get the full characteristic functional for the field in the limit
of a large number of scatterers, we must still average (18.252) over realizations of
the density b. Since uim has zero mean for each b, we are averaging zero-mean
Gaussian characteristic functionals with respect to variations in their covariance
matrices. We encountered this situation in Sec. 8.4.3 where we argued that the
output of high-pass or band-pass filters applied to many kinds of images could be
viewed as mixtures of zero-mean Gaussians, and we showed that the resulting PDFs
had long tails and cusps at the origin. A similar behavior can be expected for the
field PDFs in speckle problems without the need for overt filtration since the speckle
field naturally has zero mean.

In summary, if the density of scatters, b(r), is nonrandom and large so that
N0 → ∞, then a circular Gaussian is expected for the field regardless of the statistics
of an. If b(r) and hence N0 are themselves random, however, then non-Gaussian
fields can be expected. Moreover, as cautioned by Jakeman and Pusey (1976), large
variations in an can lead to non-Gaussian behavior ifN0 is large but not approaching
infinity since then only a small fraction of the scatterers may contribute to the image
field.

18.5.3 Univariate statistics of the image field and irradiance

If we evaluate the random process uim(r) at a particular point r = R0, the resulting
complex number is a random variable described by the univariate characteristic
function ψuim(R)(ν) rather than the infinite-dimensional characteristic functional
Ψuim

(ξ). We know from the discussion in Sec. 18.2.5, however, that the univariate
characteristic function for uim(R0) is obtained from the characteristic functional
by setting ξ(r) = ν δ(r−R0) [cf. (18.75)]. Making this substitution in (18.247) and
performing an integral with the delta function, we obtain

ψuim(R)(ν)

=

〈

exp

{

−N +

∫ ∞

0
dan pr(an)

∫

S

d2rn b(rn) J0[2πan|ν pcoh(R0 − rn; rn)|]
}〉

b

.

(18.253)
We can get all moments of the field at point R0 from this equation, and we can

also get all moments of the irradiance since 〈[Iim(R0)]n〉 = 〈[uim(R0)u∗
im(R0)]n〉.

For ways of handling the complicated Fréchet derivatives involved in the moment
calculations, see the appendix in Zardecki and Delisle (1977).
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Micro-area approximation It is difficult to derive analytical results from the general
expression (18.253), or even to gain qualitative insights, without further approx-
imation. One common approach is the micro-area approximation suggested by
Jakeman and Pusey in the 1970s. (For a review, see Jakeman and Tough, 1988.)
Zardecki and Delisle (1977) go so far as to say that this model “appears to be the
only feasible way of dealing with higher-order statistics.”

The essence of the micro-area approximation is to ignore the detailed structure
of the coherent PSF and replace |pcoh(R0 − rn; rn)| in (18.253) by a uniform disc
or cylinder function. The main statistical effect is then fluctuations of the number
of point scatterers in the disc area.

To be more precise, we approximate the PSF as

|pcoh(R0 − rn; rn)| ≈ |pcoh(0;R0)| cyl
[
|R0 − rn|
D(R0)

]
, (18.254)

where the cylinder function is defined in (3.257), and the diameter of the disc is
determined such that
∫

S

d2rn |pcoh(R0 − rn; rn)| cyl
[
|R0 − rn|
D(R0)

]
= |pcoh(0;R0)|

πD2(R0)

4
. (18.255)

Using this approximation and noting that J0(0) = 1, we can write the integral
over rn in (18.253) as

∫

S

d2rn b(rn) J0[2πan|ν pcoh(R0 − rn; rn)|]

≈
∫

S

d2rn b(rn) + {J0[2πan|ν pcoh(0;R0)|]− 1}
∫

S

d2rn b(rn) cyl

[
|R0 − rn|
D(R0)

]

= N +N0

{

J0 [2πan|ν pcoh(0;R0)| ]− 1
}

, (18.256)

where

N ≡
∫

S

d2rn b(rn) , N0 ≡
∫

S

d2rn b(rn) cyl

[

|R0 − rn|
D(R0)

]

. (18.257)

Thus N is the mean number of scatterers in the entire object support, and N0 is
the mean number in the disc centered on point R0. Though the notation does not
show it, N0 can be a function of R0 in general.

With (18.256), the univariate characteristic function of (18.253) becomes

ψuim(R)(ν) =

〈

exp

{

−N0 +N0

∫ ∞

0
dan pr(an) J0[2πan|ν pcoh(0;R0)|]

}〉

b

=
〈

exp
{

−N0 +N0 J0[2πan|ν pcoh(0;R0)|]
}〉

N0
, (18.258)

where the overbar on the Bessel function implies an average over the only remaining
random variable in its argument, the scattering amplitude an. Note that the total
number of scatterers, N, no longer appears; it cannot since scatterers outside the
disc defined by the PSF make no contribution to the field at the observation point
R0. Moreover, the average over b is now equivalent to an average over N0, and the
notation has been changed accordingly on the last line of (18.258).
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The micro-area approximation can also be applied to multi-point statistics. To
get the joint characteristic function for the field at K points, {r = Rk, k = 1, ...,K},
we set

ξ(r) =
K∑

k=1

νk δ(r−Rk) (18.259)

and then apply the micro-area approximation to each of the K disc areas. If the
discs do not overlap, the scatterers in the individual micro-areas are statistically in-
dependent, and the joint characteristic function is a product of factors like (18.258).
If they do overlap, we must take account of a sum within the argument of the Bessel
function. For example, for K = 2 [cf. (18.253)],

ψuim(R),uim(R)(ν1, ν2)

=

〈

exp

{

−N +

∫

S

d2rn b(rn) J0

[

2πan

∣

∣

∣

∣

∣

2
∑

k=1

νk pcoh(0;Rk) cyl

(

|Rk − rn|
D(Rk)

)

∣

∣

∣

∣

∣

]}〉

b

.

(18.260)
There is no difficulty in principle in computing moments from this expression, but
the required derivatives are tedious.

PDF of the irradiance The image-plane irradiance at a single point is related to the
field at that point by Iim(R0) = |uim(R0)|2. The PDF for the irradiance can be
found by the same procedure used in Sec. 8.3.6 to derive the exponential law for
speckle irradiance, (8.232); we use (C.104) to transform the PDF on the real and
imaginary parts of the field to the joint PDF on the irradiance and the phase angle
of the field, then marginalize over the latter variable. Dropping the subscripts im
and the spatial arguments temporarily for notational convenience, we write

pr(I,φ) = |J | pr(u′, u′′) , (18.261)

where prime and double-prime denote real and imaginary parts, respectively,

u′ =
√
I cosφ , u′′ =

√
I sinφ , (18.262)

and J is a Jacobian given by

J = det





∂u′

∂I
∂u′′

∂I

∂u′

∂φ
∂u′′

∂φ



 = 1
2 . (18.263)

Thus
pr(I,φ) = 1

2 pr(u
′, u′′)

∣

∣

∣

u′=
√
I cosφ ,u′′=

√
I sinφ

. (18.264)

We can now express pr(u′, u′′) as the inverse Fourier transform of its charac-
teristic function and take advantage of the fact that φ is uniformly distributed on
(0, 2π), so that

pr(I,φ) =
1

2π
pr(I)

= 1
2

∫ ∞

−∞
dν ′

∫ ∞

−∞
dν ′′ ψu(ν

′, ν ′′) exp
[

2πi
(

ν′
√
I cosφ+ ν ′′

√
I sinφ

)]

. (18.265)
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Since the characteristic function is rotationally symmetric in the complex plane, we
can express the 2D inverse Fourier transform as a Hankel transform, yielding

pr(I) = 2π2

∫ ∞

0
|ν|d|ν| J0

(

2π|ν|
√
I
)

ψu(|ν|) . (18.266)

Using (18.258) and reinserting the subscripts and arguments, we obtain

pr[Iim(R0)] = 2π2

∫ ∞

0
|ν|d|ν| J0

[

2π|ν|
√

Iim(R0)
]

×
〈

exp
{

−N0 +N0 J0[2πan|ν pcoh(0;R0)|]
}〉

N0
. (18.267)

This form is valid in the micro-area approximation when the number of scat-
terers in the disc area centered at R0, denoted N0, is a doubly stochastic Poisson
random variable with random mean N0. An alternative and slightly more general
form can be obtained by omitting the intermediate conditional average over N0 for
fixed N0; in that case we can write [cf. (18.240)]

pr[Iim(R0)]

= 2π2

∫ ∞

0
|ν|d|ν| J0

[

2π|ν|
√

Iim(R0)
] 〈

{

J0 [2πan|ν pcoh(0;R0)|]
}N0

〉

N0

.

(18.268)
This result (without the averages over an and N0) was derived by Kluyver (1906)
in response to a paper on random walks by Pearson (1905), and it was general-
ized to three dimensions by Rayleigh (1919). For a summary of these historical
contributions, see Mardia (1972).

The Poisson case To evaluate (18.267) or (18.268) and get the PDF on the irradi-
ance at a single point, we must specify PDFs for an and N0. The simplest case is
when both N0 and an are nonrandom (and the latter has the same value for all n,
so we can drop the subscript). With these assumptions, neither the average over N0

nor the one over a (signified by the overbar on J0) is needed, and (18.268) becomes

pr[Iim(R0)] = 2π2
∞
∑

N0=0

N
N0

0

N !

× exp(−N0)

∫ ∞

0
|ν|d|ν| J0

[

2π|ν|
√

Iim(R0)
]

{J0[2πa|ν pcoh(0;R0)|]}N0 .

(18.269)
To evaluate this integral, Lord Rayleigh (1919) suggested the approximation

[J0(x)]
N0 ≈ exp

(

−1
4N0x

2
)

, (18.270)

which works fairly well even for N0 as small as 3 or 4. The two sides of (18.270)
agree for small x, and raising the Bessel function to a power causes it to fall off
rapidly and suppresses the oscillatory sidelobes.

With Rayleigh’s approximation, the integral in (18.269) is simply the Hankel
transform of a Gaussian, and we find that

pr[Iim(R0)] ≈
∞
∑

N0=0

N
N0

0

N0!
exp(−N0)

1

N0 a2 |pcoh(0;R0)|2
exp

[

−
Iim(R0)

N0 a2 |pcoh(0;R0)|2

]

.

(18.271)
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We can go further ifN0 is large. Then the Poisson probability is sharply peaked
around N0 = N0, and we obtain

pr[Iim(R0)] ≈
1

Iim(R0)
exp

[
−
Iim(R0)

Iim(R0)

]
, (18.272)

where
Iim(R0) = N0 a

2 |pcoh(0;R0)|2 . (18.273)

This exponential density should come as no surprise; when there are many scatterers
with random phase, the real and imaginary parts of the field are i.i.d. normal by
the central-limit theorem and hence the irradiance is exponentially distributed [see
(8.232)].

Doubly stochastic Poissons and the K density More interesting results are obtained
when N0 is random. Since N0 can, in principle, take any value between 0 and ∞, we
need a PDF defined on the positive real line for pr(N0). Candidate densities include
the exponential, Rayleigh and log-normal, but much attention in the speckle litera-
ture has centered on using a gamma distribution (see Sec. C.5.4). With its two free
parameters α and β, the gamma law allows considerable flexibility in constructing
approximate PDFs on (0,∞).

Jakeman and Pusey (1978) used the gamma law for pr(N0) in speckle statis-
tics. Since the Poisson transform of a gamma is a negative binomial, their model is
equivalent to saying that N0 obeys a negative binomial. Specifically, if

pr(N0) =
N

α−1
0 exp

(

−N0/β
)

βα Γ(α)
, (18.274)

then (Saleh, 1978)15

Pr(N0) =

(

N0 + α− 1

N0

)

βN0

(1 + β)N0+α
. (18.275)

The corresponding moment-generating function is (Abramowitz and Stegun, 1965,
formula 26.1.23)

MN0(t) ≡ 〈exp(N0 t)〉N0
=

1

(1 + β − β et)α
. (18.276)

By differentiating the moment-generating function, we can show that the mean
number of scatterers is αβ and the variance is αβ(1 + β).

To apply the negative-binomial law to speckle, we use (18.268) in conjunction
with the Rayleigh approximation (18.270). The relevant expectation is

〈

{J0[2πa|ν pcoh(0;R0)|]}N0

〉

N0

≈
〈

exp
[

−π2N0 a
2|pcoh(0;R0)|2|ν|2

]

〉

N0

=
1

{1 + β − β exp [−π2 a2|pcoh(0;R0)|2|ν|2]}α
≈

1

[1 + β π2 a2|pcoh(0;R0)|2|ν|2]α
,

(18.277)

15The negative binomial is often written as a binomial coefficient times pN (1 − p)α; to get the
form in (18.274), we must identify p as β/(1 + β). If α is not an integer, the binomial coefficient
must be expressed in terms of gamma functions.
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where the penultimate step follows from (18.276). The last step is valid when
αβ & 1, in which case only small values of |ν|2 are important; recall that αβ is
the mean of the original negative binomial distribution, so large αβ is equivalent to
large N0, an assumption that was already used in the Rayleigh approximation.

To get an approximate expression for the univariate density on the irradiance,
we substitute the last form of (18.277) into (18.268) and use a tabulated integral
(Gradshteyn and Ryzhik, 1980, formula 6.565.4); the result is (Jakeman and Pusey,
1978; Jakeman, 1980)

pr[Iim(R0)]

=
2

Γ(α)

1

a2 |pcoh(0;R0)|2β

[
Iim(R0)

a2 |pcoh(0;R0)|2 β

]α−1
2

Kα−1

[

2

√

Iim(R0)

a2 |pcoh(0;R0)|2 β

]

.

(18.278)
This PDF, known as the K distribution, is defined in (C.142) and plotted in Fig.
C.7. It reduces to the exponential distribution of (18.272) as α→ ∞.

K-distributed scattering amplitudes As we have just shown, the K distribution arises
in point-scattering speckle models when the scattering amplitudes are nonrandom
but the number of scatterers in a micro-area obeys a negative-binomial distribution.
In fact, it also arises when the number of scatterers is nonrandom but the amplitudes
an themselves obey a K distribution.

Jakeman and Pusey (1976) considered the effect of scattering from the ocean
surface the performance of microwave radars operating over the sea. They noted
that the magnitude of the scattered signal is observed to follow Rayleigh statistics
when a large area of the sea is illuminated, but with narrow beams and short
pulses the micro-area to which the receiver is sensitive at any one time may have
dimensions comparable to the longer wavelengths on the sea surface. The temporal
signals from the clutter may then have a spiky “target-like” appearance, especially
when the beam propagates nearly parallel to the ocean surface and the back-scatter
is observed. Since these spikes or glints can give rise to false positives in a radar
detection task, it is important to characterize the clutter statistics.

Jakeman and Pusey neglected the fluctuations in the number of scatterers in
the micro-area and focused on fluctuations in the radar scattering cross section,
which is included in the amplitude an. They provided arguments showing that
a K distribution for an is both physically reasonable and analytically tractable.
Specifically, they assumed that

pr(an) =
2b

Γ(1 + ν)

(

ban
2

)ν+1

Kν(ban) , ν > −1 , (18.279)

where ν can be viewed as a skewness parameter; if ν → −1, this expression ap-
proaches a log-normal, and if ν → ∞ it approaches a Rayleigh density (Shankar,
1995).

With this density on the amplitudes and the assumption that N0 is a nonran-
dom constant, Jakeman and Pusey (1976) find that (in our notation)

pr[Iim(R0)] =
b|pcoh(0;R0)|

√

Iim(R0)Γ(M)

[

b

2

√

Iim(R0)

|pcoh(0;R0)|2

]M

KM−1

[

b

√

Iim(R0)

|pcoh(0;R0)|2

]

,

(18.280)
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where

M = N0(1 + ν) . (18.281)

The remarkable similarity of (18.280) to (18.278) should be noted; when K
distributions are observed experimentally, there may be no good way of deciding
whether they arise from variations in N0 or an. Nevertheless, the parameters of the
distribution as estimated from empirical data might be useful features for pattern
recognition (Joughin et al., 1993).

The K distribution of scattering amplitudes has also been used to describe
ultrasonic scattering from tissue (Shankar et al., 1993; Narayanan et al., 1994;
Shankar, 1995; Molthen et al., 1995; Molthen et al., 1998).

Generalized K distributions Various generalizations of the K distribution have ap-
peared in the literature. A common generalization is to consider weak scattering
where the phases are not uniformly random and (18.232) does not hold. A useful
model in that case is the von Mises density,

pr(φn) = [2πI0(γ)]
−1 exp[γ cos(φn)] rect

(

φn

2π

)

, (18.282)

where γ is a nonnegative constant and I0( · ) is a modified Bessel function. This
PDF is bell-shaped and peaked at φn = 0; for large γ it is approximately Gaussian
with a variance equal to 1/γ, and it approaches δ(φn) as γ → ∞.

Using the von Mises PDF on the phases, taking the amplitudes an as nonran-
dom and assuming a negative-binomial distribution for N0, Barakat (1986) derived
a generalized PDF on the single-point irradiance and showed that it reduced to
(18.278) as γ → 0. He also showed that this PDF agreed well with experimental
moments of atmospheric laser-scattering data obtained in central Florida.

Jakeman and Tough (1987) reinterpreted Barakat’s model in terms of a ran-
dom walk with a directional bias specified by the density of the phases. With the
negative-binomial model for N0, they showed that Barakat’s generalized K density
is obtained in the limit of large αβ, even without the specific von Mises density on
the phases. They also extended Barakat’s results to higher dimensions, along the
way obtaining an n-dimensional generalization of the Rician density.

There has also been some attention to multivariate generalizations of the K dis-
tribution. A multivariate model accounting for polarization was developed by Yueh
et al. (1989). Correlated K-distributed clutter was considered by Oliver (1985) and
Marier (1995), and simulation methods were reported by Oliver and Tough (1986).

An interesting way of including spatial correlations in the K distribution was
presented by Pentini et al. (1992). They considered a correlated circular Gaussian
random process for the field, where, for example, the correlation function might be
given by (18.100). They sampled the field on a grid of N points to get a correlated
circular Gaussian random vector with PDF [cf. (8.245)]

pr(u|τ ) =
1

πNτN det(Ku)
exp

(

−
1

τ
u†K−1

u u

)

, (18.283)

where the nonnegative scalar τ can be interpreted as an overall power level or mean
reflectivity of the object. If τ is a random variable independent of u, then the
overall density on u is a Gaussian mixture. Specifically, if τ follows a gamma law,
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Pentini et al. show that pr(u) has the form

pr(u) =

∫ ∞

0
dτ pr(u|τ ) pr(τ ) ∝

[
u†K−1

u u
] ν−N

2 Kν−N

(

µ
√

u†K−1
u u

)

, (18.284)

where ν and µ are constants related to the PDF on τ . Thus once again a K
distribution arises, this time without recourse to a point-scattering model at all.
The argument of the Bessel function is real (since K−1

u is Hermitian and positive-
semidefinite), but the different components of u can have arbitrary correlations so
long as they are consistent with the circular-Gaussian assumption.

Relation to Ricians Experimental histograms of
√

Iim(R0) in coherent imaging are
often well approximated by the Rician or Rice-Nakagami law defined in (C.141).
Though originally derived by Rice for analysis of a known, nonrandom signal of
amplitude A in Gaussian noise, this law is commonly used in speckle problems
with A and σ2 treated as adjustable parameters. This law would apply to speckle
with interferometric or homodyne detection, but it does not seem to describe the
non-interferometric systems we are analyzing in this chapter, so its mechanistic
justification is not clear.

In one sense there is no need for a mechanistic justification of the Rician law;
if it fits the data and if the parameters of the fit are useful features for pattern
recognition, that is justification enough. Nevertheless, it is interesting to see how
an approximate Rician might arise from different physical assumptions.

As we noted in Sec. 18.1.1, the Rician could occur in transmission imaging
when the phase of the transmitted wave is not completely randomized, so that
there is a nonrandom plane-wave component superimposed on the scattered field.
Similarly, in reflection, something akin to a Rician could arise when the phases are
not fully randomized, as in (18.282) with large γ. The generalized K distribution
of Jakeman and Tough (1987) often approximates a Rician when expressed as a
density on

√

Iim(R0) rather than Iim(R0).
The Rician density can also be obtained by assuming that there is a single

strong point scatterer or specular reflector present, but there are two difficulties in
this view. The first is the (often implicit) assumption that this strong scatterer,
unlike the rest of the points in the object, is nonrandom. The second difficulty is
that point scatterers outside the support of the coherent PSF of the imaging system
make no contribution to the image-plane field at any given point; for the Rician
density to be obtained exactly, therefore, one would have to assume that there is
always exactly one point scatterer within the PSF no matter where one looks in the
image.

Another model that leads to a Rician is an array of point scatterers with
partial periodicity (Wagner et al., 1986; Wagner et al., 1987; Shankar, 1995). The
wave diffracted from such an array consists of a coherent part, as if the array
were perfectly periodic, and a diffuse part resulting from random displacement of
the scatterers from the ideal lattice positions. The coherent part can serve as the
nonrandom coherent signal envisioned in Rice’s original work. Since the coherent
component is the result of volume diffraction from a periodic structure, strong
diffraction will occur only if the Bragg condition is satisfied (see Sec. 9.8.3). Thus
the relative strength of the two components will depend not only on the degree of
periodicity, but also on the directions of the incident and diffracted waves as well
as the area (or volume) associated with the PSF. If one wished to test the validity
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of this model, the dependence of the empirical PDF could be studied as a function
of these parameters.

Other densities for N0 We have emphasized point-scattering models where N0 fol-
lows a negative binomial law (or equivalently, N0 follows a gamma), but many other
probability laws can be used for the number of scatterers in a micro-area. Delignon
and Pieczynski (2002) summarize the possibilities and discuss ways of choosing
among them in describing empirical data from synthetic-aperture radar.

Texture synthesis with speckle In Sec. 8.4 we discussed several parametric models
for texture statistics. For example, the clustered lumpy background is a flexible
model with a few free parameters that can be adjusted to mimic the textures seen in
mammograms. With our current understanding of speckle statistics, it now appears
feasible to use speckle fields as models of texture patterns that have nothing to do
with coherent imaging. Suppose, for example, that we start with a nonstationary,
doubly stochastic Poisson point process and image it— in a computer— through a
coherent imaging system with a specified, possibly space-variant PSF. When we then
form the irradiance— still in the computer—we will have a nonnegative random
field that should be capable of mimicking many different natural textures. To make
the synthesis realistic, we can adjust the parameters of the initial point process as
well as those of the coherent PSF.

18.6 COHERENT RANGING

To this point we have considered speckle in 2D systems, but we have noted at several
points that speckle is important in various forms of radar and ultrasound imaging.
These methods have in common that they use amplitude-sensitive detectors, they
are used to image 3D objects, and they use time of flight to encode the third di-
mension. In order to use time of flight, the radiation must be modulated in some
way. The simplest option is just to pulse the radiation source, but much research
has gone into chirp signals and other waveforms.

In spite of the modulation, radar and ultrasound systems are still coherent, so
they exhibit speckle. In this section we shall analyze these systems both determin-
istically and stochastically and show how the speckle formalism developed earlier
in the chapter can be extended to pulsed imaging.

We begin in Sec. 18.6.1 with a qualitative overview of the systems, treating
radar and ultrasound in parallel to emphasize their similarities. The serious an-
alytical effort begins in Sec. 18.6.2 by elucidating the linear operator that maps
the 3D object to electrical signals from the amplitude-sensitive detectors. In Sec.
18.6.3 we develop a general characteristic functional to describe the statistics of
speckle as manifest in the electrical signals. In Sec. 18.6.4 we consider issues in task
performance and image quality.

18.6.1 System configurations

As shown in Fig. 18.5, the key elements in a radar or ultrasound system are an
RF (radio-frequency) generator, a modulator, a transmitting element, a receiving
element and a signal-processing system. Application of an electrical signal to the
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transmitting element produces a wave that propagates into space, reflects from
some target and returns to the receiving element where it is converted back to an
electrical signal. When the transmitting and receiving elements are identical as
in Fig. 18.5 (or at least at essentially the same location), the system is said to
be monostatic. When the transmitter and receiver are at different locations, the
system is bistatic, and when multiple transmitters and/or receivers are used, the
system is multistatic. Only monostatic systems will be discussed here.

The transmitted waves are highly directional or beam-like, so only targets
within the beam receive radiation. If the targets are small, then they reradiate over
a wide angular range, but only a small portion of the wave gets to the receiving
element. For monostatic configurations, the receiver is sensitive to back-scattered
radiation from the same beam-like region where the transmitted wave propagated.

Fig. 18.5 Monostatic and bistatic radar systems.

Transducers We shall use the word transducer to describe the elements that con-
vert the electrical signal to a propagating wave and back again. For radar the
transducer is a microwave antenna, and for ultrasound it is a piezoelectric element.

The simplest (and most common) ultrasound transducer is a flat piezoelectric
plate, usually in the form of a disc as shown in Fig. 18.6a. A high-frequency voltage
is applied to electrodes on opposite sides of the disc, and the piezoelectric effect
causes the material to vibrate at the same frequency. Maximum vibration ampli-
tude is obtained when the thickness of the transducer is equal to half of the acoustic
wavelength in the material.

If the vibrating transducer is placed in contact with a patient’s body or other
medium, it will induce a vibrational wave in the medium. For medical applications
the vibrations are normal to the face of the transducer, so the induced wave is a
compressional or density wave, similar to ordinary sound waves in air. Transverse
or shear waves can be generated in some solid media, but they do not propagate
in air, liquids or soft tissue. For medical use, the frequency of the wave is typically
5 – 10 MHz, corresponding to a wavelength in tissue of 0.15 – 0.3 mm.

Since all points on the transducer surface vibrate in phase, the generated wave
has a planar wavefront over the surface of the disc. As it propagates, this plane
wave diffracts, just as a monochromatic light wave would after passing through a
disc aperture.
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To avoid the diffraction spread and put maximum energy on a target at a
known distance from the transducer, a curved ultrasound transducer can be used
as shown in Fig. 18.6b. In this case the wave generated is a converging spherical
wave, analogous to light after passing through a lens. In fact, actual acoustic lenses
can be used with planar transducers to achieve the same result.

A microwave transducer is a reflecting dish illuminated with a feed horn as
shown in Fig. 18.7. The dish is ideally parabolic but may be spherical in practice.
If its radius of curvature is R, then it functions as a focusing element with focal
length f = R/2. If the feed horn is one focal length from the dish, a plane electro-
magnetic wave is formed immediately after the reflection, and it then diffracts as
it propagates just as the ultrasonic wave does. A converging spherical wave can be
generated by moving the feed horn so that it is more than one focal length from
the dish.

Radar systems operate over a wide variety of frequencies, from a few hundred
MHz to tens of GHz. A common choice, referred to as X band, is 8 – 12 GHz. A 10
GHz radio wave in free space has a wavelength of 3 cm.

Fig. 18.6 Transducers for use in medical ultrasound. (a) Planar transducer
produces a plane wave that eventually diffracts into a diverging spherical wave.
(b) Curved transducer produces a converging spherical wave that comes to a
focus at the center of curvature of the transducer.

Scanning methods If a pulsed RF signal is transmitted from a transducer in a given
location, a wave packet propagates to a reflecting target, and part of the reflected
wave returns to the transducer and is reconverted to an electrical signal. If the
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received electrical signal is displayed on an oscilloscope, an echo or blip is seen at
a time corresponding to the round trip propagation time from transducer to target
and back again. If there are many targets in the beam, there is an echo for each.
The oscilloscope display is referred to as an A-scan, where A refers to the amplitude
of the return signal. For our purposes, an A-scan can be regarded as a 1D image,
with time delay corresponding to the range to the target.

To form a 2D image, the transducer can be tilted or rotated to produce beams
in different directions. In radar it is common to rotate the antenna continuously,
and in ultrasound the transducer is commonly swept over some angular arc, either
mechanically or by hand. Conceptually it may be easier to think of the transducer
as being pointed to a discrete set of positions, where a pulsed signal is transmitted
and received at each position. The result is a 2D map of target locations in po-
lar coordinates. Commonly, this information is displayed on a monitor with echo
strength converted to brightness; this display is called a B-scan (B for brightness).

In a B-scan with different angular directions for the beam, information is ob-
tained from the object along a fan of rays. In Chap. 17 we encountered fan-beam
and cone-beam tomographic systems that also collect information along many rays
passing through a single point. The key difference is that the tomographic systems
collect integrals of some object property, while radar and ultrasound systems take
advantage of time of flight to get information about where along the ray a target lies.
Time of flight has been used in some PET systems to get similar information, and
if the temporal resolution were adequate, PET images could be obtained without
tomographic reconstruction. In practice, however, available gamma-ray detectors
limit the time-of-flight resolution to about 10 cm, which is far from adequate for
medical applications.

Fig. 18.7 Illustration of microwave transducer. The microwave input is lo-
cated a distance R/2 from the reflector; the result is a plane wave.

Phased arrays Angular scanning of the beam is essential for obtaining a 2D image
with a monostatic system, and focusing the beam can be useful to avoid diffraction
spread. We know from Chap. 9 that an angular deviation corresponds to a 2D
linear phase factor, exp(2πiρ0 · r) across a beam, and focusing corresponds to a
quadratic phase factor, exp(−iπr2/λf). In essence, angular scanning and focusing
are equivalent to imposing phase variations on the transducer.
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The same phase variations can be imposed electronically rather than mechan-
ically if the transducer is divided into many small elements that can be excited
independently with different phases. The more elements used, the better the ap-
proximation to the desired continuous phase distribution but the more hardware
needed to provide the requisite signals to each element. Ideally, the element spac-
ing should be a half wavelength or less to give Nyquist sampling of any real (non-
evanescent) plane-wave component of a general propagating beam (Macovski, 1979).

Phased arrays are commonly used in radar for rapid scanning, target track-
ing and beam forming. 1D phased arrays are also common in medical ultrasound.
Rectangular elements are used, where one dimension, say Lx, of the rectangle is
comparable to a wavelength but the other, Ly, is much larger than a wavelength.
The result is a beam confined to be near the y-z plane but capable of being focused
or scanned in that plane. Two-dimensional piezoelectric arrays with small square
elements are also being developed; they permit arbitrary monostatic scanning and
hence 3D imaging without mechanical motion.

Resolution As with any imaging system, spatial resolution is critical in pulsed rang-
ing systems. We must distinguish lateral resolution (transverse to the beam) from
longitudinal resolution (along the beam, in the range direction). Lateral resolution
is computed just as in optics; a transducer of diameter D, for example, produces an
angular divergence of λ/D in the Fraunhofer zone. Longitudinal resolution, on the
other hand, is determined entirely by the modulation of the beam. For example, if
we use a simple pulse of duration T, it produces a travelling wave packet of length
vT, where v is the speed of propagation. The longitudinal resolution is thus about
vT/2 (the factor of 2 arising since the delay is doubled for round-trip propagation).

To get good longitudinal resolution, therefore, we should use short pulses. The
problem is that the pulse amplitude is usually constrained by engineering consid-
erations such as electrical breakdown, so a shorter pulse has smaller energy, which
makes it more difficult to detect weak echoes.

Pulse coding During World War II and since, many methods have been developed
for getting good longitudinal resolution without sacrificing pulse energy and hence
detectability (see Sec. 18.6.4). Klauder et al. (1960) classify the methods as chirp,
bang and hiss. Bang refers to the use of simple pulse modulation as just discussed.
Chirp refers to use of a temporal quadratic phase factor as the modulation. We
know from Sec. 5.1.3 that a quadratic phase variation corresponds to a linear varia-
tion of local frequency with time, so the chirp is linear frequency modulation. Hiss
refers to the use of noise as the modulation.

The principle of chirp radar is illustrated in Fig. 18.8. As shown there, the
transmitted signal is a chirp where the lowest frequency is transmitted first. The
received signal is sent through a dispersive delay line where the delay varies linearly
with frequency and the lowest frequency is delayed the most. If the dispersion rate
of the delay line is matched to the chirp of the signal, then all frequency compo-
nents come out of the delay line at the same time, yielding a pulse of much higher
amplitude and shorter duration. As we shall see in Sec. 18.6.2, the width of the
compressed pulse is the reciprocal of the bandwidth of the chirp, while the total
energy is determined by its width before compression. Thus chirps allow good de-
tectability and also good longitudinal resolution.
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Fig. 18.8 Principle of chirp radar.

As we shall see in Sec. 18.6.2, the delay line is a matched filter for the chirp
signal. That means that the delay line serves to cross-correlate the noisy received
signal with a replica of the noise-free transmitted signal. If the target is a point,
the noisy signal itself contains a replica of the transmitted signal, and the reason
chirp radar works is that the correlation of a chirp with itself is sharply peaked,
approaching a delta function as the width of the chirp increases.

Many other codes also have sharply peaked autocorrelations. The possibili-
ties include nonlinear frequency modulation, frequency-jump chirp, step chirp and
various phase-modulation patterns such as Barker codes. For details see Sullivan
(2000).

Optical coherence tomography Although chirp signals are commonly used in mod-
ern radar, noise-modulated or hiss signals are not, having been superseded by so-
phisticated pulse codes. The principle of hiss radar is, however, the foundation for
an optical ranging system called optical coherence tomography or OCT.

The basic system for OCT is shown in Fig. 18.9. The broadband optical source
emits a wave that we can represent as ũ(r, t) exp(−2πiν0t), where ũ(r, t) is a ran-
dom process that can be regarded for present purposes as a noise modulation. The
wave bounces off a target and returns to the system, where it is interfered with
a delayed replica of itself. As we know from Sec. 9.7.4, interference occurs only
when the path difference is less than the coherence length, given by c/∆ν, where
∆ν is the bandwidth of the source. Scanning in the range direction is accomplished
by varying the delay, and fringes are observed only if the two path lengths match
within the coherence length. Longitudinal or range resolution is thus c/2∆ν and
can be improved, just as with a chirp, by increasing the bandwidth of the source.
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Fig. 18.9 Basic system for optical coherence tomography.

Doppler Often the targets in radar and medical ultrasound are in motion, and the
reflected wave undergoes a Doppler shift. If the Doppler shift is measured, the
system becomes a 4D imaging system, localizing the target in x, y, z and vz, where
x and y are transverse to the beam, z is along the beam and vz is the component
of v parallel to z. Resolution in x and y is determined by the transducer size
and the wavelength; resolution in z is determined by the duration of the pulse after
compression of other processing, and resolution in range is determined by our ability
to measure the Doppler shift.

There is, however, a conflict between range resolution and Doppler resolution.
If we choose a short pulse that contains only a few cycles of the center frequency,
then we get good range resolution but poor Doppler resolution; since the pulse
consists of a broad spectrum of frequencies, small frequency shift are hard to discern.
Conversely, a long pulse gives good Doppler resolution. The use of a chirp does not
help appreciably in this case, as we can see by looking again at Fig. 18.8a. A change
in range z of a target causes a shift of the diagonal line in that figure along the
horizontal axis, while a change in vz causes a shift along the vertical axis. Except
for what happens at the ends of the line, these two shifts are indiscernible, and
range and Doppler shifts causes ambiguous variations in the received signal. The
Woodward ambiguity function, introduced in Sec. 5.2.2, is a way of quantifying this
ambiguity.

Synthetic-aperture radar Radar systems in aircraft or satellites can be used to get
high-resolution images of the ground. The airborne antenna is generally small and
a large area on the ground is illuminated, so these systems do not rely on λ/D to
get the spatial resolution. Instead, many images are recorded as the aircraft flies
along, and these images are coherent with respect to one another. They can, in
effect, be made to interfere in the computer, and the result is that the resolution is
determined by the distance the aircraft flies while a particular point on the ground
is illuminated. Calling this distance L, we see that the angular resolution is λ/L
rather than λ/D, so we have synthesized a much larger aperture, hence the name
synthetic-aperture radar or SAR.16

16SAR is a second-order acronym; one of the letters stands for an acronym. Third-order acronyms
are also possible; for example, ASF stands for Alaska SAR Facility.
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The resolution properties of SAR images are quite counterintuitive. Consider
a point target at range R from the aircraft. An antenna of diameter D illuminates
a patch of length given by Rλ/D, and this is also the length L of the synthesized
aperture. After image reconstruction the linear resolution in the direction of the
flight path is Rλ/L = (Rλ)/(Rλ/D) or simply D. Thus the resolution is the an-
tenna size D, independent of both wavelength λ and range R. A smaller antenna is
better since it illuminates a larger patch on the ground, and the size of the patch is
the length of the synthesized aperture. Resolution in the range direction is deter-
mined by pulse width or pulse coding as with other forms of radar.

We shall not explicitly analyze SAR systems in what follows, but the formalism
is general enough to include it. In particular, we shall consider multiple antenna
configurations, which can include multiple positions along a flight path.

For excellent reviews of the mathematics of SAR, see Borden (1999) and Ch-
eney (2001), and for a comprehensive treatment see Sullivan (2000).

18.6.2 Deterministic analysis

In this section we analyze a basic coherent ranging system deterministically; the
corresponding stochastic analysis is presented in Sec. 18.6.3. Both analyses apply
equally to microwave or ultrasound systems.

The system we shall analyze is monostatic, with the transducer lying in the
plane z = 0 (or just behind it if the transducer is curved). The transducer is
scanned either laterally by moving it in x and y, or angularly by tilting it physically
or by controlling the linear phase factor in a phased array. In either case we use the
discrete index j to denote the transducer configuration. For lateral scanning that
index specifies the center coordinates of the transducer, (xj , yj), and for angular
scanning it specifies the beam direction in polar coordinates, (θj ,φj). For airborne
SAR systems, j denotes the position of the antenna along the flight path, which
can be taken as the x axis.

The transducer acts as a pulsed source, producing a beam-like wave packet in
the space z > 0. The wave packet is reflected by inhomogeneities in the refractive
index in the medium, and some of it returns to the transducer where it is reconverted
to an electrical signal. For each j the transducer output is a function of time,
so the collected data are denoted gj(t). We shall consider the refractive-index
inhomogeneities to be functions of the continuous spatial variable r = (x, y, z)
(with z > 0), so the system under consideration is a mixed CC-CD system in the
terminology of Sec. 7.3.5. It is mixed in data space since gj(t) has both continuous
and discrete indices, but it is continuous in object space since the object is a function
of a continuous variable.

There are situations where the system is mixed in object space as well. If we
consider polarized electromagnetic radiation, and the object has different scattering
properties for the two polarizations, then the object is a 2D vector field and we need
a discrete index on the object function. Similarly, in ultrasound the scattering is
determined by both the object density and its compressibility, so again the object
is a 2D vector field.

For simplicity, however, we shall forgo this generality and consider only scalar
objects. Thus we are seeking an expression for a linear operator L that maps a
function of (x, y, z) to a function of j and t. In order to make the analysis tractable,
we assume weak scattering and apply the first Born approximation, as introduced in
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Sec. 9.8.1. In that section, however, we assumed perfectly monochromatic radiation
and solved the Helmholtz equation; here we must use the time-dependent wave
equation in order to account for the pulse modulation.

The Born approximation in time-dependent problems We know from (9.23) that
scalar waves in a homogeneous medium, where the speed of propagation is cm,
must satisfy

(

∇2 −
1

c2m

∂2

∂t2

)

u(r, t) = s(r, t) , (18.285)

where s(r, t) describes the radiation source. We shall be interested in solutions of
this equation in situations where the speed of propagation varies with space and
time. Perhaps surprisingly, the wave equation (18.285) still holds if we replace the
constant cm by the general function cm(r, t) so long as u(r, t) varies much more
rapidly with time than does cm(r, t); in other words, the Doppler shifts must be
small compared to the mean frequency of the radiation. For simplicity, we assume
in what follows that cm is independent of time (thereby ruling out moving targets
in radar).

To accommodate a speed of propagation that varies with r, we define the
refractive index as

n(r) =
c

cm(r)
, (18.286)

where c is some reference speed, usually taken as the speed of light in vacuum for
electromagnetic waves. For medical ultrasound, however, the reference speed is
often taken as the speed of sound in water, about 1500 m/s; tissue is very similar
to water acoustically, so the refractive index defined this way is near one.

Derivation of the Born approximation now parallels the treatment given in Sec.
9.8.1 for the monochromatic case. Equation (18.285) can be rewritten as

(

∇2 −
1

c2
∂2

∂t2

)

u(r, t) =
n2(r)− 1

c2
∂2

∂t2
u(r, t) + s(r, t) . (18.287)

We define uinc(r) as the field that would exist at point (r, t) in the absence of
the inhomogeneous index distribution. Specifically, as in (9.329), uinc(r, t) is the
solution to

(

∇2 −
1

c2
∂2

∂t2

)

uinc(r, t) = s(r, t) . (18.288)

We then write the total field as

u(r, t) = uinc(r, t) + usc(r, t) , (18.289)

where usc(r, t) ≡ u(r, t)− uinc(r, t) can be interpreted as the field scattered by the
index inhomogeneities.

With these definitions, (18.287) in a source-free region (z > 0) becomes

(

∇2 −
1

c2
∂2

∂t2

)

usc(r, t) =
n2(r)− 1

c2
∂2

∂t2
u(r, t) . (18.290)

Notice that the unknown scattered field is hidden in u(r, t) on the right.
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The first Born approximation regards the scattered field as small compared to
the incident field, so the wave equation (still in the source-free region) becomes

(

∇2 −
1

c2
∂2

∂t2

)

usc(r, t) ≈
n2(r)− 1

c2
∂2

∂t2
uinc(r, t) ≈ k20 [1− n2(r)]uinc(r, t) ,

(18.291)
where the last step follows if the incident field is narrowband with center frequency
ν0, and k0 ≡ 2πν0/c.

The equation for the scattered field, (18.291), is now identical to (18.288)
except that the real source has been replaced by an effective source: the incident
field modulated by the index inhomogeneities.

The object For purposes of deterministic analysis, we can identify “the object” as
the scattering potential, defined as in (9.328) by

V (r) ≡ k20 [1− n2(r)] . (18.292)

When we get to stochastic analysis in Sec. 18.6.3, we shall see that it is by no means
so simple to say what the word “object” means.

The incident field Since multiple scattering is neglected in the first Born approx-
imation, the incident field is found by solving the time-dependent wave equation,
(18.288), with the transducer acting as a source but with no index inhomogeneities.
All of the work in finding the solution was done in Sec. 9.3, and we can just ap-
propriate the basic result here; from (9.66) we know that the incident field is given
by

u(j)
inc(r, t) = −

1

4π

∫

∞
d3r′

1

|r − r′|
sj

(

r
′, t−

|r − r
′|

c

)

, (18.293)

where sj(r, t) is the source function for the jth transducer configuration. In essence,
the field at an observation point is the sum (integral) of the fields from all source
points, delayed by the propagation time and reduced in amplitude by the 1/|r− r

′|
factor.

Spatially, the source function sj(r, t) contains a factor of δ(z) since the trans-
ducer lies in the plane z = 0, so the integral in (18.293) is really over the x-y plane.
Also, sj(r, t) vanishes when the point (x, y) lies outside the physical boundaries
of the transducer in the jth configuration. The remaining function of (x, y) may
include linear phase factors to describe tilt of the transducer or quadratic phase
factors to describe focusing; either of these factors can be created mechanically,
by tilting or curving the transducer, or electronically by programming the phase
shifters in a phased array appropriately. For example, if

sj(r) ∝ δ(z) exp

[
2πi

λ0
(αjx+ βjy)−

πi

λ0zj

(
x2 + y2

)]
, (18.294)

it means that the beam is aimed in the direction specified by the direction cosines
αj and βj (see Sec. 9.2.1) and focused in the plane z = zj (see Sec. 9.6.1).

Temporally, the source function consists of a carrier-frequency factor times a
factor specifying the pulse modulation. If we assume that the carrier frequency and
the pulse modulation are the same for every transducer configuration, we can write

sj(r, t) = m(t) exp(−2πiν0t) sj(r) , (18.295)
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where m(t) is the modulation function. Thus

u(j)
inc(r, t) = −

1

4π
exp(−2πiν0t)

∫

∞
d3r′

exp(ik0|r − r
′|)

|r − r′|
sj(r

′)m

(
t−

|r − r
′|

c

)
,

(18.296)
where k0 ≡ 2πν0/c, and the real parts of all complex fields are to be taken. If
m(t) is a constant, (18.296) reduces to (9.67), which expresses the solution of the
inhomogeneous Helmholtz equation with a prescribed source.

If m(t) is slowly varying compared to the variation in propagation times from
different points on the transducer to the scattering point r, then we can approximate
(18.296) by

u(j)
inc(r, t) = −

1

4π
exp(−2πiν0t)m

(
t−

|r − r0j |
c

)∫

∞
d3r′

exp(ik0|r − r
′|)

|r − r′|
sj(r

′) ,

(18.297)
where r0j is the center of the transducer in the jth configuration. In this form
the result is identical to the Helmholtz expression, (9.67), except for an envelope
function that moves along the beam at speed c. For later convenience we define

hj(r) ≡ −
1

4π

∫

∞
d3r′

exp(ik0|r − r
′|)

|r − r′|
sj(r

′) . (18.298)

Since the source is confined to the plane z = 0, hj(r) is the monochromatic diffrac-
tion pattern of the transducer.

The scattered field The scattered field is also given by (18.293), but with the real
source sj(r, t) replaced by the effective one:

u(j)
sc (r

′′, t) = −
1

4π

∫

∞
d3r

1

|r′′ − r |
u(j)
inc

(
r, t−

|r′′ − r |
c

)
V (r)

=−
1

4π
exp(−2πiν0t)

∫

∞
d3r

exp(ik0|r′′ − r |)
|r′′ − r |

m

(
t−

|r − r0j |
c

−
|r′′ − r |

c

)
hj(r)V (r) .

(18.299)
Now the total delay of the envelope is the propagation time from the center of the
transducer to the scattering point r to the observation point r

′′.

The received signal When the scattered wave returns to the transducer, the reci-
procity principle tells us that it undergoes the same weighting as on transmission;
it is multiplied by a factor sj(r), and the resultant weighted amplitude is integrated
across the transducer face (the sensitive area of the plane z = 0). The output signal
is thus

gj(t) = C

∫
d3r′′ sj(r

′′)u(j)
sc (r

′′, t) (18.300)

where C is a constant related to the responsivity of the transducer. With (18.299),
we find

gj(t) = −
C

4π
exp(−2πiν0t)

∫

∞
d3r hj(r)V (r)

×
∫

d3r′′ sj(r
′′)

exp(ik0|r′′ − r |)
|r′′ − r |

m

(
t−

|r − r0j |
c

−
|r′′ − r |

c

)
. (18.301)
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Since the same transducer is used for receiving as for transmitting in a mono-
static system, we can use the same approximation as in (18.297), approximating
|r′′ − r | by |r0j − r | in the argument of m( · ). We then obtain

gj(t) = C exp(−2πiν0t)

∫

∞
d3r [hj(r)]

2 m

(
t− 2

|r − r0j |
c

)
V (r) . (18.302)

We can write this result as

gj(t) =

∫
d3r Lj(t, r)V (r) or g = LV . (18.303)

Thus the desired kernel for the linear operator L is

Lj(t, r) = C exp(−2πiν0t) [hj(r)]
2 m

(
t− 2

|r − r0j |
c

)
. (18.304)

Note that the monochromatic diffraction pattern of the transducer, hj(r), appears
as a square (not squared modulus) in the kernel. Any phase distortions in the
transducer plane (deliberate or otherwise) get doubled because we go through the
same transducer twice. Similarly, the time delay of the envelope is doubled since a
round trip is required to get back to the transducer.

Electronic filtering There is almost always some electronic filtering applied to the
transducer output. At the least, there is a bandpass filter to suppress noise outside
the signal bandwidth, and if chirps or other coded pulses are used, the pulse com-
pression or decoding is performed with an electrical filter. The filters are usually
linear and shift invariant, so we can write the filter output as

g̃j(t) =

∫ ∞

−∞
dt′ gj(t

′) q(t− t′) or g̃ = Qg . (18.305)

The overall mapping from V to the filter output is then given by

g̃ = QLV , (18.306)

where the kernel of QL is given by

[QL]j(t, r) =

∫ ∞

−∞
dt′ Lj(t

′, r) q(t− t′) . (18.307)

With the help of (18.304), we obtain

[QL]j(t, r) = C [hj(r)]
2

∫ ∞

−∞
dt′ exp(−2πiν0t

′)m [t′ − τj(r)] q(t− t′) , (18.308)

where τj(r) ≡ 2|r − r0j |/c.

Pulse compression To illustrate the behavior of the kernel of QL, let us suppose
that the modulation is a chirp, so that

m(t) = A exp(−iπβt2) rect

(
t

T

)
. (18.309)
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From (18.295), the source term in the wave equation is

sj(r, t) = A exp(−2πiν0t− iπβt2) rect

(
t

T

)
sj(r) . (18.310)

This signal extends over − 1
2T < t < 1

2T. The corresponding local frequency is
obtained by differentiating the phase as in (5.27);17 the result is

ν(t) = −
1

2π

∂

∂t
(−2πν0t− πβt2) = ν0 + βt . (18.311)

Thus the signal spectrum extends over ν0− 1
2β T < ν(t) < ν0+

1
2β T. The bandwidth

of the chirp is β T and the time-bandwidth product is β T 2.
Now suppose that the filter impulse response is the same as the transmitted

signal except that β is changed to −β, which has the effect of converting an up-chirp
(frequency increasing with time) to a down-chirp:

q(t) = exp(−2πiν0t+ iπβt2) rect

(
t

T

)
≡ q0(t) exp(−2πiν0t) , (18.312)

where the exponential factor tells us that an impulse applied to the filter will gen-
erate a bandpass signal centered on ν0, and the factor q0(t) is the phase modulation
of that signal. This impulse response can be realized by a dispersive delay line with
a delay that varies linearly with frequency as in Fig. 18.8.

With (18.308) – (18.310) and some algebra, the kernel of QL becomes

[QL]j(t, r) = AC [hj(r)]
2 exp{−2πiν0[t− τj(r)]} exp{iπβ[t− τj(r)]

2}

×
∫ ∞

−∞
dt′′ exp{−2πiβ[t− τj(r)]t

′′} rect
(
t′′

T

)
rect

[
t− τj(r)− t′′

T

]
, (18.313)

where t′′ = t′−τj(r). The important point is that the quadratic phase factors inside
the integral have cancelled. The integral is now just the Fourier transform of the
product of the two rects, which is another rect of width T ′ = T − |t − τj(r)|. The
“frequency variable” in this Fourier transform is β[t− τj(r)], and the transform is
small if β|t− τj(r)|T ′ & 1. If the time-bandwidth product βT 2 is large compared
to 1, we must have |t− τj(r)| + T, and hence

[QL]j(t, r) ≈ AC [hj(r)]
2 exp{−2πiν0[t− τj(r)]}T sinc{βT [t− τj(r)]} ,

(τj(r) ≡ 2|r − r0j |/c) . (18.314)

This kernel is just what we would have obtained by transmitting a pulse with
m(t) = AT sinc(βTt) and doing no filtering. The actual transmitted pulse has
been compressed from its initial width of T to a processed width of 1/(βT ). The
compression ratio CR is thus

CR ≡
initial width

width after processing
=

T

(βT )−1
= βT 2 = time-bandwidth product .

(18.315)
The factor of T in (18.314) will become important when we discuss noise.

As the pulse is compressed, it is increased in amplitude, potentially aiding in the
detection of signals buried in noise.

17There is a minus sign in (18.311) not seen in (5.27). The sign difference arises because we chose
in Chap. 9 to use different sign conventions on spatial and temporal Fourier transforms in order
to make the Fourier kernel exp[i(k · r − ωt)] represent a plane wave travelling parallel to k.
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18.6.3 Statistical analysis

When we turn to the statistical aspects of coherent ranging systems, the key question
concerns the nature of randomness and the role of probability. If we say, as we
did in Sec. 18.6.2, that the object is the scattering potential V, and if we neglect
measurement noise, then the conditional density pr(g|V) is merely δ(g−LV) and
any discussion of statistics is moot. On the other hand, we seldom know the details
or fine structure of the scattering potential, and we might not be interested in them
anyway. Statistical descriptions are a way of overcoming this lack of information,
but it is incumbent on us to say what part of the scattering potential we think of as
the object of interest and what part we regard as uninteresting and hence relegate
to statistical summaries.

We avoided this issue in Sec. 18.2, where we considered free-space propagation
of light from a ground glass, by saying that the ground glass was one realization
of a random process. In that case all we were interested in was the statistical
description of the diffracted light, and the implicit statistical ensemble was a set of
ground glasses from which the one currently in the laser beam was drawn.

The problem became more acute in Sec. 18.3 when we added a lens to form
an imaging system. We formulated the problem there by considering the object to
be a photographic transparency tobj placed over a coherently illuminated ground
glass. We imagined a set of experiments where the ground glass was varied but the
object transparency was not; thus pr(g|tobj) was no longer a delta function in this
interpretation, and we could regard tobj or |tobj |2 as the object.

Additional ways of defining an object were suggested in Sec. 18.5, where we
considered distributions of point scatterers. One approach, evident in (18.226), was
to regard the object f(r) as the average density of point scatterers, where the average
is over positions of the individual points but does not involve the phases. Another
approach was to treat the object as an average energy reflectance, given by the
density of scatterers times the average of the square of the scattering amplitude an.

These definitions can be extended to the 3D problems considered here, but
they are not without their difficulties. When we want to perform a specific task,
such as deciding whether a given speckle pattern was produced by an object from
class 1 or class 2, it may be precisely the fine structure that is most important in
the discrimination. In those cases we would not want to regard the fine structure
as noise and lump it into pr(g|f ), but instead would like to include it in pr(f |Hj),
which is how we distinguish the classes in the first place. As we know from Chap.
13, the discrimination is ideally based on pr(g |Hj) =

∫
df pr(g|f ) pr(f |Hj). Thus

we would be better advised to use pr(g|f ) to account for measurement noise and to
reserve the speckle statistics for pr(f |Hj).

As a practical matter, however, this ideal-observer approach is beyond the
current state of the art in object modeling. In practice, tissue characterization in
ultrasound or identification of regions in SAR images of terrain is based on estimates
of statistical parameters under assumptions of quasistationarity rather than a full
consideration of pr(f |Hj). The estimates are treated as features, and the classifier
is formulated in feature space rather than data space.

Dealing with reality As we formulated the coherent ranging problem in Sec. 18.6.2,
the data consisted of a set of complex functions {gj(t)}. Recall, however, that we
are using the convention—virtually universal in wave propagation—that the real
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part of all complex quantities is understood. Thus the data are actually the set
of real functions, {Re[gj(t)]}. The functions that appear in the argument of the
characteristic functional for the data are also real, and we denote them by {ξj(t)},
with the corresponding Hilbert-space vector denoted ξ.

We define the characteristic functional for the real data as

Ψg(ξ) =
〈
exp

{
−2πiξ† Re[g]

}〉
=

〈
exp

{
−πiξ†[g+ g∗]

}〉
, (18.316)

where, to be specific,

ξ†g ≡
J∑

j=1

∫ ∞

−∞
dt ξj(t) gj(t) , ξ†g∗ ≡

J∑

j=1

∫ ∞

−∞
dt ξj(t) g

∗
j (t) , (18.317)

with J being the total number of transducer configurations.
Since g = LV, we can also write

ξ†Re[g] = 1
2

J∑

j=1

∫ ∞

−∞
dt ξj(t)

{
[LV]j(t) + [LV]∗j (t)

}
. (18.318)

The adjoint operator for this mixed CC-CD problem is defined by combining (1.43)
and (1.45), yielding

[L†ξ](r) =
J∑

j=1

∫ ∞

−∞
dt ξj(t)L

∗
j (t, r) , [L†ξ]∗(r) =

J∑

j=1

∫ ∞

−∞
dt ξj(t)Lj(t, r) .

(18.319)
Thus

ξ†Re[g] = 1
2

∫
d3r

{
[L†ξ]∗(r)V (r) + V ∗(r) [L†ξ](r)

}
= 1

2

{
[L†ξ]†V+V†[L†ξ]

}
.

(18.320)
As usual, we define the characteristic functional of the complex scattering

potential by

ΨV(ζ) =
〈
exp

[
−iπ

(
ζ†V+V†ζ

)]〉
, (18.321)

where ζ corresponds to the set of complex functions {ζj(r)}, so that

ζ†V ≡
∫

d3r ζ∗(r)V (r) . (18.322)

But note from (18.320) that

Ψg(ξ) =
〈
exp

{
−2πiξ†Re[g]

}〉
=

〈
exp

{
−iπ

([
L†ξ

]†
V+V† [L†ξ

])}〉
,

(18.323)
or, by comparison with (18.321),

Ψg(ξ) = ΨV

(
L†ξ

)
. (18.324)

Thus the usual complex transformation rule works if we merely take ξ real, even
though L†ξ is complex.
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The Gaussian case For one time t and one detector configuration j, the data value
is a weighted sum of contributions from object points in a focal volume defined by
the kernel Lj(t, r) defined in (18.304). As we discussed qualitatively in Sec. 18.6.1,
the size of this volume is determined by both the duration of the modulation pulse
m(t) and by λ0/D, where D is the diameter of the transducer and λ0 is the free-
space wavelength associated with the carrier frequency.

If the scattering potential in this focal volume can be divided into many sta-
tistically independent subvolumes, then it follows from the central-limit theorem
that the received signal is Gaussian. Moreover, if we can argue that the phase
of the reflected wave from each point in the volume is uniformly distributed over
(−π,π), then the statistics of the received signal are circular Gaussian. As we saw
in (18.225), the phase of this wave arises at least in part from the random location
of the scattering point in the illuminating beam. Thus a large focal volume leads
us to the circular Gaussian model for two reasons: the volume contains more inde-
pendent regions as it gets larger, and the phases vary more because the variations
in round-trip propagation times to the transducer are greater.

If circular Gaussian statistics apply, all statistical properties of the received
signal are determined by the autocovariance function of the scattering potential
(which is also the autocorrelation function since circular Gaussians necessarily have
zero mean). It follows from (8.147) that the autocovariance operator for g is related
to that for V by

Kg = LKVL† , (18.325)

and the characteristic functional for the data becomes

Ψg(ξ) = exp(−π2ξ†LKVL†ξ) . (18.326)

We can go a step further if the correlations of the scattering potential have
very short range compared to the extent of the focal volume in all three dimensions.
In that case we can approximate the autocovariance function (the kernel of KV) by

KV(r, r′) = f(r) δ(r − r
′) . (18.327)

A physical interpretation of f(r) will be given below.
With (18.327), (18.325) and (18.304), the autocovariance function for the data

becomes

[Kg]jj′(t, t
′) =

∫
d3r

∫
d3r′ Lj(t, r) f(r) δ(r−r

′)L∗
j′(t

′, r′) = C2 exp[−2πiν0(t− t′)]

×
∫

d3r f(r) [hj(r)]
2[h∗

j′(r)]
2 m

(
t− 2

|r − r0j |
c

)
m∗

(
t′ − 2

|r − r0j′ |
c

)
. (18.328)

This expression shows that the data are correlated in time by an amount deter-
mined by the duration of the transmitted pulse; if j = j′ and m(t) has duration T,
then the integrand vanishes if |t − t′| > T . Signals from two different transducer
configurations, j != j′, are correlated only if the two beams overlap.

Random point scatterers As in Sec. 18.5, it is often useful to think of the scattering
in coherent ranging as coming from a collection of point objects at random locations.
In this model the scattering potential is written

V (r) =
N∑

n=1

an exp(iφn) δ(r − rn) . (18.329)
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A very similar expression, (18.223), appeared in Sec. 18.5 when we analyzed 2D
coherent imaging, but the interpretation here is quite different; (18.223) could rep-
resent both the scatterers themselves and the scattered field since the illumination
was just a plane wave. Here the illumination is a complicated spatio-temporal field.

Nevertheless, we can make good use of results from Sec. 18.5. If we assume
that the phases φn are completely random and that the random positions rn are
statistically independent but with a nonrandom density (per unit volume) b(r), then
the derivation leading to (18.242) is still valid (for the scattering potential, not the
field), and we see that

ΨV(ζ) = exp

[
−N +

∫

S

d3rn b(rn) 〈J0[2πan|ζ(rn)|]〉an

]
. (18.330)

From this characteristic functional the reader can show [hint: use (18.248)] that the
autocovariance function of V is given by

KV(r, r′) = b(r) 〈a2n〉 δ(r − r
′) . (18.331)

Comparison with (18.327) then shows that

f(r) = b(r) 〈a2n〉 . (18.332)

If we think of an as the square root of a backscattering cross section, then f(r)
is the number of scatterers per unit volume times the average scattering cross sec-
tion. Thus f(r) has dimensions of 1/length; since the delta function has dimension
1/length3, KV has dimensions 1/length4, as it must since V has dimensions of
1/length2 by (18.292).

We can also use (18.330) to analyze the statistics of the data. Application of
(18.324) to (18.330) gives us immediately

Ψg(ξ) = exp

{
−N +

∫

S

d3rn b(rn) 〈J0[2πan|[L
†ξ](rn)|]〉an

}
. (18.333)

When used with the definition of L† from (18.319), this expression contains the
complete statistical description of the data for the point-scattering model, provided
the only noise present is speckle.

Electronic noise Radar and ultrasound signals are often quite weak, and post-
detection electronic noise cannot be neglected. Poisson noise, on the other hand,
does not arise since the energy of microwave photons and acoustic phonons is too
low to liberate photoelectrons.

When electronic noise is included, the overall mapping from scattering poten-
tial to data is given by

g = LV+ n , (18.334)

where n ⇒ nj(t). The real part is still understood on LV, but n is assumed real.
Since electronic noise is independent of signal level, V and n are statistically

independent, and (18.324) becomes

Ψg(ξ) = Ψn(ξ)ΨV(L†ξ) . (18.335)

As discussed in detail in Chap. 12, electronic noise is usually well modeled as a zero-
mean Gaussian random process, and for simplicity we assume that its bandwidth is
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very large so we can take it as white noise with a constant power spectral density Sn.
We assume also that the noise in different transducer configurations is uncorrelated,
so the noise autocovariance function is

[Kn]jj′(t, t
′) = Sn δjj′ δ(t− t′) , Kn = SnI , (18.336)

where I is the unit operator in data space. With these assumptions, the noise
characteristic functional is

Ψn(ξ) = exp[−2π2Sn ξ
†ξ] = exp



−2π2Sn

J∑

j=1

∫ ∞

−∞
dt |ξj(t)|2



 . (18.337)

By Parseval’s theorem, an equivalent expression is

Ψn(ξ) = exp



−2π2Sn

J∑

j=1

∫ ∞

−∞
dν |Ξj(ν)|2



 , (18.338)

where Ξj(ν) ≡ F1{ξj(t)}.

Filtering If we also include an electronic filtering step as in (18.305), the charac-
teristic functional for the filter output is

Ψg̃(ξ) = Ψn(Q
†ξ)ΨV(L†Q†ξ) . (18.339)

This characteristic functional is the complete statistical description of the noise in
all of the coherent ranging systems we are considering in this section. It will form
the basis for our discussion of task performance below.

For the case of white Gaussian noise, as in (18.337), the noise characteristic
functional on the filter output becomes

Ψn(Q
†ξ) = exp[−2π2Sn ξ

†QQ†ξ] . (18.340)

In the Fourier domain [cf. (18.338)],

Ψn(Q
†ξ) = exp



−2π2Sn

J∑

j=1

∫ ∞

−∞
dν |Q(ν)Ξj(ν)|2



 , (18.341)

where Q(ν) is the transfer function of the filter, Q(ν) ≡ F1{q(t)}. The temporal
autocovariance function on the filter output is thus [cf. (8.156)]

Kñ(t, t
′) = Sn[QQ†](t, t′) = Sn

∫ ∞

−∞
dν |Q(ν)|2 exp[−2πiν(t− t′)] . (18.342)

18.6.4 Task performance

The original task of radar is implicit in the word: radio detection and ranging. In
early radar, spatial resolution was poor, and all targets could be considered to be
points. The only thing that could be asked of the signal was whether a target was
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present and how far away it was. In the language of Sec. 13.3.9, this is a hybrid
detection/estimation task.

As radar systems improved, it became feasible to distinguish one kind of target
from another on the basis of the received signal; different aircraft, for example,
had different radar signatures, so the task became classification instead of just
detection. In addition, as Doppler capabilities were added (see Sec. 18.6.1), it
became possible to estimate the speed of the target in the beam direction as well
as the range, so the estimation part of the task became more complicated also.

Synthetic aperture radar and medical ultrasound add new possibilities in terms
of task specification since they produce high-resolution images of objects regarded
as functions of continuous variables, not just as point targets. From these images
we can perform all of the same tasks that we would with any image: detection,
classification, estimation of integrals of the object, mensuration, etc.

In this section we shall examine both detection and estimation tasks in coherent
ranging systems. Both ideal and practical strategies for task performance will be
discussed, and extensive use will be made of results from Chaps. 13 and 14.

Signal-detection tasks: What do we mean by “signal”? There are two distinct ways
of defining the signal to be detected in 3D coherent ranging systems. One is simply
to define the object in terms of the scattering potential V (r) as we did in Sec. 18.6.2.
We can then decompose the object into a background part Vb(r) and a signal part
Vs(r) (see Sec. 18.5.3). The signal, the background or both can be regarded as
random, depending on the detailed task specification. Even if we model Vb(r)
as a circular Gaussian, the data do not have zero mean under the signal-present
hypothesis because Vs(r) is not zero mean.

The other viewpoint is to think of the object as the density of scatterers,
possibly weighted by the average of the square of the scattering amplitude as in
(18.332). In this case a signal can be defined as a localized change in the density of
scatterers, and the data do have zero mean if the phases are completely random.

SKE detection of a point target in free space We begin our discussion of signal
detection in coherent ranging with the simplest of signals: a point object at a
known location in free space. In terms of the scattering potential, the object is
specified by

Vs(r) = as δ(r − r0) . (18.343)

Since we are considering free space, Vb(r) = 0, and the mean data under the signal-
present hypothesis are given by

gj(t) = [LVs]j(t) = asLj(t, r0) = Cas exp(−2πiν0t) [hj(r0)]
2 m

(
t− 2

|r0 − r0j |
c

)
,

(18.344)
where Lj(t, r) is the kernel of L, and the last step has used (18.304).

Since the background is zero (hence nonrandom), the only noise is the Gaussian
electronic noise. We know a lot about SKE detection in Gaussian noise from Chap.
13, and the only thing new here is that the data have both continuous (t) and
discrete (j) indices. We expect the ideal observer to be a linear discriminant, but
it is not obvious how to find the discriminant function in this mixed-data setting.

To find the ideal discriminant function, we use a result from Sec. 13.2.12.
From (13.244) we know that the log-likelihood ratio λ(g) is equivalent to a linear
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discriminant if and only if there exists a data-space vector w such that18

Ψg|H2
(ξ) ∝ Ψg|H1

(
ξ +

i

2π
w

)
. (18.345)

Thus, in order for the log-likelihood ratio to be a linear discriminant, Ψg|H2
(ξ) must

be proportional to Ψg|H1
(ξ) with each component shifted along the imaginary axis;

the vector w is the ideal-observer discriminant function.
We apply this result here to the filtered data g̃ rather than the raw transducer

output g. The signal-present characteristic functional for a nonrandom Vs in free
space is

Ψg̃|H2
(ξ) =

〈
exp[−2πi(QLVs +Qn)†ξ]

〉
n
= exp[−2πi(QLVs)

†ξ]Ψn(Q
†ξ) .
(18.346)

If we consider white Gaussian noise on the transducer output and use (18.340), we
can write

Ψg̃|H2
(ξ) = exp[−2πi(QLVs)

†ξ] exp[−2π2Sn ξ
†QQ†ξ] . (18.347)

The shifted version of the no-signal characteristic functional is

Ψg̃|H1

(
ξ +

i

2π
w

)
= exp

[

−2π2Sn

(
ξ +

i

2π
w

)†

QQ†
(
ξ +

i

2π
w

)]

. (18.348)

Recalling that g̃, ξ and w are all real since the actual data are real, and that
QLVs is real by the convention that the real part is understood, we find that
Ψg̃|H2

(ξ) ∝ Ψg̃|H1

(
ξ + i

2πw
)
if

SnQQ†w = QLVs . (18.349)

A formal solution to this equation is given by [cf. (1.194) and (1.199)]

w =
1

Sn
[QQ†]+QLVs =

1

Sn
Q†+LVs , (18.350)

where the second step follows from (1.151). Other solutions exist, but they differ
from this one by null functions of Q†, which correspond to frequency components
outside the filter passband and do not affect the detectability.

An explicit form for the discriminant function can be found by using the fact
thatQ and QQ† are 1D and shift-invariant. [Recall from Sec. 7.2.3 that the adjoint
of convolution with q(t) is correlation with q∗(t).] With judicious insertion of 1D
(temporal) Fourier operators, (18.350) becomes

F1w =
1

Sn
F1Q

†+F−1
1 F1LVs . (18.351)

18The derivation leading to (13.244) assumed a finite-dimensional data space, and Ψ( · ) denoted
a characteristic function rather than functional in that chapter, but the result is independent of
the dimension of the data and therefore extends in the limit to continuous data and characteristic
functionals.
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If we write q(t) = q0(t) exp(−2πiν0t) and wj(t) = wj0(t) exp(−2πiν0t), do the
transforms and drop some irrelevant constants, (18.351) becomes

Wj0(ν) ≡ F1{wj0(t)} ∝ [hj(r0)]
2 exp[−2πiντj(r0)]

M(ν)

Q∗
0(ν)

, (ν in filter passband) ,

(18.352)
where capital letters denote Fourier transforms as usual, and τj(r0) ≡ 2|r0− r0j |/c.
The 0 subscripts on Wj0 and Q0 indicate that the functions are translated back to
zero frequency (baseband in radar parlance) before calculating the test statistic. In
practice, this is done by homodyne detection in which a signal centered at frequency
ν0 is mixed with a local oscillator described in complex terms by exp(−2πiν0t) and
only the low-frequency terms are retained.

The ideal-observer test statistic (an affine transformation of the log-likelihood
ratio) is the scalar product in the mixed data space of w and g̃; by Parseval’s
theorem, it can be written as

tideal(g̃) = w†g̃ ∝
J∑

j=1

∫ ∞

−∞
dν W ∗

j0(ν) G̃j0(ν)

∝
J∑

j=1

[h∗
j (r0)]

2

∫ νmax

−νmax

dν
G̃j0(ν)M∗(ν)

Q0(ν)
exp[2πiντj(r0)] , (18.353)

where the filter passband is ν0 − νmax < ν < ν0 + νmax.
The second line in (18.353) tells us that the ideal observer will first undo the

electrical filter by applying an inverse filter (thereby prewhitening the data tempo-
rally), then do a temporal matched filter on the signal with its original modulation.
The phase factor in the integrand tells us that the observer is looking specifically
for a signal delayed by the known amount τj(r0) in each of the received signals.
The weighting with [h∗

j (r0)]
2 and the sum over j constitute a matched filter with

respect to the discrete transducer configurations; no prewhitening is needed in this
step since we assume [see (18.336)] that signals with different j are uncorrelated.

Point-target detectability and the radar equation Since the data are Gaussian and
the discriminant function is linear, the ideal-observer test statistic obeys Gaussian
statistics also. Thus the SNR of the test statistic as defined in (13.19) is identical
to the detectability index dA from (13.21), and either can be used to specify the
performance. The reader can fill in the details, but it follows from (13.178) that
SNR2 for an ideal observer and a point target at r = r0 is given by

SNR2
ideal(r0) =

1

Sn
V†

sL
†Q†Q†+LVs =

C2|as|2Et
Sn

J∑

j=1

|hj(r0)|4 , (18.354)

where Et is the total energy in the transmitted signal, given by

Et ≡
∫ νmax

−νmax

dν |M(ν)|2 . (18.355)

Each of the factors in (18.354) has a straightforward physical interpretation.
We see that SNR2 is inversely proportional to the power spectral density of the white
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noise going into the filter, but it is directly proportional to the signal strength as
expressed by the cross section |as|2. The transducer conversion factor C comes in
quadratically since the noise is introduced after the transducer; thus an inefficient
transducer reduces the signal but not the noise. The sum over j indicates that
additional transducer configurations (or “looks” at the target) are beneficial to the
degree that the target remains in the beam, as specified by the factor |hj(r)|4. The
form of the transmitted signal comes into the SNR only as the total energy Et; the
details of the modulation are irrelevant for detectability [cf. (13.120)]. In particular,
note that the linear phase factor exp[2πiντj(r0)] seen in (18.353) has disappeared
since the temporal matched filtering is a correlation, and the autocorrelation of
m(t − τ ) is the same as the autocorrelation of m(t), namely a function peaked at
t = 0. (By contrast, the autoconvolution of m(t− τ ) is peaked at t = 2τ .)

Since hj(r) is the amplitude in the diffraction pattern of the transducer, it falls
off as 1/|r0j − r0| in the Fraunhofer region. Thus, for a monostatic system where
all of the r0j are the same,

SNR2
ideal(r0) ∝

C2|as|2Et
Sn

1

|r0j − r0|4
. (18.356)

This expression is known as the radar equation. It shows that the point-target
detectability falls off as the inverse fourth power of distance but that it can be
increased by increasing either the energy of the transmitted signal or the trans-
ducer conversion efficiency. The latter option gets considerable attention in medical
ultrasound.

SKE detection of extended targets in free space Much of what we learned above
about ideal-observer detection for a point target in free space is readily extended
to more complicated nonrandom targets, so long as we assume that the first Born
approximation is valid. In particular, if there is no scattering background, so that
Vb(r) = 0 and the only noise is electronic, then the characteristic functionals of the
filtered data under H1 and H2 are still given by (18.340) and (18.346), respectively.
The ideal-observer test statistic is still linear, and the discriminant function is still
given formally by (18.350).

To get a useful operational form for the test statistic, we use (18.303) – (18.305)
to write [cf. (18.353)]

tideal(g̃) ∝
J∑

j=1

∫
d3r [h∗

j (r)]
2 Vs(r)

∫ νmax

−νmax

dν
G̃j0(ν)M∗(ν)

Q0(ν)
exp[2πiντj(r)] .

(18.357)
As with point targets, the electrical filter is useless to the ideal observer, so the first
step is to get rid of it by inverse-filtering (and hence temporally prewhitening) each
received signal. Then the jth prewhitened signal is converted to a spatial function
by setting t = τj(r), and this spatial signal is matched-filtered against the expected
signal; no spatial prewhitening is required by dint of (18.336).

An expression for the detectability for an extended target will be given below
when we allow both electronic noise and speckle.

SKE detection in speckle So far in this section, we have considered only targets
in free space, but many problems in coherent ranging also involve a diffuse scat-
tering background, so we have speckle as well as electronic noise. As we discussed
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in Sec. 18.6.3, the speckle may be well described by circular Gaussian statistics in
some cases, but if the number of scatterers in a focal volume is small, non-Gaussian
statistics may also arise.

In the Gaussian case, the data statistics are fully specified by the autocovari-
ance operator, given by

Kg̃ = QKnQ
† +QLKVL†Q† . (18.358)

An explicit form for the first term is given in (18.342), and one for the second term
can be obtained from (18.328) by replacing m(t) with [q ∗m](t).

Since the noise is signal-independent and Gaussian, the ideal observer is a
linear discriminant, and the discriminant function must satisfy [cf. (18.349)]

[
SnQQ† +QLKVL†Q†]w = QLVs . (18.359)

Without the speckle term in the covariance, we were able to get an explicit
operational form for the discriminant, (18.352), by performing a temporal Fourier
transform; because the electronic noise was stationary, Fourier transformation diag-
onalized the covariance operator. The speckle, on the other hand is not temporally
stationary, so it is not obvious that a temporal Fourier transform will be useful in
the present problem.

In similar situations in earlier chapters, we appealed to quasistationarity and
assumed that the noise was locally stationary in the vicinity of the signal. For a
signal centered at r = r0, the essential approximation is to rewrite (18.327) as

KV(r, r′) = fb(r) δ(r − r
′) ≈ fb(r0) δ(r − r

′) , (18.360)

where fb(r) is the background object, defined as in (18.332) by the mean density
of scatterers times the mean scattering cross section. The assumption of spatial
stationarity does not, however, immediately translate to temporal stationarity in
the received signal; the covariance on g is given by [cf. (18.328)]

[Kg]jj′(t, t
′)

≈ C2fb(r0) exp[−2πiν0(t− t′)]

∫
d3r [hj(r)]

2 [h∗
j′(r)]

2 m[t− τj(r)]m
∗[t′ − τj′(r)] ,

(18.361)
which is not just a function of t− t′. Some additional approximations are needed.

Since the transducers are assumed to lie in the plane z = 0, it is convenient
to describe the response functions in terms of the 2D vector r = (x, y), so that
hj(r) ≡ hj(r, z). In keeping with the quasistationary approximation (18.360), we
can replace z with the signal coordinate z0 in the response functions. The one place
where we do not want to make this approximation, however, is in the argument
of m( · ); the modulation function determines the longitudinal resolution of the
system, and we cannot assume that it is constant over the region of the signal.
For propagation approximately parallel to the z axis, τj(r) ≈ 2z/c (conveniently
independent of j), so

[Kg]jj′(t, t
′) ≈ fb(r0)Ajj′ exp[−2πiν0(t− t′)]

∫
dz m

(
t−

2z

c

)
m∗

(
t′ −

2z

c

)
,

(18.362)
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where Ajj′ is a measure of the overlap of the beams from different transducer
configurations:

Ajj′ ≡ C2

∫
d2r [hj (r, z0)]

2 [h∗
j′ (r, z0)

]2
. (18.363)

A change of variables z′ = z − ct/2 yields

∫
dz m

(
t−

2z

c

)
m∗

(
t′ −

2z

c

)
=

∫
dz′ m

(
−
2z′

c

)
m∗

(
t′ − t−

2z′

c

)
, (18.364)

showing that the covariance is now a function of only the time difference t− t′.
The remainder of the calculation proceeds by analogy with the case of SKE

detection of a target in free space. By inserting Fourier operators appropriately, the
reader can show that (18.359) is equivalent to

Sn|Q0(ν)|2 Wj0(ν) +
c

2
fb(r0) |M(ν)|2 |Q0(ν)|2

J∑

j′=1

Ajj′Wj′0(ν) = Sj0(ν) , (18.365)

where Sj0(ν) is the signal transformed to the data domain by applying the operator
QL, Fourier-transforming, and shifting the frequency to baseband:

Sj0(ν) ≡ [F1QLVs]j (ν − ν0) = CM(ν)Q0(ν)

∫
d3r [hj(r)]

2 Vs(r) exp[2πiντj(r)] .

(18.366)
The solution of (18.365) can be written as

Wj0(ν) =
1

Sn|Q0(ν)|2
J∑

j′=1

[(
I+

c

2Sn
fb(r0) |M(ν)|2A

)−1
]

jj′

Sj′0(ν) , (18.367)

where A is the J ×J matrix with components Ajj′ , and I is the J × J unit matrix.
Numerical evaluation of the inverse is not difficult since A is banded around

the diagonal in practice; any reasonable scanning strategy will move the beam by
an amount comparable to its width for each change in j since to move it in smaller
increments would be to collect redundant data, while larger increments would risk
missing the target altogether. Thus a small target will be seen by the system for only
a few transducer configurations, and methods developed in Sec. 14.3.2 for dealing
with nearly diagonal covariances, especially (14.39), are applicable here.

From (13.209), the ideal-observer detectability in this problem is

SNR2
ideal =

J∑

j=1

∫ νmax

−νmax

dν S∗
j0(ν)Wj0(ν)

=
J∑

j=1

J∑

j′=1

∫ νmax

−νmax

dν
1

Sn|Q0(ν)|2
S∗
j0(ν)

[(
I+

c

2Sn
fb(r0) |M(ν)|2A

)−1
]

jj′

Sj′0(ν) .

(18.368)
Note that the characteristics of the electrical filter do not affect SNR2

ideal (provided
only that it doesn’t cut off any signal frequencies) since S∗

j0(ν)Sj′0(ν) ∝ |Q0(ν)|2.
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If fb(r0) → 0 (so there is no speckle) and we consider a point target, (18.368)
reproduces (18.354). In the opposite case where Sn → 0 and there is no electronic
noise, we find

SNR2
ideal =

2

cfb(r0)

J∑

j=1

J∑

j′=1

∫ νmax

−νmax

dν
1

|M(ν)|2 |Q0(ν)|2
S∗
j0(ν)

[
A−1

]
jj′

Sj′0(ν) .

(18.369)
The detectability in this limit is independent of both the electrical filter and the
details of the modulation since S∗

j0(ν)Sj′0(ν) ∝ C2|M(ν)|2 |Q0(ν)|2. It is even
independent of the strength of the received wave since both the signal and the
speckle scale the same way with the amplitude of the incident wave (contained in
|M(ν)|2 ) and the transducer efficiency C2 (contained in A). The detectability does,
however, depend on the details of the beam profile and the scanning strategy.

The SNR expressions in (18.368) and (18.369) simplify considerably if A is
nearly diagonal, which can happen if the beam is translated by approximately its
width on each step. When A is diagonal, (18.369) becomes19

SNR2
ideal =

2

cfb(r0)

J∑

j=1

∫ νmax

−νmax
dν

∣∣∫ d3r [hj(r)]2 Vs(r) exp[2πiντj(r)]
∣∣2

∫
d2r

∣∣hj (r, z0)
∣∣4

. (18.370)

Since τj(r) = 2z/c for propagation approximately parallel to the z axis, the numer-
ator in (18.370) can be written

∫ νmax

−νmax

dν

∫
d2r

∫
dz

∫
d2r′

∫
dz′ [h∗

j (r, z)]
2 V ∗

s (r, z)[hj(r
′, z′)]2 Vs(r

′, z′)

× exp

[
4πiν

z′ − z

c

]

= 2νmax

∫
d2r

∫
dz

∫
d2r′

∫
dz′ [h∗

j (r, z)]
2 V ∗

s (r, z)[hj(r
′, z′)]2 Vs(r

′, z′)

× sinc

[
4

c
νmax(z

′ − z)

]
. (18.371)

We can go further if we assume that the signal to be detected is large and
slowly varying in all three dimensions. First, if Vs(r, z) is slowly varying in the z
direction compared to sinc

[
4
c
νmax(z′ − z)

]
, we can write

2νmax sinc

[
4

c
νmax(z

′ − z)

]
≈

c

2
δ(z − z′) , (18.372)

and we can use this delta function to do the integral over z′. Similarly, if Vs(r, z) is
slowly varying in x and y compared to the width of the beam, and the transducer
is scanned laterally to successive positions rj , we can write

h2
j(r, z) = h2

0(r− rj, z) ≈
[∫

d2r h2
0(r, z)

]
δ(r− rj) , (18.373)

19Since the matrix A−1 arises from performing a prewhitening operation in j, neglecting the off-
diagonal elements is justified even with beam overlap if we say we are using a non-prewhitening
observer.
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where h0(r, z) is the response function for a transducer centered at rj = 0. Fi-
nally, we assume that the beam profile is nearly constant over the signal region, so
h0(r, z) ≈ h0(r, z0).

With all of these assumptions, the detectability takes the simple form,

SNR2
ideal ≈

1

fb(r0)

∣∣∫ d2r h2
0(r, z0)

∣∣2
∫
d2r |h0(r, z0)|4

∑

j

∫
dz |Vs(rj , z)|2 . (18.374)

We reiterate that this expression is for SKE detection of a broad, structureless
signal described by the first Born approximation when there is no electronic noise
and the background scattering that leads to speckle is spatially quasistationary.
We also had to assume that the beam profiles do not change appreciably with z in
the signal region, that the beams propagate approximately parallel to the z axis,
and that the beam steps in x and y are approximately equal to the beam width so
overlap can be neglected. If electronic noise is present or the assumptions about
the beam profile are not valid, we have to use the more general expression given in
(18.368), and probably evaluate it numerically.

SKE detection of increases in density of scatterers So far in this section we have
considered the signal to be a known, nonrandom scattering potential Vs(r). In many
applications, however, we are interest in detecting an increased density of random
scatterers. In medical ultrasound, for example, some tumors are evidenced by an
increased backscattering or echogenicity, while cysts produce markedly weaker echo
signals. Early work on detectability in this situation was carried out by Smith et
al. (1983) and Wagner et al. (1983, 1986, 1987). More recent work on the subject
was presented by Abbey et al. (2003) and Zemp et al. (2003).

A reasonable model for this problem is to treat the scattering potential as a
zero-mean random process with different autocovariances under the two hypotheses
(Abbey et al., 2003). If we assume that the correlation length of the random process
is small compared to the system resolution, then we can follow (18.327) and write

KV1(r, r
′) = fb(r) δ(r − r

′) , KV2(r, r
′) = [fb(r) + fs(r)] δ(r − r

′) , (18.375)

where KVi(r, r′) is the autocovariance function under hypothesis Hi (i = 1, 2), and
fb(r) and fs(r) are defined similarly to (18.332) as the density of scatterers times the
average cross section for background and signal, respectively. The corresponding
autocovariance operators in the data domain are given by

Kg i = Kn +LKViL
† . (18.376)

If the mean number of scatterers in a resolution cell is large, then Gaussian statistics
apply and the characteristic functionals for the data are given by (18.326). If the
number of scatterers is small (but not too small), then the characteristic functional
of (18.333) is applicable, but we shall address only the Gaussian case here.

In Sec. 13.2.10, we considered the problem of discrimination between signals
in Gaussian noise with unequal covariance matrices. That analysis was for finite-
dimensional random vectors, but the results extend readily to random processes;
from (13.163), the log-likelihood ratio is the quadratic discriminant function,

λ(g) = 1
2g

† [K−1
g1 −K−1

g2

]
g . (18.377)
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The inverses exist because Kn is a full-rank operator with our noise model, (18.336).
If we let ∆KV ≡ KV2 − KV1 and make use of (18.376), we can write the

operator in (18.377) as

K−1
g1 −

(
Kg1 +L∆KVL†)−1

= K−1
g1 −

(
I +K−1

g1 L∆KVL†)−1
K−1

g1 . (18.378)

Following a suggestion by Abbey et al. (2003), we use the Neumann series (A.59)
to obtain

λ(g) = 1
2g

†K−1
g1 L∆KVL†K−1

g1 g+ · · · . (18.379)

The omitted terms are negligible if∆KV is small enough, so the truncated expansion
should suffice if the signal contrast fs(r)/fb(r) is very low. In the limit where the
electronic noise goes to zero, we can also write

λ(g) = 1
2g

† [LKV1L
†]+ L∆KVL† [LKV1L

†]+ g + · · · , (18.380)

where
[
LKV1L

†]+ is a Moore-Penrose pseudoinverse, defined according to (1.141)
as20 [

LKV1L
†]+ = lim

Sn→0

[
SnI +LKV1L

†]−1
, (18.381)

where Sn is the power spectral density of the white electronic noise (see (18.336)).
Various simplified forms of the log-likelihood ratio can be obtained by assuming

quasistationarity (fb ≈ constant) and assuming that the beam propagates approxi-
mately parallel to z with little change in lateral profile over the signal region. The
calculations are similar to those presented above for detection of a nonrandom scat-
tering potential and will not be detailed here.

Figures of merit for the ideal observer in this problem can be derived from
likelihood-generating function G(β) introduced in Sec. 13.2.7. We know from the
discussion in that section that all properties of the likelihood ratio and its logarithm
under both hypotheses are fully determined by G(β). Moreover, the single number
G(0) is a very useful approximation to the SNR for the log-likelihood ratio (Clark-
son and Barrett, 2000), and it can be used to set bounds on the ideal-observer AUC
(Barrett et al., 1998a, b; Shapiro, 1999; Clarkson, 2002).

One way of defining G(0) is in terms of the Bhattacharyya distance; for a
general M -dimensional random vector g, we know from (13.97) that for a general

G(0) = −4 log

{∫
dMg [pr(g|H1) pr(g|H2)]

1
2

}
. (18.382)

In the present problem, the data vector is an infinite-dimensional random process,
but we can use (18.382) as if g were finite-dimensional and then let M → ∞.

For a circular-Gaussian random vector, we know from (8.245) that

pr(g|Hi) =
1

πN det(Kg i)
exp

(
−g†K−1

g i g
)
. (18.383)

20As written, (1.141) applies to an operator that maps from one space to another. Here the
operator V1

† is Hermitian and maps data space to itself, and (13.181) is an equivalent form
in that case. The reader who doubts the validity of (13.181) is invited to check the Penrose
equations.
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Thus

G(0) = −4 log

{
1

πN
√

det(Kg1) det(Kg2)

∫
dMg exp

[
−1

2g
† (K−1

g1 +K−1
g2

)
g
]
}

= 4 log
{
det

(
K

1
2
g1

)
det

(
K

1
2
g2

)
det

(
1
2K

−1
g1 + 1

2K
−1
g2

)}
, (18.384)

where in the second line we have used the normalization of pr(g|Hi) along with
some properties of determinants from Sec. A.5; the square-root matrix is defined in
Sec. A.8.3.

Now we define ∆K ≡ Kg2 −Kg1 and use the following expansions:

det
[
(Kg1 +∆K)

1
2

]
= det

[
K

1
2
g1

(
I+ 1

2K
−1
g1 ∆K− 1

8K
−1
g1 ∆KK−1

g1 ∆K+ · · ·
)]

;

(18.385)

det
[
(Kg1 +∆K)−1

]
= det

[
K−1

g1

(
I−K−1

g1 ∆K+K−1
g1 ∆KK−1

g1 ∆K+ · · ·
)]

.

(18.386)
To second order in ∆K, G(0) is given by

G(0) ≈ 4 log
{
det

(
I+ 1

8K
−1
g1 ∆KK−1

g1 ∆K
)}

≈ tr
[
K−1

g1 ∆KK−1
g1 ∆K

]
, (18.387)

where the last step uses the series expansion (A.114) or (18.67), again terminated
at second order in ∆K. The limit M → ∞ is accomplished merely by replacing K

with K. The SNR on the log-likelihood ratio is then given by (13.96) as

SNR2
λ ≈ 2G(0) ≈ tr

[
K−1

g1 ∆KK−1
g1 ∆K

]
. (18.388)

This expression is guaranteed to be real and nonnegative since it is equal to the
sum of the squares of the eigenvalues of the Hermitian operator K−1

g1 ∆K.
Limits and special cases of this general result remain to be explored, and its

relation to earlier work such as Wagner et al. (1983, 1986, 1987), Abbey et al.
(2003) and Zemp et al. (2003) needs to be elucidated.

Known signals at unknown locations The SKE detection paradigm is unrealistic in
radar and ultrasound because we never know in advance where the target is located.
There are two ways we can consider incorporating this uncertainty into our analysis
of detectability. The first is to consider a pure detection problem with random signal
locations, and the second is to consider a joint detection-estimation problem. The
difference is really in how we keep score. If the observer is given credit for a correct
detection even it thinks the signal is at an incorrect location, then the problem is
pure detection. In the joint detection-estimation problem, on the other hand, errors
in position estimation are penalized. In the former case, figures of merit are related
to the ROC curve, while in the latter case an LROC, FROC or AFROC curve can
be used (see Sec. 14.2.3 and Figs. 14.4 and 14.5).

The likelihood ratio for an ideal observer attempting to detect a known signal
at an unknown location in Gaussian noise was derived in Sec. 13.2.10. We saw in
(13.161) that the optimal strategy in this case is to prewhiten the data, form the
scalar product of the prewhitened data with the known signal, exponentiate the
result and average over all possible signal locations; all information about signal
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location is lost in this averaging step. This strategy optimizes the area under the
ROC curve with no penalty for incorrect signal location.

A common suboptimal strategy is the scanning matched filter or cross-
correlator, where the noisy data are correlated with the known signal, essentially
forming the scalar product for all possible shifts in a continuous fashion and omit-
ting the exponentiation step. The final decision on signal-absent vs. signal-present
is then made by choosing the shift for which the cross-correlator output is maximum
and comparing the result to a threshold. For Gaussian noise, this strategy is equiv-
alent to using the generalized likelihood ratio defined in (13.401). Various workers,
including Nolte and Jaarsma (1967), Pelli (1985) and Wagner et al., (1990b) have
shown that this approach gives performance predictions very close to those of the
optimal observer in the SNR ranges of experimental interest.

The joint detection-estimation problem was discussed in Sec. 13.3.9, where we
formulated the problem as one of minimizing a cost function that involved both the
detection and estimation aspects. With assumptions about the costs stated in that
section, the optimal strategy is to first do the pure detection problem optimally
by averaging the likelihood ratio over locations and then do MAP estimation if a
signal-present decision is made.

In spite of the importance of joint detection-estimation problems in radar, ul-
trasound and many other areas, much further work is needed. In general terms, it
is not yet clear how decisions about optimization of imaging systems might change
depending on whether the task is formulated as pure detection or hybrid detection-
estimation, and in the latter case how they might depend on the nature of the
parameters to be estimated and their assumed probability densities. With particu-
lar reference to coherent imaging, it is not clear how the detectability is degraded
by envelope detection and how it is affected by non-Gaussian statistics. It is also
not yet known how to perform joint detection-estimation tasks optimally in non-
Gaussian speckle.



19
Imaging in Fourier space

Imaging is fundamentally a way of obtaining information about the spatial distribu-
tion of some object characteristic, such as its transmittance, reflectance or radiant
exitance. A direct-imaging system measures that distribution by sampling it over
local, point-like spatial regions. Indirect imaging systems may start with nonlocal
measurements but again the goal is to sample the spatial distribution in some sense.

In some indirect imaging systems, the initial measurements are essentially sam-
ples of the Fourier transform of the object distribution, rather than the desired
distribution itself. Then the reconstruction step is some sort of inverse Fourier
transform. Another way of thinking about such systems is that they are CD map-
pings in which the detector sensitivity functions approximate kernels of the Fourier
transform; by contrast, direct imaging systems use sensitivity functions that ap-
proximate delta functions.

Fourier imaging systems are widespread. Magnetic resonance imaging (MRI)
measures Fourier components of the induced magnetization in a patient’s body,
and some forms of synthetic-aperture radar sample the Fourier transform of the
microwave reflectance of the terrain. Radioastronomy is basically the measurement
of selected Fourier components of celestial sources of radio waves.

The whole field of Fourier optics (Goodman, 1968) is concerned with systems
that use coherent light to study the Fourier transforms of object transmittances. In
particular, certain kinds of holography yield measurements of the complex Fourier
transforms of complex amplitude distributions.

Even tomographic systems such as SPECT (see Chap. 17) fit at least partially
into the rubric of Fourier imaging; they measure line-integral projections of the ob-
ject, but the central-slice theorem (Sec. 4.4.2) tells us that 1D Fourier transforms
of the projections give us the 2D Fourier transform of the object.

In this chapter we shall illustrate the principles of Fourier imaging by consider-
ing two classes of measurement systems that directly acquire information about the
object Fourier transform. The first class, called Fourier modulators and discussed
in Sec. 19.1, consists of systems that use a sequence of masks that are related in a
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simple way to the Fourier kernel. The second class, covered in Sec. 19.2, consists of
a variety of interferometers used mainly in astronomy. Our goal is to show how the
tools developed in this book can be used to analyze and evaluate systems in both
classes.

19.1 FOURIER MODULATORS

A Fourier modulator is a system that implements the Fourier integral literally. Com-
putation of the Fourier transform of a function consists of two steps: modulating
the function by multiplication with the Fourier kernel and integration of the result.
Each step—modulation and integration—can be implemented in many different
ways, depending on the physical nature of the object and the kind of radiation
detector used. Here we consider mainly systems that measure the radiant exitance
of some self-luminous object, though we shall also briefly discuss reflecting objects.
Modulation will be by means of a series of masks placed directly over the object or
over an intermediate image of the object.

The kinds of masks that can be used and the nature of the information they
convey is surveyed in Sec. 19.1.1. Noise is included in the formalism in Sec. 19.1.2,
and reconstruction of an object from a set of noisy samples of its Fourier transform
is treated in Sec. 19.1.3. The key issue of image quality is discussed in Sec. 19.1.4.

19.1.1 Data acquisition

To pick a trivial starting point, the 2D Fourier transform is defined by

F (ρ) =

∫

∞

d2r f(r) exp(−2πiρ · r) . (19.1)

Suppose that we want to apply this definition to compute not the entire 2D dis-
tribution in the Fourier plane but rather its value at a single point, ρ = ρ0. If we
could synthesize a mask with the complex transmittance exp(−2πiρ0 ·r), lay it over
the object and integrate the resulting product, we would have the desired complex
value, F (ρ0).

There are several obvious problems with this approach. We may not know how
to construct a complex mask, there may not be a good way of doing the complex
integration, and even if we solve those problems, all that we have obtained is one
point in the Fourier transform; to scan the entire Fourier plane we have to repeat
the process with many different masks with different magnitudes and orientations
of the spatial frequency vector ρ. Undaunted, let us consider each of these problems
in turn.

Complex masks Since exp(−2πiρ0 ·r) = cos(2πρ0 ·r)−i sin(2πρ0 ·r), we can rewrite
the definition of the Fourier transform as

F (ρ0) =

∫

∞

d2r f(r) cos(2πρ0 · r)− i

∫

∞

d2r f(r) sin(2πρ0 · r) . (19.2)

Now we need two real masks instead of one complex one. Moreover, if f(r) is real,
we do not have to do a complex integration. Laying the cosine mask over the object
and integrating the product gives the first integral in (19.2), and using the sine
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mask similarly gives the second integral; both integrals are real, and each yields
one number. If we record the two real numbers separately in our lab notebook (or
computer), we have the real and imaginary parts of F (ρ0) for one particular ρ0.

Nonnegativity In many applications, f(r) represents a radiant exitance, reflectance
or other quantity that cannot go negative, and the relevant transmittance is a
nonnegative real quantity between 0 and 1. We cannot synthesize a mask with
transmittance cos(2πρ0 · r) but we can synthesize one with transmittance 1

2 [1 ±
cos(2πρ0 · r)]. Thus it is advantageous to rewrite the definition of the Fourier
transform once more as

F (ρ0) =

∫

∞

d2r f(r) 1
2 [1 + cos(2πρ0 · r)]−

∫

∞

d2r f(r) 1
2 [1− cos(2πρ0 · r)]

− i

∫

∞

d2r f(r) 1
2 [1 + sin(2πρ0 · r)] + i

∫

∞

d2r f(r) 1
2 [1− sin(2πρ0 · r)] . (19.3)

Now we have decomposed the complex integral into four real integrals, each of which
has a nonnegative integrand. Each integral is obtained by laying the appropriate
mask over the object and collecting all of the emerging light with a nonimaging
detector. For each ρ0, we must measure four nonnegative real numbers in this way,
but at least it is beginning to appear that there are no physical impediments to the
measurement.

Reducing the number of masks The form of (19.3) is a bit misleading since it seems
to imply that we need four masks for each spatial frequency. Suppose, however, that
we have one mask with transmittance 1

2 [1 + cos(2πρ0 · r)]. We can shift this mask
to four positions, producing the other three required transmittances; for example,
1
2 [1 + sin(2πρ0 · r)] is obtained by shifting the original mask, 1

2 [1 + cos(2πρ0 · r)]
a quarter period in the direction ρ0. Thus one physical mask serves for all four
measurements required at one frequency ρ0.

Moreover, the same mask can be rotated to yield all of the spatial frequencies
with the same magnitude as ρ0 but different orientations. Thus if we choose to scan
the 2D Fourier plane in polar coordinates, one real, nonnegative mask will suffice
for all of the complex measurements on a circle of radius ρ0. Different masks will
be needed for different radii in Fourier space.

Note also that it is not necessary to lay the mask directly on the object. It
suffices to relay the object to an intermediate image plane and locate the mask
there. If this relay system has variable magnification, one mask can serve for a
range of scales of ρ.

Moiré masks One way to synthesize the needed masks is by the moiré effect.1 Sup-
pose we have two very fine masks, each of transmittance 1

2 [1 + cos(2πρc · r)], where
subscript c denotes carrier frequency. We shall assume that ρc is large compared
to any spatial frequency present in the object. If we overlay the two masks, we
get a low-frequency moiré pattern as shown in Fig. 19.1, and the two overlapping
high-frequency masks serve as one of the low-frequency masks needed in the method

1The word moiré, referring to “watered silk,! comes from the Englishmohair, which was apparently
borrowed into French and then returned to English with the accent.
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described above. The relative rotation angle between the two masks varies the mag-
nitude of the spatial frequency of the pattern, and rotating both masks together
varies its direction. Moreover, the phase of the moiré pattern can be shifted by
shifting either mask laterally. The reader is invited to verify these contentions by
making two copies of Fig. 19.1a on transparency paper and overlaying them, say on
a light box or overhead projector.

Fig. 19.1 Illustration of the moiré pattern produced by overlaying two cosi-
nusoidal patterns. (a) Single cosinusoidal pattern; (b) product of two identical
patterns slightly rotated with respect to each other.

To explain the moiré effect mathematically, let us use a 2D rotation operator
R(θ) and write the transmittance of the overlaid masks as

T (r; θ1, θ2) =
1
2{1 + cos[2πρc ·R(θ1)r]} 1

2{1 + cos[2πρc ·R(θ2)r]} . (19.4)

Since the rotation operator is unitary, R†(θ) = R−1(θ) = R(−θ), and we can use
the definition of the adjoint to write

T (r; θ1, θ2) =
1
2{1 + cos[2πR(−θ1)ρc · r]} 1

2{1 + cos[2πR(−θ2)ρc · r]

= 1
4{1 + cos[2πρ1,2 · r]}+ high-frequency terms , (19.5)

where
ρ1,2 ≡ R(−θ1)ρc −R(−θ2)ρc . (19.6)

As shown in Fig. 19.2, ρ1,2 is simply the vector difference of the two rotated spatial-
frequency vectors.

Fig. 19.2 Vector diagram illustrating the sum- and difference-frequency terms
seen in the moiré pattern of Fig. 19.1b.
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The high-frequency terms in (19.5) all have ρ ≥ ρc and can be neglected if the
object Fourier transform is negligible at these frequencies. By the same argument,
we could use square-wave patterns, and the harmonics of the carrier frequency can
be neglected. Harmonics of the difference frequency, however, still remain.

The interesting difference-frequency term in (19.5) can be scanned over a por-
tion of the Fourier plane by varying the two angles, θ1 and θ2. Specifically, if we
allow θ1 and θ2 to cover (0, 2π) but restrict |θ1 − θ2| ≤ ∆θmax, then we can reach
any frequency that satisfies ρ ≤ 2ρc sin

1
2∆θmax.

A possible moiré-Fourier imaging system takes the form shown in Fig. 19.3,
where the moiré mask is placed in close proximity to the object, and the object is
either self-luminous or a transparency placed over a diffuse light source. A single-
element nonimaging detector collects some fraction of the emerging light. If we
assume that the fraction of the light collected is the same for all points in the
object plane, the mean detector output is given by

Vout ∝
∫

∞

d2r f(r)T (r; θ1, θ2) . (19.7)

By shifting either mask laterally to get four terms as in (19.3) and by scanning the
difference frequency by varying the two angles, we can sample the desired portion
of the Fourier plane.

The configuration shown in Fig. 19.3 was first suggested by Mertz (1956). It
can be used for any kind of radiation, and in fact it was used for gamma rays by
Chou and Barrett (1978). In that case the masks were made of lead.

Fig. 19.3 Simple system for measuring Fourier components of a planar object.
The object and the two masks are shown separated for clarity, but would
actually be in close proximity to each other, with the nonimaging detector a
larger distance away. Rotation of the two masks varies the spatial frequency
of the moiré pattern and hence the Fourier component being measured.

Projecting fringe patterns If the object is reflecting rather than self-luminous or
transmitting, we cannot place the mask in close proximity to it since it would then
obscure the illumination. We could relay the object to an intermediate image plane
and place the mask there, but we can also implement the mask by structuring the
illumination itself.

Suppose f(r) represents a reflectance, and let I(r) be the illuminating irradi-
ance. If we can arrange to make I(r) ∝ 1

2 [1 + cos(2πρ0 · r + φ)], then the total
reflected light is given by one of the integrals in (19.3), with the phase φ specifying
which one.
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An easy way to get the desired irradiance profile is to interfere two plane waves.
Suppose we produce two plane waves in a 3D space, with the complex amplitudes
given by u1(r) = A exp(ik1 · r) and u2(r) = A exp(ik2 · r). If we let the two waves
overlap on the plane z = 0, the resulting irradiance is2

I(r) = |u1(r) + u1(r)|2z=0 = 2|A|2 {1 + cos[(k1 − k2) · r]}z=0

= 2|A|2 [1 + cos(2πρ0 · r)] , (19.8)

where

ρ0 =

(
k1x − k2x

2π
,
k1y − k2y

2π

)
. (19.9)

Thus the 2D spatial frequency can be tuned by varying the k vectors of the two
interfering plane waves.

Zone-plate moiré A Fresnel zone plate is a pattern of concentric annular zones,
alternately clear and opaque, as illustrated in Fig. 19.4. Mathematically, a zone
plate has a transmittance given by

Tzp(r) =
1
2{1 + sgn[sin(αr2)]}S(r) , (19.10)

where sgn[ · ] is the signum function defined in Sec. 2.3.2, and S(r) is a support
function specifying the overall area of the zone plate. If S(r) is a cylinder function
[defined in (3.257)] centered on the origin, we refer to the zone plate as on-axis,
but if it is a cylinder function displaced from the origin the zone plate is said to
be off-axis. The transitions between clear and opaque zones occur at the zeros of
the sine, or when αr2n = nπ, (n = 1, 2, 3, ...). Thus r1 =

√
π/α, and rn = r1

√
n. It

follows that all zones of an on-axis zone plate have the same area, namely πr21.

Fig. 19.4 Fresnel zone plates. (a) On-axis; (b) off-axis.

2We employ the same convention for spatial vectors here as in earlier chapters. The gothic r is a
3D vector and the Times Roman r is 2D, but they refer to the same physical point. Thus, if the
point is on the plane z = 0, r = (x, y) and r = (x, y, 0).
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Overlaying two Fresnel zone plates yields straight-line moiré fringe patterns,
as shown in Fig. 19.5. Different moiré spatial frequencies are generated by shifting
one zone plate relative to the other, rather than by rotating the patterns as with
the cosine masks discussed above. The reader may play with the zone-plate moiré
effect by making two transparencies of Fig. 19.4.

Fig. 19.5 Moiré patterns produced by overlapping two identical zone plates
with a slight relative shift. (a) On-axis zone plates; (b) off-axis zone plates.

The visual appearance of the moiré fringes in Fig. 19.5 is similar to that seen
for cosine grating patterns in Fig. 19.1, but the math is quite different. Expanding
sgn[sin(αr2)] in a Fourier series in the variable r2, we can write (Shulman, 1970;
Barrett and Swindell, 1981, 1996)

Tzp(r) =




1

2
+

1

πi

∞∑

k=−∞

(k odd)

1

k
exp(−iαkr2)



S(r) . (19.11)

The net transmittance of two overlapping zone plates, one shifted by r0, is

Tzp(r)Tzp(r− r0)

=




1

2
+

1

πi

∞∑

k=−∞

(k odd)

1

k
exp(−iαkr2)








1

2
+

1

πi

∞∑

k′=−∞

(k′ odd)

1

k′
exp(−iαk′|r− r0|2)



S(r, r0) ,

(19.12)
where S(r, r0) ≡ S(r)S(r − r0). The straight-line moiré fringes arise from terms
with k = −k′. Focusing on k = ±1, we can write

Tzp(r)Tzp(r− r0)

=
{

1
4 + 1

π2

[
exp(−iαr2) exp(iα|r− r0|2) + exp(iαr2) exp(−iα|r− r0|2)

]}
S(r, r0)

+ other terms , (19.13a)

which simplifies to

Tzp(r)Tzp(r− r0) =
[
1
4 + 2

π2 cos(2αr · r0 − αr20)
]
S(r, r0) + other terms . (19.13b)
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Thus the fringes have a spatial frequency of αr0/π and a phase of αr20. By varying
the shift r0, we can generate a sequence of positive and negative sine and cosine
moiré masks of varying frequency. The reader will appreciate this result more by
actually observing the effect with transparencies made from Fig. 19.4.

Another way to understand (19.13)—and to make some statements about the
neglected terms— is to use the concept of local spatial frequency, introduced in
Sec. 5.1.3. We know from (5.35) that a pure phase function f(r) = exp[iΦ(r)] has
a local frequency at point r given by ρloc(r) = (2π)−1 ∇Φ(r). For Fresnel zone
plates, each term in the expansion (19.11) is a pure phase function, and ρloc(r) for
the kth term is given by −(αk/π)r [cf. (5.37)]. When we overlap two zone plates
as in (19.12), the moiré or difference-frequency term for k = −k′ = ±1 is ρloc(r) =
±(α/π)[r− (r− r0)] = ±(α/π)r0. For k = −k′ (= ±1, we find ρloc(r) = ±(αk/π)r0,
so these terms correspond to odd harmonics of the fundamental frequency (α/π)r0;
the moiré fringes are not pure cosines or sines for binary zone plates. Should we
wish to eliminate the harmonic terms, we could use sinusoidal zone plates rather
than binary ones. The reader is invited to retrace the analysis for this case.

Terms with k (= −k′ are potentially more worrisome. Even with sinusoidal
zone plates, we have the terms with k = k′ = ±1, for which ρloc(r) = ±(α/π)[r +
(r − r0)] = ±(α/π)[2r − r0]. This sum-frequency term has a local frequency that
depends linearly on r, so it corresponds to a chirp in the moiré pattern [cf. (5.37)].
With this term present, we measure a linear combination of the Fourier and the
Fresnel transform of the object (see Sec. 4.3.2).

To eliminate nettlesome sum-frequency terms, we can use off-axis zone plates.
Suppose the support function S(r) is given by cyl[(r − rc)/D], which describes an
aperture of diameter D centered at r = rc. For the kth term in the expansion, the
local frequency at the center of the aperture is (αk/π)rc. Thus, for k = k′ = ±1
and for r0 ) rc, the relevant local frequency is in the vicinity of ±(α/π)2rc; if
this frequency is large compared to any spatial frequency in the object, the sum-
frequency term is not important. This approximation is essentially the same as
ignoring the carrier-frequency terms in (19.5), but with zone plates frequency is
coupled to position by the local-frequency relation.

We shall return to the issue of neglected terms in Sec. 19.1.3 when we discuss
reconstruction from Fourier samples.

Parallel data acquisition So far we have discussed systems that sample one Fourier
component of the object at a time; getting another component requires replacing
masks or performing some other mechanical motion. It would be desirable to have
some way of measuring many different Fourier components simultaneously without
mechanical motion.

With zone-plate moiré, the different masks are obtained by shifts of one zone
plate with respect to the other, and the shifts can be accomplished by parallax
rather than mechanically. Consider the system shown in Fig. 19.6. The object,
assumed to be either self-luminous or an illuminated transparency, is in contact
with the first zone plate. The second zone plate, half the scale of the first, is
placed midway between the masked object and an observation plane. If we neglect
diffraction,3 light emerging from the first zone plate at point r and arriving at point

3This is the first mention of diffraction in this chapter; if the object and one or more masks are
all in contact, diffraction is irrelevant.
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rd on the observation plane must have passed through the middle zone plate at the
point r′ = 1

2 (rd + r). (Note that r, r′ and rd are 2D vectors in different planes.)
If we denote the transmittance of the first zone plate by Tzp(r), and that of the
second (half-scale) zone plate by Tzp(2r′), then the irradiance at point rd is given
by

I(rd) ∝
∫

∞

d2r f(r)Tzp(r)Tzp(rd + r) . (19.14)

From this point on, we have exactly the same mathematics as in (19.12) and
(19.13), but we see that the variable mechanical shift r0 has been replaced by the
variable observation point rd. A detector array placed in the observation plane
will sample many different shifts simultaneously. Since a shift rd corresponds to a
spatial frequency of αrd/π and a phase of αr2d in the moiré pattern, a single readout
of the detector array yields measurements of many different sine and cosine Fourier
components.

Fig. 19.6 Configuration for implementing the shift between two zone plates
by parallax. Note the relative shift of the projections of the two zone plates
from points A and B in the viewing plane.

Mertz Fresnel sandwich There is one minor problem with the configuration of Fig.
19.6. If we consider only the terms with k = −k′ = 1, then

I(rd) ∝
∫

∞

d2r f(r) exp(iαr2) exp(−iα|rd + r|2) + dull terms

= exp(−iαr2d)

∫

∞

d2r f(r) exp(−2iαrd · r) + dull terms . (19.15)

This expression is the desired Fourier transform multiplied by a quadratic phase
factor.

We could simply ignore the quadratic phase factor, since it is just a constant
independent of r (hence outside the integral), but we can also cancel it out by adding
one more zone plate as shown in Fig. 19.7. this third zone plate has the same scale
as the first one, so it is described by the transmittance Tzp(rd). The math gets very
messy if we use the full expansion (19.11), but the essential point is that Tzp(rd)
contains a term in exp(+iαr2d), which will serve to cancel the exp(−iαr2d) in (19.15).
Other terms are present as well, but we can argue that they are not so important
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if we use off-axis zone plates with sufficiently high center frequencies.

Fig. 19.7 Fresnel sandwich, obtained from the configuration of Fig. 19.6
by placing an additional zone plate in the output plane. (a) Layout. (b)
schematic.

The three-zone-plate configuration was first presented in a delightful little book
entitled Transformations in Optics, by Larry Mertz (1965). Mertz referred to Fig.
19.7 as a Fresnel sandwich, and he showed how it led to practical imaging appli-
cations as well as insightful analogies.

We have actually already met the Fresnel sandwich in earlier chapters. Re-
call from Sec. 4.3.3 that we can compute the Fourier transform of a function in a
roundabout way if we multiply it by a chirp, convolve with the conjugate chirp,
and multiply again by the original chirp. With judicious selection of terms, that is
precisely what we are doing with the configuration of Fig. 19.7.
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Another context in which we have met the same mathematics is in discussing
coherent optical Fourier transformers in Sec. 9.7.2. We know from that section
that the system shown in Fig. 19.8a performs a Fourier transformation on the elec-
tric field at its input. This system involves a section of free-space propagation,
multiplication by the amplitude transmittance of a lens, and then another section
of free-space propagation. In the Fresnel approximation, free-space propagation
amounts to convolution with a chirp [see (9.94)], and transmission through a lens
is equivalent to multiplication by a chirp [see (9.159)], so the system of Fig. 19.8a
implements the convolve-multiply-convolve or CMC chirp-Fourier transform algo-
rithm of Sec. 4.3.3. The Fresnel sandwich, on the other hand, implements the MCM
(multiply-convolve-multiply) chirp-Fourier transform algorithm. A coherent optical
system that also implements MCM is shown in Fig. 19.8b.

Fig. 19.8 Two coherent optical Fourier-transform systems. (a) System that
implements the CMC chirp-Fourier transform algorithm; (b) system that im-
plements the MCM algorithm, analogously to the Fresnel sandwich.

19.1.2 Noise

So far our analysis of Fourier imaging has neglected noise and treated the problem
as CC. In reality we collect only a finite amount of noisy data, so a better descrip-
tion of a Fourier imaging system, as with any digital imaging system, is as a CD
mapping. As detailed in Chap. 12, measurement noise can usually be modeled as
either Gaussian or Poisson. In this section we shall discuss the effects of this noise
on the discrete raw data and on estimates of the Fourier transform values derived
from these data.
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The data It will prove useful to denote each discrete measurement with two indices,
one for the spatial frequency and one for the phase of the Fourier kernel. Thus we
write

gmj = C

∫

∞

d2r f(r)Tmj(r) + nmj , (19.16)

where C is a radiometric constant and Tmj(r) is the transmittance of one of the
mask structures discussed in Sec. 19.1. For example, to describe the set of four
integrals in (19.3), we take

Tmj(r) =
1
2 [1 + cos(2πρm · r+ φj)]S(r) , φj = (j − 1)π2 , j = 0, 1, 2, 3 .

(19.17)
Thus (19.16) fits our usual CD mapping, g = Hf+ n, with the kernel given by

hmj(r) =
1
2C[1 + cos(2πρm · r+ φj)]S(r) . (19.18)

For both Gaussian and Poisson noise, the integral in (19.16) is the mean of
gmj, so 〈nmj〉 = 0 by definition.

Modified data: Points in the Fourier transform As a first step toward image recon-
struction, we may choose to form an estimate of the complex Fourier transform value
F (ρm). For the data described by (19.16) – (19.18), we can define these estimates
in a natural way as

F̂ (ρm) ≡
1

C
[gm0 − gm2 − igm1 + igm3] . (19.19)

It can be verified that F̂ (ρm) is an unbiased estimate of F (ρm) and that it is the
maximum-likelihood estimate in the case of i.i.d. Gaussian noise.

We can put (19.19) in matrix form by writing

F̂ (ρm) =
∑

m′j′

Amm′j′ gm′j′ . (19.20)

By comparison with (19.19), we see that

Amm′j′ =
1

C
δmm′ [δj′0 − δj′2 − i δj′1 + i δj′3] . (19.21)

In operator form,
F̂ = Ag = AHf+ n . (19.22)

For some reconstruction algorithms, we may take F̂ as the data instead of g.

Gaussian noise Consider the simple system of Fig. 19.3, and suppose the detector
is afflicted with i.i.d. Gaussian noise such that each measurement has variance σ2.
Then the noise covariance matrix is given by

Kn = σ2I . (19.23)

If we use four masks at each of M spatial frequencies, then I is the 4M × 4M unit
matrix.

If we consider only a single object, the noise covariance Kn is the same thing
as the data covariance Kg. We shall discuss the effect of object variability below,
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but for now consider only a single object.
For Gaussian noise and nonrandom objects, F̂ (ρm) is a linear combination of

zero-mean Gaussian random variables, so it is itself a zero-mean Gaussian random
variable. Since F̂ (ρm) is complex, however, we have to be careful in specifying its
variance and covariance (see Sec. 8.3.6). The covariance matrix is defined by

[
K!F

]
mm′

≡
〈
∆F̂ (ρm)∆F̂ ∗(ρm′)

〉
, (19.24)

where ∆F̂ (ρm) ≡ F̂ (ρm)− F (ρm).
To evaluate this covariance matrix, note first that the real and imaginary

parts of F̂ (ρm) are uncorrelated (and hence statistically independent since they are
Gaussian). Moreover, F̂ (ρm) and F̂ (ρm′) are uncorrelated (and independent) for
m (= m′. Thus

[
K!F

]
mm′

=
〈
|∆F̂ (ρm)|2

〉
δmm′ =

〈[
∆F̂r(ρm)

]2
+
[
∆F̂i(ρm)

]2〉
δmm′ , (19.25)

where subscripts r and i denote real and imaginary parts, respectively. Since the
real and imaginary parts are i.i.d., we have, finally,

[
K!F

]
mm′

=
4σ2

C2
δmm′ , (19.26)

or simply,

K!F =
4σ2

C2
I , (19.27)

where now I is the M ×M unit matrix.

Poisson noise If photon noise dominates and the objects are nonrandom, then each
measurement is a Poisson random variable, and we can write the noise covariance
matrix as [cf. (11.41)]

[Kn]mm′ = gm δmm′ . (19.28)

The covariance on ∆F̂ (ρm) in this case is found to be

[
K!F

]
mm′

=
1

C2
[g0m + g1m + g2m + g3m] δmm′ . (19.29)

Note that F̂ is a linear combination of Poisson random variables but not itself
Poisson.

Temporal noise issues Up to now we have regarded the measurement system as
static; a mask is inserted, a measurement is taken, and then a new mask is inserted.
It may, however, be more practical to use some continuous scanning mechanism.
Then the required discrete measurements can be obtained by sampling the dynamic
detector output at appropriate times.

When we consider such dynamic measurements, the noise must be treated as a
temporal random process, and consideration must be given to the bandwidth of the
electronics. Suppose, for simplicity, that the detector noise is a stationary, white,
Gaussian random process, with power spectral density Sn(ν) = Sn = constant. If
we denote the temporal impulse response of the electronics by p(t) and the corre-
sponding transfer function by P (ν), then the power spectral density on the voltage
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at the output of the electronics is SV (ν) = |P (ν)|2Sn [see (8.156)]. Since the noise
is stationary and the system is shift-invariant, all measurements have the same
variance, namely [cf. (12.16)]

σ2 =

∫ ∞

−∞

dν SV (ν) = Sn

∫ ∞

−∞

dν |P (ν)|2 = 2Sn|P (0)|2B , (19.30)

where B is the effective noise bandwidth as defined in (12.18).
It is evident from (19.30) that we can reduce the noise variance by reducing the

bandwidth, but doing so will also distort the desired signal4 information. Suppose,
for example, that we scan the interfering plane waves in such a way that the spatial
frequency of the fringe pattern varies linearly with time,

ρ(t) = a+ bt . (19.31)

If we assume for simplicity that the spatial phase of the fringe pattern is fixed at
φ = φj , then the mean measurement gmj is given by

gmj = C

∫ ∞

−∞

dt p(tm − t)

∫

∞

d2r 1
2{1 + cos[2π(a+ bt) · r+ φj ]} f(r) . (19.32)

The reader may show that

gmj = CP (0)

∫

∞

d2r 1
2

{
1 +

|P (b · r)|
P (0)

cos[2π(a+ btm) · r+ φj +Ψp(b · r)]
}
f(r) ,

(19.33)
where P (ν) ≡ |P (ν)| exp[iΨP (ν)].

Two deleterious effects are seen in (19.33): the amplitude of the cosine modu-
lation is reduced by the MTF of the electrical filter, and, perhaps more importantly,
the phase of the modulation is shifted. Depending on the scan rate and the filter
design, the phase shift could even convert the cosine to a sine, leading to an entirely
erroneous estimate of the Fourier transform value. One might try to design the
electrical filter so that ΨP (ν) is small at all relevant frequencies, but it cannot in
principle be made zero; causal filters for which p(t) = 0 when t < 0 necessarily
introduce phase shifts. For a simple RC filter, as discussed in Sec. 12.1.1, a π/4
phase shift occurs at the frequency for which |P (ν)|/P (0) = 1

2 , and the limiting
phase shift as ν → ∞ is π/2; more complicated filters can have larger phase shifts.

We are thus faced with a tradeoff: we want to choose the bandwidth of the
filter small so as to reduce the noise, but not so small that it distorts the desired
signal. Two general principles guide us in making this tradeoff. First, whatever
distortion is incurred in the measurement should also be modeled in the reconstruc-
tion process; we should not blindly estimate Fourier transform values by (19.23) if
(19.16) does not accurately describe the forward problem. Second, we should choose
the bandwidth to optimize task performance. If the task depends on high spatial
frequencies in the object, it may be better to use a larger bandwidth and accept
more noise.

4We use the word “signal! here to mean “that which we are trying to measure,! not “that which
we are trying to discern in a detection task.!
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Object randomness So far we have discussed the contribution of measurement noise
to the randomness in the data, but we know from previous chapters that object
variability is also important in many cases. The two sources of randomness—
measurement noise and object variability—make the data doubly stochastic, and
there are two terms in the covariance matrix. The relevant theory is developed in
Sec. 8.5.3, and we shall now apply it to the special case of imaging in Fourier space.

The general formulas we need are (8.347) and (8.348):

Kg = Kn +Kg , Kg = HKfH
† , (19.34)

where Kn means the same thing asKn for object-independent noise, but for Poisson
noise it is given by (19.28) averaged over some ensemble of objects. The object
randomness is described by Kg, which is the autocovariance operator of the object,
Kf, reflected into the data domain in the absence of measurement noise.

For the masks defined in (19.17) and real objects, we find

[Kg]mj,m′j′ =
1
4C

2

∫

S

d2r

∫

S

d2r′ 〈∆f(r)∆f(r′)〉 [1 + cos(2πρm · r+ φj)]

× [1 + cos(2πρm′ · r′ + φj′)] , (19.35)

where ∆f(r) ≡ f(r)−〈f(r)〉. The integrals here are over the support of the masks,
but since portions of the object outside of the masks never make any contribution to
the data, we may as well think of S as the support of the objects. The expectation
〈∆f(r)∆f(r′)〉 is the autocovariance function of the object (i.e., the kernel of Kf),
which we denote Kf(r, r′).

With a little algebra, we find that the covariance matrix for the estimated
Fourier samples is

[
K!F

]
mm′

=
4σ2

C2
δmm′ +

∫

S

d2r

∫

S

d2r′ Kf(r, r
′) exp[−2πi (ρm · r− ρm′ · r′)] .

(19.36)
Thus the object-variability part of the covariance matrix for the estimated Fourier
samples is just a Fourier-transformed and sampled version of the autocovariance
function of the object. One might be tempted to assume stationarity and simplify
this expression further, but that impulse should be resisted in general. One situation
in which at least quasistationarity can be justified is discussed in Sec. 19.1.4.

19.1.3 Reconstruction

Having collected a set of noisy measurements and characterized the noise, it remains
to reconstruct an image of the object. We could simply refer back to Chap. 15
and say that all of the reconstruction algorithms introduced there are applicable,
but this would ignore the fact that the data are related to the object by a well-
understood transform, the Fourier transform. At the opposite extreme, we could
reconstruct simply by applying an inverse Fourier transform (necessarily the inverse
DFT since the data are discrete), but this would ignore many complications in the
data-acquisition process.

Regular sampling in Fourier space We begin the discussion of image reconstruction
by assuming that the sampled spatial frequencies (of a mask or projected fringe
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pattern) form a square grid of spacing ∆ρ. In this case it is convenient to denote
the spatial frequency as ρk ≡ k∆ρ, where k is a 2D multi-index, k = (kx, ky), with
integer components. Both components of k will be assumed to run from −K to K,
so the total number of sampled frequencies is M = (2K + 1)2.

We shall also assume that the sampled frequencies satisfy the Nyquist condition
for sampling in frequency space, as discussed in Sec. 3.5.4. Specifically, if f(r)
vanishes outside of a square of side L, we require that ∆ρ ≤ 1/L. Note that there
is no requirement that f(r) be bandlimited. We shall use the term exact Nyquist
sampling to mean ∆ρ = 1/L and hence ρk = k/L.

Backprojection In many inverse problems of the form g = Hf + n, it is useful to
apply the adjoint or backprojection operator H† to the data as a first step toward
reconstruction. Consider data described by (19.16) – (19.18) with sampling on a
regular grid. With the multi-index notation, backprojection is the superposition of
mask functions weighted by the data values [cf. (1.45)]:

[H†g](r) = C
K∑

k=−K

3∑

j=0

gkj
1
2 [1 + cos(2πρk · r+ φj)] , (19.37)

where the limits on the first sum imply that both components of k run over the
specified range. Making use of (19.16) and (19.17), we find

[H†g](r) = C2
K∑

k=−K

3∑

j=0

∫

S

d2r′ f(r′) 1
2 [1+cos(2πρk ·r′+φj)]

1
2 [1+cos(2πρk ·r+φj)]

+C
K∑

k=−K

3∑

j=0

nkj
1
2 [1 + cos(2πρk · r+ φj)] . (19.38)

Interchanging the j sum and the integral and doing a bit of algebra yields5

[H†g](r)

= C2
K∑

k=−K

{∫

S

d2r′ f(r′) +
1

4

∫

S

d2r′ f(r′) exp[2πiρk · (r− r′)]

+
1

4

∫

S

d2r′ f(r′) exp[−2πiρk · (r− r′)]

}

+C
K∑

k=−K

3∑

j=0

nkj
1
2 [1 + cos(2πρk · r+ φj)] . (19.39)

For exact Nyquist sampling, where ρk = k/L, the integrals above are proportional
to Fourier-series coefficients of the object, denoted Fk and defined by

Fk ≡
1

L2

∫

S

d2r′ f(r′) exp(−2πiρk · r′) =
1

L2
F (ρk) , (19.40)

5For those wishing to check the algebra, note that there are 4 terms in the sum over j and that∑
j exp(±iφj) and

∑
j exp(±2iφj) vanish.
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where F (ρ) is the ordinary 2D Fourier transform of the object (assumed to have
support S).

Making use of the symmetry Fk = F ∗
−k, we find

[H†g](r) = C2L2(2K + 1)2F0 +
1
2C

2L2
K∑

k=−K

Fk exp(2πiρk · r)

+C
K∑

k=−K

3∑

j=0

nkj
1
2 [1 + cos(2πρk · r+ φj)] . (19.41)

The third term in this equation is the noise in the data transformed by H†.
Note that this transformation creates a continuous function of r, so the transformed
noise is a random process. The reader is invited to compute the autocovariance
function of this random process.

The first term in (19.41) is not a function of r, but it is object dependent since
it is proportional to F0, which is the average object value across the field of view.
Moreover, the term can be very large because of the factor (2K + 1)2, which is the
total number of sampled frequencies. The object is unknown, so we do not know
the value of F0, but we can estimate it from the data and subtract off the estimate;
one way of doing so is presented below, but for now we shall just refer to the first
term in (19.41), or any spatially constant term, as a DC term. Basically, the DC
term in the backprojection comes from the DC term in the mask transmittances.

The second term in (19.41) is the desired reconstruction. We therefore define

f̂(r) ≡
1

1
2C

2L2
[H†g](r) =

K∑

k=−K

Fk exp(2πiρk · r) + DC term + noise . (19.42)

If the sum here ran over the infinite 2D grid of Fourier frequencies, it would equal
the actual object f(r). Instead it includes only the frequencies for which −K ≤ kx,
ky ≤ K. Since the masks contain only these spatial frequencies, the functions
{L−1 exp(2πiρk · r)} form a basis for the measurement space (no matter what set
of frequencies is used). If ρk = k/L for some set of integer-valued multi-indices
{k}, this basis is orthonormal and the sum in (19.42) is exactly the measurement
component of the object [cf. (1.165)]. Then we can write

K∑

k=−K

Fk exp(2πiρk · r) = fmeas(r) = [Pmeasf ] (r) , (19.43)

where Pmeas is the projector onto measurement space. Thus

f̂(r) = fmeas(r) + DC term + noise . (19.44)

The conclusion is that simple backprojection recovers the measurement component
of the object except for noise and the DC term. This conclusion is, however, quite
specific to the assumptions we made about the data. The masks had to be exactly
described by (19.16) – (19.18), with pure cosinusoidal variations and no higher-order
terms, and we had to assume exact Nyquist sampling on the same grid as used to
define the Fourier series.
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Backprojection from the Fourier domain Suppose we start not with the raw data
g but rather with the estimated Fourier transform values F̂ as defined by (19.19)
or (19.22). Backprojection in this case means applying the adjoint of the operator
AH:

f̂(r) ≡ [AH]† F̂ = [AH]†Ag = H
†A†Ag . (19.45)

As the reader may show,

[
(AH)†Ag

]
(r) =

1

C

∑

k

exp(2πiρk · r) (gk0 − gk2 − igk1 + igk3)

=
∑

k

exp(2πiρk · r) F̂ (ρk) . (19.46)

Thus backprojection from the Fourier estimates amounts to superposition of the
complex conjugates of the Fourier kernels [see (1.45)] weighted by the estimates.

Since F̂ (ρk) is an unbiased estimator of F (ρk), we can write

f̂(r) =
∑

k

exp(2πiρk · r)F (ρk) + noise = fmeas(r) + noise . (19.47)

There is no longer a DC term since we subtracted off the DC part of the mask
transmittances in forming F̂ (ρk).

Irregular grids and pseudoinversion The sum in (19.42) or (19.47) can be identified
with fmeas(r) only if the Fourier basis functions are orthonormal, which is the case
for sampling on a regular grid where ρk = k/L.6 For sampling on irregular grids,
however, we do not recover the measurement component by simple backprojection.
What is required is a pseudoinverse of H (or AH when we start from the Fourier
estimates), not just its adjoint; fortunately we know from Sec. 15.2.3 how to compute
this pseudoinverse.

The basic trick used in Sec. 15.2.3 is broadly applicable. It amounts to using
the identity (1.149) or (15.80):

H
+ = H

†(HH
†)+ . (19.48)

In any CD problem, the operator HH
† is an M ×M matrix (where M is the num-

ber of measurements). Its pseudoinverse can be found by standard methods if M
is not too large, or the identity can be used as a starting point to develop iterative
algorithms. Moreover, for Fourier samplers, HH

† is simply related by (15.79) to
the Fourier transform of the support function.

Thus there is no great difficulty in dealing with irregular grids in Fourier sam-
plers. We need to keep in mind, however, that simple backprojection does not
recover the measurement component of the object in these cases.

6Strictly speaking, orthonormality also requires that the support function be square, but we can
get around this problem with circular masks by considering a square that contains the circle. The
circular support is then associated with the object rather than the basis function.
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Discretization The reconstruction methods discussed so far in this section yield
functions f̂(r), but of course any computer-implemented algorithm will produce
only discrete vectors. We could simply sample the formulas above on a discrete
grid to get f̂(rn), but we can also adopt some approximate discrete representation
for f(r) at the outset and attempt to estimate the coefficients.

Following (7.24) or (15.6) we can write the approximate object representation
as

fa(r) =
N∑

n=1

θnφn(r) , (19.49)

where {φn(r)} is any convenient set of expansion functions such as pixels. In oper-
ator notation, (19.49) becomes

fa = D
†
φθ , (19.50)

where Dφ is a CD discretization operator and D
†
φ is its adjoint (hence a DC opera-

tor). The data can be written as [cf. (15.10) – (15.14)]

g = Hf+ n = Hθ + ε , (19.51)

where ε includes both modeling error and noise, and the matrix H is given by

H = HD
†
φ , Hmn =

∫

S

dqr hm(r)φn(r) . (19.52)

To apply this formalism to the present problem, we add a second data index j
as in (19.16). If we take

φn(r) = rect

[
r− rn

ε

]
(19.53)

and use the system kernel given in (19.18), then we find

Hmjn =
ε2C

2
[1 + cos(2πρm · rn + φj) sinc(ερm)] . (19.54)

This matrix can now be used in any of the discrete reconstruction algorithms dis-
cussed in Chap. 15.

Use of the FFT Unlike many H matrices, the one given in (19.54) is not sparse; its
elements are nonzero for almost any combination of m, j and n, so 4MN multiplies
will be required to compute Hθ at any step in an iterative reconstruction algorithm.
If, however, we choose the frequencies {ρm} and the spatial points {rn} to lie on
regular grids of the same size, we can formulate the problem in terms of the DFT
and take advantage of the FFT algorithm.

Reverting to multi-index notation, we let rn = nε, where ε = L/N and 0 ≤ nx,
ny ≤ N − 1, so an N ×N grid is used for the object representation. To be able to
use the same grid in the Fourier domain, we assume that measurements are taken
for frequencies ρk = k∆ρ, where ∆ρ = 1/L and 0 ≤ kx, ky ≤ N − 1; the use of
only nonnegative integer indices causes no difficulty for real objects because of the
symmetry relation (3.322).

With these grids, the matrix defined by (19.54) applied to an arbitrary θ yields

[Hθ]kj =
ε2C

2
Θ0 +

ε2C

4
[Θk exp(−iφj) +Θ∗

k exp(iφj)] , (19.55)
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where Θ is the 2D DFT of θ, defined by

Θk =
N−1∑

n=0

exp

(
−2πi

k · n
N

)
θn . (19.56)

Thus the data vector associated with θ is expressed in terms of DFTs and can
be efficiently computed by means of the FFT algorithm. The reader may derive a
similar expression for H† applied to an arbitrary g. It is also of interest to consider
what happens if we take an inverse DFT of the estimated Fourier components.

Iterative algorithms There are two problems with the reconstruction algorithms
described so far: they are all based on the idealized system description of (19.16)-
(19.18), and all of them can yield unphysical negative values. These difficulties can
be circumvented by using an iterative algorithm with a positivity constraint, such
as the EM algorithm described in Sec. 15.4.6.

Virtually any departure from the ideal system behavior can be incorporated
into an iterative algorithm, provided only that the effect can be adequately mod-
eled. For example, if the Fourier samples are obtained by one of the moiré methods
described in Sec. 19.1, there is no need to neglect any of the higher-order terms;
they can readily be incorporated into the H matrix, and the iterative algorithm will
automatically compensate for them. Similarly, if there are phase shifts arising from
the temporal response of the filter in a scanning system, they can be modeled as in
(19.33) and again compensated by the algorithm.

The problem of negative values is inherent in the use of a finite set of spa-
tial frequencies. If we represent a nonnegative function by a Fourier series and
delete terms, the result will virtually always have negative values. Most iterative
algorithms enforce a positivity constraint at each iteration and thereby correct this
problem. With the EM algorithm, for example, the initial estimate is chosen to be
nonnegative, and the multiplicative correction factor for the next estimate involves
this estimate, the Hmatrix and the data [see (15.297)], all of which are nonnegative.
Thus the second estimate is nonnegative, and by the same argument all subsequent
estimates are nonnegative.

19.1.4 Image quality

The principles of task-based evaluation and optimization of imaging systems were
enunciated in Chaps. 13 and 14. In this section we shall discuss the application
of these principles to systems that measure Fourier components of an object, with
particular attention to choice of the set of sampled frequencies {ρn}.

SKE/BKE detection tasks We begin with SKE/BKE (signal known exactly, back-
ground known exactly) detection tasks. As we shall see, this task can lead to
misleading conclusions about system optimization.

To be specific, consider the case of i.i.d. Gaussian noise and suppose that the
data used for the detection task consist of Fourier components estimated according
to (19.19). We know from (19.27) that the variance of each of these estimates is
4σ2/C2, and it follows from (13.120) that the SNR for the ideal observer on an
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SKE/BKE detection task is

SNR2
λ =

C2

4σ2

M∑

m=1

|S(ρm)|2 , (19.57)

where S(ρ) is the Fourier transform of the signal to be detected.
For most signals of interest, |S(ρ)| is maximal at ρ = 0, so the sum in (19.57)

is maximized (for a fixed number of measurements) by choosing all ρm to be zero!
In other words, we can do no better than measure the total integral of the object.
Since the background is presumed to be known in all details, including its total
integral, any increase in the integral of the object is an indication of the presence of
a signal. In practice, however, we would never have this degree of prior information
about the object, so we must choose a more realistic task for system optimization.

SKE/BKE discrimination tasks One way to avoid the incorrect conclusion that
only the zero-frequency components are of interest is to consider discrimination
between two different signals that have the same integral or DC value. This so-
called Rayleigh task was discussed in Sec. 16.2.5. The ideal-observer SNR is still
given by (13.120), but now the difference signal must be used in place of the signal
in a detection task; (19.57) becomes

SNR2
λ =

C2

4σ2

M∑

m=1

|∆S(ρm)|2 . (19.58)

There is some frequency ρ0 where |∆S(ρm)| is maximal, and (19.57) tells us
that all samples should be taken at precisely that frequency. Again, this conclu-
sion presumes an unrealistic amount of prior information and should not be taken
seriously.

Random signals and backgrounds The best way to avoid the trap of assuming unre-
alistic prior information is to formulate the problem realistically in the first place,
with unknown random signals and backgrounds. When we do so it becomes difficult
to compute the ideal-observer SNR (see Sec. 14.3.3), and we must often revert to
the Hotelling observer. Even that observer is complicated in the present problem,
however, since it requires inversion of the covariance matrix given in (19.36). Meth-
ods for performing (or avoiding!) the inversion are discussed in Sec. 14.3.2, but an
analytical solution would offer more insights.

We can make some headway analytically if we assume that we are interested
in detecting a spatially localized signal with nonzero values only in the neighbor-
hood of some point r0 and that the background statistics in this neighborhood are
quasistationary (see Secs. 8.4.4 and 13.2.13). As in (13.259), the quasistationarity
is best expressed in sum and difference coordinates; we define

Kf(r, r
′) = Kf(r+

1
2∆r, r− 1

2∆r) ≡ K̃f(r,∆r) , (19.59)

where
r ≡ r+ 1

2∆r , r′ ≡ r− 1
2∆r . (19.60)

For a signal localized near r0, only background variations in some neighborhood of
r = r0 influence the detectability. If the background statistics in this neighborhood
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are quasistationary, it may be valid to approximate K̃f(r,∆r) by K̃f(r0,∆r). More-
over, it might be valid to assume that the background correlations are short range,
so that K̃f(r0,∆r) drops to zero over a distance |∆r| small compared to the object
support. With these assumptions, (19.36) becomes

[
K!F

]
mm′

=
4σ2

C2
δmm′

+

∫

S

d2r exp[−2πi (ρm − ρm′) · r]
∫

∞

d2∆r K̃f(r0,∆r) exp[−πi (ρm + ρm′) ·∆r] .

(19.61)
In many cases of interest, the integral over r is either approximately or ex-

actly zero unless m = m′. For exact Nyquist sampling, that integral is exactly
L2δmm′ . For sampling on a sparser grid, the integral is small compared to L2 if
|ρm − ρm′ |L / 1, where L is the width of the object support. Thus we can write

[
K!F

]
mm′

=

[
4σ2

C2
+ L2

∫

∞

d2∆r K̃f(r0,∆r) exp (−2πiρm ·∆r)

]
δmm′ . (19.62)

The remaining integral is recognized as the stochastic Wigner distribution function
[cf. (8.140) and (13.261)] for the zero-mean process ∆f(r), evaluated at r = r0 and
ρ = ρm. Denoting this Wigner distribution as W∆f (r,ρ), we have

[
K−1

!F

]

mm′

=

[
4σ2

C2
+ L2W∆f (r0,ρm)

]−1

δmm′ . (19.63)

Thus the assumption of quasistationary noise leads to a diagonal (and therefore
easily invertible) covariance matrix in this problem even though the system is far
from shift-invariant.

With this inverse covariance, the Hotelling detectability satisfies

SNR2
Hot(r0) =

M∑

m=1

|S(ρm)|2
4σ2

C2 + L2W∆f (r0,ρm)
. (19.64)

This expression reduces to (19.57) if there is no background variability. When there
is background variability, it has a form similar to expressions derived in Chap. 13
[e.g., (13.252) and (13.266)], but only within the validity of the quasistationary
model.

One qualitative conclusion from (19.64) is that higher spatial frequencies are
more useful with background variability than they are with a BKE task since the ob-
ject Wigner distribution W∆f (r0,ρ) will tend to decrease with increasing frequency.
The signal |S(ρ)|2 also decreases with frequency in many problems, but if the spa-
tial extent of the signal is smaller than the correlation length of the background,
the ratio |S(ρ)|2/W∆f (r0,ρ) increases with frequency, so higher frequencies provide
more discrimination between signal and background. On the other hand, higher fre-
quencies yield a smaller ratio of |S(ρ)|2 to the frequency-independent measurement
noise 4σ2/C2. Numerical evaluation of (19.64) must be performed for quantitative
comparisons of different sampling schemes, but no matrix inverses are needed be-
cause of the quasistationarity assumption.
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The reader might be tempted to say, as we did in discussing (19.57) and (19.58),
that there is some frequency ρ0 where the summand in (19.64) is maximal, so all
samples should be taken at that one frequency. Recall, however, that we assumed
in going from (19.61) to (19.62) that ρm (= ρm′ if m (= m′, and this assumption is
certainly not true if all frequencies are the same.

Estimation tasks If an estimation task is to be performed, quantitative accuracy
of the reconstruction is paramount. This accuracy depends on the choice of spatial
frequencies, noise level and reconstruction algorithm, but in many cases the most
important factor is the modeling of the forward problem. If, for example, we neglect
higher-order terms in a moiré system, then we should assess their effect on estimates
of the parameters of interest. If the noise level in the data is high, inaccurate mod-
eling may make a small contribution to the mean-square error (MSE) in parameter
estimates, but eventually, as exposure time is increased and the noise is reduced,
modeling error will dominate.

We must remember, however, that MSE is applicable (at least in a non-
Bayesian sense) only to estimable parameters (see Secs. 14.3.4 and 15.1.3). In
the present problem, our basic measurements are unbiased estimates of the Fourier
transform values {F (ρn)}, so any linear combination of these values is estimable.
If we wish to estimate the integral of the object over some region of interest (ROI),
the template defining this region must be well approximated by a series of the form

t(r) ≈
∑

n

Tn exp(2πiρn · r) (19.65)

in order for the integral to be estimable. If this condition is not satisfied, different
objects can give the same mean data but different true values for the ROI integral,
and we would not know which object to select as defining the true value of the pa-
rameter. Some readers might opt for choosing a particular object, such as a uniform
field, and defining an MSE with respect to this object, but in our view that would
give a misleading picture of the estimation performance of the system. We recom-
mend using estimable parameters for evaluating estimation performance whenever
possible. For systems that measure Fourier samples, we should take enough samples
for the approximation in (19.65) to be valid.

When we cannot satisfy approximation (19.65), the best we can do is use the
ensemble mean-square error (EMSE) as defined in (13.288) in place of the MSE
corresponding to a particular true value. To compute the EMSE exactly, we would
need a PDF on the objects, but we can estimate it with a finite number of realistic
simulated objects (see Sec. 14.3.4).

19.2 INTERFEROMETERS

Though often taught in elementary courses as distinct entities, interferometers and
imaging systems are in fact virtually indistinguishable. All interferometers are imag-
ing systems, and all imaging systems using coherent or partially coherent radiation
involve interference.

Consider a common application of interferometry, testing the figure of a mirror
during fabrication. The mirror under test is placed in one arm of an interferometer,
and a reference surface such as a high-quality spherical mirror is placed in the other



1354 IMAGING IN FOURIER SPACE

arm. The interferometer serves to overlap the two reflected waves, and a fringe pat-
tern is formed on some detector. The key point for the present discussion, however,
is that the reflected waves do not simply propagate to the detector; instead, they
are imaged through some optical system (if only the human eye) so that the waves
arriving at the detector are replicas of the waves emerging from the two mirrors.
Then the fringe pattern is an image of the cosine of the phase difference between
the waves.

In this example, the imaging system is direct, but there are also important
indirect-imaging applications of interferometry. As a consequence of the van Cittert-
Zernike theorem, data collected in interference experiments can be used to recon-
struct an image of the illuminating source.

In this section we shall explore a variety of systems that can be viewed as
either interferometers or imaging systems. In keeping with the spirit of the chapter,
we use these systems to illustrate various mathematical points introduced earlier in
the book.

We begin in Sec. 19.2.1 by discussing the classical double-slit experiment of
Thomas Young as a way of introducing interferometers that use pairs of apertures.
This section illustrates the concept of partial coherence and the van Cittert-Zernike
theorem, and it shows how these principles can be adapted to imaging.

In Sec. 19.2.2 we give some now-familiar mathematical descriptions for noise
in the raw data, and then we discuss the transition from noisy data to estimates of
Fourier coefficients in interferometers.

Section 19.2.3 is a detailed treatment of a two-aperture interferometer of great
historical and pedagogical significance, the Michelson stellar interferometer. In-
cluded is a discussion of how one goes from interferometric measurements to esti-
mation of stellar diameters. Section 19.2.4 is a broad-brush look at some modern
multiple-telescope systems that can operated as interferometers.

19.2.1 Young’s double-slit experiment

Thomas Young (1773 – 1829) was an English physicist and physician who con-
tributed an astonishing number of key concepts to modern science. He was the
first to establish clearly the wave nature of light (thereby earning the animosity of
English scientists devoted to Newton’s corpuscular theory). He also showed that
light consisted of transverse oscillations and laid the groundwork for the theory of
polarization. He gave the first modern interpretation of energy, and he made key
discoveries in elasticity and surface tension. In visual perception, he observed how
the lens of the eye changes shape to focus at different distances, and he proposed
that color vision involved only three color receptors. As if these physiological and
physical contributions were not enough, he also translated the Rosetta stone and
laid the foundation for modern Egyptology.

To an optics audience, Young’s name is most familiar from the double-slit ex-
periment illustrated in Fig. 19.9. There are several crucial deductions about the
nature of light that can be made with this apparatus. First, when only one slit is
open, a broad Fraunhofer diffraction pattern is seen, but when both slits are open
simultaneously, a pattern of fine fringes appears. There are dark regions where less
light is seen with both slits open. This observation demonstrates that light is a
wave, capable of interference.
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Fig. 19.9 Young’s double-slit experiment.

Second, if we place polarizers over the slits, we find that the fringes disappear
when the polarizations are orthogonal. This observation establishes the vector na-
ture of the wave; the electric fields do not interfere if their dot product is zero.

Third, we can use the double-slit apparatus with modern position-sensitive,
photon-counting detectors to better understand the quantum-mechanical nature of
light and light-matter interactions. If we use a very weak light source, so that only
one photon at a time is moving from the source to the detector plane, then each
photon will impinge on the detector and be recorded at a single point. Nevertheless,
after many photons have been recorded, the same fringe pattern is seen if both slits
are open. If one slit is blocked, the fringes disappear, indicating that the picture of
photons as localized particles is not adequate for describing this experiment.

This observation can be explained via quantum electrodynamics, where a prob-
ability amplitude is assigned to the path through each slit. The total probability
for finding the photon at some point on the detector plane is the square of the sum
of the probability amplitudes; since the amplitudes are complex, they can interfere,
possibly making the total probability lower than it would be with only one slit open.

Alternatively, the observation can be explained by the semiclassical approach
discussed in Sec. 10.1.4 where the field is treated classically but the atoms in the
detector are treated quantum-mechanically. In this view, the interference is be-
tween the classical wave amplitudes emerging from the two slits; the irradiance on
the detector plane, which is proportional to the square of the sum of the ampli-
tudes, exhibits a classical fringe pattern. This irradiance then causes photoelectric
interactions at random points on the detector surface. The observed pattern is a
nonstationary Poisson random process where the probability density function on the
positions of photoelectric interactions is proportional to the optical fluence (energy
per unit area). Since fluence is irradiance times exposure time, it does not matter
whether we use a weak light source (small irradiance) and long exposure time or a
strong source and short time; we are not regarding the field as composed of photons,
so there is no issue of how many photons are traversing the system simultaneously.

The experimental observation that is most important for the imaging applica-
tions of Young’s double slit and other interferometers is that the visibility of the
fringes is greatest for a quasimonochromatic point source, generally decreasing as
the source size is increased. We know from Sec. 9.7 that the dependence of visibility
on source distribution is a consequence of the spatial coherence of the field at the slit
plane as described by the van Cittert-Zernike theorem. In fact, in that section we
used a double-pinhole arrangement, Fig. 9.19, as a way of illustrating the concept
of spatial coherence. The van Cittert-Zernike theorem was used as a description of
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the forward problem: given the source, compute the mutual coherence function and
hence the fringe visibility. Here we shall discuss the inverse problem: given a set
of fringe measurements taken with a double-pinhole or double-slit system, deduce
properties of the source. As preliminaries, however, we shall discuss the fringes
produced by point sources and extended sources, and we shall take another look at
the meaning of the van Cittert-Zernike theorem and give a new and perhaps more
intuitive derivation of it.

Monochromatic point source Consider first a monochromatic point source at 2D
position rs (where subscript s indicates source) in the plane z = −z0. Two small
pinholes are at 2D positions r = r1 and r = r2 in the plane z = 0, and the fringe
pattern is observed in the plane z = z0. The source emits a spherical wave that
propagates to the pinhole plane, and each pinhole in turn emits a spherical wave
that propagates to the observation plane. The interference of these two secondary
spherical waves produces a straight-line fringe pattern.

We can analyze the fringe pattern by Fresnel diffraction theory as developed in
Sec. 9.4.6. Within the Fresnel approximation, the field at the jth pinhole (j = 1, 2)
is given by [cf. (9.94)]

u0(rj) ∝ exp

[
i
π

λz0
|rj − rs|2

]
. (19.66)

If the pinholes are small compared to a wavelength, then a spherical wave from each
propagates to the observation plane, and the field at point r is given by

uz0(r) ∝ exp

[
i
π

λz0

(
|r1 − rs|2 + |r1 − r|2

)]
+ exp

[
i
π

λz0

(
|r2 − rs|2 + |r2 − r|2

)]
.

(19.67)
With a little algebra,7 we find that the irradiance at point r in the observation
plane is given by

Iz0(r) ∝ |uz0(r)|
2 ∝ 1 + cos

[
2π

λz0
(r2 − r1) · (rs + r)

]
. (19.68)

For fixed pinhole locations r1 and r2, this function describes the fringe pattern as
a function of position r in the observation plane. Note that a maximum irradiance
is seen at r = −rs; the path length from the source through pinhole 1 to this point
equals that through pinhole 2, so constructive interference occurs. We can say that
the fringe pattern is centered at r = −rs. Thus the lateral displacement or phase
of the fringes is determined by the position rs of the source point, and the fringe
frequency ρf is determined by the pinhole spacing as

ρf =
1

λz0
(r2 − r1) . (19.69)

The fringe visibility is 100% for a point source.
The relationship between (19.68) and (19.13) should not be overlooked. We

know from (19.11) that a Fresnel zone plate is a sum of quadratic phase factors,

7We assume here that the origin of coordinates is halfway between the two pinholes, so that
r2
1
= r2

2
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just as spherical waves have complex amplitudes given by quadratic phase factors.
When we take the product of two zone-plate transmittances as in (19.13), we get
terms where the quadratic phases cancel, leaving phases that depend linearly on
position, i.e., straight-line moiré fringes. Similarly, when we interfere two spherical
waves and compute the irradiance, we again get cancellation of quadratic phase
terms so that straight-line interference fringes remain. The physics is very different
in the two problems, but the math is quite similar.

Extended source: van Cittert-Zernike revisited Now consider a quasimonochromatic
but spatially incoherent extended source. As discussed in Sec. 9.7.4, spatial inco-
herence means that the spatial autocorrelation function of the source is well approx-
imated by a Dirac delta function, so there can be no interference between waves
emanating from different source points. Instead, each point on the source produces
its own fringe pattern, described by (19.68), and the total irradiance at point r is
the sum (integral) of the irradiances from individual source points. If the radiant
exitance of the source at point rs is denoted f(rs), we can write

Iz0(r) = C

∫

∞

d2rs f(rs) {1 + cos[2πρf · (rs + r)]} , (19.70)

where C is a constant containing geometric factors such as the distance z0 and the
pinhole diameters.

To put (19.70) into a more familiar form, we can define a dimensionless complex
number γ by

γ ≡
∫
∞

d2rs f(rs) exp[−2πiρf · rs]∫
∞

d2rs f(rs)
=

F (ρf )

F (0)
, (19.71)

where F (ρ) is the 2D Fourier transform of f(rs), and, by the central-ordinate the-
orem, F (0) is the integral of the object. With this definition, (19.70) becomes

Iz0(r) = CF (0)
[
1 + |γ| cos

(
2πρf · r− Φγ

)]
, (19.72)

where γ ≡ |γ| exp (iΦγ).
As with a point source, the fringe frequency is determined solely by the pinhole

positions, but now the fringe visibility |γ| and phase Φγ are determined by the
source distribution through (19.71). In fact, (19.71) is just a restatement of the
van Cittert-Zernike theorem (9.317) when γ is recognized as the complex degree of
coherence for points r1 and r2. By this theorem, the mutual coherence function is
the Fourier transform of the source exitance, and by (9.259) the complex degree of
coherence is a normalized version of the mutual coherence function.

Detector sensitivity functions To gain further insight into the meaning of the van
Cittert-Zernike theorem, we can look at the sensitivity function associated with
each detector element.

As with any linear CD system, we can write the mean measurement in the
form

gm =

∫

∞

d2rs f(rs)hm(rs) . (19.73)

In the present problem, the detectors sample the continuous interference pattern,
so we see from (19.68) and (19.69) that

hm(rs) ∝ 1 + cos[2πρf · (rs + rm)] . (19.74)
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This form is familiar from Sec. 19.1.1 where we described several systems for mea-
suring samples of the Fourier transform by modulating the object with a (1 + cos)
pattern and integrating. In the double-pinhole setup, different detector elements
correspond to cosine patterns all of the same frequency but with different phases.
Thus the full array of measurements for one pinhole spacing can be used to estimate
the complex Fourier transform for a single frequency.8

From pinholes to slits A practical difficulty with the system as described so far is
that very small pinholes must be used in order for the waves emerging from them
to be good approximations to spherical waves, as we have assumed. Small pinholes,
however, collect very little light. One way to get more light is to follow the lead of
Thomas Young and use slits rather than pinholes.

The analysis above is readily modified for slits. For a point source, straight-line
fringes are still produced, and for a spatially incoherent source, the irradiances from
different source points add linearly. Thus, for slits parallel to the y axis, (19.70)
becomes

Iz0(r) = C′

∫

∞

d2rs f(rs) {1 + cos [2πξf (xs + x)]} , (19.75)

where C′ is another radiometric constant (much larger than C), and the fringe
frequency is given by [cf. (19.69)]

ξf =
1

λz0
(x2 − x1) , (19.76)

with x1 and x2 specifying the slit locations.
A consequence of (19.75) is that we get no information about F (ξ, η) except

for η = 0, i.e., for ρ parallel to the x axis. Thus we need to rotate the object or
the slits to obtain Fourier samples distributed over the 2D plane.

Another way to think about double-slit interferometry is in terms of the Radon
transform and tomography (see Sec. 4.4). We know from the central-slice theorem,
(4.150), that F (ξ, 0) is the same as the 1D Fourier transform of the projection of
the object along the y axis. If we sample ξf on a fine regular grid and extract
the complex visibility for each sample, we can perform an inverse DFT to get an
approximation to the projection λ(p,φ) for φ = 0, and rotating the object or the slits
will give other projections. Reconstruction can then proceed by any standard 2D
tomographic algorithm such as filtered backprojection. Many algorithms, however,
start by Fourier-transforming the projection data, and with double slits we directly
collect data in Fourier space, so we may as well stay there.

19.2.2 Visibility estimation

As we have seen, a 2D fringe distribution is obtained for each pair of pinhole or
slit locations, but it tells us relatively little about the object. The only useful
information is contained in the visibility and phase of the fringes. If we can estimate
γ from measured fringe data, we have an estimate of F (ρ) for one particular ρ,

8In fact, just four measurements would suffice if they were placed properly so that the phase
2πρf · rm took on the values 0, π/2, π and 3π/2, but it would be mechanically tricky to alter the
detector locations for different pinhole spacings.
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according to (19.71). To get additional Fourier components, we need additional
pairs of pinhole locations.

Image reconstruction can thus be formulated as a two-step process. We can
first estimate the Fourier components and then estimate the parameters in a discrete
object representation. Alternatively, we can go directly from the raw data to a
reconstructed image. In either case, it is necessary to characterize the noise in the
data and how it affects the estimates of interest. In this section we look at visibility
estimation in Gaussian and Poisson noise.

Visibility estimation— Gaussian data We assume a regular array of detectors in the
observation plane. If each detector element is small compared to the period of the
finest interference fringes used, the measurement by the detector at point rm (where
m is a 2D multi-index) is given by

gm = K
[
1 + |γ| cos

(
2πρf · rm − Φγ

)]
+ nm = gm + nm , (19.77)

where nm is the noise in the measurement and K is a constant independent of m
but proportional to the integral of the object. For simplicity we assume that the
integral of the object can be estimated accurately from the fringe data or measured
independently, so K will be regarded as known. Thus the quantities to be estimated
are the two real parameters |γ| and Φγ .

For i.i.d. normal noise, the log-likelihood for this problem is given by

ln[pr(g
∣∣ |γ|,Φγ)] = const−

1

2σ2

∑

m

{gm−K[1+ |γ| cos(2πρf ·rm−Φγ)]}2 . (19.78)

It is convenient, however, to use γ and γ∗ as the independent parameters, as dis-
cussed in Sec. A.9.4. Dropping the irrelevant constant, we can thus write the log-
likelihood as

ln [pr(g|γ,γ∗)]

= −
1

2σ2

∑

m

[
gm −K − 1

2Kγ exp(−2πiρf · rm)− 1
2Kγ∗ exp(2πiρf · rm)

]2
.

(19.79)
We need to maximize this expression with respect to γ and γ∗. Differentiating

with respect to γ∗ according to the differentiation rules of Sec. A.9.4, we see that

2σ2

K

∂

∂γ∗
ln [pr(g|γ)]

=
∑

m

[
gm −K − 1

2Kγ exp(−2πiρf · rm)− 1
2Kγ∗ exp(2πiρf · rm)

]
exp(2πiρf · rm) .

(19.80)
The derivative with respect to γ is just the complex conjugate of (19.80).

Equating (19.80) to zero gives

∑

m

(gm −K) exp(2πiρf · rm) = 1
2Kγ

∑

m

1 + 1
2Kγ∗

∑

m

exp(4πiρf · rm) . (19.81)

We shall assume for simplicity that an integer number of fringes fit across the array,
in which case the last sum is identically zero, Thus the maximum-likelihood estimate
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of the complex degree of coherence is given by (Walkup and Goodman, 1973)

γ̂ =
2

KM2

∑

m

(gm −K) exp
(
2πiρf · rm

)
. (19.82)

Computationally, γ̂ is given by a discrete Fourier transform of the data, though
only for a single frequency for each pair of pinhole locations. There is thus no
advantage to the FFT algorithm, which is an efficient way of computing the DFT
for a large set of frequencies.

Bias and variance Since M2 is large, we can appeal to the asymptotic properties of
ML estimators to argue that the estimate given by (19.82) is unbiased and efficient.
It is instructive, however, to compute the bias and variance directly.

From (19.77) and (19.82), the mean of γ̂ is

〈γ̂〉 =
2

KM2

∑

m

(gm −K) exp(2πiρf · rm)

=
2

KM2

∑

m

[
K
2 γ exp(−2πiρf · rm) + K

2 γ
∗ exp(2πiρf · rm)

]
exp(2πiρf · rm) .

(19.83)
From the assumption made above that an integer number of fringes fit across the
array, it follows that

∑
m exp(4πiρf · rm) is identically zero. Thus 〈γ̂〉 = γ, and the

estimator is unbiased.
To study the variance, we write

∆γ̂ ≡ γ̂ − γ =
2

KM2

∑

m

∆gm exp(2πiρf · rm) , (19.84)

where ∆gm ≡ gm − gm. The zero-mean complex random variable ∆γ̂ has real and
imaginary parts given, respectively, by

∆γ̂r =
2

KM2

∑

m

∆gm cos(2πiρf · rm) ,

∆γ̂i =
2

KM2

∑

m

∆gm sin(2πiρf · rm) . (19.85)

Since the data covariance is given by

〈∆gm ∆gm′〉 = σ2 δmm′ , (19.86)

we can show that

Var {∆γ̂r} = Var {∆γ̂i} =
2σ2

K2M2
, 〈∆γ̂r∆γ̂i〉 = 0 , (19.87)

where we have used the fact that
∑

m cos2(2πiρf ·rm) =
∑

m sin2(2πiρf ·rm) = 1
2M

2

but
∑

m cos(2πiρf · rm) sin(2πiρf · rm) = 0 since an integer number of fringes fit
across the array.

Thus ∆γ̂r and ∆γ̂i are uncorrelated and have the same variance. Moreover,
each is a linear transformation of a Gaussian random variable, so they are i.i.d.
Gaussian, and the complex quantity ∆γ̂ is circular Gaussian (see Sec. 8.3.6). The
reader is invited to compute the Cramér-Rao bound for this problem and verify
that γ̂ is an efficient estimator.
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Noise with photon-counting detectors So far in this section we have assumed that
the interference pattern was detected by a 2D detector array in which the noise was
i.i.d. normal. Now we consider photon-counting detectors.

As we showed classically in Sec. 11.3.7 and quantum-mechanically in Sec.
11.5.3, the photon statistics in the observation plane will virtually always be Pois-
son. All that is required is τ ∆ν / 1, where ∆ν is the spectral bandwidth of the
source and τ is the observation time. We also know from Sec. 11.3 that all statistical
properties of a Poisson random process are determined by the photon fluence b(r).
For narrowband radiation of mean frequency ν, photon fluence is fluence divided
by the mean photon energy hν, and fluence is irradiance times observation time, so

b(r) = τ
Iz0
hν

. (19.88)

In spite of the term “photon fluence,” this expression does not imply that the radi-
ation actually consists of photons; it can be treated fully classically. Nevertheless,
the pattern of photoelectric interactions in the observation plane will be a Poisson
random process with fluence η b(r), where η is the quantum efficiency. As discussed
in Sec. 11.3.4, we can integrate this poisson random process over detector elements
to get discrete Poisson data.

Though γ̂ in (19.82) is the ML estimator only for i.i.d. Gaussian noise, it might
be used with photon-counting detectors where the noise is Poisson. In that case we
cannot be sure it is asymptotically efficient and unbiased. We need to examine the
behavior of (19.82) for Poisson data when it is not ML, and we need to derive the
ML estimator correctly under a Poisson model.

Using the Gaussian ML estimator with Poisson data Let us recompute the mean and
variance of the Gaussian ML estimator but with Poisson data. Since the mean is
the same for both Poisson and Gaussian data, it follows immediately from (19.83)
that the estimator is unbiased no matter which data model is used. The definitions
in (19.85) are still valid, and we just need to compute the variances and covariance
of γ̂r and γ̂i. In the Poisson case, the data covariance is given by

〈∆gm ∆gm′〉 = gm δmm′ , (19.89)

and it follows that
Var {∆γ̂r}

=
4

KM4

∑

m

[
1 + 1

2γ exp(−2πiρf · rm) + 1
2γ

∗ exp(2πiρf · rm)
]
cos2(2πρf · rm) .

(19.90)
The spatial average across the array of the terms involving the complex exponentials
is zero. The term varying just as cos2(2πρf · rm) sums to 1

2M
2, as does the sin2

term in Var {∆γ̂r}, and we are left with

Var {∆γ̂r} = Var {∆γ̂i} =
2

KM2
, 〈∆γ̂r∆γ̂i〉 = 0 . (19.91)

This result differs from (19.87) in that the variance is proportional to 1/K rather
than 1/K2. Since K is proportional to the source brightness and the exposure time,
we see that the precision of the visibility estimates improves more rapidly with these
parameters in the Gaussian case than in the Poisson case.
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ML estimators for Poisson data The maximum-likelihood estimate of the complex
visibility from Poisson data is given by

γ̂ = argmax
γ

{ln[pr(g|γ)]} = argmax
γ

{
∑

m

[gm ln gm(γ)− gm(γ)]

}

, (19.92)

where
gm(γ) = K

[
1 + |γ| cos(2πρf · rm − Φγ)

]
. (19.93)

This equation must be solved iteratively, for example by an EM algorithm (see
Sec. 15.4.6). Methods developed in Sec. 15.3.6 can be used to analyze the noise
properties of the estimate.

From visibilities to image Having obtained visibility estimates, it remains to use
them to reconstruct an image. Since many visibility measurements are needed,
with many pairs of pinhole locations, we add an index to distinguish the different
locations. For pinholes at r1 = r1n and r2 = r2n, the fringe frequency is ρn =
(r2n − r1n)/(λz0), and the estimated object Fourier transform at this frequency is

F̂ (ρn) = F (0) γ̂(ρn) . (19.94)

Recall that we are assuming that F (0) is measured independently, so estimation of γ
directly yields an estimate of F (ρ) at the fringe frequency. Note also that the index
m has disappeared; even though we collect a 2D data set for each fringe frequency,
we process it to extract a single complex number F̂ (ρn). The double-pinhole system
is thus an alternative to the various systems treated in Sec. 19.1 for estimating
values of the 2D Fourier transform of the object, and image reconstruction can be
performed by any of the methods discussed in Sec. 19.1.3.

19.2.3 Michelson stellar interferometer

Albert A. Michelson (1842 – 1931) can rightfully be called the father of modern in-
terferometry (though the French would nominate Fizeau, for reasons discussed in
Sec. 19.2.4). A graduate of the U.S. Naval Academy, Michelson served as a science
instructor there from 1875 to 1879, and during this time he began a series of mea-
surements of the velocity of light. After a period of travel in Europe to study optics,
he accepted a position in 1883 at the Case School of Applied Science in Cleveland.
In collaboration with chemist Edward W. Morley, he constructed an exquisitely sen-
sitive interferometer and used it in a famous experiment to measure the difference
in the speed of light as the earth traversed the ether, the supposed medium for light
propagation. In 1887 Michelson and Morley announced what has been called the
most significant negative result in the history of science: they found no difference in
the speed of light for propagation parallel or perpendicular to the earth’s orbit. In
modern language, the speed of light was independent of the reference frame. It was
this critical observation that led Einstein to the special theory of relativity. In 1907
Michelson received the Nobel Prize in physics, the first awarded to an American.

Michelson’s connection to imaging traces back to 1890 when he used an in-
terferometer to study the moons of Jupiter (Michelson, 1890, 1891a), and soon
thereafter he had given a clear statement of the role of fringe visibility (Michelson,
1891b). His biggest impact on astronomy, however, came in 1919 when he and Pease
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fitted a large telescope with an interferometer and used it to measure the diameter
of the supergiant star Betelgeuse (Alpha Orionis) (Michelson and Pease, 1921).

The Michelson and Pease experiment is of interest in this chapter since it il-
lustrates another technique for collecting data in Fourier space, and also because it
is an example of an imaging system that relies on strong prior information, namely
that stars are spherical. It is of enormous interest to the astronomy community
because it allows high resolution without the expense of building a huge telescope.

Comprehensive reviews of interferometric imaging in astronomy are given by
Tango and Twiss (1980), Roddier (1988), Shao and Colavita (1992), Lawson (2000),
Quirrenbach (2001) and Saha (2002). A good popular discussion is given by Arm-
strong et al. (1995). Textbooks that provide useful background material include
Hecht (1987), Lipson et al. (1995) and Born and Wolf (1999). A delightful collection
of essays on many topics in optics, including the Michelson stellar interferometer,
is Mansuripur (2002).

Acquisition geometry As shown schematically in Fig. 19.10a, Michelson and Pease
placed two periscopes on a 6 m beam mounted in front of the 100 inch (2.54 m)
Hooker telescope on Mt. Wilson. Each periscope consisted of two flat folding mir-
rors, and the outer mirror of each pair was movable. Two small apertures were used,
each collecting light from one of the two periscopes. Then the primary mirror of
the telescope was used to superimpose the star images from the two apertures, and
fringes were observed visually. An equivalent optical system with a lens in place of
the large spherical mirror is shown in Fig. 19.10b.

The setups shown in Fig. 19.10 can be regarded as modifications of Young’s
double-pinhole apparatus, with movable folding mirrors and their associated aper-
tures in place of the movable pinholes. Unlike the double-pinhole experiment, how-
ever, the apertures are not assumed to be comparable in size to a wavelength. In the
analysis of double pinholes, we assumed that the waves emerging from the pinholes
were diverging spherical waves; in Fig. 19.10 the waves emerging from the apertures
are close to plane waves, and the primary mirror or lens converts them to converging
spherical waves which are imaged to Airy diffraction patterns in the focal plane.
Thus, when both apertures are open, we see an Airy pattern modulated by fringes
instead of a large-area fringe pattern as in the double-pinhole case [cf. (19.72)].

Fig. 19.10 The Michelson stellar interferometer. (a) Mirror system used by
Michelson and Pease. (b) Equivalent lens system.
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If the diameter of each aperture is Dap, the angular size of the Airy pattern
is approximately λ/Dap; in practice this number is much larger than the angular
diameter of the star. For example, a 20 cm aperture has an angular resolution of 2.5
µrad at a wavelength of 0.5 µm. By comparison, Betelgeuse has a diameter of 0.044
arc sec or 0.21 µrad.9 One might think that Betelgeuse could be marginally resolved
by using the full 100 inch aperture of the telescope, since its diffraction-limited
resolution is approximately 0.2 µrad, but phase disturbances from the atmosphere
limit the actual telescope resolution to about what one would get with a 20 cm
aperture, around 2.5 µrad.

PSF analysis We can analyze the Michelson-Pease geometry just as we did with
double pinholes, by first computing the irradiance image of a point source, then
convolving it with an extended object distribution. We again assume that the object
is spatially incoherent, so the image of an extended object is a linear superposition
of the irradiance patterns from individual points. We shall treat the telescope as an
ideal thin lens as in Fig. 19.10b, but essentially the same results apply to mirrors.

Because astronomical objects are essentially at an infinite distance from the
imaging system, a monochromatic point source produces a plane wave described by
exp(2πikα̂0 · r), where k = 2π/λ, α̂0 = (α0x,α0y,α0z) is a 3D unit vector directed
away from the source, and r = (x, y, z) is a 3D position vector. In the plane z = 0,
the wave can be written as exp (2πiρ0 · r), where r = (x, y) is a 2D position vector,
and ρ0 = (α0x/λ,α0y/λ) specifies the 2D spatial-frequency of the wave amplitude
in that plane and hence the angular position of the source.

Let r1 and r2 be the 2D positions of the outer periscope mirrors in the plane
z = 0, and let ra1 and ra2 be the 2D positions of the corresponding apertures (and
hence also of the inner periscope mirrors). The vector distance r1 − r2 is called the
baseline.

We choose the coordinate system so that the pupil lies in the plane z = 0, no
matter how the telescope is aimed. Since the periscopes translate the fields laterally,
the field in the pupil is given by

u(δ)
pupil(r) ∝ exp[2πiρ0 · (r+ r1 − ra1)] cyl

[

r− ra1

Dap

]

+ exp[2πiρ0 · (r+ r2 − ra2)] cyl

[

r− ra2

Dap

]

, (19.95)

where the cylinder function is defined by (3.257), and the superscript δ indicates
that we are dealing with a point source.

In Sec. 9.6 we learned how to analyze the imaging properties of an ideal thin
lens. The key was the Fresnel diffraction formula (9.98), which was used to express
the field in the image plane as the Fourier transform of the field emerging from the
lens times a quadratic phase factor. For an ideal lens in the Fresnel approximation,
we saw in (9.159) that the lens itself introduces a quadratic phase factor that exactly
cancels the quadratic phase factor in the Fresnel formula when the lens equation

9As a rule of thumb, 1 arc sec = 5 µrad; a more precise number is 4.848 µrad per arc sec.
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(9.169) is satisfied. For the special case of a lens focused at infinity (q = f), the
result is that [cf. (9.170) and (9.172)]

uim(r) ∝ exp

(

iπ
r2

λf

)

[F2 {upupil(r
′)}]

ρ=r/λf , (19.96)

where upupil(r′) is the field in the pupil (before it is modified by the amplitude
transmittance of the lens). Thus the field in the image plane is essentially the
Fourier transform of the field in the pupil.

Using (3.237), (3.238) and (3.259), we find

u(δ)
im(r) ∝ exp

(

iπ
r2

λf

)

πD2
ap

4
besinc

(

Dap

∣

∣

∣

∣

ρ0 −
r

λf

∣

∣

∣

∣

)

×
{

exp

[

2πi

(

ρ0 · r1 −
1

λf
r · ra1

)]

+ exp

[

2πi

(

ρ0 · r2 −
1

λf
r · ra2

)]}

. (19.97)

The corresponding image-plane irradiance is

I(δ)im (r) = |u(δ)
im(r)|2 ∝ 2

[

πD2
ap

4
besinc

(

Dap

∣

∣

∣

∣

ρ0 −
r

λf

∣

∣

∣

∣

)

]2

×
{

1 + cos

[

2πρ0 · (r1 − r2)−
2π

λf
r · (ra1 − ra2)

]}

. (19.98)

The [besinc]2 factor is the Airy pattern centered at r = λfρ0, which is the geometric
image of the point source. The {1+ cos} factor is the superimposed fringe pattern.
The fringe frequency is determined by the aperture spacing (ra1−ra2); the baseline
(r1 − r2) affects the phase but not the frequency of the fringes. The fringes have
100% visibility for a point source.

Extended objects Above we considered a point source that radiates a plane wave
with 2D spatial frequency ρ0 in the plane z = 0. An extended source produces a
distribution of plane waves, hence a distribution of spatial frequencies. In keeping
with common practice in astronomy, we shall use the direction cosines of the waves
rather than spatial frequencies. Thus we specify the source by f(αs), where αs

(without a hat since it is not a unit vector) is the 2D vector of direction cosines of
the 3D wavevector, i.e., αs = (αsx,αsy); the third direction cosine is unneeded since
α2
sx + α2

sy + α2
sz = 1. Similarly, we use the 2D direction-cosine vector α = (αx,αy)

to specify position in the image plane. We shall assume that f(αs) is nonzero only
for a very small range of αx and αy so that paraxial approximations apply. Thus
we can relate angles to focal-plane coordinates by α = r/f, and we can use infinite
limits in integrals over αx and αy.

For an extended incoherent object, the image-plane irradiance (in angular
units) is found by superimposing the contributions of each source point:

Iim(α) = C

∫

∞

d2αs f(αs) besinc
2

(

Dap

λ
|αs −α|

)

×
{

1 + cos

[

2π

λ
αs · (r1 − r2)−

2π

λ
α · (ra1 − ra2)

]}

, (19.99)
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where C is a radiometric constant that includes a factor of (πD2
ap/4)

2.
Some limits of this result are interesting. First, if the periscopes are omit-

ted so that r1 = ra1 and r2 = ra2, then the integral becomes a convolution; the
image irradiance is the source distribution blurred by a PSF given by the besinc2

modulated with a fringe pattern. This result is expected since the coherent PSF
is just the Fourier transform of the pupil function, and the incoherent PSF is the
squared-modulus of the coherent one (see Sec. 9.7.6).

Another limit that leads to a similar result, even with the periscopes, is when
Dap is small, as it was in the Michelson and Pease experiment. Small apertures
reduce problems with atmospheric fluctuations and simplify the analysis of the out-
put; only the latter advantage will be discussed here.

When the aperture is small, the width of the besinc function in (19.99) is
large. If it is much larger than the angular diameter of the source and f(αs) is
concentrated near αs = αs0 , then we can approximate (19.99) as

Iim(α) = C besinc2
(

Dap

λ
|αs0 −α|

)

×
∫

∞

d2αs f(αs)

{

1 + cos

[

2π

λ
αs · (r1 − r2)−

2π

λ
α · (ra1 − ra2)

]}

. (19.100)

With this approximation, the same manipulations that led to (19.72) allow us to
write

Iim(α) = CF (0) besinc2
(

Dap

λ
|αs0 −α|

){

1 + |γ| cos
[

2π

λ
α · (ra1 − ra2)− Φγ

]}

,

(19.101)
where now

γ =
F [(r1 − r2)/λ]

F (0)
. (19.102)

As expected, (19.101) shows that the image is an Airy pattern times a fringe
pattern with a visibility determined by the object Fourier transform. A key point
seen from (19.102) is that this Fourier transform is evaluated at a frequency deter-
mined by the baseline (spacing of the outer mirrors), even though this frequency
would not be passed by the telescope itself. Subject only to practical constraints
such as stability and phase shifts due to the atmosphere, arbitrarily high object
frequencies can be measured.

Note that the argument of the numerator in (19.102) is dimensionless, as it
must be since F ( · ) is the Fourier transform of a function of a direction-cosine vector,
which is dimensionless. In general, we shall denote the frequency vector conjugate
to α as u, with both vectors being dimensionless. Thus the numerator in (19.102)
is F (u) evaluated at u = (r1− r2)/λ. The reader should not confuse this frequency
with the spatial frequency of the plane wave produced by a point on the source;
the latter frequency is given by ρ = α/λ. Thus, even though u and α are both
frequency variables in some sense, they are Fourier-conjugate variables in different
domains. When we need to specify the components of u, we shall follow common
practice in astronomy and call them u and v; astronomers refer to the (angular)
Fourier domain as the u-v plane.

Estimation of stellar diameter To a reasonable first approximation, stars are uniform
discs. There may be some limb darkening since radiation travelling nearly tangent to
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the surface must traverse a longer path than radiation exiting nearly perpendicular
to the surface, and there may be small surface features akin to solar flares, but if
we ignore these details, the visibility function is given by

γ(u) =
F (u)

F (0)
= besinc(uDα) , (19.103)

where Dα is the angular diameter of the star and u = |u| is the magnitude of the
angular frequency vector. This function has its first zero at u = 1.22/Dα and the
second zero is at 2.23/Dα. It follows from (19.102) that the fringes vanish when

|r1 − r2| = 1.22
λ

Dα
or |r1 − r2| = 2.23

λ

Dα
. (19.104)

For Betelgeuse at λ = 0.5 µm, the fringes vanish at mirror spacings of 2.9
and 5.3 m, so the 6 m beam used by Michelson and Pease was adequate to observe
two nulls. They observed the fringes visually and adjusted the mirrors for zero
visibility; the stellar diameter was then estimated simply from the corresponding
mirror spacings.

A more modern approach would be to collect quantitative data at several
mirror separations and use them to estimate the parameter Dα. A circuitous route
would be to estimate the visibilities at each separation as discussed in Sec. 19.2.2
and then to fit a besinc to the result. Alternatively, the diameter could be estimated
directly from the fringe data by ML methods. In either case, performance on this
estimation task can be assessed by mean-square error (MSE) between the estimated
and true diameters. Since there is only one parameter to be estimated, null functions
are not an issue, and the objections to MSE raised in Sec. 14.1.2 do not apply.

Calculation of MSE is simplified if the noise level in the data is low. We know
from Sec. 13.3.6 that ML estimators are asymptotically unbiased and efficient, which
means that the MSE approaches the Cramér-Rao (CR) bound (Sec. 13.3.5) as the
variance in the raw data (either fringe data or visibilities) approaches zero. Thus
we can use the CR bound on the estimate of the diameter as a figure of merit for
this problem.

To illustrate the procedure, suppose fringe data are recorded with a regularly
spaced detector array for a single baseline. Suppose also that the star is exactly
on the telescope axis so that αs0 = 0, and that the aperture is small enough that
(9.101) is applicable. The data, consisting of noisy samples of Iim(α), can then be
written as10

gm = K besinc2
(

Dap

λ
|αm|

)

{1 + besinc(ubDα) cos(2πuf ·αm)}+ nm ≡ gm + nm ,

(19.105)
where K contains all of the radiometric factors [including aperture area and stellar
brightness F (0)], uf ≡ (ra1 − ra2)/λ is the fringe frequency in angular units, ub ≡
(r1 − r2)/λ is the frequency associated with the baseline, and ub = |ub|.

For i.i.d. Gaussian noise of variance σ2, the CR bound is given by (13.372) as

Var(D̂α) ≥ σ2

[

∑

m

(

dgm
dDα

)2
]−1

. (19.106)

10Note that the absolute-value signs on besinc(ubDα) have disappeared since the phase Φγ is either
0 or π, depending on whether besinc(ubDα) is positive or negative.
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The parameterDα appears only in the factor besinc(ubDα) in (19.105). The requisite
derivative is given by Abramowitz and Stegun (1965, formula 9.1.30) as

d

dDα
besinc(ubDα) = −2

J2(πubDα)

Dα
, (19.107)

where J2( · ) is a Bessel function. With this derivative, the final result for the CR
bound is

Var(D̂α) ≥ σ2

{

∑

m

[

2K besinc2 (Dap |αm| /λ)
J2(πubDα)

Dα
cos (2πuf ·αm)

]2
}−1

.

(19.108)
One problem with this result is that a single baseline may not be sufficient to

determine the stellar diameter unambiguously; if the visibility is near zero, several
different Dα yield the same value for besinc(ubDα). If J different visibilities are
measured for baselines ub = ubj , the Fisher informations for different baselines
add, and (19.108) becomes

Var(D̂α)≥σ2







J
∑

j=1

∑

m

[

2K besinc2
(

Dap |αm|
λ

)

J2(πubjDα)

Dα
cos (2πuf ·αm)

]2






−1

.

(19.109)
A CR bound such as (19.108) or (19.109) can be used to optimize the base-

lines and the aperture diameter for accuracy of the estimate of the stellar diameter.
Note that a larger aperture gives more photons but fewer fringes since the width of
the Airy pattern is less, so the optimum aperture diameter is not obvious without
numerical evaluation. Note also that the accuracy depends on the actual stellar
diameter.

If we knew an approximate value for the stellar diameter in advance and
wanted to use only a single baseline, we could choose the optimal one by maximizing
J2(πubDα) with respect to ub. Since J2(x) is maximum at x = 3.054, the optimal
baseline is ub = 0.97D−1

α ; for comparison, zero visibility occurs when ub = 1.22D−1
α .

More realistically, we might know only that we were looking for stellar diameters in
some range, and we could average the right-hand side of (19.108) or (19.109) over
that range to obtain a figure of merit for the system.

19.2.4 Interferometers with multiple telescopes

Building on the discussion of the Michelson stellar interferometer in the last section,
we now consider other configurations that are used in modern astronomical interfer-
ometers. The systems treated here differ from the Michelson stellar interferometer
in that two or more separate telescopes are used, as shown in Fig. 19.11 and 19.12,
and in the use of optical delay lines. The delay lines may be afocal imaging systems,
like the 4f system discussed in Sec. 9.7.2 but with movable mirrors to fold the path,
or they may include fiber optics.

The delay lines are needed to compensate for the optical path difference (OPD)
from a star to the two telescope apertures. As discussed in Sec. 9.7.4, interference
cannot occur unless the total OPD is small compared to the coherence length of
the source (or, equivalently, the difference in propagation times is small compared
to the coherence time). Coherence time is the reciprocal of the spectral bandwidth
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of the source, so it can be increased by spectral filtering to reduce the bandwidth,
but only at the expense of photons; a better solution is to equalize the paths with
delay lines.

Delay lines are not necessary with a Michelson stellar interferometer. When
the telescope is pointed exactly at the star of interest, the OPD to a point in the
center of the image field is zero if the side mirrors are symmetrically located. As
the telescope is scanned across the sky to look at different stars, the OPD remains
zero since the side mirrors and apertures are attached to the primary mirror. In the
configurations of Figs. 19.11 and 19.12, on the other hand, the OPD from a star to
the telescope apertures varies as the telescopes are scanned, and the delay lines are
needed to hold the total OPD constant.

Fig. 19.11 Image-plane (Fizeau) interferometer with two telescopes (defi-
nitely not to scale). Details of the relay optics are omitted for clarity, but the
image plane is common to the two telescopes.
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Fig. 19.12 Pupil-plane (Michelson) interferometer with two telescopes. The
beamsplitter causes the pupil planes for the two telescopes to overlap. The
small photodetectors sample the image planes at a point, or equivalently in-
tegrate the combined amplitudes over the common pupil plane.

Pupil-plane vs. image-plane interference There are two distinct ways of forming the
interference pattern in astronomical interferometry (Traub, 1999). The first, shown
in Fig. 19.11, is analogous to the Michelson stellar interferometer. The two beams
are brought together in a common image plane, with a slight angle between them,
and an image modulated by a fringe pattern is observed. This method is sometimes
called image-plane interferometry.

The second method uses a beamsplitter to combine the beams with no angle
between them; it can be regarded as the limit of the Michelson stellar interferometer
as the distance between the apertures, |ra2 − ra1|, goes to zero. Hence the spatial
frequency of the fringe pattern goes to zero, but we can still observe fringes by vary-
ing the delay lines. Qualitatively, a point source produces identical Airy patterns
from the two telescopes, and the phase difference between the two images oscillates
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with the time delay. In practice, the delay is continuously scanned, and the fringes
are observed as temporal rather than spatial patterns. Since the relay optics and
beamsplitter cause the images of the pupils of the two telescopes to overlap exactly,
this method is called pupil-plane interferometry.

Fizeau and Michelson: History and semantics Armand-Hippolyte-Louis Fizeau
(1819 – 1896) was a French physicist celebrated for his studies of the speed of light
and for his early investigations into what we would now call partial coherence. By
the 1860s, he was a member of the Académie des Sciences and a leading figure in
French scientific circles.

In 1868 Fizeau suggested that a simple interferometer, constructed by placing
two circular apertures over the pupil of a telescope, could be used to measure the di-
ameters of astronomical bodies. A few years later Edouard Stéphan, director of the
observatory at Marseilles, carried out the experiment suggested by Fizeau (Fizeau,
1873; Stéphan, 1874). Seventeen years elapsed before Michelson’s first experiments
in this field; in 1890 he measured the diameter of Jupiter, using essentially the same
interferometer as suggested by Fizeau. An excellent short history of these develop-
ments is given by Lawson (2000). Lawson finds no evidence from the literature that
Michelson was aware of the earlier French work until well after his experiments on
Betelgeuse in 1920 – 1921, but he does speculate that Michelson might have had the
opportunity to meet Fizeau during a trip to Paris in 1881.

The Fizeau interferometer is essentially the Michelson stellar interferometer
without the periscope. Both instruments combine the beams in the image plane
with a small angle between them, and both yield images modulated spatially with
fringes. In current astronomical terminology, both are image-plane interferometers,
and this method of beam combination is commonly referred to as the Fizeau mode
or simply as a Fizeau interferometer.

On the other hand, the interferometer used by Michelson and Morley in their
experiments on the speed of light combined the beams coaxially, with no angle
between them, and allowed for scanning the mirrors temporally. Thus this instru-
ment was a pupil-plane interferometer, and by extension all modern systems using
coaxial beam combination and scanning mirrors are referred to as Michelson inter-
ferometers or are said to be operating in the Michelson mode. By this terminology,
the Michelson stellar interferometer was a Fizeau interferometer, but many modern
telescopes are Michelson interferometers.

Examples of Fizeau interferometers An example of a Fizeau interferometer is the
Large Binocular Telescope (LBT), to be located on Mt. Graham in southeastern
Arizona. Designed and constructed by a consortium of U.S., Italian and German
institutions, the LBT is scheduled for completion in 2005. It consists of two 8.4
m, F/1.14 parabolic primaries on a single truss. It is equivalent in light-gathering
power to a single 11.8 m telescope and in resolving power to a 22.8 m telescope. The
F/15 secondary mirrors are adaptive, with individual feedback-controlled segments
to compensate for atmospheric phase shifts. The system operates over a wavelength
range of 0.4 to 400 µm in interferometric mode. One key advantage it has over other
binocular telescopes is that it provides full coverage of the u-v plane.

An even more ambitious earth-based interferometer concept is called 20/20.
Being designed by Roger Angel and collaborators at the University of Arizona,
20/20 will consist of two telescopes, each (incongruously) 21 m in diameter. The
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primary mirrors will consist of seven 8.4 m segments to be consistent with cur-
rent mirror-fabrication facilities. The primaries will be F/0.7 and must therefore
be markedly aspheric to get diffraction-limited performance. Atmospheric distur-
bances will be corrected to the diffraction limit of each telescope by 2.1 m adaptive
secondary mirrors, also segmented to match the primaries. The two telescopes will
move on a 100 m Dia. track in such a way that the baseline is always perpendicular
to the line of sight to the source of interest, thus obviating the delay lines. Images
will be combined in a Fizeau interferometer in order to get resolutions corresponding
to baselines up to 100 m. In addition to its huge optical collection efficiency, 20/20
will have a field of view of about 30 arc sec, much larger than would be possible
with conventional Michelson interferometers.

Both 20/20 and the LBT will be able to operate in a nulling mode where the
light from a bright star will cancel out by destructive interference while light from a
possible planet near the star will not be nulled. Since the beams must be combined
coaxially to achieve the null, this mode (Bracewell and McPhie, 1979) is a variant
on Michelson interferometry.

A spaceborne example of a Fizeau interferometer is the European Space
Agency’s DIVA satellite (Deutsches Interferometer für Vielkanalphotometrie und
Astrometrie or, less nationalistically, Double Interferometer for Visual Astrome-
try). DIVA is essentially identical to the original Fizeau proposal as implemented
by Stéphan. It uses a single telescope mirror with two 7.5 cm square masks sepa-
rated (center to center) by 15 cm. It will be used to measure the positions, proper
motions and parallaxes of all stars brighter than 15th magnitude.

Examples of Michelson interferometer s An example of a Michelson interferometer
is the NPOI (Navy Prototype Optical Interferometer) located on Anderson Mesa
near Flagstaff, Arizona. Though NPOI consists of six telescopes, it can use pair-
wise Michelson recombination of the beams, and in this mode can be regarded as
a set of two-aperture Michelson interferometers operating in parallel (Armstrong,
et al., 1998; Hummel, 2000). NPOI was the first long-baseline system to achieve
interferometric beam combination in the visible region.

The VLT (Very Large Telescope) being constructed by the European Southern
Observatory at Paranal, Chile, will consist of four 8.2 m telescopes, which can be
operated separately or as an interferometer, plus three 1.8 m “outriggers” which
will be used to get additional baselines in interferometry. When operated as an
interferometer, this system is known as the VLTI (VLT Interferometer).

Many of key design decisions on the VLTI were made by constructing and
testing a two-aperture system called VINCI (VLT INterferometer Commissioning
Instrument). VINCI uses the Michelson mode with a fiberoptic beam combiner,
an idea adapted from IOTA-FLUOR (Infrared-Optical Telescope Array, Fiberoptic
Link Unit for Optical Recombination), a three-element Michelson interferometer on
Mt. Hopkins in southern Arizona. In essence, a single-mode optical fiber is placed
on the optical axis of each telescope, and a fiber coupler is used to combine the
beams coherently.

There are many plans to put Michelson interferometers in space. A study team
convened by the European Space Agency concluded that the Michelson concept was
preferable to the Fizeau because of stability considerations, especially with very long
baselines.
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A space-based Michelson interferometer in the active design stage is called the
Space Interferometry Mission (SIM). Scheduled for launch in 2009, SIM will consist
of two 30 cm apertures on a fixed 10 m baseline. It requires 10 nm stabilization for
astrometry and 1 nm stabilization for nulling, and it will provide 4 µas accuracy in
position and parallax measurements of stars.

A follow-on mission would be called the Terrestrial Planet Finder (TPF). At
this stage the acronym TPF denotes not a specific system but a set of concepts
being explored for detecting earth-like planets around nearby stars. One possibility
is a group of free-flying telescopes, each 3 – 4 m Dia., connected as an interferometer
with baselines up to 1000 m.

Even more ambitious space interferometers known generically as Planet Im-
ager and Life Finder are being actively discussed. Some of these concepts envision
baselines as much as 1000 km. Though the challenge of providing nanometer sta-
bilization over megameter distances is formidable to say the least, the resolution
achievable by such systems would be spectacular. Daniel Goldin, former NASA
director, has said that his dream is that his grandchildren will see images with
Landsat resolution of a planet around another star. If the dream is ever to be
achievable, it will require huge space-based interferometers.



EPILOGUE

The hardest part about writing this book was stopping. At the end of each chap-
ter, we could see many other directions to explore, either segments of the recent
literature that were not adequately represented or new problems for which we had
assembled the tools but not yet begun to use them. Our inclination was to follow
as many of these paths as possible, stretching our methodologies to their limits, but
of course there would have been no end. We had to draw a line and send this tome
to press. To give ourselves the courage to do so, we submit this modest epilogue,
suggesting to the reader the paths we might have followed had we had several other
lifetimes to do so, and we invite the reader to accompany us on the portions of the
journey that we still hope to take.

Fig. 1 Roadmap for the systematic optimization of gamma-ray imaging sys-
tems (from Myers et al., 1986).

Systematic system optimization We begin the journey with a backward glance and
a look at the roadmap to see where we are. In 1985, as the concept of task-based
assessment of image quality was taking hold in the medical-imaging community, the
diagram in Fig. 1 was presented at a conference at Georgetown University. This
diagram embodies two basic principles that we have tried to stress in this book.
First, it recognizes that meaningful measures of system quality must be based on
the performance of specific observers on specific tasks of practical interest. Second,

1375



1376 EPILOGUE

it envisions an imaging system as an integrated whole, with all components con-
tributing to task performance and hence needing to be considered together.

A crucial feature of this diagram is the feedback path. After we have learned
how to evaluate imaging systems, the next logical step is to incorporate the evalu-
ation into a program of systematic, iterative optimization of task performance.

In the two decades since we first sketched this diagram, many researchers have
contributed to the methodology implied in it. We now know much more about im-
age formation, noise in imaging systems, image reconstruction algorithms and the
properties of human and model observers.

The challenge for the future of image science is thus twofold: We must continue
to refine our understanding of every block in diagrams like the above and we must
think seriously about closing the loop and carrying out a full system optimization.

The search for excellence A basic difficulty in actually carrying out the plan sug-
gested in the figure is that the specification of an imaging system is so complex.
Consider the example of lens design, where the routine procedure is to assume some
merit function and design the lens to optimize it. We would, of course, advocate
that the merit function be chosen in relation to specific tasks, but no matter what
merit function is used, the search for an optimum is difficult.

Even after the designer has selected the number and arrangement of the indi-
vidual elements in the lens, there are still many parameters to be chosen, including
interelement spacings, curvatures and indices of refraction. Iterative algorithms
such as simulated annealing and genetic algorithms can be used to find a more-or-
less global optimum in this parameter space, but there is no guarantee that some
completely different arrangement of elements with a different set of free parameters
might not perform better. Task-based assessment allows objective comparison of
competing designs but does not obviate the role of human creativity in selecting
the competitors in the first place.

If it doesn’t fit, get a bigger hammer! Imaging systems acquire huge amounts of
data and often require formidable data-processing resources even to produce one
image. Since image quality is inherently a statistical concept, accurate evaluation
of a single system requires a huge number of images, and systematic optimization
requires, in effect, evaluation of a huge number of imaging systems.

Daunting though this prospect may seem, we can be encouraged by the rapid
advances in computational capabilities. In its most expansive form, Moore’s law
says that every aspect of computer power (chip density, CPU speed, memory, data-
transfer rates) will double every 18 months or so. For three decades shortsighted
prognosticators have been predicting the end of this trend, but they have consis-
tently been proven wrong. If the trend holds for another three decades, the gain
in all facets of computer power will be about 220 ! 106. If we crudely benchmark
a typical personal computer at the turn of the millennium (January 1, 2001, of
course) as a single 1 GHZ processor with 100 MB of memory, we can envision the
image scientist of 2031 having access to 1 PHz of processing speed and 100 TB of
memory (T = tera = 1012, P = peta = 1015). These numbers might imply a huge
number of processors and memory spread around the world, but they do not require
an inordinate amount of technological optimism; the pessimistic view is that they
will not be correct until 2041 or 2051.
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What will image scientists of the not-so-distant future do with such computer
power? Possibilities abound. Three-dimensional reconstructions on 1000 × 1000×
1000 grids will be routine, and rapid temporal sequences with hundreds or thousands
of 3D frames will make high-resolution 4D imaging possible. Huge databases will be
available for image archiving, and rapid access to the databases will facilitate auto-
mated image interpretation. Simulation tools will make the phrase “photographic
realism” obsolete, and the authors of this book will quit chiding their colleagues for
megalopinakophobia.

Most importantly, the computational arguments against meaningful system
evaluation will disappear, and we can begin to close the loop and really optimize
imaging systems. Along the way we have to increase our understanding of every
component of the system, from radiation source to final observer, and we have to
be creative in devising ways of improving them.

It’s the data, stupid! A famous American politician told his campaign staff, “It’s
the economy, stupid!” thereby imploring them not to lose sight of the most signif-
icant factor in their endeavor. In imaging, the key factor is the data; robust data
are as important to an image scientist as a robust economy is to a politician. In
this analogy, image processing plays the role of spin— it can put a good face on a
bad data set but cannot really overcome its limitations.

A data-driven approach to image science would obey three dicta: 1. Use all of
the image data; 2. Get more image data; 3. Get more nonimaging data for use in
conjunction with image data.

One might think that modern imaging does use all of the image data, but in
fact there are information losses at several stages. As a simple example, a time ex-
posure of a time-varying object discards potentially useful temporal data. A more
complex example concerns position-sensitive photon-counting detectors where mul-
tiple sensor outputs are reduced to estimates of x and y coordinates for each photon.
Information loss can occur in the estimation step and again when the estimates are
binned into an image matrix. In fact, any binning or quantization of data is a po-
tential source of information loss; moreover, we often use lossy algorithms for data
compression. The challenge is to understand how serious these losses are, in terms
of specific imaging tasks, and to devise ways of minimizing them.

Getting more imaging data may mean improving the spatial or temporal res-
olution of a system or it may mean acquiring information from different angular
views, different wavelength bands or completely different imaging modalities. Of-
ten these advances come only after intensive research and considerable economic
investment, so it is imperative to understand how they facilitate the intended ap-
plication of the images.

Auxiliary nonimaging data are routinely used in conjunction with image data.
A radiologist uses clinical indications and patient history along with radiographs in
making a diagnosis. Analysts of landsat images use weather and climate data to
aid in assessing the health of agricultural fields, and astronomers supplement their
direct observations with data from celestial mechanics calculations and astrophysi-
cal simulations.

There are many other opportunities to integrate imaging and nonimaging data.
The nonimaging data may concern the particular object being imaged or it may con-
cern one or more classes of objects. In a medical context, for example, one might
acquire further measurements on the particular patient being studied or one might



1378 EPILOGUE

compile a database of disease characteristics and use it to guide the acquisition and
interpretation of medical images. The challenge is to learn what specific supple-
mentary information is most useful to the goal of the imaging and to devise ways
of acquiring it systematically and optimally.

How good does it have to be? It is not uncommon for the designer of an imaging
system to ask a user what resolution is needed. The reply may well be that there
is no need for resolution better than some value “because there is nothing to see”
at a finer scale. Both the question and the answer are misguided.

The question is misguided since performance on any task will always improve
with better data, either lower noise or finer resolution. The user of the imaging
system or the marketing manager of the company that manufactures it might then
say that the performance is “good enough” at some noise level and resolution, so
there is no benefit in making it better. For example, a physician might be interested
in detecting a tumor 1 cm in diameter and might feel that some particular system is
adequate for this task. Pressed to say how he knows, the diligent physician might do
an ROC study and get, say, 0.9 for the area under the curve. Is that good enough?
Not for the patient whose tumor is missed! And even if economic cost-benefit ar-
guments are adduced for not trying to improve the performance on this task, there
will always be other tasks, such as detecting smaller lesions or distinguishing benign
from malignant ones.

The issue is more subtle when we look at characteristics of individual compo-
nents rather than the overall imaging systems. For example, if the point response
function of a lens is much smaller than the size of a detector pixel, one might con-
clude that further improvements in the lens are not needed. Similarly, for decades
it has been conventional wisdom in nuclear medicine that detector improvements
are unnecessary since the limitation is the collimator.

In neither of these examples, however, does the conclusion hold up under close
scrutiny. If a lens has better resolution than the detector with which it is used,
the lens designer might choose to use a larger numerical aperture even though that
measure increases the aberrations and degrades the lens contribution to the spatial
resolution. A gain in light-collection efficiency could then be achieved with negligi-
ble loss in overall resolution, and new applications of the system in low light levels
could become possible. Similarly, in the nuclear medicine example, improved detec-
tor resolution might indeed be useless with conventional parallel-hole collimators,
but new approaches to image formation with multiple pinholes or coded apertures
could take advantage of the improved detector capability.

It is not an overstatement to say that increased technological capability in any
component of an imaging system will always lead to improved task performance
when the design of the overall system is approached in an integrated and creative
fashion.

Integrated computational imaging systems In 2001 the Optical Society of America
conducted a topical meeting called ICIS— Integrated Computational Imaging Sys-
tems. The premise is that image processing and image acquisition are becoming
increasingly indistinguishable. It is no longer the case that a hardware designer
develops a camera and some kind of computer interface while a software specialist
develops ways of processing and displaying the data. The data-acquisition system
is almost always under computer control, and the control signals are frequently de-
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rived from the images themselves. Design of the hardware must take into account
the needs and capabilities of the image analysis, and the nature of the processing
can dictate what kind of data are acquired.

To a degree, this viewpoint is already used in the design of tomographic or
other indirect imaging systems, where no image at all is obtained without process-
ing, but there can still be a great symbiosis when image acquisition and processing
are viewed as a whole and optimized in a coordinated way. As understanding of im-
age quality advances, we can envision optimizing a system not for a class of objects
but for a particular object; since we do not know what that object is before taking
the image, we will have to modify and optimize the system during the image acqui-
sition. The term adaptive optics can then take on a new meaning, adapting to the
object being imaged and not just to corrupting influences such as the atmosphere.

To solve an inverse problem, concentrate on the forward problem Improved perfor-
mance in an indirect imaging system can really come from only two sources: better
data or better modeling of the data-acquisition system. The function of the recon-
struction algorithm is only to narrow down the range of possible objects that are
consistent with the data and the model of the system, and no algorithm can go
beyond the limitations imposed by the data and the model.

To put this observation into practice, we need greatly improved models in
many kinds of imaging. We need to move away from simplified system matrices
with coarse voxels chosen purely for computational speed. In many applications
we need accurate modeling of scattered and background radiation, and in imaging
through turbid media we must move beyond the Born and Rytov approximations.
We must avoid mathematical simplifications such as shift invariance and linearity
when they are not justified. In optical systems, for example, we should account for
shift-variant radiometric variations and off-axis aberrations as well as nonlinearities
of the detector, and we should include the nonlinearities arising from partial coher-
ence.

Achieving this level of accuracy in modeling will require careful system anal-
ysis and calibration and, of course, increased computer power, but it is the way to
make progress in indirect imaging.

The last refuge Oscar Wilde said, “Consistency is the last refuge of the unimagina-
tive.” In inverse problems, however, consistency conditions are a largely untapped
resource that can supplement incomplete or inaccurate data. As we saw in Chap.
15, consistency conditions can be derived by characterizing the range of an imaging
operator, and in principle they can be used to reduce noise or correct for motion or
other unknown characteristics of an imaging system.

Most known consistency conditions are based on continuous-to-continuous mod-
els of the imaging system, and most apply to forms of tomography where there are
null functions of the adjoint operator. They thus apply to what one might call
mathematical tomography rather than the real world of discrete, noisy data. A
major theoretical challenge is to elucidate the relationship between mathematical
tomography and real tomography and to understand what the continuous consis-
tency conditions tell us about consistency of discrete data.

Tasks and observers A task-based assessment of image quality is useful in practice
only if the task is meaningful. In Chaps. 16 – 19 we saw several examples where
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oversimplified tasks led to misleading conclusions about system design. Progress
in objective assessment will require more complicated and more realistic tasks.
A key question concerns extrapolation of conclusions from simple tasks to more
complicated ones. For example, will a system optimized for detection of specified
nonrandom signals also be optimal for tasks where the possible outcomes are not
defined in advance?

As simulation approaches reality Image simulations are becoming ever more realis-
tic, largely because of the entertainment industry. These words are being written
shortly after the telecast of Super Bowl XXXVII, the American football champi-
onship. Graphics shown during that game cause one to wonder whether Superbowl
LXVII will be played with real athletes or with simulations.

How can image scientists take advantage of techniques developed at Lucas
Films and Dreamworks? Accurate depiction of the motion of animate objects will
advance our understanding of dynamic imaging systems, and accurate modeling of
variations in surface reflectance will aid in design and analysis of optical systems
for viewing opaque objects.

Accurate simulation of fine-scale or textural variations requires a detailed un-
derstanding of the underlying object statistics and how they influence the image
statistics. We need these statistical descriptions for several purposes, including eval-
uation of image quality, development of Bayesian reconstruction algorithms, image
synthesis and pattern recognition.

New models of object textures must be devised, along with experimental meth-
ods for estimating the parameters of the models from real image data. Since objects
are infinite-dimensional but only a finite number of image samples will be available,
parsimonious low-dimensional descriptions must be sought, and ways of assessing
whether they capture the essential features of the object variability must be devel-
oped.

Our perception of perception We also need to understand better the human percep-
tual process and to integrate it into the design and evaluation of imaging systems,
including processing algorithms and display. The role of image reconstruction and
enhancement is to match the raw image data to the human perceptual system, and
effective design and meaningful assessment of these elements of the imaging chain
require exploring the links between image science and cognitive science. Inclusion
of frequency-selective channels and internal noise in our observer models is a first,
halting, step to bring knowledge from visual perception into image science, but
much more sophisticated models are possible. How are we to account for the strong
nonlinearities of the visual system? What can we learn from the study of visual
illusions that will affect the design of imaging systems?

Man vs. machine Computerized image analysis is becoming more powerful and
commonplace. How do we optimize an image-acquisition system when the end user
is a computer? Which tasks are best performed by the computer and which by
humans? When humans perform well, can we decipher their strategy and build it
into an algorithm? What is the tradeoff between computerized and computer-aided
image analysis, and can we be quantitative about answering this question? For
example, what is a meaningful performance measure for a computer algorithm that
segments an image and presents it to humans in cartoon form? When does the
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cartoon enhance the ability of the human to grasp essential details (perform tasks)
and when does it result in real information loss?

New technologies Although this book has dealt with the mathematics and physics
of imaging, it has said very little about the technologies so essential to modern
imaging. Some technological advances, such as optical and x-ray detector arrays,
have been developed in direct response to the needs of imaging systems; others,
such as optical data storage and computer displays, have been developed for more
generic uses but have obvious applicability to imaging.

The greatest opportunity for creativity, however, comes from technologies de-
veloped in other fields that have no initially obvious connections to imaging. For
example, lasers were an extension of masers, microwave amplifiers pursued initially
for communications purposes. Superconducting magnets were developed long before
their need in magnetic resonance imaging was apparent. And artificial radioisotopes
were the result of wartime work on nuclear weapons, with no vision for their use in
nuclear medicine. Yet in all of these cases the new technologies were quickly put to
use in imaging systems.

Some emerging technologies with potential in imaging include femtosecond op-
tical pulses, entangled photon states, diffractive and reflective x-ray optics, Joseph-
son junctions and other superconducting devices, ultrasensitive seismometers and
novel interferometers. Not to be overlooked are stunning advances in software in the
areas of database management, artificial intelligence and data mining. A modern
image scientist/technologist needs to be conversant with far more than the imaging
literature and to remain alert to seemingly unrelated developments that can impact
imaging.

New signals Science always searches for new ways of probing the universe, and
increasingly the result of the probe is a multidimensional data set that can be
manipulated and displayed as an image. One way to make progress in image science,
or science in general, is to think up new things to map and new ways of probing
them. Tables I and II in the Prologue should provide lots of hints in the search
for new signals to image, but we can also look for new ways of applying ideas from
image science to things we might not initially think of as images.

Sometimes ideas can come full circle, originating in another area, then being
appropriated by image scientists, and finally being returned with embellishments
to the original field. For example, in this book we have made considerable use of
the Wigner distribution function (WDF) as a tool for signal and image analysis,
although it originated in quantum mechanics. Now, however, there is considerable
interest in imaging the quantum-mechanical Wigner function itself, and it turns out
that tomographic reconstruction algorithms are the way to do it.

New dimensions We have long since passed the point where the word image implied
a static, 2D construct. Modern imaging systems are almost always 3D (x – y – z or
x – y – t) or 4D (x – y – z – t), but there are many options for creative addition of
yet other dimensions. The challenges lie in acquiring the data sets, doing high-
dimensional image reconstruction and displaying the results.

To return to an example just given, the quantum-mechanical Wigner distri-
bution function has been applied so far to 1D quantum states, such as the state
of a single mode of the radiation field. If we want to measure the WDF of an
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N -dimensional quantum state, it requires a 2N -dimensional measurement/imaging
system.

Similarly, if the quantity of interest is a statistical correlation function for a
2D field, it requires four variables for full specification, and correlations of 3D fields
require six variables. There is no reason not to regard the correlation function,
rather than the field itself, as the object to be imaged.

New pedagogies This book arose as an educational endeavor. It had its roots
many years ago in a course on radiological imaging, and it eventually spawned sev-
eral other courses on image science and noise. As the courses and the authors’
educational and research interests evolved, it became apparent that the pedagogy
of imaging was as challenging as the science and technology.

Students wanting to contribute at the cutting edge of image science must mas-
ter a breadth of material comparable to—and perhaps even exceeding—the scope
of mature disciplines such as chemistry and electrical engineering. They not only
must study mathematics, statistics, physics and electronics, they must also under-
stand how they interrelate and contribute to the whole gestalt of image science.
They must be able to follow many diverse literatures and to pick and choose ideas
and methodologies from them to solve their own problems in imaging. Like statisti-
cians, they must appreciate the needs of their “clients,” the end users of the images,
but they must also be involved in optimizing the systems and developing the uses
themselves.

Accommodating this breadth will require new departmental organizations, new
interdisciplinary seminars and new professional societies. Academic departments
and professional organizations devoted to optics and photonics will expand their
base to include imaging, and umbrella interdisciplinary programs will arise to co-
ordinate imaging activities across departments. Even social interactions among
students and researchers perusing different aspects of the imaging elephant will
help to broaden viewpoints and ease misconceptions.

We—the authors of this volume—have our own experiences in this educa-
tional process and our own thoughts about the critical educational needs in image
science, and it is not a particularly difficult inverse problem to reconstruct those
views from the contents of the book. We also realize, however, that optimization of
the process is an ongoing challenge, where diverse views and imaginative approaches
can be of immense value. We encourage a dialogue among educators and students
in image science, and we hope that this book can stimulate that exchange in some
small way. We look forward to observing the further development of image science
as an academic discipline and making whatever contributions to it that we can.



APPENDIX A
Matrix Algebra

This appendix is a compendium of useful definitions and formulas related to matri-
ces and vectors. The intent is to provide a ready reference rather than a tutorial.
The formulas are presented here with little discussion and few derivations, though
some of the topics are discussed more didactically in the main text of the book.
Cross references to the main text are given where appropriate.

Good introductory treatments of matrices and discrete linear algebra are given
by Eves (1966), Mirsky (1982), Pettofrezzo (1966), Strang (1980) and Usmani
(1987). Excellent comprehensive texts are Golub and van Loan (1989) and Harville
(1997); the latter is a particularly good match to the needs of this book. Lists of
matrix identities are given in Siotani (1985), Pilz (1991) and Rade and Westergren
(1990).

A.1 NOTATION AND TERMINOLOGY

An M ×N matrix A is an ordered set of MN numbers arranged into an array with
M rows and N columns. The number in the mth row and nth column, denoted
Amn, is called the mnth element of A. The element can be either real or complex.
The set of all M ×N matrices with real elements is denoted RM×N, while the set
of all M ×N matrices with complex elements is denoted CM×N.

A squarematrix is one with an equal number of rows and columns,M = N. An
N ×N square matrix is said to have order N or degree N. A rectangular matrix is
one that has an unequal number of rows and columns (M "= N). A diagonal matrix
is a square matrix with Amn = 0 if m "= n. In other words, the nonzero elements
are along the diagonal only. A square matrix A is said to be upper triangular if all
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of the elements below the diagonal are zero, i.e., Amn = 0 when n < m. Similarly,
it is lower triangular if all elements above the diagonal are zero, i.e., Amn = 0
when n > m.

Two matrices are said to be equal if all elements of one are equal to the
corresponding elements of the other. Thus

A = B if and only if Amn = Bmn for all m and n . (A.1)

If A is an M ×N matrix and A = B, then B is also an M ×N matrix.
An N -dimensional vector is an ordered set of N numbers. If these numbers

are arranged in a column, the vector is referred to as a column vector, which can
also be regarded as an N × 1 matrix, with N rows and one column. In spite of this
equivalence, vectors will be denoted with lower-case bold letters and matrices with
upper-case ones. The word vector will be understood to mean column vector unless
otherwise specified.

The transpose of an M×N matrix A is an N×M matrix denoted At obtained
by interchanging rows and columns of A. Thus

(At)mn = (A)nm = Anm . (A.2)

The transpose of an N ×1 column vector is a 1×N row vector, i.e., a matrix with
1 row and N columns.

A symmetric matrix is a square matrix that is identical to its transpose, i.e.,

(At)mn = (A)mn = Amn = Anm if A is symmetric . (A.3)

The adjoint1 of an M ×N matrix A is an N×M matrix denoted A†, obtained
by interchanging rows and columns of A and taking the complex conjugate of each
element. Thus

(A†)mn = (A)∗nm = A∗
nm . (A.4)

Adjoint and transpose are synonymous if all elements of A are real. Note that
[At]t = A and [A†]† = A.

A Hermitian matrix is a square matrix that is identical to its adjoint, i.e.,

(A†)mn = (A)mn = Amn = A∗
nm if A is Hermitian . (A.5)

A diagonal matrix is necessarily symmetric, and it is Hermitian if the diagonal ele-
ments are real. A real, Hermitian matrix is necessarily symmetric.

A square matrix A is said to be skew-Hermitian or anti-Hermitian if
A† = −A. If A is skew-Hermitian, then iA is Hermitian.

A.2 BASIC ALGEBRAIC OPERATIONS

A.2.1 Addition and subtraction

Addition and subtraction of matrices are performed on an element-by-element basis.
If we write

C = A±B , (A.6)

1Many older books use the term adjoint or adjugate to refer to a matrix of cofactors (to be defined
in Sec. A.5.4). Our usage is common in the modern literature where a matrix is regarded as a
linear operator.
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it implies that
Cmn = Amn ±Bmn . (A.7)

Subtraction is the inverse of addition, i.e.,

(A+B)−B = A . (A.8)

Matrix addition is commutative and distributive:

A+B = B+A . (A.9)

(A+B) +C = A+ (B+C) . (A.10)

The zero matrix, denoted 0, is a matrix of all zeros. It is the identity element
for addition, so

A+ 0 = A and 0+A = A . (A.11)

A.2.2 Scalar multiplication

A matrix A is said to be multiplied by a scalar α if every element of A is multiplied
by α, i.e.,

[αA]mn = αAmn , (A.12)

where α and Amn can both be complex. Scalar multiplication is commutative and
associative:

β(αA) = α(βA) , (A.13)

(α+ β)A = αA+ βA , (A.14)

where α and β are arbitrary real or complex numbers. Scalar multiplication is also
associative with respect to addition:

α(A+B) = αA+ αB . (A.15)

A.2.3 Matrix multiplication

In order to define a matrix-matrix product, which we write as

C = AB , (A.16)

the matrices must be conformable. That is, if B is a P ×N matrix, then A must
be an M × P matrix for some M. The product C is then an M × N matrix with
elements given by

Cmn =
P
∑

p=1

AmpBpn , m = 1, ...,M , n = 1, ..., N . (A.17)

Matrix-vector multiplication is a special case of matrix-matrix multiplication.
If A is an M ×N matrix and x is an N × 1 column vector, we can write

y = Ax , (A.18)
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where y is an M × 1 column vector with elements given by

ym =
N
∑

n=1

Amnxn . (A.19)

Matrix-matrix and matrix-vector multiplication are distributive and associa-
tive:

A(B+C) = AB+AC ; (A.20)

A(x+ y) = Ax+Ay ; (A.21)

A(BC) = (AB)C ; (A.22)

A(Bx) = (AB)x . (A.23)

On the other hand, matrix-matrix multiplication is not necessarily commutative.
The statement AB = BA makes no sense unless A and B are square matrices of
the same size, and even then it is not true in general. If A and B are both N ×N
matrices and AB = BA, we say that A and B commute. Two diagonal N × N
matrices necessarily commute.

The identity operator for matrix multiplication is the unit matrix, a square
matrix with ones along the diagonal and zeros everywhere else. In anN -dimensional
space, the unit matrix is denoted IN , though the subscript may be deleted if it is
clear from context. The elements of IN are given by

[IN ]mn = δmn , m, n = 1, ..., N , (A.24)

where δmn is the Kronecker delta symbol, which takes the value 1 if m = n and 0
if m "= n. The unit matrix IN commutes with all N ×N matrices.

A.2.4 Adjoints and transposes of products

From the definitions of matrix products and adjoints, it follows that

(cA)† = c∗A† ; (A.25)

(AB)† = B†A† ; (A.26)

(A1A2...Ak)
† = A

†
kA

†
k−1...A

†
1 , (A.27)

where c is any scalar and the matrices are assumed to be conformable.
Similar results apply to transposes:

(cA)t = cAt ; (A.28)

(AB)t = BtAt ; (A.29)

(A1A2...Ak)
t = At

kA
t
k−1...A

t
1 . (A.30)
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A.2.5 Inner product of two vectors

If a and b are vectors in an N -dimensional Euclidean space, their inner product
or scalar product is denoted variously as a · b, (a,b) or a†b. The latter notation
is suggestive of matrix-matrix multiplication. If we regard a as an N × 1 matrix
with elements An1 = an, then a† is its adjoint, a 1×N matrix or row vector with
elements A1n = [An1]∗ = a∗n. The product a†b is then a 1 × 1 matrix or scalar,
with the single element given by the usual rule for matrix-matrix multiplication,

a†b =
N
∑

n=1

a∗nbn . (A.31)

With this definition2 of scalar product, the norm or length of a vector a is
given by

||a|| =
√
a†a =

√

√

√

√

N
∑

n=1

|an|2 . (A.32)

If b = Ac in (A.31), with A an N ×M matrix and c an M × 1 vector, we have

a†Ac =
N
∑

n=1

a∗n(Ac)n =
N
∑

n=1

M
∑

m=1

a∗nAnmcm =
[

A†a
]†
c . (A.33)

For more discussion of inner products in a general Hilbert-space setting, see Chap. 1.

A.2.6 Outer product of two vectors

If a is an N × 1 vector and b is M × 1, their outer product or tensor product ba†

is an M ×N matrix with components given by
[

ba†
]

ij
= bia

∗
j . (A.34)

Similarly, ab† is an N ×M matrix with elements
[

ab†
]

ij
= aib

∗
j . (A.35)

These two equations show that

[

ab†
]†

= ba† , (A.36)

in accord with (A.26).
Outer-product matrices can be used in matrix-matrix or matrix-vector prod-

ucts following the usual rules. For example, if c is an M × 1 vector,

ab†c = a(b†c) = a

M
∑

m=1

b∗mcm , (A.37)

2Equation (A.31) gives the Euclidean or L2 definition of scalar product; other possible definitions
are discussed in Chap. 1, Sec. 1.1.4.



1388 APPENDIX A

so ab†c is an N × 1 vector with elements

[

ab†c
]

n
= an

M
∑

m=1

b∗mcm . (A.38)

Because of the associative laws, parentheses are superfluous in expressions like ab†c,
which can be viewed as either the matrix ab† acting on the vector c or the scalar
b†c times the vector a.

For more discussion of outer products, see Sec. 1.3.7 in Chap. 1.

A.2.7 Direct products

If A is an M × N matrix and B is a P × Q matrix, then the direct product or
Kronecker product A $B is an (MP )× (NQ) matrix of the form

A $B =













a11B a12B · · · a1NB

a21B a22B · · · a2NB
· · · · · ·
· · · · · ·

aM1B aM2B · · · aMNB













. (A.39)

The notation of (A.39) indicates that each element of the matrix B is multiplied by
the scalar a11 and the resulting P × Q matrix is placed in the upper left position
of A $B, and similarly for the other elements indicated.

Elementary properties of the direct product are (Siotani et al., 1985):

(cA) $B = A $ (cB) = c(A $B) ; (A.40)

(A $B) $C = A $ (B $C) ; (A.41)

(A $B)† = A† $B† ; (A.42)

(A $B)(C $D) = (AC) $ (BD) ; (A.43)

(A+B) $C = (A $C) + (B $C) . (A.44)

For reference, we list some relations between direct products and matrix in-
verses (see Sec. A.3), determinants (Sec. A.5) and traces (Sec. A.6):

(A $B)−1 = A−1 $B−1 for nonsingular A and B ; (A.45)

det(A $B) = [det(A)]P [det(B)]M for A : M ×M and B : P × P ; (A.46)

tr{A $B} = tr{A} tr{B} . (A.47)

A.2.8 Hadamard products and other operations

If A and B are M×N matrices, their Hadamard product A%B is another M ×N
matrix with elements given by

[A%B]mn = AmnBmn . (A.48)
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The Hadamard product is thus an element-by-element product. The matrix of all
ones, denoted 1, is the identity element for Hadamard multiplication. An exhaus-
tive treatment of Hadamard products is given by Horn (1990).

We can extend the idea of Hadamard product to vectors just by regarding them
as N × 1 matrices. To be consistent with (A.48), we could denote the Hadamard
product of two vectors as a%b, but it will often be convenient just to juxtapose the
symbols and write ab, defining this product by [ab]n ≡ anbn. With matrices, the
symbol % serves to distinguish the Hadamard product from the ordinary matrix-
matrix product, but with vectors the only products we have so far are the inner
product a†b and the outer product ab†, so we are free to use ab for Hadamard
product.

Many other operations can also be defined componentwise on vectors and ma-
trices. For example, we can define an element-by-element ratio of two vectors by
[a/b]n = an/bn, and a logarithm by [ln(a)]n = ln(an).

We can extend the concept further to functions, regarded as vectors in a Hilbert
space (see Chap. 1). Thus, if the vector a denotes the function a(x) and b denotes
b(x), then ab denotes a(x) b(x) and ln(a) denotes ln[a(x)], so long as the resulting
vectors are in the same Hilbert space as the original ones.

A.3 MATRIX INVERSION

A.3.1 Rank and invertibility

The row rank of a matrix is the number of linearly independent rows, while the
column rank is the number of linearly independent columns. A basic theorem
(Strang, 1980) states that the row rank and column rank are equal, so they are
called simply the rank.

An N × N matrix A is called invertible or nonsingular if its rank = N. If
that is the case, there exists a matrix A−1, called the inverse of A, such that

A−1A = AA−1 = IN . (A.49)

By this definition, all rectangular matrices are singular. For rectangular matrices,
no true inverse exists, but various generalized inverses or pseudoinverses can be
defined. See Chap. 1 for a detailed discussion of this topic.

A simple example of a square but singular matrix is the outer product ab†,
where a and b are both N × 1 vectors. This matrix has rank one since the ith row
equals the jth row times the factor a∗i /b

∗
j [see (A.35)], so it is singular for N > 1.

See Sec. A.5.4 for a general expression for the inverse of a matrix in terms
of determinants. Algorithms for computation of inverses can be found in Golub
and van Loan (1989) or Press et al. (1992), but most readers will never need these
details since standard packages such as Matlab and Mathematica can be used to
find numerical or symbolic inverses.

A.3.2 General properties of matrix inverses

If we assume that all of the indicated inverses exist, the following general relations
hold:

[

A−1
]†

=
[

A†
]−1

; (A.50)
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[cA]−1 =
1

c
A−1 , (c a scalar) ; (A.51)

[AB]−1 = B−1A−1, (A and B both N ×N) ; (A.52)

[

Ak
]−1

=
[

A−1
]k

, (k a positive integer) . (A.53)

If a matrix H is Hermitian, its inverse H−1 is also Hermitian (if it exists).
A square matrix U is called unitary if its adjoint equals its inverse, i.e.,

U† = U−1. A unitary matrix with real elements satisfies U† = Ut = U−1 and
is referred to as an orthogonal matrix. The columns of a unitary matrix form an
orthonormal set, and the rows form another orthonormal set.

A.3.3 Inversion formulas for special cases

If A is a diagonal N ×N matrix, its inverse is obtained by taking the reciprocal of
each diagonal element, i.e.,

[

A−1
]

mn
=

1

Ann
δmn if Amn = Ann δmn . (A.54)

Thus the unit matrix is its own inverse.
If A and A+pq† are both nonsingular, with p and q being N × 1 vectors and

A being an N ×N matrix, then

[

A+ pq†
]−1

= A−1 −
A−1pq†A−1

1 + q†A−1p
. (A.55)

A generalization of this result is the matrix-inversion lemma, also known
as the binomial inverse theorem (Woodbury, 1950). Several forms of this useful
theorem are (Tylavsky and Sohie, 1986):

[A−UBV]−1 = A−1 +A−1U
[

B−1 −VA−1U
]−1

VA−1 (A.56a)

= A−1 +A−1UB
[

I−U†A−1UB
]−1

U†A−1 (U = V†) (A.56b)

= A−1 +A−1UB
[

I−VA−1UB
]−1

VA−1 (A.56c)

= A−1 +A−1U
[

I−BVA−1U
]−1

BVA−1 . (A.56d)

Form (A.56a) requires that A and B be nonsingular, while the other three forms
require only that A be nonsingular. Of course, all forms require that the vari-
ous matrices be conformable. An excellent discussion of these results is given by
Tylavsky and Sohie (1986).

The inverse of partitioned matrices is also of interest. Given a nonsingular
N ×N matrix A and a nonsingular M ×M matrix B, we can form a partitioned
(M +N) × (M + N) matrix with N ×M and M × N submatrices of all zeros on
the off-diagonals. The inverse of this partitioned matrix is given by

[

A 0
0 B

]−1

=

[

A−1 0
0 B−1

]

. (A.57)
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Finally, we consider the inverse of complex matrices. Let C = A+ iB, where
A and B are real N × N matrices. Then C−1, if it exists, is given by (Rade and
Westergren, 1990, p. 105)

[A+ iB]−1 =
[

A+BA−1B
]−1 − iA−1B

[

A+BA−1B
]−1

= B−1A[B+AB−1A]−1 − i[B+AB−1A]−1 , (A.58)

where the first form requires the existence of A−1 and the second form requires B−1.

A.3.4 Neumann series

Consider a nonsingular N × N matrix of the form I − Ω. Provided the series
converges uniformly, we can express [I − Ω]−1 by a Neumann series (named for
Carl Neumann, not John von),

[I−Ω]−1 =
∞
∑

j=0

Ωj . (A.59)

This expansion is the operator generalization of the familiar expression for the sum
of a geometric series:

1

1− x
=

∞
∑

j=0

xj , (A.60)

where x is a scalar. Equation (A.60) is valid if the series converges uniformly, which
requires that |x| < 1. The corresponding convergence requirement for (A.59) is that
all eigenvalues of Ω be less than unity in absolute value. (See Secs. 1.4.1 and 1.7.6
in Chap. 1.)

To prove that (A.59) is correct, we multiply the right-hand side by [I − Ω],
obtaining

[I−Ω]
∞
∑

j=0

Ωj =
∞
∑

j=0

Ωj −
∞
∑

j=0

Ωj+1

= I+
∞
∑

j=1

Ωj −
∞
∑

j=0

Ωj+1 . (A.61)

We now let m = j − 1 in the first sum, with the result

[I−Ω]
∞
∑

j=0

Ωj = I+
∞
∑

m=0

Ωm+1 −
∞
∑

j=0

Ωj+1 = I . (A.62)

If we denote the series in (A.59) by S, (A.62) shows that [I −Ω]S = I. A similar
calculation shows that S[I−Ω] = I.

For more discussion of the Neumann series, see Chap. 1.

A.4 EIGENVECTORS AND EIGENVALUES

Section 1.4 in Chap. 1 is a detailed discussion of eigenvectors and eigenvalues, so
only a brief survey is given here.
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A.4.1 Basic concepts

The vector u is the eigenvector (German: characteristic vector) of a square N ×N
matrix A and the scalar λ is the corresponding eigenvalue if

Au = λu . (A.63)

Equation (A.63) can also be written as [A− λI]u = 0. In this form it is recognized
as a set of N homogeneous linear equations for N unknowns (the components of u).
As discussed in Sec. A.5.5, these equations have a nontrivial solution if and only if

det(A− λI) = 0 , (A.64)

where det(·) denotes determinant (see Sec. A.5.1 for a definition).
When the determinant in (A.64) is expanded, a polynomial P (λ) of degree N

in the variable λ results, and (A.64) becomes3

P (λ) = det[A− λI] = (−1)N
[

λN + a1λ
N−1 + a2λ

N−2 + ...+ aN
]

. (A.65)

This equation is known as the characteristic equation for A. The Fundamen-
tal Theorem of Algebra (Gellert et al., 1977) assures us that the characteristic
equation has N solutions (roots of the polynomial), though the roots are neither
necessarily real nor necessarily distinct.

The characteristic equation can be solved (usually numerically) for each of
these roots, which we shall denote as λn, n = 1, ..., N. Corresponding to each λn is
an eigenvector un.

A.4.2 Some general theorems

If a square matrix is diagonal (Amn = An δmn), its diagonal elements are imme-
diately the eigenvalues, i.e., λn = Ann. The eigenvector un has a 1 in the nth

position and 0 in all other positions, [un]m = δnm. It is straightforward to show
that (A.63) is satisfied with this λn and un. Moreover, if the matrix is triangular,
the diagonal elements are again the eigenvalues, though the eigenvectors are not so
simple in this case.

Schur’s lemma (Rade and Westergren, 1990) states that any square matrix
can be reduced to upper triangular form by means of a unitary transformation.
That is, it is possible to find a unitary matrix U such that

A′ = U†AU (A.66)

has only zero elements below the diagonal. Since the eigenvalues are unchanged by
unitary transformation (see Chap. 1, Sec. 1.4.2), the diagonal elements of A′ are
also the eigenvalues of A. Thus determination of the eigenvalues is equivalent to
finding the unitary matrix U that reduces A to triangular form. Algorithms for
this purpose are discussed in detail in Golub and van Loan (1989).

If a square matrix is approximately diagonal (i.e., the off-diagonal elements
are small), it is of interest to know how well the diagonal elements approximate the

3In (A.65), it can be shown (Eves, 1966, p. 200) that aN = det(A) and a1 = tr(A). Furthermore,
all coefficients can be derived from traces of powers of A (Pettofrezzo, 1966, p. 84).
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eigenvalues. Gershgorin’s theorem (Golub and van Loan, 1989, p. 341) provides
an answer to this question. Consider a disc in the complex z plane centered at
z = Ann. This disc consists of all points such that

|z −Ann| ≤
N
∑

m=1

|Anm|(1 − δmn) , (A.67)

where the factor (1 − δmn) serves to omit the term m = n from the sum. The
disc in (A.67) is frequently called the nth Gershgorin disc. The theorem says
that all eigenvalues of A must lie in the union of all N Gershgorin discs. If the
matrix is diagonal, each disc has zero radius and the diagonal element is exactly
the eigenvalue. Off-diagonal elements increase the radius of the discs and hence the
uncertainty in the eigenvalues relative to the diagonal elements.

A square matrix is said to be diagonally dominant if

N
∑

m=1

|Anm|(1 − δmn) < Ann for all n . (A.68)

If this condition is satisfied, the matrix is invertible.

A.4.3 Hermitian matrices

Considerably stronger statements can be made about eigenvalues and eigenvectors
if the matrix in question is Hermitian (or symmetric if all elements are real). A
detailed discussion is given in Secs. 1.4.4 – 1.4.6 in Chap. 1, but the main results are
listed here for reference.

(i) The eigenvalues of a Hermitian matrix are real;

(ii) Eigenvectors corresponding to different eigenvalues of a Hermitian matrix
are orthogonal;

(iii) The N eigenvectors of an N × N Hermitian matrix are linearly inde-
pendent and span the space N -dimensional Euclidean space EN (see Sec.
1.1.2 in Chap. 1);

(iv) A Hermitian matrix can always be diagonalized by a unitary transfor-
mation;

(v) Two different Hermitian matrices A and B can be diagonalized by the
same unitary transformation if and only if they commute, AB = BA.

(vi) For two different positive-definite Hermitian matrices A and B that do
not necessarily commute, there exists a nonsingular matrix W such that
W†AW = I and W†BW = D, where D is diagonal. This matrix
satisfies BW = AWD. (See Sec. A.8 for discussion of positive-definite
matrices, and see Fukunaga (1990) or Sec. 1.4.6 for a discussion of the
transformation.)

Note that point (ii) would allow two or more different eigenvectors not to be
orthogonal if they share the same eigenvalue, though point (iii) ensures that they
are linearly independent. If the vectors {ek, k = 1, ...,K} are linearly independent,
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we can construct a set of mutually orthonormal vectors {uk, k = 1, ...,K} by the
process known as Gram-Schmidt orthogonalization. The algorithm is as follows:

(1) u1 = 1
||e1||

e1 ;

(2) v2 = e2 − (e2,u1)u1 , u2 = 1
||v2||

v2 ;

· · · · ·

(K) vK = eK − (eK ,u1)u1 − ...− (eK ,uK−1)uK−1 , uK = 1
||vK || vK .

In step (2), the vector e1 is projected onto the normalized vector u1 and the pro-
jection is then subtracted from e2, guaranteeing that v2 is orthogonal to u1. After
normalization, we have two orthonormal vectors u1 and u2. The process is then
repeated, at each step constructing a new vector vk orthogonal to all of the previous
uj for j < k, and then normalizing the result to get uk.

If the initial set {ek} is a set of eigenvectors of the Hermitian matrix H, and
all of these eigenvectors have the same eigenvalue λ, then the new orthonormal
vectors {uk} are also eigenvectors and also all have the eigenvalue λ. Thus, if we
assume that the Gram-Schmidt process has been applied if needed, we can be as-
sured that the {un, n = 1, ..., N} form a complete orthonormal basis in EN. The
orthonormality is expressed mathematically by

u†
mun = δnm , n,m = 1, ..., N . (A.69)

The completeness of the set {un} means that it can be used to represent the unit
matrix in the form

IN =
N
∑

n=1

unu
†
n . (A.70)

This relation is frequently referred to as the closure relation or the resolution of
the identity.

The basis set consisting of the eigenvectors of a Hermitian matrix H can also
be used to represent H itself as

H =
N
∑

n=1

λnunu
†
n . (A.71)

This representation, called the spectral decomposition of H, is discussed in detail
in Chap. 1 and exploited throughout the book.

A.5 DETERMINANTS

A.5.1 Definitions

If A is an N ×N matrix with elements Amn, then the determinant of A, denoted
det(A), is a scalar defined formally by

det(A) =
∑

perm

(−1)kA1s1A2s2 ...ANsN , (A.72)
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where the indices s1, s2, ..., sN are a permutation of 1, 2, ..., N and are hence distinct,
and the sum runs over all possible permutations. Since there are N ! permutations,
the sum has N ! terms in general (though some or all of them may be zero). The
sign of each term is determined by the number k of inversions in the permutation.
Cyclic permutations thus always occur with a plus sign.

The determinant can also be defined in terms of eigenvalues. If {λn, n =
1, ..., N} are the eigenvalues of the N ×N matrix A, then

det(A) =
N
∏

n=1

λn . (A.73)

If A is singular, at least one of the eigenvalues is zero, and it follows from this
equation that det(A) = 0.

A geometrical interpretation of determinant is that | det(A)| is the volume of
the N -dimensional parallelopiped formed by the column (or row) vectors of A. This
result is familiar in ordinary 3D vector analysis. Three vectors a, b and c define
a parallelopiped with volume |a · b × c|, where × denotes the usual vector cross
product, and the triple scalar product a · b× c is computed as a determinant.

A.5.2 Special cases

If A is a 2× 2 matrix, its determinant is given by

det(A) = A11A22 −A12A21 . (A.74)

If A is a 3× 3 matrix, its determinant is given by

det(A) = A11A22A33 +A12A23A31 +A13A21A32 −A11A23A32

− A12A21A33 −A13A22A31 . (A.75)

If A is an N ×N diagonal matrix,

det(A) = ΠN
n=1Ann . (A.76)

This equation is valid also ifA is an upper or lower triangular matrix. An immediate
consequence of (A.76) is that the determinant of the unit matrix is unity: det(I) = 1.

A.5.3 Properties of determinants

The determinant of the product of two N × N matrices is the product of their
determinants:

det(AB) = det(A) det(B) . (A.77)

Since the determinant of the unit matrix is unity, it follows that

det(A−1) =
1

det(A)
. (A.78)

Directly from the definition, it follows that multiplying every element of an
N ×N matrix by a constant multiplies its determinant by the same constant to the
N th power:

det(cA) = cN det(A) , (c a scalar) . (A.79)
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Multiplying every element in a single row or column by c multiplies the determinant
by c.

A determinant is unchanged if rows and columns are interchanged, so

det(At) = det(A) . (A.80)

The adjoint is formed by interchanging rows and columns and taking the com-
plex conjugate of each element, so it follows that

det(A†) = [det(A)]∗ . (A.81)

For a Hermitian matrix, A† = A so det(A) is real. This result is in accord with
(A.73) since, as proved in Chap. 1, the eigenvalues of a Hermitian matrix are real.
If U is a unitary matrix, then U−1 = U†. By (A.78) and (A.81),

| det(U)| = 1 . (A.82)

This result also follows from (A.73) since the eigenvalues of a unitary matrix are
complex roots of unity.

An important consequence of (A.81) and (A.82) is that the determinant is
unchanged by a unitary transformation:

det(UAU†) = det(A) . (A.83)

A unitary transformation is a special case of a similarity transformation. It is shown
in Sec. 1.4.2 that similarity transformations do not alter eigenvalues. Therefore,
with (A.73),

det(SAS−1) = det(A) , (A.84)

where S is any nonsingular N ×N matrix.
Additional symmetry properties of determinants are as follows:

(i) Interchange of two rows (columns) changes the sign of the determinant.

(ii) A determinant does not change if one row (column) is multiplied by a
constant and added to another row (column).

(iii) A determinant equals zero if all elements of a row (column) are zero.

(iv) A determinant equals zero if one row (column) equals another row (col-
umn) times a constant.

It is often necessary to consider the determinant of the sum of two matrices.
The following identity, discussed fully in Harville (1997), is quite useful:

det(R+ STU) = det(R) det(T) det(T−1 +UR−1S) . (A.85)

For many additional properties of determinants, see Muir (1960) and Andrews
and Burge (1993), and for an early treatment of considerable historical interest, see
Dodgson (1867). (Charles Lutwidge Dodgson, under the pseudonym Lewis Carroll,
also wrote Alice’s Adventures in Wonderland.)
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A.5.4 Cofactors and inverses

If A is a nonsingular N ×N matrix, the (nm)th element of its inverse is given by

[

A−1
]

mn
=

cofnm(A)

det(A)
, (A.86)

where cofnm(A) is the cofactor, defined as (−1)n+m times the determinant of the
(N − 1)× (N − 1) matrix obtained by deleting the nth row and mth column from
A. That determinant itself is called a minor of A. It follows from (A.86) that the
inverse does not exist if det(A) = 0.

The special case N = 2 yields
[

A11 A12

A21 A22

]−1

=
1

A11A22 −A12A21

[

A22 −A12

−A21 A11

]

. (A.87)

From (A.74), the denominator is recognized as det(A).
Cofactors can also be used to evaluate determinants. The key result is

det(A) =
N
∑

m=1

Anm cofnm(A) , (A.88)

where n denotes an arbitrary row. The utility of this result is that the determinant
of an N × N matrix is expressed as a sum of determinants of (N − 1) × (N − 1)
matrices. The process can be repeated N − 1 times until only trivial determinants
of 1× 1 matrices need to be determined.

A.5.5 Cramer’s rule

Consider a set of linear equations in the form

y = Ax , (A.89)

where A is a nonsingular N ×N matrix and x and y are N × 1 column vectors. If
y is known, the solution for x is given by x = A−1y, and the jth element of x can
be found by Cramer’s rule:

xj =
det(Aj)

det(A)
, (A.90)

where Aj is the N ×N matrix obtained by replacing the jth column of A with y.
If all components of y are zero, the system of equations is said to be homoge-

neous. In that case det(Aj) is identically zero (see Sec. A.5.3), so the only way the
system Ax = 0 can have a nontrivial solution for x is if det(A) = 0.

A.6 TRACES

A.6.1 Definitions

The trace or spur of a matrix is simply the sum of its diagonal elements:

tr(A) =
N
∑

n=1

Ann . (A.91)



1398 APPENDIX A

If a and b are both N × 1 column vectors, the trace of their outer product is the
same as the inner product:

tr(ab†) = b†a =
N
∑

n=1

b∗nan . (A.92)

A.6.2 Properties of traces

Some basic properties of the trace are as follows:

tr(A+B) = tr(A) + tr(B) ; (A.93)

tr(αA) = α tr(A) , (A.94)

where α is a scalar. If A is an M ×N matrix and B is N ×M, then

tr(AB) = tr(BA) . (A.95)

The trace of a product of square matrices is invariant to cyclic permutation:

tr(ABC) = tr(CAB) = tr(BCA) , (A.96)

and similarly for products with any number of factors. It follows from (A.96) that
the trace of a matrix is invariant to unitary transformations.

The trace of a square matrix is the sum of its eigenvalues (Pettofrezzo, 1966,
p. 85):

tr(A) =
N
∑

j=1

λj(A) , (A.97)

where λj(A) is the jth eigenvalue of A. If the matrix can be diagonalized by a
similarity transformation (as can all Hermitian matrices), (A.97) follows immedi-
ately from (A.96) since tr(S−1AS) = tr(A). The result in (A.97) is, however, more
general; it holds for any square matrix.

Similarly, the trace of a square matrix A raised to the kth power is given by

tr(Ak) =
N
∑

j=1

[λj(A)]k , k a positive integer . (A.98)

A.7 FUNCTIONS OF MATRICES

Many different matrix functions can be defined as a power series, the general form
of which is

f(A) =
∞
∑

n=0

cnA
n . (A.99)

The matrix A must be square, say N ×N, in order for its powers An to be defined,
but it can be nonsymmetric and/or singular in what follows. If A has real elements
and all coefficients cn are real, f(A) is a mapping from RN×N → RN×N; if the
elements can be complex, it is a mapping from CN×N → CN×N.

One application of such a power-series function is the Cayley-Hamilton the-
orem (Eves, 1966), which states that every square matrix A satisfies its own char-
acteristic equation. That is, P (A) = 0, where P (A) is the polynomial defined by
(A.65) but with the scalar λ replaced by the matrix A.
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A.7.1 Matrix exponentials

The matrix exponential is defined by taking cn = 1/n! in (A.99), leading to

exp(A) =
∞
∑

n=0

1

n!
An . (A.100)

If A and B commute, then

exp(A) exp(B) = exp(B) exp(A) = exp(A+B) . (A.101)

Somewhat more generally, if A and B both commute with their commutator,
AB−BA, then

exp
[

−α(A+B) + 1
2α

2(AB−BA)
]

= exp(−αA) exp(−αB) . (A.102)

The matrix exponential exp(αA) is never singular. In fact, its inverse is given
by

[exp(αA)]−1 = exp(−αA) . (A.103)

All unitary matrices can be represented as

U = exp(iH) , (A.104)

where H is Hermitian. In this form, the adjoint of U is

U† = exp(−iH) , (A.105)

and the unitarity follows from (A.103).
A few additional properties of matrix exponentials are:

det[exp(A)] = exp[tr(A)] , (A.106)

B[exp(A)]B−1 = exp(BAB−1) , (A.107)

for any nonsingular matrix B.

A.7.2 Trigonometric functions

Matrix sines and cosines are defined by

sin(A) = A− 1
3! A

3 + 1
5! A

5 + ... ; (A.108)

cos(A) = I− 1
2! A

2 + 1
4! A

4 + ... . (A.109)

It follows that
exp(iA) = cos(A) + i sin(A) . (A.110)

If A and B commute, then

cos(A+B) = cos(A) cos(B)− sin(A) sin(B) ; (A.111)

sin(A+B) = sin(A) cos(B) + cos(A) sin(B) . (A.112)



1400 APPENDIX A

A.7.3 Other functions

Several important results arise from a consideration of I−A, where A is an N ×N
matrix and I is the corresponding unit matrix. An extension of the Neumann series,
discussed in Sec. A.3.4, shows that (Siotani et al., 1985)

(I−A)−m =
∞
∑

n=0

Γ(m+ n)

Γ(m)n!
An for any real m > 0 , (A.113)

if all eigenvalues of A are less than unity in absolute value.
The determinant of I −A also has some interesting properties. For example,

if all of the eigenvalues of A are less than unity in absolute value, then (Siotani et
al., 1985):

− ln[det(I−A)] = trA+ 1
2 trA

2 + 1
3 trA

3 + ... . (A.114)

If A is a scalar (1×1 matrix), then determinant, trace and matrix are identical and
(A.114) is the familiar expansion for the logarithm.

A.8 DEFINITE MATRICES AND QUADRATIC FORMS

A.8.1 Definitions

Given an N × N matrix A and an N × 1 vector x, we define a scalar quadratic
form QA(x) by

QA(x) = x†Ax . (A.115)

If the matrix A is Hermitian, QA(x) is called a Hermitian form.
The matrix A is said to be positive-definite if its associated quadratic form

QA(x) > 0 for all x (except the trivial one with all elements zero). If QA(x) ≥ 0 for
all x, thenA is said to be positive-semidefinite or nonnegative-definite. Similarly,
A is negative-definite ifQA(x) < 0 for all nontrivial x and negative-semidefinite if
QA(x) ≤ 0 for all x. If none of these conditions prevail, then A is merely indefinite.

A.8.2 Conditions for definiteness

A necessary and sufficient condition for the N ×N matrix A to be positive-definite
is that all of the eigenvalues of A be greater than zero. By (A.73), this condition
implies that det(A) > 0, but the converse does not necessarily hold; it is possible
to have a positive determinant and an even number of negative eigenvalues. For ex-
ample, a diagonal 3×3 matrix with (1,−1,−1) along the diagonal has determinant
+1 but is indefinite.

A stronger condition for definiteness is obtained by considering subdetermi-
nants. A minor of order N − k is obtained by deleting k rows and k columns
(k < N) from the N × N matrix A and taking the determinant of the resulting
(N − k) × (N − k) matrix. For example, we might delete the rows labelled by
n = n1, n2, ..., nk and the columns labelled by m = m1,m2, ...,mk. The minor is
called a principal minor if the row and column labels are identical. A leading
principal minor is one for which the row and column labels are successive inte-
gers from 1 to k. A necessary and sufficient condition for a Hermitian matrix to
be positive-definite is that all of its leading principal minors be greater than zero
(Eves, 1966). This condition rules out the 3× 3 example given above; if we delete
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the first and second row and the first and second column, all that is left is the single
element −1, and the corresponding principal minor is −1.

An important general theorem on positive-definite matrices states that:

If A is a positive-definite matrix in C
N×N and B is a matrix of rank K in

C
N×K, then the K ×K matrix B

†
AB is also positive-definite.

This theorem is proved for real matrices on p. 140 of Golub and van Loan (1989),
but their proof generalizes readily to the complex case.

An immediate consequence, which follows by setting A = I in this theorem, is
that any K ×K matrix of the form B†B is positive-definite if the N ×K matrix
B has rank K. Any matrix of the form B†B, without any restriction on B, is at
least positive-semidefinite. Moreover, it follows from (A.26) that B†B is Hermitian.
Thus, as soon as we can show that a matrix has the form B†B, we know that it is
Hermitian and at least positive-semidefinite.

A stronger statement can be also made regarding Hermitian positive-definite
matrices. Any such matrix H can be uniquely factored in the form

H = GG† , (A.116)

where G is square and lower triangular, with positive elements along the diagonal.
This form, known as the Cholesky factorization, is at the heart of many numerical
algorithms in linear algebra.

A.8.3 Square-root matrices

If the N ×N Hermitian matrix H is positive-semidefinite, we can define its square
root H

1

2, an N ×N Hermitian matrix that satisfies

H
1

2H
1

2 = H . (A.117)

The easiest way to construct H
1

2 is by means of the spectral decomposition
(A.71). If we know the eigenvalues {λn} and eigenvectors {un}, then we can write
the square-root matrix as

H
1

2 =
N
∑

n=1

√

λn unu
†
n . (A.118)

To show that (A.117) is satisfied by (A.118), we make use of the orthonormality
condition (A.69).

If H is nonsingular, the inverse of the square-root matrix exists and is given
by (Johnson and Wichern, 1988)

H− 1

2 =
N
∑

n=1

1√
λn

unu
†
n . (A.119)
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A.9 DIFFERENTIATION FORMULAS

A.9.1 Derivatives and integrals of a matrix with respect to a real parameter

If A(t) is an M × N matrix with complex elements Amn(t) which depend on the
real scalar parameter t, then we can define derivative and integral matrices by

[

d

dt
A(t)

]

nm

=
d

dt
Anm(t) ; (A.120)

[

∫ b

a
dt A(t)

]

nm

=

∫ b

a
dt Anm(t) . (A.121)

The following manipulation rules for the derivative matrix can be verified:

d

dt
[A(t) +B(t)] =

d

dt
A(t) +

d

dt
B(t) ; (A.122)

d

dt
[A(t)B(t)] = A(t)

d

dt
B(t) +

[

d

dt
A(t)

]

B(t) . (A.123)

Note that the last term in (A.123) is not BdA/dt unless the two matrices commute.
If N = M and the inverse of A exists, it can also be differentiated (Rade and

Westergren, 1990) as follows:

d

dt
A−1 = −A−1 dA

dt
A−1 . (A.124)

A.9.2 Differentiation of a scalar-valued function with respect to a real vector

Let φ(x) be a complex differentiable scalar-valued function and x be a vector in
RN. We define the gradient of φ(x), denoted ∂φ(x)/∂x or ∇φ(x), as a vector in
RN such that its nth component is the partial derivative of φ(x) with respect to xn,
i.e.,

[

∂

∂x
φ(x)

]

n

= [∇φ(x)]n =
∂

∂xn
φ(x) . (A.125)

From this definition it can be shown that

∂

∂x
atx = a , (A.126)

∂

∂x
xtAx = (A+At)x = 2Ax if A is symmetric , (A.127)

where a is a constant N × 1 vector, A is a constant N ×N matrix, and both a and
A can be complex.

We also define the derivative with respect to the transpose of a vector as the
transpose of the derivative vector itself, so

∂

∂xt
φ(x) =

[

∂

∂x
φ(x)

]t

. (A.128)



MATRIX ALGEBRA 1403

If we regard ∂φ(x)/∂x as a column vector, then ∂φ(x)/∂xt is a row vector.
The Hessian matrix, or matrix of second derivatives, is the N × N matrix

with elements given by

[

∂2

∂x∂xt
φ(x)

]

mn

=
∂2

∂xm∂xn
φ(x) . (A.129)

This expression can be interpreted as the outer product (see Secs. A.2.6 and 1.3.7)
of the column-vector operator ∂/∂x with the row vector ∂φ(x)/∂xt. Some books use
the notation ∇2 for the Hessian, but that is too easily confused with the Laplacian;
the Laplacian of a scalar function is a scalar, while the Hessian is a matrix. A better
notation for the Hessian operator would be ∇∇t.

A.9.3 Differentiation with respect to real matrices

By analogy to (A.125), we define the derivative of the scalar function φ(A) with
respect to the real M × N matrix A as the new M × N matrix ∂φ(A)/∂A, with
elements given by

[

∂φ(A)

∂A

]

mn

=
∂φ(A)

∂Amn
. (A.130)

An extensive list of identities for evaluating such matrix derivatives is given
by Fukunaga (1990) and a very detailed treatment is given by Harville (1997). A
few of the more interesting relations are listed here. All matrices are assumed to be
real and conformable, but no other restrictions apply except those listed explicitly.

∂

∂A
tr(BA) = Bt ; (A.131)

∂

∂A
tr(UAVAt) = UAV+UtAVt , (U and V square) ; (A.132)

∂

∂A
tr(AtBA) = (B+Bt)A , (B square) ; (A.133)

∂

∂Amn
det(A) = cofmn(A) ; (A.134)

∂{ln[det(A)]}
∂A

= 2A−1 − diag(A−1) , (A symmetric, nonsingular) ; (A.135)

∂[det(A)]

∂A
= det(A)

[

2A−1 − diag(A−1)
]

, (A symmetric, nonsingular) ,

(A.136)
where the notation diag(M) denotes the matrix M with its off-diagonal elements
set to zero.

The following relations, taken from Fukunaga (1990), are useful in linear-
discriminant analysis:

∂

∂A

{

tr[(AtS2A)−1(AtS1A)]
}

=
∂

∂A

{

tr[(AtS1A)(AtS2A)−1]
}

= −2S2A(AtS2A)−1(AtS1A)(AtS2A)−1 + 2S1A(AtS2A)−1 . (A.137)
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A.9.4 Differentiation of a real function with respect to a complex scalar

In Secs. A.9.2 and A.9.3, the differentiation was performed with respect to vectors
and matrices that were restricted to be real, but in optimization problems we often
want to minimize a real, scalar-valued function of a complex N × 1 vector x. Min-
imization requires that the function be unchanged by an infinitesimal perturbation
in either the real or imaginary part of any component of x. Thus a total of 2N
derivatives must vanish. In Sec. A.9.5 we shall develop techniques for dealing with
such problems, but as a prelude in this section we take a look at one interpretation
of differentiation with respect to a complex scalar x (soon to be one component of
a complex vector).

We write the scalar x in terms of its real and imaginary parts, x′ and x′′

respectively, as
x = x′ + ix′′ . (A.138)

The complex conjugate of x is given by

x∗ = x′ − ix′′ . (A.139)

The inverse relations are

x′ = 1
2 (x+ x∗) , x′′ = 1

2i (x− x∗) . (A.140)

Next we define a complex derivative operator D by

D =
∂

∂x′
+ i

∂

∂x′′
. (A.141)

It is important to realize that this operator takes individual partial derivatives with
respect to x′ and x′′ and then combines them into a complex number. This is not
the same as taking a total derivative with respect to the complex x, an operation
discussed in detail in App. B. The operator D can be applied to real-valued or
complex-valued functions of the complex x, while the usual complex derivative d/dz
is defined only for complex-valued (in fact, analytic) functions.

The analogy of (A.141) to (A.125) should not be overlooked. If we think of
x as a vector in the complex plane (see App. B) with components x′ and x′′ and
corresponding unit vectors 1 and i, then D is a vector derivative like ∂/∂x but with
just two components.

From the definition of D, we have

D∗ =
∂

∂x′
− i

∂

∂x′′
; (A.142)

DD∗ =

(

∂

∂x′
+ i

∂

∂x′′

)(

∂

∂x′
− i

∂

∂x′′

)

=
∂2

∂x′2
+

∂2

∂x′′2
. (A.143)

Note that DD∗ is the usual 2D Laplacian operator.
The following relations can be verified:

D[φ(x) + ψ(x)] = Dφ(x) +Dψ(x) ; (A.144)

D[φ(x)ψ(x)] = φ(x)Dφ(x) + ψ(x)Dφ(x) ; (A.145)

D[ |x|n] = n|x|n−2x . (A.146)
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These results are obvious extensions of familiar properties of real derivatives.
On the other hand, if the operator D is applied to complex-valued functions, there
are some surprises. For example,

Dx =

(

∂

∂x′
+ i

∂

∂x′′

)

(x′ + ix′′) = 0 ; (A.147)

D∗x =

(

∂

∂x′
− i

∂

∂x′′

)

(x′ + ix′′) = 2 . (A.148)

A symmetrized operator behaves more intuitively:

1
2 (D +D∗)x = 1 ; 1

2 (D +D∗)xn = nxn−1 . (A.149)

To see the reasons for these peculiarities, we can regard (A.147) and (A.148) as
specifying a coordinate transformation from (x′, x′′) to (x, x∗). The usual chain
rule for differentiation then yields

∂φ(x′, x′′)

∂x
=
∂φ(x′, x′′)

∂x′

∂x′

∂x
+
∂φ(x′, x′′)

∂x′′

∂x′′

∂x
=

1

2

∂φ(x′, x′′)

∂x′
+

1

2i

∂φ(x′, x′′)

∂x′′
.

(A.150)
Similarly,

∂φ(x′, x′′)

∂x

∗

=
∂φ(x′, x′′)

∂x′

∂x′

∂x

∗

+
∂φ(x′, x′′)

∂x′′

∂x′′

∂x

∗

=
1

2

∂φ(x′, x′′)

∂x′
−

1

2i

∂φ(x′, x′′)

∂x′′
.

(A.151)
If φ(x′, x′′) is real, ∂φ(x′, x′′)/∂x∗ = [∂φ(x′, x′′)/∂x]∗.

As an example, suppose

φ(x′, x′′) = |x|2 = xx∗ = (x′)2 + (x′′)2 . (A.152)

Then, directly from (A.150), we have

∂φ(x′, x′′)

∂x
= 1

2 (2x
′) + 1

2i(2x
′′) = x′ − ix′′ = x∗ . (A.153)

But note that this same result can be obtained more easily just by regarding x and
x∗ as independent variables, so that ∂(xx∗)/∂x = x∗. By the same token,

∂(xx∗)

∂x∗
= 1

2 (2x
′)− 1

2i(2x
′′) = x′ + ix′′ = x . (A.154)

In summary, we have the following interrelationships among various differential
operators:

D =

(

∂

∂x′
+ i

∂

∂x′′

)

= 2
∂

∂x∗
; (A.155)

D∗ =

(

∂

∂x′
− i

∂

∂x′′

)

= 2
∂

∂x
; (A.156)

1
2 (D +D∗) =

(

∂

∂x∗
+

∂

∂x

)

=
∂

∂x′
; (A.157)

1
2i(D −D∗) = −i

(

∂

∂x∗
−

∂

∂x

)

=
∂

∂x′′
. (A.158)

The apparent paradox of (A.147) - (A.149) is now resolved. For example,
(A.155) can be used to rewrite (A.147) as 2∂x/∂x∗ = 0, while (A.156) and (A.148)
lead to 2∂x/∂x = 2; both of these results are eminently reasonable if we regard x
and x∗ as independent variables.
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A.9.5 Differentiation of a function with respect to a complex vector

We are now in a position to define derivatives with respect to a complex vector.
Consider a scalar-valued function of N complex variables x1, ..., xN or, equivalently,
2N real variables x′

1, ..., x
′
N , x′′

1 , ..., x
′′
N . We can write this function as φ(x′,x′′),

where x′ is a vector of real parts and x′′ is a vector of imaginary parts, or simply
as Φ(x), where x = x′ + ix′′.

The vector derivatives with respect to real and imaginary parts are defined by

[

∂Φ(x)

∂x′

]

n

=
∂Φ(x)

∂x′
n

,

[

∂Φ(x)

∂x′′

]

n

=
∂Φ(x)

∂x′′
n

. (A.159)

Both ∂Φ(x)/∂x′ and ∂Φ(x)/∂x′′ are N × 1 column vectors.
Now we define the vector counterpart of D from (A.141) by

∇ =
∂

∂x′
+ i

∂

∂x′′
(A.160a)

or, equivalently,

[∇Φ(x)]n =
∂Φ(x)

∂x′
n

+ i
∂Φ(x)

∂x′′
n

. (A.160b)

It is reasonable to call this operator ∇ since it is a natural generalization of the
familiar real gradient operator. If we have a space with N real coordinates
xj , j = 1, ..., N , and associated orthonormal basis vectors uj , then

∇ =
N
∑

j=1

uj
∂

∂xj
, (xj ,uj real) . (A.161)

The operator defined by (A.160) has the same structure in 2N dimensions if we
think of uj and iuj as comprising a set of 2N orthonormal unit vectors.

The vector counterpart of D∗ is the adjoint of ∇, a row-vector operator defined
such that

∇† =
∂

∂x′t
− i

∂

∂x′′t
. (A.162)

By extension of (A.155) and (A.156), we can also write

∇ = 2
∂

∂x∗
or [∇Φ(x)]n = 2

∂Φ(x)

∂x∗
n

; (A.163)

∇† = 2
∂

∂xt
or

[

∇†Φ(x)
]

n
= 2

∂Φ(x)

∂xn
, (A.164)

where ∂/∂xn and ∂/∂x∗
n are to be interpreted according to (A.150) and (A.151).

The generalized Hessian is given by

∇∇† =

(

∂

∂x′
+ i

∂

∂x′′

)(

∂

∂x′t
− i

∂

∂x′′t

)

(A.165a)

or, equivalently,
[

∇∇†Φ(x)
]

nm
= 4

∂2Φ(x)

∂x∗
n∂xm

. (A.165b)
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Several useful results can be derived from these definitions. In what follows,
x and a are N × 1 column vectors and A is an N × N matrix; A and a may be
complex but are independent of x.

∇a†x = 0 ; (A.166)

∇x†a = 2a ; (A.167)

∇†x†a = 0 ; (A.168)

∇†a†x = 2a† ; (A.169)

∇x†Ax = 2Ax ; (A.170)

∇†x†Ax = 2(x†A) ; (A.171)

∇∇†x†Ax = 4A . (A.172)

A.10 TAYLOR EXPANSIONS

Many useful approximations are realized by expanding a scalar-valued function in
a Taylor series and neglecting higher-order terms. The Taylor series for an analytic
function of a single complex variable is discussed in App. B, Sec. B.3.4. Here we
address the additional complications that arise when one expands a scalar-valued
function of a real or complex vector. For background, we first review the Taylor
expansion of a real function of a real scalar.

A.10.1 Real univariate Taylor series

If φ(x) is a real-valued function of a single real scalar and its first K +1 derivatives
exist in an interval around x = a, then in this interval (Rade and Westergren, 1990)

φ(x) =
K
∑

k=0

φ(k)(a)

k!
(x− a)k +RK+1 , (A.173)

where φ(k)(x) is the kth derivative of φ(x), and RK+1 is a remainder term which
satisfies

RK+1 =

[

φ(K+1)(b)

(K + 1)!

]

(x− a)K+1 , (A.174)

for some b between a and x. If all derivatives exist in the interval, we can let
K → ∞, in which case RK+1 → 0 and

φ(x) =
∞
∑

k=0

φ(k)(a)

k!
(x− a)k . (A.175)

This infinite series is known as the Taylor series for φ(x). The special case a = 0
yields the Maclaurin series.

Another useful form is obtained by a simple change of variables. Letting a → x′

and x− a → a′ (and then promptly dropping the primes), we have

φ(x+ a) =
∞
∑

k=0

φ(k)(x)

k!
ak , (A.176)
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provided, of course, that all of the derivatives exist. It is interesting to rewrite
(A.176) in operator form as

φ(x+ a) = exp

[

a
d

dx

]

φ(x) , (A.177)

where the exponential differential operator is to be interpreted as

exp

[

a
d

dx

]

=
∞
∑

k=0

ak

k!

dk

dxk
. (A.178)

This operator is sometimes referred to as a displacement operator since it displaces
the function φ(x) to φ(x+ a).

A.10.2 Real multivariate Taylor series

One advantage of (A.178) is that it generalizes readily to the vector case. The
multivariate Taylor expansion for a scalar-valued function of a real vector x is

φ(x+a) = exp

(

at
∂

∂x

)

φ(x) = φ(x)+

(

at ∂

∂x

)

φ(x)+
1

2

(

at ∂

∂x

)(

at ∂

∂x

)

φ(x)+ ...

= φ(x) + at ∂φ(x)

∂x
+ 1

2a
t ∂

2φ(x)

∂x∂xt
a+ ... . (A.179)

In component form, we have

φ(x+ a) = φ(x) +
N
∑

i=1

ai
∂

∂xi
φ(x) +

1

2

N
∑

i=1

N
∑

j=1

aiaj
∂2

∂xi∂xj
φ(x) + ... . (A.180)

For the real vectors being considered here, ∂2φ(x)/∂x∂xt is the Hessian matrix,
and (A.179) shows that it is also the matrix of coefficients of second-order terms in
the Taylor expansion.

In optimization problems, it is common to pick a direction specified by a unit
vector n̂ and attempt to maximize or minimize a function φ(x) along this direction.
Since the direction is fixed, the function can be represented by a one-dimensional
Taylor series, even though it is a function of a vector (Gill et al, 1981, p. 53). The
required expansion is a special case of (A.179):

φ(x+ hn̂) = exp

(

hn̂t ∂

∂x

)

φ(x)

= φ(x) + n̂t ∂φ(x)

∂x
h+ 1

2 n̂
t ∂

2φ(x)

∂x∂xt
n̂h2 + ... . (A.181)

This result provides interpretations of the gradient and Hessian. For any direction
n̂, n̂t[∂φ(x)/∂x] is the 1D derivative in that direction and n̂t[∂2φ(x)/∂x∂xt]n̂ is
the corresponding second derivative or curvature.
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A.10.3 Complex univariate Taylor series

Consider a scalar-valued function of a complex scalar x = x′ + ix′′. One way to
write a Taylor expansion for this function, denoted Φ(x) or φ(x′, x′′), is to consider
it as a function of a real 2D vector with components x′ and x′′. Then (A.179) yields

φ(x′ + a′, x′′ + a′′) = exp

(

a′
∂

∂x′
+ a′′

∂

∂x′′

)

φ(x′, x′′)

= φ(x′, x′′) +

(

a′
∂

∂x′
+ a′′

∂

∂x′′

)

φ(x′, x′′)

+
1

2

(

a′
∂

∂x′
+ a′′

∂

∂x′′

)(

a′
∂

∂x′
+ a′′

∂

∂x′′

)

φ(x′, x′′) + ... . (A.182)

This expansion works for any function of x′ and x′′ so long as all derivatives with
respect to x′ and x′′ exist.

In terms of x and x∗, we can write this expansion as

Φ(x+ a) = exp

(

a
∂

∂x
+ a∗

∂

∂x∗

)

Φ(x) =
∞
∑

k=0

1

k!

(

a
∂

∂x
+ a∗

∂

∂x∗

)k

Φ(x) , (A.183)

which, by use of (A.155) and (A.156) can also be written

Φ(x+ a) = exp
[

1
2 (aD

∗ + a∗D)
]

Φ(x) . (A.184)

A.10.4 Complex multivariate Taylor series

A scalar-valued function of an ND complex vector x can be regarded as a function
φ(x′,x′′) of 2N variables, so (A.182) generalizes to

φ(x′ + a′,x′′ + a′′) = exp

(

a′t
∂

∂x′
+ a′′t ∂

∂x′′

)

φ(x′,x′′) . (A.185)

Similarly, with the help of (A.160), the generalization of (A.184) is

Φ(x+ a) = exp
[

1
2 (a∇

† + a†∇)
]

Φ(x)

= Φ(x) +
[

1
2 (a∇

† + a†∇)
]

Φ(x) + 1
2

[

1
2 (a∇

† + a†∇)
] [

1
2 (a∇

† + a†∇)
]

Φ(x) + ... .
(A.186)

A.11 MATRIX AND VECTOR INEQUALITIES

A.11.1 Classical inequalities

An important relation with many applications in this book is the Cauchy-Schwarz
inequality (Johnson and Wichern, 1988, p. 63), which states that

|a†b|2 ≤ (a†a)(b†b) . (A.187)
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The equality holds if and only if b = ca, where c is a scalar. One interpretation of
this inequality can be seen by defining the angle between a and b by

cos θab =
a†b

√

(a†a)(b†b)
. (A.188)

If a and b are real, the Cauchy-Schwarz inequality states that cos2 θab ≤ 1, with
equality holding if and only if a and b are parallel.

Additional useful inequalities arise when other vector norms are considered.
The Lp norm is defined by

||x||p =

[

N
∑

n=1

|xn|p
]1/p

. (A.189)

In terms of this norm, Minkowski’s inequality states that

||x+ y||p ≤ ||x||p + ||y||p , (A.190)

and Hölder’s inequality for Hadamard products (see Sec. A.2.8) states that

||x% y||1 ≤ ||x||p||y||q ,
1

p
+

1

q
= 1 , p, q ≥ 1 . (A.191)

A.11.2 Inequalities involving definite matrices

It is common in the literature to encounter statements such as A > B or A ≥ B,
where A and B are two N×N matrices. These statements must be interpreted with
care. Unlike the equality sign defined in (A.1), an inequality sign applied to matri-
ces does not hold on an element-by-element basis. Rather, the statement A > B

means that for positive-definite matrices A and B, A−B is positive-definite, while
A ≥ B means that A−B is positive-semidefinite. The relation A > B holds if and
only if x†Ax > x†Bx for all nonzero x. Similar interpretations hold for < and ≤.
This convention is called the Loewner ordering of the matrices A and B.

With the Loewner convention, some very powerful inequalities can be adduced
for definite matrices (Pilz, 1991). A few useful ones are given here.

If A > B, then

(i) B−1 > A−1 ;

(ii) tr(AC) > tr(BC) for all positive-definite (and conformable) C;

(iii) det(A) > det(B);

(iv) λi(A) > λi(B) for all i.

In these results, > can be consistently replaced by <, ≤ or ≥ and the results still
hold. Inequality (iv) assumes that the eigenvalues are ordered so that λ1≥λ2 ≥λ3... .
Thus the entire eigenvalue spectrum of A must lie above that for B if A > B.

Another inequality involving a positive-definite matrix is the extended Cauchy-
Schwarz inequality. It states that

|a†b|2 ≤ (a†Ka)(b†K−1b) , (A.192)

where K is positive-definite. Equality holds if and only if b = cKa, where c is a
scalar.
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A.11.3 Matrix norms

The norm of an N ×N matrix A can be defined as

||A|| = max
x "= 0

||Ax||
||x||

, (A.193)

where x is an N × 1 vector and || · || on the right denotes any desired vector norm.
Thus it follows by definition that

||Ax|| ≤ ||A|| ||x|| . (A.194)

To be more precise about the operational form of the matrix norm, we must
specify the associated vector norm to be used in (A.193). Three common choices
for the latter are L1, L∞ and L2, and the corresponding matrix norms are (Usmani,
1987)

||A||1 = max
j

∑

i

|Aij | ; (A.195)

||A||∞ = max
i

∑

j

|Aij | ; (A.196)

||A||2 =
√

maximum eigenvalue of A†A . (A.197)

A common term for ||A||2 is spectral norm. Each of these matrix norms leads to
a useful inequality when substituted into (A.194).

A more familiar-looking matrix norm is the usual norm, defined via

||A||2 =
∑

i,j

|Aij |2 . (A.198)

Associated with this norm is a scalar product of two matrices, defined as (Harville,
1997)

A ·B = tr{A†B} . (A.199)

In terms of this scalar product, the matrix version of the Cauchy-Schwarz inequality
is (Harville, 1997)

|A ·B|2 ≤ ||A||2 ||B||2 . (A.200)

The equality holds if and only if A = 0, B = 0 or A = cB for some scalar c.



APPENDIX B
Complex Variables

This appendix is intended as a brief survey of complex numbers, functions of a sin-
gle complex variable and complex integration. Results needed in the main text are
presented without proof and with relatively little discussion. For more details, the
reader is referred to any of the many introductory texts on complex variables; par-
ticularly lucid ones are Carrier et al., (1966), Churchill et al. (1974), Ahlfors (1979)
and Wunsch (1994). More general texts with good sections on complex variables
include Morse and Feshbach (1953), Arfken and Weber (1995) and Friedman (1991).
Proofs of all statements made in this appendix can be found in these references.

B.1 COMPLEX ALGEBRA

B.1.1 What is a complex number?

A complex number is an ordered pair of real numbers obeying certain algebraic rules.
If z1 denotes the ordered pair (x1, y1) and z2 denotes the pair (x2, y2), addition and
multiplication are defined as follows:

Addition: z3 = z1 + z2 ⇒ x3 = x1 + x2 , y3 = y1 + y2 (B.1)

Multiplication: z3 = z1z2 ⇒ x3 = x1x2 − y1y2 , y3 = x1y2 + x2y1 , (B.2)

where z3 = (x3, y3). Subtraction and division are defined as the inverses of addition
and multiplication, respectively. The usual algebraic laws (commutative, associa-
tive and distributive) are valid for complex numbers.

1413
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Equality of two complex numbers means equality for corresponding members
of the pairs:

Axiom of equality: z1 = z2 ⇒ x1 = x2 and y1 = y2 . (B.3)

In particular,

Complex zero: z1 = 0 ⇒ x1 = 0 and y1 = 0 . (B.4)

Thus 0 is understood to mean the ordered pair (0, 0).

B.1.2 Representations

A conventional representation of a complex number z = (x, y) is:

z = x+ iy , (B.5)

where i =
√
−1. Since

√
−1 was once thought to be nonexistent,1 y is referred to

as the imaginary part of z, denoted Im(z), while x is the real part or Re(z).
The representation (B.5) is a compact way of summarizing the algebraic prop-

erties of complex numbers. It is easy to verify, for example, that the multiplication
rule follows from (B.5) along with the usual rule for multiplying polynomials.

Fig. B.1 Representation of a complex number as a vector in a plane.

A graphical way of portraying a complex number is as a point in a plane (see
Fig. B.1), with x and y as Cartesian coordinates (x, y). Equivalently, the complex
number can be regarded as a 2D vector from the origin to the point (x, y). Though
often attributed to Gauss, this representation apparently predated him (Boyer and
Merzbach, 1989, p. 507).

The Argand or polar representation of z is

z = |z| cos θ + i|z| sin θ , (B.6)

where |z| and θ are known, respectively, as the modulus and argument of z. The
notation θ = arg(z) is common. It follows easily from (B.6) and Fig. B.1 that

|z|2 = x2 + y2 and arg(z) = θ = tan−1
(y

x

)

. (B.7)

1Apparently the first to suggest the existence of an imaginary number was an obscure fifteenth-
century French mathematician Nicolas Chuquet. For a fascinating history of the development of
complex numbers, see Boyer and Merzbach (1989).
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B.1.3 Complex exponentials and DeMoivre’s theorem

The complex exponential exp(iθ) can be defined in terms of the same Taylor series
used for real variables. Recognizing that the Taylor series for exp(iθ) equals the
Taylor series for cos θ plus i times the Taylor series for sin θ, we have

eiθ = cos θ + i sin θ . (B.8)

With (B.8), representation (B.6) for a general complex number takes the more
compact form,

z = |z|eiθ . (B.9)

This form is especially handy for multiplication and division of complex num-
bers. If z1 = |z1| exp(iθ1) and z2 = |z2| exp(iθ2), then

z1z2 = |z1||z2| ei(θ1+θ2) ,
z1
z2

=
|z1|
|z2|

ei(θ1−θ2) . (B.10)

From this result we can easily derive DeMoivre’s theorem, which states that

zn = [ |z|(cos θ + i sin θ)]n =
[

|z| eiθ
]n

= |z|n(cosnθ + i sinnθ) . (B.11)

B.1.4 Complex conjugate

The complex conjugate of z = x+ iy is defined by

z∗ = x− iy = |z| e−iθ = |z|(cos θ − i sin θ) . (B.12)

The following properties follow from this definition:

(z∗)∗ = z , zz∗ = |z|2 , (z1 ± z2)
∗ = z∗1 ± z∗2 ,

(z1z2)
∗ = z∗1z

∗
2 ,

(

z1
z2

)∗

=
z∗1
z∗2

. (B.13)

The real and imaginary parts of z are given in terms of z and z∗ by

x = 1
2 (z + z∗) , y = 1

2i(z − z∗) . (B.14)

With (B.6), (B.8) and (B.14), we obtain the Euler formulas,

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
. (B.15)

B.1.5 Roots of unity

An N th root of unity is a number z such that zN = 1, where N is an integer. If
we restricted z to be real, the only solutions to this equation would be z = 1 for
N odd or z = ±1 for N even. With complex numbers there are other possibilities.
Consider the complex number WN defined by

WN = e−2πi/N . (B.16)

Raising WN to the N th power gives

(WN )N = (e−2πi/N )N = e−2πi = cos 2π − i sin 2π = 1 . (B.17)
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Thus WN is indeed an N th root of unity, but it is not the only one. We can get
other roots by raising WN to other integer powers. To show that [WN ]k is an N th

root of unity for any integer k, note that

[

(WN )k
]N

=
[

(e−2πi/N )k
]N

= e−2πik = cos 2πk − i sin 2πk = 1 . (B.18)

The full set of N th roots of unity is {exp(−2πik/N), k = 0, 1, ..., N −1} since k and
k +N define the same complex number. There are always exactly N distinct N th

roots of unity.

B.2 FUNCTIONS OF A COMPLEX VARIABLE

A function f(z) is a mapping from the complex number z = x+ iy to the complex
number f(z) = u + iv, or equivalently from a point in the x-y plane to a point in
the u-v plane. We thus write

f(z) = u(x, y) + iv(x, y) . (B.19)

If a single point (x, y) maps to a single (u, v) or if two or more (x, y) points
map to the same (u, v), we say the function is single-valued. If a single (x, y) maps
to two or more (u, v), the function is multiple-valued or multivalued. Examples
of single-valued functions include z2, 1/z and cos z, while examples of multivalued
functions include

√
z, arg(z) and cos−1(z).

B.2.1 Limits

The statement,
lim
z→z0

f(z) = w0 , (B.20)

means that for every positive real number ε there exists a positive real number δ
such that

|f(z)− w0| < ε when |z − z0| < δ (z $= z0) . (B.21)

In other words, f(z) can be made arbitrarily close to w0 by taking z sufficiently
close to z0, except possibly at the point z0 itself.

A very important consequence of this definition is that when a limit of f(z)
exists at any point z0, it must be unique. The value of the limit cannot depend on
the direction of approach to z0 in the complex plane. We can write

lim
z→z0

f(z) = lim
x→x0
y→y0

u(x, y) + i lim
x→x0
y→y0

v(x, y) , (B.22)

and the limits on x and y can be taken in either order.
Consider two different functions f(z) and F (z) and suppose that both of them

have limits as z → z0, i.e.,

lim
z→z0

f(z) = w0 , lim
z→z0

F (z) = W0 . (B.23)

Then the following properties hold:

lim
z→z0

[f(z) + F (z)] = w0 +W0 , lim
z→z0

[f(z)F (z)] = w0W0 ,



COMPLEX VARIABLES 1417

lim
z→z0

[

f(z)

F (z)

]

=
w0

W0
if W0 $= 0 . (B.24)

If P (z) is a polynomial of any finite order,

P (z) = a0 + a1z + a2z
2 + ...+ aNzN , (B.25)

then

lim
z→z0

P (z) = P (z0) . (B.26)

B.2.2 Continuity

A single-valued function f(z) is said to be continuous at z0 if and only if

f(z0) exists , lim
z→z0

f(z) exists , and lim
z→z0

f(z) = f(z0) . (B.27)

These three conditions imply that f(z) is defined in some neighborhood of z0.
From the theorems above on limits, it can be shown that if two functions are

continuous, their sum and product are continuous, and their quotient is continuous
except for those values of z where the denominator vanishes. Every polynomial
P (z) is continuous at all z.

B.2.3 Derivatives

The derivative of a function of a complex variable is defined in the same manner as
for a function of a real variable:

f ′(z) = lim
∆z→0

f(z +∆z)− f(z)

∆z
. (B.28)

The function f(z) is differentiable in any region where this limit exists. Since a limit
must be unique if it exists, the derivative must be independent of the direction of
∆z in the complex plane. An example of a function that is continuous but not
differentiable (except at z = 0) is |z|2.

From the definition (B.28), the following rules for differentiation can be proved:

d

dz
C = 0 ,

d

dz
[Cf(z)] = C

[

df(z)

dz

]

,
d

dz
(zn) = nzn−1 , (B.29)

where C is a constant and n is a positive integer. If f1(z) and f2(z) are two functions
whose derivatives exist, then

d

dz
[f1(z) + f2(z)] =

df1(z)

dz
+

df2(z)

dz
,

d

dz
[f1(z) f2(z)] = f1(z)

df2(z)

dz
+ f2(z)

df1(z)

dz
,

d

dz

[

f1(z)

f2(z)

]

=
f2(z)

df1(z)
dz − f1(z)

df2(z)
dz

[f2(z)]
2 , (f2(z) $= 0) . (B.30)
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B.2.4 Analytic functions

A function f(z) is said to be analytic at z0 if its derivative exists at every point
in some neighborhood of z0 (including the point z0 itself). The terms regular and
holomorphic are synonymous with analytic. If f(z) is analytic at every point in the
neighborhood of z0 but not at z0 itself, z0 is called a singular point or singularity
of f(z). If f(z) is analytic at some point z0, then all derivatives of f(z) can be
shown to exist at that point.

A function f(z) is analytic at ∞ if f(1/z) is analytic at 0. A function that
is analytic everywhere (except possibly at ∞) is called entire. For example, a
polynomial is entire.

B.2.5 Cauchy-Riemann conditions

Analyticity of f(z) imposes stringent requirements on its real and imaginary parts,
as defined in (B.19). Let u(x, y) and v(x, y) and their partial derivatives with
respect to x and y be single-valued and continuous in some neighborhood of a point
z0 = x0 + iy0. Then a necessary and sufficient condition that f(z) be analytic at
that point is that the Cauchy-Riemann conditions be satisfied:

∂u(x, y)

∂x
=

∂v(x, y)

∂y
,

∂u(x, y)

∂y
= −

∂v(x, y)

∂x
. (B.31)

As a corollary of the Cauchy-Riemann conditions, u(x, y) and v(x, y) are har-
monic functions; i.e., they satisfy the 2D Laplace equation:

∇2u(x, y) = ∇2v(x, y) = 0 . (B.32)

Equation (B.32) shows that only certain functions can be used as the real or imag-
inary part of an analytic function, while (B.31) shows that the real and imaginary
parts cannot be chosen independently.

As examples, zn (n an integer) and cos z are entire (analytic for all z), but |z|
and z∗ are not analytic anywhere.

B.2.6 Maxima, minima and zeros

For real functions of a real variable, maxima and minima are commonplace and easy
to understand. The situation is very different with functions of complex variables.
Since f(z) is usually itself complex, it consists of two numbers (u(z), v(z)) which
must be reduced to a single number if we are to even inquire about maxima and
minima; the natural way to do this is to form the modulus |f(z)|. Motivated by our
experience with real functions, we might then attempt to find the values of z for
which |f(z)| is a maximum or minimum. However, if f(z) is an analytic function,
an important theorem known as the maximum-modulus theorem states that no
maximum can exist!

More precisely, if f(z) is analytic within a circle of radius R centered on z0,
then

|f(z0)| ≤ M , (B.33)

where M is the maximum value of |f(z)| on that circle. Since |f(z)| at any point
z0 is less than or equal to its value at some point on a circle surrounding z0, the
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point z0 cannot be a maximum of the modulus. If f(z) is an entire function, we
can extend the radius of the circle to infinity and conclude that |f(z)| cannot have
a maximum except at z = ∞.

As a corollary of the maximum-modulus theorem, if f(z) is analytic and
bounded [ |f(z)| ≤ K, K a constant] for all z, then f(z) must be a constant. In
other words, the only bounded, entire function is a constant. This result is known
as Liouville’s theorem.

An extension of the maximum-modulus theorem applies to all derivatives of
an analytic function (which are themselves analytic). If f(z) is analytic at z0, then

|f (n)(z0)| ≤
Mn!

Rn
, (B.34)

where M and R have the same meaning as above. Thus none of the derivatives of
an analytic function can have maxima.

With real functions, the difference between maxima and minima is of little
consequence; if f(x) has a maximum at x = x0, then −f(x) has a minimum there.
Complex functions are different. Though the modulus of an analytic function can-
not have a maximum, it can indeed have a minimum. For example, if f(z) = z2,
|f(z)| is minimum at z = 0. More generally, |f(z)| takes on its minimum value of
zero at all points where f(z) = 0.

However, the zeros of analytic functions also have some counterintuitive prop-
erties. They can occur only at isolated points and not along lines or areas of the
complex plane. More precisely, unless a function is identically zero, about each point
where the function is analytic there must be a neighborhood throughout which the
function is nonzero, except possibly at the point itself. As a corollary, if f(z) is
analytic and zero over a finite line or area, it must be zero everywhere.

B.3 COMPLEX INTEGRATION

With real integrals, the value of a definite integral is fully specified by the function
and the limits of integration. With complex integrals, however, the specific line or
path of integration in the complex plane can also be important. When this path is a
closed contour around some region R, we refer to the integral as a contour integral.
Some of the most powerful results of complex analysis relate to contour integrals.

B.3.1 Definition of a line integral

By analogy to definite integrals of real functions, the integral of a complex function
f(z) along a line L from z = α to z = β is defined by dividing the line into N small
segments, adding up the contributions from each segment, and letting N → ∞. If
the jth segment extends from zj to zj+1 and we define ∆jz as zj+1 − zj , then the
integral is defined by

∫

L
dz f(z) = lim

N→∞

N
∑

j=1

f(z′j)∆jz , (B.35)
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where z′j is any point on L between zj and zj+1. Equivalently, with (B.5) and
(B.19), we can also write

∫

L
dz f(z) =

∫

L
(dx+ idy) [u(x, y) + iv(x, y)] , (B.36)

where dx and dy are not independent but are constrained by the condition that
(x, y) must lie on the line L.

B.3.2 Integrals of analytic functions

Though in general the line integral from z = α to z = β depends on the specific
line connecting the two points, an important exception occurs if f(z) is analytic. If
L and L′ are two lines from α to β, R is the region between L and L′ (including L
and L′ themselves), and f(z) is analytic in R, then

∫

L
dz f(z) =

∫

L′

dz f(z) . (B.37)

This result gives us the freedom to deform the path of integration at will without
changing the value of the integral, so long as the path remains entirely within the
region of analyticity.

If the starting and ending points of a line integral are the same (α = β), the
path of integration is a closed loop referred to as a contour. By convention, contours
are assumed to be traversed in a counter-clockwise direction unless otherwise stated.

A consequence of (B.37) known as the Cauchy-Goursat theorem says that
the integral of an analytic function around a closed path is zero. That is, if f(z) is
analytic inside and on contour C, then

∮

C
dz f(z) = 0 . (B.38)

B.3.3 Integrals of zn

Consider the integral of the function zn around a closed contour C which encloses
the origin. If n ≥ 0, zn is analytic and the integral is immediately zero by (B.38). If
n < 0, on the other hand, zn is singular at the origin and (B.38) is not applicable.
We can, however, use (B.37) to deform the contour, allowing it to shrink to a circle
of radius ε about the origin. On this new contour, z = ε exp(iθ) and dz = izdθ, so
we have

∮

C
dz zn = iεn+1

∫ 2π

0
dθ ei(n+1)θ . (B.39)

The remaining integral is easily performed with the help of DeMoivre’s theorem,
(B.11), and we find

∮

C
dz zn =

{

2πi if n = −1
0 otherwise

. (B.40)
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B.3.4 Cauchy integral formula

Suppose f(z) is analytic inside and on contour C, and that the point z0 is inside C.
Then the celebrated Cauchy integral formula states that

1

2πi

∮

C
dz

f(z)

z − z0
= f(z0) . (B.41)

Without going through a formal proof, we can make this result plausible by using
(B.37) to again justify shrinking the contour to a circle of radius ε around the point
z0. As ε → 0, the analytic function f(z) → f(z0), a constant that can be taken out
of the integral. Application of (B.40) then yields (B.41).

An extension of the Cauchy integral formula states that

n!

2πi

∮

C
dz

f(z)

(z − z0)n+1
= f (n)(z0) , (B.42)

where f (n)(z0) denotes the nth derivative evaluated at z0.

B.3.5 Series representations of complex functions

We have already seen that a polynomial of finite order is an analytic function. A
Taylor series can be regarded as a polynomial of infinite order, and it too represents
an analytic function. Specifically, if f(z) is analytic at z = z0, it can be expanded
in a Taylor series of the form

f(z) =
∞
∑

n=0

an(z − z0)
n , (B.43)

where the coefficients are given by

an =
1

n!
f (n)(z0) =

1

2πi

∮

C
dz′

f(z′)

(z′ − z0)n+1
. (B.44)

Any closed contour C can be used here, so long as f(z) is analytic inside and on C.
The Taylor series converges to f(z) within a circle of radius R about z0, where R is
the distance from z0 to the nearest singularity of f(z). A Maclaurin series is the
special case of a Taylor series when z0 = 0.

If f(z) is singular at z0, it can still be represented as a power series in z − z0,
but negative powers are required. Suppose f(z) is analytic in an annular region
defined by two circles of radius R1 and R2 (R2 > R1 > 0) centered on z0. Then a
series representation of f(z), called a Laurent series, is given by

f(z) =
∞
∑

n=−∞

an(z − z0)
n , (B.45)

where the coefficients are

an =
1

2πi

∮

C
dz′

f(z′)

(z′ − z0)n+1
. (B.46)

Here the contour C can be any closed contour in the annular region, and the Laurent
series will converge to f(z) in that region. If f(z) has no other singularities besides
the one at z0 inside the inner circle, radius R1 can approach zero, and the Laurent
series will converge to f(z) at all points inside the circle of radius R2, save only z0
itself.
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B.3.6 Poles and residues

If the Laurent series for f(z) around z0 terminates at a maximum negative power of
−m (i.e., an = 0 for n < −m) then the singularity at point z0 is a pole of order m.
A pole of order 1 is called a simple pole. If the series must be carried to n = −∞,
then z0 is an essential singularity. If an = 0 for all n < 0, then the Laurent series
reduces to the Taylor series and f(z) is analytic at z0. The coefficient a−1 is called
the residue of f(z) at z = z0.

A function might have many poles, say at z = zj , j = 1, ..., J. One conceptual
way to calculate the residues is to expand f(z) in J different Laurent series, one
for each singularity, and read off the coefficient a−1 in each series. The problem
with doing this in practice is that we end up with many coefficients that are of
no interest. The following operational rule is a useful shortcut: To calculate the
residue of f(z) at a pole of order m at z = zj , let φ(z) = (z − zj)mf(z). Then

Residue of f(z) at zj =
φ(m−1)(zj)

(m− 1)!
. (B.47)

For a simple pole (m = 1), the residue at zj is just the limit as z → zj of (z−zj)f(z).

B.3.7 Residue theorem

Let C be a closed contour within and on which f(z) is analytic except for a finite
number of singular points at z = zj , j = 1, ..., J. Then

∮

C
dz f(z) = 2πi

∑

j

[residue of f(z) at z = zj ] . (B.48)

B.3.8 Use of residues to evaluate real integrals

One of the most important applications of complex integration is to perform real
integrals. As an illustration, consider the integral

I =

∫ ∞

−∞
dx

cos(βx)

x2 + α2
, (B.49)

where α and β are real and positive; later α and β will be allowed to be negative.
The integrand is real and the integral is along the real axis, but nevertheless contour
integration is useful. To see this, note first that we can also write

I =

∫ ∞

−∞
dx

eiβx

x2 + α2
, (B.50)

since the integral of sin(βx)/(x2 + α2) over the symmetric interval vanishes. We
can now recognize (B.50) as the Fourier transform of (x2 + α2)−1 if we identify β
as −2πξ (see Chap. 3).



COMPLEX VARIABLES 1423

Fig. B.2 Contour used in evaluation of (B.50).

The next step is to convert the integral along the real axis into a contour
integral in the complex plane. A suitable contour, shown in Fig. B.2, is one that runs
from −R to R along the real axis, then is closed by a counter-clockwise semicircle
of radius R. Along the straight-line portion of C, z = x, and this portion of the
contour integral approaches the desired integral I as R → ∞. Along the semicircle,
z = R exp(iθ) = R cos θ + iR sin θ, dz = iR exp(iθ)dθ, and θ runs from 0 to π. We
thus have

∮

C
dz

eiβz

z2 + α2
= I + lim

R→∞

∫ π

0
dθ

iR eiθ eiβR cos θ e−βR sin θ

(R cos θ + iR sin θ)2 + α2
. (B.51)

Since both R and β are positive, the factor exp(−βR sin θ) vanishes exponentially
as R → ∞. Thus the limit in (B.51) is zero, and I is equal to the contour integral;
all that remains is to evaluate that integral. To do so we write

I =

∮

C
dz

eiβz

z2 + α2
=

∮

C
dz

eiβz

(z + iα)(z − iα)
. (B.52)

Since the exponential is an analytic function, the only singularities of the integrand
are at the points z = ±iα, both of which are simple poles. The pole at z = −iα is
outside the contour and does not affect the integral. By (B.47) the residue of the
integrand at z = iα is exp[iβ(iα)]/2iα. Then (B.48) shows that

I =
π

α
e−βα , β > 0 , α > 0 . (B.53)

If we wished to evaluate I for negative β or α, we could repeat the above
calculation with a contour having a semicircle in the lower half of the complex
plane. Alternatively, we can simply note from (B.49) that I is an even function of
β and α. Either way, the general result for any real β and α is

I =
π

|α|
e−|βα| , β , α real . (B.54)

B.3.9 Cauchy principal value

In the example in Sec. B.3.8, we were interested in an integral along the real axis,
and when we converted it to a contour integral, the poles were found to lie off the
real axis. In other words, for real x the integrand remained finite. Sometimes,
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however, we are faced with an improper real integral with a singularity exactly on
the path of integration. An example would be

I =

∫ ∞

−∞
dx

f(x)

x
, (B.55)

where f(x) does not vanish at x = 0.
We would like to convert this integral to a contour integral of f(z)/z. If f(z)

vanishes sufficiently rapidly at ∞ in either the upper or lower half-plane, we can
close the contour with an infinite semicircle as in Sec. B.3.8, but there is no general
guidance on how to handle the singularity at z = 0. We might consider deform-
ing the contour slightly to avoid the singularity, but it matters greatly whether we
indent the contour above or below the pole (see Fig. B.3a and b). If the pole is
outside the deformed contour, no matter how slightly, it does not contribute to the
integral, but if it is inside, its full residue enters into (B.48).

Fig. B.3 Possible contours that can be used for evaluation of (B.55). Only
the portion of the contour on or near the real axis is shown; the contour will
be closed by a semicircle in the upper or lower half-plane, depending on the
behavior of f (z). The contour in part c corresponds to the Cauchy Principal
value. Choice among these contours must be made on physical rather than
mathematical grounds.

Another option, often dictated by the physics or symmetry of a particular
application, is to take the Cauchy principal value of the integral, defined for real
integrals by

P
∫ ∞

−∞
dx

f(x)

x
= lim

ε→0

{
∫ −ε

−∞
dx

f(x)

x
+

∫ ∞

ε
dx

f(x)

x

}

. (B.56)

In terms of contour integrals, this definition is equivalent to using the interrupted
contour of Fig. B.3c. Use of this contour is equivalent to counting half of the residue
at any pole that lies exactly on the real axis, essentially averaging the results that
would be obtained by the contours of Figs. B.3a and b.

To illustrate the use of the Cauchy principal value, let us compute the integral

I = P
∫ ∞

−∞
dx

eiβx

x
, (B.57)

which is the Fourier transform of the generalized function P{1/x} (see Sec. 3.3.7)
if we let β = −2πξ. As in Sec. B.3.8, we can close the contour with a semicircle in
the upper half-plane if β > 0. Since the integrand vanishes exponentially along this
semicircle, the contour integral equals the desired integral along the real axis. The
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only pole is at z = 0, exactly on the contour, and the residue of the integrand at
that pole is 1. Since only half of that residue counts for a principal-value integral,
we have

I = iπ , β > 0 . (B.58)

The situation gets a bit more interesting if β < 0. In that case, we close the
integral in the lower half-plane, but this means we are traversing the contour in
a clockwise direction. Since all of our theorems are based on a counter-clockwise
convention, we must reverse the direction, introducing a minus sign in the integral.
Again the pole is on the contour and the residue is 1, so I = −iπ for β < 0.
Combining these results and using the signum function defined in Sec. 2.3.2, we can
write

I = iπ sgn(β) . (B.59)

This same result could also have been obtained from (B.57) and (B.58) by noting
that I is an odd function of β.

B.3.10 Summing a series

Just as complex integration can be used to perform real integrals, it can also be
used to sum a real series. A very neat trick for this purpose is presented in Morse
and Feshbach (1953), p. 413.

Suppose we are concerned with an infinite sum of the form

S =
∞
∑

n=−∞

f(n) , (B.60)

where we require f(n) to be finite for all integers n and to vanish faster than 1/n as
n → ∞ in order for S to converge. We can convert f(n) to a function of a complex
variable simply by replacing n with z, and we assume that |zf(z)| is bounded at
infinity.

To evaluate S, we consider the contour integral

I = π

∮

C
dz f(z) cotπz . (B.61)

The function π cot πz has simple poles of residue 1 at z = 0,±1,±2, ..., and it is
bounded at infinity except along the real axis.

Now suppose we take the contour C as a full circle of radius R that does not
intersect any poles of cotπz. The length of this contour is 2πR, so the integral
must satisfy the inequality, I ≤ 2πRM, where M is the maximum value of the
modulus of the integrand on the contour. However, since |f(z)| vanishes faster than
1/R as R → ∞ and the cotangent is bounded, the integral in (B.61) is, in fact,
zero. Nevertheless, the residue theorem still holds, and we can also compute I from
(B.48). As R → ∞ all poles associated with either f(z) or cotπz are enclosed in
the contour and contribute to the integral. The poles of the cotangent are at z = n,
while the poles of f(z) are at z = zj , j = 1, ..., J. By construction, the sum of the
residues of the integrand at the poles of the cotangent is just S, so we have

I = 0 = 2πi



S +
J
∑

j=1

(residue of πf(z) cot(πz) at z = zj)



 , (B.62)
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where the sum runs over poles of f(z) only. Thus

S =
∞
∑

n=−∞

f(n) = −
J
∑

j=1

[residue of πf(z) cot(πz) at z = zj ] . (B.63)

A similar formula for alternating series results from the use of the function
π cscπz, which has simple poles of residue (−1)n at z = ±n. The counterpart of
(B.63) is

∞
∑

n=−∞

(−1)nf(n) = −
J
∑

j=1

[residue of πf(z) csc(πz) at z = zj ] . (B.64)

These two formulas are often very useful when f(z) is a simple function with a few,
easily calculated residues.



APPENDIX C
Probability

INTRODUCTION

A thorough grounding in probability theory is necessary in order to understand and
model random variables and processes. Classification decisions and estimates based
on random processes are themselves random; thus probability theory is required to
describe the nature of such inferences. It is the purpose of this appendix to review
the basic tools from probability theory used to describe one or two random variables;
these tools are generalized to their vector forms in Chap. 8. In Sec. C.1 we start with
a discussion of the calculus of probability, including the concepts of sample points
and sample spaces, set theory, and the several basic approaches to probability. We
then adopt an axiomatic approach to probability and consider the description of
single and multiple random variables, and functions of such random variables (Secs.
C.2, C.3, C.4). Some well-known probability laws for random variables are discussed
in Secs. C.5 and C.6, and methods for generating random variables of a specified
probability law are given in Sec. C.7.

The reader who is interested in reviewing these topics in greater depth is
advised to consult one of the many general texts on these subjects, such as Johnson
et al. (1992, 1994, 1995), Casella and Berger (1990), Davenport (1970) and Feller
(1968). More sophisticated mathematical treatments are given by Shiryayev (1984)
and Breiman (1992). A handy reference book is Evans et al. (1993).
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C.1 Calculus of probability

Probability theory is a useful tool in the description of processes or experiments
that have some uncertainty or randomness about them. In this appendix we will
be concerned with descriptions of the ensemble statistics of the random variables
in the experiment. Ensemble statistics, also referred to as population statistics,
are hypothetical descriptions of the randomness of an experiment given perfect
knowledge. This is to be contrasted with sample statistics, the description of data
based on information derived from a finite number of random samples, which are
not considered here.

In the next sections we provide a framework for describing experiments and
their random outcomes using the language of set theory.

C.1.1 Outcomes, events, and spaces

We call a single run of an experiment a trial. At the conclusion of each trial, some
experimental outcome or sample is recorded which has some randomness associated
with it. Another trial would result in the recording of another realization of the
experimental outcome. The randomness in the experiment means each sample may
well take on a different, unpredictable value. For example, in a photon-counting
experiment the outcome might be the detected number of counts. The outcomes
of an experiment can be arbitrarily parsed into a chosen number of events. For
example, the outcomes of a photon-counting experiment could be binned into three
possible events: A1: the measured number of counts n is less than N0, A2: n is
equal to N0, or A3: n is greater than N0. In this example, the events A1, A2,
and A3 are called mutually exclusive because the occurrence of one event on a
trial precludes the others from occurring due to their disjoint nature. The set of
all possible events for an experiment is termed the event space or sample space,
denoted S. The event space we have set up for our photon-counting example is
clearly arbitrary; we could just as well have designated each allowable value for n as
an event. Each possible event associated with an experiment can be thought of as a
sample point in the sample space. Every experiment has a certain event, though,
which is the union of all events in the event space.

C.1.2 Concepts from set theory

Events and event spaces are central concepts in probability. We often find that we
are interested not only in single events and event spaces for an experiment, but also
in combinations of events and relationships between event spaces. It is natural to
use the language of set theory for this purpose.

Let S denote the sample space of an experiment. Any possible outcome ζ of
the experiment is said to be a member of the space S. This set membership is
represented mathematically by ζ ∈ S.

When an experiment has been performed and we say that some event A has
occurred, this signifies that the outcome ζ of the experiment satisfies the conditions
that specify event A. As in the photon-counting example of the previous section,
some outcomes in S signify that event A occurred, while other outcomes signify
that the event did not occur. Thus, any event can be regarded as a subset of the
possible outcomes in the space S.
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It is said that an event A is contained in another event B (or A ⊂ B) if every
outcome that belongs to the subset defining the event A also belongs to the subset
defining the event B. Equivalently, we say that A is a subset of B. For example, if
A is the event that the number of photons detected in time t is less than N1, and B
is the event that the number of photons detected in the same interval is less than
N2, and N1 ≤ N2, then A is contained in B.

If two events are defined such that A is contained in B and B is contained in
A, then it follows that A = B. It is also easy to demonstrate that if A is contained
in B and B is contained in the event C, then A is contained in C.

Some events are impossible. We cannot detect a negative number of photons,
and physical constraints limit the maximum density of an image recorded on film.
A subset that contains no outcomes is called the empty set and is denoted ∅.

Set theory operations In the sections below we present the basic relationships be-
tween various event combinations in the language of set theory. We shall build
on these concepts in later sections of this appendix as we develop similar concepts
regarding relationships between two or more random variables.

Union. The union of the events A and B is defined to be the set that contains all
outcomes in either A or B or both; the union operation is a logical OR operation.
The union operation is written A∪B. Figure C.1 is a Venn diagram demonstrating
the union operation. The following relationships involving the union of events are
easily verified:

Commutative law: A ∪B = B ∪A. (C.1a)

Associative law: A ∪ (B ∪C) = (A ∪B) ∪ C = A ∪B ∪ C. (C.1b)

Union with itself: A ∪A = A. (C.1c)

Union with empty set: A ∪ ∅ = A. (C.1d)

Union with sample space: A ∪ S = S. (C.1e)

Intersection. The intersection operation, denoted A ∩ B, results in the set of
outcomes common to both A and B. This operation is also depicted graphically in
Fig. C.1. The intersection operation is the logical AND operation. The following
relationships are easily shown to be true:

Commutative law: A ∩B = B ∩A. (C.2a)

Associative law: (A ∩B) ∩ C = A ∩ (B ∩ C) = A ∩B ∩ C. (C.2b)

Distributive law: A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩C). (C.2c)

Intersection with itself: A ∩A = A. (C.2d)

Intersection with empty set: A ∩ ∅ = ∅. (C.2e)

Intersection with sample space: A ∩ S = A. (C.2f )
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Now we can define mutual exclusivity in set theory terms: A and B are
mutually exclusive or disjoint if A ∩B = ∅.

Fig. C.1 (a) A Venn diagram demonstrating the intersection operation as the
shaded region where events A and B overlap. (b) A Venn diagram demon-
strating the union operation; the shaded area is the union of event spaces A
and B.

Complement. The complement of set A, denoted A, is defined as the set consisting
of all elements of S that are not in A. Then

∅ = S ; (C.3a)

S = ∅ ; (C.3b)

A ∪A = S ; (C.3c)

A ∩A = ∅ . (C.3d)

De Morgan law. Using the Venn diagram of Fig. C.2, one can see that

(A ∪B) = A ∩B (C.4a)

and

(A ∩B) = A ∪B . (C.4b)

These relationships are useful because they tell us that in any set identity, when
we replace unions with intersections, intersections with unions, and sets with their
complements, the resulting identity also holds. We shall find use for the De Morgan
law as we develop relationships between event probabilities in the sections below.

Partitions. A collection of events A1, A2, ..., An is said to partition the sample
space S if and only if

A1 ∪A2 ∪ · · · ∪ An = S (C.5a)

and

Ai ∩Aj = ∅ for i '= j . (C.5b)
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Fields We have defined events as collections of outcomes in an event space S. In
the sections to follow we shall set the stage for assigning probabilities to events.
We shall therefore restrict our attention to certain sets of events that are said to
comprise a field. A field F is a set of events such that:

1. If Ai ∈ F, then Ai ∈ F.

2. If Ai ∈ F and Aj ∈ F, then Ai ∪Aj ∈ F.

A Borel field B has the property that if the events A1, A2, ..., Ak are con-
tained in B, then the events {A1 ∩A2 ∩ · · ·∩Ak} and {A1 ∪A2 ∪ · · ·∪Ak} are also
contained in the field. One of the important properties of Borel fields is the assur-
ance that whenever one considers set operations such as intersections and unions on
the events, the resulting sets are also events for which probabilities can be assigned.

Fig. C.2 A Venn diagram illustrating the De Morgan law. The area with
hatching in both directions is the complement of A ∪ B. The region with
hatching in either or both directions is the complement of A ∩ B.

C.1.3 Definitions of probability

Each event A associated with an experiment has some probability of occurrence,
denoted Pr(A). Much debate has centered on the issue of the assignment and
interpretation of probability. As we describe in the Prologue, there are two major
schools, known as the frequentists and Bayesians, with ardently defended positions
regarding the assignment of probabilities. In the Prologue we discuss in some detail
the controversy between these camps and our own philosophy toward the assignment
of probabilities for problems in imaging. Here we briefly give several definitions of
probability before presenting the axiomatic framework that will guide the rest of
the appendix.

Relative frequency A useful definition of probability is based on the relative fre-
quency of an experimental outcome, and a person who adopts this approach is
referred to as a frequentist. In this school, probability is determined by repeatedly
performing an experiment and counting the number of times the outcome actually
occurs.
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In frequentist parlance, if event A occurs m(A) times in M trials, the relative
frequency of the event is the number of occurrences of the event divided by the
number of trials, m(A)/M. As the number of trials of an experiment approaches
infinity, the probability of a particular event is the limit of the relative frequency of
that event:

Pr(A) = lim
M→∞

m(A)

M
. (C.6)

Those who propound this definition of probability emphasize its objectivity and the
verifiability of the probability of some event A through experimental confirmation.

Ensemble definition In reality it is rarely practical to repeat an experiment a large
number of times, and it is often impossible to duplicate the exact experimental
conditions. An alternative conceptual approach is to postulate an infinite collec-
tion of identical experiments, called an ensemble, and to define probability as the
frequency of occurrence of an event within the ensemble. Thus (C.6) still applies
but with m(A) interpreted as the number of members of the ensemble for which A
occurs.

The ensemble definition of probability was first advanced by the physicist J.
Willard Gibbs in the context of statistical mechanics. In that application, the en-
semble is the set of possible states of a system of indistinguishable particles; an event
is one possible set of state variables for the system. The famous Boltzmann-Gibbs
distribution describes the equilibrium solution, that is, the distribution of energies
for a system in thermal or mechanical equilibrium.

Classical definition The classical definition specifies a probability as the ratio of
the number of favorable outcomes to the total number of possible outcomes for an
experiment. For example, the roll of a six-sided die has six possible outcomes, three
of which are favorable to an even event. The classicist would therefore conclude
that the probability of an even event is 3/6 = 1/2. Classical probability is distinct
from the relative-frequency approach in that the favorable outcomes are counted
in advance of the performing of an experiment. While classical probability is also
considered to be objective, it is limited to situations where the experimental out-
comes are equally likely, thereby rendering this definition useful only in situations
where a symmetry is present between the various possible outcomes. In addition,
the approach is not applicable when the number of outcomes is nondenumerable.
Even when the number of outcomes is finite, one can imagine problems in specifying
the possible outcomes and assuring their equal likelihood.

Subjective interpretation: Bayesian approach The Bayesian approach is founded on
a subjective or personal interpretation of probability. In this approach probability
is a measure of the weight of some belief. For example, a student believes he will get
an A in a course based on some subjective assessment of his odds. This definition
is used routinely by our judicial system when the jury is charged with determining
whether or not a defendant is guilty beyond a reasonable doubt. Subjective proba-
bilities can take on numerical values as well. A student can believe his probability
of getting an A is 0.75, for example, based on information he has about the teacher
and his own effort and ability. Note that while the frequentist interpretation of
probability is in terms of real or hypothetical repeated trials of an experiment, a
Bayesian’s view departs from this picture radically. In the Bayesian world there is
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no consideration of a collection of experiments; probability is a statement of belief
about a single event. This is an important distinction between these two schools of
probabilistic thought.

One might think that the subjective nature of this definition, where probability
is based largely on intuition, makes it difficult to codify into a rigorous mathematical
framework. (In fact, many authors refer to this definition as the intuitive interpre-
tation of probability.) However, authors such as Savage (1954), De Groot (1970),
and de Finetti (1974, 1975) have developed axiomatic systems of probability where
the probability functions are interpreted subjectively but are still required to satisfy
axioms such as those found in the next section, or some that are very similar.

C.1.4 Axiomatic approach

Regardless of how one chooses to assign probabilities to events, it will be necessary
for our purposes that algebraic manipulation of the event probabilities be possible.
This requirement is satisfied by requiring the probabilities of events to satisfy a
number of axioms. Probabilities that satisfy such a system of axioms are sometimes
referred to as mathematical probabilities. Mathematical probabilities may stem
from any of the definitions of probability given above.

The axiomatic approach to probability begins by defining a function Pr(·) such
that each event A is assigned a number Pr(A) called the probability of event A.
This function must satisfy the following conditions:

I. 0 ≤ Pr(A) ≤ 1, or Pr(A) is nonnegative.

II. The probability of the certain event is 1, that is, Pr(S) = 1.

III. If A ∩B = ∅, then Pr(A ∪B) = Pr(A) + Pr(B).

That is, the probability of occurrence of any of a set of mutually exclusive events
is found by simply adding their individual probabilities.

The three properties given above are usually referred to as the Kolmogorov
Axioms, after Andrei N. Kolmogorov (1903 – 1959), one of the fathers of modern
probability theory. From the Kolmogorov axioms it is straightforward to derive
other properties that event probabilities must obey, such as the following:

IV. Pr(∅) = 0.

V. Pr(A ) = 1− Pr(A).

VI. Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B).

These relationships can be useful when calculating the probabilities associated with
possible outcomes of more complicated experiments. It is left to the reader as an
exercise to show that the relative-frequency definition of probability (C.6) satisfies
Kolmogorov’s axioms.
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C.1.5 Joint probability

We are often interested in the probability that two events A and B both occur.
We refer to this event as the joint event (A ∩ B). The corresponding probability
Pr(A ∩ B), also denoted Pr(A,B), is the joint probability. The joint probability
of two events A and B can be written as either Pr(A,B) or Pr(B,A) since the
AND operation is commutative as in (C.2a), meaning event order is not important.
Joint probabilities must satisfy the same basic axioms as the probabilities of the
individual events, Pr(A) and Pr(B).

C.1.6 Conditional probability

Often we shall be interested in the following question: Given that event B has
occurred, what is the probability that event A has occurred? In other words, we
are interested in the probability of the event A conditioned on the occurrence of
event B. We denote this probability Pr(A|B), where the vertical bar is read given
or conditioned on. In the Venn diagram of Fig. C.1, we are interested in the
probability that an outcome is a member of the set of outcomes defining event
A, assuming that it is a member of the sample space defined by event B. When
considering conditional probabilities, we are essentially redefining the sample space
by restricting it to only those outcomes that are contained in the event hypothesized
to have occurred, in this case event B.

The conditional probability Pr(A|B) is found by dividing the joint probability
Pr(A,B) of events A and B by the probability that event B has occurred:

Pr(A|B) =
Pr(A,B)

Pr(B)
. (C.7)

If A and B are mutually exclusive, then

Pr(A|B) = 0 . (C.8)

On the other hand, if B implies A then

Pr(A|B) = 1 . (C.9)

Equation (C.7) can be generalized to more than two events as follows:

Pr(A,B,C) = Pr(A) Pr(B|A) Pr(C|A,B) (C.10)

and

Pr(A1, A2, ..., Ak) = Pr(A1) Pr(A2|A1) Pr(A3|A1, A2) · · · Pr(Ak|A1, A2, ..., Ak−1) .
(C.11)

Independent events Suppose that events A and B are defined in a sample space
S and both Pr(A) and Pr(B) are greater than zero. Events A and B are called
statistically independent if Pr(A|B) = Pr(A). It then follows from (C.7) that

Pr(A,B) = Pr(A) Pr(B) (C.12)

for statistically independent events.



PROBABILITY 1435

Total probability If the set of events {Bi} partitions the event space S [see (C.5)],
and event A is also contained in S, then the total probability of event A can be
found by summing the conditional probability of event A over all events {Bi}:

Pr(A) =
∑

i

Pr(A|Bi) Pr(Bi) . (C.13)

C.1.7 Bayes’ rule

Once the conditional probability Pr(A|B) has been defined by (C.7), it follows
immediately that we can write the joint probability of events A and B as

Pr(A,B) = Pr(A|B) Pr(B) . (C.14)

We know from the properties of the intersection operation (C.2a) that Pr(A,B) =
Pr(B,A). Thus we can also express the joint probability in terms of the probability
of event B conditioned on event A:

Pr(A,B) = Pr(B|A) Pr(A) . (C.15)

Equating (C.14) and (C.15) yields

Pr(A|B) Pr(B) = Pr(B|A) Pr(A) , (C.16)

which leads to

Pr(B|A) =
Pr(A|B) Pr(B)

Pr(A)
. (C.17)

More generally, if the set of events {Bi} partition S then we can use the total
probability rule of (C.13) to show that

Pr(Bj |A) =
Pr(A|Bj) Pr(Bj)

∑

i Pr(A|Bi) Pr(Bi)
. (C.18)

Equation (C.18) is known formally as Bayes’ rule, after Thomas Bayes (1704 –
1761), an English mathematician and philosopher. In Sec. C.4.3 below and through-
out the text we shall say more about the applicability of Bayes’ rule for drawing
inferences about the occurrence of events using prior information and measured
data.

C.2 SINGLE RANDOM VARIABLES

C.2.1 Definition of a random variable

In many scientific experiments the outcomes are numbers, such as the density of
film at some spatial location or the number of photons that arrive at a detector
within some time interval. The sample description space in the first example is the
set of nonnegative real numbers, while in the second example it is confined to the
set of nonnegative integers.
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To use a numerical quantity to represent the outcome of an experiment, a
mapping is needed from the original sample space S to the set of real numbers.1

Suppose we have a sample space S with a probability function Pr(·) defined on
events in that sample space. A random variable x is a function that maps S onto
the set of real numbers. That is, we observe x = x′ if and only if the outcome of
the experiment is a ζ ∈ S such that x(ζ) = x′. Then

Pr(x = x′) = Pr{ζ ∈ S : x(ζ) = x′} . (C.19)

Equation (C.19) is a formal definition of the probability function for the ran-
dom variable x. In order for the probability function of (C.19) to satisfy the Kol-
mogorov Axioms, every event must be measurable. This requirement is met pro-
vided (Papoulis, 1991)

1. The set {x ≤ x′} is an event for any real number x′;

2. The probabilities of the events {x = ∞} and {x = −∞} equal 0.

A function that satisfies the above requirements is called measurable in the field B
(see C.1.2).

As an example of a mapping to the set of real numbers, consider the experi-
ment of tossing a coin. In this case there are two possible outcomes on each trial,
either a head or a tail. A real-valued random variable can be associated with this
experiment by assigning the numerical value 1 to the outcome if a head should re-
sult; if the outcome is a tail it is assigned the value 0. In this way the experimental
outcomes are mapped to real values. Sometimes the outcome of an experiment is
a numerical value that can be used as the random variable with no other mapping
required. Such is the case, for example, if we are interested in the voltage across a
resistor. The measured voltage V is the random variable of interest.

Notation Many books rigorously indicate random variables by using a special type
font or by using capital letters (with the corresponding lower-case letter signifying
a sample or a particular realization of the random variable). Though appealing in
theory, this device runs into difficulty in practice.

One problem is that equations involving random variables are inherently am-
biguous. If, for example, we write y = ax + b, where x and y have been identified
as random variables and a and b are fixed parameters, the equation can mean that
any particular realization of x, say x = x0, is associated with a corresponding real-
ization of y, namely y = y0 ≡ ax0 + b. Since this functional association holds for
all realizations, it can as well be said to hold for the random variables themselves.

Another difficulty arises in imaging, as well as in many other physical appli-
cations, where it is not always clear whether a given quantity should be treated as
a random variable. For example, an object to be imaged can be regarded either
as fixed but unknown, as a spatial random process described by some known or
unknown probability law, or as one sample function of such a random process. No
matter which of these viewpoints we adopt, the equation describing the imaging

1We have deliberately restricted our discussion here to real random variables. Complex random
variables are addressed in Chap. 8.
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system has the same form (and the same ambiguity attaches to the image as to
the object). If a particular operator equation relates an object to its image, it does
so in the same way no matter whether we think of the object as nonrandom or as
one sample function of a random process. And if we think of presenting an entire
ensemble of random objects to the imaging system, the same operator can be used
to compute the corresponding ensemble of images.2

Since it does not seem worthwhile to incorporate typographic distinctions that
have no effect on the mathematical operations involved, we simply denote scalar
random variables by italicized upper or lower case characters, just as for any other
scalar mathematical variable. Vector random variables (discussed only briefly here
but more thoroughly in Chap. 8) will be denoted by boldface lower-case letters,
just as for any other vector. When it is necessary to distinguish a particular re-
alization from the general random variable, the realization will be denoted either
with a subscript or prime or by using a different case, but such situations will arise
infrequently.

Discrete random variables In the coin-tossing example above, the random variable
describing the outcome of the experiment took on isolated values, i.e., either 0 or 1.
Such a variable is called a discrete random variable. Formally, a random variable
x is said to be discrete if x takes on only a finite number k of values {x1, x2, ..., xk}
or, at most, a countably infinite set {xi, i = 1, ...,∞} of such values. For a discrete
random variable that can take on the values {xi}, the probability of each outcome
is denoted by Pr(x = xi) or the shorthand Pr(xi). It can be shown that

∑

i

Pr(x = xi) = 1 , (C.20)

where the sum is over the set of all possible values of i. This normalization is a
consequence of the second Kolmogorov axiom.

Continuous random variables In some experiments the random variable of interest
can take on a continuum of possible values, as in the example of the voltage across a
resistor mentioned above. Variables of this type are known as continuous random
variables.

A convenient way of describing the statistical properties of a continuous ran-
dom variable is in terms of the probability density function (PDF), denoted pr(·).
This function is defined in terms of the probability that the random variable assumes
a value within some specified small range of values. That is,

pr(x0) ≡ lim
∆x→0

1

∆x
Pr(x0 − 1

2∆x ≤ x ≤ x0 +
1
2∆x) . (C.21)

In other words, for vanishingly small ∆x, pr(x0)∆x gives the probability that the
random variable x takes on a value that is within ±1

2∆x of the particular value x0.
The PDF can be used to calculate the probability that the random variable x

falls in the finite interval (a, b) by dividing the interval into small, mutually exclusive
elements of width ∆x. Equation (C.21) then leads to

Pr(a ≤ x ≤ b) =

∫ b

a
pr(x′) dx′ . (C.22)

2In this discussion we are not considering either measurement noise or randomness in .
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Since x is constrained to lie in the interval (−∞,∞), it must be true that
∫ ∞

−∞
pr(x′) dx′ = 1 , (C.23)

by Kolmogorov’s second axiom.

C.2.2 Probability density functions

Although defined most naturally for continuous random variables, PDFs can be
used also for discrete ones if we allow delta functions. Consider a random variable
x that takes on the discrete set of values {xi}. We can define a PDF for x by:

pr(x) =
∑

i

Pr(xi) δ(x− xi) , (C.24)

where δ(x − xi) is a Dirac delta function and, as before, Pr(xi) is the probability
(not density) that random variable x takes on the specific value xi. We shall follow
this typographic distinction consistently: lower-case pr(·) will denote a PDF and
capital Pr(·) a probability.

To demonstrate the consistency of the definition in (C.24), we make use of
some elementary properties of delta functions (see Chap. 2). Consider first a region
a < x ≤ b that contains no allowed value of x. The probability that x falls in this
region is given by the integral in (C.22). Since a delta function vanishes unless its
argument is zero, which never happens over the postulated region, this integral is
identically zero, as it must be since the region contains no allowed values.

Next consider a region of width 2ε around an allowed value, say xj , and assume
that ε is small enough that the region contains no other allowed values. From (C.22)
and (C.24), the probability that x lies in this region is

Pr(xj − ε < x < xj + ε) =

∫ xj+ε

xj−ε
dx′

∑

i

Pr(xi) δ(x
′ − xi) = Pr(xj) , (C.25)

where the last step used the sifting property of the delta function, (2.23). Thus
(C.25) shows that the probability that x lies in the small region around xj , as
computed from the density (C.24), is the same as the probability that x is precisely
equal to xj .

Finally, consider a region that contains two allowed values, say xj and xk. The
sifting property of delta functions now shows that the probability that x lies in this
region is Pr(xi) + Pr(xj), which, according to Kolmogorov Axiom III, is just the
probability that x is either xi or xj .

Thus the delta-function density defined by (C.24) contains exactly the same
information about the discrete random variable x as does the original probability
law Pr(xi).

C.2.3 Cumulative distribution function

Every measurable random variable x has an associated function called the cumula-
tive distribution function of x, denoted F(x). The cumulative distribution function
of the random variable x is defined for any real number c by

F(c) = Pr(x ≤ c) . (C.26)
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That is, F(c) is the probability that the random variable x is less than or equal to
c. That F(x) exists is a condition for a measurable random variable, according to
the properties of such random variables given in Sec. C.2.1. The definition (C.26)
holds true for all values of c, even though it encompasses values of c that may not
be attainable by the random variable x. For example, the random variable may not
be able to take on negative values. Then (C.26) would result in the finding that
F(c) = 0 for c < 0. Or, for a discrete random variable, the value of c may not be
one of the values of xi the variable can assume. Applying (C.26) in that instance
would result in the sum of the probabilities Pr(x = xi) for all xi < c.

The cumulative distribution has the following properties:

F(c1) ≤ F(c2) if c1 < c2 , (C.27a)

lim
c→−∞

F(c) = 0 , (C.27b)

lim
c→∞

F(c) = 1 . (C.27c)

Equation (C.27a) says that the distribution function is a nondecreasing function of
c. This property holds since for every c1 < c2 the event {x ≤ c1} is contained in
the event {x ≤ c2} and so the probability of the event {x ≤ c2} must be at least
as great. The proofs for (C.27b) and (C.27c) are based on the fact that x must be
measurable, so it must take on some finite value [Pr(x = −∞) = Pr(x = ∞) = 0],
and the probability of the certain event, Pr(x < ∞), is 1.

The cumulative distribution function is useful for describing the probability
that a random variable lies within some interval. It can be shown that

Pr(c1 < x ≤ c2) = F(c2)− F(c1) for all c1 < c2 . (C.28)

We can distinguish among continuous and discrete random variables depending
on the form of the cumulative distribution function, specifically, whether derivatives
of F(x) exist for every value of x. A discrete random variable has a distribution
function F(x) with a staircase form and discontinuities at the points xi as shown in
Fig. C.3. A continuous random variable has a continuous cumulative distribution
function as shown in Fig. C.4.

Fig. C.3 The cumulative distribution function of a discrete random variable.

For continuous random variables we can derive the probability that x takes on
some particular value by allowing the interval in (C.28) to become arbitrarily small,
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leading to the definition of the PDF in terms of the derivative of the cumulative
distribution function:

pr(x) =
dF(x)

dx
. (C.29)

This, in turn, leads to the following result:

F(x) =

∫ x

−∞
pr(x′) dx′ . (C.30)

For discrete random variables we have an analogous expression for the cumu-
lative distribution function:

F(x) =
∑

xi≤x

Pr(xi) . (C.31)

Equations (C.29) and (C.30) also hold for the discrete case if we allow general-
ized functions. As we indicated below (C.28), the cumulative distribution function
for a discrete random variable has a staircase form, which can be expressed as a
sequence of step functions. If we make use of the fact that the derivative of a step
function is a delta function (see Chap. 2), we see that taking the derivative of F(x)
in (C.29) yields the delta functions of (C.24). Similarly, performing the integration
operation of (C.30) on a series of delta functions gives back the staircase form for
F(x).

From (C.29) – (C.31) we see that the cumulative distribution function contains
the same information as the PDF. For continuous random variables, the PDF pr(x)
can be thought of as a mass density along the real x axis. That is, pr(x) dx rep-
resents the mass in the interval (x, x + ∆x). In the discrete case, the impulses
pr(xi) δ(x− xi) can be thought of as point masses of weight pr(xi) at locations xi.
We know from Kolmogorov’s axioms that these masses are positive and that the
sum of all mass along the real line is 1. The probability that the random variable x
takes on a value in the interval (a, b) is the mass in that interval. The mass in the
interval (−∞, x) is the distribution function F(x).

Fig. C.4 The cumulative distribution function of a continuous random
variable.

C.2.4 Expectations

The PDF and cumulative distribution function are complete descriptions of the
behavior of a random variable, but we are often interested in summary measures
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of this behavior. The most important single descriptor of a random variable is its
expected value, which is also referred to as the mean of the random variable. The
expected value of the random variable x will be written as E{x}, 〈x〉 or x; these
notations will be used interchangeably.

A discrete random variable x has an expected value defined by

E{x} =
∑

i

xi Pr(xi) , (C.32)

where the sum is over all possible values of xi. We see that the expected value is a
weighted average of the possible values of xi, where the weights are the probabilities
that the random variable takes on each of those values. Note that, for a discrete
random variable that takes on only integer values, its mean can take on any value
in (0,∞).

A continuous random variable x has an expected value defined by

E{x} =

∫ ∞

−∞
x pr(x) dx , (C.33)

where pr(x) is the PDF for x. This definition applies to discrete random variables
as well when (C.24) is used to define the PDF for the discrete random variable.

The median of a random variable, xmed, is defined as the value of x for which
the cumulative distribution function F(xmed) = Pr(x ≤ xmed) is equal to 1/2. The
value of the random variable is thus equally likely to be either greater than or less
than the median.

A mode of a random variable, xmode, is a value of x for which pr(x) takes on a
local maximum. A unimodal PDF has a single maximum and thus a single mode.
When pr(x) has an absolute maximum but also another local maximum at an equal
or lower value, it is said to be bimodal. A probability density can have a locally
flat region and therefore an infinite number of modes. Certain estimators, called
maximum a posteriori estimators, make particular use of the mode of a PDF (see
Chap. 13).

The mean of a random variable specifies the center of gravity of pr(x). Another
important parameter is the variance, which is a measure of the spread of the random
variable about its mean. The variance, σ2, is defined by

σ2 = Var{x} = E{(x− x)2} =

∫ ∞

−∞
(x− x)2 pr(x) dx . (C.34)

Note that

σ2 = E{x2}− x2 . (C.35)

The positive square root σ is referred to as the standard deviation.

Chebyshev inequality Let x be an arbitrary random variable with mean x and finite
variance σ2. Then the Chebyshev inequality, given to us by the Russian mathe-
matician P. L. Chebyshev (1821 – 1894), provides a bound on the probability that



1442 APPENDIX C

x deviates from its mean by an amount δ > 0. From the definition of variance we
have

σ2 ≡
∫ ∞

−∞
(x− x)2 pr(x) dx ≥

∫

|x−x|≥δ
(x− x)2 pr(x) dx

≥ δ2
∫

|x−x|≥δ
pr(x) dx = δ2 Pr( |x− x| ≥ δ) . (C.36)

Thus

Pr(|x− x| ≥ δ) ≤ σ2

δ2
. (C.37)

Moments The behavior of a random variable can be further specified in terms of
its moments, with the kth moment defined by

mk = E
{

xk
}

=

∫ ∞

−∞
xk pr(x) dx . (C.38)

By the Schwarz inequality, m2
1 ≤ m2 for any probability law.

Central moments The kth central moment µk of a random variable is defined by

µk = E
{

(x− x)k
}

=

∫ ∞

−∞
(x− x)k pr(x) dx . (C.39)

Thus for any random variable µ0 = 1, µ1 = 0, and µ2 = σ2.
The skewness of a random variable, given by

Skewness =
µ3

µ2
3/2

, (C.40)

measures the lack of symmetry of the PDF. The kurtosis (Greek kurtos, convex,
swelling) of a random variable, given by

Kurtosis =
µ4

µ2
2

, (C.41)

measures the flatness or peakedness of the corresponding PDF. Skewness and kurto-
sis are sometimes used to describe the shapes of distributions for pattern recognition
applications (Pratt, 1991).

Factorial moments Suppose n is a nonnegative, integer-valued random variable.
The kth factorial moment of n is given by

ck = E{n(n− 1) · · · (n− k+1)} =
∞
∑

n=0

n(n− 1) · · · (n− k+1)Pr(n) =
∞
∑

n=0

n!

k!
Pr(n) .

(C.42)
The first factorial moment c1 is simply the mean m1, and the second factorial

moment is related to the mean and variance by

c2 = σ2 +m2
1 −m1 . (C.43)

One example of the applicability of the factorial moments in optics is in the
description of the statistics of the number of photoelectrons emitted by a photo-
sensitive surface upon which a light source is incident (Helstrom, 1995). Factorial
moments come in when calculating the probability that more than a threshold num-
ber of counts are detected in a particular time interval.
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Cumulants The cumulants (also called the semi-invariants) of a random variable
are defined by

exp

[

∞
∑

k=1

κk
tk

k!

]

=
∞
∑

k=0

mk
tk

k!
, (C.44)

where the mk are the ordinary moments defined in (C.38). By expanding the left-
hand side, and equating coefficients for equal powers of t, the reader can generate
relationships between the cumulants and the ordinary moments. Of most interest,
the first-order cumulant is the mean and the second-order cumulant is the variance
of the random variable.

The cumulants are given their name because a random variable z formed by
summation of a set of independent random variables {xi} will have cumulant κk
equal to the sum of the cumulants of the underlying random variables for each value
of k (Helstrom, 1995). The cumulants of the {xi} can thus be used to derive the
PDF of z for cases where the PDFs of the underlying random variables are unknown.
First the cumulants of the {xi} are determined (via a fitting algorithm); the sum of
the cumulants gives the cumulants of z, which are then used to solve for the PDF
of z.

C.3 FUNCTIONS OF A SINGLE RANDOM VARIABLE

We are often interested in a function of the outcome of an experiment, rather than
the outcome itself. For example, we might want to know the square of the voltage
across a resistor, where the voltage is itself a random variable. Probabilities can
also be assigned to random variables derived from functions of random experimental
outcomes.

C.3.1 Transformation of PDFs

Suppose x is a random variable with PDF pr(x). Any function y = f(x) results in
a new random variable whose probabilistic behavior depends on the form of f(x)
and the PDF of x. If the function f(x) is monotonic, then it is one-to-one and onto,
so that each x is mapped to only one y and each y can come from at most one
x. Such functions are the easiest to work with, for they allow us to use a general
formula for transforming the density function describing x to compute a density
function for the random variable y. We must put one additional requirement on
f(x), and that is that f−1(y) must have a continuous derivative. The PDF for y is
then determined by

pry(y) dy = prx(x) dx , (C.45a)

or

pry(y) = prx[f
−1(y)]

∣

∣

∣

d

dy
f−1(y)

∣

∣

∣
, (C.45b)

for all y in the range of f(x). The absolute value appears in the second line because
dx and dy in the first line are defined to be always positive. (We use subscripts on
the density functions here to distinguish which function describes the behavior of
x and which applies to y. Some books use such subscripts routinely. We shall use
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them only when confusion might otherwise arise as to which variable the density
function describes.)

Equation (C.45) has applicability even if f(x) is not monotonic, as long as
f(x) is monotonic over intervals for which (C.45) can be used. For example,
suppose y = x2 and we restrict y to be greater than 0. Then f−1(y) = ±√

y,
|df−1(y)/dy| = 1/(2

√
y) and

pry(y) =
1

2
√
y
[prx(

√
y) + prx(−

√
y)] . (C.46)

Thus the PDF of y is a sum representing the two monotonic intervals of f(x). Many
more examples on the use of (C.45) for transforming density functions can be found
in Frieden (1991), Casella and Berger (1990) and Stark and Woods (1986).

C.3.2 Expected values

If y is a measurable function of the random variable x, the expected value of y = f(x)
can be computed from

E{y} =

∫ ∞

−∞
f(x) pr(x) dx . (C.47)

As a simple example, suppose y = ax. Then 〈y〉 = a〈x〉 and 〈y2〉 = a2〈x2〉, so
that the variance of y is related to the variance of x according to the relationship
σ2
y = a2σ2

x. This is a specific consequence of the fact that the process of taking ex-
pectations is a linear operation. More generally, if f1(x) and f2(x) are two functions
for which expectations exist, then

E{af1(x) + bf2(x) + c} = aE{f1(x)}+ bE{f2(x)}+ c (C.48)

for any constants a, b, and c.

Jensen’s Inequality A function f(x) of a nonrandom variable x is said to be convex
in an interval I if, in that interval, d2f(x)/dx2 is greater than or equal to zero.
Jensen’s Inequality (Rade and Westergren, 1990) states that for a set of constants
λi and a convex function f(x),

f(x1λ1 + · · ·+ xnλn) ≤ λ1f(x1) + · · ·+ λnf(xn) (C.49)

for
∑n

i=1 λi = 1 and λi ≥ 0.
Now suppose f(x) is a convex function of a random variable x. Given the

mean of the random variable, x = E{x}, Jensen’s Inequality allows us to say the
following about the mean of the function:

f(E{x}) ≤ E{f(x)} . (C.50)

This expression can be verified by rewriting (C.47) using the elementary definition
of integration and recognizing that the resulting factors, ∆x pr(xi), play the role of
the λi in (C.49).

Taylor series A differentiable function of a random variable x can be expanded in
a Taylor series about x to give

f(x) =
∑

k

fk(x)

k!
(x− x)k . (C.51)
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Taking the expectation of both sides and keeping only terms through second order,
we find

〈f(x)〉 = f(x) + 1
2σ

2
xf

′′(x) . (C.52)

C.3.3 Generating functions

Characteristic function The characteristic function of the real-valued random vari-
able x is defined by

ψ(ξ) ≡ E
{

e−2πiξx
}

=

∫ ∞

−∞
dx pr(x) e−2πiξx . (C.53)

It is evident from (C.53) that the characteristic function and the PDF form a Fourier
transform pair. Thus the characteristic function uniquely determines the PDF. This
relationship was called Ein Schönes Theorem der Wahrscheinlichkeitsrechnung
by Gauss (1900). The PDF is written in terms of an inverse Fourier transform of
ψ(ξ) as

pr(x) =

∫ ∞

−∞
dξ ψ(ξ) e2πiξx . (C.54)

Many authors choose to define the characteristic function as the expectation of
exp(+2πiξt) or exp(+iξt). Since in imaging applications the random variable of
interest is often the spatial position or time of an event, our definition (C.53) main-
tains the convention we use throughout this book: the forward Fourier transform
maps the spatial or temporal domain to the spatial or temporal frequency domain.

The definition of ψ(ξ) in terms of the expectation of exp(−2πiξx) leads nat-
urally to the realization that moments of the random variable x can be derived
through differentiation of ψ(ξ):

E
{

xk
}

= (−2πi)−k ∂k

∂ξk
ψ(ξ)

∣

∣

∣

∣

ξ=0

. (C.55)

This is the moment-generating property of the characteristic function. It is often
much easier to perform the differentiation required in (C.55) than to do the inte-
gration of (C.38) in order to calculate the moments of x. As we shall see in Sec.
C.4.5, the characteristic function can also be very useful in determining the PDF
for sums of random variables.

Moment-generating function The moment-generating function M(t) is related to
the characteristic function by a simple change of variables. The moment-generating
function of a random variable x is defined by

M(t) = ψ

(

− t

2πi

)

= E
{

ext
}

=

∫ ∞

−∞
dx pr(x) ext . (C.56)

Many authors define the moment-generating function and the characteristic function
with the same sign in the exponential. The negative exponential in our definition of
ψ(ξ) results from having defined the characteristic function as the forward Fourier
transform of the PDF (C.53).

As its name suggests, the moment-generating function can be used to compute
moments:

E
{

xk
}

=
∂k

∂tk
M(t)

∣

∣

∣

∣

t=0

. (C.57)
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Thus the kth derivative of the moment-generating function, when evaluated at zero,
allows the determination of the kth moment.

The moment-generating function can also be expressed in terms of a Taylor
series in t about the origin:

M(t) =
∞
∑

k=0

1

k!
E
{

xk
}

tk . (C.58)

The coefficients in the series can be seen to be proportional to the moments of the
random variable x. This Taylor series representation is valid provided the series
converges and all derivatives of M(t) exist.

The primary use of the moment-generating function is to characterize PDFs.
If the set of moments of a random variable x is unique (in that there is only one
PDF with this set of moments) then the moment-generating function may be used
to determine the probability density function for x (Helstrom, 1995). In general,
however, two distribution functions with the same moments need not be the same.
The reader interested in delving into this issue more deeply can find many related
theorems and examples in Shiryayev (1984).

The moment-generating function is the two-sided Laplace transform (4.77) of
the inverted PDF for x. That is,

M(t) =

∫ ∞

−∞
dt pr(−x) e−xt = La2 {pr(−x)} . (C.59)

Thus the inverse Laplace transform given in (4.78) can be used to derive the PDF
on x given M(t).

Cumulant-generating function The cumulant-generating function for a random
variable x is related to the moment-generating function through a logarithm:3

S(t) = lnM(−t) = ln〈e−xt〉 . (C.60)

The cumulant-generating-function can be used to obtain the cumulants according
to

κk = (−1)k
∂k

∂tk
S(t)

∣

∣

∣

∣

t=0

. (C.61)

Probability-generating function We are often interested in nonnegative integer-valued
random variables, for example when we are concerned with photon-counting statis-
tics in detectors. Such variables are described by a set of probabilities pr(n) for
each possible value of n. The characteristic function then takes on the form

ψ(ξ) = 〈e−2πiξn〉 =
∞
∑

n=0

Pr(n) e−2πiξn =
∞
∑

n=0

Pr(n)
(

e−2πiξ
)n

. (C.62)

We see that the summation is in the form of a power series in exp(−2πiξ). If we
let the complex variable z replace exp(−2πiξ) we can write

〈zn〉 =
∞
∑

n=0

Pr(n) zn = Φ(z) . (C.63)

3The minus sign in (C.58) is the result of our definition of the moment-generating function, which
differs from Helstrom in the sign in the exponent of (C.53).
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This is the defining equation for Φ(z), the probability-generating function for the
integer-valued random variable n. From (C.63) we see that Φ(z) resembles the z
transform (4.88) of Pr(n), but with zn in place of z−n. Since (C.62) has the form
of a complex Taylor series where the probabilities are the coefficients, comparison
with (B.44) shows that

Pr(n) =
1

n!

∂n

∂zn
Φ(z)

∣

∣

∣

∣

z=0

. (C.64)

Hence the name probability-generating function.

Generation of factorial moments We again consider a nonnegative, integer-valued
random variable n with a probability-generating function Φ(z). The factorial mo-
ments ck [cf. (C.42)] can be obtained via differentiation of Φ(z):

ck = E{n(n− 1)(n− 2) · · · (n− k + 1)} =
∞
∑

n=0

n(n− 1)(n− 2) · · · (n− k + 1)Pr(n)

=
∂k

∂zk
[Φ(z)]

∣

∣

∣

∣

z=1

. (C.65)

Thus Φ(z) can be used to generate factorial moments rather than probabilities by
the simple expedient of evaluating the derivatives at 1 rather than 0. A function
that generates factorial moments would logically be called the factorial-moment-
generating function, but to avoid ugly hyphenation we shall refer to it simply as
the FMGF.

C.3.4 Integrals of functions of random variables

The expected value of a random variable y = f(x) is usually computable from a
Riemann integral of the form (C.47). There is no difficulty in evaluating this inte-
gral when we can divide the range of integration into successively smaller intervals
without concern for how the intervals are chosen. The rub comes when the sum-
mand is a function such that the value of the integral does in fact depend on how
the subdivisions are chosen. For example, suppose f(x) is a mapping of the form

f(x) =

{

0 if x is rational
1 if x is irrational

. (C.66)

We need to be able to integrate functions of this type in order to find the expecta-
tions of such events, but the process of integrating by cutting the x axis into smaller
and smaller pieces and doing the sum will not give an answer independent of where
the cuts fall. To remedy this difficulty we make use of the concepts of measure
spaces and Lebesgue integration, as presented by Papoulis (1965).

The integral (C.47) can be rewritten, with the elementary definition of inte-
gration, as

E{f(x)} =

∫ ∞

−∞
dx f(x) pr(x) = lim

∆x→0

∞
∑

k=−∞

∆x f(xk) pr(xk)

= lim
∆x→0

∞
∑

k=−∞

f(xk) Pr(xk − 1
2∆x ≤ x ≤ xk + 1

2∆x) , (C.67)
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where xk = k∆x, and we have used (C.21) in the last step. Equation (C.67) is a
sum in terms of differential events {xk − 1

2∆x ≤ x ≤ xk +
1
2∆x} that are mutually

exclusive; their union is the certain event S. The expectation E{f(x)} is obtained
by multiplying the probability of each differential event by the value of the function
when that event is true, followed by summing over all such events. The resulting
limit, obtained when ∆x → 0, is the Lebesgue integral in the space S:

E{f(x)} =

∫

S
f(x) dF , (C.68)

where F(x) is the cumulative distribution function defined in Sec. C.2.3. Only
events with nonzero measure in S (those that have finite probability) contribute to
the expected value.

Lebesgue integration is one possible solution to the inadequacy of Riemann
integration. Another approach is to use the theory of distributions, which is pre-
sented in Chap. 2. In that chapter we show that the derivative of a step function
is a delta function. Then the definition of the PDF in terms of the derivative of
the cumulative distribution function (C.29) holds even for discrete variables in a
generalized sense.

C.3.5 Relationship between probability spaces and measure spaces

We have invoked terms from the theory of measure spaces as well as those from
the realm of probability. Friedman (1991) presents the following table correlating
terms used in the discussion of probability spaces to those of measure spaces:

Sample probability space Normalized measure space
Elementary event Element in space
Event Measure space in A
Certain event S
Impossible event ∅
Probability of A = Pr(A) Measure of A = µ(A)
Almost surely Almost everywhere
Random variable x Bounded measurable function x
Expected value of x Lebesgue integral of x
Limit in probability Limit in measure
Limit almost surely Limit almost everywhere

C.4 TWO RANDOM VARIABLES

In this section we extend our discussion of random variables to include descriptions
of the outcomes of two or more experiments, or two or more repetitions of the same
experiment. Random variables considered two at a time can be considered to be
two-dimensional random vectors, or bivariate random vectors. Chapter 8 extends
the concepts of this section to higher dimensionality.
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C.4.1 Joint probability

In Sec. C.1.5 we used the language of set theory to write the joint probability of
two events. The concepts developed there require only minor notational changes
for use in the description of random variables considered jointly. Suppose we are
interested in an experiment involving two continuous random variables denoted x
and y. Their joint PDF is written pr(x, y). This PDF is properly normalized if it
satisfies

∫ ∞

−∞

∫ ∞

−∞
pr(x′, y′) dx′dy′ = 1 . (C.69)

The two-dimensional cumulative distribution function is written

F(x, y) =

∫ x

−∞

∫ y

−∞
pr(x′, y′) dx′dy′ . (C.70)

The joint PDF is related to the two-dimensional cumulative distribution func-
tion by

pr(x, y) =
∂2

∂x∂y
F(x, y) , (C.71)

the two-dimensional analogue of (C.29).
Similar expressions result for discrete random variables:

Pr(xi and yi) = Pr(xi, yi) (C.72)

is the joint probability that the discrete random variables x and y take on the values
xi and yi. Proper normalization requires that

∑

xi

∑

yi

Pr(xi, yi) = 1 , (C.73)

where the sums run over all possible values of xi and yi. The cumulative distribution
function for a discrete two-dimensional probability is

F(x, y) = Pr(xi ≤ x, yi ≤ y) =
∑

xi≤x

∑

yi≤y

Pr(xi, yi) . (C.74)

In the next sections, expressions will be given only for continuous random
variables. As we have just seen, as well as earlier in Sec. C.2, expressions for
discrete random variables can be obtained from their continuous counterparts by
replacing the continuous integrals of (C.70) and (C.69) with sums over the allowed
values of the discrete random variables.

C.4.2 Marginal and conditional probability

When an experiment involves two (or more) random variables, we often find our-
selves interested in the statistics of one particular random variable, regardless of
the behavior of the other. The marginal probability of random variable x is found
by integrating the joint density of x and y over all possible values for y:

pr(x) =

∫ ∞

−∞
pr(x, y) dy . (C.75)
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Marginal probabilities are used to compute probabilities or expectations of a single
random variable exactly as discussed in Sec. C.2 and Sec. C.3.

Another important kind of probability is the conditional probability, as dis-
cussed earlier in Sec. C.1.6. The conditional probability density of x given y, written
pr(x|y), is found by dividing the joint probability density pr(x, y) by the probability
density of y:

pr(x|y) = pr(x, y)

pr(y)
. (C.76)

The total probability of x is found by integrating the joint probability of x and
y over all possible values of y:

pr(x) =

∫ ∞

−∞
pr(x|y) pr(y) dy . (C.77)

Often we are interested in the PDF on a random variable x conditioned on a
particular event A, written pr(x|A). More generally, if a set of events {Ai} partitions
the event space, then the total probability pr(x) is a weighted sum of the conditional
probabilities:

pr(x) =
∑

i

pr(x|Ai) Pr(Ai) . (C.78)

The resulting density function pr(x) is called a mixture PDF because it is a mixture
or linear combination of probability densities.

Statistical independence Two random variables are said to be statistically indepen-
dent if the value of one of them has no influence on the other. When two random
variables are independent, it follows that their joint PDF takes the form

pr(x, y) = pr(x) pr(y) . (C.79)

It can be shown that the two-dimensional cumulative distribution function of
two independent random variables also factors:

F(x, y) = F(x) F(y) . (C.80)

C.4.3 Bayes’ rule

Bayes’ rule was introduced in Sec. C.1.7 above. It can be obtained in terms of two
continuous random variables by combining (C.76) and (C.77) to give

pr(x|y) = pr(y|x) pr(x)
∫∞
−∞ pr(y|x) pr(x) dx

. (C.81)

C.4.4 Expectations, joint moments and covariance

The expected value of x conditioned on a particular value of y is obtained as follows:

E{x|y} =

∫ ∞

−∞
dx x pr(x|y) . (C.82)
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The conditional expectation can be averaged over the variable on which it is
conditioned to determine the expectation of the other random variable:

E{x} =

∫ ∞

−∞
dy E{x|y}pr(y) . (C.83)

The variance of a single variable can be derived from conditional expectations
as follows:

Var{x} =
〈

〈

(x− 〈〈x〉x|y〉y)2
〉

x|y

〉

y

=
〈

〈

(x− 〈x〉x|y + 〈x〉x|y − 〈〈x〉x|y〉y)2
〉

x|y

〉

y

=
〈

〈

(x− 〈x〉x|y)2
〉

x|y

〉

y
+

〈

〈

(〈x〉x|y − 〈〈x〉x|y〉y)2
〉

x|y

〉

y

= Ey{Var{x|y}}+Vary{E{x|y}} , (C.84)

where subscripts have been added to the variance and expectation on the last line
as a reminder that they apply to the y variable.

The covariance of two random variables is defined to be

Cov{x, y} ≡ E{(x− 〈x〉) (y − 〈y〉)} = E{xy}− 〈x〉〈y〉 . (C.85)

If x and y are independent, their covariance is 0.
The correlation coefficient ρ of two random variables is defined by

ρ =
Cov{x, y}
√

σ2
xσ2

y

. (C.86)

If x and y are independent, their correlation coefficient is 0 and x and y are said
to be uncorrelated. However, the converse is not true; a correlation coefficient of 0
does not imply statistical independence.

Let x and y be independent random variables, and consider two functions g(x)
and h(y), where g(x) is a function only of x and h(y) is a function only of y. Then

E{g(x)h(y)} = E{g(x)}E{h(y)} . (C.87)

This relationship can be verified using (C.79):

E{g(x)h(y)} =

∫ ∞

−∞

∫ ∞

−∞
pr(x, y) g(x)h(y) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
pr(x) pr(y) g(x)h(y) dx dy

=

∫ ∞

−∞
pr(x) g(x) dx

∫ ∞

−∞
pr(y)h(y) dy = E{g(x)}E{h(y)} . (C.88)

C.4.5 Functions of two random variables

In Sec. C.3.1 a method was presented for determining the PDF for a function f(x) of
the random variable x. We are often interested in functions of the form z = f(x, y)
and h(u, v) = f(x, y). In the following sections we describe methods for determining
the PDF of functions of two random variables.
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One function of two random variables We start by considering a simple function z of
two random variables x and y. The cumulative distribution of z, Fz(z′), represents
the probability that f(x, y) = z is less than or equal to z′. There is some region Ω of
the event space for which this condition is satisfied. That is, the event {z ≤ z′} is
equal to the event {(x, y) ∈ Ω}. Integration of the joint probability density function
pr(x, y) over the region Ω gives Fz(z):

Fz(z) =

∫ ∫

(x,y)∈Ω
prxy(x, y) dx dy . (C.89)

There will be instances where knowledge of the joint PDF prxy(x, y) and the
form of f(x, y) are enough to allow determination of prz(z). (In principle this is
always true, although in practice cranking through the integral in (C.89) can be
quite difficult.) Further on in this section we shall describe a second approach that
provides an alternative solution strategy, which is through the use of characteristic
functions. We shall first apply (C.89) to two special cases, where z is first the sum
and then the product of two random variables. Our treatment follows that of Stark
and Woods (1986).

Example 1: Functions of the form z = x+ y Suppose two independent random
variables x and y are summed to form the random variable z. We next show that
the PDF for z in this special case is given by the convolution of the PDFs for
x and y.

The cumulative distribution function for z gives the probability that z is less
than some value:

Fz(z) =

∫ ∫

x+y≤z
prxy(x, y) dx dy =

∫ ∞

−∞
dy

∫ z−y

−∞
prxy(x, y) dx

=

∫ ∞

−∞
[Ixy(z − y, y)− Ixy(−∞, y)] dy , (C.90)

where Ixy(x, y) is the indefinite integral

Ixy(x, y) =

∫ x

−∞
prxy(x

′, y) dx′ . (C.91)

Differentiation of Fz(z) yields the PDF of z:

prz(z) =
dFz(z)

dz
=

∫ ∞

−∞

d

dz
[Ixy(z − y, y)] dy =

∫ ∞

−∞
prxy(z − y, y) dy . (C.92)

This is a general result; we have not yet invoked the independence of x and y. The
independence of x and y implies that the joint probability factors, giving

prz(z) =

∫ ∞

−∞
prx(z − y) pry(y) dy . (C.93)

Integrals of this form, called convolutions, are discussed in more detail in Chap. 3.
Equation (C.93) is expressed by saying that the PDF of a sum of independent ran-
dom variables is the convolution of the density functions of the underlying random
variables.
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Whenever a random variable is formed from the sum of two or more random
variables, the mean of the result is the sum of the means of the underlying random
variables. That is, if z = x+y, then z = x+y. Moreover, if the underlying variables
are independent, the variances of the underlying variables add. Thus, for z = x+ y
with x and y independent,

σ2
z = σ2

x + σ2
y . (C.94)

Let us now extend the example to that of a weighted sum of random variables.
Let z = ax+ by, where the coefficients a and b are nonrandom and the x and y are
random. The expected value of z is given by

E{z} = E{ax+ by} =

∫ ∞

−∞
dx

∫ ∞

−∞
dy (ax+ by) pr(x, y)

=

∫ ∞

−∞
dx

∫ ∞

−∞
dy ax pr(x, y) +

∫ ∞

−∞
dx

∫ ∞

−∞
dy by pr(x, y) . (C.95)

Each integral in the last line of (C.95) results in a marginal probability by (C.75):

E{z} =

∫ ∞

−∞
dx ax prx(x) +

∫ ∞

−∞
dy by pry(y) = ax+ by . (C.96)

Thus for any random variable that is formed as a weighted sum of random variables,
the expected value of the sum is given by the weighted sum of the means of the
underlying random variables. While (C.94) requires that x and y be independent,
(C.96) holds for any correlation relationship between x and y.

The process that allowed us to simplify (C.95) by integrating out all but one
of the random variables from the joint probability is called marginalization. We
will find this technique to be quite useful in the treatment of random processes in
Chap. 8 and beyond.

Example 2: Functions of the form z = xy To find the PDF for this case, we start
as we did in the previous example by first determining the cumulative distribution
function for z. Since Fz(z) represents the probability that z is less than some
value, we need to determine the boundaries of the region Ω that defines the event
z = xy ≤ z′. Region Ω is bounded by contours of constant z in x – y space given by
hyperbolae of the form y = z/x (see Fig. C.5). The integral of (C.89) becomes

Fz(z) =

∫ ∞

0
dy

∫ z/y

−∞
prxy(x, y) dx +

∫ 0

−∞
dy

∫ ∞

z/y
prxy(x, y) dx for z ≥ 0 .

(C.97)
Let Ixy(x, y) again be the indefinite integral defined in (C.91). Equation (C.97)

can then be rewritten for z ≥ 0 as

Fz(z) =

∫ ∞

0
dy [Ixy(z/y, y)− Ixy(−∞, y)] +

∫ 0

−∞
dy [Ixy(∞, y)− Ixy(z/y, y)] .

(C.98)
Differentiation of Fz(z) yields the PDF for z:

prz(z) =
dFz(z)

dz
=

∫ ∞

−∞

1

|y| prxy(z/y, y) dy, z ≥ 0 . (C.99)
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It can be shown that this expression is also valid for z < 0. If x and y are
statistically independent, the joint probability in (C.99) factors and the density
function for z becomes

prz(z) =

∫ ∞

−∞

1

|y| prx(z/y) pry(y) dy , z ≥ 0 . (C.100)

This expression is similar to the convolution result of (C.93), except that the shift
z − y is replaced by the ratio z/y. Expressions of this sort are known as Mellin
convolutions; Mellin transforms are treated in more detail in Sec. 4.2.2.

Fig. C.5 The boundaries of the region Ω that define the event z = xy ≤

z′. Region Ω is bounded by contours of constant z in x – y space given by
hyperbolae of the form y = z/x.

Characteristic functions We return now to the subject of our first example. Consider
again two independent random variables x and y with characteristic functions ψx(ξ)
and ψy(ξ). The characteristic function of the random variable z = x+ y is given by

ψz(ξ) = E
{

e−2πiξz
}

= E
{

e−2πiξ(x+y)
}

= E
{

e−2πiξx
}

E
{

e−2πiξy
}

= ψx(ξ)ψy(ξ) ,

(C.101)
where we have made use of (C.87) to factor the expectation into functions of x
and y. We found earlier that the density function for z was the convolution of the
density functions for x and y. Equation (C.101) demonstrates that the characteristic
function for z is the product of the characteristic functions for x and y. This
relationship is as we should expect given that the characteristic function and the
PDF form a Fourier transform pair (C.53). By virtue of the convolution theorem
(3.132) we know that convolutions are transformed to simple products through
Fourier transformation.

A similar derivation would show that if x and y are independent, with moment-
generating functions Mx(t) and My(t), then the moment-generating function of the
random variable z = x+ y is given by Mz(t) = Mx(t)My(t).

Two functions of two random variables Suppose we have two continuous random
variables, x and y, and two functions of those random variables u = f1(x, y) and
v = f2(x, y). We are interested in the joint probability density pruv(u, v) of the new
bivariate random vector (u, v). In this section we present a bivariate extension of
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the transformation of PDFs presented for functions of single random variables in
Sec. C.3.1.

We assume that the functions f1(x, y) and f2(x, y) are differentiable and that
they are also one-to-one and onto (see Sec. 1.3.4). Then the inverse mappings
x = h1(u, v) and y = h2(u, v) are known to exist. The role played by the derivative
in the univariate case [cf. (C.45)] is now played by the Jacobian of the trans-
formation. The Jacobian, denoted J, is the determinant of the matrix of partial
derivatives:

J = det





∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v



 =
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
, (C.102)

where
∂x

∂u
=
∂h1(u, v)

∂u
(C.103a)

∂x

∂v
=
∂h1(u, v)

∂v
(C.103b)

∂y

∂u
=
∂h2(u, v)

∂u
(C.103c)

∂y

∂v
=
∂h2(u, v)

∂v
. (C.103d)

Then, in direct analogy with (C.45), the joint PDF for (u, v) takes the form

pruv(u, v) = prxy[h1(u, v), h2(u, v)] |J | , (C.104)

where J is assumed to be nonzero on the event space {x, y}.

C.5 CONTINUOUS PROBABILITY LAWS

C.5.1 Univariate normal

One of the most commonly encountered probability laws is the normal law, written
in standard univariate form as

pr(x) =

(

1

2πσ2

)
1

2

exp

[

− x2

2σ2

]

, −∞ < x < ∞ . (C.105)

This law is also commonly referred to as the Gaussian probability density,
after the German mathematician and physicist Carl Friedrich Gauss (1777 – 1855).
We shall use normal and Gaussian interchangeably. The normal law is used to
model phenomena in almost all branches of science, including the distributions
of height and weight in children, the IQ of a population, and the noise in some
kinds of images. Its usefulness stems in part from the ease with which it can
be manipulated, as well as its approximation to other distributions, as we shall
see in later sections. Furthermore, under very weak assumptions it can be shown
that a random variable formed by summing a set of other random variables is
approximately normal (Sec. 10.3.5). Figure C.6 shows the familiar bell-shaped
appearance of the normal distribution.
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Fig. C.6 The standard normal distribution.

We shall first show that (C.105) is properly normalized. For normalization as
a PDF we require

(

1

2πσ2

)
1

2
∫ ∞

−∞
exp

[

− x2

2σ2

]

dx = 1 . (C.106)

The integral shown above cannot be solved immediately since exp(−x2) does
not have an antiderivative. There is, however, a simple solution: the normalization
integral can be manipulated into the form of a perfect differential by squaring and
transforming to polar coordinates. The result is just the integral of an exponential,
and we find immediately

∫ ∞

−∞
exp

[

− x2

2σ2

]

dx = (2πσ2)
1

2 , (C.107)

and so the PDF of (C.105) is indeed properly normalized.

Moments The mean of the PDF of (C.105) is zero because of the even symmetry
and strong convergence of the integrand. The mean can be shifted to an arbitrary
value x by writing

pr(x) =

(

1

2πσ2

)
1

2

exp

[

− (x− x)2

2σ2

]

. (C.108)

The symmetry now shifts to the point x, making the first moment about x equal to
zero. That x is indeed the first moment about the origin can be verified by letting
x′ = x− x.

We calculate the second moment about the mean as

〈

(x− x)2
〉

=

(

1

2πσ2

)
1

2
∫ ∞

−∞
dx (x− x)2 exp

[

− (x− x)2

2σ2

]

. (C.109)

If we let β = 1/2σ2 the definite integral can be identified as the derivative of
the normalization integral; that is,

∫ ∞

−∞
dx (x− x)2 exp

[

− (x− x)2

2σ2

]

= − ∂

∂β

∫ ∞

−∞
dx exp

[

−β(x− x)2
]

= − ∂

∂β

(

π

β

)
1

2

= 1
2π

1

2β− 3

2 = 1
2π

1

2

(

2σ2
)

3

2 . (C.110)
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Multiplying by the normalization constant in front of the integral in (C.109), namely,
1/

√
2πσ2, we obtain

〈

(x− x)2
〉

= σ2 . (C.111)

We see therefore that the parameter σ2 is the second moment of this density
about the mean, i.e., the variance. A random variable drawn from a normal dis-
tribution with parameters x and σ2 is denoted x ∼ N (x,σ2). A standard normal
random variable has mean 0 and variance 1 and is denoted x ∼ N (0, 1).

By extending the previous steps we can show that all odd moments of this
PDF about the mean are zero, and all even moments can be expressed in terms
of σ2. In particular, by applying ∂/∂β once more, we immediately find the fourth
central moment:

〈

(x− x)4
〉

= 3σ4 . (C.112)

The kurtosis (C.41) of a Gaussian is thus 3. Distributions with kurtosis greater than
3 are more peaked than a Gaussian; they are referred to as leptokurtic. Kurtosis
less than 3 yields a broader, flatter shape than that of a Gaussian; such distributions
are referred to as platykurtic.

Cumulative distribution function Suppose we are given a normal random variable
x ∼ N (x,σ2) and we are interested in the probability that x is less than some value
x′. The cumulative distribution contains this information:

F(x′) = Pr(x < x′) =

(

1

2πσ2

)
1

2
∫ x′

−∞
exp

[

− (x− x)2

2σ2

]

dx . (C.113)

We convert this expression to one involving a standard normal by a transfor-
mation of variables. Let y = (x− x)/σ and y′ = (x′ − x)/σ. Then

F(x′) =
1√
2π

∫ y′

−∞
exp

[

− 1
2y

2
]

dy

=
1√
2π

∫ y′

0
exp

[

− 1
2y

2
]

dy − 1√
2π

∫ −∞

0
exp

[

−1
2y

2
]

dy = 1
2 erf

(

x′ − x

σ
√
2

)

+
1

2
,

(C.114)
where the function

erf(a) ≡ 2√
π

∫ a

0
exp

[

−t2
]

dt (C.115)

is called the error function. Many probability and statistics books contain tables
of error functions to facilitate the evaluation of interval probabilities of the form
pr(a < x < b) for normal random variables. It should be noted that there is more
than one definition in the literature for the error function.

Characteristic function We now derive the characteristic function of a normal ran-
dom variable with mean equal to 0:

ψ(ξ) = E
{

e−2πiξx
}

=
1√
2πσ2

∫ ∞

−∞
e−2πiξx exp

[

− x2

2σ2

]

dx

=
1√
2πσ2

F

{

gaus

(

x√
2πσ2

)}

= exp(−2π2ξ2σ2) , (C.116)
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where we have made use of the Fourier relationships for Gaussians given in (3.177) –
(3.180). Equation (C.116) can be generalized to a Gaussian random variable with
mean x using the Fourier shift theorem (3.108).

C.5.2 Uniform distribution

A random variable is uniformly distributed if it has the following PDF:

pr(x) =

{

1/(b− a), a < x ≤ b
0, elsewhere

. (C.117)

The real parameters a and b define the limits of the possible outcome values of
the random variable. This density function is also sometimes called the rectangular
distribution. For shorthand, we shall denote a random variable that is drawn from a
uniform distribution by x ∼ U(a, b). By symmetry, the mean of the random variable
is the midpoint: 〈x〉 = (b + a)/2. It can also be shown that σ2 = (b− a)2/12. One
optical application of this PDF is the description of a speckle source with a random
phase uniformly distributed over 2π, so that a = 0, b = 2π, and pr(θ) = 1/2π.

C.5.3 Exponential distribution

The exponential probability law has many applications in imaging. It can be used
to describe the random distribution of lifetimes of particles undergoing radioactive
decay as well as the random intensity of a laser speckle pattern. A random variable
x that has an exponential distribution has a PDF given by

pr(x) =

{

β−1e−x/β, x ≥ 0
0, x < 0

. (C.118)

This density is properly normalized since

∫ ∞

0

1

β
e−x/β dx = 1 . (C.119)

It can be shown that the expected value of x is β and its variance is β2.
The moment-generating function of an exponential random variable is

M(t) = E
{

ext
}

=
1

β

∫ ∞

0
exte−x/β dx =

1

1− βt
. (C.120)

A simple change of variables yields the characteristic function:

ψ(ξ) = E
{

e−2πiξx
}

=
1

1 + 2πiξβ
. (C.121)

C.5.4 Gamma and beta distributions

Gamma distribution The general form of the gamma probability density is written

pr(x) =
xα−1e−x/β

βαΓ(α)
, 0 ≤ x < ∞ , (C.122)
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where Γ(α) is the usual gamma function; for integer α, Γ(α) = (α − 1)!, but more
generally Γ(α) is defined by

Γ(α) =

∫ ∞

0
dx xα−1e−x , (C.123)

where α > 0. A random variable that follows this law is said to be drawn from
the Γ(α,β) law. The parameter α primarily influences the shape of the density
function, while β primarily affects the scale of the PDF. It can be shown that the
gamma density function is properly normalized since

∫ ∞

0
xα−1e−x/β dx = βαΓ(α) . (C.124)

The mean of a gamma distribution is given by

E{x} =
1

βαΓ(α)

∫ ∞

0
xxα−1e−x/β dx =

1

βαΓ(α)
βα+1Γ(α+ 1) = αβ , (C.125)

where we have made use of the normalization of the gamma distribution [cf. (C.123)]
and definition (C.122). A similar derivation of E{x2} would involve a Γ(α + 2,β)
distribution, with the final result that the variance of a gamma-distributed random
variable is αβ2.

The moment-generating function of a gamma-distributed random variable is
given by

M(t) =
1

βαΓ(α)

∫ ∞

0
extxα−1e−x/β dx =

1

βαΓ(α)
Γ(α)

[

β

1− βt

]α

=

[

1

1− βt

]α

,

(C.126)
where we again have made use of (C.124). The characteristic function is thus given
by

ψ(ξ) = E
{

e−2πiξx
}

=

[

1

1 + 2πiξβ

]α

. (C.127)

It is left as an exercise for the reader to show that the gamma probability
law describes a random variable formed by summing independent random variables
that are each exponentially distributed. (Hint: Show that the product of N expo-
nential moment-generating functions, each with exponential parameter β, gives the
moment-generating function of a gamma distribution with α = N .)

Beta distribution The beta function B(α,β), given by

B(α,β) =

∫ 1

0
xα−1(1− x)β−1 dx , (C.128)

can be used to form a family of distributions known as the beta family:

pr(x) =
1

B(α,β)
xα−1(1− x)β−1 , 0 < x < 1 , α > 0 , β > 0 . (C.129)

From the definition of B(α,β) it is simple to show that the beta density func-
tion is properly normalized. The beta probability law is useful for describing contin-
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uous random variables restricted to lie between 0 and 1. For this reason it is often
used to describe proportions. It reduces to the uniform law U(0, 1) when α = β = 1.

The beta function is related to the gamma function in the following way:

B(α,β) =
Γ(α)Γ(β)

Γ(α+ β)
. (C.130)

Thus it is often possible to make use of the properties of gamma functions when
manipulating beta-distributed random variables.

The form of the beta probability law makes calculation of its moments partic-
ularly easy:

E{xn} =
1

B(α,β)

∫ 1

0
xnxα−1(1 − x)β−1 dx =

1

B(α,β)
B(α+ n,β) (C.131)

by the definition of the beta function (C.128).
In particular,

〈x〉 = α

α+ β
and Var {x} =

αβ

(α+ β)2(α+ β + 1)
. (C.132)

C.5.5 Chi-squared random variables

Suppose we are given a standard normal random variable x. A new variable y,
defined by y = x2, is described by the chi-squared probability law. The form of this
PDF for y can be determined using the law of transformation of PDFs of random
variables (C.45):

pry(y) = prx(y)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

=
1√
2πy

e−
1

2
y . (C.133)

More generally, if a random variable z is given by a sum of independent random
variables,

z =
n
∑

i=1

x2
i , (C.134)

where each of the xi ∼ N (0, 1), then

pr(z) =
z(n−2)/2 e−z/2

2n/2 Γ
(

n
2

) , (C.135)

where we have made use of the fact that Γ(12 ) =
√
π. This probability density

is referred to as chi-squared, or χ2, with n degrees of freedom. We shall denote
a random variable that is drawn from a chi-squared distribution of this form by
z ∼ χ2

n. It can be seen that the χ2 distribution is a special case of the gamma
distribution, with α = n/2 and β = 2. The mean and variance of the chi-squared
distribution can be determined from the results for the gamma distribution:

E{z} = n and Var(z) = 2n . (C.136)

Note that in the special case where n = 2, or z = x2 + y2, (C.135) reduces to the
exponential law.
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To derive the characteristic function, consider again the simple case where
y = x2. The characteristic function is the Fourier transform of the PDF for y
[cf. (C.133)]:

ψy(ξ) =
1√
2π

∫ ∞

0
exp(−2πiξy) exp

(

−y

2

)

y−1/2 dy . (C.137)

With the change of variables x =
√
y, this becomes

ψy(ξ) =
1√
2π

∫ ∞

0
exp(−2πiξx2) exp

(

−x2

2

)

2 dx

=

√

2

π

∫ ∞

0
exp[−1

2x
2(1 + 4πiξ)] dx = (1 + 4πiξ)−1/2 . (C.138)

The characteristic function of z, where z is again the sum of the squares of
n mutually independent standard-normal random variables, is a generalization of
(C.138):

ψz(ξ) = (1 + 4πiξ)−n/2 . (C.139)

The chi-squared law is used in describing the statistics of the irradiance for coherent
imaging systems.

C.5.6 Rayleigh density function

The generalized Rayleigh PDF describes the behavior of a random variable z =
√
∑n

i=1 x
2
i , where the {xi} are i.i.d. drawn from a N (0,σ2) PDF. This density func-

tion describes the distribution of Euclidian distances from the origin to the point
in an n-dimensional space defined by the {xi}.

The Rayleigh density function refers to the special 2D case, where z =
√

x2 + y2, and x and y are independent, zero-mean Gaussian random variables.
The form of the PDF is given by

pr(z) =
z

σ2
exp

(

− z2

2σ2

)

, z ≥ 0 , (C.140)

where σ2 is the variance of both x and y.
The PDF given in (C.140) describes the magnitude of a complex random vari-

able z with real part x and imaginary part y. The Rayleigh PDF is encountered
in phase-insensitive detection systems, where x and y are the real and imaginary
parts of a random field. Lord Rayleigh (1880) originally derived this PDF while
considering the random-walk problem as it relates to scattered fields in acoustics.
Johnson et al. (1994) give many important developments and applications of the
Rayleigh distribution. One use for the Rayleigh law is for describing the statistics
of the modulus of the complex field on an observation plane illuminated by light
from a coherently illuminated rough surface.

C.5.7 Rician density function

In this case the random variable is formed by z =
√

x2 + y2, only now x ∼ N (A,σ2)
while y ∼ N (0,σ2). The resulting probability density for z can be shown to be

pr(z) =
z

σ2
exp

[

−1

2

A2 + z2

σ2

]

I0

(

zA

σ2

)

, z ≥ 0 , (C.141)
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where I0(·) is the zero-order modified Bessel function of the first kind. The PDF
of (C.141) is called the Rician density function or sometimes the Rice-Nakagami
density function (Rice, 1944, 1945). Rice derived this PDF in the analysis of a
sinusoidal signal current of known amplitude in the presence of a noise current. Ir-
radiance, or the squared modulus of a field, follows an exponential law [see (8.232)].
An imaging application of the Rician law arises in the characterization of the statis-
tics of the modulus of the complex field for coherent systems without complete
phase randomization.

C.5.8 K distribution

The K distribution is a generalization of the Rayleigh and Rician laws. Whereas the
Rayleigh and Rician distributions result from the summation of Gaussian random
variables, the K distribution is the solution when the underlying random variables
follow a K distribution. The K distribution is written

pr(z) =
2b

Γ(N)

[

bz

2

]N

KN−1(bz) , z ≥ 0 , (C.142)

where b ≥ 0, N > 0, and KN−1(·) is a modified Bessel function of the second kind
with order N − 1. A family of K distributions is shown in Fig. C.7.

In a speckle problem, N is the number of reflectors and b is a scale parameter.
As N → ∞ the K distribution approaches a Rayleigh distribution.

Fig. C.7 A family of K distributions for b = 5 in (C.152).

C.5.9 Log-normal probability law

If the logarithm of a random variable obeys a univariate normal law, the variable
itself is said to obey a log-normal law. Consider a random variable z defined by

z = Aex , (C.143)

or
x = ln(z/A) . (C.144)

The variable z is described by a log-normal probability law if x is normal. Note that
a log-normal random variable is not the log of a normal one, but rather a random
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variable whose log is normal. In fact, this distribution might better be called the
antilognormal distribution since it describes the behavior of an exponential, that
is, antilogarithmic function of a random variable.

To find the density for z, we assume x ∼ N (x,σ2) and use the transformation
rule (C.45). The result is

pr(z) =
1√

2π σz
exp

[

− (ln z − lnA− x)2

2σ2

]

, (z > 0) . (C.145)

This density has three free parameters, A, x and σ2. In terms of these param-
eters, the mean and variance of z are given by

z = A exp
[

x+ 1
2σ

2
]

, Var{z} = A2 exp(2x)
[

e2σ
2

− eσ
2
]

. (C.146)

The log-normal probability law often comes into play when a random variable
z is the product of independent random variables:

z =
N
∏

i=1

xi . (C.147)

Thus

ln z =
N
∑

i=1

lnxi . (C.148)

Since lnxi and ln xj are statistically independent if xi and xj are, the right-hand
side of (C.148) is the sum of N independent random variables. By the central-limit
theorem (discussed in Chap. 8), the sum is approximately normal, so z is approxi-
mately a log-normal random variable.

The log-normal law can arise in the description of the pixel PDFs of recon-
structions from tomographic data.

C.5.10 Distributions with infinite moments

There are probability laws that are important in optics that are not so easily ma-
nipulated to determine underlying moments and moment-generating functions. The
next subsections describe three such interesting distributions.

1/x distribution The 1/x probability law has the form

pr(x) =
K

x
, 0 < a ≤ x ≤ b . (C.149)

The normalization constant K can easily be determined:

K−1 =

∫ b

a

1

x
dx = ln(b)− ln(a) . (C.150)

The mean and variance of x are given by

E{x} =

∫ b

a
K dx = K(b− a) (C.151)
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and

Var{x} = E
{

x2
}

− [E{x}]2 =
K

2

(

b2 − a2
)

−K2 (b− a)2 . (C.152)

Note that the variance → ∞ if a → 0 or b → ∞.
The 1/x distribution with a = 0 and b = ∞ is sometimes used in Bayesian

inference problems when it is desirable to have a probability law that is independent
of scale or units. Jeffreys (1961) advocated this distribution as a noninformative
prior. The fact that the PDF cannot be normalized for a = 0 turns out not to be
important, and 1/x is referred to as an improper prior.

Cauchy probability law A Cauchy random variable is described by the following
PDF:

pr(x) =
a

π

1

a2 + x2
, −∞ < x < ∞ . (C.153)

This probability law is named for Auguste Louis Cauchy (1789 – 1857), a French
mathematician whose writings contributed greatly to many fields, including astron-
omy, optics, hydrodynamics, and function theory.

It is straightforward to verify that the Cauchy law is properly normalized.
However, consider a Cauchy random variable with parameter a = 1. The evalua-
tion of the expected value of this random variable leads to the integral

E{x} =

∫ ∞

−∞
x
1

π

1

1 + x2
dx . (C.154)

This integral does not strictly exist since it is not absolutely convergent, but it is
reasonable to interpret it as a Cauchy principal value (see Sec. B.3.9). With this
interpretation,

E{x} = P
∫ ∞

−∞
x
1

π

1

1 + x2
dx = lim

c→∞

[
∫ c

−c
x
1

π

1

1 + x2
dx

]

= 0 . (C.155)

Thus, with the principal-value interpretation, the mean is zero as expected from
the symmetry of pr(x).

The variance of a Cauchy random variable does not exist because

E
{

x2
}

=

∫ ∞

−∞
x2 1

π

1

1 + x2
dx (C.156)

fails to converge in any sense.
The characteristic function of a Cauchy random variable is given by

ψ(ξ) = exp(−2πa|ξ|) . (C.157)

The Cauchy law is useful for describing the distribution of light incident along
a line below a point source. It can also be shown that the ratio of two indepen-
dent random variables both drawn from standard normal distributions is a Cauchy
random variable.

Lévy distributions Paul Lévy (1886 – 1971), a French mathematician, considered a
generalized form of the central-limit theorem when he investigated the conditions
under which a random variable y =

∑N
i xi, where all the xi have distributions from
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the same family, has a distribution from the same family. Distributions for which
this occurs are called Lévy, Lévy-stable, or simply stable distributions.

The PDF of a Lévy distribution has no closed form in general. The moment-
generating function of a Lévy distribution is given by (Feller, 1971)

M(ξ) = exp(−b|ξ|q) , (C.158)

where q is the Lévy index (0 < q ≤ 2) and b is a width parameter. When q = 2, the
Lévy PDF is a Gaussian, and when q = 1 it is a Cauchy distribution. For q < 2 the
tails of the density decrease sufficiently slowly that all moments beyond the first
are divergent. Nevertheless, the width of the distribution can be described, and the
parameter b performs this function. It follows from (C.101) that the sum of two
independent Lévy random variables of index q and width b is another Lévy random
variable of index q and width 2b.

The name of the Italian sociologist Vilfredo Pareto is often connected to the
Lévy distribution, hence Pareto-Lévy or Paretian distributions, owing to Pareto’s
investigation of income distributions using stable distributions. Mandelbrot (1960,
1963) made extensive use of stable distributions for analyzing financial time-series
data. Lévy distributions have also been used to describe animal foraging paths
and weather and earthquake patterns. In imaging, Lévy distributions are used
to describe the outputs of bandpass or high-pass filters (see Sec. 8.4). Numerical
routines are available for the simulation of Lévy distributions (Mantegna, 1994).

C.6 DISCRETE PROBABILITY LAWS

C.6.1 Bernoulli trials and binomial statistics

Bernoulli random variables In addition to the coin-tossing example given in Sec.
C.2.1, there are many other examples of experiments where the outcome can be
classified as either a success or failure and mapped to a random variable x accord-
ingly. A success (e.g., a head in the coin-tossing experiment) accords the value 1
to x, while a failure (a tail in the coin-tossing example) results in x being assigned
the value 0. A random variable that is mapped to the set {0, 1} according to the
random outcome of an experiment is said to be a Bernoulli random variable. The
probability law for a Bernoulli random variable is given by

Pr(x = 0) = 1 − p

Pr(x = 1) = p , (C.159)

where p, the probability of a success, must be between 0 and 1. The mean and
variance of a Bernoulli random variable are given by

〈x〉 = p and σ2 = p(1− p) . (C.160)

Binomial law Suppose we perform a sequence of experiments, with the outcome of
each individual experiment scored as either success or failure. The probability of a
success on each trial is p (0 ≤ p ≤ 1) and the probability of a failure on each trial
is q = 1− p. That is, the outcome of each trial is a Bernoulli random variable. The
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probability of n successes in N trials is then described by the binomial law:

Pr(n) =

(

N

n

)

pnqN−n , (C.161)

where the binomial coefficient,
(

N

n

)

≡ N !

n!(N − n)!
, (C.162)

is often expressed verbally as N choose n since it gives the number of ways n objects
can be chosen from a set of N indistinguishable objects. We shall denote a random
variable that is drawn from a binomial probability distribution by n ∼ B(p,N).

The mean and variance of a binomial random variable are given by

〈n〉 = Np and σ2 = Np(1− p) . (C.163)

The binomial law describes selection processes in imaging. For example, the
probability that a photon will be absorbed (or not) when it strikes a detector can
be modeled by a binomial law.

Multinomial law The binomial law governs the probability of outcomes for a two-
alternative Bernoulli trial experiment. When there areM distinct possible outcomes
on each trial (for example, the tossing of a six-sided die gives M = 6), the statistics
of the experiment are given by a multinomial law. Let N be the number of trials
in the experiment, and let pi be the probability of outcome i for each trial, where i
runs from 1 to M. The number of times outcome i occurs is denoted ni. The joint
probability of the number of times each possible outcome occurs in N trials is given
by:

Pr(n1, n2, ..., nM ) =
N !

n1!n2! · · · nM !
pn1

1 pn2

2 · · · pnM

M = N !
M
∏

i=1

pni

i

ni!
, (C.164)

where N = n1 + n2 + · · ·+ nM and
∑

i pi = 1.

C.6.2 Poisson distribution

As we shall see in considerable detail in Chaps. 11 and 12, the Poisson probability
law plays a fundamental role in problems where discrete events are counted. In op-
tics and imaging, the events will often be photoelectric absorption processes. The
randomness in the number of such processes, loosely referred to as photon noise
or shot noise, is often the dominant noise in practical imaging systems.

Here we present a compendium of some of the important mathematical prop-
erties of Poisson random variables. A more complete discussion of these properties
and the physical context in which they arise is given in Chap. 11.

Probability law, mean and variance A discrete random variable N with a sample
space given by the natural numbers (zero and the positive integers) is said to be
Poisson-distributed or to obey the Poisson probability law if

Pr(N = n) =
e−λ λn

n!
, n = 0, 1, 2, ... . (C.165)
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Note that this probability law is specified entirely by the single number λ, often
called the parameter of the Poisson distribution.

As elsewhere in this appendix, we shall use the shorthand Pr(n) for Pr(N= n)
where no confusion can arise. When it is necessary to indicate the parameter ex-
plicitly, we shall write the probability as Pr(n|λ), a notation that will prove advan-
tageous in many applications where λ can be a random variable.

The parameter λ is also the mean value of N. To show this, we write

〈N〉 =
∞
∑

n=0

nPr(n) = exp(−λ)
∞
∑

n=1

n
λn

n!
. (C.166)

The change of limits is valid since 0! is defined to be one and hence the n = 0 term in
the sum is zero. Letting m = n− 1 and recognizing that n/n! = 1/(n− 1)! = 1/m!,
we find

〈N〉 = λ exp(−λ)
∞
∑

m=0

λm

m!
= λ . (C.167)

Because of this result, we shall often use the symbol N instead of λ for the parameter
of the Poisson distribution.

Higher moments must necessarily be expressible in terms of N (or λ) since
that is the only parameter in Pr(n). By a derivation similar to the one just given
for 〈N〉, we can show that the second moment is given by

〈

N2
〉

= N
2
+N . (C.168)

This result implies that the variance is equal to the mean, i.e.,

Var{N} =
〈

[

N −N
]2
〉

= N . (C.169)

The equality of the mean and the variance is a hallmark of the Poisson distri-
bution. Only pure numbers (dimensionless quantities) can have this property since
otherwise the dimensions of the variance would be the square of those of the mean.
The Poisson law applies only to integer-valued random variables, and these integers
have no dimensions attached to them.

Characteristic function and moment-generating function The moment-generating func-
tion for the Poisson distribution is given by

M(t) = 〈exp(tN)〉 = exp
(

−N
)

∞
∑

N=0

(

Net
)N

N !
= exp

[

N(et − 1)
]

. (C.170)

By a simple change of variables, the characteristic function is given by

ψ(ξ) = 〈exp(−2πiξN)〉 = exp
[

N
(

e−2πiξ − 1
)]

. (C.171)

From either of these functions, any desired moment can be computed. The
first and second moments have already been given, and the third and fourth are:

〈

N3
〉

= N
3
+ 3N

2
+N ; (C.172)

〈

N4
〉

= N
4
+ 6N

3
+ 7N

2
+N . (C.173)
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This sequence can be continued by use of the recursion relation (Metz, 1969):

〈

Nk
〉

= N
k−1
∑

n=0

(

k − 1

n

)

〈Nn〉 . (C.174)

A few of the central moments are:
〈

(N −N )3
〉

= N ; (C.175)

〈

(N −N )4
〉

= 3N
2
+N ; (C.176)

〈

(N −N )5
〉

= 10N
2
+N ; (C.177)

〈

(N −N )6
〉

= 15N
3
+ 5N

2
+N . (C.178)

The factorial moments of a Poisson are particularly simple. The kth factorial
moment is given by (Kotz et al., 1986)

ck =
〈

N (k)
〉

= 〈N(N − 1) · · · (N − k + 1)〉 = N
k
. (C.179)

Recursive calculation of Poisson probabilities Because of the factorial, it can be diffi-
cult to compute Pr(n) directly for large n. The following recursive relation provides
a solution to this problem:

ln[Pr(n+ 1)] = ln[Pr(n)] + lnN − ln(n+ 1) . (C.180)

Knowing ln[Pr(n)], one can thus find ln[Pr(n + 1)] by adding a numerically well-
behaved correction term lnN − ln(n+ 1). An equivalent relation is

(n+ 1)Pr(n+ 1) = N Pr(n) . (C.181)

Linear combinations of Poisson random variables The following theorems are given
in Haight (1967) and Kotz et al. (1986): If N1 and N2 are independent Poisson
random variables with means N1 and N2, respectively, then N1 +N2 is a Poisson
random variable with mean N1+N2. Note, however, that N1−N2 is not a Poisson
random variable since its variance is not equal to its mean; the variance of N1−N2

is N1 + N2 if N1 and N2 are independent and Poisson, but the mean is N1 − N2.
A linear combination αN1 + βN2 of two independent Poisson random variables is a
Poisson random variable if and only if α = β = 1.

Conversely, if N1 and N2 are independent random variables and N1 +N2 is a
Poisson random variable, then N1 and N2 must each be Poisson-distributed.

Approximations to the Poisson law A Poisson random variable takes on only integer
values, but it is nevertheless sometimes convenient to approximate Pr(n) by a con-
tinuous function of n. Several such approximations are given in Haight (1967) and
Abramowitz and Stegun (1965), but the most useful approach is to approximate a
Poisson by a Gaussian. To obtain this approximation, we need only replace x with
n, x with N, and σ2

x with N in the general univariate normal density (C.105). The
result is

Pr(n) 1
(

2πN
)−1/2

exp
[

−
(

n−N
)2

/2N
]

. (C.182)

This expression is an excellent approximation if N is greater than about 10, but is
often usable even for N as small as 3.
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C.6.3 Bose-Einstein probability law

The Bose-Einstein probability law is important in optics applications involving
photocount statistics for thermal radiation. In Chap. 11 the Bose-Einstein law is
shown to be the appropriate description for the distribution of photocounts result-
ing from the process of detecting an incident intensity that obeys an exponential
probability law. The Bose-Einstein distribution is written

Pr(n) =
N

n

(

1 +N
)n+1 , n = 0, 1, 2, ... , (C.183)

where N is the mean of the Bose-Einstein random variable. To verify the normal-
ization of this expression we note that

∞
∑

n=0

Pr(n) =
∞
∑

n=0

1

1 +N

[

N

1 +N

]n

. (C.184)

The well-known relationship for a geometric series,

∞
∑

k=0

axk =
a

1− x
, (C.185)

can then be used to show that the sum of (C.184) is equal to 1. From this simple
derivation it should be no surprise that the Bose-Einstein law is often referred to
as the geometric distribution.

The Bose-Einstein distribution can be rewritten as

Pr(n) = exp
(

n lnN
)

exp
[

−(n+ 1) ln
(

1 +N
)]

= exp
{

n
[

lnN − ln
(

1 +N
)]

− ln
(

1 +N
)}

= Ae−Cn , (C.186)

where A = 1/(1 + N ) and C = ln(1 + N ) − lnN. We see from (C.186) that the
probability law for n is an exponential that has been discretely sampled because of
the discrete nature of n.

Determination of the mean and variance of the distribution involve similar
manipulations of geometric series. The variance of the Bose-Einstein law can be
shown to be written in terms of the mean as:

Var{N} = N
(

1 +N
)

. (C.187)

The characteristic function for the Bose-Einstein distribution is given by (Saleh,
1978)

ψ(ξ) =
(

1 +N −Ne−2πiξ
)−1

. (C.188)

The factorial moments of this distribution are given by (Goodman, 1985)

ck = E{n(n− 1) · · · (n− k + 1)} = k!N
k
. (C.189)
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C.6.4 Negative binomial law

A random variable that follows the negative binomial law is described by

Pr(n) =

(

n+N − 1

N − 1

)

pn(1− p)N 0 ≤ n < ∞ , (C.190)

where 0 ≤ p ≤ 1.
The mean and variance are given by

〈n〉 = Np

1− p
and σ2 =

Np

(1 − p)2
. (C.191)

The negative binomial law describes the number of failures n that occur before
reaching a fixed number of successes N in a set of Bernoulli trials, where there
are two possible outcomes, the outcomes are independent across trials, and the
probability of failure p on each trial is the same. The negative binomial also can arise
in doubly stochastic Poisson processes, where there is a Poisson random variable
whose underlying parameter is itself drawn from a Gamma distribution.

C.7 Sampling methods

Above we have introduced a variety of analytical expressions for probabilities and
probability density functions. Often we need to draw samples from one of these
distributions on a computer, but most digital random-number generators provide
only random variables uniformly distributed from 0 to 1. Fortunately there are
methods by which such random-number generators can be used to generate random
variables with arbitrary densities; we shall describe two of them here.

C.7.1 Rejection method

Suppose first that we wish to generate a sample from a PDF pru(u), where u is a
continuous random variable defined on the interval (0, 1); an example would be the
beta density defined in (C.128). In the rejection method, we generate a pair of ran-
dom numbers, x and y, both uniformly distributed on (0, 1), where x is a candidate
for the desired random number u. We accept the candidate and assign u = x if
pru(x) < y. We can think of x and y as defining a point in an x-y plane; we accept
only points that lie below the curve given by y = pru(x). Points corresponding to
low PDF have a low probability of being accepted.

To see that the accepted variables follow the desired PDF, we note that
the probability of an accepted variable x falling in a vanishingly small interval
(u − 1

2∆u, u + 1
2∆u) is the probability that a variable in this range is proposed in

the first place times the probability that it is accepted. Since the proposals have
PDF prx(x) = 1, the probability of a proposal in (u− 1

2∆u, u+ 1
2∆u) is simply ∆u,

and the probability of acceptance is pru(u). Thus the probability of an accepted x
being in (u− 1

2∆u, u+ 1
2∆u) is pru(u)∆u, so it follows from (C.21) that the accepted

variables are distributed according to pru(u).
The rejection method can be extended to any continuous random variable u

defined on a finite interval (a, b) by drawing x from the uniform distribution on
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(0, 1), defining a new random number x′ = a + (b − 1)x, and then proceeding as
above with x′ in place of x.

If the range of u is infinite, the rejection method can be applied only approxi-
mately. If pru(u) falls off rapidly as u → ±∞, it may be acceptable to truncate the
PDF to a finite range and apply the rejection method. Of course, values outside
this range will never be generated, but that may be acceptable in some cases. As
the range gets wider, the approximation gets better but more of the proposals are
rejected.

C.7.2 Cumulative-distribution method

This method requires knowledge of the cumulative distribution function (CDF) as
defined by (C.26) or (C.30). We denote the CDF for a continuous random variable
u as Fu(·), and we observe that this function has a unique inverse F−1

u (·) since the
CDF is monotonically increasing. We can draw a random variable t from a uniform
density on (0, 1) and define a new random variable x by

x = F−1
u (t) . (C.192)

The PDF on x is given from (C.45a) as

prx(x) = prt(t)
dt

dx
. (C.193)

(No absolute-value signs are needed since dt/dx ≥ 0.) Since prt(t) = 1, we see that

prx(x) =
d

dx
Fu(x) =

d

dx

∫ x

−∞
du pru(u) = pru(x) . (C.194)

Thus the variable x generated by this procedure indeed has the desired PDF.
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University of Paris. English translation can be found in Phase waves of Louis
deBroglie, Am. J. Phys. 40:9, 1315–1320, September 1972.

de Bruijn, N. G. (1973), A theory of generalized functions, with applications to
Wigner distribution and Weyl correspondence, Nieuw Archief voor Wiskunde
21:3, 205–280.

de Finetti, B. (1974, 1975), Theory of Probability, Vols. 1 and 2, Wiley, Chichester.



BIBLIOGRAPHY 1485

Defrise, M. and Clack, R. (1994), A cone-beam reconstruction algorithm using shift-
variant filtering and cone-beam backprojection, IEEE Trans. Med. Imag. 13,
186–195.

De Groot, M. H. (1970), Optimal Statistical Decisions, McGraw-Hill, New York.
de Hevesy, G. (1962), Adventures in Radioisotope Research, Pergamon Press,

New York.
Delignon, Y. and Pieczynski, W. (2002), Modeling non-Rayleigh speckle distribution

in SAR images, IEEE Trans. on Geoscience and Remote Sensing 40:6, 1430–
1435.

DeLong, E. R., DeLong, D. M. and Clarke-Pearson, D. L. (1988), Comparing the
areas of two or more correlated receiver operating characteristic curves: A non-
parametric approach, Biometrics 44, 837–845.

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977), Maximum likelihood from
incomplete data via the EM algorithm, J. Roy. Stat. Soc. Ser. B 39, 1–38.

DePalma, J. J. and Lowry, E. M. (1962), Sine-wave response of the visual system,
J. Opt. Soc. Am. 228, 328–335.

Dereniak, E. L. and Crowe, D. G. (1984), Optical Radiation Detectors, Wiley,
New York.

Descartes, (1637), La Dioptrique.
DeValois, R. L., Albrecht, D. G. and Thorell, L. G. (1982), Spatial frequency selec-

tivity of cells in the macaque visual cortex, Vision Res. 22, 545–559.
Diaconis, P. and Freedman, D. (1981), On the statistics of vision: The Julesz con-

jecture, J. Math. Psychol. 24, 112–118.
Dodgson, C. L. (1867), An Elementary Treatise on Determinants, with Their

Application to Simultaneous Linear Equations and Algebraical Geometry,
Macmillan, London.

Doob, J. L. (1953), Stochastic Processes, Wiley, New York.
Dorf, R. C. (2000), The Electrical Engineering Handbook, 2nd ed., CRC Press,

Boca Raton, FL.
Dorfman, D. D. and Alf, E., Jr. (1968), Maximum likelihood estimation of parame-

ters of signal detection theory—a direct solution, Psychometrika 33, 117–124.
Dorfman, D. D. and Alf, E. (1969), Maximum likelihood estimation of parameters

of signal detection theory and determination of confidence intervals— rating
method data, J. Math. Psych. 6, 487–496.

Dorfman, D. D., Berbaum, K. S. and Metz, C. E. (1992), ROC rating analysis:
Generalization to the population of readers and cases with the jackknife method,
Invest. Radiol. 27, 723–731.

Dorfman, D. D. and Metz, C. E. (1995), Multi-reader multi-case ROC analysis:
Comments on Begg’s commentary, Acad. Radiol. 2:Suppl. 1, S76.

Dorfman, D. D., Berbaum, K. S., Metz, C. E., Lenth, R. V., Hanley, J. A. and
Dagga, H. A. (1996), Proper ROC analysis: The bigamma model, Acad. Radiol.
4, 138–149.

Dorfman, D. D., Berbaum, K. S., Lenth, R. V., Chen, Y.-F. and Donaghy, B. A.
(1998), Monte Carlo validation of a multireader method for receiver operating
characteristic discrete rating data: Factorial experimental design, Acad. Radiol.
5, 591–602.

Dorfman, D. D., Berbaum, K. S. and Brandser, E. A. (2000a), A contaminated
binormal model for ROC data. Part I. Some interesting examples of binormal
degeneracy, Acad. Radiol. 7, 420–426.



1486 BIBLIOGRAPHY

Dorfman, D. D. and Berbaum, K. S. (2000b), A contaminated binormal model for
ROC data. Part II. A formal model, Acad. Radiol. 7, 427–437.

Dorfman, D. D. and Berbaum, K. S. (2000c), A contaminated binormal model for
ROC data. Part III. Initial evaluation with detection ROC data, Acad. Radiol.
7, 438–447.

Dorsch, R. G. (1995), Fractional Fourier transforms of variable order based on a
modular lens system, Appl. Opt. 34, 6016–6020.

D’Orsi, C. J. and Swets, J. A. (1995), Variability in the interpretation of mammo-
grams (letter), N. Engl. J. Med. 332, 1172.

Dryden, I. L. and Mardia, K. V. (1998), Statistical Shape Analysis, Wiley, New
York.

Dubin, D. A. and Hennings, M. A. (1990), Quantum Mechanics, Algebras and
Distributions, Longman Scientific and Technical Publications, Harlow, United
Kingdom.

Duda, R. O., Hart, P. E. and Stork, D. G. (2001), Pattern Classification, Wiley,
New York.

Duderstat, J. J. and Martin, W. R (1979), Transport Theory, Wiley-Interscience,
New York.

Duflo, M. and Moore, C. C. (1976), On the regular representation of a nonunimod-
ular locally compact group, J. Funct. Anal. 21, 209–243.

Durnin, J. (1987), Exact solutions for nondiffracting beams. I. The scalar theory,
J. Opt. Soc. Am. A 4:4, 651–654.

Duta, N., Sonka, M. and Jain, A. K. (1999), Learning shape models from exam-
ples using automatic shape clustering and procrustes analysis, in Information
Processing in Medical Imaging: Proceedings of the Sixteenth Conference
(Kuba, A., Samal, M. and Todd-Pokvopek, A., Eds.), Springer-Verlag, New
York, pp. 370–375.

Easton, R. L., Jr. and Barrett, H. H. (1987), Tomographic transformations in opti-
cal signal processing, in Optical Signal Processing (Horner, J., Ed.), Academic
Press, San Diego, pp. 335–386.

Eckstein, M. P. and Whiting, J. S. (1995), Lesion detection in structured noise,
Acad. Radiol. 2, 249–253.

Eckstein, M. P. and Whiting, J. S. (1996), Visual signal detection in structured
backgrounds. I. Effect of number of possible spatial locations and signal contrast,
J. Opt. Soc. Am. A 13, 1777–1787.

Eckstein, M. P., Ahumada, A. J. and Watson, A. B. (1997), Visual signal detec-
tion in structured backgrounds. II. Effect of contrast gain control, background
variations and white noise, J. Opt. Soc. Am. A 14, 2406–2419.

Eckstein, M. P., Abbey, C. K., Bochud, F. O., Bartroff, J. L. and Whiting, J. S.
(1999), The effect of image compression in model and human performance, Proc.
SPIE 3663, 243–252.

Eckstein, M. P., Abbey, C. K. and Bartroff, M. P. (2000a), Model observer opti-
mization of JPEG image compression, Proc. SPIE 3981, 106–115.

Eckstein, M. P., Abbey, C. K. and Bochud, F. O. (2000b), A practical guide to
model observers for visual detection in synthetic and natural noisy images, in
Handbook of Medical Imaging, Vol. 1: Physics and Psychophysics (Beutel,
J., Kundel, H. and Van Metter, R., Eds.), SPIE Press, Bellingham, WA, pp.
593–628.



BIBLIOGRAPHY 1487

Eckstein, M. P. and Abbey, C. K. (2001), Model observers for signal known statis-
tically tasks, Proc. SPIE 4324, 91–102.

Eckstein, M. P., Pham, B. and Abbey, C. K. (2002), The effect of image compression
for model and human observers in signal known statistically tasks, Proc. SPIE
4320, 13–24

Edwards, A. W. F. (1974), The history of likelihood, Int. Stat. Rev. 42, 4–15.
Edwards, D. C., Kupinski, M. A., Nishikawa, R. M. and Metz, C. E. (2000), Es-

timation of linear observer templates in the presence of multi-peaked Gaussian
noise through 2AFC experiments, Proc. SPIE 3981, 86–96.

Egan, J. P., Greenberg, G. Z. and Schulman, A. I. (1961), Operating characteristics,
signal detection, and the method of free response, J. Acoust. Soc. Am. 33,
993–1007.

El Fakhri, G., Buvat, I., Benali, H., Todd-Pokropek, A. and Di Paola R. (2000),
Relative impact of scatter, collimator response, attenuation, and finite spatial
resolution corrections in cardiac SPECT, J. Nucl. Med. 41, 1400–1408.

El Fakhri, G., Moore, S. C. and Kijewski, M. F. (2002), Optimization of Ga-67
imaging for detection and estimation tasks: Dependence of imaging performance
on spectral acquisition parameters, Med. Phys. 29, 1859–1866.

Elmore, J. G., Wells, C. K., Lee, C. H., Howard, D. H. and Feinstein, A. R. (1994),
Variability in radiologists’ interpretations of mammograms, N. Engl. J. Med.
331, 1493–1499.

Engl, H. W., Hanke, M. and Neubauer, A. (1996), Regularization of Inverse Prob-
lems, Kluwer Academic, Dordrecht, Netherlands.
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Collimator, 1141
anti-scatter, 1094
focused, 1168
MTF, 1142
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Color imaging, 339–340
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Compton scattering, 1087, 1101, 1124, 1133
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Computer-aided diagnosis (CAD), 952
Computer graphics, 993
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Cone-beam tomography
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Convergence
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Convergence factor, 107
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Correlated double sampling, 743
Correlation, 126, 146
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Current
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photon, 606
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Decision threshold, 811
Deconvolution, 1001
blind, 1001

Defocus, 503
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Delta function, 63, 70, 116
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dimensional analysis, 90
Fourier transform of, 131
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multidimensional, 87
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Depletion region, 564, 711
Depth of interaction, 777, 905
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867–868, 872–873, 1115–1116
Detector
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film-screen, 1088–1089
integrating, 745, 792–797
nuclear medicine, 1125
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photon-counting semiconductor, 748–763
scintillation camera, 783–787
semiconductor photodiode, 707, 716–720
strip, 764
x-ray, 1087

Detector array
focal-plane, 741
hybrid, 765
photodetector, 743–744
scintillator-photodiode, 792–797
semiconductor, 764

Detector nonuniformity, 1219
Detector output, 618
Detector response function, 613, 620–622
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Detector response function
pinhole imager, 617–618

Detector sensitivity function, 326
Diagonal operator, 313
Diagonalization, 27, 29–33, 312, 853
Diagonally dominant, 1393
Difference coordinate, 386
Differential operator, 13
Diffraction

planar aperture, 476–484
Diffraction integral, 521
Diffraction pattern, 483

Airy, 1363
Fraunhofer, 1354

Diffusion, 729, 751
approximation, 605–606
coefficient, 608
equation, 605

Digital wrap-around, 1115
Dihedral group, 1158
Diode, 714
Dipole-sheet transform, 213–214, 1170
Dirac sequence, 72, 78
Dirichlet conditions, 114, 473
Dirichlet, P. G. L., 74
Discrete-to-continuous (DC) systems, 340–341
Discrete-to-discrete (DD) systems, 12, 342–353
Discrete Fourier transform (DFT), 95,

161–168, 293
multidimensional, 172

Discrete-space Fourier transform (DSFT),
168–172

Discrete spectrum, 24
Discretization, 335–337, 1022–1023, 1349

error, 1218
operator, 281–284, 1007
problem, 1005

Discriminant function, 811
Distribution function, 580–582, 1103
Distribution space, 623
Distributions, 63–64

multidimensional, 86
tempered, 69, 118

Divergence theorem, 93
Dodgson, C. L., 1396
Domain, 10
Doping, 708
Doppler shift, 1307
Double Interferometer for Visual Astronomy

(DIVA), 1372
Doubly stochastic, 640

Poisson random process, 651
spatial Poisson random process, 658
temporal Poisson random process, 659

Drift, 734
Drift velocity, 751
Dyadic translation, 234
Echogenicity, 1326
Effective noise bandwidth, 706, 1344
Efficient estimator, 791, 900
Efficiency, 867–869, 872–873, 929–930, 937–938
Eigenanalysis, 23

covariance matrix, 373–376
Hermitian operator, 27, 257

Eigenvectors and eigenvalues
continuous, 27
CC system, 303–305
CD system, 328–332
continuous, 27
degeneracy, 26, 257
discrete, 27
equation, 23
LSIV system, 308–309, 3010
matrix, 1392
multiplicity, 26
rotationally symmetric system, 319–325

Eikonal, 583
equation, 545

Einstein relation, 729
Electrophysiological studies, 923
Emission, 589, 592
Emission density, 574
Emission imaging, 1084
Energy, 1003
Energy density, 552
Energy discrimination, 1093
Energy eigenstate, 558
Energy fluence, 569
Energy flux, 552
Energy window, 763
Ensemble mean-square error (EMSE),

878–879, 884, 1353
Entire function, 1418
Entropy, 919, 1036, 1038
Equipartition principle, 722, 727
Ergodicity, 387–389
Error function, 1457
Error norm, 285–287
continuous, 881
discrete, 881–882

Essential singularity, 1422
Estimability, 877, 1006–1010, 1146, 1150
Estimation, 781–782, 804–805, 809, 873–911,

985–991, 999–1000, 1118–1121,
1146–1152, 1227, 1319

background parameter, 1227
Bayesian, 875, 884–894, 1031–1032,

1150–1152
event, 778
fluence, 778
linear, 903
maximum-likelihood (ML), 781–782,

786–787, 945, 948, 969, 1360, 1362
parameter, 874
point, 874
region of interest (ROI), 1353
signal parameters, 1152
single-photon emission computed

tomography (SPECT), 1231–1234
stellar diameter, 1366
visibility, 1359–1362
without a gold standard, 999–1000

Estimator
consistent, 901
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Estimator
efficient, 791, 900
implicit, 1030, 1049
linear, 779
quasilinear, 780

Euclidean, 6
Euclidean space, 5, 14

adjoint operator in, 18
outer product, 21

Evanescent waves, 487
Events, 1428

certain event, 1428
measurable, 1436
mutually exclusive, 1428, 1434

Ewald sphere, 546
Excess variance, 642
Exitance

spectral, 572
Expansion coefficient, 60
Expansion functions, 282
Expectations, 1440, 1444, 1450
Expert panel, 998
Exponential Radon transform (ERT),

1171–1172, 1226
inversion, 1192–1197

Exposure, 569
F -number, 620, 499
Facilitation, 926
Factorial moment-generating function, 1447
False-positive fraction (FPF), 813–815,

817–818, 827
Fano factor, 750
Far field, 483
Fast Fourier transform (FFT), 170, 996, 1349
FASTSPECT, 1205
Fermat’s principle, 473
Fermi’s Golden Rule, 561
Fick’s law, 608
Fidelity measures, 915–916
Field test, 951
Fields, 1431

Borel field, 1431
Field of view (FOV) functions, 188, 316
Figures of merit

classification, 922
estimation, 922

Filtered backprojection (FBP), 206, 1182,
1200, 1209–1214, 1229

Filtering
electronic, 1312, 1318
spatial, 1095

Fisher discriminant, 957
Fisher information matrix, 896–897, 899, 906
Fisher, R. A., 851, 899
Fixed-point iteration, 56, 1071
Fizeau, A.-H.-L., 1371
Flicker noise, 734
Flood division, 1207
Flood image, 301, 307, 327
Flood response, 1216
Flood source, 301
Fluctuation-dissipation theorem, 724–725

Fluence
energy, 569
estimation, 778
photon, 652
random, 681
spatio-spectral, 788, 794, 798, 1104
spectral photon, 788

Fluorescence
resonant, 578

Fluoroscopy, 1089
Focal length, 496
Focal plane, 515–516
Focal volume, 1316
Fokker-Planck equation, 587
Forced-choice experiment, 940, 943, 946
Forced detection, 629–630
Forward bias, 713
Forward problem, 284, 1379
Forward tomographic transform, 1153
Fourier basis, 9, 28
Fourier basis functions, 277, 309
Fourier-Bessel theorem, 1196
Fourier coefficients, 108
asymptotic behavior, 109
Hermiticity of, 109

Fourier cosine transform, 140
Fourier crosstalk matrix, 333–335, 1217–1218
Fourier integral theorem, 113
Fourier inversion theorem, 267
Fourier, J. B. J., 95, 171
Fourier operator
unitarity, 117

Fourier optics, 1331
Fourier sampler, 1015, 1021
Fourier series, 95, 100, 169, 277, 333, 1162
convergence of, 103
periodicity, 102

Fourier sine transform, 140
Fourier transform, 95, 112, 1345, 1116
analyticity of, 139
asymptotic behavior, 122
asymptotic properties, 131
convolution theorem, 128
finite, 188
fractional, 229
linearity, 120
local, 216, 690
of scaled functions, 123
shift theorem, 123
sliding-window, 216, 227
symmetry properties, 120

Fréchet derivative, 1045
Frames, 235
Fraunhofer approximation, 483–484, 487–488,

518, 545–546
Free-response ROC curve (FROC), 944, 947
Frequentists, xxiii–xxviii, 807, 911
Fresnel, A.-J., 625
Fresnel approximation, 481–482, 487, 496, 500,

516–517, 522, 539–540, 548
Fresnel integrals, 196–198
Fresnel sandwich, 1339–1340
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Fresnel transform, 198–201
Fourier implementation, 201

Fringe patterns
moiré, 1337

Full width at half maximum (FWHM), 300
Functional, 1, 10

kernel of, 64
Fundamental Theorem of Algebra, 1392
Gabor, D., 223
Gabor function, 844, 937
Gabor lattice, 224
Gabor’s signal expansion, 223, 318
Gain, 1089, 1091, 1101
Gain correction, 796
Gating

x-ray detector, 1092
Gauss, C. F., 48, 171, 402, 899, 1445, 1455
Gaussian function, 134, 149

Fourier transform of, 134
Gaussian image, 499
Gaussian moment theorem, 405

complex, 417
Gaussian probability law, 402–417, 1238, 1455

characteristic function, 404–405, 1457
circular, 416–417, 1240
diagonalization of the covariance matrix,

402–404
marginal densities, 405
Gaussian mixture, 1293, 1299
moments, 405, 1456
truncated, 436

Gaussian random fields
complex, 412–418

Gaussian random process, 410–412
Gaussian random vector

complex, 416
Gauss-Seidel iteration, 57
Gauss’s theorem, 93
Generalized distance, 1035
Generalized function, 13, 64–65, 68–69, 77, 79

Fourier transforms of, 118
Generalized likelihood-ratio detection, 908
Generating functions, 1445

and random amplification, 672
conditional, 673, 684
cumulant-generating function, 1446
factorial-moment-generating function, 1447
moment-generating function, 831, 984, 1445
multivariate, 684–686
probability-generating function, 1446

Geometric distortion, 1207
Geometrical optics, 586
Gerchberg-Papoulis algorithm, 1066, 1068
Gershgorin disc, 1393
Gershgorin’s theorem, 1393
Gibbs phenomenon, 104, 108
Gibbs sampler, 1081
Gold standards, 997
Golden-section search, 1056
Goldin, D., 1373
Good function, 118, 185

definition of, 66

fairly, 66
Fourier transform of, 143
sequence of, 80

Good programming practice, 1034
Gosset, W. S., 625
Gradient
image, 1039

Gradient-index optics (GRIN), 590
Grains, 1037
Gram-Schmidt orthogonalization, 28, 177, 1394
Gray level, 272
Gray-level statistics, 441
Green’s functions, 180, 467–476, 766–771
Green’s theorem, 475
Group
Abelian, 241–242, 244, 246, 249, 253–254,

260, 1158
affine, 250
character, 245, 250
continuous, 248
convolution, 263
cyclic, 247–248, 254, 265
dihedral, 248
dilation, 250
finite, 240, 247, 261
Fourier transform, 265
function on, 261
Hilbert-space operators, 252
homomorphic, 242
infinite, 240, 262
inversion, 247
isomorphic, 241, 255, 262
lens, 521
Lie, 248–249, 319, 691
linear, 249
multiplication table, 240
nonunimodular locally compact, 268
order, 240
orthogonality, 246
representation, 243
rotation, 247–248, 262, 319
scalar product, 246, 262
scale, 250, 266
symplectic, 522
transform of, 242
translate-modulate, 690
translate-scale, 690
translation, 263, 265
unimodular, 263
volume, 268
Weyl-Heisenberg, 690

Haar measure, 263
Hamiltonian, 257, 555
symmetry group of, 258

Hankel transform, 147, 196
Harmonic function, 1418
Hastings algorithm, 1080
Heaviside unit step function, 67
Hecht relation, 753
Heisenberg uncertainty principle, 216
Helmholtz equation, 465, 473
Hermite-Gauss function, 184–185
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Hermite polynomials, 184
Hermitian, 1393
Hermitian form, 1400
Hermitian matrix, 41
Hermitian operator, 17, 19, 29, 257, 303

eigenanalysis, 27
Hermiticity, 310
Hestenes-Stiefel approach, 1062
Heterodyne detection, 157, 1242–1243
Hilbert, D., 5
Hilbert-Schmidt condition, 15, 24
Hilbert space, 5

densities, 419–424
operator, 13–22, 250
weighted, 7, 1157, 1177

Hilbert transform, 194–195
Hiss, 1305
Histogram equalization, 442
Hölder’s inequality, 1410
Hole drift length, 752
Holography, 1242
Homodyne detection, 1242–1243, 1321
Homomorphism, 242
Hooge constant, 737
Hotelling, H., 851
Hotelling observer, 851–864, 922, 932, 953, 956,

958, 1108, 1014, 1140, 1145, 1151, 1224,
1226, 1284

channelized (CHO), 936, 938–939, 953, 969,
982, 1230

continuous data, 870–873
effect of post-processing, 855
non-Gaussian noise, 861–862
quasistationary noise, 871–873
random background, 859–860
random signal, 856–858, 1112
template, 956

Hotelling trace, 853
Hounsfield, G., 1154
Huygens, C., 480
Huygens’ principle, 480
Hybrid classification/estimation task, 805,

907–912, 1285, 1328–1329
Hyperparameter, 1032
I-divergence, 1035
Ideal observer, 802, 825–830, 922, 929, 953,

955, 958, 974–985, 1014, 1140, 1223,
1321, 1324

continuous data, 864–870
effect of post-processing, 829–830
exponential noise, 841–842
Gaussian statistics, 835–839
log-normal, 842
Poisson noise, 840–841
random backgrounds, 848–850
random signals, 842–848

Idempotency, 19, 22
Identifiable, 1006
Image error, 347
Image intensifier, 1089–1090, 1092, 1101

blur, 1089
Imaging condition, 498

Importance sampling, 980
Incoherent, 526–527, 530–531
Incoherent source
extended, 1357

Inconsistency space, 37, 46, 1023
Independence, 366, 633–634, 1137, 1434, 1450
Independent components analysis (ICA),

421–423, 444, 976
Independent, identically distributed (i.i.d.),

650, 835
Information theory, 918–920
Infrared-Optical Telescope Array, Fiberoptic

Link Unit for Optical Recombination
(IOTA-FLUOR), 1372

Inhomogeneous medium, 590
Integral geometry, 1173
Integral operator
compactness, 15

Integral transform, 2, 11
Integrator
gated, 741–743
leaky, 741

Intensity, 554
mutual, 525
radiant, 570, 584
specific, 573

Interclass scatter matrix, 852
Interference
pinhole sources, 1356
slit sources, 1358

Interferometer, 1353
20/20, 1371
Fizeau, 1369, 1371–1372
image-plane, 1370–1371
Michelson, 1370–1372
Michelson stellar, 1362–1368, 1371
multiple-telescope, 1368
pupil-plane, 1371
space-based, 1373

Internal noise, 927, 937–938
Interpolation, 154
Intersection, 1429
Intraclass scatter matrix, 853
Invariant integration, 263
Invariant subspaces, 251
Inverse
generalized, 39
left, 16, 1023–1024
right, 17

Inverse filtering, 52
Inverse problem, 284, 1001
Inverse scattering problem, 1001
Inverse-source problem, 1001
Inverse tomographic transform, 1153
Inversion symmetry, 260
Irradiance, 483, 554, 570, 1239
mean, 483
normal, 554, 579
normal photon, 579
speckle pattern, 1262
spectral photon, 594, 606

Irreducible representation, 244, 246, 255
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Isomorphism, 242–243, 251
Isoplanatic patch, 514
Isotropic, 572, 582
Iteration

fixed-point, 1063
Iterative algorithm

pseudoinverse, 53, 56
Iterative conditional modes, 1057
Iterative coordinate descent, 1057
Jacobi iteration, 56
Jacobian, 1455
Jensen’s Inequality, 1444
Johnson, J. B., 721, 734
Just-noticeable difference (JND), 916, 922
K-escape peak, 756
K shell, 746
K x ray, 797–800
Karhunen-Loève (KL), 1110

analysis, 657
domain, 797
expansion, 288, 398, 838, 1005

random vectors, 374
transformation, 1116, 1254

Karush-Kuhn-Tucker (KKT) conditions, 1043
Kernel, 11–12

degenerate, 16
Kernel estimation, 980
Kirchhoff approximation, 477
Kolmogorov, A. N., 625, 1433
Kolmogorov axioms, 1433
Kramers-Kronig relations, 194
Kronecker delta, 8, 164, 1386
Kronecker, L., 8
Kullback-Leibler distance, 1035, 1070–1071
Kurtosis, 1442, 1457
Laguerre polynomials, 185
Lambertian, 526, 538, 582, 585

object, 621
perfect, 576
surface, 572, 619–621, 1237

Landweber algorithm, 55, 964, 1053
Langevin equation, 726–727
Laplace convolution theorem, 191
Laplace equation, 465
Laplace transform, 189–191, 1446

inverse, 190
two-sided, 189

Large Binocular Telescope (LBT), 1371
Lateral geniculate nucleus (LGN), 923
Lateral inhibition, 925–926
Lateral summation, 925
Laurent series, 102, 1421
Law of small numbers, 632
Least-squares, 44, 48, 1052
Least-squares sense, 1033
Lebesgue

point, 108
value, 108

Legendre polynomials, 180–181, 601
Lens

acoustic, 1303
amplitude transmittance, 495

diffraction-limited, 495
equation, 522
ideal, 495
rotationally symmetric, 502–504
thin, 495, 547

Leptokurtic, 432, 1457
Lesions, 1108
Lexicographic ordering, 173
Life Finder, 1373
Lifetimes, 711
Likelihood function, 807
Likelihood-generating function, 832–834, 838,

846, 979, 984, 1327
Likelihood ratio, 825–826, 830–834, 953–955,

974, 1280–1283
estimation of, 978–979, 983

Likelihood-ratio test, 829
Limiting representation
pseudoinverse, 40

Line integral, 1419
Line-integral projection, 144
Linear
shift-invariant system (LSIV), 124, 306

Linear discriminant, 811, 823–825, 850
AUC-optimal, 862, 953, 956

Linear vector space, 2
complete, 5

Linearity, 68
Liouville equation, 587
Liouville’s theorem, 1419
List mode, 1137, 1145
Local model, 428
Local noise-equivalent quanta (LNEQ), 1225
Local period, 221
Local spectrogram, 220, 541
Local stationarity, 960
Localization ROC curve (LROC), 944, 947
Location uncertainty, 845–846
Loewner ordering, 1410
Log-likelihood, 889, 893
for Poisson data, 1070

Log-likelihood ratio, 829, 863, 955, 979
linear, 1280–1283
linearity, 863

Lumpy background, 444, 667–668, 932, 939,
976, 978, 982, 1144

clustered, 445, 977, 1227
Lvov
Scottish Cafe, 5, 626

Magnetic resonance imaging (MRI), 1331
Magnification, 313, 520, 1090, 1100
lateral, 500
shift-variant, 315

Magnifiers, 313
SVD of, 314–316

Mapping, 1, 10, 12, 14
continuous-to-continuous, 12
continuous-to-discrete, 12
one-to-one, 16
onto, 16

Markov chain, 1081
stationary, 1081
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Markov-chain Monte Carlo (MCMC), 849,
980–981, 984, 1075, 1082

Markov random field, 428, 1041
Mask, 505–509

complex, 1332
cosine, 1332
moiré, 1333

Masking, 926
Matched filter, 836, 842, 844

non-prewhitening (NPWMF), 930–931,
938–939, 1283

prewhitening (PWMF), 839, 930, 938, 956
scanning, 1329

Mathematical phantoms, 992
Matrix

adjoint, 1384
anti-Hermitian, 1384
banded, 1107
block-diagonal, 244
block-Toeplitz, 292
circulant, 350–353, 1115
cofactor, 1397
conformable, 1385
degree, 1383
density, 692
derivative, 1402
determinant, 26, 1394
diagonal, 26, 41, 1383
gradient, 1402
Hermitian, 1384
Hessian, 1050, 1403
indefinite, 1400
integral of, 1402
inverse, 1389
invertible, 1389
leading principal minor, 1400
lower-block-triangular form, 244
lower triangular, 1384
minor, 1400
negative-definite, 1400
negative-semidefinite, 1400
nonnegative-definite, 1400
nonsingular, 26, 1389
norm, 1411
operator, 12
order, 1383
orthogonal, 249, 1390
positive-semidefinite, 1400
principal minor, 1400
rectangular, 1383
singular, 26
skew-Hermitian, 1384
sparse, 995
square-root, 1401
symmetric, 1384
Toeplitz, 292, 349–353, 401, 1114–1115
trace, 26, 1256, 1388, 1392, 1397–1398
transpose, 1384
unit, 1386
unitary, 249, 1390
upper-block-triangular form, 244
upper triangular, 1383

Matrix inversion, 963
iterative, 964
matrix inversion lemma, 966, 1390
Neumann series, 964–965

Maximum-likelihood (ML)
criterion, 828
estimation, 894–895, 899–903, 1233
expectation-maximization (MLEM), 975,

1069–1071, 1214, 1224–1225, 1229
single-photon emission computed

tomography (SPECT), 1233
Maximum-modulus theorem, 1418
Maximum a posteriori (MAP) estimation,

888–895
Maximum entropy, 435, 443–444, 1037, 1047
Maxwell’s equations, 458–465
Mean, 1441
Mean-square error (MSE), 877–879, 882–883,

915, 1151, 1353, 1367
in digital imaging, 879–883

Mean-square representation error (MSRE), 287
Measure spaces, 1448
Measurement space, 37, 42, 306
Median, 1441
Megalopinakophobia, 1377
Mellin
convolution, 264, 434
transform, 191–192

Merit function, 1003
Method of projections (MOP), 1064
Metric space, 4
complete, 4

Metropolis algorithm, 1077–1078, 1080
Metropolis-Hastings algorithm, 981
single-component, 1080

Michelson, A. M., 1362, 1371
Micro-area approximation, 1294–1296
Minimization
functional, 1056

Minimization algorithms, 1056
Minimum-error detector, 827
Minimum-norm solution, 50
Minimum-norm
least-squares (MNLS), 1035

Minkowski’s inequality, 1410
Mirror symmetry, 321–322
Mislocation in detectors, 681
Mixture-distribution analysis, 998
Mixture model, 428–429
Gaussian, 431–435

Mobility, 709
Mode, 555, 1441
Model mismatch, 1207
Modeling error, 878, 881, 1206, 1208, 1216,

1219–1220, 1353
Modulation, 311, 535
Modulation transfer function (MTF), 311, 535
Modulator
Fourier, 1332–1353

Moiré effect, 1333, 1337
Moiré pattern, 158, 1218
Molecular medicine, 1123
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Moment cone, 1012, 1047
Moment errors, 288–289
Moment-generating function, 831, 984, 1445
Moments, 370, 1442, 1456

central, 1442
factorial, 1442, 1447

Monochromatic, 464
Monte Carlo simulation, 625–630, 1205

adjoint, 629
integration, 980–981
transport calculations, 627

Moore’s law, 1376
Moore-Penrose pseudoinverse, 38–48
Morley, E. W., 1371, 1362
Multidimensional scaling (MDS), 914
Multi-reader

multi-case method (MRMC), 949–950
Multiple-point expectations, 378
Multiplicity, 258
Multipoint densities, 424–430
Multiresolution analysis, 235
Multivariate generating function, 684–686
Multivariate statistics, 646
Mutual coherence function, 523, 1357
Mutual correlation function, 384
National Imagery Interpretability Rating Scale

(NIIRS), 914
Natural pixels, 348, 1008, 1019
Navy Prototype Optical Interferometer

(NPOI), 1372
Negative predictive value (NPV), 816
Neumann boundary conditions, 473
Neumann series, 53, 599, 1112, 1391
Neural network, 934, 983
Newton-Raphson, 1056
Neyman-Pearson criterion, 817, 827
Night-sky reconstruction, 1047, 1214
Noise

1/f , 721, 734–741
amplification, 1089
correlated, 930
digital radiography, 1101, 1106
electronic, 758, 975, 1277, 1317
film-grain, 1089
fixed-pattern, 1091
Gaussian, 961, 1025, 1273, 1342
generation-recombination, 729–734
Johnson, 721
kTC, 742–743
Nyquist, 721
photon, 1273, 701
Poisson, 701, 962–963, 975, 977, 1273, 1343,

1361
quantum, 1089
shot, 632, 702–707, 716–720
signal-dependent, 1051
temporal, 1343
thermal, 721–729
two components, 932

Noise amplification, 52, 1027
Noise correlation

digital radiography, 1101, 1106

Noise-equivalent quanta (NEQ), 867–868, 919,
1115–1116

generalized (GNEQ), 869
Noise kernel, 1029
Noise power

available, 722
Noise propagation, 1054
Nonlinear system, 353–361

point nonlinearity, 353–355
Non-orthonormal translates, 291
Non-prewhitening matched filter (NPWMF),

930–931, 938–939
Nondispersive, 462
Norm, 4–6, 13–14, 25, 58, 60, 1387
Normal equation, 50
N-type material, 708
Nuclear medicine, 1084, 1122

planar, 1084
Nuisance parameters, 782, 874, 905–907
Null function, 43–44, 306, 883, 1010, 1216–1217
Null space, 16, 37, 42, 47, 306
Nyquist, H., 721
Nyquist sampling condition, 156, 1021, 1068

exact, 1346
Object motion, 1087
Object simulation

deterministic, 991–994
stochastic, 994–995

Object statistics, 976–977
estimation, 978

Object variability, 949, 1278–1279, 1345
location uncertainty, 1328
lumpy background, 976
random background, 931, 939, 959, 962,

1227, 1351
random background level, 1144
random signal, 934, 961, 969, 1227–1229,

1351
random signal location, 948, 970

Object
vector-valued, 273, 1288

Objective function, 1003
Observer efficiency, 867–869, 872–873, 929–930,

937–938, 948
Observer variability, 949
Offset correction, 796
Ohm, G. S., 710
Operator, 13

adjoint of, 17
annihilation, 556, 687
bounded, 14
characterizing the range, 1181
compact, 24, 28, 30, 329
compactness, 14
completely continuous, 15
continuous, 14
creation, 556, 687
density, 691
displacement, 689, 1408
geometrical, 251
Hermitian, 17
Hilbert-Schmidt, 15
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Operator
inverse, 16
linear, 13, 24
matrix, 12
measurement, 613
momentum, 688
nonnegative-definite, 27, 34
number, 558
photon intensity, 560
position, 688
positive-definite, 27
positive-semidefinite, 27
projection, 19
regular, 178
scatter, 601, 604
singular, 17, 24
singular points of, 178
Sturm-Liouville, 178, 186
unbounded, 14
unitary, 17, 262
Weyl displacement, 688

Optical axis, 323, 496, 519
Optical coherence tomography (OCT), 1306
Optical density, 577
Optical excitation, 708
Optical Fourier transformer, 1341
Optical path, 472, 528–529
Optical path difference (OPD)

telescope, 1368
Optical transfer function (OTF), 311, 531
Ordering

antinormal, 694
normal, 693
symmetrical, 694
Weyl, 694

Ordinal regression, 950
Orthogonal complement, 20
Orthogonality, 176, 246, 369
Orthonormal translates, 290
Orthonormality, 8
Outer product, 21
Paley-Wiener

space, 153
theorem, 139

Parametric models, 295
Paraxial approximation, 480
Parity, 260
Parseval’s relation, 110, 165, 176, 200

multidimensional, 143
Parseval’s theorem, 117
Partition function, 721, 1076
Partitioned matrix

inverse, 1390
Partitions, 1430
Pattern recognition, 954
Penalty function, 1003
Penrose equations, 39
Penrose, R., 38
Perceptual linearization, 928
Periodogram, 390–392, 439
Petzval, 503

curvature, 503

Phase transfer function, 312
Phased array, 1304
Phonons, 568, 709
acoustic, 578

Photocathode, 566
Photoconductive gain, 733
Photoconductivity, 710
Photocurrent, 702
Photodiode
vacuum, 702

Photoelectric absorption, 1087, 1124
Photomultiplier tube (PMT), 1137
Photon, 554, 563
secondary, 747

Photon collection efficiency, 1090
Photon emission density, 574, 613
Photon exitance, 573
Photon fluence, 652
Photon flux
scattered, 579

Photon-limited, 632
Photon radiance, 573
Photopeak, 756
Photostimulable phosphors, 1091
Piazzi, G., 48
Piezoelectric, 1243
Pinhole imaging, 615–617
Pixel expansion, 282
Planar gamma-ray imaging
Boltzmann equation, 1126
flood uniformity, 1131
point sensitivity, 1131
position estimation, 1135, 1141
preset count, 1138
preset time, 1138

Plancherel’s theorem, 115
Plane
conjugate, 548
focal, 515–516
image, 510
meridional, 509
principal, 509
pupil, 509
sagittal, 509
tangential, 509
focal, 515

Planet Imager, 1373
Platykurtic, 432, 1457
Platypus, 432
P-N junction, 711–715
Point process, 653–655, 788
spatial, 651–652
spatio-spectral, 662
spatio-temporal, 661
temporal, 649–651

Point response function (PRF), 12, 299–301,
326, 548

planar gamma-ray imaging, 1128, 1141
spatio-spectral, 789
x-ray imaging, 1100

Point scattering, 1285, 1316–1317
Point sensitivity, 302, 308, 327
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Point sensitivity vector, 1069
Point source, 299, 597
Point spread function (PSF), 63, 307, 310

coherent, 513
Poisson equation, 465, 766
Poisson noise, 1028–1029
Poisson postulates, 633–634
Poisson random process, 798
Poisson random vector, 643, 656–657
Poisson, S. D., 632
Poisson statistics, 631–699, 1090

and speckle, 1275–1276
in digital radiography, 1102–1103
x-ray beam, 1088

Poisson summation formula, 137–138, 170, 226
Poisson transform, 641
Poisson variable, 1034
Polarization, 461, 555
Pole, 1422
Polychromatic, 536–537
Polynomials

Chebyshev, 186
circle, 182
Hermite, 184
orthogonal, 177
Zernike, 182

Positive consistency set, 1012
Positive-definite operator, 59
Positive-definiteness, 368
Positive-frequency part, 557
Positive orthant, 1013
Positive predictive value (PPV), 816
Positivity, 436, 1011, 1031, 1042, 1063, 1067,

1214, 1222
Positivity constraint, 1009
Positron emission tomography (PET), 1123,

1153
Positrons, 1123
Potential, 260, 1041
Power spectral density, 536, 705–706

1/f noise, 735
amplified point process, 682
doubly stochastic process, 669–670
electronic noise, 760
filtered Poisson process, 669
generation-recombination noise, 732
Poisson process, 669

Power spectrum, 418
estimation of, 439–441

Poynting’s theorem, 552
Poynting vector, 552
Pragmatists, xxiii–xxviii
Prevalence, 808, 815
Prewhitening, 375–376, 839, 1059, 1254

matched filter (PWMF), 839, 930, 938, 956
Primary events, 670
Principal components analysis (PCA), 423, 976
Priors, xxv, 808, 1464

entropy, 1037–1038
improper, 1464
mixture model, 1074
noninformative, 1464

Probability (see Appendix C), 1427
amplitude, 558
axiomatic approach, 1433
classical definition, 1432
conditional, 1081, 1434, 1449
frequentist interpretation, 1431
joint, 1434, 1449
marginal, 365, 1449
relative frequency, 1431
subjective interpretation, 1432
total, 1435

Probability density function (PDF), 1437–1438
in Hilbert space, 419
mixture, 1450
transformation of, 977, 1443

Probability generating function, 1446
Probability laws
1/x density function, 1463
Bernoulli, 636–638, 1465
beta, 1458
binomial, 1465
Bose-Einstein, 695, 1277, 1469
Cauchy, 1464
chi-squared, 1460
circular Gaussian, 1240
exponential, 1238, 1458–1459
gamma distribution, 1297, 1458, 1460
Gaussian, 1238, 1455
Gaussian mixture, 1293
geometric, 1469
K distribution, 1298–1300, 1462
Lévy, 976, 978, 1464
log-normal, 437, 739, 975, 1462
multinomial, 644–646, 1466
multivariate linear exponential-type, 863
negative binomial, 1297, 1470
normal, 1455
Pareto-Lévy, 1465
Poisson, 631, 1466
Rayleigh, 1238, 1298, 1461
rectangular, 1458
Rician, 1238, 1300, 1461
stable, 1465
truncated Gaussian, 438
uniform, 1458, 1460
von Mises, 1299

Probability summation, 935
Product
direct, 1388
Hadamard, 1388
inner, 1387
Kronecker, 1388
outer, 1387
scalar, 1387
tensor, 1387

Profilometers, 1245
Prognosticators
farsighted, 1085
shortsighted, 1376

Projection, 22
Projection onto convex sets (POCS), 1064,

1066
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Projection onto convex sets (POCS)
convergence, 1066

Projection operator, 19, 42, 60, 284
Projector, 1064

relaxed, 1066
Prolate spheroidal wavefunctions, 186–188
Propagation, 589, 592–593

noise, 1072
Pseudocovariance, 1252
Pseudoinverse, 39, 1016–1018, 1021, 1027,

1062, 1389
identities, 41
Moore-Penrose, 38

Pseudoinverse estimator, 1148
bias, 1149

Psychometric function, 928
Psychophysics, 924–925, 940–941, 951, 954
P-type material, 708
Pulse coding, 1305
Pulse compression, 1313
Pulse-height spectrum, 749, 755–758, 762
Pupil

entrance, 510
exit, 510

Pupil function, 501
Pure phase function, 220
Quadratic-termination property, 1062
Quadratic discriminant, 846
Quadratic form, 1400
Quantized field theory, 556
Quantum efficiency, 616, 637
Quantum electrodynamics (QED), 587

and photon-counting, 687
Quantum-limited, 632, 1088
Quasimonochromatic, 462, 525, 527–530
Quasiprobability, 694
Quasistatic assumption, 766
Quasistationarity, 386, 586, 1264
Radar

bistatic, 1302
equation, 1322
monostatic, 1302
multistatic, 1302
signature, 1319

Radiance, 571, 581–582, 661
generalized, 584, 586–587
generalized spectral, 582
reflected, 576
spectral, 572
spectral per unit energy, 573
spectral photon, 573
transmitted, 595
x-ray, 1096–1097

Radiant energy, 569, 574
Radiant exitance, 530, 570
Radiant flux, 552, 574
Radiant incidence, 576
Radiation approximation, 479
Radiation dose, 1087, 1124
Radioastronomy, 1331
Radiography, 1084

digital, 1083, 1085

Radioisotopes, 1123
Radon, J., 202
Radon transform, 202–214, 625, 1022
adjoint, 203, 211
2D, 1164–1167, 1173
discretization of the inverse, 1198–1200
inversion, 1182

2D attenuated, 1171–1172
inversion, 1192

2D exponential, 1171–1172, 1226
inversion, 1192–1197

3D, 1166–1169
3D attenuated, 1172

Random amplification
arrays, 683
single-element detectors, 670

Random point process, 649–670
filtered, 662–665
spatial, 651–652
temporal, 649–651

Random process
doubly stochastic, 658–661, 1105
filtered, 393
proper, 1252

Random telegraph wave, 730–731
Random variables, 1435
continuous, 1437
discrete, 1437
functions of, 1451–1455
independent, 1450
uncorrelated, 1451

Range, 10
Rank, 12, 26, 34, 36, 1389
Rank-order studies, 915
Rating scale, 942
continuous, 942
discrete, 942

Ray, 489–490, 495
chief, 509, 549
paraxial, 519

Ray abberation, 504
Rayleigh approximation, 1296
Rayleigh criterion, 301
Rayleigh distribution, 414
Rayleigh, J. W. S., 389, 625
Rayleigh-Sommerfeld diffraction theory, 478
Rayleigh task, 1144, 1351
RC filtering, 703–706, 719, 761
Rebinning, 1189
Receiver operating characteristic (ROC) curve,

814–815, 818–820, 847, 873, 940, 1328
empirical, 945
binormal model, 820, 946
proper, 946
analysis without truth, 998

Receptive field, 924
Reciprocal lattice, 150, 555
Reciprocity principle, 1311
Recombination, 710
Reconstruction, 1001, 1342
additive, 1053
continuous, 1002
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Reconstruction
discrete, 1002
implicit, 1030
iterative, 1053, 1350
linear, 1053
multiplicative, 1070
night-sky, 1047, 1214
nonlinear, 1003

Rect function, 66, 129
Recurrence relations, 177
Reference wave, 1242
Reflectance, 576

position-dependent, 576
Reflection, 492–495, 575

diffuse, 575
specular, 575

Refraction, 492–495
Regularization, 440, 1002, 1183

data dependent, 1041
edge-preserving, 1041
entropy, 1044–1045, 1052
nonlocal, 1038
quadratic, 1039
Tikhonov, 1036, 1038–1039, 1043, 1045, 1051

Regularizing functional, 1030, 1035
Relative coordinate, 386
Representation

irreducible, 244
nonlinear, 294
reducible, 244

Representation accuracy, 284
Representation of a group, 243
Representation space, 280, 284
Reproducing-kernel

of the continuous wavelet transform, 233
Reproducing-kernel Hilbert space, 57, 153, 157
Residual, 48
Residue, 1422
Residue theorem, 1422
Resolution, 299–301, 1305
Resolution of the identity, 1394
Retarded time, 472
Riemann-Lebesgue lemma, 114, 122
Riesz representation theorem, 11, 57, 64, 283,

298
Risk, 809
Roentgen, 1085
Rotationally symmetric systems, 319–323
Row-action algorithm, 57
Row-action method, 1054
Row vector, 1384
Runge, K., 171
Rytov approximation, 543–545
Sagittal plane, 509
Sample averages, 455, 962
Sampling, 152, 169, 335–337, 1216
Sampling basis, 157
Sampling function, 160
Sampling methods, 1470

cumulative-distribution method, 1471
rejection method, 1470

Sampling operator, 152

Scalar product, 5, 13, 22, 58, 60, 263
weighted, 7

Scale uncertainty, 846
Scaling subspace, 236
Scatter correction, 1208, 906
Scatter matrix
interclass, 852
intraclass, 853

Scatter rejection, 1125
Scattering, 575, 590–592, 598–599
anisotropic, 607
Brillouin, 578
coefficient, 591
Compton, 578, 609–610, 745–746, 797–800
elastic, 578, 605–607
inelastic, 578
Mie, 578
potential, 542
Raman, 578
Rayleigh, 578, 745
Thomson, 578

Schmidt, E., 5
Schottky, W., 734
Schrödinger equation, 259
time-independent, 257

Schur’s lemma, 1392
Schuster, A., 389
Schwartz space, 185
Schwarz inequality, 7
Score, 896
Secondary events, 670
Sensitivity, 813–814
Sensitivity function, 12, 1357
Separable space, 9, 15
eigenanalysis, 28

Set theory, 1428–1429
Shadow, 549
Shape, 295–296, 446
Shepp-Logan phantom, 992
Shift-invariance, 996
Shift-invariant systems, 306–313
Shift-variance
weak, 317

Shift-variant systems, 297–306
Signal
additive, 447
obscuring, 449
parametric model, 449

Signal-known-exactly-but-variable task
(SKEV), 858–859, 970

Signal-known-exactly (SKE) task, 954–956,
959, 974, 977, 983, 1319–1328, 1350

coherent ranging, 1319–1329
density of scatterers, 1326–1328
extended target, 1322
point target, 1319–1322
speckle, 1322–1326

Signal-known-exactly/background-known-
exactly (SKE/BKE) task, 835–839, 874,
930, 1108, 1115

correlated noise, 1111
exponential noise, 841
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Signal-known-exactly/background-known-
exactly (SKE/BKE)
task

Gaussian noise, continuous data, 864
KL formulation, 838
planar gamma-ray imaging, 1139–1144
Poisson noise, discrete data, 840
Poisson noise, continuous data, 866
single-photon emission computed

tomography (SPECT), 1223–1224, 1226
speckle, 1280–1283

Signal-to-noise ratio (SNR), 707, 732, 819, 829,
837–838, 873, 1238, 1269

error in estimates, 971–973
Significance test, 805
Signum function, 81, 132

Fourier transform of, 133
Similarity transformation, 24, 29, 245
Simulated annealing, 1075, 1078–1079
Simulation

object, 991–994
image, 994–997

Simultaneous diagonalization, 376, 853, 1253
Sinc function, 73, 129
Single-photon emission computed tomography

(SPECT) (see Chap. 17), 906, 1331
Hamaker formulas, 1169
measurement of system matrix, 1204–1205
modeling system matrix, 1201–1204
noise kernel, 1209, 1211, 1213
resolution, 1211
singular-value decomposition (SVD),

1158–1162
Singular, 60
Singular values of an operator, 36
Singular-value decomposition (SVD), 34–38,

51, 257, 1019–1020, 1027, 1036
CC operator, 305
CD operator, 328–333
DD operator, 344–347
definition and properties, 34
LSIV system, 308–313
rotationally symmetric system, 324–325
shift-variant system, 302–305
2D Radon transform, 1173–1182

Singularity, 1418
Singular system, 35
Sinogram, 204–205
SIRT, 56
Skewness, 1442
Small-pixel effect, 773
Smoothing, 1027–1028
Snell’s law, 492–494, 595
Snell van Royen, W., 492
Sobolev space, 7
Sommerfeld radiation condition, 477
Source

isotropic, 616
planar, 618
spatio-spectral, 621
volume, 595

Source distribution, 575, 600

Space
Euclidean, 4

Space-bandwidth product, 156, 225
Space Interferometry Mission (SIM), 1373
Sparse matrix, 57
Spatio-spectral function, 621
Specificity, 813–814
Speckle, 841, 1235–1329
blob size, 1239
correlation length, 1239, 1247
effect of detector, 1265–1273
fully developed, 1248
non-Gaussian, 1285
partially developed, 1248

Spectral analysis, 389–393
Spectral decomposition, 30, 36, 38, 41, 59
of the covariance matrix, 374

Spectral radiant exitance, 537
Spherical harmonics, 182, 261, 599–603, 605
Spot size, 506
Spur, 1397
Square-integrable, 7
Square-integrable functions, 115
Stability condition, 235
Staircase method, 952
Standard deviation, 1441
State
canonical coherent, 687, 691
coherent, 558, 687, 690, 694, 697
fiducial, 691
Fock, 558
Glauber, 687
minimum uncertainty, 687
mixed, 692
multimode, 559
number, 558, 696, 699
stationary, 558
thermal, 698

Stationarity, 398–400, 796–797, 865, 959, 1114,
1117, 1211, 1264

1/f noise, 740
cyclic, 796
discrete, 400
spatial, 386
temporal, 384–386

Stationary phase, 488
Stationary states, 257
Steepest descent, 1058
Step function, 80, 132
derivative of, 80
Fourier transform of, 133

Stéphan, E., 1371
Stochastic, 363
Stochastic integral, 380
Stochastic simulation, 625
Stress test, 951
Sturm-Liouville theory, 178
Subgroup, 242
Sub-Poisson statistics, 696
Subtraction imaging, 1119–1120
Sufficient statistic, 901
Superresolution, 1066
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Support, 1067
Support function, 151, 278
Surface emitter, 569
Susceptibility, 462
Swank factor, 672
Symplectic condition, 522
Synthetic-aperture radar (SAR), 1307, 1331
System identification, 1001
System optimization, 1375–1382
System sensitivity, 1216
Taylor series, 1407–1409, 1421
Template estimation, 940
Temporal filters, 306
Terminal velocity, 709
Terrestrial Planet Finder (TPF), 1373
Test function

convergence, 68
definition of, 65
open-support, 66, 185
slow growth, 66

Test statistic, 803, 811, 955
Texture, 933

simulation, 994
models, 438–447
synthesis, 442–446, 1301

Thermal action, 738
Thevenin’s theorem, 722
Tikhonov, A. N., 1036
Tracer, 1123
Transducer, 1302
Transfer function, 310, 485

coherent, 514, 518, 533
incoherent, 531

Transformation
similarity, 1396
unitary, 1396

Transmission
diffuse, 577
specular, 577

Transmission imaging, 1084
Transmissive objects, 577
Transmittance, 577
Transport equation, 587
Trapping, 710, 719–720, 738–739, 751, 757,

774–777, 779
Tretiak-Metz algorithm, 1194
Triangle function, 130
Trickle-down theory, 611
True-positive fraction (TPF), 813–815,

817–818, 827
Tucker, A. W., 1043
Two-alternative forced-choice (2AFC), 823,

943, 946–947
Ulam, S., 626
Uniform translates, 289
Uniformly minimum-variance unbiased

estimate (UMVU), 905
Union, 1429
Unit cell, 150
Unitary operator, 17
Unitary transformation, 25, 29, 111
Unsharp masking, 1095

Utility, 816
Van Cittert-Zernike theorem, 540, 1355, 1357
Variance, 789, 878–879, 971, 984, 1360, 1441
excess, 642
electronic noise, 760
1/f noise, 736–737
generation-recombination noise, 732
multimode, 698
photomultiplier tube output, 785
RC filter output, 785

Vector fields, 273
Vectors
addition of, 2
definition of, 2
multiplication of, 2
sequence of, 4

Veiling glare, 933, 1090, 1101
Venn diagram, 1429, 1431
Very Large Telescope (VLT), 1372
Very Large Telescope Interferometer (VLTI),

1372
Very Large Telescope Interferometer

Commissioning Instrument (VINCI),
1372

Vidicon, 1091
Vignetting, 316
Virtual ground, 703
Visibility estimation, 1359–1362
Visible Human Project, 993
Von Neumann, J., 626, 1043
Wave equations, 463–465
Wavelet transform
continuous, 232
discrete, 234

Wavelets, 230–237, 268, 937
Haar wavelet, 231

Waves
plane, 465, 492–494, 552–553, 566–567
spherical, 467

Weak scatter, 614
Weak-scattering approximation, 604
Weber-Fechner law, 928
White noise, 395
Whittaker-Shannon sampling theorem, 153
Wiener filter, 1151
Wiener-Helstrom estimator, 882, 904
Wiener-Khinchin theorem, 391, 536
Wiener, N., 389
Wigner-Seitz unit cell, 150
Wigner distribution function (WDF), 872, 227,

1224, 1381
stochastic, 392, 582, 1352

Woodward ambiguity function, 229
X rays
characteristic, 1085

X-ray source, 1085–1086
energy spectrum, 1093

X-ray transform, 592–593, 1167–1169
3D, 1167–1168, 1187
attenuated, 596, 599, 603, 1170
inversion, 1192

Yes-no experiment, 940–941
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Young’s double-slit experiment, 1354–1358

Young, T., 1354, 1358

Z transform, 193

Zak transform, 226

Zernike, F., 182

Zernike polynomials, 182–184

Zero-DC task, 1143
Zero-point energy, 558
Zero padding, 168
Zone plate
Fresnel, 1336
off-axis, 1336
on-axis, 1336


