Propagation loss in optical fibers
Fiber optics: Basics

Types of fiber by construction:

- step index
- graded index
- PM fiber
- photonic crystal fiber
- multi-core fiber

Types of fiber by functionality:

- passive fibers
- active fibers
Fabrication methods

Modified chemical vapor deposition method
Fabrication methods: active fibers

MCVD process

Nano-particle vapor deposition (Liekkki)
Fabrication methods: active fibers

Rod-in-tube method: UoA
Project 2: Fiber loss measurement

Goal: Fiber attenuation measurement using cutback method

\[\alpha = \frac{1}{L} 10 \log_{10} \frac{P(0)}{P(L)} \]
Project 2: Fiber loss measurement
Project 2: Fiber loss measurement

Experimental equipment:

- Multimode fiber (to be used with the HeNe source), singlemode fiber (SMF28)
- Razor blade, Striper, Hand fiber cleaver, Fiber cleaver
- Temporary fiber connector
- Microscope
- He-Ne Laser source [1.5mW at 633nm]
- Semiconductor laser source with multiple output wavelengths (1310nm, 1480nm, 1550nm)
- Optical power meter (EXFO), Silicon detector to be used with the HeNe laser
- Mode scrambler
- **Arc fusion splicer** (FSM-40S), special fusion splicers (PM, filament)
Project 2: Fiber loss measurement

From top left to bottom right: He-Ne laser source, power meter, mode scrambler, multi wavelength laser source, fusion splicer
Project 2: Fiber loss measurement

Skills learned:

- Fiber stripping and cleaning
- Fiber end preparation for power measurement (cleaving)
- Coupling light into multimode fiber
- Fiber splicing (with arc fusion splicer)
- Semiconductor laser and fiber connector
- Use of laser power meter
- Cutback method for waveguide loss measurement
Project 2: Fiber loss measurement

Attenuation coefficient [dB/km] for SMF28

\(\alpha [\text{dB/km}] \) vs. \(\lambda [\text{nm}] \)
Light-matter interactions
Light-matter interactions

- Refraction, reflection
- Absorption
- Scattering: Rayleigh, Brillouin, Raman
- Amplification
- Frequency generation: SHG, FWM, SPM…
- ……
Absorption of electromagnetic radiation is the way by which the energy of a photon is taken up by matter

What can absorb light?
Absorption of electromagnetic radiation is the way by which the energy of a photon is taken up by matter.

What can absorb light?

Electrons, molecules (through vibration and rotation), excitons…
What happens when a photon is absorbed?

- Heat generation
- Fluorescence
- Transfer energy to nearby atoms, molecules (FRET)
- Ionization (spie.org)
Light scattering

Rayleigh scattering is one of the dominant sources of loss in optical fibers.

Light, λ

Object

$D \ll \lambda$: Rayleigh scattering

$D \sim \lambda$: Mie scattering

$D \gg \lambda$: Geometrical scattering
Rayleigh scattering

$I(\theta) \sim D^6(1 + \cos^2(\theta))/\lambda^4$

(source: Wikipedia)
Propagation loss in optical fibers

Fiber Attenuation Characteristic

- Rayleigh Scattering
- UV Absorption
- OH Absorption Peaks in Actual Fiber Attenuation Curve

Wavelength in Nanometers (nm)

- S-band: 1460-1530 nm
- L-band: 1565-1625 nm
- C-band: 1530-1565 nm

Attenuation levels:
- 2.0 dB/Km
- 0.5 dB/Km
- 0.2 dB/Km
Methods of measuring absorption spectrum

• Spectrophotometers

• Optical Spectrum Analyzers, Monochromators

• Absorption spectrum measurement with tunable lasers

• Fourier Transform Spectrometers

• Frequency –to-Time Conversion Technique
Spectrophotometers

Schematic diagram of the U-2001 UV/Visible Spectrophotometer
Optical Spectrum Analyzers
Measure absorption spectrum with a tunable laser

Very high resolution

Reference

Sample

Detector

Detector

Absorption spectrum and Cyanine (H13C14N)
A high-resolution spectrum of CO$_2$ in the near-IR was obtained using a Fourier-transform spectrometer (laserfocusworld.org)
Frequency –to-Time Conversion Technique

Applications of absorption

Is absorption good or bad?
Applications of absorption

Linear absorption:
- Photodetectors
- Sensing
- Laser frequency stabilization
-

Nonlinear absorption:
- Saturable absorbers
- Optical limiting
- Multi-photon absorption
-
Propagation loss in optical fibers

Current loss is < 0.2dB/km for singlemode fiber working around 1550nm

Figure 0.3. Progress in optical fiber transmission. The last two data points represent results near the theoretical limits at 0.85 and 1.55 μm.
Fiber optics telecommunication

1. Low loss optical fiber based on fused silica
2. Compact, low-cost diode lasers
Fiber optics telecommunication

Dielectric-fibre surface waveguides for optical frequencies

Synopsis

A dielectric fibre with a refractive index higher than its surrounding region is a form of dielectric waveguide which represents a possible medium for the guided transmission of energy at optical frequencies. The particular type of dielectric-fibre waveguide discussed is one with a circular cross-section. The choice of the mode of propagation for a fibre waveguide used for communication purposes is governed by consideration of loss characteristics and information capacity. Dielectric loss, bending loss and radiation loss are discussed, and mode stability, dispersion and power handling are examined with respect to information capacity. Physical-realisation aspects are also discussed. Experimental investigations at both optical and microwave wavelengths are included.

Predict the loss in optical fiber could be < 20dB/km

Loss was ~1000dB/km at that time
Questions for thoughts

• What are the techniques to mitigate propagation loss in optical fibers?

• In principle, can we create an optical fiber with zero loss?

• What does a scientist need to do to win the Nobel prize?

• Since optical fiber has such a low propagation loss, could it be a good platform to transfer energy (like the electrical grid) to home?

• Fiber optics communication to other planets (Calculate the propagation loss of an optical signal traveling through an optical fiber connecting the earth and the moon)?

• Can we use an optical fiber to transmit sunlight from one side of the earth to the other?