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A sixth-order theory of wave aberrations for axially symmetric systems is developed. Specific formulas for
the sixth-order extrinsic and intrinsic wave aberration coefficients are given, as well as relations between
pupil and image aberrations. Equations are developed for the wavefront propagation to the sixth order of
approximation. The concept of the irradiance function is developed, and the second-order irradiance coef-
ficients are found via conservation of flux at the pupils of the optical system and in terms of pupil aberra-
tions. From purely geometrical considerations a generalized irradiance transport equation that describes
irradiance changes in an optical system is derived. Confirming the aberration coefficients with real ray-
tracing data was found to be indispensable. © 2010 Optical Society of America
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1. Introduction

Aberration theory has been a fruitful field for under-
standing image formation in optical systems and for
designing lens combinations. This paper presents a
sixth-order theory of wave aberrations for axially
symmetric systems. The paper builds the theory
by using Shack’s [1] formulation of the aberration
function in terms of the field and aperture vectors,
Schwarzschild’s [3] seminal paper, Hopkins’ book
on Wave Theory of Aberrations [4], Wynne’s [5]
paper on “Primary aberrations and conjugate
change,” and Hoffman’s [6] Ph.D. dissertation on “In-
duced aberrations in optical systems.” The original
goals of the paper have been to provide monochro-
matic intrinsic and extrinsic coefficients for spherical
surfaces while providing insight into and clarity in
what has been traditionally an elaborate and per-
haps difficult topic. We have tried to simplify the
subject by using a minimum of standard notation
in theory of wave aberrations, by the form of presen-
tation, and by discussing the physical meaning of the
mathematical expressions involved. The goals of the
paper have been extended to discuss wave propaga-
tion to the sixth order, pupil and image aberration
relationships, aspheric surfaces, and connections

to the eikonal function, as well as the little-
discussed topic of irradiance variations, or apodiza-
tion aberrations.

The approach to the subject is first to review the
basics of wave aberration theory. Pupil aberrations
are interpreted as beam deformations at either pupil.
Consequently, as two systems are concatenated and
because of pupil distortion, induced or extrinsic aber-
rations take place. The wavefront deformation on
free-space propagation is determined, as well as the
wavefront deformation due to the location of the
aperture vector. The intrinsic aberration coefficients
are theoretically derived when the stop is located at
the center of curvature of a spherical surface. When
the stop shifts from the center of curvature, the coef-
ficients are found first with the aid of real ray tracing
in a semi-empirical manner. Then they are deter-
mined with an alternate mathematical form by de-
veloping a theory for stop shifting. Attention is
given to verifying the correctness of the aberration
coefficients. The theory of sixth-order aberrations,
in addition to accounting for intrinsic effects, ac-
counts for the wavefront deformation that takes
place due to propagation and coordinate changes.
These are the new effects that are not considered in
fourth-order theory and that provide understanding
into the nature of aberrations.

Overall, this work provides some useful insight
for understanding how the geometrical wavefront
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deforms in propagating through an optical system
and contributes to further the theory of imaging
aberrations.

2. Goals of Theory of Wave Aberrations

A main goal of the theory of wave aberrations is to
determine analytically the geometrical optical field
Gð~H;~ρÞ at the exit pupil of an optical system, as-
sumed here to be rotationally symmetric and speci-
fied by

Gð~H;~ρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I0 · Ið~H;~ρÞ

q

· exp
�
−i

2π
λ ½n · Sð~H;~ρÞ þWð~H;~ρÞ�

�
; ð1Þ

where i ¼ ffiffiffiffiffiffi
−1

p
, λ is the wavelength of light, n is the

index of refraction of the image space, I0 is the irra-
diance at ~H ¼ 0, ~ρ ¼ 0, Ið~H;~ρÞ is the dimensionless
irradiance function, Sð~H;~ρÞ is the reference sphere
function, and Wð~H;~ρÞ is the aberration function.
The wave aberration function Wð~H;~ρÞ is positive
when the wavefront leads the reference sphere. If
the aberration function is zero, then the geometrical
optical field Gð~H;~ρÞ represents in phase a spheri-
cal wave.

3. Aberration Function

For an axially symmetric system the aberration func-
tion Wð~H;~ρÞ provides the geometrical wavefront
deformation at the exit pupil as a function of the nor-
malized field ~H and aperture~ρ vectors. The field vec-
tor is located at the object and defines where a given
ray originates. The aperture vector is usually located
at the exit pupil plane, but it can also be located at
the entrance pupil plane. The aperture vector defines
the intersection of a given ray with the pupil plane.
Figure 1 shows in image space the Gaussian image of
the field vector and the aperture vector at the exit
pupil plane. The aberration function, being a scalar,
involves dot products of the field and aperture vec-
tors, specifically ~H · ~H, ~H ·~ρ, and~ρ ·~ρ. These dot pro-
ducts depend only on the magnitude of the vectors
and the angle ϕ between them and are used to de-
scribe axial symmetry; that is, they are invariant
on rotation of the coordinate system.

The aberration function provides the wavefront de-
formation in terms of optical path as measured along
a particular ray and from the reference sphere to the
wavefront as shown in Fig. 2. The reference sphere
passes by the on-axis exit pupil point, and it is usual-
ly centered at the Gaussian image point. The aberra-
tion function is written to sixth order as

Wð~H;~ρÞ¼
X
j;m;n

Wk;l:mð~H ·~HÞj · ð~H ·~ρÞm ·ð~ρ ·~ρÞn

¼W000þW200ð~H ·~HÞþW111ð~H ·~ρÞ
þW020ð~ρ ·~ρÞþW040ð~ρ ·~ρÞ2þW131ð~H ·~ρÞð~ρ ·~ρÞ
þW222ð~H ·~ρÞ2þW220ð~H ·~HÞð~ρ ·~ρÞ
þW311ð~H ·~HÞð~H ·~ρÞþW400ð~H ·~HÞ2

þW240ð~H ·~HÞð~ρ ·~ρÞ2þW331ð~H ·~HÞð~H ·~ρÞð~ρ ·~ρÞ
þW422ð~H ·~HÞð~H ·~ρÞ2þW420ð~H ·~HÞ2ð~ρ ·~ρÞ
þW511ð~H ·~HÞ2ð~H ·~ρÞþW600ð~H ·~HÞ3

þW060ð~ρ ·~ρÞ3þW151ð~H ·~ρÞð~ρ ·~ρÞ2

þW242ð~H ·~ρÞ2ð~ρ ·~ρÞþW333ð~H ·~ρÞ3; ð2Þ

where the subindices j, m, n represent integer num-
bers, k ¼ 2jþm, l ¼ 2nþm, and Wk;l;m represent
aberration coefficients. This form of the aberration
function that uses dot products of the field and aper-
ture vectors is attributed to Shack [1] and is a power-
ful tool in further development of the theory of wave
aberrations. The terms in the aberration function re-
present aberrations, that is, basic forms in which the
wavefront can be deformed. The sum of all aberration
terms and orders produces the actual total wavefront
deformation. The order of an aberration term is given
by 2 · ðjþmþ nÞ, which is always an even order. In
the aberration function the field and aperture vectors
are normalized so that when they are unity, the coef-
ficients represent the maximum amplitude of each
aberration which is expressed in wavelengths. The
subindices k, l, m in each coefficient indicate, re-
spectively, the algebraic power of the field vector,
the aperture vector, and the cosine of the angle ϕ be-
tween these vectors. Table 1 summarizes the first
four orders of aberrations, using both vector and

Fig. 1. A, field and aperture vectors (scaled by the marginal ray
height at the exit pupil and the chief ray height at the image
plane); B, the angle ϕ between them looking down the optical axis.

Fig. 2. The tip of the aperture vector defines the intersection of a
ray with the pupil plane. The wavefront deformation is the dis-
tance along the ray from the reference sphere to the wavefront,
and it is negative in this figure.
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algebraic expressions. The second-order terms are
named after Gauss, the fourth-order terms are
named Seidel, and the sixth-order terms are named
Schwarzschild after their respective seminal papers.
The ten sixth-order terms can be divided into two
groups. The first group (first six terms) can be consid-
ered an improvement on the Seidel terms by their in-
creased field dependence, and the second group (last
four terms) represents new wavefront deformation
forms. Except for “sixth-order spherical aberration,”
the last three terms in the new forms do not have a
formal, or widely recognized, name. Figure 3 shows
the shape (aperture dependence only) of the zero, sec-
ond, fourth, and the new wavefront shapes of the
sixth-order aberrations.
The piston terms represent a uniform phase

change over the aperture and therefore do not de-
grade the image quality. The second-order terms re-
present departures from Gaussian imaging, and
these coefficients are set to zero. We emphasize that
in this work it is assumed that there are no second-
order terms in the aberration function. It is a mark of
aberration theory that aberration coefficients for the
Seidel aberrations, and higher-order, are calculated
from paraxial quantities derived from a paraxial
marginal and ray chief traces. The fourth-order aber-
ration coefficients are given in Table 2 in terms of the
famous Seidel sums SI, SII, SIII, SIV, SV. The calcula-
tion of the aberration coefficients requires several
quantities that are obtained from tracing a paraxial
marginal ray and a paraxial chief ray. These quanti-
ties are given in Table 3, where unbarred quantities
refer to themarginal ray and barred quantities to the
chief ray. The marginal ray height and slope at the

Table 1. Wavefront Aberrations

Aberration Vector Form Algebraic Form j m n

Zero-order
Uniform piston W000 W000 0 0 0

Second-order Gauss
Quadratic piston W200ð~H · ~HÞ W200H2 1 0 0
Magnification W111ð~H ·~ρÞ W111Hρ cosðϕÞ 0 1 0
Focus W020ð~ρ ·~ρÞ W020ρ2 0 0 1

Fourth order Seidel
Spherical aberration W040ð~ρ ·~ρÞ2 W040ρ4 0 0 2
Coma W131ð~H ·~ρÞð~ρ ·~ρÞ W131Hρ3 cosðϕÞ 0 1 1
Astigmatism W222ð~H ·~ρÞ2 W222H2ρ2 cos2ðϕÞ 0 2 0
Field curvature W220ð~H · ~HÞð~ρ ·~ρÞ W220H2ρ2 1 0 1
Distortion W311ð~H · ~HÞð~H ·~ρÞ W311H3ρ cosðϕÞ 1 1 0
Quartic piston W400ð~H · ~HÞ2 W400H4 2 0 0

Sixth order Schwarzschild
Oblique spherical aberration W240ð~H · ~HÞð~ρ ·~ρÞ2 W240H2ρ4 1 0 2
Coma W331ð~H · ~HÞð~H ·~ρÞð~ρ ·~ρÞ W331H3ρ3 cosðϕÞ 1 1 1
Astigmatism W422ð~H · ~HÞð~H ·~ρÞ2 W422H4ρ2 cos2ðϕÞ 1 2 0
Field curvature W420ð~H · ~HÞ2ð~ρ ·~ρÞ W420H4ρ2 2 0 1
Distortion W511ð~H · ~HÞ2ð~H ·~ρÞ W511H5ρ cosðϕÞ 2 1 0
Piston W600ð~H · ~HÞ3 W600H6 3 0 0
Spherical aberration W060ð~ρ ·~ρÞ3 W060ρ6 0 0 3
Unnamed W151ð~H ·~ρÞð~ρ ·~ρÞ2 W151Hρ5 cosðϕÞ 0 1 2
Unnamed W242ð~H ·~ρÞ2ð~ρ ·~ρÞ W242H2ρ4 cos2ðϕÞ 0 2 1
Unnamed W333ð~H ·~ρÞ3 W333H3ρ3 cos3ðϕÞ 0 3 0

Fig. 3. Wavefront aberration shapes.
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surface in question are y and u, and the chief ray
height and slope are �y and �u. The radius of curvature
of the surface is r. The symbol Δð Þ stands for the
Abbe difference operator, which gives the difference
of the quantity inside the parentheses after and be-
fore refraction, that is Δðu=nÞ ¼ u0=n0 − u=n. The
summation symbols

P
stand for the sum of the ar-

guments over all the surfaces in the optical system,
implying that the aberrations add as expected from
knowing that optical paths add. The Seidel sums SI,
SII, SIII, SIV, SV are not in the same form as Seidel
produced them, and the sum SVI for piston has been
added for completeness. In addition, we have added
to SIV the field curvature terms that result from as-
tigmatism and that often are neglected. Table 2 pro-
vides an alternate formula for distortion for the case
of having the marginal ray normal to the surface,
that is A ¼ 0. The definition for the Lagrange invar-
iantΨ used in this paper is opposite in algebraic sign
with respect to other works on aberration theory.

4. Pupil Aberrations

When the entrance and exit pupils interchange roles
with the object and image, the concept of pupil aber-
rations arises. The calculation of pupil aberrations is
a key in determining how the image aberrations
change when the object changes position. An object
shift is tantamount to a stop shift in the associated
pupil system. From algebraic manipulation Wynne
[5] showed that the pupil aberrations are related
to the image aberrations by the relationships in
Table 4, where pupil aberration coefficients are
barred and image aberration coefficients are un-
barred. In this table �W220 is the sagittal pupil field
curvature and W220 is the sagittal image field curva-

ture. In the original work by Wynne the relationship
�W220P ¼ W220P between the pupil and image Petzval
field curvature was used, and the relationships were
given in terms of Seidel sums. Note that for pupil
aberrations the subindices k, l, m in the coefficients
�Wk;l;m indicate the algebraic power of ρ,H and cosðϕÞ,
respectively, rather than of H, ρ, and cosðϕÞ as in the
image aberration coefficients Wk;l;m.

The piston of the image W400ð~H · ~HÞ2 is the optical
path difference between the chief ray and the on-axis
ray. The optical path for each of these rays is mea-
sured from the entrance pupil on-axis point to a re-
ference sphere centered at the exit pupil on-axis
point and that passes by the on-axis image point.
The optical path difference is a function of the field
of view and is equal to the spherical aberration of the
pupil �W040ð~H · ~HÞ2. This definition for piston of the
image is somehow arbitrary and is used given the
equality relation between spherical aberration of
the pupil and piston of the image.

An alternate way to derive the relationships in
Table 4 is to consider Fig. 4, which shows the object
and image planes OH and O0H0, the entrance and
exit pupil planes ER and E0R0, the reference spheres
EA andE0A0 for the object and image points H andH0,
the reference spheres OB and O0B0 for the entrance
and exit pupil points R and R0, image wavefront E0C0,
pupil wavefront O0D0, ray HRR0H0 from the object
point H to the image point H0, ray ORR0O0 from
the on axis object point to the on-axis image point,
and rayHEE0H0 from the object point H to the image
point H0. The image wavefront deformation W ¼ n0 ·
A0C0 at the exit pupil is the segment C0A0 multiplied
by the index of refraction in image space n0, and the
pupil wavefront deformation �W ¼ n0 · B0D0 at the
image plane is segment D0B0 multiplied by the index
of refraction in image space n0. Not shown are the
ray segments between points R and R0 at the pupil
planes.

The pupil aberration function �Wð~H;~ρÞ gives the
difference in optical path of ray segmentBRR0D0 with
respect to the optical path of ray segment ORR0O0.
The image aberration function Wð~H;~ρÞ gives the dif-
ference in optical path of ray segment ARR0C0 with
respect to the optical path of ray segment EE0 of
ray HEE0H0. Let us define the reference sphere func-
tion Sð~H;~ρÞ ¼ n · RA as the optical path between
points RA, and similarly the function S0ð~H;~ρÞ ¼
n0 · R0A0 as the optical path between points R0A0.

Table 2. Seidel Aberration Coefficients

Aberration Seidel Sum

W040 ¼ 1
8SI SI ¼ −

P
A2yΔ

�
u
n

�
W131 ¼ 1

2SII SII ¼ −
P

A�AyΔ
�
u
n

�
W222 ¼ 1

2SIII SIII ¼ −
P �A2yΔ

�
u
n

�
W220 ¼ 1

4SIV SIV ¼ −
P

Ψ2P −
P �A2yΔ

�
u
n

�
W311 ¼ 1

2SV SV ¼ −
P �A

A

�
Ψ2Pþ �A2yΔ

�
u
n

�	
;

SV ¼ −
P �A

�
�A2Δ

�
1
n2

�
y − ðΨþ �AyÞ�yP

	

W400 ¼ 1
8SVI SVI ¼ −

P �A2�yΔ
�
�u
n

�

Table 3. Quantities Derived from Paraxial Data used in Computing
Aberration Coefficients

Quantity Formula

Refraction-invariant marginal ray A ¼ ni ¼ nuþ nyc
Refraction- invariant chief ray �A ¼ n�i ¼ n�uþ n�yc
Lagrange invariant Ψ ¼ n�uy − nu�y ¼ �Ay − A�y
Surface curvature c ¼ 1

r
Petzval sum term P ¼ c ·Δ

�
1
n

�

Table 4. Pupil Aberrations

Name
Identity between Pupil and

Image Aberration Coefficients

Pupil spherical aberration �W040 ¼ W400

Pupil coma �W131 ¼ W311 þ 1
2Ψ ·Δf�u2g

Pupil astigmatism �W222 ¼ W222 þ 1
2Ψ ·Δfu�ug

Pupil sagittal field curvature �W220 ¼ W220 þ 1
4Ψ ·Δfu�ug

Pupil distortion �W311 ¼ W131 þ 1
2Ψ ·Δfu2g

Pupil piston �W400 ¼ W040
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Then we can write, to within the fourth order of
approximation,

�Wð4Þð~H;~ρÞ þ n · Sð4Þð~H;~ρÞ ¼ Wð4Þð~H;~ρÞ þ n0

· S0ð4Þð~H;~ρÞ: ð3Þ

If there are no pupil aberrations, �W ¼ 0; then there
is no phase difference in imaging the pupil points R
and R0. In this case Eq. (3) states that the aberration
function is simply the difference, W ¼ þn · S − n0 · S0,
of the sphere function in object and image spaces;
this is consistent with Fig. 4, as points E and A in
the incoming wavefront are in phase, and points E0
and C0 in the outgoing wavefront are in phase. If
there are pupil aberrations the wavefront for pupil
points R and R0 will have a phase difference that
is accounted for by the pupil aberration function in
Eq. (3). The fourth-order terms of the reference
sphere Sð~H;~ρÞ function give the relationship

n0 · S0ð4Þð~H;~ρÞ − n · Sð4Þð~H;~ρÞ

¼ 1
2
Ψ ·Δfu2g · ð~H ·~ρÞð~ρ ·~ρÞ þ 1

2
Ψ ·Δfu�ug

· ð~H ·~ρÞ2 þ 1
4
Ψ ·Δfu�ug · ð~H · ~HÞð~ρ ·~ρÞ

þ 1
2
Ψ ·Δf�u2g · ð~H · ~HÞð~H ·~ρÞ; ð4Þ

where we have omitted terms related to spherical
aberration and piston. For reference, Appendix A
gives the coefficients of the sphere function differ-
ence n0 · S0ð~H;~ρÞ − n · Sð~H;~ρÞ to sixth order. When
Eq. (4) is inserted into Eq. (3) and similar terms
are compared, then the fourth-order relationships
in Table 4 follow. The exceptions are the piston of
the image and spherical aberration of the pupil that
are defined to be equal to each other. For the parti-
cular case of a unit magnification system n·
Sð4Þð~H;~ρÞ ¼ n0 · S0ð4Þð~H;~ρÞ, and therefore the image
and the pupil aberration functions are equal to the
fourth order; that is,

Wð4Þð~H;~ρÞ ¼ �Wð4Þð~H;~ρÞ: ð5Þ
We point out that a simple way to determine the

fourth-order terms of the sphere function Sð~H;~ρÞ is
to locate the stop at a spherical surface and set
n ¼ 0, n0 ¼ 1, r ¼ ∞ in the Seidel coefficients of the
aberration function. This maneuver gives fourth-
order terms in the distance between the reference

sphere and the flat surface that coincides with the
pupil; this distance is the definition of the reference
sphere function.

In a different interpretation Sasian [7] has shown
that pupil aberrations provide the mapping error be-
tween the entrance and exit pupils. The beam cross
section from each field point can be distorted as
shown in Fig. 5. When the aperture vector ~ρ is set
at the entrance pupil, both paraxial and real rays co-
incide in intersection points at the entrance pupil
plane. In the presence of pupil aberrations, a uniform
grid at the entrance pupil (Δ~ρ ¼ 0) will appear dis-
torted at the exit pupil by Δ~ρ0,

Δ~ρ0 ¼ 1
Ψ∇H

�Wð~H;~ρÞ

¼ 1
Ψ ·

8>>><
>>>:

4 · �W040ð~H · ~HÞ~Hþ �W131fð~H · ~HÞ~ρ
þ2 · ð~H ·~ρÞ~Hgþ2 · �W222ð~H ·~ρÞ~ρ
þ2 · �W220ð~ρ ·~ρÞ~Hþ �W311ð~ρ ·~ρÞ~ρ

9>>>=
>>>;
: ð6Þ

Conversely, when the aperture vector ~ρ0 ¼~ρ is set
at the exit pupil a uniform grid (Δ~ρ0 ¼ 0) at the exit
pupil will appear distorted at the entrance pupil
by Δ~ρ,

Δ~ρ ¼ −
1
Ψ∇H

�Wð~H;~ρÞ

¼ −
1
Ψ · f4 · �W040ð~H · ~HÞ~H þ �W131fð~H · ~HÞ~ρ

þ 2 · ð~H ·~ρÞ~Hg þ 2 · �W222ð~H ·~ρÞ~ρ
þ 2 · �W220ð~ρ ·~ρÞ~H þ �W311ð~ρ ·~ρÞ~ρg: ð7Þ

5. Coordinate System Geometry

The choice of coordinate system geometry in the
study of sixth-order aberrations is critical, as the
aberration coefficients depend on the coordinate
system used and on its location. In this paper the
field vector ~H is located at the object plane and

Fig. 4. Schematic for deriving the relationship among the aber-
ration function, the pupil function, and the sphere function.

Fig. 5. Pupil grid mapping effects Δ~ρ0 ¼ ð1=ΨÞ∇H
�Wð~H;~ρÞ due to

pupil aberrations in relation to the Gaussian pupil (dashed grid).
There is no effect from pupil piston.

1 June 2010 / Vol. 49, No. 16 / APPLIED OPTICS D73



indicates the field point fromwhere rays emerge. The
aperture vector~ρ ¼~ρ0 can be placed either at the en-
trance pupil plane or at the exit pupil plane, and this
will be clarified in the context below. Thus in this pa-
per the coordinate systems for the field and aperture
vectors are in planar surfaces that are perpendicular
to the system optical axis. The aperture vector is
common to all field points, and it indicates the inter-
section point of a given paraxial ray or real ray with
the pupil plane. That is, when the aperture vector is
at the entrance pupil, both paraxial and real rays are
made to coincide in intersection points and a uniform
grid at the entrance pupil is distorted at the exit pu-
pil. Conversely, when the aperture vector is located
at the exit pupil, both paraxial and real rays are
made to coincide in intersection points and a uniform
grid at the exit pupil is distorted at the entrance pu-
pil. This grid distortion results from pupil aberra-
tions. The wavefront deformation is determined by
a reference sphere. In the treatment of this paper
the reference sphere passes by the on-axis pupil
point, and the center of the reference sphere is lo-
cated at the actual intersection of the chief real
ray with the Gaussian image plane, and not as is cus-
tomary at the Gaussian image point.
For the purposes of aberration coefficient verifica-

tion, setting the aperture vector ~ρ at the entrance
pupil implies making the real rays coincide with
paraxial rays at the entrance pupil. This is done by
having the aperture stop and entrance pupil coinci-
dent. Setting the aperture vector ~ρ at the exit pupil
implies making the real rays coincide with paraxial
rays at the exit pupil. This is done bymaking the stop
aperture and the exit pupil coincident and by using
ray aiming. This may not be physically possible, as
either pupil might be virtual, but it can be done with-
in an optical design program.
There are other choices of coordinate systems as,

for example, on the reference sphere at the exit pupil.
However, in this paper we have chosen coordinates in
planes perpendicular to the optical axis for three rea-
sons. First, coefficients are more easily calculated
when the coordinate system is common to all field
points. Second, a formal diffraction calculation using
angular spectrum theory requires knowledge of the
optical field on a plane. Third, the aberration coeffi-
cients in this paper describe the actual wavefront
fans that lens design programs compute.

6. Extrinsic Aberrations

It is known that high-order aberration coefficients
comprise an intrinsic and an extrinsic part. The ex-
trinsic part contributed by an optical surface arises
because there is aberration before that surface. In
the absence of aberration before an optical surface
then the surface contributes only its intrinsic part.
Sometimes the extrinsic contribution is also called
induced aberration.
Extrinsic or induced aberrations can be explained

as resulting from the exit–entrance pupil distortion.
Hoffman [6] developed formulas for extrinsic coeffi-

cients, using coordinates on the reference sphere at
the exit pupil. The treatment below gives the extrin-
sic coefficients with the aperture vector at the speci-
fied pupil plane (perpendicular to the optical axis).

Consider two systems, A and B, with aberration
functions WAð~H;~ρÞ and WBð~H;~ρÞ. Assume that the
aberration functions are with the aperture vector at
the entrance pupil of each system. If these two sys-
tems are combined to form a third system C, then
the total aberration function WCð~H;~ρÞ to the sixth
order is

WCð~H;~ρÞ ¼ WAð~H;~ρÞ þWBð~H;~ρþΔ~ρ0Þ; ð8Þ
where

Δ~ρ0 ¼ 1
Ψ∇H

�WAð~H;~ρÞ þOð5Þ ð9Þ

is the normalized (by the marginal height y0pupil ray at
the exit pupil) transverse ray error at the exit pupil.
In Eq. (8) it is necessary to account for the exit pupil
distortion Δ~ρ0 of the first system A as it is coupled to
the entrance pupil of the second system B. This is
done by modifying the aperture vector in the second
system by the correction term Δ~ρ0. To account for
fourth- and sixth-order terms we can write

WCð~H;~ρÞ ¼ Wð4Þ
Að~H;~ρÞ þWð6Þ

Að~H;~ρÞ þWð4Þ
Bð~H;~ρÞ

þWð6IÞ
Bð~H;~ρÞ þWð6EÞ

Bð~H;~ρÞ; ð10Þ

where Wð4Þ
Að~H;~ρÞ and Wð4Þ

Bð~H;~ρÞ are fourth-order
terms, Wð6IÞ

Að~H;~ρÞ and Wð6IÞ
Bð~H;~ρÞ are sixth-order

intrinsic terms, and Wð6EÞ
Bð~H;~ρÞ are sixth-order ex-

trinsic terms. The extrinsic terms Wð6EÞ
Bð~H;~ρÞ are

obtained by replacing ~ρ with ~ρþΔ~ρ0 in Wð4Þ
Bð~H;~ρÞ

and retaining the sixth-order terms

W6E
B ð~H;~ρÞ ¼ W4

Bð~H;~ρþΔ~ρ0Þ −W4
Bð~H;~ρÞ: ð11Þ

This approach for obtaining the extrinsic terms
relies on recognizing that they result from the exit
pupil distortion of system A.

An alternative and perhaps not so intuitive ap-
proach is to calculate the extrinsic terms is by locat-
ing the aperture vector at the exit pupil of the
complete system C. In this case we have the normal-
ized displacement vector Δ~ρ at the entrance pupil of
system B to be

Δ~ρ ¼ −
1
Ψ∇H

�WBð~H;~ρÞ þOð5Þ: ð12Þ

The aberration function for the combination of sys-
tems A and B into system C to sixth order is

WCð~H;~ρÞ ¼ Wð4Þ
Að~H;~ρþΔ~ρÞ þWð6IÞ

Að~H;~ρÞ
þWð4Þ

Bð~H;~ρÞ þWð6IÞ
Bð~H;~ρÞ: ð13Þ
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The extrinsic terms W6E
B ð~H;~ρÞ due to system B re-

sult from the entrance pupil distortion of system B
and are obtained by replacing ~ρ with ~ρþΔ~ρ in
W4

Að~H;~ρÞ and retaining the sixth-order terms. This is

W6E
B ð~H;~ρÞ ¼ W4

Að~H;~ρþΔ~ρÞ −W4
Að~H;~ρÞ: ð14Þ

The extrinsic sixth-order terms W6Eð~H;~ρÞ locating
the aperture vector at the entrance or exit pupil of
the complete system C are given in Table 5. The low-
er index E in the coefficients has been added to indi-
cate that the coefficients are extrinsic. The upper
index − or þ has also been added to indicate that
the coefficients are with the aperture vector at the
entrance pupil (−) or at the exit pupil (þ).
The additional terms ΔW331E, ΔW422E, ΔW420E,

and ΔW511E were found by trial and error and by
comparison with the results of computer ray tracing
as explained below. The presence of these terms is
explained as follows. The actual verification of the
coefficients by ray tracing in a lens design program
set the reference sphere at the intersection of the
chief real ray with the Gaussian image plane and
not at the Gaussian image point. Thus in the case
of using ~ρ at the exit pupil and with the presence
of distortion in system A, there is a correction term
in the field vector used in the function Sð~H;~ρÞ and
S0ð~H;~ρÞ. The field vector must be replaced, in object
and image spaces, by ~H þ 1

ΨWA
311ð~H · ~HÞ~ρ to account

for the fact that the object point for system B is not at
the Gaussian object point defined by ~H and to ac-
count for the fact that the reference sphere is not cen-
tered at the Gaussian image point. After substitution
of the above shifted vector in the fourth-order terms
of the function Sð~H;~ρÞ and with the aperture vector
at the exit pupil, then the sixth-order relationships

for ΔW331E, ΔW422E, ΔW420E, and ΔW511E result.
The relationships for ΔW331, ΔW422, ΔW420, and
ΔW511 when ~ρ is located at the entrance pupil were
written by interchanging the upper indices A and B
and changing the algebraic sign.

The relationship for the sixth-order extrinsic
terms W6Eð~H;~ρÞ can also be rewritten in terms of
gradients, and to sixth order they become, for ~ρ at
the entrance pupil,

W6Eð~H;~ρÞ ¼ W4
Bð~H;~ρþΔ~ρ0AÞ −W4

Bð~H;~ρÞ
≈ ∇ρW4

Bð~H;~ρÞ ·Δ~ρ0A
¼ 1

Ψ∇ρW4
Bð~H;~ρÞ ·∇H

�W4
Að~H;~ρÞ; ð15Þ

and, for ~ρ at the exit pupil,

W6Eð~H;~ρÞ ¼ W4
Að~H;~ρþΔ~ρBÞ −W4

Að~H;~ρÞ
≈ ∇ρW4

Að~H;~ρÞ ·Δ~ρB
¼ −

1
Ψ∇ρW4

Að~H;~ρÞ ·∇H
�W4

Bð~H;~ρÞ: ð16Þ

In a different interpretation Eqs. (15) and (16) re-
present a sixth-order correction in optical path differ-
ence due to the real ray displacements from the
paraxial rays. That is, induced aberrations are also
seen as a correction in optical path due to mis-
matched coordinates at the pupils.

7. Wavefront Propagation

In this section we derive relationships for the wave-
front change on propagation in free space. Consider
the eikonal EðX 0;Y 0;Z0Þ function that gives the opti-
cal path length from a given field point to a given

Table 5. Extrinsic Coefficients for Combination of Systems A and B

With Aperture Vector ~ρ at Entrance Pupil With Aperture Vector ~ρ at Exit Pupil

W−
060E ¼ 1

Ψ f4WB
040

�WA
311g Wþ

060E ¼ − 1
Ψ f4WA

040
�WB

311g

W−
151E ¼

�
1
Ψ 3WB

131
�WA

311 þ 8WB
040

�WA
220 þ8WB

040
�WA

222

�
Wþ

151E ¼ − 1
Ψ f 3WA

131
�WB

311 þ 8WA
040

�WB
220 þ8WA

040
�WB

222g

W−
242E ¼ 1

Ψ f 2WB
222

�WA
311 þ 4WB

131
�WA

220

þ6WB
131

�WA
222 þ 8WB

040
�WA

131g
Wþ

242E ¼ − 1
Ψ f 2WA

222
�WB

311 þ 4WA
131

�WB
220 þ6WA

131
�WB

222 þ 8WA
040

�WB
131g

W−
333E ¼ 1

Ψ f4WB
131

�WA
131 þ 4WB

222
�WA

222g Wþ
333E ¼ − 1

Ψ f4WA
131

�WB
131 þ 4WA

222
�WB

222g
W−

240E ¼ 1
Ψ f 2WB

131
�WA

220 þ 2WB
220

�WA
311 þ4WB

040
�WA

131g Wþ
240E ¼ − 1

Ψ f2WA
131

�WB
220 þ 2WA

220
�WB

311 þ 4WA
040

�WB
131g

W−
331E ¼ 1

Ψ f5WB
131

�WA
131 þ 4WB

220
�WA

220 þ 4WB
220

�WA
222

þ 4WB
222

�WA
220 þWB

311
�WA

311 þ 16WB
040

�WA
040g

Wþ
331E ¼ − 1

Ψ f5WA
131

�WB
131 þ 4WA

220
�WB

220 þ 4WA
220

�WB
222 þ 4WA

222
�WB

220
þWA

311
�WB

311 þ 16WA
040

�WB
040g

W−
422E ¼ 1

Ψ f2WB
311

�WA
222 þ 4WB

220
�WA

131

þ 6WB
222

�WA
131 þ 8WB

131
�WA

040g
Wþ

422E ¼ − 1
Ψ f2WA

311
�WB

222 þ 4WA
220

�WB
131 þ 6WA

222
�WB

131 þ 8WA
131

�WB
040g

W−
420E ¼ 1

Ψ f2WB
220

�WA
131 þ 2WB

311
�WA

220 þ 4WB
131

�WA
040g Wþ

420E ¼ − 1
Ψ f2WA

220
�WB

131 þ 2WA
311

�WB
220 þ 4WA

131
�WB

040g
W−

511E ¼ 1
Ψ f3WB

311
�WA

131 þ 8WB
220

�WA
040 þ 8WB

222
�WA

040g Wþ
511E ¼ − 1

Ψ f3WA
311

�WB
131 þ 8WA

220
�WB

040 þ 8WA
222

�WB
040g

W−
600E ¼ 1

Ψ f4WB
311

�WA
040g Wþ

600E ¼ − 1
Ψ f4WA

311
�WB

040g
Added terms when the center of the reference sphere is located at the intersection of the chief ray with the Gaussian image plane
ΔW−

331E ¼ −WB
311ΔAfu2g=2 ΔWþ

331E ¼ þWA
311ΔBfu2g=2

ΔW−
422E ¼ −WB

311ΔAfu�ug ΔWþ
422E ¼ þWA

311ΔBfu�ug
ΔW−

420E ¼ −WB
311ΔAfu�ug=2 ΔWþ

420E ¼ þWA
311ΔBfu�ug=2

ΔW−
511E ¼ −3WB

311ΔAf�u2g=2 ΔWþ
511E ¼ þ3WA

311ΔBf�u2g=2
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point X 0, Y 0, Z0 of an optical system; here we use
transverse coordinates rather that angular coordi-
nates to define the eikonal. The eikonal function
satisfies the equation [3]

∇EðX 0;Y 0;Z0Þ ·∇EðX 0;Y 0;Z0Þ ¼
�
∂EðX 0;Y 0;Z0Þ

∂X 0

	
2

þ
�
∂EðX 0;Y 0;Z0Þ

∂Y 0

	
2
þ
�
∂EðX 0;Y 0;Z0Þ

∂Z0

	
2
¼ n2; ð17Þ

where n is the index of refraction of the correspond-
ing space. Let the eikonal of a system that produces a
perfect point image be SgðX 0;Y 0;Z0Þ and the coordi-
nates of the Gaussian image point be Y 0

g, Y 0
g, Z0

g.
Since the function SgðX 0;Y 0;Z0Þ produces a perfect
point image Y 0

g, Y 0
g, Z0

g, using the properties of the
eikonal we have

∇fSgðX 0;Y 0;Z0Þg ¼ n
R
½X 0

g − X 0;Y 0
g − Y 0;Z0

g − Z0�; ð18Þ

where R is the radius of curvature of the reference
sphere centered at the Gaussian image point Y 0

g,
Y 0

g, Z0
g.

If the coordinates X 0, Y 0, Z0 are at the exit pupil of
an optical system, then the wave aberration function
WðX 0;Y 0;Z0Þ is given simply by the difference be-
tween the function SgðX 0;Y 0;Z0Þ and the system eiko-
nal EðX 0;Y 0;Z0Þ. This is

WðX 0;Y 0;Z0Þ ¼ SgðX 0;Y 0;Z0Þ − EðX 0;Y 0;Z0Þ: ð19Þ

By inserting Eq. (19) into Eq. (17) we obtain

j∇EðX 0;Y 0;Z0Þj2¼j∇WðX 0;Y 0;Z0Þj2−2 ·∇WðX 0;Y 0;Z0Þ
·∇SgðX 0;Y 0;Z0Þþ j∇SgðX 0;Y 0;Z0Þj2

¼n2: ð20Þ

If we locate the point Y 0
g, Y 0

g, Z0
g at infinity, then

∇SgðX 0;Y 0;Z0Þ vanishes given that R becomes infi-
nite, and we have

∇WðX 0;Y 0;Z0Þ ·∇WðX 0;Y 0;Z0Þ ¼ n2; ð21Þ

given that in this case ∇EðX 0;Y 0;Z0Þ ¼
∇WðX 0;Y 0;Z0Þ. By use of

∂W
∂Z0 ≅

ΔZ0W
ΔZ0 ; ð22Þ

Eq. (21) can be modified to

ΔZ0WðX 0;Y 0Þ ≅ n

�
1 −

1

2n2

��
∂W
∂X 0

	
2
þ
�
∂W
∂Y 0

	
2
��

·ΔZ0

¼ n ·ΔZ0 −
ΔZ0

2n
j∇WðX 0;Y 0Þj2; ð23Þ

where ΔZ0 is the distance along the Z0 axis that the
wavefront has propagated and ΔZ0WðX 0;Y 0Þ is the

change in wavefront deformation. Equation (23) re-
lates the change of wavefront as it propagates to
the two-dimensional gradient of the wavefront and
is valid for small propagation distances ΔZ0 or for
beams with no second-order terms, as we have lo-
cated the points Y 0

g, Y 0
g, Z0

g at infinity. However, we
are concerned with the wavefront change over long
propagation distances and for beams that are conver-
ging or diverging.

Let us consider an optical system where a wave-
front ensemble is propagating from an initial plane
PP to the exit pupil. The chief ray height and mar-
ginal ray height at the initial plane are �y and y,
respectively. Using the normalized field ~H and aper-
ture ~ρ vectors, Y 0

pupil ¼ ypupil · ρy and Y 0
PP ¼ y · ρy so

that ∂Y 0
pupil ¼ ypupil · ∂ρy, ∂Y 0

PP ¼ y · ∂ρy, we can write
at the initial plane y ·∇WðX 0

PP;Y
0
ppÞ ¼ ∇ρWð~H;~ρÞand

at the exit pupil plane ypupil ·∇WðX 0
pupil;Y

0
pupilÞ ¼

∇ρWð~H;~ρÞ.
By making the key substitution of replacing

∇WðX 0;Y 0Þ ·∇WðX 0;Y 0Þ with ð1=yypupilÞ∇ρWð~H;~ρÞ ·
∇ρWð~H;~ρÞ so as to change to normalized coordinates
and so that the wavefront change on propagation is
symmetrical when it propagates forward or back-
wards, we obtain

ΔZWð~H;~ρÞ ≅ n ·ΔZ0 −
ΔZ0

2nyypupil
∇ρWð~H;~ρÞ

·∇ρWð~H;~ρÞ: ð24Þ

We can relate the propagation distance ΔZ0 to the
marginal and chief ray heights at the initial plane as

−
1
2

ΔZ0

nyypupil
¼ 1

2
�y
�y

ΔZ0

nyypupil
¼ 1

2
�y
�u0

1
nyypupil

¼ 1
2
�y
y
1
Ψ ;

ð25Þ

and without accounting for the piston term n ·ΔZ0, or
limiting ΔZ0 to small propagation distances, we
obtain

ΔZ0Wð~H;~ρÞ ≅ þ1
2
�y
y
1
Ψ∇ρWð~H;~ρÞ ·∇ρWð~H;~ρÞ: ð26Þ

This is a useful propagation equation and provides
to the sixth order of approximation the wavefront de-
formation change when a wavefront propagates from
an initial plane to a final plane, here the exit pupil
plane, where �ypupil ¼ 0, the propagation distance
being ΔZ0 ¼ −�y · �u0−1. Effectively we have converted
Eq. (23) that uses absolute coordinates to Eq. (26)
that uses normalized coordinates. In doing this
conversion we have removed the limitation of small
propagation distances via the factor 1=yypupil.

For the case of a wavefront described by Wð~H;~ρÞ ¼
½ðn · y2Þ=ðn · y2Þ�ð~ρ ·~ρÞ and propagating a distance
ΔZ0 ¼ R1 −R2, we have that Eq. (24) predicts the
wavefront change to be
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ΔZWð~H;~ρÞ ¼ n ·ΔZ0 −
n ·ΔZ0

2yypupil
·
y4

R2
1

ð~ρ ·~ρÞ

¼ n ·ΔZ0 −
R1 − R2

R1R2
·
n · y2

2
ð~ρ ·~ρÞ

¼ n ·ΔZ0 −
�
n · y2

2R1
ð~ρ ·~ρÞ − n · y2

2R2
ð~ρ ·~ρÞ

�

¼ n · ðR1 − R2Þ þ
n

2R2
ðX 02 þ Y 02Þ

−
n

2R1
ðX 02 þ Y 02Þ; ð27Þ

in agreement with our understanding of second-
order wave propagation. In Eq. (27) we have used
the fact that y=ypupil ¼ R1=R2 and that R1 and R2 are
the vertex radii of the quadratic wavefronts.
To interpret Eq. (26), we point out that the term

ΔZ0 ·∇ρWð~H;~ρÞ ·∇ρWð~H;~ρÞ=2n2y2 in Eq. (24) repre-
sents to second order the sag x2=2ΔZ0 of a sphere of
radius ΔZ0 at point x ¼ ΔZ0j∇ρWð~H;~ρÞj=ny. The
sag of a sphere of radius R2 ¼ R1 −ΔZ0 is x2=2R2.
With y=ypupil ¼ R1=R2 the sum of the sags is
x2y=2ΔZ0ypupil, which leads to the term ΔZ0·
∇ρWð~H;~ρÞ ·∇ρWð~H;~ρÞ=2n2yypupil. ThusEq. (26) gives
the change ofwavefront deformation as the sumof the
sags at the destination plane of a sphere of radius
ΔZ0 ¼ R1 − R2 and a sphere of radius R2 at point
x ¼ ΔZ0j∇ρWð~H;~ρÞj=ny. This point is simply the
transverse deviation at the destination plane of the
actual ray.
Equation (26) is significant in that it shows to sixth

order how a wavefront ensemble, i.e., the plurality of
wavefronts traveling from an extended source,
changes as it propagates in free space the distance
ΔZ0, which is not limited to be small. This equation
provides the geometrical wavefront change, and it
does not account for diffraction effects. We assume
that the beams are unclipped by an aperture before
they reach the exit pupil that coincides with the stop
aperture. The terms that result from Eq. (26) are
highlighted in Table 6.

8. Wavefront Change with Aperture Vector Location

In this section we show how the aberration coeffi-
cients change when the aperture vector is changed
from the entrance pupil to the exit pupil. Let us con-
sider the geometry in Fig. 6, which shows the princi-
pal planes, the pupil planes, propagating rays, and
the object and image planes of an optical system.Gen-
erally at the rear principal plane the intersection
point of a raymaynot coincidewith the corresponding
intersection at the front principal plane. That is, due
to aberration in the system there is coordinate distor-
tion between the principal planes. The difference in
intersection points is given by the displacement vec-
tor Δ~Ω, which is normalized by the marginal ray
height yPP at the principal plane. We are interested
in describing the wavefront deformation with the
aperture vector at the exit pupil. This requires real

rays to pass by the object point and to coincide with
paraxial rays at the exit pupil. As shown in Fig. 6 re-
quiring real rays to coincide with paraxial rays at the
exit pupil changes their intersection point at the exit
pupil by −y0pupil ·Δ~ρ0, at the rear principal plane by
yPP ·Δ~ρ, and at the entrance pupil by ypupil ·Δ~ρ.

The wavefront change Wþð~H;~ρÞ −W−ð~H;~ρÞ when
the aperture vector is changed from the entrance
to the exit pupil is found by replacing ~ρ by ~ρþΔ~ρ
in the fourth-order terms of the aberration function
and retaining the resulting sixth-order terms. Using
the gradient operator, this is

Wþð~H;~ρÞ −W−ð~H;~ρÞ ¼∇ρfWð~H;~ρÞ
−W311ð~H · ~HÞð~H ·~ρÞg

·Δ~ρ¼ −
1
Ψ∇ρWð~H;~ρÞ

·∇H
�Wð~H;~ρÞ − 1

Ψ∇ρW311ð~H · ~HÞ

× ð~H ·~ρÞ ·∇H
�Wð~H;~ρÞ; ð28Þ

where we have subtracted distortionW311ð~H · ~HÞð~H ·
~ρÞ as the reference sphere is centered at the actual
intersection of the chief ray with the Gaussian image
plane.

Table 6. Wavefront Change at the Exit Pupil on Propagation
in Free Space the Distance ΔZ 0 ¼ −�y · �u 0−1 from the Pupila

ΔZ0W−ð~H;~ρÞ ¼ 1
2
�y
y
1
Ψ∇ρWð~H;~ρÞ ·∇ρWð~H;~ρÞ

ΔW−
060 ¼ 1

2
�y
y
1
Ψ f16W040W040g

ΔW−
151 ¼ 1

2
�y
y
1
Ψ f24W040W131g

ΔW−
242 ¼ 1

2
�y
y
1
Ψ f16W040W222 þ 8W131W131g

ΔW−
240 ¼ 1

2
�y
y
1
Ψ f16W040W220 þW131W131g

ΔW−
333 ¼ 1

2
�y
y
1
Ψ f8W131W222g

ΔW−
331 ¼ 1

2
�y
y
1
Ψ f8W040W311 þ 4W131W222 þ 12W131W220g

ΔW−
422 ¼ 1

2
�y
y
1
Ψ f4W131W311 þ 4W222W222 þ 8W222W220g

ΔW−
420 ¼ 1

2
�y
y
1
Ψ f4W220W220 þ 2W311W131g

ΔW−
511 ¼ 1

2
�y
y
1
Ψ f4W222W311 þ 4W220W311g

ΔW−
600 ¼ 1

2
�y
y
1
Ψ fW311W311g

aThe aperture vector is at the initial propagation plane.

Fig. 6. Construction for deriving the relationship
Δ~Ω ¼ ð�yPP=yPPÞΔ~H0

−Δ~ρ.
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The sixth-order terms involved in − 1
Ψ∇ρWð~H;~ρÞ ·

∇H
�Wð~H;~ρÞ are highlighted in Table 7 as they give

the wavefront difference between having the aper-
ture vector at the entrance and exit pupils for the
case of centering the reference at the Gaussian image
point.

9. Displacement Vector Δ ~Ω and Image and Pupil
Aberration Functions

In this section we relate the displacement vector Δ~Ω
at the principal plane to the gradients of the image
and pupil aberration functions. From Fig. 6 we can
establish the equality

Δ~ρþΔ~Ω ¼ −
ΔZ

l −ΔZ

�yimage

yPP
Δ~H0 ¼ �yPP

yPP
Δ~H0

; ð29Þ

where l is the distance from the rear principal plane
to the image plane andΔ~H0 is the normalized (by the
image height �yimage) transverse ray intercept error at
the image plane, given by

Δ~H0 ¼ 1
�yimagen0u0 ∇ρWð~H;~ρÞ þOð5Þ

¼ −
1
Ψ∇ρWð~H;~ρÞ þOð5Þ: ð30Þ

Then the displacement vector Δ~Ω that gives the
ray mapping error between the principal planes is

Δ~Ω ¼ �yPP
yPP

Δ~H0
−Δ~ρ

¼ 1
Ψ

�
∇H

�Wð~H;~ρÞ − �yPP
yPP

∇ρWð~H;~ρÞ
	
: ð31Þ

To illustrate these results, consider the following
example. Algebraic manipulation of the aberration
coefficients for a single spherical surface permits
writing the relationships in Table 8. The coefficients
W0

311 and �W0
311 represent the distortion between the

uniform paraxial coordinates at the front principal
plane and the actual distorted coordinates at the
rear principal plane of the surface. For a flat surface
the coefficients W0

311 and �W0
311 vanish, Δ~Ω ¼ 0,

and the simple relationship ð�yPP=yPPÞ∇ρWð~H;~ρÞ ¼
∇H

�Wð~H;~ρÞ between the gradients of the image
and pupil aberrations follows. This can be verified
term by term by using Tables 6 and 7.

10. Wavefront Propagation to Sixth-Order
Approximation in an Optical System

In this section we summarize the previous results. As
a geometrical wavefront propagates in free space the
Gaussian properties and the fourth-order wavefront
aberration coefficients remain the same. However,
sixth-order properties change. To sixth order the
wavefront change ΔZ0Wð~H;~ρÞ on free-space propaga-
tion is given by

ΔZ0Wð~H;~ρÞ ¼ �1
2
�y
y
1
Ψ∇ρWð~H;~ρÞ ·∇ρWð~H;~ρÞ; ð32Þ

where the propagation distance is ΔZ0 ¼ �y · �u0−1. The
positive sign is for having the aperture vector at the
initial plane, and the negative sign is for having the
aperture vector at the destination plane.

The sixth-order wavefront change ΔZ0Wð~H;~ρÞ on
coordinate distortion is

ΔZ0Wð~H;~ρÞ ¼ ∇ρWð~H;~ρÞ ·Δ~ε; ð33Þ

where Δ~ε is the coordinate distortion and Wð~H;~ρÞ
is the wavefront deformation at the plane of the
distortion.

The change of wavefront on changing the aperture
vector from the entrance to the exit pupil and having
the reference sphere centered at the Gaussian image
points is

Wþð~H;~ρÞ −W−ð~H;~ρÞ ¼ −
1
Ψ∇ρWð~H;~ρÞ ·∇H

�Wð~H;~ρÞ:
ð34Þ

Extrinsic aberrations as a result of combining two
optical systems A and B and having the reference
sphere centered at the Gaussian image point are,
for ~ρ at the entrance pupil,

Table 7. Change in Wavefront on Placing the Aperture Vector at the Exit Pupila

Wþð~H;~ρÞ −W−ð~H;~ρÞ ¼ − 1
Ψ∇ρWð~H;~ρÞ ·∇H

�Wð~H;~ρÞ
Wþ

060 −W−
060 ¼ − 1

Ψ f4W040
�W311g

Wþ
151 −W−

151 ¼ − 1
Ψ f3W131

�W311 þ 8W040
�W220 þ 8W040

�W222g
Wþ

242 −W−
242 ¼ − 1

Ψ f2W222
�W311 þ 4W131

�W220 þ 6W131
�W222 þ 8W040

�W131g
Wþ

333 −W−
333 ¼ − 1

Ψ f4W131
�W131 þ 4W222

�W222g
Wþ

240 −W−
240 ¼ − 1

Ψ f2W131
�W220 þ 2W220

�W311 þ 4W040
�W131g

Wþ
331 −W−

331 ¼ − 1
Ψ f5W131

�W131 þ 4W220
�W220 þ 4W220

�W222 þ 4W222
�W220 þW311

�W311 þ 16W040
�W040g

Wþ
422 −W−

422 ¼ − 1
Ψ f2W311

�W222 þ 4W220
�W131 þ 6W222

�W131 þ 8W131
�W040g

Wþ
420 −W−

420 ¼ − 1
Ψ f2W220

�W131 þ 2W311
�W220 þ 4W131

�W040g
Wþ

511 −W−
511 ¼ − 1

Ψ f3W311
�W131 þ 8W220

�W040 þ 8W222
�W040g

Wþ
600 −W−

600 ¼ − 1
Ψ f4W311

�W040g
aThe reference sphere is centered at the Gaussian image point.
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W−
Eð~H;~ρÞ ¼ 1

Ψ∇ρWBð~H;~ρÞ ·∇H
�WAð~H;~ρÞ; ð35Þ

and, for ~ρ at the exit pupil,

Wþ
Eð~H;~ρÞ ¼ −

1
Ψ∇ρWAð~H;~ρÞ ·∇H

�WBð~H;~ρÞ: ð36Þ

11. Intrinsic Aberrations

Intrinsic aberrations are the aberrations that an op-
tical surface contributes when the incoming light
beam has no aberrations. That is, we assume that
the object for that optical surface lies on a flat surface
and that the individual wavefronts arriving at the
surface are spherical. In this section we provide
the intrinsic aberration coefficients for spherical sur-
faces. The derivation is based on theory for contribu-
tions at a stop at the center of curvature. Stop
shifting proved to be difficult to unveil, and so the
contributions on stop shifting were found with the
aid of a computer. However, Appendices B and C
show, on a theoretical basis, the process of stop shift-
ing for both an aspheric surface and a spherical sur-
face. We have chosen the present order of providing
the results because it is the manner in which they
were obtained.

A. Sixth-Order Spherical Aberration W060

The intrinsic sixth-order wave aberration coefficient
for spherical aberration from a spherical surface with
the stop at the surface has been given by Sasian [8]
and is

W−
060 ¼ 4W040

�
1
8
y2

r2
−
1
8
A

�
u0

n0 þ
u
n

�
þ 1
2
y
r
u

	
; ð37Þ

where the term 1
2ðy=rÞu has been added to account for

the difference in intercepts between the marginal
paraxial ray and the real ray intersection at the sur-
face required in the original formula; r is the radius
of curvature of the surface. For completeness, Appen-
dix D provides a derivation of coefficients used in this
section. Equation (37) is with the aperture stop at the
surface and with the aperture vector at the entrance
pupil. Unless specified aberration coefficients with
the aperture vector at the entrance pupil are marked
with a − upper index as W−, and aberration coeffi-
cients with the aperture vector at the exit pupil

are marked with a þ upper index as Wþ. If the stop
is shifted to a different location, because of free-space
propagation and fourth-order spherical aberration,
there will be a contribution to sixth-order spherical
aberration as a transfer term. Using Eq. (26), we
have that the transfer term is

Wtrasnfer
060 ¼ 8

ΨW040 ·W040
�y
y
; ð38Þ

and the total intrinsic coefficient is

W−
060I ¼ W040

�
1
2
y2

r2
−
1
2
A

�
u0

n0 þ
u
n

�
þ 2

y
r
u

	

þ 8
ΨW040 ·W040

�y
y
; ð39Þ

where the lower index I has been added to indicate
that the coefficient is intrinsic. If the wavefront pro-
pagates in reverse from the exit pupil to the entrance
pupil, we have that this is equivalent to having the
aperture vector at the exit pupil. Therefore the sixth-
order coefficient for spherical aberration with the
aperture vector at the exit pupil is

Wþ
060I ¼ W040

�
1
2
y2

r2
−
1
2
A

�
u0

n0 þ
u
n

�
þ 2

y
r
u0
	

−
8
ΨW040 ·W040

�y
y
; ð40Þ

where the difference between W−
060I and Wþ

060I is the
use of themarginal ray slope u0 in image space rather
than slope u in object space and the change of sign in
the transfer term. Furthermore, since

4
ΨW040

�W0
311 ¼ −2W040

y
r
ðu0 − uÞ; ð41Þ

8
ΨW040W040

�y
y
¼ 2

ΨW040ð �W311 −
�W0

311Þ; ð42Þ

then we can also write

Wþ
060I ¼ W−

060I −
4
ΨW040

�W311: ð43Þ

Table 8. Image and Pupil Coefficient Relationships for a Spherical Surface

4W040
�y
y ¼ �W311 −

�W0
311 4 �W040

y
�y ¼ W311 −W0

311

W131
�y
y ¼ �W222 −

�W0
311

�y
y

�W131
y
�y ¼ W222 −W0

311
y
�y

W222
�y
y ¼ �W131 þW0

311
�W222

y
�y ¼ W131 þ �W0

311

W220
�y
y ¼ 1

2
�W131 −

1
2
�W0

311ð�yyÞ2 �W220
y
�y ¼ 1

2W131 −
1
2W

0
311ðy�yÞ2

W311
�y
y ¼ 4 �W040 þW0

311
�y
y

�W311
y
�y ¼ 4W040 þ �W0

311
y
�y

W0
311 ¼ Wy¼0

311 ¼ 1
2
1
RΨ�A�yΔf1ng ¼ 1

2Ψ�αð�u0 − �uÞ �W0
311 ¼ �W�y¼0

311 ¼ − 1
2
1
RΨAyΔf1ng ¼ − 1

2Ψαðu0 − uÞ
α ¼ y

r �α ¼ �y
r
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Thus we have two forms for the relationship be-
tween coefficients with the aperture vector at the en-
trance pupil W−

060I and with the aperture vector at
the exit pupil Wþ

060I. One form uses a change of the
ray slopes and a sign change in the transfer term; the
other form adds a term that involves products of
fourth-order aberrations. This latter term is reminis-
cent of induced aberrations, and it accounts for the
change of coordinates or placement of the aperture
vector as discussed in the previous section.

B. Oblique Spherical Aberration W240 and Sixth-Order
Field Curvature W420 with the Stop at the Center of
Curvature

We calculate oblique spherical aberration W240 and
field curvature W420 by first locating the aperture
stop at the center of curvature of the surface. Sphe-
rical aberration W040 depends on the conjugate dis-
tances s and s0. As shown in Appendix D, these
distances vary for off-axis object points, and when
the variations are considered the coefficients forW240
and W420 result. In this derivation there is no distor-
tion and the reference sphere is centered at the Gaus-
sian image point. The lower index CC indicates that
the coefficient has the stop at the center of curvature
of the surface. Thus for oblique spherical aberration
W240 we have

W−
240CC ¼ þ

�
1
16

A
r
Ψ2Δ

�
u

n2

�
þ 1
8
1
r
Ψ2Δ

�
u2

n

�

þ 1
4
y2

r2
W220P þ y

r
uW220P −

1
4
u0

r
Ψ2Δ

�
u
n

�	
;

ð44Þ

Wþ
240CC ¼ þ

�
1
16

A
r
Ψ2Δ

�
u

n2

�
þ 1
8
1
r
Ψ2Δ

�
u2

n

�

þ 1
4
y2

r2
W220P þ y

r
u0W220P −

1
4
u
r
Ψ2Δ

�
u
n

�	
;

ð45Þ

Wþ
240CC ¼ W−

240CC −
2
ΨW220P · �W311 þ

2
ΨW220P ·W131;

ð46Þ

where the term

W220P ¼ −
1
4
Ψ2P ¼ −

1
4r

Ψ2Δ
�
1
n

�
ð47Þ

is the Petzval field curvature. For sixth-order field
curvature W420 we have

W−
420CC ¼ Wþ

420CC ¼ 3
16

1

r3
Ψ4Δ

�
1
n

�
1

A2 : ð48Þ

For the case of A ¼ 0we haveW−
420CC ¼ Wþ

420CC ¼ 0
which follows from considering the sagittal Codding-

ton equation and noting that when s0 ¼ s the sagittal
field surface must be flat, and so all orders of field
curvature Wk20 are zero.

C. Sixth-Order Astigmatism W422, Coma W331, W151, and
W242 with the Stop at the Center of Curvature

For off-axis field points the reference sphere is tilted
with respect to the exit pupil. This creates a distor-
tion of coordinates that in the presence of spherical
aberration and field curvature gives origin to sixth-
order terms. Effectively, coordinate distortion in-
duces sixth-order terms as part of the intrinsic terms.
These terms are simple products of fourth-order
coefficients and the paraxial ray slopes. Specifically,
they are

Wþ
331CC ¼ −2W220P · u0�u0; ð49Þ

W−
331CC ¼ −2W220P · u�u; ð50Þ

Wþ
422CC ¼ −W220P · �u02; ð51Þ

W−
422CC ¼ −W220P · �u2; ð52Þ

Wþ
151CC ¼ −4W040 · u0�u0; ð53Þ

W−
151CC ¼ −4W040 · u�u; ð54Þ

Wþ
242CC ¼ −2W040 · �u02; ð55Þ

W−
242CC ¼ −2W040 · �u2: ð56Þ

D. Aberration Coefficients when the Aperture Stop is
Shifted from the Center of Curvature

We have that the aberration function to sixth order
when the aperture stop is located at the surface cen-
ter of curvature is

Wþ
CCð~H;~ρÞ ¼ W040ð~ρ ·~ρÞ2 þW220ð~H · ~HÞð~ρ ·~ρÞ

þWþ
240CCð~H · ~HÞð~ρ ·~ρÞ2

þWþ
331CCð~H · ~HÞð~H ·~ρÞð~ρ ·~ρÞ

þWþ
422CCð~H · ~HÞð~H ·~ρÞ2

þWþ
420CCð~H · ~HÞ2ð~ρ ·~ρÞ

þWþ
060ð~ρ ·~ρÞ3 þWþ

151CCð~H ·~ρÞ · ð~ρ ·~ρÞ2

þWþ
242CCð~H ·~ρÞ2ð~ρ ·~ρÞ; ð57Þ

where we have not accounted for piston terms and
have located the aperture vector at the exit pupil.
Stop shifting refers to the process of changing the
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location of the aperture stop while maintaining the
same Lagrange invariant. This requires the change
of the aperture stop size to maintain the same work-
ing f-number. As the stop shifts, different portions of
the light beams are selected to pass through the stop,
and thus the aberrations change. In fourth-order the-
ory a stop shift is performed by substitution of the
aperture vector ~ρ for the shifted vector ~ρshift,

~ρshift ¼~ρþ �yOP

yOP

~H ¼~ρþ
�A
A
~H; ð58Þ

into the fourth-order terms of the aberration function
and carrying out the expansion of terms. The quan-
tities yOP and �yOP are the marginal ray and chief
heights at the old stop position, which is at the center
of curvature. In sixth-order theory it is also necessary
to account for the fact that as the stop is shifted the
wavefront propagates and deforms as specified by
Eq. (26). In addition, as the reference sphere also
shifts position, there is a coordinate distortion to ac-
count for and also for the change of the center of the
reference sphere as the real ray intersection changes
from the Gaussian image point. In accounting for all
of these effects it is helpful to have a common exit
pupil for all field points and to place the aperture vec-
tor at the exit pupil so that no other coordinate dis-
tortion effects take place. The coordinate distortion
effects are subtle, and formula checking with actual
ray tracing as explained below is indispensable.
For oblique spherical aberration W240 we have

Wþ
240I ¼ Wþ

240CC þ 3

��A
A

�
2
Wþ

060I − 8
1
Ψ

�A
A
W040 ·W220P

þW222u02 −W131u0�u0: ð59Þ

The term 3ð�A=AÞ2Wþ
060 results from the expansion of

Wþ
060ð~ρ ·~ρÞ6 when ~ρþ ð�A=AÞ~H is substituted; the

term −8ð1=ΨÞð�A=AÞW040 ·W220P results from wave-
front propagation, and the terms W222u02 −W131u0�u0
result from coordinate distortion.
For sixth-order coma W331 we have

Wþ
331I ¼ 4

�A
A
Wþ

240I þ 2
�A
A
Wþ

242CC þ
�A
A
W220u

02

þW311u02 − 2W220Pu0�u0: ð60Þ

For sixth-order astigmatism W422 we have

Wþ
422I ¼ 4

��A
A

�
2
Wþ

240I þ 2
�A
A
Wþ

331CC − 2W222�u02

−W220�u02 þ 2

��A
A

�
2
W220u02 þW311u0�u0

þ 1
2

�A
A
W311u02 þ 2

�A
A
W220u0�u0: ð61Þ

For sixth-order field curvature W420 we have

Wþ
420I ¼ 3

��A
A

�
4
Wþ

060I þ 2

��A
A

�
2
Wþ

240CC

− 4

��A
A

�
2 1
ΨW131 ·W220P − 2

�A
A

1
ΨW220P

·W220P þWþ
420CC þ

�A
A
Wþ

331CC

þ
��A
A

�
2
W220Pu02 þ 1

2

�A
A
W311u02 −

1
2
W311u0�u0

þ 2
�A
A
W220Pu0�u0 þ

��A
A

�
2
W222u02 −

1
2
W222�u02:

ð62Þ

For sixth-order distortion W511 we have

Wþ
511I ¼ 6

��A
A

�
5
Wþ

060I

þ 4

��A
A

�
3
�
Wþ

240CC − 8
�A
A

1
ΨW040 ·W220P

	

þ 2
�A
A

�
Wþ

420CC − 2
�A
A

1
ΨW220P ·W220P

	

þ
��A
A

�
3
W222u02 þ 2

��A
A

�
2
W311u02

−

��A
A

�
2
W222u0�u0 − 2

��A
A

�
2
W220Pu0�u0

−
�A
A
W222�u02 þ 1

2
W311�u02: ð63Þ

For sixth-order W151 we have

Wþ
151I ¼ 6

�A
A
Wþ

060I þW131u02 þWþ
151CC: ð64Þ

For sixth-order W242 we have

Wþ
242I ¼ 12

��A
A

�
2
Wþ

060I þ
7
2
W222u02 − 3W131u0�u0

þWþ
242CC: ð65Þ

For sixth-order W333 we have

Wþ
333I ¼ 8

��A
A

�
3
Wþ

060I þ 4

��A
A

�
2
Wþ

151CC þ 3
�A
A
W222u02

þ 2
�A
A
Wþ

242CC þ 2W222u0�u0; ð66Þ
and sixth-order piston W600 may be set equal to the
sixth-order spherical aberration of the pupil; this is

Wþ
600I ¼ �Wþ

060I: ð67Þ
Table 9 summarizes the quantities used for the cal-

culation of the intrinsic coefficients with the aperture
vector at the exit pupil. Table 10 summarizes the in-
trinsic coefficients of a spherical surface with the
aperture vector at the exit pupil.

1 June 2010 / Vol. 49, No. 16 / APPLIED OPTICS D81



12. Relationships between Coefficients

Table 11 presents the relationships between the
sixth-order intrinsic aberrations coefficients W− and
Wþ with the aperture vector at the entrance pupil
and at the exit pupil. These were found by using real
ray tracing to numerically find the magnitude of the
coefficients and by the suggested analogy with the
formula development in this paper. After noting that
4W220 · �W220 ¼ W311 · �W311 and that 2W311 · �W222 ¼
4W220 · �W131, the relationships in Table 11 match
the theoretical prediction:

Wþ
I ð~H;~ρÞ−W−

I ð~H;~ρÞ ¼∇ρfWð~H;~ρÞ−W311ð~H · ~HÞ

× ð~H ·~ρÞg ·Δ~ρ¼ −
1
Ψ∇ρWð~H;~ρÞ

·∇H
�Wð~H;~ρÞ− 1

Ψ ½∇ρW311ð~H · ~HÞ

× ð~H ·~ρÞ� · ½∇H
�Wð~H;~ρÞ�: ð68Þ

We mention that the case of piston W−
600I ¼ Wþ

600I
was not verified by real ray tracing.
By performing reverse propagation for a spherical

surface (actually done by reversing the surface, the
stop, the image, and object planes, and by standard
forward ray tracing) we found that

Wþforward
I ð~H;~ρÞ −Wþreverse

I ð~H;~ρÞ

¼ −
1
Ψ∇ρWð~H;~ρÞ ·∇H

�Wð~H;~ρÞ þΔΠð~H;~ρÞ; ð69Þ

where

ΔΠð~H;~ρÞ ¼ 1
2
W311Δfu2gð~H · ~HÞð~ρ ·~ρÞð~H ·~ρÞ

þW311Δfu�ugð~H · ~HÞð~H ·~ρÞ2

þ 1
2
W311Δfu�ugð~H · ~HÞ2ð~ρ ·~ρÞ

þ 3
2
W311Δf�u2gð~H · ~HÞ2ð~H ·~ρÞ: ð70Þ

The term Wþreverse
I ð~H;~ρÞ is the wavefront aberra-

tion on reverse ray tracing through the surface

and placing the aperture vector at the exit pupil (en-
trance pupil of the unreversed system). The terms in
ΔΠð~H;~ρÞ result from placing the reference sphere
center at the actual intersection of the chief ray with
the Gaussian image plane as discussed in the extrin-
sic aberrations section. Thus Eq. (69) shows that by
swapping the appropriate paraxial quantities in
Wþ

I ð~H;~ρÞ one can obtain W−
I ð~H;~ρÞ as was done for

spherical aberration.
Furthermore, the terms

ΔΞð~H;~ρÞ ¼ 1
2
W311u02ð~H · ~HÞð~H ·~ρÞð~ρ ·~ρÞ

þW311u0�u0ð~H · ~HÞð~H ·~ρÞ2

þ 1
2
W311u0�u0ð~H · ~HÞ2ð~ρ ·~ρÞ

þ 3
2
W311�u02ð~H · ~HÞ2ð~H ·~ρÞ

−
1
Ψ ½∇ρW311ð~H · ~HÞð~H ·~ρÞ� · ½∇H

�Wð~H;~ρÞ�;
ð71Þ

account for the effect of changing the center of the
reference sphere from the Gaussian image point to
the intersection of the chief ray with the Gaussian
image plane.

13. Image and Pupil Coefficient Relationships

To determine the pupil aberration coefficients, data
for the chief ray are interchanged with data for the

Table 9. Quantities Used in Calculation of Intrinsic Aberration
Coefficients with the Aperture Vector ~ρ at the Exit Pupil

W220P ¼ − 1
4Ψ2P

Wþ
240CC ¼ þ 1

16
A
r Ψ2Δf u

n2g þ 1
8
1
rΨ2Δfu2

n g
þ 1

4
y2

r2
W220P þ y

r u
0W220P − 1

4
u
r Ψ2Δfung

Wþ
420CC ¼ 3

16
1
r3
Ψ4Δf1ng 1

A2 (Wþ
420CC ¼ 0 for A ¼ 0)

Wþ
331CC ¼ −2W220P · u0�u0

Wþ
151CC ¼ −4W040 · u0�u0

Wþ
242CC ¼ −2W040 · �u02

Table 10. Intrinsic Aberration Coefficients with the Aperture Vector ~ρ at the Exit Pupila

Wþ
060I ¼ W040½12 y2

r2
− 1

2Aðu
0

n0 þ u
nÞ þ 2 y

r u
0� − 8

ΨW040 ·W040
�y
y

Wþ
151I ¼ 6

�A
AW

þ
060I þW131u02 þWþ

151CC

Wþ
242I ¼ 12ð�AAÞ2Wþ

060I þ 7
2W222u02 − 3W131u0�u0 þWþ

242CC

Wþ
333I ¼ 8ð�AAÞ3Wþ

060I þ 4ð�AAÞ2Wþ
151CC þ 3

�A
AW222u02 þ 2

�A
AW

þ
242CC þ 2W222u0�u0

Wþ
240I ¼ Wþ

240CC þ 3ð�AAÞ2Wþ
060I − 8 1

Ψ
�A
AW040 ·W220P þW222u02 −W131u0�u0

Wþ
331I ¼ 4

�A
AW

þ
240I þ 2

�A
AW

þ
242CC þ �A

AW220u
02 þW311u02 þW331CC

Wþ
422I ¼ 4ð�AAÞ2Wþ

240I þ 2
�A
AW

þ
331CC − 2W222�u02 −W220�u

02 þ 2ð�AAÞ2W220u
02 þW311u0�u0 þ 1

2
�A
AW311u02 þ 2

�A
AW220u

0�u0

Wþ
420I ¼ 3ð�AAÞ4Wþ

060I þ 2ð�AAÞ2Wþ
240CC − 4ð�AAÞ2 1

ΨW131 ·W220P − 2
�A
A

1
ΨW220P ·W220P þWþ

420CC þ �A
AW

þ
331CC þ ð�AAÞ2W220Pu02

þ 1
2
�A
AW311u02 − 1

2W311u0�u0 þ 2
�A
AW220Pu0�u0 þ ð�AAÞ2W222u02 − 1

2W222�u02

Wþ
511I ¼ 6ð�AAÞ5Wþ

060I þ 4ð�AAÞ3½Wþ
240CC − 2 1

ΨW131 ·W220P� þ 2
�A
A ½Wþ

420CC − 2
�A
A

1
ΨW220P ·W220P� þ ð�AAÞ3W222u02 þ 2ð�AAÞ2W311u02

− ð�AAÞ2W222u0�u0 − 2ð�AAÞ2W220Pu0�u0 − �A
AW222�u02 þ 1

2W311�u02

Wþ
600I ¼ �Wþ

060I

aThe reference sphere is at the intersection of the chief ray with the Gaussian image plane.

D82 APPLIED OPTICS / Vol. 49, No. 16 / 1 June 2010



marginal ray, and then the image coefficients provide
the pupil coefficients.
Alternatively, the fourth-order pupil treatment

suggests that the sixth-order image and pupil aber-
rations can be related. That is,

�Wð6Þð~H;~ρÞ þ n · Sð6Þð~H;~ρÞ ¼ Wð6Þð~H;~ρÞ þ n0

· S0ð6Þð~H;~ρÞ þOð6Þ; ð72Þ

where Oð6Þ represents sixth-order terms to be de-
termined.
Table 12 provides the relationships between sixth-

order pupil and image coefficients. These were found
in analogy with the formula development of this pa-
per and by using real ray tracing to numerically find
the magnitude of the coefficients as explained below.
The image aberration coefficients depend on the ra-
tio �A=A, and when the marginal ray is, or is nearly,
normal to the spherical surface, A ≅ 0, there can be a
singularity in the coefficients Wþ

240I, Wþ
333I, Wþ

422I,
Wþ

420I, and Wþ
151I. It is through the use of the image–

pupil relationships that the singularity of computing
the coefficients can be avoided.
Note that two forms for �Wþ

331I are given. The form
at the bottom of the Table 12 was first obtained from
guessing the coefficients with the aid of computer ray
tracing. The second form was derived by similarity
with the other equations. Both forms match to at
least eight decimal places in a computer simulation
for several stop and object locations.

Thus the term Oð6Þ in Eq. (72) is given by

Oð6Þ ¼ 1
Ψ∇ρWð~H;~ρÞ ·∇H

�Wð~H;~ρÞ −ΔΞð~H;~ρÞ

þΔ�Ξð~H;~ρÞ; ð73Þ
where ΔΞð~H;~ρÞ and Δ �Ξð~H;~ρÞ result from placing
the center of the reference sphere at the intersection
of the chief ray with the Gaussian image plane and
are given by

ΔΞð~H;~ρÞ ¼ 1
2
W311u02ð~H · ~HÞð~H ·~ρÞð~ρ ·~ρÞ

þW311u0�u0ð~H · ~HÞð~H ·~ρÞ2

þ 1
2
W311u0�u0ð~H · ~HÞ2ð~ρ ·~ρÞ

þ 3
2
W311�u02ð~H · ~HÞ2ð~H ·~ρÞ; ð74Þ

Δ �Ξð~H;~ρÞ ¼ 1
2
�W311u02ð~H · ~HÞð~H ·~ρÞð~ρ ·~ρÞ

þ �W311u0�u0ð~H · ~HÞð~H ·~ρÞ2

þ 1
2
�W311u0�u0ð~H · ~HÞ2ð~ρ ·~ρÞ

þ 3
2
�W311�u02ð~H · ~HÞ2ð~H ·~ρÞ: ð75Þ

Table 11. Relationships between Intrinsic Coefficients W − and Wþ of a Spherical Surfacea

W−
060I ¼ Wþ

060I þ 4
ΨW040 · �W311

W−
151I ¼ Wþ

151I þ 1
Ψ ½3W131 · �W311 þ 8W040 · �W220 þ 8W040 · �W222�

W−
242I ¼ Wþ

242I þ 1
Ψ ½2W222 · �W311 þ 4W131 · �W220 þ 6W131 · �W222 þ 8W040 · �W131�

W−
333I ¼ Wþ

333I þ 1
Ψ ½4W131 · �W131 þ 4W222 · �W222�

W−
240I ¼ Wþ

240I þ 1
Ψ ½2W220 · �W311 þ 2W131 · �W220 þ 4W040 · �W131�

W−
331I ¼ Wþ

331I þ 1
Ψ ½5W131 · �W131 þ 4W220 · �W222 þ 4W222 · �W220 þW311 · �W311 þ 16W040 · �W040�

W−
422I ¼ Wþ

422I þ 1
Ψ ½6W222 · �W131 þ 8W131 · �W040 þ 2W311 · �W222�

W−
420I ¼ Wþ

420I þ 1
Ψ ½2W220 · �W131 þ 4W131 · �W040�

W−
511I ¼ Wþ

511I þ 1
Ψ ½8W220 · �W040 þ 8W222 · �W040�

W−
600I ¼ Wþ

600I

aThe reference sphere is centered at the intersection of the chief ray with the Gaussian image plane.

Table 12. Relationships between Sixth-Order Pupil and Image Aberration Coefficients for a Spherical Surfacea

�Wþ
060I ¼ Wþ

600I
�Wþ

151I ¼ Wþ
511I −

3
8ΨΔf�u4g þ 1

Ψ ½3W311 · �W131 þ 8W220 · �W040 þ 8W222 · �W040� − 3
2W311�u02

�Wþ
242I ¼ Wþ

422I −
3
4ΨΔfu�u3g þ 1

Ψ ½2W311 · �W222 þ 4W220 · �W131 þ 6W222 · �W131 þ 8W131 · �W040� −W311u0�u0
�Wþ

333I ¼ Wþ
333I −

1
2ΨΔfu2�u2g þ 1

Ψ ½4W131 · �W131 þ 4W222 · �W222�
�Wþ

240I ¼ Wþ
420I −

3
16ΨΔfu�u3g þ 1

Ψ ½2W311 · �W220 þ 2W220 · �W131 þ 4W131 · �W040� − 1
2W311u0�u0

�Wþ
331I ¼ Wþ

331I −
12
16ΨΔfu2�u2g þ 1

Ψ ½5W131 · �W131 þ 4W220 · �W220 þ 4W220 · �W222 þ 4W222 · �W220 þW311 · �W311

þ 16W040 · �W040� þ 1
2
�W311�u

02 − 1
2W311u

02

�Wþ
422I ¼ Wþ

242I −
3
4ΨΔfu3�ug þ 1

Ψ ½2W222 · �W311 þ 4W131 · �W220 þ 6W131 · �W222 þ 8W040 · �W131� þ �W311u0�u0
�Wþ

420I ¼ Wþ
240I −

3
16ΨΔfu3�ug þ 1

Ψ ½2W220 · �W311 þ 2W131 · �W220 þ 4W040 · �W131� þ 1
2
�W311u0�u0

�Wþ
511I ¼ Wþ

151I −
3
8ΨΔfu4g þ 1

Ψ ½3W131 · �W311 þ 8W040 · �W220 þ 8W040 · �W222� þ 3
2
�W311u02

�Wþ
600I ¼ Wþ

060I
�Wþ

331I ¼ Wþ
331I −

12
16ΨΔfu2�u2g þ 1

Ψ ½5W131 · �W131 þ 4W220 · �W220 þ 4W220 · �W222 þ 4W222 · �W220 þW311 · �W311

þ 16W040 · �W040� þ 1
ΨW311½W131 −

�W311� þ 1
2 ½W131 · �u02 − �W131 · u2 −W222ðu�uþ u0�u0Þ þ �W222ðu�uþ u0�u0Þ�

aThe reference sphere is centered at the intersection of the chief ray with the Gaussian image plane.
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14. Eikonal Function

By noting that except for a piston term and the alge-
braic sign the function Sgð~H;~ρÞ and the reference
sphere function S0ð~H;~ρÞ are equal, and using
Eq. (19), we can express the eikonal function for a
spherical surface with the aperture vector at the exit
pupil plane. In this treatment the eikonal function
gives the optical path from the object point to the exit
pupil plane:

Eð~H;~ρÞ ¼ −n0 · S0ð~H;~ρÞ −Wð~H;~ρÞ; ð76Þ
where the zero-order and second-order terms are not
accounted for.
The zero-order term of the eikonal is

Eð0Þð~H;~ρÞ ¼ n ·
y
u
− n0 ·

�y
�u
; ð77Þ

which represents the on-axis optical path from the
object to the exit pupil.
The second-order terms of the eikonal are

Eð2Þð~H;~ρÞ ¼ 1
2
Ψ �u

u
ð~H · ~HÞ þΨ · ð~H ·~ρÞ þ 1

2
Ψu0

�u0 ð~ρ ·~ρÞ:
ð78Þ

The fourth-order terms of the eikonal are

Eð4Þð~H;~ρÞ ¼ 1
8
ΨΔ

�
�u3

u

�
ð~H · ~HÞ2 − n0 · S0ð4Þð~H;~ρÞ

−Wð4Þð~H;~ρÞ; ð79Þ

and the sixth-order terms are

Eð6Þð~H;~ρÞ ¼ −
1
16

ΨΔ
�
�u5

u

�
ð~H · ~HÞ3 − n0 · S0ð6Þð~H;~ρÞ

−Wþð6Þð~H;~ρÞ: ð80Þ

15. Coefficients for a System of Surfaces

Knowledge of the intrinsic and extrinsic coefficients
permits us to write the aberration coefficients for a
system of j surfaces. These coefficients comprise the
sum of all the intrinsic coefficients and the sum of all
the extrinsic coefficients as define in Table 5. The
coefficients are given in Table 13 for the case of hav-
ing the aperture vector at the exit pupil. The sums
are over the j surfaces as indicated by the summation
indices. The right upper indices, i and m, added to
the coefficients are to indicate that the coefficient
pertains to surface i or m. For i ¼ 1 the sums in
the curly brackets are defined to be equal to zero.

16. Irradiance Function

In this section we determine the irradiance function
Ið~H;~ρÞ that gives the beam relative irradiance across
the exit pupil for each field point. Since the optical

system has axial symmetry and in analogy with
the aberration function the irradiance function can
also be expressed as a polynomial, and to sixth order
it is

Ið~H;~ρÞ ¼
X
j;m;n

Ik;l:mð~H · ~HÞj · ð~H ·~ρÞm · ð~ρ ·~ρÞn

¼ I000þ I200ð~H · ~HÞþ I111ð~H ·~ρÞþ I020ð~ρ ·~ρÞ
þ I040ð~ρ ·~ρÞ2þ I131ð~H ·~ρÞð~ρ ·~ρÞþ I222ð~H ·~ρÞ2

þ I220ð~H · ~HÞð~ρ ·~ρÞþ I311ð~H · ~HÞð~H ·~ρÞ
þ I400ð~H · ~HÞ2þ I240ð~H · ~HÞð~ρ ·~ρÞ2

þ I331ð~H · ~HÞð~H ·~ρÞð~ρ ·~ρÞþ I422ð~H · ~HÞð~H ·~ρÞ2

þ I420ð~H · ~HÞ2ð~ρ ·~ρÞþ I511ð~H · ~HÞ2ð~H ·~ρÞ
þ I600ð~H · ~HÞ3þ I060ð~ρ ·~ρÞ3þ I151ð~H ·~ρÞð~ρ ·~ρÞ2

þ I242ð~H ·~ρÞ2ð~ρ ·~ρÞþ I333ð~H ·~ρÞ3: ð81Þ

The terms in the irradiance function represent var-
iations, or apodization aberrations, in the irradiance
of the optical beams at the exit pupil. These varia-
tions are also arranged according to the algebraic or-
der of the terms.We wish to determine the irradiance
function coefficients Ik;l:m. For this we will locate the
aperture vector at the exit pupil. Given that the op-
tical power through the system must be conserved,
we must conserve the flux and satisfy

I0 · Ið~H;~ρþΔ~ρÞ · d2S ¼ I0 · Ið~H;~ρþΔ~ρÞ · d2S0 · Jð~H;~ρÞ
¼ I00 · I

0ð~H;~ρÞ · d2S0; ð82Þ

where Ið~H;~ρÞ is the irradiance function at the en-
trance pupil plane of the system, I0ð~H;~ρÞ is the irra-
diance function at the exit pupil plane, d2S is the
element of area at the entrance pupil, d2S0 is the ele-
ment of area at the exit pupil, and Jð~H;~ρÞ is the
Jacobian determinant.

Because of the presence of pupil aberrations
Eq. (82) determines the irradiance function Ið~H;~ρþ
Δ~ρÞ at point~ρþΔ~ρ of the entrance pupil. The Jaco-
bian determinant provides the relationship between
the area elements at the pupil planes, and to con-
serve the flux within Gaussian optics we have I0·
y2pupil ¼ I00 · y

02
pupil.

Let ~g be a unit vector in the direction of ~ρ, ~h be a
unit vector in the direction of ~H, and~i be a unit vector
perpendicular to ~h. The displacement vector Δ~ρ ¼
Δ~ρg þΔ~ρh has two components, one in the direction
~ρ and the other in the direction of ~h. To obtain the
Jacobian determinant we express the displacement
vector Δ~ρ in orthogonal coordinates along ~h and
~i as Δ~ρ ¼ Δρi~iþΔρh~h ¼ ðΔ~ρg ·~iÞ~iþ ðΔ~ρg ·~hþΔ~ρh
·~hÞ~h. Then, with ρ0h ¼ ρh þΔρh, ρ0i ¼ ρi þΔρi giving
the position of a giving ray at the entrance pupil,
we have that the Jacobian determinant is
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Jð~H;~ρÞ ¼ y2pupil
y02pupil

·
�
1þ ∂Δρh

∂ρh
þ ∂Δρi

∂ρi

þ ∂Δρh
∂ρh

∂Δρi
∂ρi

−
∂Δρi
∂ρh

∂Δρh
∂ρi

�
:

ð83Þ

Since ρh ¼~ρ ·~h ¼ ρ · cosðϕÞ and ρi ¼~ρ ·~i ¼ ρ · sinðϕÞ,
we can write for the partial derivatives

∂Δρh
∂ρh

¼ ∂Δρh
∂ρ

∂ρ
∂ρh

¼ 1
cosðϕÞ

∂Δρh
∂ρ ; ð84Þ

∂Δρi
∂ρi

¼ ∂Δρi
∂ρ

∂ρ
∂ρi

¼ 1
sinðϕÞ

∂Δρi
∂ρ ; ð85Þ

∂Δρh
∂ρi

¼ ∂Δρh
∂ρ

∂ρ
∂ρi

¼ 1
sinðϕÞ

∂Δρh
∂ρ ; ð86Þ

∂Δρi
∂ρh

¼ ∂Δρi
∂ρ

∂ρ
∂ρh

¼ 1
cosðϕÞ

∂Δρi
∂ρ ; ð87Þ

and the Jacobian determinant simplifies to

Jð~H;~ρÞ ¼ y2pupil
y02pupil

·
�
1þ ∂Δρh

∂ρh
þ ∂Δρi

∂ρi

�

¼ y2pupil
y02pupil

· f1þ∇ρΔ~ρg; ð88Þ

where ∇ρΔ~ρ stands for the divergence of Δ~ρ. To the
fourth order of approximation we can write

Ið~H;~ρþΔ~ρÞ − Ið~H;~ρÞ ≅ ∇ρIð~H;~ρÞ ·Δ~ρ ð89Þ

and recast Eq. (82) as

I0ð~H;~ρÞ ≅ ½∇ρIð~H;~ρÞ ·Δ~ρþ Ið~H;~ρÞ�ð1þ∇ρΔ~ρÞ: ð90Þ

Equation (90) relates the irradiance at the exit pu-
pil to the irradiance at the entrance pupil through
the entrance pupil displacement vectorΔ~ρ. It is valid
to the fourth order of approximation in the field and
aperture variables, as the error in Eq. (89) is of
sixth order.

Furthermore, since the displacement vector Δ~ρ is
given to third-order by

Δ~ρ ¼ Δ~ρg þΔ~ρh ¼ −
1
Ψ∇H

�Wð~H;~ρÞ; ð91Þ

we can recast Eq. (90) as

I0ð~H;~ρÞ − Ið~H;~ρÞ ≅ −
1
Ψ∇ρIð~H;~ρÞ∇H

�Wð~H;~ρÞ

−
1
Ψ Ið~H;~ρÞ∇ρ∇H

�Wð~H;~ρÞ; ð92Þ

where we have neglected terms higher than fourth
order and where ∇ρ∇HWð~H;~ρÞ stands for the diver-
gence with respect to ρ of the gradient with respect to
H of the pupil aberration function �Wð~H;~ρÞ. Equa-
tion (92) requires the irradiance Ið~H;~ρÞ at the en-
trance pupil and the pupil aberration function
�Wð~H;~ρÞ. This equation permits finding terms of the
irradiance function I0ð~H;~ρÞ at the exit pupil. The
equation is valid to the second order of approxima-
tion in the field and aperture variables. However,
if there are no sixth-order pupil aberrations, or if
the displacement vector Δ~ρ is made to account for
up to fifth-order transverse ray errors at the en-
trance pupil, then Eq. (92) would be valid to the
fourth-order of approximation.

The calculation of the divergence and gradient
turns out to be simplified. Thompson [2] has shown
that the gradient operator is simply given by the de-
rivative of the function with respect to the designated
vector; for example,

Table 13. Sixth-Order Aberration Coefficients for a System of j Surfaces

Wþ
060 ¼ Pj

i¼1 W
þi
060I −

1
Ψ
Pj

i¼1f �Wi
311

P
i−1
m¼1 4W

m
040g

Wþ
151 ¼ Pj

i¼1 W
þi
151I −

1
Ψ
Pj

i¼1f �Wi
311

P
i−1
m¼1 3W

m
131g − 1

Ψ
Pj

i¼1f �Wi
220

P
i−1
m¼1 8W

m
040g − 1

Ψ
Pj

i¼1f �Wi
222

P
i−1
m¼1 8W

m
040g

Wþ
242 ¼ Pj

i¼1 W
þi
242I −

1
Ψ
Pj

i¼1f �Wi
311

P
i−1
m¼1 2W

m
222g − 1

Ψ
Pj

i¼1f �Wi
220

P
i−1
m¼1 4W

m
131g − 1

Ψ
Pj

i¼1f �Wi
222

P
i−1
m¼1 6W

m
131g − 1

Ψ
Pj

i¼1f �Wi
131

P
i−1
m¼1 8W

m
040g

Wþ
333 ¼ Pj

i¼1 W
þi
333I −

1
Ψ
Pj

i¼1f �Wi
131

P
i−1
m¼1 4W

m
131g − 1

Ψ
Pj

i¼1f �Wi
222

P
i−1
m¼1 4W

m
222g

Wþ
240 ¼ Pj

i¼1 W
þi
240I −

1
Ψ
Pj

i¼1f �Wi
220

P
i−1
m¼1 2W

m
131g − 1

Ψ
Pj

i¼1f �Wi
311

P
i−1
m¼1 2W

m
220g − 1

Ψ
Pj

i¼1f �Wi
131

P
i−1
m¼1 4W

m
040g

Wþ
331 ¼ Pj

i¼1 W
þi
331I −

1
Ψ
Pj

i¼1f �Wi
131

P
i−1
m¼1 5W

m
131g − 1

Ψ
Pj

i¼1f �Wi
220

P
i−1
m¼1 4W

m
220g − 1

Ψ
Pj

i¼1f �Wi
222

P
i−1
m¼1 4W

m
220g − 1

Ψ
Pj

i¼1f �Wi
220

P
i−1
m¼1 4W

m
222g

− 1
Ψ
Pj

i¼1f �Wi
311

P
i−1
m¼1 W

m
311g − 1

Ψ
Pj

i¼1f �Wi
040

P
i−1
m¼1 16W

m
040g þ

Pj
i¼1f12Δifu2gPi−1

m¼1 W
m
311g

Wþ
422 ¼ Pj

i¼1 W
þi
422I −

1
Ψ
Pj

i¼1f �Wi
222

P
i−1
m¼1 2W

m
311g − 1

Ψ
Pj

i¼1f �Wi
131

P
i−1
m¼1 4W

m
220g − 1

Ψ
Pj

i¼1f �Wi
131

P
i−1
m¼1 6W

m
222g − 1

Ψ
Pj

i¼1f �Wi
040

P
i−1
m¼1 8W

m
131g

þPj
i¼1fΔifu�ugPi−1

m¼1 W
m
311g

Wþ
420 ¼ Pj

i¼1 W
þi
420I −

1
Ψ
Pj

i¼1f �Wi
131

P
i−1
m¼1 2W

m
220g − 1

Ψ
Pj

i¼1f �Wi
220

P
i−1
m¼1 2W

m
311g − 1

Ψ
Pj

i¼1f �Wi
040

P
i−1
m¼1 4W

m
131g þ

Pj
i¼1f12Δifu�ugPi−1

m¼1 W
m
311g

Wþ
511 ¼ Pj

i¼1 W
þi
511I −

1
Ψ
Pj

i¼1f �Wi
131

P
i−1
m¼1 3W

m
311g − 1

Ψ
Pj

i¼1f �Wi
040

P
i−1
m¼1 8W

m
220g − 1

Ψ
Pj

i¼1f �Wi
040

P
i−1
m¼1 8W

m
222g þ

Pj
i¼1f32Δif�u2gPi−1

m¼1 W
m
311g

Wþ
600 ¼ Pj

i¼1 W
þi
600I −

1
Ψ
Pj

i¼1f �Wi
040

P
i−1
m¼1 4W

m
311g
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∇ρWð~H;~ρÞ ¼
�

∂

∂ρh
Wð~H;~ρÞ

�
~hþ

�
∂

∂ρi
Wð~H;~ρÞ

�
~i

¼ ∂

∂~ρWð~H;~ρÞ: ð93Þ

The reasoning can be extended to show that the
divergence becomes the derivative with respect to
the designated vector; this is

∇ρð∇H
�Wð~H;~ρÞÞ ¼ ∂

∂ρh
ð∇H

�Wð~H;~ρÞ ·~hÞ

þ ∂

∂ρi
ð∇H

�Wð~H;~ρÞ ·~iÞ

¼ ∂

∂~ρ
∂

∂ ~H
Wð~H;~ρÞ: ð94Þ

In this process we are taking the derivative with re-
spect to a vector. This gives a vector in the case of a
scalar (build up from vectors), and a scalar in the
case of a vector.
The zero-order terms for both irradiance functions

at the entrance and exit pupils are equal to one. With
no second-order terms in the aberration function, the
terms∇ρIð~H;~ρÞ∇H

�Wð~H;~ρÞ result in other terms that
are at least of fourth order. The zero- and second-
order terms of the irradiance function in terms of
pupil aberrations are given in Table 14.
The second-order term I0020ð~ρ ·~ρÞ represents a

parabolic apodization for all the field beams. The
term I0111ð~H ·~ρÞ represents a linear apodization as
a function of either the aperture or the field of view.
The term I0200ð~H · ~HÞ represents a quadratic irradi-
ance change as a function of the field of view; this
is known as the Slyusarev effect.

17. Irradiance Transport Equation

In this section we show that Eq. (92) can be rewritten
as an irradiance transport equation. In free space we
have Δ~Ω ¼ 0, and the relationship between the gra-
dient of the aberration function and the gradient of
the pupil aberration function is

∇H
�Wð~H;~ρÞ ¼ �yPP

yPP
∇ρWð~H;~ρÞ: ð95Þ

Then we can rewrite Eq. (92) for the change of ir-
radiance between two planes, here the rear principal
plane and the exit pupil plane, as

ΔIð~H;~ρÞ ¼ I0ð~H;~ρÞ − Ið~H;~ρÞ

≅ −
1
Ψ

�yPP
yPP

∇ρIð~H;~ρÞ ·∇ρWð~H;~ρÞ

−
1
Ψ

�yPP
yPP

Ið~H;~ρÞ∇2
ρWð~H;~ρÞ; ð96Þ

where ∇2
ρWð~H;~ρÞ stands for the Laplacian of the

aberration function,

∇2
ρWð~H;~ρÞ ¼ ∂2Wð~H;~ρÞ

∂ρ2h
þ ∂2Wð~H;~ρÞ

∂ρ2i

¼ ∂

∂~ρ

�
∂

∂~ρWð~H;~ρÞ
�
: ð97Þ

Since

�yPP
yPP

¼ −
ΔZ

ðl −ΔZÞyPP
�yimage ¼ −

Ψ
n

ΔZ
yPP · ypupil

;

Eq. (96) becomes

ΔIð~H;~ρÞ
ΔZ

≅
1

n · yPP · ypupil
ð∇ρIð~H;~ρÞ ·∇ρWð~H;~ρÞ

þ Ið~H;~ρÞ ·∇2
ρWð~H;~ρÞÞ:

ð98Þ

For very small propagation distances ΔZ we have
that n · yPP · ypupil becomes n · yPP · yPP, ΔIð~H;~ρÞ=ΔZ
becomes ∂Ið~H;~ρÞ=∂Z, and we can write the equation
as

∂Ið~H;~ρÞ
∂Z

≅
1

n · yPP · yPP
½∇ρIð~H;~ρÞ ·∇ρWð~H;~ρÞ

þ Ið~H;~ρÞ∇2Wð~H;~ρÞ�; ð99Þ

which is equivalent to irradiance transport equa-
tion (9),

∂IðX ;YÞ
∂Z

¼ −½∇IðX;YÞ ·∇ΦðX;YÞ
þ IðX ;YÞ∇2ΦðX ;YÞ�; ð100Þ

where the function ΦðX ;YÞ represents the optical
phase. This development reveals that the term
∇IðX;YÞ ·∇ΦðX;YÞ in Eq. (100) can be interpreted
as accounting for the effects of coordinate distortion.
The term IðX;YÞ∇2ΦðX;YÞ results from the Jaco-
bian determinant that relates the elements of the
area, d2S and d2S0.

Equation (98) is a generalized irradiance transport
equation that is not limited to small propagation dis-
tances. It is written in terms of normalized field and
aperture vectors and not in terms of absolute coordi-
nates. The product of the marginal ray height at
the principal plane and at the exit pupil accounts
for the change of absolute to normalized coordinates.

Table 14. Zero- and Second-Order Terms
of the Irradiance Function

I0000 ¼ 1

I0020ð~ρ ·~ρÞ ¼ − 3
Ψ
�W311ð~ρ ·~ρÞ

I0111ð~H ·~ρÞ ¼ −½4Ψ �W220 þ 6
Ψ
�W222�ð~H ·~ρÞ

I0200ð~H · ~HÞ ¼ − 6
Ψ
�W131ð~H · ~HÞ
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Equations (92) and (98) assume that no second-order
terms are present in the aberration function, as their
effect on the irradiance is already accounted for by
I0 · y2pupil ¼ I00 · y

02
pupil. The use of normalized coordi-

nates permits Eq. (98) to work for large propagation
distances; however, this equation is not valid for cal-
culating irradiance changes near or at a ray caustic.
The wavefronts are assumed to be smooth as de-
scribed by the aberration function and unclipped
by an aperture so that edge diffraction or multiple
beam interference does not take place. The irradi-
ance equations and the propagation equations dis-
cussed above describe the geometric wavefront and
irradiance changes when an ensemble of wavefronts
travels some distance. Effectively, we are propagat-
ing the wavefront to sixth order and the irradiance
to fourth order in the field and aperture variables
(here we assume that Δ~ρ accounts for up to fifth-
order transverse ray errors).
For the case of having uniform irradiance at the

initial plane Ið~H;~ρÞ ¼ 1 we have that ∇ρIð~H;~ρÞ ¼ 0,
and in the presence of spherical aberration
W040ð~ρ ·~ρÞ2 we have that Eq. (98) reduces to

ΔIð~H;~ρÞ
ΔZ

≅
1

n · yPP · ypupil
∇2

ρWð~H;~ρÞ

¼ 1
n · yPP · ypupil

12W040ð~ρ ·~ρÞ: ð101Þ

With positive spherical aberration the wavefront
leads the reference sphere in propagating from left
to right a distanceΔZ. Then the irradiance increases
on propagation, and the algebraic sign in Eq. (99) is
correct. From pupil theory and for a spherical surface
we have 4W040

�y
y ¼ �W311 −

�W0
311. For a flat surface

Δ~Ω ¼ 0, �W0
311 ¼ 0, 4W040

�y
y ¼ �W311, and it follows that

ΔIð~H;~ρÞ ≅ ΔZ
n · �yPP · ypupil

3 �W311ð~ρ ·~ρÞ

¼ −
3
Ψ

�W311ð~ρ ·~ρÞ; ð102Þ

in agreement with Table 14. The positive spherical
aberration leads to barrel distortion of the exit pupil.
The ratio d2S0=d2S of the elements of the area de-
creases and the irradiance at the exit pupil increases
to conserve the flux. The difference in algebraic sign
between Eq. (99) and irradiance transport equation
(100) is due to the difference in sign between the
wave aberration function Wð~H;~ρÞ and the phase
function ΦðX;YÞ used in describing the optical field.

18. Coefficient Verification

To find the algebraic form of the aberration coeffi-
cients it was indispensable to know their magnitude.
A computer program was written to numerically de-
termine the coefficients by making an iterative fit to
a selected set of optical path difference points across
the aperture and field of view of an optical system.

For example, for spherical aberration the following
iterative loop was executed:

FOR j ¼ 1 to 100
ρ ¼ 0:2
OPD ¼ OPDðρÞ
W020 ¼ ½OPD −W040ρ4 −W060ρ6 −W080ρ8 −W0100ρ10� · ρ−2
ρ ¼ 0:4
OPD ¼ OPDðρÞ
W040 ¼ ½OPD −W020ρ2 −W060ρ6 −W080ρ8 −W0100ρ10� · ρ−4
ρ ¼ 0:6
OPD ¼ OPDðρÞ
W060 ¼ ½OPD −W020ρ2 −W040ρ4 −W080ρ8 −W0100ρ10� · ρ−6
ρ ¼ 0:8
OPD ¼ OPDðρÞ
W080 ¼ ½OPD −W020ρ2 −W040ρ4 −W060ρ6 −W0100ρ10� · ρ−8
ρ ¼ 1
OPD ¼ OPDðρÞ
W0100 ¼ ½OPD −W020ρ2 −W040ρ4 −W060ρ6 −W080ρ8� · ρ−10
NEXT

The quantity OPD ¼ OPDðρÞ is the optical path
difference at the specified pupil height and with
the reference sphere centered at the intersection of
the actual chief ray with the Gaussian image plane.
After a few iterations of this loop the coefficients con-
verged to the theoretical values with insignificant
error for W020, W040, and W060. Similar loops were
written to find the remaining aberration coefficients.
Tests were done to check the coefficient scalability
with respect to field and aperture. Coincidence of
the four-order terms with the Seidel coefficients also
helped to verify the coefficients obtained by the fit.
For the case of distortion the magnitude of the coeffi-
cients W311 and W511 was found by making an itera-
tive fit to the transverse error �yimage ·Δ~H0 of the chief
ray and using Δ~H0 ¼ −Ψ−1 ·∇ρðW311ð~H · ~HÞð~H ·~ρÞ
þW511ð~H · ~HÞ2ð~H ·~ρÞ þW711ð~H · ~HÞ3ð~H ·~ρÞ þ…Þ.
This iterative fit methodology proved to be effective,
and the success is due in part to the fact that it was
applied to find aberration coefficients of a single sur-
face or of systems with few spherical surfaces. As the
number of surfaces increased, the ability of the itera-
tive algorithm to find the correct coefficients signifi-
cantly decreased.

With the ability to find the magnitude of the coef-
ficients, simple algebraic terms were written to guess
some missing terms in the aberration coefficient for-
mulas resulting from shifting the pupil from the cen-
ter of curvature. Tests of the terms were done with
A ¼ 0, �A ¼ 0, y ¼ 0, �y ¼ 0, r ¼ ∞, u ¼ 0, �u ¼ 0, and
Δðu=nÞ ¼ 0. Several conjugate distances and stop po-
sitions were also tested for a single surface and for a
system of several surfaces. Unless the correct formu-
la was obtained there would not be agreement with
the coefficients found with the above iterative loop.
With the correct formulas there was an obvious
agreement of the coefficients.

19. Self-Consistent Verification

Table 12 gives the pupil aberration coefficients by
using the image aberration coefficients, terms of
the sphere function, and products of the fourth-order
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coefficients. The pupil aberration coefficients can
also be found by swapping the chief and marginal
ray data in the image aberration coefficients and
in the Lagrange invariant. When this is done, the pu-
pil aberration coefficients computed in both manners
match. This represents a self-consistent verification.
Table 15 presents a comparison of coefficients calcu-
lated both ways, where some the differences are in
the 15th decimal place and are likely due to the com-
putational approach used. The essentially equality of
the coefficients supports the correctness of the aber-
ration coefficients.

20. Aspheric Triplet Lens Example

In this section we provide an example triplet lens
that is corrected for all fourth-order and sixth-order
aberrations to the 10−14 level or better. Four surfaces
are aspheric with fourth and sixth-order coefficients
of deformation. The contributions from an aspheric
surface to the aberration coefficients are derived
and given in Appendix B. The design is shown in
Fig. 7, and it evolved from a design from Shafer
[9]. We reoptimized the lens to reduce the wave aber-
ration residuals from the 10−6 level to the 10−14 level
to critically test the coefficients in this paper. The
specifications of the reoptimized triplet are given
in Appendix E.
The final values of the wave aberration coefficients

are shown in Table 16. For comparison, the fifth-
order coefficients from Rimmer’s thesis [10] were
computed and are also given in Table 16. These
two sets of coefficients are nearly zero to the 10−14

level or better. Thus, for this triplet lens and in the
absence of fourth-order aberrations there is agree-
ment, in that there is no aberration, between the
sixth-order theory in this paper and the fifth-order
theory of Buchdahl [11]. We point out that Buch-
dahl’s theory provides the fifth-order transverse
ray aberration coefficients with the aperture vector
at the entrance pupil. Relationships between the
Buchdahl coefficients and the wave coefficients in
this paper can be established by first describing
the Buchdahl coefficients with the aperture vector
at the exit pupil. Then the normalized (by the image
height) transverse ray aberrations to fifth order are
given by

Δ~H0 ¼ −
1

cos3ðθ0Þ
1
Ψ∇ρWð~H;~ρÞ þOð7Þ; ð103Þ

where

cosðθ0Þ ≅ 1 −
1
2
ðu02ð~ρ ·~ρÞ þ 2u0~u0ð~H ·~ρÞ þ �u02ð~H · ~HÞÞ

ð104Þ
and θ0 is the angle of a given ray in image space with
the optical axis.

The relationships between the fifth-order trans-
verse ray coefficients of Buchdahl and the sixth-order
wave coefficients in this paper will be the subject of
future work. We point out that in the absence of
fourth-order aberrations the Buchdahl coefficients
are given by the gradient of the aberration function
(sixth-order terms) divided by n0u0.

21. Summary

This paper develops a sixth-order theory of wave
aberrations for axially symmetric systems. Specific
formulas for the sixth-order extrinsic and intrinsic
wave aberration coefficients are given, as well as re-
lations between pupil and image aberrations. The
paper develops equations for the wavefront propaga-
tion to sixth-order of approximation; the equation for
free-space propagation in terms of normalized quan-
tities is novel and is not limited to small propagation
distances. The concept of the irradiance function is
developed, and the second-order irradiance coeffi-
cients are found via conservation of flux at the pupils
of the optical system and in terms of pupil aberra-
tions. As a result we derived, from purely geometrical
considerations, a generalized irradiance transport
equation that describes irradiance changes in an
optical system. We effectively have provided a solu-
tion to the irradiance transport problem in terms of
the aberrations of an optical system. Both the wave-
front propagation and the irradiance transport equa-
tion account for geometric effects and do not consider
edge diffraction effects, and unclipped and unfolded
beams are assumed. We found it indispensable to
verify the formulas for the aberration coefficients
with the results from real ray tracing.

The aberration coefficients provided are with the
center of the reference sphere at the intersection of
the real chief ray with the Gaussian image plane;
they describe to sixth order the actual wavefronts
computed by optical design software. However, we
have indicated the terms that correspond to the case
of having the center of the reference sphere at the
Gaussian image point. In this latter case the connec-
tions between coefficients acquire an elegant math-
ematical form. We also have shown in terms of the
sphere function, the aberration function, and the pu-
pil function the relationship with the eikonal func-
tion and have provided specific formulas for the
eikonal’s expansion coefficients.

Further work could be done to obtain the fourth-
order coefficients of the irradiance function and
to provide formulas to convert the aberration coef-
ficients to other coordinate systems of interest.
However, modern optical design relies significantly

Table 15. Coefficient Comparison for an Aspheric Surfacea

W151 −0:4193360087176732 −0:4193360087176732
W242 1.3879576582604869 1.3879576582604876
W333 −1:3737719852861099 −1:3737719852861099
W240 0.1318037474153832 0.1318037474153833
W331 −1:5376298938401587 −1:5376298938401600
W422 0.4115466232465593 0.4115466232465597
W420 2.3841052150066186 2.3841052150066186
W511 −2:2205687849607498 −2:2205687849607463

aThe coefficients are in waves at 586:7nm.
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on real ray tracing and on the insights of aberration
theory. This paper gives insight into aberration gen-
eration and light propagation in an optical system
because it makes visible the underlying structure
of how the wavefront deforms as it propagates in
an optical system and provides specific formulae.
Overall, the paper furthers and enhances the theory
of wave aberrations.

Appendix A: Sphere Function Coefficients

The coefficients for the sphere function are given in
Table 17.

Appendix B: Aspheric Contributions

In this appendix we provide the change of wavefront
deformation when the surface is aspheric. The diff-
erence in sag, ΔfSagg, between the sphere of ver-
tex radius r and the aspheric surface is the aspheric
cap,

ΔfSagg ¼ A4ðX2 þ Y2Þ2 þ A6ðX2 þ Y2Þ3; ðB1Þ
where A4 is the fourth-order coefficient of deforma-
tion and A6 is the sixth-order coefficient of deforma-
tion. The fourth-order contributions to the wavefront
deformation are given in Table 18. We wish to deter-
mine the sixth-order contributions from the aspheric
cap that are contributed by the fourth-order coeffi-
cient A4. When the stop is at the surface, the sixth-
order contributions are simple enough to derive with
reasoning and the aid of real ray-tracing data and are

given in Table 19. To obtain the coefficients when the
stop is shifted from the surface does requires elabor-
ating the theory of stop shifting.

Now we wish to determine the change of sixth-
order aberrations on stop shifting. By construction,
the exit pupil coincides with the stop aperture. We
start with the aperture stop located at the aspheric
cap, and so the aberration function is given by

Wþcap
I ð~H;~ρÞ ¼ Wcap

040ð~ρ ·~ρÞ2 þWþcap
240I ð~H · ~HÞð~ρ ·~ρÞ2

þWþcap
311 ð~H · ~HÞð~H ·~ρÞ þWþcap

060I ð~ρ ·~ρÞ3

þWþcap
151I ð~H ·~ρÞ · ð~ρ ·~ρÞ2; ðB2Þ

where we have included the distortion term to ac-
count for the fact that the reference sphere is cen-
tered at the intersection of the chief ray with the
Gaussian image plane. According to Eq. (32) the
change in wavefront deformation on free-space pro-
pagation is

ΔZ0Wð~H;~ρÞ ¼ 1
2
�y
y
1
Ψ∇ρWð~H;~ρÞ ·∇ρWð~H;~ρÞ; ðB3Þ

where �y is the new chief ray height and y is the mar-
ginal ray height at the old exit pupil aperture. The
change of aperture vector from the old exit pupil
to the new exit pupil produces a change of wavefront
given by Eq. (34), or

ΔWð~H;~ρÞ ¼ −
1
Ψ∇ρWð~H;~ρÞ ·∇H

�Wð~H;~ρÞ: ðB4Þ

As in the old exit pupil there is no error in defining
a given ray, ΔΩ ¼ 0,

ΔWð~H;~ρÞ ¼ −
�y
y
1
Ψ∇ρWð~H;~ρÞ ·∇ρWð~H;~ρÞ; ðB5Þ

and the wavefront change on propagation and coor-
dinate distortion between the old and new pupil is

Fig. 7. Aspheric triplet lens corrected for fourth- and sixth-order
aberrations to the 10−14 wave level.

Table 16. Sixth-Order Aberration Coefficients of the Triplet Lens in Waves at 587:6nm

Sixth-Order Aberration Coefficients

W040 W131 W222 W220 W311

3.095E-013 4.842E-013 7.749E-014 −1:033E-013 1.2695E-012
W240 W331 W422 W420 W511

4.3519E-012 −1:3257E-013 4.2807E-014 3.4504E-014 8.6500E-013
W060 W151 W242 W333

1.011E-013 7.878E-014 −1:176E-012 −8:605E-014
Fifth-Order Transverse Aberration Coefficients (mm)

B F C Pi E
−6:71E-15 −2:522E-015 −3:537E-016 1.414E-015 −6:209E-015
B5 F1 F2 M1 M2
−3:5428E-15 −7:6113E-017 −5:187E-017 1.2030E-014 −9:6599E-014
N1 N2 N3 C5 Pi5
−2:536E-016 −4:7702E-016 −4:952E-017 −1:22E-016 −1:0157E-016
M3 E5
1.252E-014 −4:851E-015
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ΔWð~H;~ρÞ ¼ −
1
2
�y
y
1
Ψ∇ρWð~H;~ρÞ ·∇ρWð~H;~ρÞ: ðB6Þ

With ΔWstopshiftð~H;~ρÞ equal to the change of wave-
front deformation on stop shifting from the center of
curvature, we have that

ΔWstopshiftingð~H;~ρÞ¼
�
Wcapð~H;~ρÞ−1

2
�y
y
1
Ψ∇ρWcapð~H;~ρÞ

·∇ρWcapð~H;~ρÞ
�





�y
y
~Hþ~ρ

; ðB7Þ

where the terms inside the curly braces are evalu-
ated at the shifted aperture vector ~ρþ ð�yOP=yOPÞ~H
and terms higher than sixth-order are neglected.
We must account also for terms associated with
the change of reference sphere; these terms are

ΔΞð~H;~ρÞ ¼ 1
2
W311u02ð~H · ~HÞð~ρ ·~ρÞð~H ·~ρÞ

þW311u0�u0ð~H · ~HÞð~H ·~ρÞ2

þ 1
2
W311u0�u0ð~H · ~HÞ2ð~ρ ·~ρÞ

þ 3
2
W311�u02ð~H · ~HÞ2ð~H ·~ρÞ

−
1
Ψ ½∇ρW311ð~H · ~HÞð~H ·~ρÞ� · ½∇H

�Wð~H;~ρÞ�:
ðB8Þ

The results of this transformation are summarized
in Table 20. The equations in Table 20 provide the
sixth-order change of wavefront deformation as the
stop is shifted from the aspheric cap defined by
the coefficientA4. The extrinsic coefficients that arise
between the aspheric cap and the base spherical sur-
face are given by

W6Eð~H;~ρÞ ¼ −
1
Ψ∇ρWcapð~H;~ρÞ ·∇H

�Wsphereð~H;~ρÞ;
ðB9Þ

ΔΠð~H;~ρÞ ¼ 1
2
W311Δfu2gð~H · ~HÞð~ρ ·~ρÞð~H ·~ρÞ

þW311Δfu�ugð~H · ~HÞð~H ·~ρÞ2

þ 1
2
W311Δfu�ugð~H · ~HÞ2ð~ρ ·~ρÞ

þ 3
2
W311Δf�u2gð~H · ~HÞ2ð~H ·~ρÞ: ðB10Þ

These terms are not included in Table 20 and should
be added as intrinsic contributions from the aspheric
surface.

The contributions to the coefficients from the
sixth-order coefficient of deformation A6 are given
in Table 21; in this case there are no extrinsic contri-
butions to the sixth-order level.

Appendix C: Spherical Contributions

In this Appendix we provide a derivation of the in-
trinsic coefficients on stop shifting for a spherical
surface with the aperture vector at the exit pupil.

Table 17. Coefficients of the Sphere Function Difference
n0 · S0ð~H;~ρÞ − n · Sð~H;~ρÞ

Second-order
n0S0

020 − nS020 ¼ − 1
2ΨΔfu�ug

n0S0
111 − nS111 ¼ −ΔfΨg ¼ 0

n0S0
200 − nS200 ¼ − 1

2ΨΔf�uug
Fourth order
n0S0

040 − nS040 ¼ 1
8ΨΔfu3

�u g
n0S0

131 − nS131 ¼ 1
2ΨΔfu2g

n0S0
222 − nS222 ¼ 1

2ΨΔfu�ug
n0S0

220 − nS220 ¼ 1
4ΨΔfu�ug

n0S0
311 − nS311 ¼ 1

2ΨΔf�u2g
n0S0

400 − nS400 ¼ 1
8ΨΔf�u3

u g
Sixth order
n0S0

060 − nS060 ¼ − 1
16ΨΔfu5

�u g
n0S0

151 − nS151 ¼ − 3
8ΨΔfu4g

n0S0
242 − nS242 ¼ − 3

4ΨΔfu3�ug
n0S0

333 − nS333 ¼ − 1
2ΨΔfu2�u2g

n0S0
240 − nS240 ¼ − 3

16ΨΔfu3�ug
n0S0

331 − nS331 ¼ − 12
16ΨΔfu2�u2g

n0S0
422 − nS422 ¼ − 3

4ΨΔfu�u3g
n0S0

420 − nS420 ¼ − 3
16ΨΔfu�u3g

n0S0
511 − nS511 ¼ − 3

8ΨΔf�u4g
n0S0

600 − nS600 ¼ − 1
16ΨΔf�u5

u g

Table 18. Fourth-Order Aberrations Contributed by an Aspheric
Cap where A4 is the Aspheric Coefficient

Wcap
040 ¼ Δfng · A4 · y4 �Wcap

040 ¼ Δfng · A4 · �y4

Wcap
131 ¼ 4Δfng · A4 · y3 · �y �Wcap

131 ¼ 4Δfng · A4 · �y3 · y
Wcap

222 ¼ 4Δfng · A4 · y2 · �y2 �Wcap
222 ¼ 4Δfng · A4 · �y2 · y2

Wcap
220 ¼ 2Δfng · A4 · y2 · �y2 �Wcap

220 ¼ 2Δfng · A4 · �y2 · y2

Wcap
311 ¼ 4Δfng · A4 · y · �y3 �Wcap

311 ¼ 4Δfng · A4 · �y · y3

Wcap
400 ¼ Δfng · A4 · �y4 �Wcap

400 ¼ Δfng · A4 · y4

Table 19. Intrinsic Sixth-Order Aberrations
Contributed by an Aspheric Capa

Wþcap
060I ¼ − 1

2Δfn · u2g · A4 · y4 þ 2 ·Wcap
040

y·u
r

Wþcap
151I ¼ u

yn0 Ψ ·Wcap
040 þ 3 Ψ

r·n0 W
cap
040 þ 8

ΨWcap
040 ·W220P

Wþcap
242I ¼ 0

Wþcap
333I ¼ 0

Wþcap
240I ¼ 1

2nn0 Ψ2 ·Wcap
040

1
y2

Wþcap
331I ¼ 0

Wþcap
422I ¼ 0

Wþcap
420I ¼ 0

Wþcap
511I ¼ 0

Wþcap
600I ¼ 0

aThe stop is located at the cap, and the aperture vector is located
at the exit pupil.
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Following the reasoning of Appendix B, the change of
aberration function on stop shifting with the stop at
the center of curvature is

ΔWstopshiftingð~H;~ρÞ¼
�
Wþ

CCð~H;~ρÞ−1
2

�A
A
1
Ψ∇ρW

þ
CCð~H;~ρÞ

·∇ρW
þ
CCð~H;~ρÞ

�




ð�A=AÞ~Hþ~ρ

; ðC1Þ

where Wþ
CCð~H;~ρÞ is

Wþ
CCð~H;~ρÞ ¼ W040ð~ρ ·~ρÞ2 þW220ð~H · ~HÞð~ρ ·~ρÞ

þWþ
240CCð~H · ~HÞð~ρ ·~ρÞ2

þWþ
331CCð~H · ~HÞð~H ·~ρÞð~ρ ·~ρÞ

þWþ
422CCð~H · ~HÞð~H ·~ρÞ2

þWþ
420CCð~H · ~HÞ2ð~ρ ·~ρÞ

þWþ
060ð~ρ ·~ρÞ3 þWþ

151CCð~H ·~ρÞ · ð~ρ ·~ρÞ2

þWþ
242CCð~H ·~ρÞ2ð~ρ ·~ρÞ

þW311ð~H · ~HÞð~H ·~ρÞ ðC2Þ

and where the effects of having the center of the re-
ference sphere at the intersection of the chief ray
with the Gaussian image plane are accounted for

by adding the distortion term W311ð~H · ~HÞð~H ·~ρÞ.
After the product of the gradients is obtained, stop
shifting is performed by replacing ~ρ for the shifted
vector ~ρþ ð�A=AÞ~H and carrying out the expansion
of terms and collecting similar terms.

The additional terms

ΔΞð~H;~ρÞ ¼ 1
2
W311u2ð~H · ~HÞð~ρ ·~ρÞð~H ·~ρÞ

þW311u�uð~H · ~HÞð~H ·~ρÞ2

þ 1
2
W311u�uð~H · ~HÞ2ð~ρ ·~ρÞ

þ 3
2
W311�u2ð~H · ~HÞ2ð~H ·~ρÞ

−
1
Ψ ½∇ρW311ð~H · ~HÞð~H ·~ρÞ� · ½∇H

�Wð~H;~ρÞ�
ðC3Þ

must also be added to account for the change of cen-
ter of the reference sphere.

With the definitions in Table 22 the intrinsic coef-
ficients on stop shifting are given in Table 23. The set
of aberration coefficients in Tables 10 and 23 match
each other to the 10−12 wave level. The differences
are attributed to computation errors.

Note that the coefficients Wþ
331CC, Wþ

151CC, and
Wþ

242CC in Table 22 differ from the corresponding
ones in Table 9.

Appendix D: Derivation of Aberration Coefficients

In this Appendix we derive the aberration coeffi-
cients for spherical aberration, oblique spherical
aberration, and field curvature.

1. Spherical Aberration W 040 and W −
060

With reference to Fig. 8, we have a spherical surface
of radius of curvature r, a ray intersecting the surface
at point P, intersecting the reference sphere at B0,
intersecting the wavefront in object space at B and
in image space at A0, and passing in image space
by the point Q″ on the optical axis. The reference
sphere in object space is centered at Q and in image

Table 20. Intrinsic Sixth-Order Aberrations Contributed by an Aspheric Cap as the Stop is Shifteda

Wþ
060I ¼ Wþcap

060I − 8
Ψ

�y
yW

cap
040 ·W

cap
040

Wþ
151I ¼ Wþcap

151I þ 6 �y
yW

þ
060I

Wþ
242I ¼ 4ð�yyÞWþcap

151I þ 12ð�yyÞ2Wþ
060I

Wþ
333I ¼ 4ð�yyÞ2Wþcap

151I þ 8ð�yyÞ3Wþ
060I

Wþ
240I ¼ Wþcap

240I þ ð�yyÞWþcap
151I þ 3ð�yyÞ2Wþ

060I

Wþ
331I ¼ 4ð�yyÞWþcap

240I þ 6ð�yyÞ2Wþcap
151I þ 12ð�yyÞ3Wþ

060I þ 1
ΨWcap

131 ·W
cap
311 −

4
Ψ ð�yyÞWcap

040 ·W
cap
311 þ 1

2W
cap
311 · u · u

Wþ
422I ¼ 4ð�yyÞ2Wþcap

240I þ 8ð�yyÞ3Wþcap
151I þ 12ð�yyÞ4Wþ

060I þ 2
ΨWcap

222 ·W
cap
311 −

8
Ψ ð�yyÞ2Wcap

040 ·W
cap
311 þWcap

311 · u · �u

Wþ
420I ¼ 2ð�yyÞ2Wþcap

240I þ 2ð�yyÞ3Wþcap
151I þ 3ð�yyÞ4Wþ

060I þ 2
ΨWcap

220 ·W
cap
311 −

4
Ψ ð�yyÞ2Wcap

040 ·W
cap
311 þ 1

2W
cap
311 · u · �u

Wþ
511I ¼ 4ð�yyÞ3Wþcap

240I þ 5ð�yyÞ4Wþcap
151I þ 6ð�yyÞ5Wþ

060I þ 3
ΨWcap

311 ·W
cap
311 −

12
Ψ ð�yyÞ3Wcap

040 ·W
cap
311 þ 3

2W
cap
311 · �u · �u

Wþ
600I ¼ �Wþ

060I

aThe aperture vector is located at the exit pupil. The reference sphere is centered at the intersection of the chief ray with the Gaussian
image plane.

Table 21. Sixth-Order Aberrations Contributed by an
Aspheric Cap where A6 is the Sixth-Order Aspheric Coefficient

Wþ
060I ¼ Δfng · A6 · y6

Wþ
151I ¼ 6 �y

yW
þ
060I

Wþ
242I ¼ 12ð�yyÞ2Wþ

060I

Wþ
333I ¼ 8ð�yyÞ3Wþ

060I

Wþ
240I ¼ 3ð�yyÞ2Wþ

060I

Wþ
331I ¼ 12ð�yyÞ3Wþ

060I

Wþ
422I ¼ 12ð�yyÞ4Wþ

060I

Wþ
420I ¼ 3ð�yyÞ4Wþ

060I

Wþ
511I ¼ 6ð�yyÞ5Wþ

060I

Wþ
600I ¼ Δfng · A6 · �y6
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space is centered at Q0. After refraction the wave-
front deformation is given by

W ¼ n0½PB0� − n0½PA0� ¼ n0½PB0� − n½PB�; ðD1Þ

where ½PB0� ¼ ½OQ0� − ½PQ0� and ½PB� ¼ ½OQ� − ½PQ�.
Since we are not using the actual point Q″, the ex-
pression for ½PB0� is not exact, and it leads to a
tenth-order error in calculating W. Let the radius
of the reference sphere in object and image space
be ½OQ� ¼ s and ½OQ0� ¼ s0, respectively, and the
sag Z of the spherical surface to sixth-order be

Z ¼ h2

2r
þ h4

8r3
þ h6

16r5
; ðD2Þ

where h is the height of the ray intersection with the
spherical surface. The square of segment ½PQ� is gi-
ven to sixth order by

½PQ�2 ¼ ðs − ZÞ2 þ h2 ¼ s2 − 2sZþ Z2 þ h2

¼ s2

8>>><
>>>:
1þ

h2 − 2s

�
h2

2r þ h4

8r3
þ h6

16r5

	
þ
�
h4

4r2
þ h6

8r4

	

s2

9>>>=
>>>;

¼ s2
�
1þ h2

s2

�
1 −

s
r

	
þ h4

4r2s2

�
1 −

s
r

	

þ h6

8r4s2

�
1 −

s
r

	�
; ðD3Þ

and then the segment ½PB� is given to sixth order by

½PB� ¼ ½OQ� − ½PQ�

¼ −
h2

2

�
1
s
−
1
r

	
−

h4

8r2

�
1
s
−
1
r

	
−

h6

16r4

�
1
s
−
1
r

	

þ h4

8s

�
1
s
−
1
r

	
2
þ h6

16r2s

�
1
s
−
1
r

	
2
þ h6

16s2

�
1
s
−
1
r

	
3
:

ðD4Þ

To third-order of approximation the ray intersec-
tion height h and the paraxial marginal ray height
y are related by

h ¼ y

�
1þ u

2r
y

�
; ðD5Þ

and so the segment ½PB� can be approximated to sixth
order as

Table 22. Quantities used in the Calculation of the
Intrinsic Aberration Coefficients with the Aperture

Vector ~ρ at the Exit Pupil

W220P ¼ − 1
4Ψ2P

Wþ
240CC ¼ þ 1

16
A
r Ψ2Δf u

n2g þ 1
8
1
rΨ2Δfu2

n g
þ 1

4
y2

r2
W220P þ y

r u
0W220P − 1

4
u
r Ψ2Δfung

Wþ
420CC ¼ 3

16
1
r3
Ψ4Δf1ng 1

A2 (Wþ
420CC ¼ 0 for A ¼ 0)

Wþ
331CC ¼ −2W220P · u0�u0

CC
Wþ

422CC ¼ −W220P · �u02
CC

Wþ
151CC ¼ −4W040 · u0�u0

CC
Wþ

242CC ¼ −2W040 · �u02
CC

�u0
CC ¼ �u0 − �A

A u
0

P060 ¼ W040½12 y2

r2
− 1

2Aðu
0

n0 þ u
nÞ þ 2 y

r u
0�

þ 8
AyW040W040 −

�A
A

8
ΨW040W040

P151 ¼ Wþ
151CC

P240 ¼ Wþ
240CC − 8

Ψ
�A
AW040W220P

P331 ¼ Wþ
331CC − 4

Ψ
�A
AW040W331

P242 ¼ Wþ
242CC

P420 ¼ Wþ
420CC − 2

Ψ
�A
AW220PW220P − 2

ΨW220PW311

P511 ¼ − 2
Ψ

�A
AW220PW311

C331 ¼ 1
Ψ
�W311W311 þ 1

2W311uu
C422 ¼ 2

Ψ
�W222W311 þW311u�u

C420 ¼ 2
Ψ
�W220W311 þ 1

2W311u�u
C511 ¼ 3

Ψ
�W131W311 þ 3

2W311�u�u

Table 23. Intrinsic Aberration Coefficients for a Spherical Surface with the Aperture Vector ~ρ at the Exit Pupila

Wþ
060I ¼ P060

Wþ
151I ¼ 6

�A
AP060 þ P151

Wþ
242I ¼ 12ð�AAÞ2P060 þ 4ð�AAÞP151 þ P242

Wþ
333I ¼ 8ð�AAÞ3P060 þ 4ð�AAÞ2P151 þ 2ð�AAÞP242

Wþ
240I ¼ 3ð�AAÞ2P060 þ ð�AAÞP151 þ P240

Wþ
331I ¼ 12ð�AAÞ3P060 þ 6ð�AAÞ2P151 þ 4ð�AAÞP240 þ 2ð�AAÞP242 þ P331 þ C331

Wþ
422I ¼ 12ð�AAÞ4P060 þ 8ð�AAÞ3P151 þ 4ð�AAÞ2P240 þ 5ð�AAÞ2P242 þ 2ð�AAÞP331 þ P422 þ C422

Wþ
420I ¼ 3ð�AAÞ4P060 þ 2ð�AAÞ3P151 þ 2ð�AAÞ2P240 þ ð�AAÞ2P242 þ ð�AAÞP331 þ P420 þ C420

Wþ
511I ¼ 6ð�AAÞ5P060 þ 5ð�AAÞ4P151 þ 4ð�AAÞ3P240 þ 4ð�AAÞ3P242 þ 3ð�AAÞ2P331 þ 2ð�AAÞP422 þ 2ð�AAÞP420 þ P511 þ C511

Wþ
600I ¼ �Wþ

060I

aThe reference sphere is centered at the intersection of the chief ray with the Gaussian image plane.

Fig. 8. Construction for deriving the wavefront deformation.
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½PB� ¼ ½OQ� − ½PQ�

¼ −
y2

2

�
1þ u

2r
y

�
2
�
1
s
−
1
r

	

−
y4

8r2

�
1þ u

2r
y

�
4
�
1
s
−
1
r

	
−

y6

16r4

�
1
s
−
1
r

	

þ y4

8s

�
1þ u

2r
y

�
4
�
1
s
−
1
r

	
2
þ y6

16r2s

�
1
s
−
1
r

	
2

þ y6

16s2

�
1
s
−
1
r

	
3
; ðD6Þ

and similarly for ½PB0�

½PB0� ¼ ½OQ0� − ½PQ0�

¼ −
y2

2

�
1þ u

2r
y

�
2
�
1
s0
−
1
r

	

−
y4

8r2

�
1þ u

2r
y

�
4
�
1
s0
−
1
r

	
−

y6

16r4

�
1
s0
−
1
r

	

þ y4

8s0

�
1þ u

2r
y

�
4
�
1
s0
−
1
r

	
2
þ y6

16r2s0

�
1
s0
−
1
r

	
2

þ y6

16s
02

�
1
s0
−
1
r

	
3
: ðD7Þ

Then we can write

W ¼ n0½PB0� − n½PB�

¼ −
y2

2

�
1þ u

2r
y

�
2
�
n0
�
1
s0
−
1
r

	
− n

�
1
s
−
1
r

	�

−
y4

8r2

�
1þ u

2r
y

�
4
�
n0
�
1
s0
−
1
r

	
− n

�
1
s
−
1
r

	�

þ y4

8

�
1þ u

2r
y

�
4
�
n0

s0

�
1
s0
−
1
r

	
2
−
n
s

�
1
s
−
1
r

	
2
�

−
y6

16r4

�
n0
�
1
s0
−
1
r

	
− n

�
1
s
−
1
r

	�

þ y6

16r2

�
n0

s0

�
1
s0
−
1
r

	
2
−
n
s

�
1
s
−
1
r

	
2
�

þ y6

16

�
n0

s
02

�
1
s0
−
1
r

	
3
−
n

s2

�
1
s
−
1
r

	
3
�
: ðD8Þ

With u ¼ −y=s, u0 ¼ −y=s0, A ¼ ni ¼ −ðy=s − y=rÞ,
and ΔfAg ¼ 0 the wavefront change W to sixth
order is

W ¼ −
1
8
A2yΔ

�
u
n

�
−
1
8
A2yΔ

�
u
n

�

×
�
y2

2r2
−
1
2
A

�
u0

n0 þ
u
n

�
þ 2

y
r
u

	
: ðD9Þ

Thus we can write

W040 ¼ −
1
8
A2yΔ

�
u
n

�
; ðD10Þ

W−
060 ¼ W040

�
y2

2r2
−
1
2
A

�
u0

n0 þ
u
n

�
þ 2

y
r
u

	
: ðD11Þ

2. Petzval Field Curvature W 220P and Oblique Spherical
Aberration W −

240CC

Let us locate the aperture stop at the center of curva-
ture of the spherical surface. With �y0 being the object
height, the inverse of the distance S along the chief
ray from the off-axis object point to the surface is

1
−S

¼ 1

−rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr − sÞ2 þ �y20

q ¼ 1

−rþ ðr − sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �y20

ðr−sÞ2

r

≅
1

−rþ ðr − sÞ
�
1þ 1

2
�y20

ðr−sÞ2

� ¼ 1

−s

�
1 − 1

2
�y20

ðr−sÞs

�

¼ −
1
s

�
1þ 1

2

�y20
ðr − sÞs

�
¼ −

1
s

0
@1þ 1

2

�y20�
1
s −

1
r

�
rs2

1
A

¼ −
1
s

�
1þ u

2

�y20
irs

�
¼ −

1
s
−
u

y2
1
2
Ψ2

n2ri
; ðD12Þ

and similarly for the inverse of the distance S0 along
the chief ray from the surface to the Gaussian image
point,

1
−S0 ≅ −

1
s0
−
u0

y2
1
2

Ψ2

n02ri0
: ðD13Þ

Table 24. Constructional Data (mm) of the Triplet Lensa

Surface Object Radius Thickness 10,000 Glass A4 A6

1 255.635318 56.8473 BK7 −5:051563e-07 −3:2061469e-11
2 62.646002 23.6149 3.5999265e-007 9.4325832e-010
3 74.494599 15.7912 BK7 −1:0708598e-6 1.151724e-010
4 −58:717274 89.4891
5 −42:87839 5 BK7 4.4688245e-007 −3:256491e-010
6 −203:330401 4.2124
7 −65:250745

Stop Image 65.249628
aThe exit pupil diameter is 14mm, and the field angle is 15°; λ ¼ 587:6nm.
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By inserting Eqs. (D12) and (D13) into the quadra-
tic term y2 of Eq. (D8), usingΔfAg ¼ 0, and retaining
up to sixth-order terms, we obtain

W ¼ −
y2

2

�
1þ u

2r
y

�
2
�
n0
�
1
S0 −

1
r

	
− n

�
1
S
−
1
r

	�

¼
�
1þ u

2r
y

�
2
�
n0u0

�
−
1
4

Ψ2

n
02ri0

�
− nu

�
−
1
4
Ψ2

n2ri

��

¼
�
1þ u

2r
y

�
2
�
−
1
4
Ψ2

Ar

�
u0 − u

��

¼
�
1þ u

2r
y

�
2
�
−
1
4
Ψ2

r
Δ
�
1
n

��

¼ W220P þ u
y
r
W220P þOð8Þ: ðD14Þ

By inserting Eqs. (D12) and (D13) into the first quar-
tic term y4 of Eq. (D8), usingΔfAg ¼ 0, and retaining
up to sixth-order terms, we obtain

W¼−
y4

8r2

�
1þ u

2r
y

�
4
�
n0
�
1
S0 −

1
r
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�
1
S
−
1
r

	�
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4
�
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1
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�
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4
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1
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r
Δ
�
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n
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¼ y2

4r2
W220PþOð8Þ: ðD15Þ

By inserting Eqs. (D12) and (D13) into the second
quartic term y4 of Eq. (D8), using ΔfAg ¼ 0, and
retaining up to sixth-order terms, we obtain

W¼y4
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Thus for oblique spherical aberration W−
240CC we

have the terms

A
16

Ψ2

r
Δ
�
u

n2

�
þ 1
8
Ψ2

r
Δ
�
u2

n

�
þ u

y
r
W220P þ y2

4r2
W220P:

ðD17Þ

One effect that has not been accounted for is that
for off-axis points the beam at the surface changes
size by Δy to maintain the same size at the entrance
pupil. The change in beam size is

Δy ¼ −u0ΔS0 r
s0 − r

¼ 1
2
u0Ψ2

rA2 ; ðD18Þ

where

ΔS0 ¼ 1
2

Ψ2

nu0Ar
: ðD19Þ

By replacing y with yþΔy in the coefficient for
spherical aberration and retaining the sixth-order
term for oblique spherical aberration we find it to

be 2u0Ψ2

ryA2 W040 ¼ − u0Ψ2

4r Δ
�

u
n

�
:Thus the complete coeffi-

cient for oblique spherical aberration W−
240CC

becomes
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240CC ¼ A

16
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þ 1
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u
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�
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3. Petzval Field Curvature W 220P and W 420CC

Let us start with the relationship

1
n0ρ0 −

1
nρ ¼ n0 − n

n0nr
þΛ; ðD22Þ

where ρ is the distance from the object to the center of
curvature of the spherical surface,ρ0 is the distance
from the center of curvature to the image point,
and Λ is a residual term when ρ and ρ0 are not con-
jugate distances. Let us expand ρ as a function of the
object height �y0,

1
ρ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ20 þ �y20

q ≅
1
ρ0
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1 −

1
2

�y20
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þ 3
8

�y40
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�
; ðD23Þ

and similarly for ρ0 as

1
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1
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2
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8
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�
: ðD24Þ

Along the optical axis �y0 ¼ �y00 ¼ 0, and let us set

1
n0ρ00

−
1
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¼ n0 − n
n0nr

: ðD25Þ

Then substitution of Eqs. (D23) and (D24) into
Eq. (D22) results in
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Multiplying both members of Eq. (D26) by A2r2=2
leads to

A2r2Λ
2
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r
Δ
�
1
n
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16

Ψ4

A2r3
Δ
�
1
n

�
: ðD27Þ

The first term on the right-hand side of Eq. (D27) is
the coefficient for Petzval field curvature W220P, and

the second term is the coefficient for sixth-order field
curvature W420CC.

Appendix E

Data for the triplet lens are given in Table 24.

Macros

Computer macros for calculating the wave coeffi-
cients in codev, OSLO, and ZEMAX optical design
software are available at http://www.optics.arizona
.edu/macros/wavecoefficients.zip.

The grid figures illustrating the wavefront aber-
ration shapes are a courtesy of Roland Shack, and
the grid figures illustrating the effects of pupil
aberrations are a courtesy of Lori Moore. We thank
Ryan Irvin for carefully reading the manuscript
and writing a codev macro to calculate the aberration
coefficients. We thank Lambda Research for writing
a macro file to calculate the coefficients in OSLO.
The comments of Virendra Mahajan are much
appreciated.
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