## Ghost image analysis

Lens Design OPTI 696A



## **Ghost images**

Lens systems are designed to form an image according to an ideal model. Light that passes through the stop aperture forms the image. However, some light may not contribute to the formation of the intended image and reaches the image plane to degrade the image. This light is known as stray light, flare, veiling glare, and ghost images.

Ghost images of bright objects

Ghost images of the aperture stop

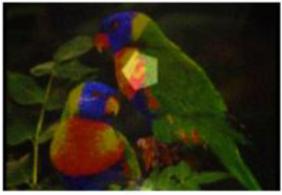
Ghost pupils



### **Ghost images**






#### Cell phone photo





### Ghost pupils



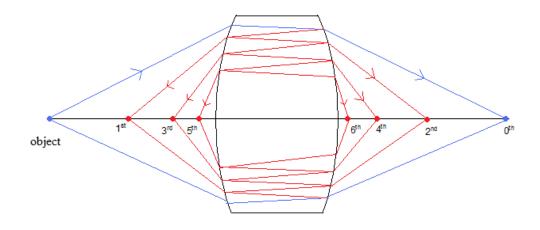




#### GHOST IMAGE ANALYSIS FOR OPTICAL SYSTEMS

Бу

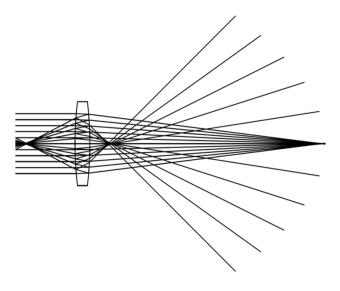
Rania H. Abd El-Maksoud


Copyright© Rania H. Abd El-Maksoud

A Dissertation Submitted to the Faculty of the

COLLEGE OF OPTICAL SCIENCES




## One, two, n bounces

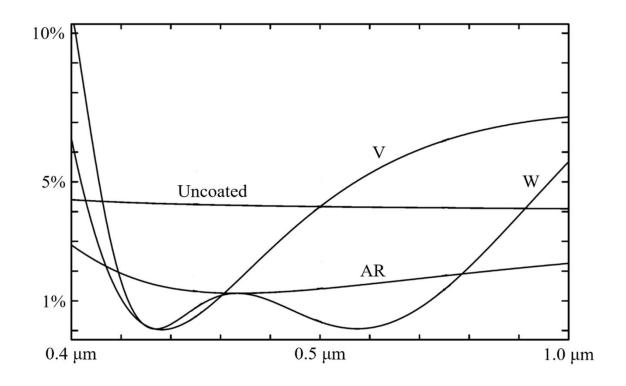


$$R = \left(\frac{n-1}{n+1}\right)^2$$



#### Number of two-bounce ghosts




A singlet lens can have a single two-bounce ghost, a two lens system can have six, two-bounce ghosts, a three lens system can have 15 two-bounce ghosts, and the number of two-bounce ghosts increases as

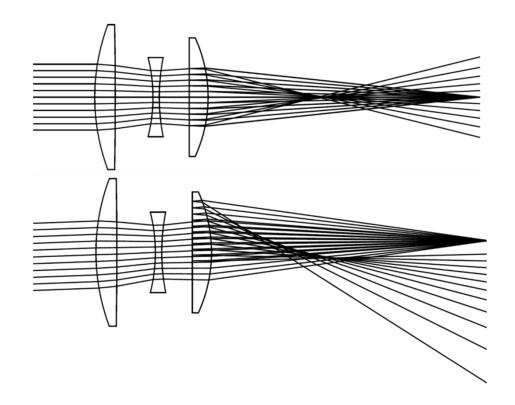
$$k(k-1)/2$$

where k is the number of optical surfaces



# Anti-reflection coatings

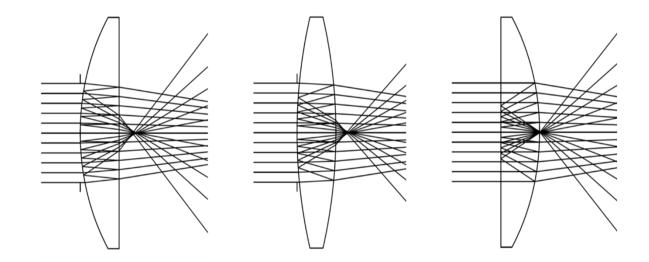





# First-order analysis

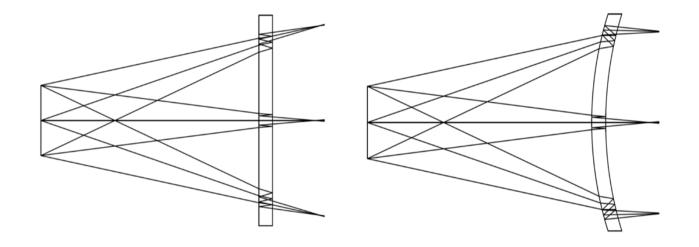
| First-order ghost analysis for a Cooke triplet lens |                               |                         |       |
|-----------------------------------------------------|-------------------------------|-------------------------|-------|
| Reflection<br>Surfaces                              | Distance to ghost pupil in mm | Distance to ghost in mm | F/#   |
| 2-1                                                 | -53.6                         | -54.7                   | 0.98  |
| 3-2                                                 | -73.8                         | -58.9                   | 1.42  |
| 3-1                                                 | -276.9                        | -65.63                  | 1.32  |
| 4-3                                                 | -54.5                         | -61.1                   | 0.75  |
| 4-2                                                 | -75.8                         | -87.5                   | 1.23  |
| 4-1                                                 | 160.1                         | -34.7                   | 1.43  |
| 5-4                                                 | 49.9                          | -34.9                   | 1.4   |
| 5-3                                                 | -60.6                         | -64.8                   | 0.98  |
| 5-2                                                 | -86.1                         | -101.4                  | 2.26  |
| 5-1                                                 | -32.6                         | -43.6                   | 1.25  |
| 6-5                                                 | -28.3                         | -40.4                   | 0.66  |
| 6-4                                                 | -40.1                         | -51.6                   | 0.97  |
| 6-3                                                 | -70.5                         | -53.7                   | 0.91  |
| 6-2                                                 | -180.2                        | -74.9                   | 0.95  |
| 6-1                                                 | -49.8                         | 1556.9                  | 103.8 |
| 7-6                                                 | -52.5                         | -51.4                   | 0.97  |
| 7-5                                                 | -27.9                         | -23.4                   | 2.4   |
| 7-4                                                 | -34.9                         | -38.4                   | 1.28  |
| 7-3                                                 | -70.1                         | -67.6                   | 1.43  |
| 7-2                                                 | -166.7                        | -122.4                  | 4.7   |
| 7-1                                                 | -49.5                         | -47.2                   | 1.45  |




## Real ray tracing analysis

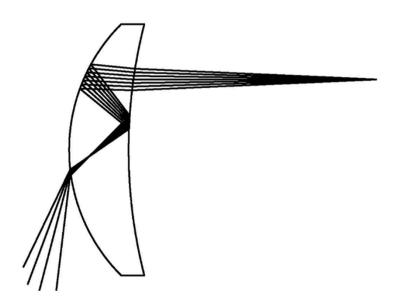





## Thin lens ghost images

$$u' = -\phi y \left( 3 + \frac{2}{n-1} \right) \approx -7\phi y$$






#### Parallel and concentric surfaces



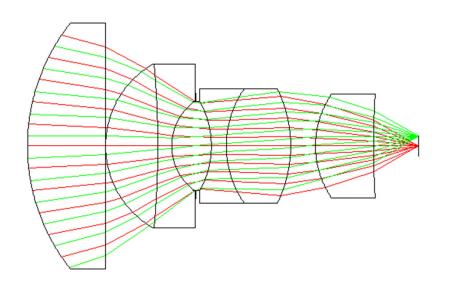


#### Total internal reflection ghost




- TIR
- One reflection on the barrel
- On retaining rings




#### Narcissus retro-reflections

#### Yni=0





#### Narcissus retro-reflections



| Surf | YNI      |
|------|----------|
| 1    | 1.12615  |
| 2    | -0.70035 |
| 3    | 0.91647  |
| 4    | -1.14828 |
| 5    | 0.65152  |
| 6    | -0.21530 |
| 7    | -0.54348 |
| 8    | 0.61637  |
| 9    | -0.43814 |
| 10   | 0.16971  |
| 11   | -0.19229 |



- 1. H. Angus MacLeod, "Thin-film optical filters," CRC Press, 2010.
- 2. Allen E. Murray, "Reflected Light and Ghosts in Optical Systems," J. Opt. Soc. Am. 39, 30-35 (1949).
- 3. G. Smith, "Veiling glare due to reflections from component surfaces: The paraxial approximation," Optica Acta, V18 (11), 815-828, 1971.
- 4. Thomas Weigel, Bob Moll, Bart J. Beers, "Ghost image debugging on a 240-degree fisheye lens", Proc. SPIE 2774, Design and Engineering of Optical Systems, (23 August 1996); doi: 10.1117/12.246708; https://doi.org/10.1117/12.246708.
- 5. <u>Howard J. W.</u>, <u>Abel I.R.</u>, "Narcissus: reflections on retroreflections in thermal imaging systems," <u>Appl Opt.</u> 1982 Sep 15; 21(18):3393-7. doi: 10.1364/AO.21.003393.
- 6. Rania H. Abd El-Maksoud and Jose Sasian, "Modeling and analyzing ghost images for incoherent optical systems," Appl. Opt. 50, 2305-2315 (2011).
- 7. E. Fest, Stray Light Analysis and Control, SPIE Press, 2013.

