Overview of Stray Light Part 1

Mary Turner

What IS stray light?

- What is stray light?
- Stray light refers to any unwanted light in an optical systems. Stray light is a problem in both imaging and non-imaging systems.
 - Generally concerned with light reaching the detector
- Stray light generally manifests itself in several different forms:
 - Ghosts
 - Scattered light
 - Straight paths due to improper baffling
 - Diffraction
 - Thermal emission

- Ghosts are images of bright sources
 - Usually out of focus
 - Caused by Fresnel reflections off the lens surfaces
 - Even orders of reflections can reach the image surface
 - Sources in or near the field of view can form ghosts
 - Sources outside the field of view must be considered
 - Small sources form images of the stop
 - Focused ghosts form images of the source
 - Reflection from sensor reimage on sensor

A near pupil ghost creates "haze"

Closest ghost pupil : -8.4708 at 4 then 1 Closest ghost focus : -20.4985 at 6 then 1

- Near ghost images form bright spots
 - Not a problem in Cooke

Copyright 2019 Mary G. Turner

Ghost Surf 1	reflection off Marginal 5.0000E+00	surface 3 then 1. F/# 5.737068	(GH003001.ZMX) RMS 3.5355E+00	
2	4.7160E+00	3.374901	3.3570E+00	
3	3.8259E+00	1.014969	2.7384E+00	
2	8.6647E-01	1.642769	5.7186E-01	
1	-1.2544E-01	1.706675	1.4356E-01	****
2	-1.0802E+00	1.055236	8.1124E-01	
3	-3.9268E+00	1.389939	2.8192E+00	
4	-4.2865E+00	0.698504	3.2338E+00	
5	-7.6869E+00	1.237208	6.5404E+00	
6	-8.8799E+00	1.407641	6.7523E+00	
7	-2.3872E+01	1.407641	1.7567E+01	
Marginal ray height :		: -23.8	-23.8723	
Chief ray height :			-16.0714	
Distance to ghost pupil:			-50.9613	
	nce to ghost foo		-67.2073	
Effective focal length : 14.0764				

Scattered light

- Scattering can allow out-of-field source energy to reach image:
 - Eliminating results in vignetting/obscuration of true field
 - Proper baffle design minimizes vignetting and improves rejection of scattered light
 - There will always be some vignetting if baffles are used
 - Paths may require one or many scatter interfaces
 - Baffle requirements change with source location:
 - Design must be evaluated over the range of viable conditions

Scattered light

• Optical and mechanical components contribute

• Here on-axis only for analysis

- Primary and Fresnels
 - 40um x 40um

Allowing for scattering effects

- Signal lost in the noise
 - More pixels on large detector would help some, but...

Direct paths

- Light from out-of-field sources can reach detector if baffles are not properly designed.
 - "Properly designed" involve tradeoffs

• https://www.camerahacker.com/Forums/Tips/Why_I_always_use_a_lens_hood.files.hidden/small_cropped%20light%20on%20lens.jpg

between center of image and the sun's position—even though sun is out of view.

Diffraction

- Unwanted grating orders
- Edge diffraction sends energy in unwanted directions

Edge diffraction

With spiders

https://thumbs.gfycat.com/PepperyAgreeableDevilfish-mobile.mp4

Gratings

Optical codes do not model gratings "physically"

Thermal emission

- All surfaces above OK emit are blackbody radiators
 - Emitted energy has spectral distribution

Why is stray light a problem?

- In imaging systems, stray light reduces the overall contrast in the image:
 - Overall background is increased
 - Details can be "washed out"
 - Glare can obscure the real image
 - Auto-focus systems may not work properly
 - False signal (positives and negatives) can be produced
 - Radiometric measurements will be inaccurate
 - Components can be damaged (or destroyed)

When is it a problem?

- Stray light is always a concern in systems that
 - Require high contrast
 - Image faint objects
 - Make radiometric measurements
 - Transfer high power (such as laser beams)

(And any system where it was completely ignored)

Stray light analysis

- A systematic process used to isolate any unwanted light on the detector.
 - How much is there?
 - How did it get there?
- Carefully performed stray light analysis allows the designer to
 - Quantitatively determine the performance degradation due to stray light
 - Are the performance metrics compromised?
 - Determine the appropriate method(s) to fix any necessary problems
 - Not all stray light is "worth" fixing

Stray light analysis

- Inherently nonsequential or unconstrained analysis
 - Fresnel reflections
 - Most sequential design programs can model to some level of accuracy
 - Good 1st step
 - Don't wait until design is finished
 - Surface scatter
 - Scatter or reflection from non-optical components
 - Tubes, spacers, baffles, physical aperture stop, etc
 - Out-of-field sources
 - Direct (oversize of optics)
 - Indirect (Fresnel, scatter)

Limits to the analysis

- Any analysis of stray light is limited by :
 - The ability to properly model scatter from optical and mechanical surfaces
 - Proper measurements of the scatter from all components must be made
 - Almost never the case in "real world"
 - · Estimates or generic data useful, but dangerous
 - The accuracy of the computer model
 - Modeling of all necessary optical, mechanical components
 - Tools in software used for the simulation
 - The time available to study the problem
 - Analysis runs take time
 - Analyzing the data takes time
 - An "infinite" number of possibilities exist...

A bit on stray light

- Most of the stray light issues can be found relatively quickly
- Most of the effort is spent looking for what was missed the first time
- Your customers will never be happy:
 - They are not happy if you find any problems:
 - Problems cost money to fix
 - They are not happy if you find no problems:
 - How much time and money did we waste to find nothing?
- There is a certain personal satisfaction a designer gets from knowing more fully that the design will work to the customers expectations (or better)