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Airy’s pattern
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Aberration
From the Latin, aberrare, to wander from; Latin, ab, away,

errare, to wander.

Symmetry properties
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Early optics

* Telescope

* Microscope and polarizing microscope
 Camera obscura

 Human eye

* The understanding of imaging defects in
these optics lead to the discovery of

aberrations
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Historical aspects

* How the concept of aberration was
developed?

* From looking at the individual trees first,
and then to the forest

» Rather than looking at the forest first, and
then at the individual trees
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Dollond’s achromat
18t Century

 John Dollond’s achromatic doublet
became the novelty of the time.

* Alexis Claude Clairaut and Jean le Rond
d’'Alembert developed polynomial
expansions for longitudinal aberrations
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Early contributions from England

 Thomas Young

* George Airy

* John Herschel

* Henry Coddington
* William Wollaston

Late 1700’s to early 1800’s

John Herschel by
Julia Margaret Camegi®n
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Thomas Young's sketch of the images produced
by oblique rays passing through a lens, and at
different distances from the lens (through focus).

~1801
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The discovery of aberrations

* Axial chromatic aberration
» Spherical aberration

» Astigmatism
« Coma

* Field curvature and distortion
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Aberration effects

* Spherical, coma, and astigmatism affect
Image sharpness

* Field curvature and distortion change the
axial and lateral position of the point image
form the ideal position.
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Contributions from Germany

» Gauss first-order theory, 1839
« Seidel third-order theory, 1856
« Schwarzschild fifth-order theory, 1905

Their papers are translated into English from the German
and are found in the class web site
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Introduction to Aberrations
(Departures from ideal behavior)

« Central projection (collinear transformation) imaging as ideal
imaging (Gaussian and Newtonian equations)

» Aberrations as departures from ideal behavior

« Aberration metrics: wave deformation, angular aberration,
transverse ray aberration, longitudinal aberration

« Rays versus wave approach: combining aberrations with rays can
be quite difficult. With waves is a simple superposition.
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Symmetry

* Symmetry considerations are key to
understand aberrations

« Smoothness of physical properties:

— Surface
— Index of refraction
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|deal wavefront shape

* |deally wavefronts and rays converge to
Gaussian image points. This implies that
ideally wavefronts must be spherical and
rays must be homocentric.

Prof. Jose Sasian @

OPTI 518 College of O[;t-ical Sciences




Wavefront deformation
determination

« The wavefront deformation is determined by the use of a reference
sphere with center at the Gaussian image point and passing by the
exit pupil on-axis point.

“— Reference sphere
is centered at
Gaussian image
point
\\\ \+«—— Deformed wavefront
T\‘L Image plane
Exit pupil
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Aperture vector and ray detail

Pupil plane

W/

Wavefront— \| | «—— Aperture vector

«— Optical axis

~ «—Reference sphere
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Wavefront deformation

« Actual image degradation by an optical system implies
that Gaussian optics can not model accurately imaging.
In the wave picture for light propagation we notice that
geometrical wavefronts must be deformed from the ideal
spherical shape.
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Basic Reasoning: on-axis

* An axially symmetric system can only have an axially symmetric
wavefront deformation for an object point on-axis. In its simplest
form this deformation can be quadratic or quartic with respect to the
aperture. If the reference sphere is centered in the Gaussian image
point then the quadratic deformation can not be present for the
design wavelength.
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Basic Reasoning: off-axis

« For an object point that is off-axis the axial symmetry of the beam is
lost and is reduced to plane symmetry. Therefore for that off-axis
beam the wavefront deformation can have axial, plane, or double
plane symmetry.

O
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Wavefront deformation classification
according to symmetry

* The simplest plane symmetric wavefront deformation shapes
represent the primary aberrations. These are:

« Spherical aberration Axially symmetric

« Coma Plane symmetric

« Astigmatism Double plane symmetric
* Field curvature Axially symmetric

« Distortion Plane symmetric

« Chromatic change of focus Axially symmetric

« Chromatic change of magnification Plane symmetric
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Aberration forms:
graphics and symmetry considerations

Distortion

Field curvature

Focus

Focus
Astigmatism

Spherical

aberration Coma

On-axis ,

Spherical
aberration

Off-axis
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The wave aberration function

« The wave aberration function is a function of the field H and
aperture p vectors. H and p define uniquely a ray. Because this
function represents a scalar, which is the wavefront deformation at
the exit pupil, it depends on the dot product of the field and aperture
vectors. The assumed axial symmetry leads to a select set of terms.

W{H,py= 3 W1 p cos"

J.m,n

W(H,p,¢) =Wyl +Wpop” + W, Hpcos ¢+
WP + Wiy H p’ cos g+ W,y H p* cos” ¢+
W H p* + Wy H pos ¢+ W H* +

+...
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Rotational invariants
and additional plane symmetry
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The field and aperture vectors

The field vector has its foot at the center of the object plane and the
aperture vector has its foot at the center of the exit pupil. Both are

normalized. For convenience we draw the Gaussian image of the
field vector in the image plane.

Aperture and field vectors

I Aperture vector Field vector

!

Exit pupil Image plane
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Second-order terms and piston
terms

* Note that defocus W,, and the change of scale W,, terms
may not be needed because Gaussian optics accurately
predict the location and size of the image. The piston
terms W,,, and W,,, represent a uniform phase change
that does not degrade the image.

W(Hapa¢) =W H" + W™ + W, H pcos ¢+
Wy 0" + W3 H p’ cos ¢+ W, , H* p* cos” ¢+
+WopoH p° + Wy H’ pcos ¢+ W, H* +

+...
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Piston terms

| 1
Entrance Exit
pupil pupil

W (H, 5 =0) =Wy + Wy (H-H )+ Wy (H-HY + Wy (H-HY +

W= {
Entrance pupil point is the 2 @
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OPTI 518 College of Optlcal Sc1ences

TTTTTTTTTTTTTTTTTTTTTT



Prof. Jose Sasian
OPTI 518

Comments on aberrations

Note that the algebraic order of the terms as a function of the field
and aperture vectors is zero, second, fourth-order, etc.

To achieve sharp images with no mapping distortion an optical
system has its fourth-order aberrations zero or nearly zero.

Some simple systems are designed by formulas that relate fourth-
order aberrations.

The tip of the field vector indicates where a given ray originates
from.

The tip of the aperture vector indicates where the ray intersects
the exit pupil plane.
Note the organized way to present aberrations.

Note that we are looking at a single wavefront located at the exit
pupil. Actually, there is a train of wavefronts and it is a dynamic
process of light propagation.

@
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Review

The field and aperture vectors (scaled by the marginal ray height at the
exit pupil and the chief ray height at the image plane) and the angle between
them looking down the optical axis.

V- o) / 1_\‘ e
- I I|| ‘ij_._..r__________ . . / - \
rﬁ"":‘““}'nh T i ‘_\/T:'H \
\/ H“*-LH | Ve~ P |
i e \ |
Exit pupil el \ /

Image plane |

The field vector is located at the object plane.
The aperture vector is located at the exit pupil plane.
For convenience we draw the Gaussian
image of the field vector in the image plane.
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The construction of the aberration function

Assuming that the optical surfaces and that the matenials used to build a system are
smooth in their optical properties. that 1s, that are continuous and that have a continuous
first and second dernivative as a function of the field and aperture vectors. then one would
expect that the wavefront deformation itself would be a smooth function. There 1s no
reason for the wavefront to behave in a non-smooth manner when the optical properties
of the system are smooth. Therefore and under the circumstances of smoothness one can
use a Taylor expansion to describe the wavefront deformation.

In the case of axially symmetric systems the wavefront deformation must be a scalar
function of dot products of the field and aperture vectors, specifically H-H . H-p

and 0 - 0. These products only depend on the magmitude of the vectors and the angle
between them and are used to describe axial symmetry. Therefore. the wavefront

deformation. or as 1t 1s properly called. the wave aberration function W(H . p,) must have
the form.

wlH.p)=>w, \H-H (H-p]"-(0-p)

where the sub-indices j.m.n represent integer numbers, k=2j+m ./ =2n+m . and

W, ,, represent aberration coefficients.
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The aberration function can be rewritten using the magnitude of the vectors as,

W(H. p.cosd)=>W,, H-p' -cos™(¢)

[

Jmn

=Wy + WeH™ + Wy Hpcos(§)+ Wy 0° +
+ W0 + W5 Ho' coslg)+ Wy, H p° cos® (@) + Wy H' p* + T, H* peos(¢)+ W HY .

where ¢ 1s the angle between the field and aperture vectors.

The terms in the Taylor expansion represent aberrations, that 1s, basic forms in which the
wavefront can be deformed. The sum of all aberration terms produces the actual total
wavefront deformation. The order of an aberration term is given by 2-(j+m+ -"‘.‘J which

15 alwavs an even order. In the aberration funcrion the field and aperture vectors are
normalized so that when they are unity, the coefficients represent the maximum
amplitude of each aberration which 1s expressed 1 wavelengths. The sub indices £/ .m
in each coefficient indicate respectively the algebraic power of the field vector, the
aperture vector, and the cosine of the angle @ between these vectors.
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Wavefront aberrations
Aberration name/order | Vector form Algebraic form  [j [m|n
Zero-order
Uniform piston W oo Wi 0(0 |0
Second-order
Quadratic piston W [ﬁ’ . }_j) W, H* 110 |0
Magnification Wm(ﬁ . ‘5) W, Hpcos(g) 0|10
Focus }Tfm(ﬁ . ‘5] WszoP: 0|0 |1
Fourth-order,
Spherical aberration W5 )5)1 WP 01012
Coma W131(_ ' ﬁXﬁ P) WmHP3 CO‘*(@) 01 |1
Astigmatism W««n(— ‘5)3 W, H p cos™(p) |[0]2 |0
Field curvature Wﬂn[_ . H Xﬁ - p) Wz:nH:F’l 110 |1
Distortion W, ( 7 }:}‘Iﬁf . '5) WsuHSPCO"(‘Eé) 1|1 (0
- A v 4
Quartic piston W4m( ) H} W H 2(0 10
Sixth-order
Oblique spherical aberration Wun(_ Hz- ‘5]3 W,,H p* 1102
Coma W lH-B\H-5)p-5) | WmH o cos(p) [1]1 ]1
Astigmatism Wrﬂ[_ };}II_:; . ‘5)1 W,Hp cos’(¢) |12 |0
Field curvature W ( 7. H )3 {’5 ’5) W H 4};1 210 |1
Distortion Wn( 7. H "(I} 1‘_’) WsuHEP cogfgﬁ) 211 |0
2
Piston W (— i WsnoHG 3I(0 0
500
Spherical aberration W, (5 5)3 Woep® 01013
Un-named Wm(_ ‘EL—] B) W, Hp cos(g) 0f1 |2
Un-named Wz.u(_ ‘5)3 (5-5) W341H3,L34 coaz(.;ﬁ] 01211
Un-named Wsss(_ }—))3 W353H3P} coss[.;f-') 013 |0 @
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Aberration orders

Zeroth order

?-'
Second order

RD.
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FIGURE 1
Wave aberration shapes

Zero-order

WUUO

0
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Aberration function using vector
notation

W)= Y Wepl-AY (B -p) (5 p)

Jj.m.n

= Wy + Wogo(H - B )+ W, (H - 5)+ W, (5 5)

+ Wi (P B) + Wi\ H - pNp+ )+ W lH - 5

+ Wy (B H) (5 ) + Wy (H - HNH - p)+ W, (- A |

+ Wy \H-H)p-pY + Wyl -BNE - 5)p-p)+ W -HNE - )
Wool B -H) (5 p)+ W (H - A (B - p)+ Wy (- H

+Woo (B p) + Wi (H - p)p ) +Wou\H - ) (5 )+ Wogs (H - )
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Transit time and wavefront

b
OPL=[n-ds ~ OPL=n-s

m—\"-”
a a)

« The geometrical wavefront is defined as the locus of equal optical
path length (OPL). We have that n is the index of refraction and ds is
the element of arc length. In a homogenous media n is constant,
rays propagate in a straight line, and the optical path simplifies to a
sum; s represents the length of the rays as they go from one point to
the another. Insight about the OPL can be gained by dividing the
OPL by the speed of light. Since the index of refraction is the ratio of
the speed of light in vacuum c to the speed of light in the medium,
then the factor n/c is the inverse speed of light in the medium. The
term n/c is multiplied by the length s and the net result is a transit
time t. Thus the optical path length divided by the speed of light is
the transit time of a light particle traveling from point a to point b.

The wavefront is therefore the locus of all light particles with the

pror. SROGJLANSIt time. 0

OPTI 518 College of Optlcal Sc1ences
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Primary aberrations

Fourth-order wavefront aberration shapes
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Hamilton’s characteristic function
1828

V(x19y19219x09y0920)
B
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Summary

* Historical aspects

* Aberration definition

* Aberration metrics

* The aberration function

* From the general to the particular
 Hamilton’s work
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