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Introduction

Nobel Prize in Physics awarded for contribution related to laser

1964: Townes, Basov and Prokhorov

1971: Gabor

1981: Bloembergen and Schawlow

1997: Chu, Cohen-Tannoudji and Phillips

2000: Alferov and Kroemer

2005: Hansch an Hall



History

First laser was demonstrated in 1960 by T. Maiman

First fiber laser was demonstrated in 1963 E. Snitzer

Amplification in a Fiber Laser

Charles J. Koester and Elias Snitzer

Fiber lasers of neodymium-doped glass have been §
To prevent oscillation, the ends are polished at an
With the high inversion which can then be obtain
1-m long fiber. The gain was measured as a funct
ing the pumping pulse at which the amplification w |4

Fig. 1. Coiled fiber laser. From the top the components are:
eavity, fiber laser, flashtube, and 18 em scale



Stimulated Optical Radiation in Ruby 2
: i
Schawlow and Townes' have proposed a technique 215
for the generation of very monochromatic radiation ¢
in the infra-red optical region of rhe spectrum using 8"’
an alkali vapour as the active medium. Javan® and E 5
Sanders® have discussed proposals involving electron- él .

excited gaseous systems. In this Iaborat.ot)} xaln

optical pumping technique has been successfully : .

a'gplied t% a guogrescent sglid reaiilting ba the aftain.  Fie<t. Fushardove, digram, of G0 B worindon, Siawing

ment of negative temperatures and stimulated optical

emission at a wave-length of 6943 A.; the active
material used was ruby (chromium in
corundum).

A simplified energy-level diagram
for triply ionized chromium in this
crystel is shown in Fig. 1. When
this material is irrediated with ener
at a wave-length of about 5500 A.,
chromium ions ave excited to the
1P, state and then quickly loge some
of their excitation energy through
non-radiative transitions to the 2F 1 Ledthbrbrtt
state!. This state then slowly decays
by spontaneously emitting a sharp
doublet the components of which
at 300° K. are at 6943 A, and 6920 A.

(Fig. 2a). Under very intense excita-

tion the population of this meta- )
stable state (*E) can become greater
than that of the ground-state ; this is
the condition for negative tempera-
tures and consecuently amplification
via stimulated emission.

To demonstrete the above effect a
ruby erystal of 1-cm. dimensions coated
on two parallel faces with silver was
irradiated by a high-power flash lamp ;

)

LMBMIY

JEEE NI

6925 R, R, 0950
Wave-length (A.)

Fig. 2. Emission spectrum of ruby : e, low-power excitation;
b, high-power excitation

the emission spectrum obtained under these condi-
tions is shown in Fig. 2b. These results ean be explained
on the basis that negative temperatures were produced
and regenerative amplification ensued. I expeet,
in prineiple, a considerably greater (~ 10¢) reduction
in line width when mode selection techniques are used?,
1 gratefully acknowledge helpful discussions with
The fi rst Iaser a er' G. Birnbaum, R. W, Hellwarth, L. C. Levitt, and
p p . R. A. Satten and am indebted to 1. J. D’Haenens and
C. K. Asawa for technical assistance in obtaining the
measurerments.
T. H. Mammax
Hughes Research Laboratories,
A Division of Hughes Aircraft Co.,
Malibu, California.
' Schawlow, A. L., and Townes, C. H., Phys. Rev., 112, 1040 (1835):
* Javau, A., Phys. Rev, Letters, 3, 87 (1959).
¥ Sanders, J. ., Phys. Rev. Letters, 3, 86 (1950),
* Maiman, T. H., Phys. Rev. Leltérs, 4, 504 (1960).



Who invente

d the laser?

Concept for the MASER, May 11, 1951
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Charles Townes & Jim Gordon

Figure 9. James Gordon {ut right) and [ were photographed with the second
maser &t Columbia University, The normally evacuated metal box where
maser action occurred is opened up to show the four reds (guadrupole focuser)
which sent exclted molecules into o resonant cavity (the small eylinder to the
right of the four rods). The microwaves that wene generated esnerged through
the vertical copper waveguide pear my hand. This second maser was essen-
tially a duplicate of the first operating one. and it was built to examine the
purity of maser signals, by allowing the two to beat together, thus producing
SRR



Who invented the laser?
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Who invented the laser?

A. L. Schawlow
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Who invented the laser?

* Charles Hard Townes and Arthur Leonard Schawlow

e Gordon Gould

* N. Basov and A. Prokhorov
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How does a laser work?

Pump

HR mirror ‘
i ‘ Output

Active medium
OoC

Lasers tend to operate in a mode so that the optical
field in the cavity sees smallest loss per cavity round trip



How does a laser work?

We need to have 3 things put together in a certain way to make a laser:

1. Pump to create a population inversion
2. Gain medium where the population inversion occurs

3. Cavity to provide a positive feedback for the field to build up



Is this really a laser?

High-Gain Backward Lasing in Air

Arthur Dogariu,>* James B. Michael,* Marlan 0. Scully,>? Richard B. Miles®

The compelling need for standoff detection of hazardous gases and vapor indicators of
explosives has motivated the development of a remotely pumped, high-gain air laser that
produces lasing in the backward direction and can sample the air as the beam returns. We
demonstrate that high gain can be achieved in the near-infrared region by pumping with a
focused ultraviolet laser. The pumping mechanism is simultaneous resonant two-photon
dissociation of molecular oxygen and resonant two-photon pumping of the atomic oxygen
fragments. The high gain from the millimeter-length focal zone leads to equally strong lasing
in the forward and backward directions. Further backward amplification is achieved with the use
of earlier laser spark dissociation. Low-divergence backward air lasing provides possibilities for

remote detection.

ptical techniques for the remote detec-
Otion of atoms and molecules rely on the

use of lasers to selectively identify and
quantify species of interest To enable single-
sided detection, collection of light must be
accomplished in the backward direction. Collec-
tion of incoherent light emission from molecules
of interest is limited by the nondirectional nature
of spontaneous emission. More sensitive detec-
tion techniques, aided by the coherent nature and
well-defined direction of emission, are restricted
in the direction of emission by the phase-matching
relation. For commonly employed nonlinear tech-

Lt bcieal ced A i " o

niques such as coherent anti—Stokes Raman spec-
troscopy (/) and stimulated Raman scattering (2),
phase-matching results in a coherent beam prop-
agating in the direction of the pumping laser,
away from the source.

These limitations have motivated the explo-
ration of backward air lasing and stimulated gain
concepts, which can produce coherent scattering
that returns to the pump-laser location (3). To date,
the only approach that has shown promise is based
on the electron recombination of ionized molec-
ular nitrogen from a femtosecond-produced fila-
ment (4, 5). This scheme leads to gain at 337 nm,
the same wavelength as the molecular nitrogen
laser. Amplified spontaneous emission gain on

two-photon excitation of one of the resulting oxy-
gen atom fragments. Both processes are resonantly
enhanced at the 226-nm wavelength of the pump
laser. The excitation is followed by lasing from the
excited atomic oxygen (Fig. 1A). The pump laser
is focused such that there is no laser-induced
breakdown of the air, and excitation followed by
stimulated emission is achieved throughout the
I-mm-long focal region. The result is the for-
mation of well-collimated backward and forward
propagating laser beams at 845 nm with param-
eters comresponding to the ultraviolet (UV) pump-
beam focusing.

Two-photon laser-induced fluorescence from
atomic oxygen has been developed for quanti-
tative diagnostics of combusting gases where
atomic oxvgen is an important radical species
(6-10). The two-photon excitation transition is
from the 2p*P ground state to the 3p°P excited
state with 226-nm laser radiation. That excita-
tion is followed by spontaneous relaxation from
the 3p°P state to the 3s°S state, producing flu-
orescence emission at 845 nm (Fig. 1A). The
use of the two-photon excitation to produce stim-
ulated emission at 845 nm in atomic oxygen has
been observed in flames at subatmospheric pres-
sures (/7).

The same two-photon transition can be used
as the initial step in a 2+1 resonance enhanced
multiphoton ionization (REMPT) (/2). This pro-
cess can be remotely monitored by microwave
scattering from the free electrons [radar REMPI

Science, 28 January 2011



L aser characteristics

* Directional emission
* Clear lasing threshold

« Spectral narrowing

Required components:

 Gain medium
* Pump

 Cavity



Why are people still doing research in
lasers?

The physics of laser operation is well
understood. But there is always need
for better and cheaper lasers. Also,
there are still a lot of applications’
requirements that current technology
can not satisfy.

Requirements:

New wavelength bands
Maximum average output power
Maximum peak output power
Minimum output pulse duration
Maximum power efficiency

Minimum cost



Laser market

Figure 1. Past laser revenues and 2020 forecast

$16.63B «Total
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Source: Strategies Unlimited

Laserfocusworld.com



L aser market

Worldwide commercial laser revenues

$7.05B « Total
$6.84B $6.548 _ _

4 Diode

2007 2008 2009 2010 2011

Laserfocusworld.com



L aser market

Historic laser revenue ($B)
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Laser market

Displays 2%
Sensors 5%
Medical & aesthetic 6%

R&D & military 7%

Lithography 8%

Optical storage 14%

2013

Printing 1%

2019 laser revenues

Medical & Aesthetic
$1.2B

Entertainment,
Displays, & Printing

$0.5B
Instruments
§1Se3n;ors Materials
. Processing &
Lith h
Scientific | O{érg&g
Research
& Military Communications
$1.8B & Optical Storage

$4.1B

Laserfocusworld.com



Communications & optical storage

Includes all laser diodes used in telecommunications, data communications, and optical storage
applications, including pumps for optical amplifiers.

Revenue (USSM)
v
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Materials processing & lithography

Includes lasers used for all types of metal processing (welding, cutting, annealing, drilling);
semiconductor and microelectronics manufacturing (lithography, scribing, defect repair, via
drilling); marking of all materials; and other materials processing (such as cutting and welding
organics, rapid prototyping, micromachining, and grating manufacture). Also includes lasers

for lithography.

Figure 2. Materials Processing and Lithography

6708 6669

6414
° ® 6142 ®

Revenues
(USSM)» 4949
o

Yearp» 2016 2017 2018 2019 2020



Laser materials processing

Industrial laser applications 2017

Additive manufacturing 4% Other 2%

Non-metal processing 6%

Fine metal

processing 8% Cutting 35%

Semiconductors/
displays 14%

Marking 15% Weld/braze 16%

Source: Strategies Unlimited



Research and Military

Figure 4. Scientifc Research and Military
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Laser market

Industrial laser revenues (USSM)

4592 <« Total
' « Carbon dioxide

< Solid-state/disk
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Source: Strategies Unlimited

Laserfocusworld.com



A Laser market

Lasers by technology
Fiber 4% _
DPSSL 6% 1% Other Current fiber

lasers market
share i1s ~ 25%

Excimer 6%

4 %‘

(2013 data)

Laserfocusworld.com



Active fibers
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Advantages of fiber format

Fiber format removes the strict
requirement of heat management
which is normally very critical in
solid-state lasers

High efficiency

Air-cooled

Direct diode pumping

But there are also disadvantages: Compact

« Long gain media Alignment free

- High nonlinearity Reliable

- Polarization stability Low cost

Performance



Laser design

pump fiber output

Fiber taper with ~ Laser output
SWCNTs

Output
coupler

Er -doped

fiber Polarization

Controller

Isolator
980/1550nm

WDM fiber coupler
980 nm pump




Fiber laser performance

Power (W)
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mJ energy femtosecond fiber
laser. > 1GW peak power!

Yh:KGW oscillator

9.7 MHz, 1.6'W, Stretcher-
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What can fiber laser do?

Overlay locus of high-power fiber lasers
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Cladding pump technology

inner cladding
palymer coating

core

:I'. // |
I:l .r’// "..-
pump / S 4 0
output
signal
centered core off-centered core . D-shaped elliptical rectangular

inner cladding inner cladding inner cladding

http://www.rp-photonics.com/double_clad_fibers.html



Cladding pump technology

S~
P

|

FIG. 3B FIG. 3C FIG. 3D FIG. 3E

(US patent # 5,864,644)

GTWave fiber

Single mode laser fiber

inner cladding

Yb-doped core V-groove !
\lﬁ !

substrate : PR

pump laser
microlens / diode

Fig. 1. V-groove side-pumping arrangement.

(Goldberg, Opt. Lett. 1999)

4x high NA Common low-index

multimode polymer cladding

pump fiber Pump Fibers
ports (Silica)

GTWave technology (credit: D. Payne)

Yb-Doped (signal) fiber



Beam combination

Multi-path MOPA

: 1000 W
1000 W
> *

: 1000 W
: 1000 W

Single-mode
Single-frequency
Single-polarization

"j -
" Future Steerable 1 MW Design? @

Phase-
coherent
output for
synthetic-
aperture
source

ot

(credit: D. Payne)



Project #8: Mode-locked fiber
laser

« Measure laser pulse train

« Measure output spectrum

» Measure laser pulse duration

* Observe phase-locked of laser modes

Er-doped fiber

Saturable absorber

Output

coupler Isolator

Mode-locked ring fiber laser
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Carbon nanotubes (CNT) and
graphene



http://batop.com/products/saturable-absorber/saturable-absorber-mirror/saturable-absorber-mirror.html
http://batop.com/products/saturable-absorber/saturable-absorber-mirror/saturable-absorber-mirror.html
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SWCNT/Polymer composite

Fiber taper

(K. Kieu and M. Mansuripur, Opt. Lett, 2007)

wphotonics

Mode-locked fiber laser
Model: CNT-1550-TK
S/N:1001000
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Questions for thoughts

« Can fiber lasers be used for all applications?

(Think of a application that current fiber lasers can not be used)

What is the power limit of fiber lasers?

Is that important to know exactly who invented the laser?

How many more years are we going to do research on laser?

Can we use lasers to predict earthquakes?



