Overview of Stray Light
Part 1

Mary Turner
What IS stray light?

• What is stray light?
• Stray light refers to any unwanted light in an optical systems. Stray light is a problem in both imaging and non-imaging systems.
 • Generally concerned with light reaching the detector
• Stray light generally manifests itself in several different forms:
 • Ghosts
 • Scattered light
 • Straight paths due to improper baffling
 • Diffraction
 • Thermal emission
Ghosts

- Ghosts are images of bright sources
 - Usually out of focus
 - Caused by Fresnel reflections off the lens surfaces
 - Even orders of reflections can reach the image surface
 - Sources in or near the field of view can form ghosts
 - Sources outside the field of view must be considered
 - Small sources form images of the stop
 - Focused ghosts form images of the source
 - Reflection from sensor reimage on sensor
Ghosts

- A near pupil ghost creates “haze”
Ghosts

• Near ghost images form bright spots
 • Not a problem in Cooke
Ghosts

Ghost reflection off surface 3 then 1. (GH003001.ZMX)

<table>
<thead>
<tr>
<th>Surf</th>
<th>Marginal</th>
<th>F/#</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.0000E+00</td>
<td>5.737068</td>
<td>3.5355E+00</td>
</tr>
<tr>
<td>2</td>
<td>4.7160E+00</td>
<td>3.374901</td>
<td>3.3570E+00</td>
</tr>
<tr>
<td>3</td>
<td>3.8259E+00</td>
<td>1.014969</td>
<td>2.7384E+00</td>
</tr>
<tr>
<td>2</td>
<td>8.6647E-01</td>
<td>1.642769</td>
<td>5.7186E-01</td>
</tr>
<tr>
<td>1</td>
<td>-1.2544E-01</td>
<td>1.706675</td>
<td>1.4356E-01</td>
</tr>
<tr>
<td>2</td>
<td>-1.0802E+00</td>
<td>1.055236</td>
<td>8.1124E-01</td>
</tr>
<tr>
<td>3</td>
<td>-3.9268E+00</td>
<td>1.389939</td>
<td>2.8192E+00</td>
</tr>
<tr>
<td>4</td>
<td>-4.2865E+00</td>
<td>0.698504</td>
<td>3.2338E+00</td>
</tr>
<tr>
<td>5</td>
<td>-7.6869E+00</td>
<td>1.237208</td>
<td>6.5404E+00</td>
</tr>
<tr>
<td>6</td>
<td>-8.8799E+00</td>
<td>1.407641</td>
<td>6.7523E+00</td>
</tr>
<tr>
<td>7</td>
<td>-2.3872E+01</td>
<td>1.407641</td>
<td>1.7567E+01</td>
</tr>
</tbody>
</table>

Marginal ray height : -23.8723
Chief ray height : -16.0714
Distance to ghost pupil: -50.9613
Distance to ghost focus: -67.2073
Effective focal length : 14.0764

Copyright 2019 Mary G. Turner
Scattered light

• Scattering can allow out-of-field source energy to reach image:
 • Eliminating results in vignetting/obscurcation of true field
 • Proper baffle design minimizes vignetting and improves rejection of scattered light
 • There will always be some vignetting if baffles are used
 • Paths may require one or many scatter interfaces
 • Baffle requirements change with source location:
 • Design must be evaluated over the range of viable conditions
Scattered light

- Optical and mechanical components contribute
 - Here on-axis only for analysis
Stray light

- Primary and Fresnels
 - 40um x 40um
Stray light

• Allowing for scattering effects
Stray light

- Signal lost in the noise
 - More pixels on large detector would help some, but...
Direct paths

- Light from out-of-field sources can reach detector if baffles are not properly designed.
 - “Properly designed” involve tradeoffs
Stray light

- https://www.camerahacker.com/Forums/Tips/Why_I_always_use_a_lens_hood.files.hidden/small_cropped%20light%20on%20lens.jpg
Diffraction

- Unwanted grating orders
- Edge diffraction sends energy in unwanted directions
Edge diffraction

- With spiders

https://thumbs.gfycat.com/PeppyAgreeableDevilfish-mobile.mp4

Copyright 2019 Mary G. Turner
Gratings

- Optical codes do not model gratings “physically”
Thermal emission

• All surfaces above 0K emit as blackbody radiators
 • Emitted energy has spectral distribution
Why is stray light a problem?

• In imaging systems, stray light reduces the overall contrast in the image:
 • Overall background is increased
 • Details can be “washed out”
 • Glare can obscure the real image
 • Auto-focus systems may not work properly
 • False signal (positives and negatives) can be produced
 • Radiometric measurements will be inaccurate
 • Components can be damaged (or destroyed)
When is it a problem?

• Stray light is always a concern in systems that
 • Require high contrast
 • Image faint objects
 • Make radiometric measurements
 • Transfer high power (such as laser beams)

(And any system where it was completely ignored)
Stray light analysis

- A systematic process used to isolate any unwanted light on the detector.
 - How much is there?
 - How did it get there?

- Carefully performed stray light analysis allows the designer to
 - Quantitatively determine the performance degradation due to stray light
 - Are the performance metrics compromised?
 - Determine the appropriate method(s) to fix any necessary problems
 - Not all stray light is “worth” fixing
Stray light analysis

• Inherently nonsequential or unconstrained analysis
 • Fresnel reflections
 • Most sequential design programs can model to some level of accuracy
 • Good 1st step
 • Don’t wait until design is finished
 • Surface scatter
 • Scatter or reflection from non-optical components
 • Tubes, spacers, baffles, physical aperture stop, etc
• Out-of-field sources
 • Direct (oversize of optics)
 • Indirect (Fresnel, scatter)
Limits to the analysis

• Any analysis of stray light is limited by:
 • The ability to properly model scatter from optical and mechanical surfaces
 • Proper measurements of the scatter from all components must be made
 • Almost never the case in “real world”
 • Estimates or generic data useful, but dangerous
 • The accuracy of the computer model
 • Modeling of all necessary optical, mechanical components
 • Tools in software used for the simulation
 • The time available to study the problem
 • Analysis runs take time
 • Analyzing the data takes time
 • An “infinite” number of possibilities exist...
A bit on stray light

• Most of the stray light issues can be found relatively quickly
• Most of the effort is spent looking for what was missed the first time
• Your customers will never be happy:
 • They are not happy if you find any problems:
 • Problems cost money to fix
 • They are not happy if you find no problems:
 • How much time and money did we waste to find nothing?
• There is a certain personal satisfaction a designer gets from knowing more fully that the design will work to the customers expectations (or better)