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Topics

o Structural aberration coefficients
 Examples
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Structural coefficients

Structural coefficients

Application of the aberration coefficients to specific optical components shows that the
coefficients can be written as a function of the Lagrange invariant JK the optical

power¢. the marginal ray height y, at the principal planes. and the structural
coefficients: o;.05.6y.0,-.0,.0,.0.. The Seidel aberration coefficients can be

expressed with the structural coefficients. The use of structural coefficients simplifies
considerable the calculation of aberration coefficients and facilitates making trade-off
studies.

Requires a focal system
Afocal systems can be treated with Seidel sums
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Seidel sums 1n terms of structural
aberration coefficients

Pupils located at principal planes
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Stop shifting from principal planes
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Structural stop shifting parameter

wznu:—(Y—l)-ga-y/Z S _ Ve
2K

Using w on we can express:

'

g ZJ/PJ_/P§0: p-S _ p-S
72K (Y-1)-p-s-2n (Y+1)-@-s'-2n'

s is the distance from the front principal plane to entrance pupil

s’ is the distance from the rear principal plane to exit pupil
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Structural coefficients of a system of k components
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Review of concepts

 Thin lens as the thickness tends to zero
t
¢:¢1 +¢2 _¢1¢2;

* Shape of a lens and shape factor

» Conjugate factor to quantify how the lens
Is used. Related to transverse
magnification

* Must know well first-order optics
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Shape and Conjugate factors

o'+ 1+m
Y = — 0
wo'—-ow 1—m

nu

_ato R, + R,

¢, — G R — R,

X

Lens bending concept
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X=1.7

X=3.5
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Shape X

N Y] [y

) 7 )

X=-1

X=-1.7

X=-3.5
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X=-3 X=-2 X=-1 X=0
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Shape or bending factor X

* Quantifies lens shape
» Optical power of thin lens is maintained
* Not defined for zero power, R1=R2

_ate R, + R,

X _
¢ — 6 R — R,
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Structural aberration coefficients of a surface (Stop at surface y, =0)
First-order identities
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Structural aberration coefficients of a surface

1 - 1~
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Example:
Refracting surface free from spherical aberration

Object at infinity Y=1

l| n'+n Th=n? n"+n’ 1[ 2n T[=2 on T 1
Or=—71, -1 2 2 2.2 |T Al 2 |7 T 12
2l n'—n n'"n n'"n 2| n'—n n n'—-n n

2 4 43 2
S, =y’ l[ £l :l { 12}4' 1 K= Vot 2 n2+K
4 n'-n n' (n'—n) (n'—n) n'

AR AN

n? , Parabola for reflection
;=0 =|—=-K=¢ Ellipse for air to glass
" Hyperbola for glass to air @
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Note

S, = %y;¢301 T 1
()

1 2 Y
2y2¢3K=Zy2¢3 0#( , )K

For a reflecting surface is just the conic constant K
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Structural aberration coefficients of
a reflecting surface 1n air

Stop at surface With stop shaft
CT_E:F:—H' CTI=F2+H'
op=-Y op=-Y(1-S,¥)+5,-a
o =1 on=(1-5,Y) +52
g =-1 o =-1
oy =0 op=5,(1-S.Y)(2-5,Y)+5] -«
A
4
=
O, ==K A——
P N
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Structural aberration coefficients of a thin lens n air (Stop at lens)

First-order 1dentities

‘I?=|:H—1)'[C1—i?-.)=|:?f—1:}'|

-
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1
o=nu=——(¥Y-1)(® y;p) (Y+1)(DP-y5)
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Structural aberration coefficients of a thin lens
in air (Stop at lens)
o;=AX’-BXY+CY'+D | | ,_ n+2
n(_n - 1)2
oy =EX -FY B_4(_n+1)
n(n—1)
n
1 2
Gn: - D - n—q
n (n—1)
oy =0 E-_"+!
n(n—1)
1 2n+1
o; =— F = -
v n
or =0 . Ng —Ne
-1
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Contributions to the structural coefficients from a

parallel plate of thickness fand index »

into a system of optical power &

- NG 2 o (0.1)
- -
AJI=—4(Y_1) (n ﬂl}d)t
2 J\ n n
(Y+1Y(n?=1)\®r (0.2)
Aoy, =2 > :
(Yil]l[nz—l)(br (0.3)
ACy =— 5
2 n- ) n
Aoy =0 (0.4)
1{Y+1\ n’=1)\®r (0.5)
AO‘V:? ) 2
2\ 2 J\ n n
(Yil)z(n—lldn (0.6)
Aoc; =—
2 nv ) n
| \( (0.7)

Ao < L(¥YEL)(n-1)t
UT—Z_ 2 J\nv ) n

Positive sign + for image space
Negative sign - for object space
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Spherical Mirror

A spherical mirror can be treated as a convex/concave
plano lens with n=-1. The plano surface acts as an unfolding
flat surface contributing no aberration.

X ==%1
g 1
G] = Y2 - 4 \ /,,\\\
o, =—Y B=0 \
oy =1 ¢=1 n=1 / n=1
oy =1 D = 1
O-V — O 4 n=-
E=0
o, =0
F=1
O, =
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Field curves

Field curve curvature in
terms of structural coefticients
Cromar =19 Oy

Sagial = NP (‘:"ﬂf T O )
Crgi =100y +20)
C}'nﬁgenrmi — _”";ﬁ ’ (Jﬂ*’ T BD-IH ]
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Rt~f/3.66
Rm~f/2.66
Rs~f/1.66
Rp~f/0.66

Field curve curvature in
terms of structural coefticients

Chegnas =190y

Cspgina = 1@ (O'H! + Jm)
Corgi =—1'P- (0 +20)
Crongentia = —1'P- (O.IL" +30y, )
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Field curves

OBJECT AT INFINITY

STep AT LENS

T M SFG
{] % % * 7
THIN LenNns
&
TMSP
M T F’
i
/
/
MIRROR &
FIELD (URVATURES PO NOT CHANGE wWiTi m

CBIECT DISTANCE

(sTcP AT  Lens)
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Thin lens

Sbpherical aberration and coma

30 I 1 E
i =]
o, - 0
] tc — % - l
={..51/
o
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Spherical aberration of a F/4 lens

W _040: Singlet, F/4

Residual Higher Order SA: Singlet, F/4

160.0000 14.0000 \
140.0000 & 12.0000
\ —r=15 & \ —n=15
120.0000 2 10.0000
_ \ \ —_—n=16| g \ —n =16
W (7]
¢ 100.0000 L 8.0000
g \\\ —n=17| B \ / —p=17
=  80.0000 ©  5.0000
E N\\\\ —r =] B E \ \ / AR
| 60.0000 B 40000
= —n=19 = \\ // —n=19
40.0000 g 2.0000
‘/ ——r =20 E = 20
20.0000 - £ 00000
0.0000 ; : 2.0000 .
3 ] 1 o 1 2 -3 2 o 1 2 3
Shape Factor Shape Factor
*Asymmetry
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Thin lens

spherical aberration
n=1.517
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Thin lens

coma aberration
n=1.517
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This lens
Aplanatic solutions

= i(lﬂ'f'l)
N = & (82h)

- o+ow 1+m

a)a)lm
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Thin lens

N=1.5 Spherical and coma @ Y=0
N=2
N=2.5 L o
N=3 3
N=3.5
N=4
£,
O
! = GI[
-0 z 1 1 'J.' I I ) 1 I Bk 3 -

- c 5

Strong index dep%ndence
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Thin lens special cases
stop at lens

O’;_ = MINIMUM

- B _ 2("*')("“'3\(

"I- - n .
— —
G-I.z (h_")’ n+’_

(n-0)* E(n-u)‘(h-l)z
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Thin lens special cases

stop at lens
ag =0
F\/ = +)(n-!
- £Y = EEE2Y
T Ty (.,-...rm"’
- (nr—‘a)" (’zn-ﬂ)‘(n -0t X

For G-I:O CﬁFLﬂ#JH"TIC deUS)

= = (2H+l>

\( _l__(ld*'rf
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Thin lens special cases
stop at lens

For double convex lens (CX)
For double concave lens (CC)
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Thin lens special cases

stop at lens
X = | , . )
- ﬂ'r?- (n+i) h(3h (vt
3 (Y (3h-r-.~.)(n-l) (3 h-r:)r-n)"’

Zh+|

- = :'(:10 - n Y

PLano ConveEXx (ConcAVE),

Y'-"' | CemnvE X 2iDE FoR WwARD
—_ (cencAave)

o= 4 (14 2R

Z
L OE = ~Z % ey
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Thin lens special cases
stop at lens

X= - |
Fi=1 l')
B n+2 2(n+d )"‘ L h@En-D(h+y
d-I = ] <Y - {53-.«. +1')fn-ﬁ (B'n'rl\’('rl—l‘)z
_d—. = -—_h_i.l—-— — Zh+1
T nin=-1 n Y PLANG COAVEX (CCNCJ“VE.)J
Y l PLANE SIDe FeRWARD
- -
_— B
2k
Ui = (n-r)
I 4
I = T -y
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Achromatic doublet

Two thin lenses in contact
The stop is at the doublet

o=¢ +9,

v =y, ptp, =1
4 b

P =" P
Z Yz:Y_'Ol

5= P
¢
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Achromatic doublet

Correction for chromatic change of focus

o, = £ + £
Vi W, For an achromatic doublet:

Vi

P = (1 —V,0p ) —
Vv, —V, O, 0
V,

Pr == (1 —Voy )

Vi—=V,
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Achromatic doublet

Correction for spherical aberration
4
k (I) 3
o :Z( (ij (yp,k] Ok
i=0 Yp

O, = /013 (Ale2 —b XY+ C1Y12 +D1)+,023 (Az)(z2 — b, X, Y, + C2Y22 +D2)

For a given conjugate factor Y, spherical aberration is a function
Of the shape factors X; and X, . For a constant value of spherical
aberration we obtain a hyperbola as a function of X1 and X2.
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Achromatic doublet

Correction for coma aberration

k d 2 2 .
On = Z(Ekj (yp,k j (Gll,k + Sko-l,k)

Vp

Cp=p (Ele — I )+,022 (EzXz — 1Y, )

For a given conjugate factor Y and a constant amount of coma
the graph of X1 and X2 is a straight line.
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Achromatic doublet

Astigmatism aberration

k
o o2
Om = Z( j(o-lll,k +28.0,,+S8,0,, )

i=0

O = P (1)+:02 (1)

Astigmatism is independent of the relative lens powers, shape factors,
or conjugate factors.
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Achromatic doublet

Field curvature aberration

i=0 CD
£ P
O 1% +
n n,
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Achromatic doublet

Distortion and chromatic change of magnification

2
‘ _ _
O, = Z( yP ) (GV’k T Sk (GIV,k T 30—1]1,/( ) + 3Sk20”’k T S;G]’k)

i=0 \ Vpi

k

Or = Z(O-T,k T SkO-L,k)
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Cemented achromatic doublet

For a cemented achromatic lens the graph of X1

Prof. Jose Sasian
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o = (nz _1) P
(nl _1) P>
a :_(n2 _1) Vi
(nl—l) v,

For achromat

and X2 is a straight line.
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Crown In front: BK7 and F8
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Flint In front; BK7 and F8

TIE ELdT IN FRONT
BK7
—~ Fa

Prof. Jose Sasian h\ Vs
OPTI 518 College of Optical Sciences



Cemented achromatic doublet

o b I

".I:J-—'7 .
(¥ ] —

1.
]

CEMENTET
ACAEOMAT

. CRowa (R FRENT
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Cemented doublet solutions

T
I

Crown in front

N
Flint in front

Prof. Jose Sasian @

OPTI 518 College of Ogt-i-cal Sciences

TTTTTTTTTTTTTTTTTTTTTT o



Doublets with no spherical aberration but with
varying coma

Coma=-10 waves Coma=0 Coma=10 waves

Crown in front, no spherical aberration, F/5, =100 mm, no chromatic aberration
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Lister objective

VA1

XIII. On some properties in achromatic object-glasses applicable to the improve-
* ment of the microscope. By Josern JacksoN Lister, Esq. Communicated by
Dr. RoGeT, Secretary.

Read January 21, 1830.
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Lister objective

* Two achromatic doublets that are spaced
* Telecentric in image space
* Normalized system

4 4 Marginal K =1
ray Vi~
\ U, =
o, =0
o, =0
Chief
v \
ay Y 4
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Lister objective

The aperture stop is at the first lens.
The system is telecentric

A A

Marginal
o - Marsi 6, =1
\ 0, =1-y,
Chief )_/ B~ I

ray l

o <
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Lister objective

Seidel sums in terms of structural
aberration coefficients

Stop shifting from principal planes

Pupils located at principal planes

1 4.3
S ZI.".D(D O

*

O; =0;

C = S
Op =0p +9,0;

1

. 222
).'Ryptb O-H

x* = -
— 7 <

Sy =X'®oy

*

O‘H.‘ =5 O-H'

- — =3 —
O—F =O-I"'+SCF(O—H"+3am)+SSGGH+SGGI

Sy =X'®o,

*x

O; =0;

2K’a,

Vs

=1

Sy =

*

Or =0+ Saa_,_

5
€ =yp®o;

C.T = ljﬁ-o_r
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Condition for zero coma

O, (Vi)
Oy :Z(Ekj [ P’kj (Gll,k+SkGI,k)

k
i=0 yP

22 2 2
GII_¢AyAO-HA+ 3O 118
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Condition for zero astigmatism

k d _ _
O = Z (Ekj(alﬂ,k +25,0,, + Skzal,k )
i=0

O ¢A+¢B(1+y3 IIB) 0 S, =

O :(l_yB)_I_(l_l_yBGHB):O
2=y, +y50,=0

2
Vg =
1_6113
2—-y
Oup =~
VB
B yB(z_yB)

O =
114 2
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Lister Objective

Choose:

Oup =0y

2=y, yB(z_yB)

Seidel sums 1n terms of structural
aberration coefficients

Pupils located at principal planes

1 4.3
Sy =I."p¢’ O

Vp (l—yB )2
2

(1_y3)2 = Vs
1-2y, +y32 :y32

Vg =

P, =

N | — N =

Oy = 3

Oup = -3
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Sﬂ = TH{.II;(I)_GH

-

Sy =XK'®oy

Sy =K '®oy,

5, = :}K;"a,,
Ve

C, = yf,@ o;

Cr =2)Koy

0
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Plano convex lens

Stop

Petzval
surface

N-BK7 : Petzval radius -151.7 mm

1 ¢
CPetzval - = _¢ ) O-IV — _(_j

Petzval
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Wollaston meniscus lens

Petzval
surface S T
‘Wollaston
periscopic
lens
]
7 —
/
Stop
Vszz /W220P =—0.8
e ® N |
* Artificially flattening the field
* Periscopic lenses
0.0 75 15.0° 225 0* @
Prof. Jose Sasian
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Periskop lens

* Principle of symmetry
* No distortion
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Field curvature

e (Old achromat
* New achromat

N-BK7 : Petzval radius -151.7 mm

N-BK7 and N-F2: Petzval radius -139.99 mm (+139.99 for
negative doublet)

N-BAKI1 and N-LLF6: Petzval radius -185 mm

Cpeva =#:—¢-G,V :_(ﬁ+ﬁ]:_%(ﬁ_\f_z]

Petzval nl n2
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Chevalier landscape lens

—
e e J ]
REM
—
—— ‘-“—\—\_
—=e
-—-:—;_-:::___}H
R

* F/5 telescope doublet used in reverse
and with an aperture stop in front

Prof. Jose Sasian
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Vszz /VV22OP =-0.8
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Rapid rectilinear

« F/8
» Glass selection is key

to minimize spherical aberration
while artificially flattening
the field

RMS spot size

200 pm

100 pm

20 pm

Prof. Jose Sasian 0.

OPTI 518

@

College of Oﬁ?cal Sciences

NIVERSITY OF ARIZONAe

Qo 12.0° 24.0°



Lister microscope objective

» Telecentric

I ——
e

O-IA:O-IB:O yB:A

o422 2.2 Oy = Opp
O, = ¢AyAGIIA + Qs V0 15

2

VB
1-y, )2

Oy =—

O 11 O :(1_y8)+(1+yBGHB):O

* < Q2
S, =8,+2-85,+5°S
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Lister microscope objective

Practical solution

« RMS wavefront error in waves

0.2

_ I /

0.0

0.00 2.5¢ 5.0°

« Two 1dentical doublets

« Spherical aberration and coma are corrected
* Astigmatism is small

» Telecentric

« Less vignetting
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Aplanatic concentric meniscus lens

» Optical speed is increased by an N factor
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Petzval portrait objective

S T

’=144 mm; F/3.7; FOV=+/- 16.5°. o LT
W, /VV220P =-0.8

* Chromatic aberration and spherical aberration

corrected at each doublet
* Positive coma in the first doublet corrected with negative coma of aberration

of the second doublet
» Negative astigmatism introduced by the negative coma of the second doublet to

artificially flatten the field of view.

%k _ ] - —2
Prof. Jose Sasian SIH o SHI +2 SSII + S SI @
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Concentric lens

Use of new glasses

Reduced Petzval sum

Nearly flat field

Surfaces nearly concentric
Limited by spherical aberration
due to strong curvatures.

Wi
N

N-BAK1 and N-LLF6: Petzval radius -185 mm
G = :ﬁﬁ-af—[ﬂﬂ]z ¢ [E ]
Prezval non w—hwmu n
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Anastigmatic lens

200 uym

ll)()pm: ﬂ RMS SpOt SiZG

20 pm - =
0.0 15.4° 30.00

30.00 3o0r

-4 mm 4 mm 1.0%

* Corrected for spherical aberration, coma, astigmatism, and field curvature
* Distortion 1s negligible
* Combination of an old achromat and a new achromat
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Anastigmatic lens

200 uym

ll)()pm: ﬂ RMS SpOt SiZG

20 pm - =
0.0 15.4° 30.00

30.00 3o0r

-4 mm 4 mm 1.0%

* Corrected for spherical aberration, coma, astigmatism, and field curvature
* Distortion 1s negligible
* Combination of an old achromat and a new achromat
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Telephoto lens

Telephoto lens with BK7 and SF5 glasses.
£’=100 mm, F/4, FOV=+/- 6.2°, TTL/F=0.8.

S, =S, +2-85,+8°S,

S]*H = SH[ = )K2¢BGHJB = }1<2¢B

¢A = _¢B

I/V131 :VV311 +%}K'A{;2}

* Corrected for spherical aberration, coma, astigmatism, and field curvature
e Distortion 1s not corrected
* Telephoto ratio=TTL/f
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Telephoto lens

Telephoto lens with BK7 and F6 glasses.
£’=100 mm, F/4, FOV=+/- 6.2°, TTL/F=0.8

—
| \

\

LU

* Corrected for spherical aberration, coma, astigmatism, and field curvature

e Distortion is also corrected

Prof. Jose Sasian
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Reverse telephoto lens

W

Reverse telephoto lens with BK7 and SF5
glasses. ’=100 mm, BFL=200 mm, TTL= 324
mm, FOV=+/-12°, F/4

* Corrected for spherical aberration, coma, astigmatism, and field curvature
* Distortion 1s small ~-1.5%
» Large back focal length/distance
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Ray diffractive law (1D)

n'sm(/') Ay =nsm(l)- Ay
n'sm(/')-Ay—nsin(l)-Ay = QQ?(}’)

n'sin(l') —nsin(l) = Aoly) | 24y)
Ay oy

agly . .
qi(} ) =pn'sin({"')—nsin(J])
Prof. Jose Sasiar cy @
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Grating linear phase change

nsin([')—nsin([)zmj/l
¢(y)=nsin(1')y—ynsin([):m7/1y

Prof. Jose Sasian @

OPTI 518 College of OBt}cal Sciences

TTTTTTTTTTTTTTTTTTTTTT o



Diffractive optics
high-index model

Start with the diffraction grating equation

7' sin(f') —nsin(/) = [ﬂ‘ﬁﬂs(f‘ )—n CUS(I)]- ﬁ'cos(f‘r}ﬂi? cos(]) 1/d

n'sin(1')— nsin(1) = |n'cos(I') — ncos(Z)|- tan(er)
n'{sin(7')— cos(Z") tan(ar) } = nisin(Z) — cos(Z) tan(@)}
n'{cos(a)sin(l')— cos(I')sin(ar) } = nicos(ar)sin(7) - cos(Z) sin(a)
n'sin(l'—a)j = nisin(7 —a )j
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Diffractive optics
high-index model

n'{sin(/'—a )} = nisin(7 — &)}

mA
n'cos(/')—ncos(/)

lan(e) =

For large n’s then o 1s negligible and we have:
n'sm(/)=nsm(/)
Thus for high index diffraction becomes like refraction!
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Diffractive lens

(n very large @ X=0)

Structural aberration coefficients of a thin lens (Stop at lens)

Paraxial identities

| N (o (1 1
¢:(”_”)'(C'_(1)_(‘”_”)'{\RT_R_JJ
\—7C1+C: _ R +R, ¥ = wrw  1+m
] 7"17637 R —R, w-—w l—m
L ¢ (v 1 ¢ (v
¢ =———(X +1 e =——(X-1)
' 2a-1 ) - 2n-1

w=u= —%(Y— g-v)

w=u'= —%(Y +1)é-v)

Structural aberration coefficients

o, =AX* —~BXY+CY*+D __n+2
n(n—1)
o, =EX-FY _An+1)
n(n—1)
op =1 co3nt2
n
- 1 __n j
n (n—1)
JI' :0 _ H+l
nln—1)
o)
o, :i Fe 2n+1
% n
o, =0

Prof. Jose Sasian
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~
1

0
o, =0
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Mirror Systems

Structural aberration coefficients of a mirror.
K =-¢" is the conic constant and & is the eccentricity.
Stop at surface With stop shift

o,=T"+K o,=T"+K

op=-F gy,=-T(1-57)+5 -K

G-E’ =1 GEZ[I—EE}-]:+§:K

O =—1 O =—1

oy =0 o,=8 (1-8T7)(2-5.7)+5 K

T eI _ Q- Qs

7 2K (Y—l)-ga-s—Zn:(Y+1)-g0-s'—2n'
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Two miurror afocal system

Application to a two mirror Mersenne system

In this section we determine the aberration coefficients of a two mirror afocal system as
shown in the figure We normalize the system parameters and set K =1, &, =1, y, =1.

¥, =0 and set the magnification to be m and therefore y, =m . We have thaty, =1-m.

parameters.

®,=-1/mand therefore we can write for the conjugate factors and stop shifting

Y, =1 -
£ =1 r

S, =0

= VP, m-1 gf
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Using the formulas in the table the structural coefficients of each mirror are calculated as:

Structural aberration coefficients
Mirror 1 Mairror 2
O; 1+ 1+a,
Oq -1 m+1 m-—1
+ a-
2 2 °
1 : \2 7 \2
Om [m+1] (m—l)
+ a,
2 2 -
3
Oy 0 m—1m+1m+3 (m—l)
+ a,
2 2 2 2 -
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Finally the Seidel sums for the two mirror afocal system are given by:

Seidel sums for two mirror afocal system

1 1 . 1Y 1
S; =ZC’H+Zm4(_;} - =Z((l+a1)“m(l+a2))

1 1
— Oy +—M"
S omTS

—

1

m

}2 om = (m=1)(1+a,)

Sp

|

1 (m—l)2

4

szam"'(_i)o'mz (1+a,)
m m

m-—1

1
—— |9
m m

Sp =0 +(

S i]z S 1m —21

- e (8+6(m—1)+(m—1)2(1+a2))
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For the particular case of having the mirror as parabolic in optical shape we have that the
Seidel sums simplify as:

Seidel sums for afocal system using parabolas
5,=0
S, =0
Sm =0

m—1

Sﬂr:_
TH
L m—1
S, == —(3m+1)

.
2 m-

When a system 1s free from spherical aberration. coma. and astigmatism it 1s called an
anastigmatic system.
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Two mirror systems

p=1

Prof. Jose Sasian
OPTI 518

0,/ o=(1-M)(1+ML)
1
1+ML

—  1(1-ML)
S02:_

2 1+ ML
I+ M
1-M

V!l yp=

Y,
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Two mirror systems

Structural coefficients of a two mirror system.

Stop at primary mirror.
Object at infinity; m is the transverse magnification of the secondary mirror, and
L is the ratio of the mirror separation to the back focal distance.

; 1-m 35""'1— 32 )
cf,=m‘[1—K1]—u|' m | K, |
leml | L1—m ) ")

, S (1em . 1(1-m)L{14m)) 1(1-m)L )
Op=—m +(1-m) | —-| — || 1- [+= K,
| |L,l—mh. 2 1+ml |L,l—m}J 2

Yy

1|

2 1+ml )

1

[ 1(=m) L 1+m ) (1(1=m)LY
o =1+ (1=m) (14mr)| |1 L AT E(Lem 1 (L=m)E T
219 mL \Imm)) T\ 2 1emL

y

O =—m—(1=m)(14mL )

o1 [(10=mLY 1(=m)Liem)() 1(0-m)L1em) (1(1=m)LY
" (4mL)(\2 1+mL Ji 2 14mL 1-m )| 2 1+mL 1-m) |2 1+mL |

Conic constants of Cassegrain type configurations corrected for

spherical aberration
Configuration Primary mirror Secondary mirror
Cassegrain K =-1 _ (l+m Y
\1—m )
Dall-Kirkham K =_1_[1_‘m]“+m_]: K,=0
m (1+mL))
Pressman-Carmichel K =0 K (1+m\' n (1+mL)
olem) (1w
Ritchey-Chretien K—1-2 o [(ltm Vo201 miL)
(aplanatic) L’ \1-m) L(1-m)
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Cassegrain type

*True Cassegrain

*Ritchey-Chretien: aplanatic
*Dall-Kirkham: spherical secondary
*Pressman-Camichel; spherical primary
*Olivier Guyon (no diffraction rings)
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Principal surface

In an aplanat working at m=0
the equivalent
refracting surface
is a hemisphere
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Cassegrain’s principal surface

.

S N
—_—— T A
A
T e T e / A\
—ﬁ_ﬂ—ﬂ-‘———_

—
_.——P'*"'j::-”‘/f //,f?
\ =T\
\ RN/
— ARY/
= R
T ¥
\/

Since the equivalent refracting surface in a Cassegrain telescope

is a paraboloid then the coma of that Cassegrain is the same of a
paraboloid mirror with the same focal length.
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Schmidt camera
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Merssene afocal system
Anastigmatic
Confocal paraboloids
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Paul-Baker system
Anastigmatic-Flat field

=\
)
E
“— € '-r~.
E i
S ; r
f {
S S
=L ~J7
Anastigmatic Anastigmatic, Flat field
Parabolic primary Parabolic primary
Spherical secondary and tertiary Elliptical secondary
Curved field Spherical tertiary
Tertiary CC at secondary Tertiary CC at secon@
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Meinel’'s two stage optics concept
(1985)

\\ Large Deployable
Reflector
Second stage corrects
for errors of first stage;

fourth mirror is at the

exit pupil.

Iy
//
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Aplanatic, Anastigmatic, Flat-field, Orthoscopic (free from distortion,
rectilinear, JS 1987)

il_.‘"‘.l_lpl
| I|I
I
il
|
|
|
|
|
] |
|
|
|
\
|
|
\
|
|
]
\
|
|
\
|
|

Spherical primary telescope.

The quaternary mirror is near the exit pupil. Spherical aberration and
Coma are then corrected with a single aspheric surface. The Petzval sum is zero.
If more aspheric surfaces are allowed then more aberrations

can be corrected. @

Prof. Jose Sasian s
OPTI 518 College of Optical Sciences

NIVERSITY OF ARIZONAe



Summary

o Structural coefficients
e Basic treatment
* Analysis of simple systems
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