

OPTI510R: Photonics

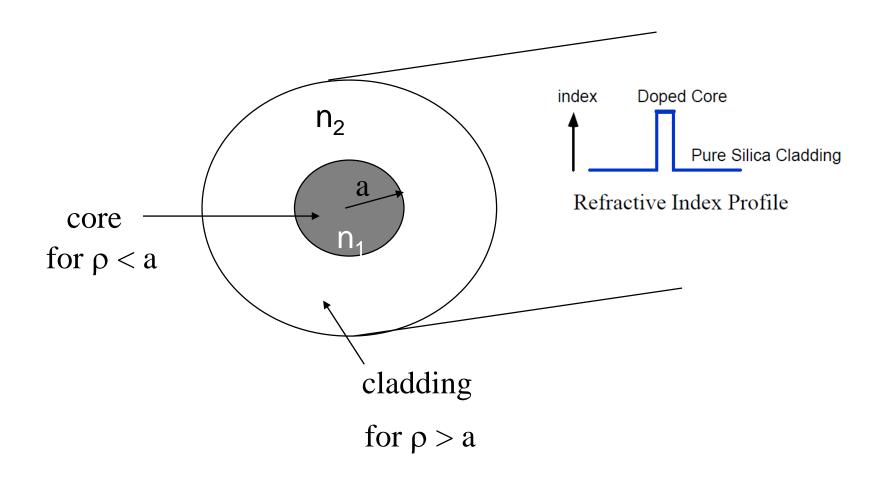
Khanh Kieu
College of Optical Sciences,
University of Arizona
kkieu@optics.arizona.edu
Meinel building R.626

Announcements

➤ Homework #4 is assigned, due March 25th

Fiber dispersion and compensation

- Review of fiber modes
- Sources of dispersion
 - » Modal dispersion
 - » Material dispersion
 - » Waveguide dispersion
 - » Polarization dispersion
 - » Nonlinear dispersion
- Dispersion compensation techniques
 - Dispersion engineered fibers
 - » Pre-chirp technique
 - Dispersion compensating fibers
 - Chirped fiber Bragg grating
 - Tunable dispersion compensation



Maxwell's equations in the Fourier domain lead to

$$\nabla^2 \tilde{\mathbf{E}} + n^2(\boldsymbol{\omega}) k_0^2 \tilde{\mathbf{E}} = 0.$$

 $n=n_1$ inside the core but changes to n_2 in the cladding.

- ightharpoonup Useful to work in cylindrical coordinates ho , ϕ , z.
 - Common to choose E_z and H_z as independent components.
- \triangleright Equation for E_z in cylindrical coordinates:

$$\frac{\partial^2 E_z}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial E_z}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 E_z}{\partial \phi^2} + \frac{\partial^2 E_z}{\partial z^2} + n^2 k_0^2 E_z = 0.$$

 $\succ H_z$ satisfies the same equation.

Use the method of separation of variables:

$$E_z(\rho, \phi, z) = F(\rho)\Phi(\phi)Z(z).$$

We then obtain three ODEs:

$$d^{2}Z/dz^{2} + \beta^{2}Z = 0,$$

$$d^{2}\Phi/d\phi^{2} + m^{2}\Phi = 0,$$

$$\frac{d^{2}F}{d\rho^{2}} + \frac{1}{\rho}\frac{dF}{d\rho} + \left(n^{2}k_{0}^{2} - \beta^{2} - \frac{m^{2}}{\rho^{2}}\right)F = 0.$$

 \triangleright β and m are two constants (m must be an integer).

First two equations can be solved easily to obtain

$$Z(z) = \exp(i\beta z), \qquad \Phi(\phi) = \exp(im\phi).$$

 \triangleright $F(\rho)$ satisfies the Bessel equation.

 \triangleright General solution for E_z and H_z :

$$E_{z} = \begin{cases} AJ_{m}(p\rho) \exp(im\phi) \exp(i\beta z); & \rho \leq a, \\ CK_{m}(q\rho) \exp(im\phi) \exp(i\beta z); & \rho > a. \end{cases}$$

$$H_{z} = \begin{cases} BJ_{m}(p\rho) \exp(im\phi) \exp(i\beta z); & \rho \leq a, \\ DK_{m}(q\rho) \exp(im\phi) \exp(i\beta z); & \rho \leq a, \\ DK_{m}(q\rho) \exp(im\phi) \exp(i\beta z); & \rho > a. \end{cases}$$

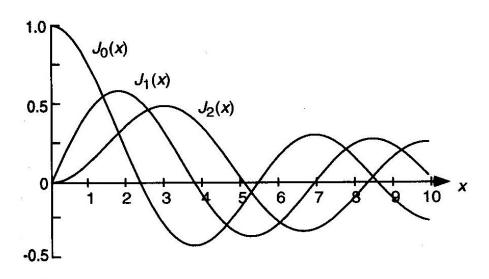
$$p^{2} = n_{1}^{2}k_{0}^{2} - \beta^{2}, \quad q^{2} = \beta^{2} - n_{2}^{2}k_{0}^{2}.$$

 \triangleright Other components can be written in terms of E_z and H_z :

$$\begin{split} E_{\rho} &= \frac{i}{p^2} \left(\beta \frac{\partial E_z}{\partial \rho} + \mu_0 \frac{\omega}{\rho} \frac{\partial H_z}{\partial \phi} \right), \qquad E_{\phi} &= \frac{i}{p^2} \left(\frac{\beta}{\rho} \frac{\partial E_z}{\partial \phi} - \mu_0 \omega \frac{\partial H_z}{\partial \rho} \right), \\ H_{\rho} &= \frac{i}{p^2} \left(\beta \frac{\partial H_z}{\partial \rho} - \varepsilon_0 n^2 \frac{\omega}{\rho} \frac{\partial E_z}{\partial \phi} \right), \qquad H_{\phi} &= \frac{i}{p^2} \left(\frac{\beta}{\rho} \frac{\partial H_z}{\partial \phi} + \varepsilon_0 n^2 \omega \frac{\partial E_z}{\partial \rho} \right). \end{split}$$

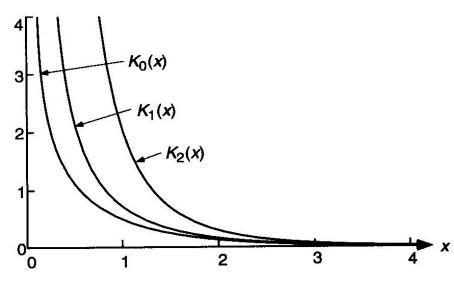
Bessel function basics

Bessel functions of the first kind



$$u(r) \propto J_l(k_T r)$$
 (core)

Modified Bessel functions of the second kind



$$u(r) = K_l(gr)$$
 (cladding)

Eigen-value equation

- Boundary conditions: E_z , H_z , E_ϕ , and H_ϕ should be continuous across the *core–cladding interface*.
- Continuity of E_z and H_z at $\rho = a$ leads to $AJ_m(pa) = CK_m(qa)$, $BJ_m(pa) = DK_m(qa)$.

Continuity of E_{ϕ} and H_{ϕ} provides two more equations.

> Four equations lead to the eigenvalue equation

$$\begin{split} \left[\frac{J'_m(pa)}{pJ_m(pa)} + \frac{K'_m(qa)}{qK_m(qa)} \right] \left[\frac{J'_m(pa)}{pJ_m(pa)} + \frac{n_2^2}{n_1^2} \frac{K'_m(qa)}{qK_m(qa)} \right] \\ &= \frac{m^2}{a^2} \left(\frac{1}{p^2} + \frac{1}{q^2} \right) \left(\frac{1}{p^2} + \frac{n_2^2}{n_1^2} \frac{1}{q^2} \right) \\ p^2 &= n_1^2 k_0^2 - \beta^2, \quad q^2 = \beta^2 - n_2^2 k_0^2. \end{split}$$

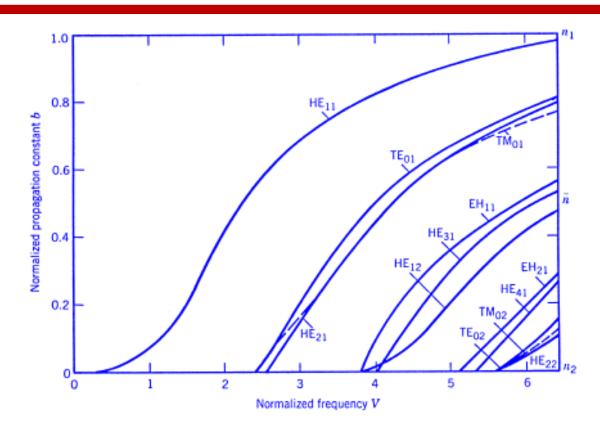
Eigen-value equation

- Eigenvalue equation involves Bessel functions and their derivatives. It needs to be solved numerically.
- Noting that $p^2+q^2=(n_1^2-n_2^2)k_0^2$, we introduce the dimensionless V parameter as

$$V = k_0 a \sqrt{n_1^2 - n_2^2}.$$

- \triangleright Multiple solutions for β for a given value of V.
- Each solution represents an optical mode.
- \triangleright Number of modes increases rapidly with V parameter.
- Figure 1.2 Effective mode index $\bar{n} = \beta/k_0$ lies between n_1 and n_2 for all bound modes.

Eigen-value equation



Useful to introduce a normalized quantity

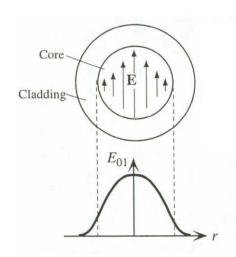
$$b = (\bar{n} - n_2)/(n_1 - n_2), \quad (0 < b < 1)$$

 \blacktriangleright Modes quantified through $\beta(\omega)$ or b(V).

Fundamental modes

- \triangleright Single-mode fibers require V < 2.405 (first zero of J_0).
 - They transport light through the fundamental HE_{11} mode.
- ightharpoonup This mode is almost linearly polarized ($|E_z|^2 \ll |E_x|^2$)

$$E_x(\rho,\phi,z) = \begin{cases} A[J_0(p\rho)/J_0(pa)]e^{i\beta z}; & \rho \leq a, \\ A[K_0(q\rho)/K_0(qa)]e^{i\beta z}; & \rho > a. \end{cases}$$

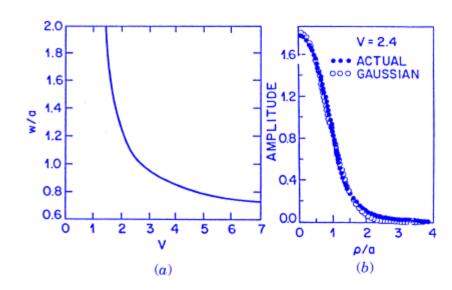


Fundamental modes

- Use of Bessel functions is not always practical.
- It is possible to approximate spatial distribution of HE_{11} mode with a Gaussian for V in the range 1 to 2.5.

$$E_x(\rho, \phi, z) \approx A \exp(-\rho^2/w^2)e^{i\beta z}$$
.

Spot size w depends on V parameter.



Fundamental modes

- > Spot size: $w/a \approx 0.65 + 1.619V^{-3/2} + 2.879V^{-6}$.
- Mode index:

$$\bar{n} = n_2 + b(n_1 - n_2) \approx n_2(1 + b\Delta),$$

 $b(V) \approx (1.1428 - 0.9960/V)^2.$

Confinement factor:

$$\Gamma = \frac{P_{\text{core}}}{P_{\text{total}}} = \frac{\int_0^a |E_x|^2 \rho \, d\rho}{\int_0^\infty |E_x|^2 \rho \, d\rho} = 1 - \exp\left(-\frac{2a^2}{w^2}\right).$$

 $\Gamma \approx 0.8$ for V = 2 but drops to 0.2 for V = 1.

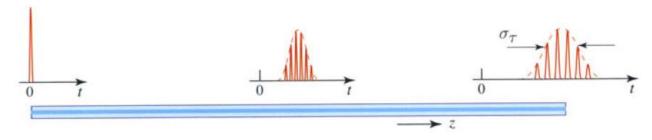
 \triangleright Mode properties completely specified if V parameter is known

Sources of dispersion in optical fiber

- Modal dispersion
 - Occurs in multimode fibers coming from differences in group velocity for different modes
- Material dispersion
 - Results from the wavelength dependence of the bulk refractive index
- Waveguide dispersion
 - Results from the wavelength dependence of the effective index in a waveguide
 - Material + waveguide dispersion is termed chromatic dispersion
- Polarization mode dispersion
 - Results from the fact that different polarizations travel at different speeds due to small birefringence that is present
- Nonlinear dispersion an example is self-phase modulation

Modal dispersion

- Modal dispersion occurs in multimode fibers as a result of differences in the group velocities of the various modes.
- ➤ A single pulse of light entering an M-mode fiber spreads into M pulses.



Estimate of pulse spread

$$\sigma_{\tau} = \frac{1}{2} \left(\frac{L}{v_{\min}} - \frac{L}{v_{\max}} \right),$$

– Where v_{min} and v_{max} are the smallest and largest group velocity of the modes.

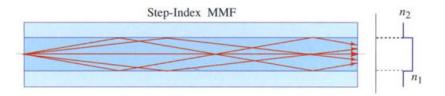
Modal dispersion

For multimode step-index fiber,

$$v_{\min} \approx c_1 (1 - \Delta), \quad v_{\max} \approx c_1, \quad \Delta = (n_1^2 - n_2^2) / 2n_1^2$$
 (see

(see chapter 9 S&T)

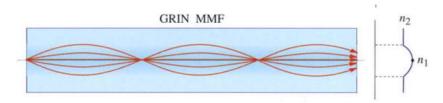
$$\sigma_{\tau} \approx \frac{L\Delta}{2c_1}$$



For multimode graded-index fiber,

$$v_{\rm min} \approx c_1 (1 - \Delta^2 / 2), \quad v_{\rm max} \approx c_1, \quad \Delta = (n_1^2 - n_2^2) / 2n_1^2$$
 (see chapter 9 S&T)

$$\sigma_{\tau} \approx \frac{L\Delta^2}{4c_1}$$



Material dispersion

Spread of wave packet after traveling a distance L through a dispersive material

$$\Delta \tau = \frac{L}{c} \left(N_{g}(\lambda_{1}) - N_{g}(\lambda_{2}) \right) = \frac{L}{c} \Delta N_{g} = \frac{L}{c} \frac{dN_{g}}{d\lambda} \Delta \lambda$$

Since
$$\frac{dN_g}{d\lambda} = \frac{d}{d\lambda}(n - \lambda \frac{dn}{d\lambda}) = -\lambda \frac{d^2n}{d\lambda^2}$$

We get
$$\Delta \tau = -\lambda \frac{d^2 n}{d\lambda^2} \frac{L}{c} \Delta \lambda$$
 where

$$D_M = -\frac{\lambda}{c} \frac{\partial^2 n}{\partial \lambda^2}$$
 is the material dispersion parameter

$$\Delta \tau = D_m *L *\Delta \lambda$$

Waveguide dispersion

In single-mode fibers the group delay, τ_g , determines the transit time of a pulse traveling through a unit length of fiber. To get the waveguide dispersion we want to express the group delay in terms of normalized parameters, b and V:

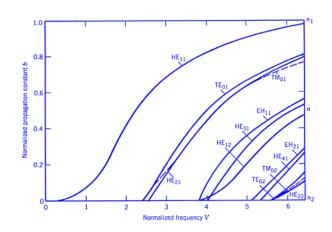
Normalized propagation constant:

$$b = \frac{\beta / k_0 - n_{clad}}{n_{core} - n_{clad}}$$

Normalized frequency:

$$V = \frac{2\pi a}{\lambda_0} \sqrt{n_{core}^2 - n_{clad}^2}$$

$$\tau_{g} = \frac{d\beta}{d\omega} = \frac{d\beta}{dk_{0}} \frac{dk_{0}}{d\omega} = \frac{1}{c} \frac{d\beta}{dk_{0}}.$$



Using normalized parameters:

$$\frac{d\beta}{dk_0} = \frac{d\beta}{dV} \frac{dV}{dk_0} = \frac{d\beta}{dV} \frac{V}{k_0}.$$

We get:
$$\tau_g = \frac{1}{c} \frac{d\beta}{dk_0} = \frac{1}{c} \frac{V}{k_0} \frac{d\beta}{dV}$$
.

Waveguide dispersion

Defining
$$\Delta = \frac{n_{core} - n_{clad}}{n_{core}}$$
 and with $\beta = \left[b(n_{core} - n_{clad}) + n_{clad}\right]k_0 \approx k_0 n_{clad} (1 + b\Delta)$ (when Δ is small).

$$\tau_{\rm g} = \frac{1}{c} \frac{V}{k_0} \frac{d}{dV} \left[k_0 n_{\rm clad} \left(1 + b \Delta \right) \right]$$

$$= \frac{1}{c} \frac{V}{k_0} \frac{d(k_0 n_{\rm clad})}{dV} + \frac{1}{c} \frac{V}{k_0} \frac{d(b \Delta k_0 n_{\rm clad})}{dV}$$

$$\tau_{\rm m} : \text{material delay}$$

$$\tau_W = \frac{1}{c} \frac{V}{k_0} \frac{d(b\Delta k_0 n_{clad})}{dV}$$
. Noting that $V = \sqrt{2\Delta n_{clad}} k_0 a$, we get:

$$\tau_W = \frac{1}{c} n_{clad} \Delta \frac{d(bV)}{dV}$$
, from which we get get the waveguide dispersion

$$\frac{d\tau_W}{dV} = \frac{1}{c} n_{clad} \Delta \frac{d^2(bV)}{dV^2}. \quad \text{With } dV = a \sqrt{n_{core}^2 - n_{clad}^2} dk_0 \text{ and } d\lambda = -\lambda \frac{dk_0}{k_0},$$

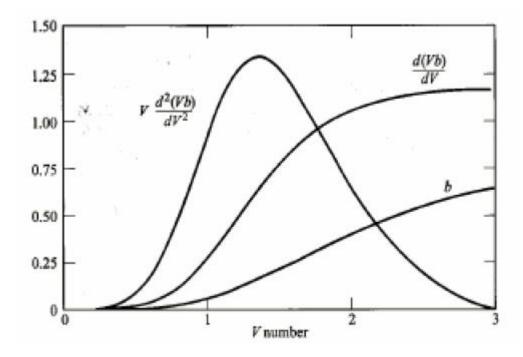
we finally get:

$$\frac{d\tau_{W}}{d\lambda} = -\frac{n_{clad}\Delta}{c\lambda}V\frac{d^{2}(bV)}{dV^{2}}.$$
 Waveguide dispersion!

Note: Here we have neglected the dependence of Δ on k_0 , which is negligibly small.

Waveguide dispersion

b, d(Vb)/dV and $V\frac{d^2(Vb)}{dV^2}$ as a function of the V number:



Page 113, in Optical Fiber Communications, Gerd Keiser, third edition, McGraw Hill, 2000.

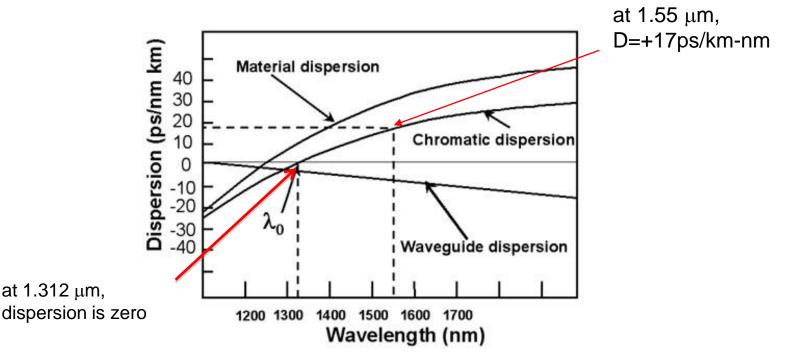
at 1.312 μm,

Chromatic dispersion of SMF

Chromatic dispersion is the combination of material and waveguide dispersion in single-mode fiber (made of fused silica)

$$D = -\frac{\lambda}{c} \frac{d^{2} n_{core}}{d\lambda^{2}} - \frac{n_{core} \Delta}{c\lambda} V \frac{d^{2} (Vb)}{dV^{2}}$$

$$(D_{Material}) \qquad (D_{Waveguide})$$



D. Gloge, "Dispersion in weakly guiding fibers," Appl. Opt. 10, pp. 2442-2445, 1971

Dispersive pulse broadening

$$v_g = (d\beta / d\omega)^{-1}$$

Pulse broadening ΔT when spectral width of the pulse is $\Delta \omega$:

$$\Delta T = \frac{dT}{d\omega} \Delta \omega = \frac{d}{d\omega} \left(\frac{L}{v_{g}} \right) \Delta \omega = L \frac{d^{2}\beta}{d\omega^{2}} \Delta \omega$$

 $\frac{d^2\beta}{d\omega^2}$ is the Group Velocity
Dispersion (GVD) parameter

With
$$\omega = \frac{2\pi c}{\lambda}$$
 and $\Delta \omega = \left(-\frac{2\pi c}{\lambda^2}\right)\Delta \lambda$

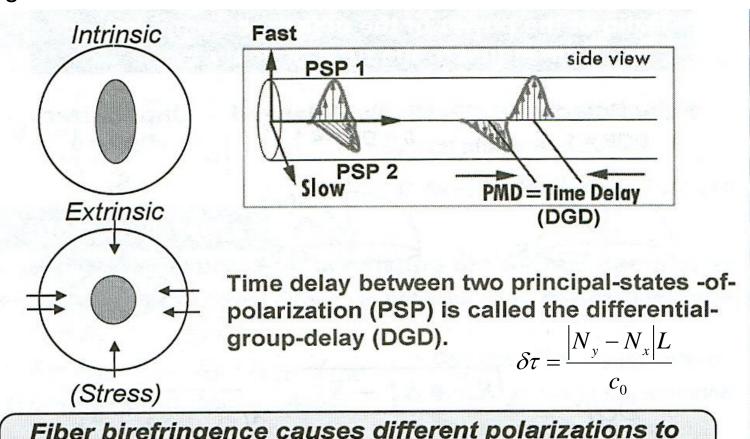
We get:
$$\Delta T = \frac{d}{d\lambda} \left(\frac{L}{v_g} \right) \Delta \lambda = DL \Delta \lambda$$

Here D is the *dispersion parameter*: [expressed in units of ps/(km-nm)]

$$D = \frac{d}{d\lambda} \left(\frac{1}{v_g} \right) = -\frac{2\pi c}{\lambda^2} \frac{d^2 \beta}{d\omega^2}$$

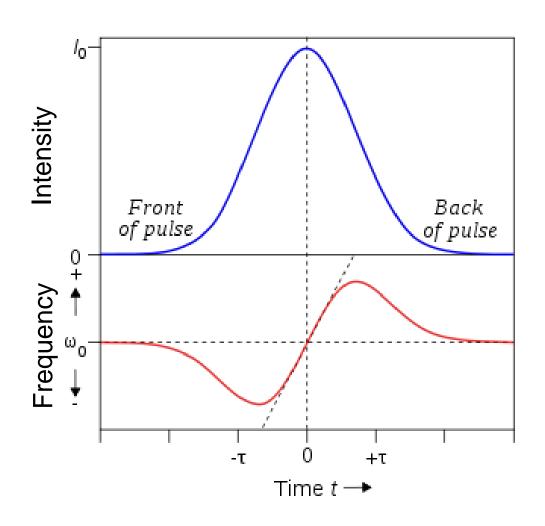
Polarization mode dispersion (PMD)

LP₀₁ has two polarization modes - Degeneracy is removed by birefringence.



Fiber birefringence causes different polarizations to propagate at different speeds

Nonlinear dispersion: Self phase modulation



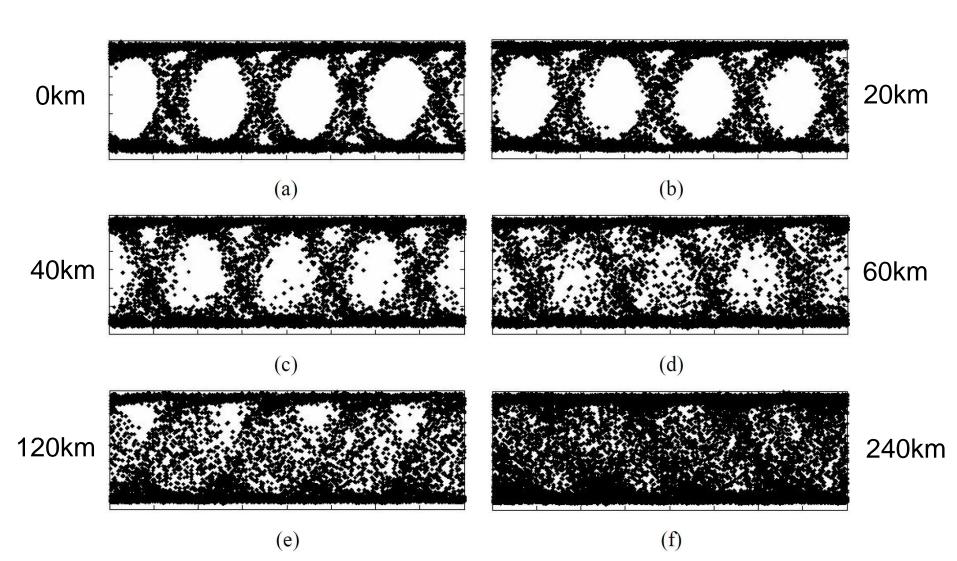
$$n(t) = n_o + n_2 I(t)$$

$$W(t) = W_0 - \frac{2\rho L}{I_0} \frac{dn(I)}{dt}$$

Nonlinearity results in creating a frequency chirp in the pulse. For a Gaussian pulse we have

$$W(t) = W_0 + \frac{4\rho L n_2 I_0}{I_0 t^2} t \exp_{\stackrel{\circ}{e}}^{\stackrel{\circ}{e}} \frac{-t^2 \ddot{0}}{t^2 \ddot{\theta}}$$

Dispersive pulse broadening



Lee's PhD thesis

Dispersion compensation

- Pre-chirp technique
- Dispersion engineered fibers
- Dispersion compensating fibers
- Chirped fiber Bragg grating
- Tunable dispersion compensation

Pre-chirp technique

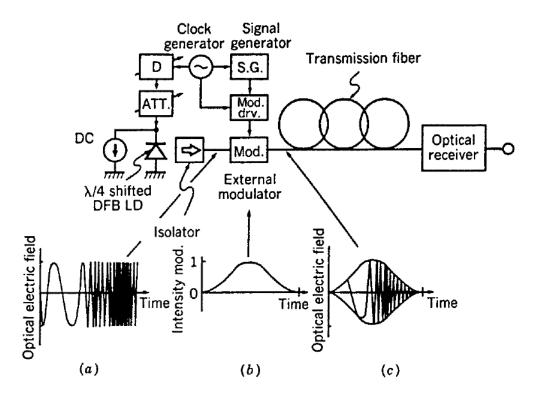
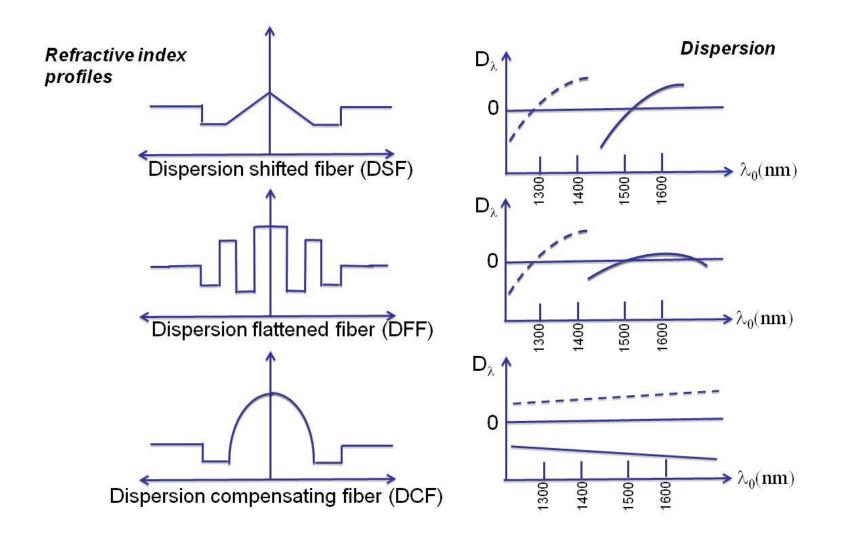
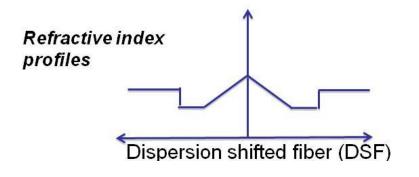


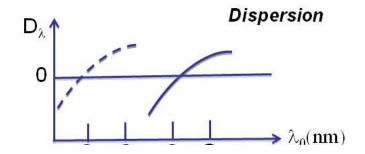
Figure 7.1: Schematic of the prechirp technique used for dispersion compensation: (a) FM output of the DFB laser; (b) pulse shape produced by external modulator; and (c) prechirped pulse used for signal transmission. (After Ref. [9]; © 1994 IEEE; reprinted with permission.)

Dispersion engineered fiber

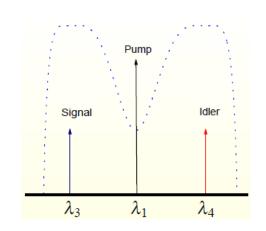


Dispersion engineered fiber

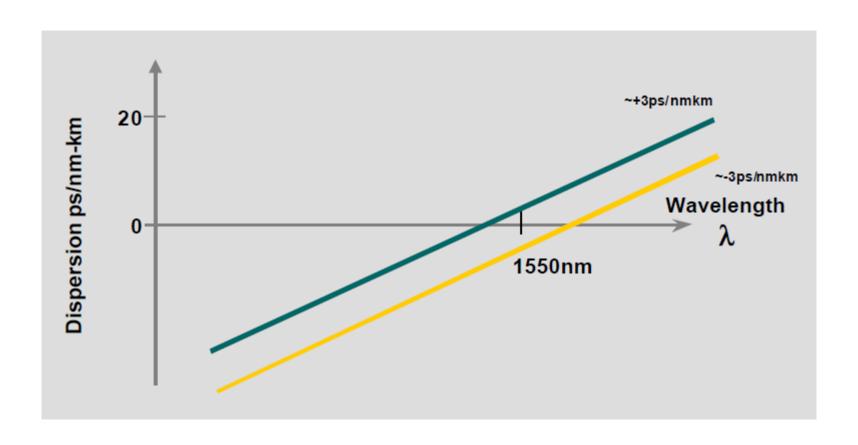




- No dispersion at 1550nm
- But strong Four-Wave-Mixing cross-talk
- Need non-zero dispersion shifted fibers



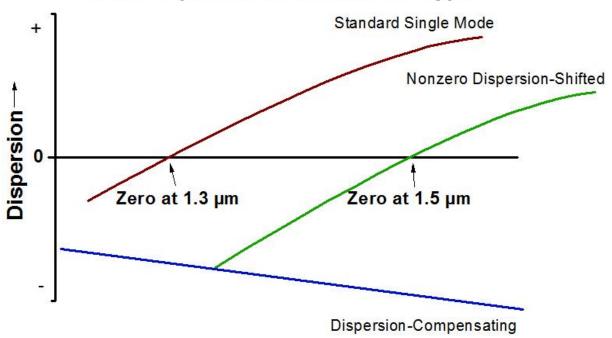
Dispersion engineered fiber

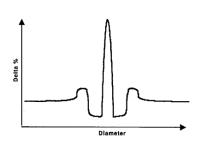


Non-zero dispersion shifted fibers

Dispersion compensating fibers

Total Dispersion in Several Fiber Types

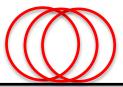




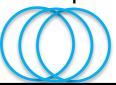
Typical index profile of a DCF

Dispersion compensating fibers

Standard fiber



Dispersion compensating fiber



$$\beta_{21}L_1 + \beta_{22}L_2 = 0$$
, or

$$D_1 L_1 + D_2 L_2 = 0.$$

DCF modules

Advantage:

- Fiber format
- Low cost
- Broadband

Disadvantage:

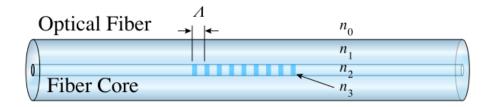
- Small mode field diameter
- Higher loss

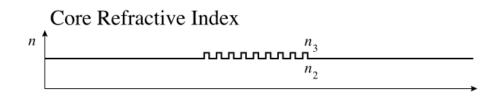
Chirped fiber Bragg grating

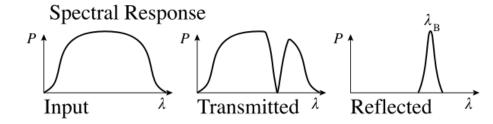
Fiber Bragg Grating

Bragg condition:

$$\lambda_B = 2n_e\Lambda$$

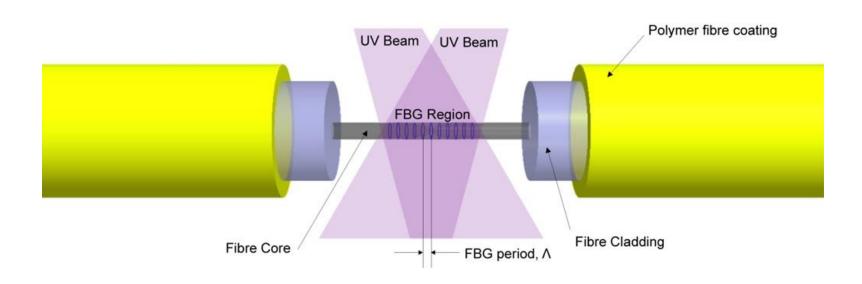




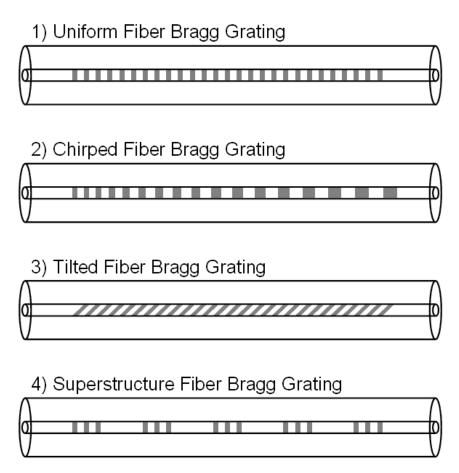


Chirped fiber Bragg grating

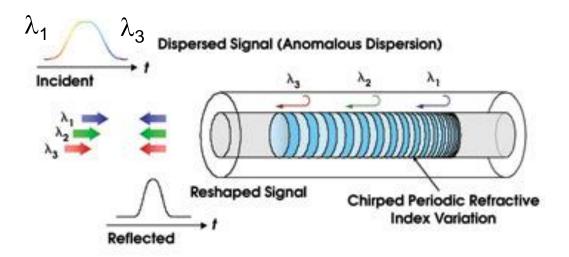
How to make fiber Bragg gratings?



Types of fiber Bragg grating



Chirped fiber Bragg grating



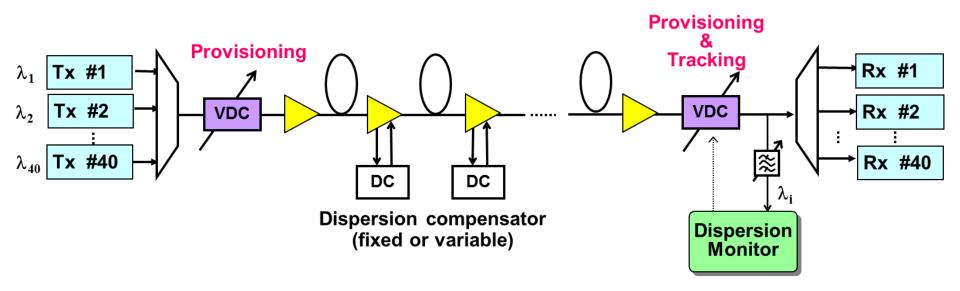
Advantage:

- Low cost
- Low loss

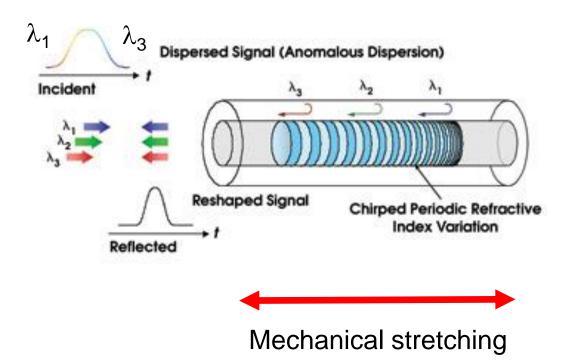
Disadvantage:

Narrow band

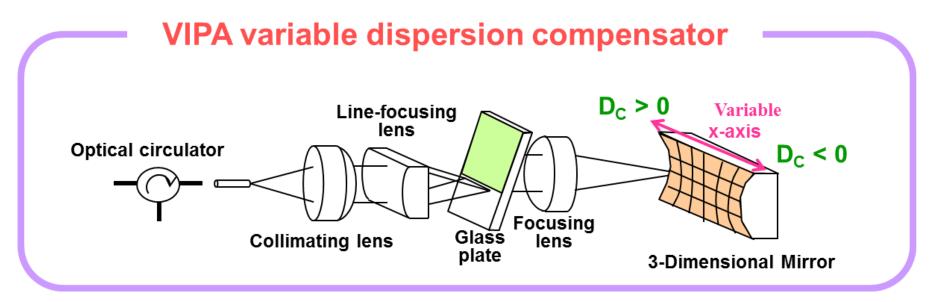
- Provide adjustable dispersion
- Compensate residual dispersion



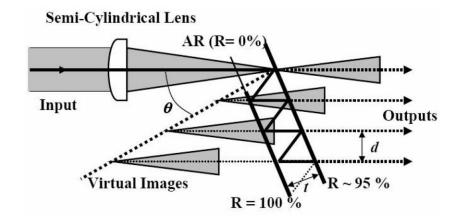
- Provide adjustable dispersion
- Compensate residual dispersion

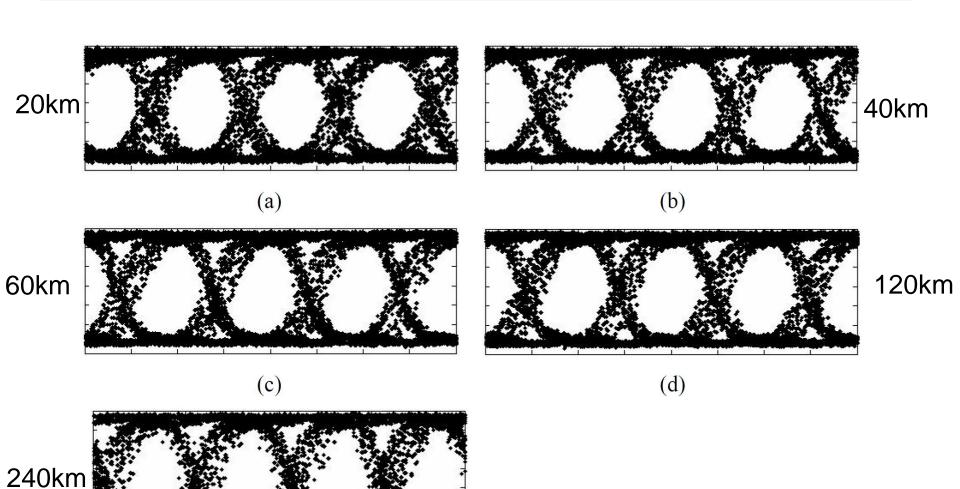






VIPA: Virtually Imaged Phased Array





(f)

Lee's PhD thesis