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While deriving the equations used to calculate the so
called deviation due to spherical shapes in given opti-
cal systems and the elimination of these deviations in to
be built instruments, one usually limits concern to those
rays that are parallel to or intersect the axis which passes
through the centers of curvature of all refracting (or re-
flecting) surfaces of the system. The analysis therefore
only completely describes those light cones for points on
the axis: Light cones that start from points outside the
center of the field of view (along which the axis is ori-
ented), can only be represented by rays that lay in the
plane defined by the peak of the light cone and the axis;
a plane, which is apparently not left by the rays through-
out their whole travel. Even limiting the theory to such
a plane is sufficient for the existing demand of technol-
ogy. The elimination of further errors beside those that
are removed by current calculation methods would re-
quire increasing the number of available media; in other
words the number of refracting or reflecting surfaces. Our
practical optics alone, too early bereaved from its great
master who measured science by its applicability, still
has great difficulties to give surfaces the exact spherical
shape and required radius even when the most skilled
craftsmen are doing the work and so it’s better to re-
strict to limited theoretical effects rather than giving rise
to more space for fabrication errors. Therefore one can
say that from this perspective an extension of the theory
is not an urgent need. However there are cases where the
extension of the analysis into space can not be omitted,
even more often, ignoring any practical applicability, one
finds himself with uncomfortable feelings being narrowed
down to just the axis plane, leaving out the richness of
effects around it. There is no requirement to limit oneself
that much ; Since Gauss showed that by only including
the first order elements, rays outside the mentioned plane
can be traced as easy as those inside, nobody would ex-
pect that the third order case (i.e. here the next higher
order) would cause much greater difficulty than the spe-
cial case.

At first glance the expansion into space seems to
make the expressions much more complicated which is
the only opponent one faces in the given exercise. The
position of a line in space, e.g. a light beam after any
given number of refractions or reflections, is given by
four constants, which can be chosen to have different
meanings. Each time the ray changes direction those
four constants will change value in such a way that
the four new values may be derived from the old ones
by the laws of refraction. Distinguishing two parts
in each parameter of which the first part represents
the approximation that ignores the deviation from the
spherical shape and the second part corrects it to third
order leaving the fifth order errors, it can be said that
the first parts are known and only the four correction
parts are subject to further analysis. In general one
would expect that the value of each parameter after
refraction would depend on the four values prior to it and
in fact each new value will depend in a linear function
on the four prior values since all powers and products
of this small correction will fall into higher orders. The
whole expression for a value of a correction element of
any of the four parameters after e.g. n refractions will
therefore appear as a sum of four members. Each single
one has the four parameters defining the position of
the ray after n-1 refractions as factor to which a fifth
element of same order adds that is newly generated at
the nth refracting surface. Considering that each of
those four members by it self is to be substituted for
by a similar sum of five members following a recursive
procedure etc. it appears that after very few refractions
any overview is going to be lost. There is, however,
an excellent means to avoid that, which is to choose
the four parameters that define the position of a ray
after each refraction in the proper way. The geometrical
meaning of these can be defined such that the expression
for the correction part that represents the position of
the ray after the nth refraction does not depend on
all four previous correction part but only on one of them.
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§1

Imagine the position of a ray before its nth refraction
defined by two pairs of coordinate points in which two
fixed plains A and B, that are perpendicular to the
axis, are intersected. Its position after refraction can
be related to the two transverse planes A’ and B’ in a
similar way. The position of the four planes is arbitrary;
therefore it is possible to obtain a relation between A
and A’ and also between B and B’. One can assume
that e.g. A’ is at the position where a luminous object
(real or just virtual) at A, after the rays leaving being
changed in their direction by the refracting surface,
finds its true or virtual image according to the dioptric
approximations. In the same way the planes B and B’
are related. Following this convention it is obvious that
the approximations of the coordinates of the point in
which the plane A’ is intersected by the refracted beam
only dependent on the coordinates that are related to
plane A and are completely independent of the points
valid for plane B. This is because all beams that cross
the same point A are going to meet again at point A’
according to the approximating equations independent
of what the directions were. One can go one step further
and say: if the coordinate system, that one uses to
fix the points in the different planes in which the rays
intersect them are perpendicular, which are parallel
with respect to each other in all those planes and origin
on the axis, - or if they are polar coordinates where
all poles are lying on the optical axis and their angle
makes them parallel, the similarity between object and
image and their similar positions it will be true that
the approximated value for each of the two coordinates
belonging to the plane A’ can be determined as soon
as the corresponding coordinates in the plane A are
known independent of the second coordinate. Therefore
it follows that the special way the meaning of the four
parameters that define the position of the ray in space
are chosen the approximated value of each of the four
parameters, regarding the refracted ray, will not depend
on all four of the values prior to refraction, but only on
one of them. 1 Crossing over to the correction element,
that needs to be added to the approximated value in
order extend the accuracies into the order of spherical
aberration, the same statement will not be applicable
as it was for the main element. Since the value which
each of the four parameters after refraction has is found
approximately without any knowledge of the values that
are assigned to three of them prior to refraction, only a
coarse knowledge of those three values, combined with
the more exact knowledge of the fourth one, will be
sufficient to find that value very accurately. In other

1 It is possible to achieve the same effect utilizing a different setup,
but the proposed one is the most natural one

words: in order to find the correction element for each
one of the four parameters defining the position of
the ray, the knowledge of all four parameters prior to
refraction but for three of them the approximated value
is sufficient. Only the correction of one, which has the
analogous meaning for the position of the non refracted
ray as the one for which the correction is requested to
be known for the refracted ray, influences the demanded
value in the same order, the others only influence higher
orders. Through this approach one may successfully
separate the four unknowns (the four correction elements
for the position of the ray anywhere through its travel
through the optical system) from each other and from
that it follows that each single one of them can be found
by a simple summation over the refracting surfaces
following each other. Most conveniently the coordinates
for the expansion are chosen to be perpendicular, since
in that case all four parameters have similar meaning
and through simple exchange derive from each other,
such that one derivation contains everything. It is
conveniently possible to cross over to polar coordinates
at the end, because for an instrument where everything
is the same around the axis they are most naturally
choose themselves. One recognizes that two systems of
planes perpendicular to the axis are made the foundation
of the whole analysis of the path of the ray. One plane
of each system belongs to each medium which the ray
enters. The original position of the ray was initially
determined by defining the coordinates of its intersection
with two arbitrary defined planes A and B, which I’ll be
calling the base planes of the first and second system.
The position after one refraction will be determined by
the coordinates of the intersection points with A’ and
B’, after two refractions with A” and B”, etc. finally
its last position by the intersection points with A* and
B*, whereas on one hand the planes A’, A”, A”’, A*,
build one plane system and likewise do similarly B, B’,
B”,...B*, which constitute the 2nd system, are chained
up such that always the following plane in a system is
positioned where the dioptric approximation relation
after refraction of the light on the boundary surface, the
true or virtual image of the preceding plane of the same
system created.

§2

In two earlier essays, printed in issue 835 and issue 871
of A.N. (Astronomische Nachrichten), I highlighted the
advantages that simplify the dioptric equations by replac-
ing the natural elements of the optical system (meaning
that the radii of curvature ρ of the surfaces and the sep-
aration d between them are replaced) through the other
parameters h and σ. One easily realizes that for the
purpose of the current analysis in which two systems of
transverse planes play the major role, the introduction
of those parameters is induced almost automatically. In-
deed one could in contrast to the absolute elements of the
optical instrument, call the parameters h and σ ”The el-
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ements of a given system of image planes”, because if
the distance of the base plane A to the refracting surface
is set to be = h0

σ−1
, the ratios h0

σ1
, h2

σ1
; h2

σ3
, h4

σ3
etc. will

directly give the distances from the first image plane A’
to the first and second refracting surface and then the
distances from the second image plane A” to the second
and third refracting surface etc. In doing so, the pa-
rameters h are being proportional to the approximations
for the distances from the axis of those points in which
the different refracting surfaces are intersected by a ray,2
which originally intersected the transverse plane A and
after its refractions intersects A’, A” etc.; the various σ
are proportional to the approximated values of the angles
which the very same ray is going to take with respect to
the axis. The strict definition both classes of parame-
ters is included in the equation which shows the absolute
relation between the elements ρ and d of the optical in-
strument 3

ρ2i =
N2i h2i

ν2i−1 σ2i+1 − ν2i+1 σ2i−1
; σ2i+1 d2i+1 = h2i−h2i+2,

(1)
if the relation, h0

σ−1
representing the distance of the base

plane A to the refracting surface is used.

For the current analysis the two plane systems A and
B are of equal importance, therefore it seems appropri-
ate to use the two systems of elements, which are h, σ
that correspond to the planes in A and h’, σ′ correspond-
ing to the planes in B, in parallel. However that causes
twice as many parameters to be introduced in parallel
into the expressions as when they existed independent of
each other; only in the case where such a pleonasm of
labeling would be disadvantageous, the case where the
calculations have to be done for an instrument that has
to be built according to certain criteria, one can with-
out great effort eliminate the parameters of the system
B(h’,σ′) with the parameters of the system A(h,σ) utiliz-
ing the equations that give the relation between the two
groups containing the analogous parameters and which
are published in Issue 871.4 In the other main applica-
tion, when the equations are used to study the effects of
an already built system, one can always calculate h, σ
as well as h’, σ′ from the given values ρ and d using the
simple following algorithm that is originated in equation
1:

One builds up the constants α0, α1, α2 ... following

2 In Issue 871 called the ordinary ray
3 In accordance with the from my continuously used labeling of

the refracting surfaces with even and the intermediate media odd
indices, further all here not specially explained parameters like
ρ,d,ν,η,N etc. I permit myself, in order not to be too excessive,
to refer to earlier essays of mine in issue 835 and 871.

4 The analogous parameters to h, σ that are called h’, σ′ in this
document are called l, τ in the essay in issue 871

the equations

α2i = −n2i−1 − n2i+1

ρ2i
= +n2i−1n2i+1

N2i

ρ2i

α2i+1 = −ν2i+1d2i+1

and chooses h0 and σ−1 such that h0
σ−1

represents the
distance of the base plane A to the first refracting sur-
face5(and analogous h′0 and σ′−1 have the same meaning
for base plane B); one defines x−1 = n−1σ−1, x0 = h0

and calculates with these initial values all later values of
x according to the equation

xm+1 = αmxm + xm−1 (2)

Thereupon one gets in general:

h2i = x2i

σ2i+1 = υ2i+1x2i+1,

and h’, σ′ arise in a similar manner so that all supporting
values are known.

§3

The complete expansion for the third order elements
following the plan just explained is going to be a simple
calculation. Of course one has to start with the equa-
tions that will support finding the position of a refracted
beam from a beam that is known in space by its position
and which hits a refracting (or reflecting) spherical sur-
face. I’ll be using here the equation in the same form as
Gauss defined at the beginning of his ”Dioptric Analysis”
(Dioptrischen Untersuchungen). There, the coordinates
x, y, z were assumed to be perpendicular with origin on
the optical axes of the instrument: The x growing along
the direction of the light, the y and z being perpendicular
to it. The four parameters for the position of the ray are
in this context the two pairs of constants (ξ, b and γ,
c), which exist in the equations of the ray projection in
the planes x y and x z. For an incident beam those two
equations are given the following form:

y =
ξ

n
x + b, z =

γ

n
x + c;

And for the refracted beam

y =
ξ′

n′
x + b′ z =

γ′

n′
x + c′

. Whereas the x origins at the point in which the refract-
ing surface is intersected by the optical axis and whereas
1
n : 1

n′ represents the refraction ratio at the transition from
the previous to the following medium.6The relationship

5 The direction for which that distance is positive in the calculation
was explained in earlier essays

6 The n are the reciprocal values to the ν as labeled by me
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between b, ξ, c, γ on one hand and b’, ξ′, c’, γ′ on the
other are then strictly expressed by the equations: ( 3
and 4 below)

ξ

n
ρ (1 − cos Θ) + b =

ξ′

n′
ρ (1 − cos Θ) + b′

γ

n
ρ (1 − cos Θ) + c =

γ′

n′
ρ (1 − cos Θ) + c′

(ξρ + nb) sinλ = (ξ′ρ + n′b′) sinλ′

(γρ + nc) sinλ = (γ′ρ + n′c′) sinλ′


(3)

in which ρ, as mentioned above, labels the radius of cur-
vature of the refracting surface, while Θ represents the
(small) angle between incident plummet and axis. λ and
λ′ on the other hand represent the angles that deviate
little from the quadrant, and are enclosed by the inci-
dent and refracted beam with the straight line intersect-
ing both rays, being perpendicular to the axis and going
through the center of the sphere, respectively. The quan-
tities b, ξ, c, γ, b’, ξ′, c’, γ′, sinΘ, cos λ, cos λ′ are going
to be used as small quantities of the same order (the first
order) as consequence of restricting the analysis to small
field of view and small aperture. If one replaces based on
that restriction the exact equations (3) by such equations
that only contain members of first and third order, the

resultant errors are apparently only of fifth order, or they
behave with respect to the most significant members of
these equations as being of fourth order. The members
of even order do not appear at all in these equations.

Thus by replacing in equations (3) by the following:

b = b0 + ∆b

c = c0 + ∆c

ξ = ξ0 + ∆ξ

γ = γ0 + ∆γ

b′ = b′0 + ∆b′

c′ = c′0 + ∆c′

ξ′ = ξ′0 + ∆ξ′

γ′ = γ′0 + ∆γ′

 (4)

By denoting the subscript 0 to quantities of first order,
the denotation of ∆ marks the quantities containing third
order and simultaneously ignoring everything that is of
other than third order one gets instead of the exact equa-
tions one gets approximated ones that are accurate ex-
cept for the error of fifth order. Each of the new equations
may be separated into two new ones because the first or-
der members and the third order members on both sides
must be equal. One therefore obtains between the ap-
proximations b0, c0 etc. of the parameters of the position
of the ray the four equations (compare with Gauss p.3
and 8)

b′0 = b0; c′0 = c0; ξ′0 +
n′ b′0

ρ
= ξ0 +

n b0

ρ
; γ′0 +

n′ c′0
ρ

= γ0 +
n c0

ρ
; (5)

In addition one obtains the following equations for the correction members’ ∆b, ∆c, etc. (Equation (5) has already
been used for their simplification):

∆b′ − ∆b = 2ρ sin 1
2Θ2

(
ξ0

n
− ξ′0

n′

)
(

∆ξ′ +
n′∆b′

ρ

)
−
(

∆ξ +
n ∆b

ρ

)
= 1

2

(
ξ0 +

n b0

ρ

)(
cos λ′2 − cos λ2

)
∆c′ − ∆c = 2ρ sin 1

2Θ2

(
γ0

n
− γ′0

n′

)
(

∆γ′ +
n′∆c′

ρ

)
−
(

∆γ +
n ∆c

ρ

)
= 1

2

(
γ0 +

n c0

ρ

)(
cos λ′2 − cos λ2

)


(6)

One recognizes that it is sufficient to do the further
derivation for the quantities b, ξ, b’, ξ′ which describe
the projection of the beam in the xy plane, through sim-
ple exchange of those quantities with c, γ, c′, γ′ one can
then obtain these quantities for the xy plane.

§4

In accordance with the plan explained in the introduc-
tion the Gaussian parameters b, ξ, c, γ for the position
of the ray before refraction and b’, ξ′, c’, γ′ for the posi-
tion of the ray after refraction need to be replaced by the

four corresponding coordinate points in the transverse
planes A and B that describe our system in the medium
through which the ray currently travels. If one assumes
that the refracting surface, whose effect needs to be an-
alyzed, is labeled by the index 2i (meaning that it is the
i+ 1st. surface), then h2i

σ2i−1
and h′2i

σ′2i−1
constitute the dis-

tances of the transverse planes A and B for the preceding
medium 2i-1 to this surface. h2i

σ2i+1
and h′2i

σ′2i+1
constitute

the distances between the transverse planes A’ and B’ in
the succeeding medium 2i+1 to the same surface. How-
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ever, In order to simplify the labeling I’ll allow myself, as
long as only the effect of a single surface is analyzed, to
write the quantities (like h, h′, ρ) that carry the index 2i
without an index, as well as those that carry the index
2i-1 ( referencing the medium just preceding the refract-
ing surface) will be represented by a ’-’ underneath and
analogously, the quantities referenced to the succeeding
medium 2i+1 are marked by a ’+’ sign underneath. So
that they are written as

ν
−
, ν

+
, h, h′, N , σ

−
, σ

+
, σ
−
′, σ

+

′

instead of

ν2i−1, ν2i+1, h2i, h′2i, N2i, σ2i−1, σ2i+1, σ′2i−1, σ′2i+1

The right-angle coordinates of the point in which the ray
intersects the transverse plane A before being refracted
are labeled accordingly with

η
−

+ ∆η
−
, ζ

−
+ ∆ζ

−
;

The ones of the point in which the same ray intersects
plane B are labeled

η
−
′ + ∆η

−
′, ζ

−

′ + ∆ζ
−

′;

And likewise for the refracted ray the coordinates of the
point in plane A’ at which it points to are called

η
+

+ ∆η
+
, ζ

+
+ ∆ζ

+
;

And the ones in the corresponding point B’

η
+

′ + ∆η
+

′, ζ
−

′ + ∆ζ
+

′;

The first members of these twopart expressions always
represent their approximations which one would obtain
by neglecting the members of third order and the second
members represent the correction of third order. It is
adequate to immediately define the polar coordinates of
the mentioned four points. The pole of them is assumed
to be in each of the four planes A, B, A’, B’, where they
are intersected by the optical axis. The radial vectors
labeled as r + ∆r and the position angles labeled as
ν + ∆ν are measured from here. These quantities receive
the same indices and accents as η and ζ. The direction
from which ν is measured and its sense of rotation is
defined such that one obtains

η = r cos ν, ζ = r sin ν.

It is easy to derive the equations through which the tran-
sition from the quantities b,ξ, c, γ, to η, η′, ζ, ζ ′ etc. is
achieved. Namely in the Gaussian equations of the non
refracted beam y must become η

−
+ ∆η

−
and z takes the

value of ζ
−

+ ∆ζ
−

for the case where x is h
σ
−
; in contrast y

must be η
−
′ + ∆η

−
′ and z becomes ζ

−

′ + ∆ζ
−

′ if x = h′

σ
−
′ , and

analogous conditions apply for the refracted beam for
which the ’+’ labeled quantities have the same meaning
as the ones with ’-’ label in the first case. That way the
bs’, ξs’ can be expressed by the ηs’ and the cs’, γs’ by the
ζs’. Initially one gets equations for which the quantity
h
σ
−
− h′

σ′
−

(i.e. the separation of the two transverse planes A

and B) or if talking about the refracted beam the quan-
tity h

σ
+

− h′

σ
+
′ (Separation between A’ and B’) appear in the

denominator. E.g. one gets:

ξ0

n
=

η
−
− η

−
′

h
σ
−
− h′

σ
−
′

;
∆ξ

n
=

∆η
−
− ∆η

−
′

h
σ
−
− h′

σ
−
′

b0 =

h
σ
−

η
−
′ − h′

σ
−
′ η
−

h
σ
−
− h′

σ
−
′

; ∆b =

h
σ
−
∆η
−
′ − h′

σ
−
′∆η

−
h
σ
−
− h′

σ
−
′

If one multiplies numerator and denominator with σ
−

σ
−
′

the denominator becomes hσ
−
′ − h′σ

−
and similar for the

refracted beam hσ
+

′ − h′σ
+
. But one proofs that the two

quantities

1
ν
−

(
hσ
−
′ − h′σ

−

)
and 1

ν
+

(
hσ

+

′ − h′σ
+

)
or more explicitly written as

1
ν2i−1

(
h2i σ′2i−1 − h′2iσ2i−1

)
and

1
ν2i+1

(
h2i σ′2i+1 − h′2iσ2i+1

)
have the same value that is independent of the index
2i of the refracting surface or in other words a constant
value through all media and surfaces of the optical sys-
tem. This simply results from the fact that the quanti-
ties ρ and d in accordance to equation (1) must have the
same values and can be represented through h and σ or
through h′ and σ′. This theorem has already been de-
rived in issue 871 equation I. I’ll denote that value with
the letter T and therefore

T =
h0σ

′
−1 − h′0σ−1

ν−1
=

h0σ
′
1 − h′0σ1

ν1
=

h2σ
′
1 − h′2σ1

ν1
=

h2σ
′
3 − h′2σ3

ν3
= · · · =

hσ
−
′ − h′σ

−

ν
−

=
hσ

+

′ − h′σ
+

ν
+

= · · · (7)



6

One therefore gets:

ξ0

n
=

σ
−

σ
−
′

ν
−

η
−
− η

−
′

T
;

∆ξ

n
=

σ
−
σ
−
′

ν
−

∆η
−
− ∆η

−
′

T

b0 =
1
ν
−

hσ
−
′ η
−
′ − h′σ

−
η
−

T
; ∆b =

1
ν
−

hσ
−
′ ∆η

−
′ − h′σ

−
∆η
−

T

and very similar equations result for ξ′0
n′ , b′0 etc. if one

replaces ν
−
, σ
−
, σ
−
′, η

−
, η
−
′ with ν

+
, σ

+
, σ

+

′, η
+
, η

+

′.

If one substitutes the values of the quantities ξ0, b0,
∆ξ, ∆b, in the corresponding equations (5) and (6) they
transfer into equations which give the relations between
the approximations η

−
, η
−
′, η

+
, η

+

′ of our new parameters

and the relation between correction members ∆. The
first equations take an especially simple form. In accor-
dance to (5) the values of b0 and ξ0 + n b0

ρ must remain
unchanged if the quantities that represent the position
of the ray before refraction, are exchanged with the ones
that are valid after refraction, that is in our nomencla-
ture replacing the quantities marked with a ’-’ sign with
the quantities marked by a ’+’ sign. Now the value for
ξ0 + n b0

ρ can be found in the new quantities:

=
1

ν
−

ν
−

T

{
σ
−

σ
−
′
(

η
−
− η

−

′
)

+ σ
−
′ η
−

′h

ρ
− σ

−
η
−

h′

ρ

}
;

If one replaces h
ρ in accordance to equation (1) with

the value
ν
−

σ
+
−ν

+
σ
−

N and likewise h′

ρ with the value
ν
−

σ
+
−ν

+
σ
−

N

(where N = ν
−
− ν

+
) and combines the members that con-

tain η
−

as well as η
−
′ one obtains:

1
T


σ
−

η
−

ν
−

σ
−
′ − σ

+

′

N
−

σ
−
′ η
−
′

ν
−

σ
−
− σ

+

N


b0 that is the expression

1
T


σ
−
′ η
−
′

ν
−

h −
σ
−

η
−

ν
−

h′


must remain unchanged if one exchanges the labels ’-’

and ’+’. Since the quantities
σ
−
−σ

+

N =
σ
−
−σ

+

ν
−
−ν

+

and
σ
−
′−σ

+
′

N as

well as h, h’ and T maintain their values the following
relations must be true:

σ
−

η
−

ν
−

=
σ
+

η
+

ν
+

;
σ
−
′ η
−
′

ν
−

=
σ
+

′ η
+

′

ν
+

.

That is the products of the form σ
ν η stay constant

through all consecutive media of the optical system. 7

It will be appropriate to introduce the constant values
that are proportional to our approximated members η,
η′ (as well as ζ, ζ ′)of our coordinates, instead of the vari-
able parameters by themselves. Therefore one gets:

7 Certainly this result can be derived directly from the laws of
refraction without having them rewritten in the form of equation

(5) between b and ξ

H =
σ−1

ν−1
η−1 =

σ1

ν1
η1 =

σ3

ν3
η3 = · · · =

σ
−

ν
−

η
−

=
σ
+

ν
+

η
+

= · · ·

Z =
σ−1

ν−1
ζ−1 =

σ1

ν1
ζ1 =

σ3

ν3
ζ3 = · · · =

σ
−

ν
−

ζ
−

=
σ
+

ν
+

ζ
+

= · · ·

H ′ =
σ′−1

ν−1
η′−1 =

σ′1
ν1

η′1 =
σ′3
ν3

η′3 = · · · =
σ
−
′

ν
−

η
−

′ =
σ
+

′

ν
+

η
+

′ = · · ·

Z ′ =
σ′−1

ν−1
ζ ′−1 =

σ′1
ν1

ζ ′1 =
σ′3
ν3

ζ ′3 = · · · =
σ
−
′

ν
−

ζ
−

′ =
σ
+

′

ν
+

ζ
+

′ = · · ·



(8)

The quantities H and Z could be considered as the re-
duced right-angle coordinates of the intersection points
between ray and transverse planes. If one would use dif-
ferent scales in the different planes of the systems A and
B to measure the coordinates such that their units behave
as the ν

σ related to those planes, then the coordinates in

all planes A would be expressed by the quantities H, Z
and accordingly in the planes B by H’ and Z’. The conse-
quence is to express the correction members ∆ν, ∆ζ the
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same way so that in general

ν2i−1

σ2i−1
(H + ∆H2i−1) = η2i−1 + ∆η2i−1

ν2i−1

σ2i−1
(Z + ∆Z2i−1) = ζ2i−1 + ∆ζ2i−1

ν2i−1

σ2i−1

(
H ′ + ∆H ′

2i−1

)
= η′2i−1 + ∆η′2i−1

ν2i−1

σ2i−1

(
Z ′ + ∆Z ′

2i−1

)
= ζ ′2i−1 + ∆ζ ′2i−1


(9)

represent the right-angle coordinates of the intersection
of the ray with the different planes that are perpendicular
to the axis in our two systems. Apparently the quantities
∆H, ∆Z etc. must get indices as above although the
quantities H, Z themselves don’t carry them, since first
mentioned quantities will not be constant throughout the
media. By applying polar coordinates it will be natural
to use the same scale for the radius vector so that

ν2i−1

σ2i−1
(R + ∆R2i−1) = r2i−1 + ∆r2i−1

ν2i−1

σ′2i−1

(
R′ + ∆R′

2i−1

)
= r′2i−1 + ∆r′2i−1

 (10)

represent the length of one and the same in the different
planes in which

ν + ∆ν2i−1

ν′ + ∆ν′2i−1

}
(11)

are the different position angles. From last mentioned
quantities it becomes clear that the approximated value
is constant for all image planes of system A as well as
ν′ is constant for all image planes of system B. Likewise
in the equations (10) R and R’ are going to be constant
from medium to medium due to the relation between the
right-angle and polar coordinates that are again

H = R cos ν; H ′ = R′ cos ν′

Z = R cos ν; Z ′ = R′ cos ν′

}
(12)

Although the comment needs to be made that in ac-
cordance to equations (10) the radius vectors r, r’ can’t
be considered positive for all transverse planes since the
signs of R and R’ are being fixed r, r’ can become posi-
tive or negative dependent on the sign of the quantity ν

σ :
That is, in accordance to equations (8) for such planes
of system A for which one contains the inverted image of
the figure drawn in the other, the rs’ will be had oppo-
site signs. The same signs when the images have similar
orientation. The same behavior is valid for the signs of

the r’s in the two planes of system B. This arrangement
is advantageous in the way that ν maintains its value for
all planes in one given system. If one would assign all r
to be of positive value (which is in itself arbitrary) two
different values would have to be assigned to ν which are
the original one and (in the planes that give the inverted
image of the base planes of system A) one rotated by a
semi for the other.

The Gaussian parameters articulate themselves
through the newly introduced reduced coordinates as:

ξ0

n
=

Hσ
−
′ − H ′σ

−

T
;

∆ξ

n
=

σ
−
′ ∆H

−
− σ

−
∆H

−
′

T

b0 =
−H h′ + H ′ h

T
; ∆b =

−h′ ∆H
−

+ h H
−
′

T

and in the same sense the quantities ξ′

n′ , b’ and their
corrections result by replacing the index ’-’ with the index
’+’. Further γ results instead of ξ and c instead of b if
H and H’ are replaced by Z and Z’.

Now one can replace the quantities b and ξ and
their correction members in the first two equations of
(6) by the derived relations. Therefore the binomial
ξ0 + n b0

ρ , that was already discussed earlier, is assigned

to the expression 1
T N

(
H(σ

−
′ − σ

+

′) − H ′(σ
−
− σ

+
)
)

and its correction ∆ξ + n ∆b
ρ becomes

1
T N

(
∆H

−
(σ
−
′ − σ

+

′) − ∆H
−
′(σ
−
− σ

+
)
)

Analogously, one

gets ∆ξ′ + n′ ∆b′

ρ = 1
T N

(
∆H

+
(σ
−
′ − σ

+

′) − ∆H
+

′(σ
−
− σ

+
)
)

and the expression ξ0
n − ξ′0

n′ similarly becomes
1
T

(
H(σ

−
′ − σ

+

′) − H ′(σ
−
− σ

+
)
)

.

In the equations that result from the substitution the
four quantities ∆H do not appear individually any more
but only the two differences ∆H

+
−∆H

−
and ∆H

+

′−∆H
−
′.

Therefore one can derive two other equations where in
one of them only the first difference appears and while
in the second one only the other difference appears. The
first of these equations arises if the first equation of equa-
tions (6) that is rewritten using the new variables is
multiplied by σ

−
− σ

+
and added to the second equation

that is multiplied by h. That will produce the factor
h(σ

−
′−σ

+

′)−h′(σ
−
−σ

+
) which, in accordance to (7), can be

written as (ν
−
−ν

+
)T = N T The result therefore becomes:

∆H
+
− ∆H

−
=

H(σ
−
′ − σ

+

′) − H ′(σ
−
− σ

+
)

N T
((σ
−
− σ

+
)2ρ sin 1

2Θ2 +
h

2
(cos λ′2 − cos λ2))
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A similar equation results for ∆H
+

′ − ∆H
−
′ if the quanti-

ties σ
−
, σ

+
, h within the bracket that follows the fraction

are being replaced by σ
−
′, σ

+

′, h’ . The quantity before the

bracket namely stays unaltered by the letter exchange
since T changes its sign simultaneously with the numer-
ator.

§5

The small quantities sin 1
2Θ, cos λ and cos λ′ , remain

to be considered whereas only the first order members
are required since only those have an influence onto the
third order value of ∆H

+
− ∆H

−
. Initially, the meaning

of the angle Θ relates to ρ sinΘ = the distance from the

axis to the point where the ray intersects the refracting
sphere. Instead of this point one can choose the point in
which the ray intersects a plane that touches the sphere
at the axis. This plane is our y-z coordinate plane. The
equations of the incoming beam, by ignoring the third
order members and replacing b0, ξ0, c0, γ0 with their
values found above, now become:

y T = − (H h′ − H ′ h) + x (Hσ
−
′ − H ′σ

−
)

z T = − (Z h′ − Z ′ h) + x (Zσ
−
′ − Z ′σ

−
)

 (13)

(The ones for the refracted beam result through the sim-
ple change of σ

−
, σ
−
′, to σ

+
, σ

+

′). Therefore one can write:

2ρ sin 1
2Θ2 =

1
2ρ

1
T 2

{
(H h′ − H ′ h)2 + (Z h′ − Z ′ h)2

}
=

1
2ρ

1
T 2

{
R2h′2 + R′2h2 − 2R R′ h h′ cos(ν′ − ν)

}

In order to find λ one must first know the coordinates y
and z of the point in which the ray intersects the plane
perpendicular to the axis placed in the center of the re-
fracting sphere. These are obtained if one sets x = ρ in
equation (13). For the intersection point we get:

y T

ρ
= H(σ

−
′ − h′

ρ
) − H ′ (σ

−
− h

ρ
)

Applying equation (1) the same way as already done
above one get.

σ
−
− h

ρ
= σ

−
−

ν
−

σ
+
− ν

+
σ
−

ν
−
− ν

+

=
ν
−

N
(σ
−
− σ

+
)

and

σ
−
′ − h′

ρ
=

ν
−

N
(σ
−
′ − σ

+

′)

therefore it becomes

y
T N

ρ ν
−

= H(σ
−
′ − σ

+

′) − H ′ (σ
−
− σ

+
)

as well as

z
T N

ρ ν
−

= Z (σ
−
′ − σ

+

′) − Z ′ (σ
−
− σ

+
)

The equations of the straight lines that connect the center
of the sphere with the found intersection points therefore
become:

x = ρ
y

P
−
− P

+

=
z

Q
−
− Q

+

Where the used abbreviations are

P
−

= H σ
−
′ − H ′ σ

−
; Q

−
= Z σ

−
′ − Z ′ σ

−

P
+

= H σ
+

′ − H ′ σ
+
; Q

+
= Z σ

+

′ − Z ′ σ
+

One can see that the straight line (as it must be) re-
mains unchanged if the incoming ray is replaced by the
refracted ray. The angles constructed by this line with
the incoming and refracted beam are λ and λ′. In accor-
dance to the general rules of analytical stereometry with
which angles between two straight lines can be found one
therefore can find8:

cos λ2 =

{
P
−

(P
−
− P

+
) + Q

−
(Q
−
− Q

+
)
}2

TT

{
(P
−
− P

+
)2 + (Q

−
− Q

+
)2
}

cos λ′2 =

{
P
+

(P
−
−P

+
) + Q

+
(Q
−
− Q

+
)
}2

TT

{
(P
−
− P

+
)2 + (Q

−
− Q

+
)2
}

If one subtracts the two equations from each other and
applies on the difference of the squares in the numerator
M2 − N2 = (M − N)(M + N) a simple relation results

cos λ′2 − cos λ2 = − 1
T T

{
P
−

2 + Q
−

2 − P
+

2 − Q
+

2

}

8 To comment that H and Z are small quantities in first order
compared to T
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If P and Q are rewritten as their values and following
equation (12) one transfers back to polar coordinates the

equation represents itself as.

cos λ′2 − cos λ2 = − 1
T 2

{
R2(σ

−
′2 − σ

+

′2) + R′2(σ
−

2 − σ
+

2) − 2RR′ cos(ν′ − ν)(σ
−

σ
−
′ − σ

+
σ
+

′)
}

Having found Θ, λ and λ′ the previous equation for ∆H
+
− ∆H

−
now becomes

∆H
+
− ∆H

−
= 1

2

H(σ
−
′ − σ

+

′) − H ′(σ
−
− σ

+
)

N T 3


R2 h′2

ρ
(σ
−
− σ

+
) + R′2 h2

ρ
(σ
−
− σ

+
) − 2RR′ cos(ν′ − ν)

h h′

ρ
(σ
−
− σ

+
)

−R2h(σ
−
′2 − σ

+

′2) − R′2h(σ
−

2 − σ
+

2) + 2RR′ cos(ν′ − ν)h(σ
−

σ
−
′ − σ

+
σ
+

′)


(14)

The expression for ∆Z
+
− ∆Z

−
is obtained in the bracket

preceding factor H and H’ are being replaced with Z and
Z’ the quantity in the bracket remains unchanged. This
quantity can be somewhat simplified by paired combina-
tion of the members that are multiplied with R and R’
of identical power. If one namely writes instead of h′

ρ

its value (from 1.)
ν
−

σ
+
′−ν

+
σ
−
′

N , and instead of h′(σ
−
− σ

+
)

the value h(σ
−
′−σ

+

′)−N T , which resulted from equation

(7), the h’ may be eliminated and the expression in the
brackets therefore becomes.

− R2

h
σ
−
′ − σ

+

′

N
(ν
−

σ
−
′ − ν

+
σ
+

′) + T (ν
−

σ
+

′ − ν
+

σ
−
′)


− R′2h

σ
−
− σ

+

N
(ν
−

σ
−
− ν

+
σ
+
)

+ 2RR′ cos(ν′ − ν)h
σ
−
′ − σ

+

N
(ν
−

σ
−
− ν

+
σ
+
)


(15)

After the polar coordinates have somewhat introduced
themselves in this expression instead of the right-angle
coordinates it appears to be appropriate to leave the last
mentioned and to search for ∆R and ∆ν instead of ∆H
and ∆Z. Apparently from 12 we have:

∆R = ∆H cos ν + ∆Z sin ν

R ∆ν = −∆H sin ν + ∆Z cos ν

Whereas the indices of ∆R, ∆ν, ∆H and ∆Z are always
the same. Therefore in order to obtain the expression
for ∆R

+
− ∆R

−
one will have to multiply the expression

for ∆H
+
− ∆H

−
by cos ν and the similar expression for

∆Z
+
− ∆Z

−
by sin ν and then add both and do it very

similar to obtain R∆ν
+
− R∆ν

−
. Because the quantities

∆H
+
− ∆H

−
and ∆Z

+
− ∆Z

−
have the factor in brackets in

common apparently it will stay common for ∆R
+
− ∆R

−
and R∆ν

+
− R∆ν

−
and at the place of the fraction before

the brackets in (14) substitute

in the expr. for ∆R · · · 1
2

R(σ
−
′ − σ

+

′) − R′(σ
−
− σ

+
) cos(ν′ − ν)

N T 3

in the expr. for R∆ν · · · − 1
2

R′ sin(ν′ − ν)(σ
−
− σ

+
)

N T 3

The term in the brackets (see 15) will now be multi-
plied through by the numerator of the fractions in order
to completely arrange for powers of R and R’. That way
one obtains:
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2 T 3(∆R
+
− ∆R

−
) = R′3h

(
σ
−
− σ

+

N

)2

(ν
−

σ
−
− ν

+
σ
+
) (I.)

−R′2R(1 + 2 cos(ν′ − ν)2)h
(σ
−
− σ

+
)(σ
−
′ − σ

+

′)

N N
(ν
−

σ
−
− ν

+
σ
+
) (II.)

+R′R2 cos(ν′ − ν)


2h

σ
−
′ − σ

+

′

N

2

(ν
−

σ
−
− ν

+
σ
+
)

+h
(σ
−
− σ

+
)(σ
−
′ − σ

+

′)

N N
(ν
−

σ
−
′ − ν

+
σ
+

′) +
T

N
(σ
−
− σ

+
)(ν
−

σ
+

′ − ν
+

σ
−
′)


(IIIa.)

(IIIb.)

−R3

h

σ
−
′ − σ

+

′

N

2

(ν
−

σ
−
′ − ν

+
σ
+

′) +
T

N
(σ
−
′ − σ

+

′)(ν
−

σ
+

′ − ν
+

σ
−
′)

 (IV.)

2 T 3R(∆ν
+
− ∆ν

−
) =R′ sin(ν′ − ν) × everything that follows

R′2h

(
σ
−
− σ

+

N

)2

(ν
−

σ
−
− ν

+
σ
+
) (V.)

−R′R cos(ν′ − ν)h
(σ
−
− σ

+
)(σ
−
′ − σ

+

′)

N N
(ν
−

σ
−
− ν

+
σ
+
) (VI.)

+R2

h
(σ
−
− σ

+
)(σ
−
′ − σ

+

′)

N N
(ν
−

σ
−
′ − ν

+
σ
+

′) +
T

N
(σ
−
− σ

+
)(ν
−

σ
+

′ − ν
+

σ
−
′)

 (VII.)

§6

These equations yield directly the change the quantities
∆R and ∆ν suffer caused by the deflection of the rays at
a new refractive surface. To obtain the complete values
of both quantities after an arbitrary number of refrac-
tions (or reflections) initially one would have to assign
the quantities h and N the general index 2i of any sur-
face then assign the index 2i− 1 to the quantities of the
preceding medium of that surface that are marked with
’-’ and assign the index 2i + 1 to the surface currently
labeled with ’+’. Thereafter, if there are k + 1 refracting
surfaces present (where the endmost would get the index
2k according to our nomenclature), one would set 2i to
be 0, 2, 4, ...2k and sum all equations obtained for ∆R
and ∆ν respectively.

It was shown that T, R, R’ as well as ν and ν′

are of constant value throughout the whole optical sys-
tem. Therefore after summation the simply quantities
2 T 3∆R2k+1 and 2T 3R ∆ν2k+1 will appear on the left
side of the equations since the original values ∆R−1 and
∆ν−1 are zero since errors in the image only arise due to
refraction or reflection. On the right hand side all factors
that depend on R, R′, ν and ν′ will be constant as well
and the summation of the different equations of similar
type on the right hand side will only change that each
of these factors, instead of being multiplied with a single
quantity that depends on h, σ and σ′ , will be multi-
plied by a sum over all surfaces of such quantities. E.g.,
in the expression of 2T 3∆R2k+1 the factor R′3 is being
multiplied with following sum:

h0

(
σ−1 − σ1

N0

)
(ν−1σ−1−ν1σ1)+h2

(
σ1 − σ3

N2

)
(ν1σ1−ν3σ3)+· · ·+h2k

(
σ2k−1 − σ2k+1

N2k

)2

(ν2k−11σ2k−1−ν2k+1σ2k+1)

(16)

And in the expression for 2T 3R ∆ν2k+1 the mentioned
sum will additionally be multiplied by the member from

the factor R′ sin(ν′ − ν) that contains the quantity R′2

One recognizes in general that not seven different sums of
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the members depending on R, R′, ν and ν′ appear in the
terms for 2 T 3∆R2k+1 and 2T 3R ∆ν2k+1 but instead just
five. Even though the general member for ∆R consists of
four and the one for ∆ν consist of three parts respectively
the quantities dependent on h, σ and σ′ in row I. and V.
as well as in row II. and VI. are identical9. In order to
extinguish all errors of third order in the image plane,
that means to extinguish all combinations of the values
R, R′, ν and ν′, only five equations need to be resolved
that result by setting the sums of the general members
to 0 that are multiplied by the factors depending on R,
R′, ν and ν′ that appear in the rows:

I or V
II or VI
IIIb or VII
IIIa
IV

If one can not satisfy all of these five conditions, one will
have to choose the most important ones amongst them
by firstly considering the coefficients of the members that
would cause the biggest error in the image. Depending
on some special requirements, one might request by one-
self, it could be adequate not to set some selection of
the five sums to zero but instead certain combinations
of them such that one looks for a complete extinction of
the third order errors, if it’s not possible to achieve for all
values of R, R′, ν and ν′, of those specific combinations
of values that are needed for the special purpose of the
most important rays of the instrument.

The quantity ∆R2k+1 multiplied with ν2k+1
σ2k+1

(following
equation 10) represents the deviation of the ray along
the direction of the radius vector in the last plane of our
system of planes A. R ∆ν2k+1, multiplied with the same
factor, is the deviation of the ray in the direction perpen-
dicular to the radius vector in the mentioned plane. If
only the knowledge of the quantities ∆R and ∆ν (that is
without the simultaneous calculation of ∆R′ and R′∆ν′)
by themselves is required to be sufficient to describe the
errors in the image (as it was just assumed to be true),
it must be presumed that the image plane coincides with
the last plane of our system A, or in other words one has
to place the initial plane of the system to the position
of the object for which the analysis or the extinction of
the imaging errors is of interest. The convenience of use
makes this the prime choice beside any other. The behav-
ior is different for the initial plane of the system B (that
is represented by the quantities having an apostrophe).
The choice of position last mentioned is of no meaning
to the quantities ∆R and ∆ν, therefore it can be arbi-
trarily placed if one only looks at the correction of these
quantities. However applying it to specific instruments
it’s often the case that the opening of the effective cone of

9 Further the terms in row IIIb and VII are identical but the first
mentioned is not independent and needs to be added to IIIa

light is primarily limited through the width of certain di-
aphragms (Where lens mounts and under certain circum-
stances the iris of the eye are concerned). Thereupon, if
one preferably places the base plane of the system B at
the position of the limiting diaphragm10, therefore one
has the advantage to determine the maximum value the
quantity R′ can take in an easier manner than in any
other case. The knowledge of this limiting value will
be important since the relative quantity of the different
members listed above in rows I through VII depend on it
and the selection of the most important of those members
must be based on that knowledge, too.

In all cases, the maximum of the values of R′ being
present will increase with the aperture of the instrument,
while the maximum value of R is fixed by the limit of the
requested field of view. Instrument for which one does
not request a big field of view but a relatively large aper-
ture (in order to expect a significant magnification from
them) the importance of the different members in the
expressions will stepwise decrease from row I through IV
and V through VII respectively. Among other examples,
this case appears in astronomical telescopes. It appears
that for example the radius of the free aperture of the
Knigsberger Heliometers, viewed from the center of cur-
vature of the 2nd surface, is as big as 362 minutes 11,
while the radius of the simultaneously visible peace of
sky is assumed by Bessel to be at most 48 minutes. The
angular dimension of the aperture is therefore 7.5 times
bigger than the one of the field of view and from that it
follows that the third power of the quantity proportional
to last mentioned would have less influence than the (by
us neglected) 5th power of the quantity proportional to
the aperture. Therefore in instruments of similar kind,
the most important of the five constraints of an error
free image will be the one that simultaneously eliminates
the two expressions for ∆R and R∆ν that are multiplied
with the third power of R’ or the one that sets the exten-
sive sum as given in (16) with which they are multiplied
equal to zero. The complex of these members that are
present for the center of the field of view (R = 0) builds
the measure of the so called ”deviation due to the spher-
ical shape” and one can see that the equations for the
elimination of them arises here as it was derived in is-
sue 835 I. The four new expressions that accompany the
already known show a specific affinity to it.

The case can happen and it will actually occur often,
that our equation (10) defining the quantity R requires
a little modification. We namely set R = r2i−1

σ2i−1
ν2i−1

or, since this quantity is constant through all radii,
R = r−1

σ−1
ν−1

. If the object and therefore the base plane

10 If this diaphragm doesn’t belong to the first media, one has to
take the position of its preimage that is the place where an object
in the first medium would have to be so that the mentioned
diaphragm would be at an image position of that object.

11 According values given by Bessel. Astronomische Untersuchun-
gen volume I. p.101 and following
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of the system A happen to be at infinite distance r−1

will become infinity for all points outside the center of
the field of view, in contrast to that σ−1 = 0 makes it
necessary to write R = h0

r−1

(
r−1σ−1

h0

)
where the quan-

tity r−1σ−1
h0

= the tangent of the apparent distance to
the center of the field of view of the point the ray comes
from, since r−1 is the linear displacement and h0

σ−1
is the

distance from the object to the first surface of the optical
system.

In order to completely know the position of the ray
leaving the instrument one would have to write the ex-
pressions for ∆R′ and ∆ν′ which represent the correc-
tions of the coordinates of the intersection points of these
rays with the last plane of system B. Due to the very sim-
ilar meaning that our two plane systems inhere, it is clear
that one must only exchange the following in the rows I
through VII of the above expressions in order to obtain
these quantities.

R and ∆R with R′, ∆R′

ν and ∆ν with ν ′, ∆ν ′

h with h’
σ
−
, σ

+
with σ

−
′, σ

+

′

Through which equation 7 transfers

T Into -T.

§7

If the derived equations are supposed to be applied not
to analyze the error of an already existing instrument
but rather to calculate the dimensions of a newly to be
fabricated one following certain conditions, one has to
recognize the grievance (that was already mentioned at
the beginning) that in our expressions the quantities h,

σ and h′, σ′ appear simultaneously since they are not
independent from each other. Therefore one will have to
eliminate one using the other. In a special case that’s
unnecessary. The case where all refracting surfaces are
that close to each other that the separation d from each
other can be ignored, it will in general be appropriate
to set the base plane of our plane system B at the firs
surface. Thereby h′0 = 0 and therefore, in accordance
to 2nd equation of (1), all other h′ = 0 too, since the ρ
can not be zero the denominator ν2i−1σ

′
2i+1−ν2i+1σ

′
2i−1

must disappear in accordance to the first equation of (1).
That is that the quantities σ′ must be proportional to
the ν that carry the same index and could be (since the
units of σ′ and h are arbitrarily) set equal. Through that
the quantities h′ and σ′ are known and only h and σ are
kept unknown. Therefore the expressions themselves, I
through VII, simplify significantly and initiate some gen-
eral conclusions according the types of instruments being
discussed here and will be mentioned at the end. In all
other cases it remains necessary to eliminate the quanti-
ties h′ and σ′ through h and σ. The equations that relate
both quantities are derived in issue 871 I. II. III 12. Where
there l is our h′ and τ is our σ′ respectively. Establishing
T as defined in (7) and the further abbreviations

h′0
h0

= χ; ν2i−1 + ν2i+1 = 2µ2i (17)

i∑
=

p=i∑
p=1

ν2p−1d2p−1

h2p−2h2p
(18)

one obtains the following equation that can be immedi-
ately applied to our expressions.

12 They simply source by recognizing that ρ and d must have the
same value whether they are represented by h and σ or by h′

and σ′.

σ′2i−1 − σ′2i+1 = (σ2i−1 − σ2i+1)

(
χ − T

i∑)
+

TN2i

h2i

ν2i−1σ
′
2i−1 − ν2i+1σ

′
2i+1 = (ν2i−1σ2i−1 − ν2i+1σ2i+1)

(
χ − T

i∑)
+

2TN2iµ2i

h2i

ν2i−1σ
′
2i+1 − ν2i+1σ

′
2i−1 = (ν2i−1σ2i+1 − ν2i+1σ2i−1)

(
χ − T

i∑)

h′2i = h2i

(
χ − T

i∑)



(19)

(The sums
∑

to the right disapear for i = 0)

These values can be placed into the equations for ∆R and R∆ν and then order them for the powers of T. It’s
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clear by it self that any power of T in all of the 7 rows
can’t be multiplied by more than five different factors
since we have already seen that the satisfaction of five
equations is sufficient to cancel the errors of an image
in a given plane and once they are canceled they must
stay that way independent on the value of T. Since it’s
clear that the extinction of the errors that occur in the
last image plane of our system A can only depend on the
first plane of the system (that means from the position of
the object) and from the values of ρ and d. According to
equation (7) the quantity T may change its value without

changing the just mentioned members by a change of
h′0 and σ′−1 as e.g. by shifting the base plane of plane
system B (change of h′0

σ′−1
). Satisfying the five conditions

therefore can’t depend on T. This point of view gives
us a way to control the conditions our expressions need
to satisfy after the elimination of h′ and σ′ After doing
the substitutions, as given in (13), in the expressions I
through VII, doing the proper ordering and reduce them
as much as possible one gets:

2T 3

(
∆R

+
− ∆R

−

)
or general member of

the expression of 2T 3∆R2k+1

 =


R′3 cos(ν′ − ν) 1k

−R′2R[1 + 2 cos(ν′ − ν)2] {χ 1k+ T 2k}
+R′R2 cos(ν′ − ν)

{
3χ2 1k+ 6χT 2k+ T 2(2 3k+ 4k)

}
−R3

{
χ3 1k+ 3χ2T 2k+ χT 2(2 3k+ 4k) + T 3 5k}

(V III.)

2T 3(∆ν
+
− ν

−
)

or general member of

the expression of 2T 3R∆ν2k+1

 = R′ sin(ν′ − ν) ×


R′2 1k

−2R′R cos(ν′ − ν) {χ 1k+ T 2k}
+R2

{
χ2 1k+ 2T 2k+ T 2 4k}

 (IX.)

Where the quantities labeled with 1k... 5kare defined
in the following manner.

U2i =
1

h2i

N2i

σ2i−1 − σ2i+1
−

p=i∑
p=1

ν2p−1d2p−1

h2p−2h2p
(X.)

(the sum on the right disappears for i = 0)

1k=h2i

(
σ2i−1 − σ2i+1

N2i

)2

× (ν2i−1σ2i−1 − υ2i+1σ2i+1)
2k= 1kU2i

3k= 2kU2i

4k= 3k− N2i

ρ2i

4k= 4kU2i


(XI.)

It must be mentioned, that the letters d and ρ are used to
simplify notation and therefore are present beside σ and
h. In the case where the quantities just mentioned are not
already known they have to be viewed as abbreviations
for the expressions in σ and h in equation (1)13.

13 The expressions in (VIII) and V (IX) can be written shorter
if one replaces the abbreviation U2i by V2i = χ + TU2i. It is
more convenient to do the remaining derivations based on the
last abbreviation, however I keep previous one here since the five
conditional equations of an error free image are most visible.

The complete expressions for the errors arising in the
image plane, 2T 3∆R2k+1 and 2T 3R∆ν2k+1 will only dif-
fer such that in the general terms in VIII. and IX. the
quantities 1k, 2k, 2k, 4kand 5kare replaced by
the sum of these quantities over all surfaces (that is i = 0
through i = k) S 1k, S 2k, etc. The elimination of the
four sums S 1k, S 2k,2S 3k+S 4kand S 5kare going to
be the conditions for the extinction of all errors of third
order in the direction of the radius vector and the elimi-
nation of the three sums S 1k, S 2kand S 4kextinct the
errors of same order being perpendicular to the radius
vector. Finally the image becomes, except for the errors
of fifth order, very precise if and only if all of the five
sums S 1k, S 2k,S 3k, S 4kand S 5kdisappear. The
condition S 1k= 0 is, as already mentioned, again the
one for the extinction of the so called spherical deviation.
One can see that the harmony of all expressions, in ac-
cordance to the relation of the general member of that
equation and the other four given in (XI), of which the
errors of third order in general depend is very pleasant
and that they can also be used to numerically calculate
the errors of a given optical instrument very conveniently.

§8

Although the equations last derived at first only describe
the deviation of the rays in a given plane, namely the last
one of our system A, they are sufficient for all analysis
corresponding to the distribution of the light in differ-
ent planes that are direct neighbors to it. Because if the
distance of such a new plane E is very small with re-
spect to its distance to the last plane of the system B the
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calculation of the deviations in plane E are apparently in-
fluenced very little by the quantities ∆R′ and ∆ν and fall
into a higher order. Therefore, the intersection points of
the rays leaving the instrument with the plane E can be
obtain as accurately as our analysis allows by assuming
that the position of the rays are defined by R + ∆R2k+1,
ν+∆ν2k+1 on one hand and R’ and ν′ on the other hand.

If one for example assumes that the errors ∆R and ∆ν
are not completely eliminated that is that the object lying
on the base plane of system A is not perfectly precisely
imaged onto the last plane of that system, and if one
wants to analyze (what Bessel similarly calculated on the
Koenigsberger Heliometer using trigonometric methods)
in which plane the magnitude of the errors in the image
are as small as possible the derivation just made will be
of use, since it is clear ahead of time that the target plane
must be close to the plane to which our equations relate.
It behaves the same as if one asks under which condi-
tions within third order representation a perfect image is
produced on an axis symmetric surface different from our
plane. For that to become true, it is required that all rays
coming from one point, that means having the same R
and ν, have a single intersection point after refraction or
if one applies right-angle coordinates x, y and z as done
earlier, the projection of the rays in the plane xy inter-
sect in one point and the projection of the rays in the
plane xz intersect in a second point and simultaneously
the coordinate x is the same for both points. We think of
x the same way as earlier as being measured parallel to
the optical axis and since the directions of this axis and
the self perpendicular y and z axes, are arbitrary, one can
obtain the right-angle coordinates from polar coordinates
most conveniently by defining then such that ν = 0 and
from that it immediately follows that ν2k+1

σ2k+1
∆R2k+1 is the

deviation parallel to y in the last plane of the system A’
and ν2k+1

σ2k+1
R∆ν2k+1 is the deviation parallel to z in the

same plane. If one does the analysis one will find that:
a) A plane E perpendicular to the axis, in which all

rays, that belong to the same R and ν = 0 but also
belong to all other possible R′ and ν′, intersect in the
same z = 0, only exists if the equations S 1k= 0 and
S 2k= 0 must be satisfied. Under this conditions there
will exist a plane E’ in which the rays of the same complex
will intersect in the same y.

b) In order for these two planes E and E’ to superim-
pose, all rays R, ν must have x, y and z simultaneously
in common. That is, they intersect in one point which
means that S 3k= 0 must be satisfied additionally.

If one recognizes that here y is chosen to be parallel to
the radius vector from which the light originates while z
is perpendicular to selfsame the following arises: If only
condition a) is satisfied but not condition b), two planes
different from each other will exist in such a sense that
in the first plane (E) a luminous point is imaged as a
short line pointing to the center of the field of view hav-
ing no width while in the second plane (E’) it is imaged
as a line perpendicular to the line pointing to the center
but without width as well. A more accurate examina-

tion shows how the two images transfer into one other.
Namely, if one continuously shifts the plane perpendicu-
lar to the axis from the position of E to the position of
E’ the first straight line is at the beginning replaced with
an elongated narrow ellipse that continuously becomes
shorter and wider until, after going through a circle, the
short axis falls into the direction of the previously long
one and vice versa and after a continuous increase of the
first line and a decrease of the second one, the second
line ends the process. The two planes E and E’ will shift
their position as the luminous point changes its distance
to the axis. Therefore a single plane on which all points
of an object drawn as line going through the axis are
imaged without width does not exist but only a curved
axis symmetric surface F can satisfy that as well as a
second axis symmetric surface F’ will have the property
that objects drawn as circles concentric to the axis are
imaged without width onto F’.14Both surfaces F and F’
touch each other in their vertex which also represents
the precise image of the center of the object. They co-
incide in one surface if [in addition to S 1kand S 2k]
also S 3k= 0 and therefore, this surface represents the
place where an extended object is imaged exactly except
for the fifth order errors, since on that surface all errors
are eliminated that are pointing into the direction of the
radius vector and perpendicular to it.

If additionally S 4k= 0 the surface just noted surface
becomes a plane since from VIII and IX it’s clear that if
S 1kthrough S 4kvanish simultaneously all rays that
have R and ν in common will intersect at the same point
in the last surface of system A. Therefore one gets in this
plane an image that is free of any indistinctness (except
of fifth order quantities). The only third order error that
it will still contain is distortion of the outer parts for their
elimination S 5k= 0 must be satisfied. If this quantity
is not extinguished the distances of the images of different
luminous points from the axis will not be proportional to
distances of the luminous points themselves from the axis
since the first mention are proportional to R +∆R while
the second mentioned are proportional R.15

Therefore one can only talk about a distinct position
of the image if the three equations S 1k= 0, S 2k= 0
and S 3k= 0 are simultaneously satisfied. Thereupon
this position is a rotationally symmetric surface with the

14 The surface F must have the position of the planes E in common
for which they are capable to image a point as a line. The same
relation must hold for F’ with all E’.

15 If the sums S 1kthrough S 4kare not made to be = 0 the quantity
S 5kby itself can not be used as a measure for the distortion
that the eye really perceives in the image. Since in that case not
all rays that source in one luminous point will intersect the last
plane in the same point the eye will place the image of that point
at different positions of the plane dependent on the direction of
the rays it is receiving with its current position and if it is not
receiving all of them in all positions its motion will cause motions
of the image that have their source in an imperfect precision of
the image itself.
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axis being the optical axis. One can view the very same
as a sphere by replacing it with the sphere that it sources
at its vertex. Since the difference between them falls into
the orders that are neglected in our analysis. It is easy to
determine the radius of that sphere or the curvature of
the image because the center of the sphere must lie on the
axis as well and since it is touching the last plane of our
system A on the axis it is only required to calculate one
lateral displaced point for a complete description of the
sphere. Its radius shall be labeled as g2k+1 for g positive
under the same conditions as defined for ρ. Following the
same path that was previously mentioned to lead to the
conditions in a) and b), g can easily be determined by
the simple equation

XII − ν2k+1

g2k+1
= S

N

ρ
,

from which it results again that the image is going to
be flat if S N

ρ is equal to zero. That is, if beside S 1k,
S 2kand S 3kalso S 4kvanishes, since XI following
equation must hold N

ρ = 3k− 4k.
Therefore in order to determine the radius of curvature

of the last image of a flat object, beside the refraction
ratios one only needs to know the radius of curvature of
the different surfaces but not the distances between them
and not the distance of the object to the instrument and
not even the order the different curved surfaces following
each other as long as it doesn’t influence N. However one
would be wrong if one would conclude from that, that
an instrument for which the ρ stay constant would image
all plane objects onto a surface of the same curvature
independent of how one would vary the distances between
the surfaces and object distances. Since a change in those
quantities would in general cause the equations S 1k=
0, S 2k= 0 and S 3k= 0 to no longer stay satisfied,
so that no precise image would be present any more and
therefore a declaration of the curvature of the surface on
which the image should be is impossible.16

In passing it shall be mentioned here that according
to equation XII it will be very rarely possible to pro-

16 The theorem in equation XII was published by Petzval in 1843
in his dioptric work (upon which to my knowledge no further
publications followed) but he did not give the preconditions that
must be satisfied so that the theorem has a meaning.- There
is a method to achieve that theorem very easily by assuming
a spherical curved object, just considering the effect of one re-
fracting surface and then searching for the osculating sphere of
that rotational symmetric surface on which the peaks of all focal
planes lie that are illuminated by the individual points of the
object. If one then views the image on that sphere as new ob-
ject from which the rays reach a second surface and so on the
same theorem results. This derivation by itself is largely deficient
since it is not clear under which circumstances the peaks of the
focal planes can be used instead of setting new objects that is
ignoring some part of the spherical deviation which is of same or-
der as the calculated deviation itself. Finding this equation that
way seems to be by chance and was certified by the elaborated
analysis under the conditions given in the text.

duce a precise image of a plane object. Because if one
would only use one type of glass in an optical instrument
the condition for a flat image S N

ρ = 0 would result if
all surfaces are thought to be shifted next to each other
the focal length must become infinity it therefore would
behave as a thin plane parallel glass. Such a set up of
its surfaces would rarely be tolerated by the purposes for
which it is intended. The situation is not improved if two
types of glasses are required for achromatic instrument.
Since then this condition contradicts with the more im-
portant one of eliminating the dispersion of color while
namely the later dictates that the less dispersive lenses
defines the sign of the total focal length (if all surfaces
are next to each other) and the first dictates that the
more refractive (that is in fact more dispersive) would
take priority. Only in cases where it is possible to apply
relative large glasses thicknesses, as with small aperture
as in oculars and maybe in microscope objectives one can
hope to avoid the contradiction.

The equation XII that determines the radius of cur-
vature of the image, if that really exists, can easily be
extended for the case in which the object itself is not
plane but spherical with the radius g−1, whereas it is re-
quired that the center of its curvature lies on the axis.
One could namely think that such an object itself co-
incides with a precise image, precise within third order,
that is produced from a plane object by a number of fic-
titious refracting surfaces of radii P in order to assume
that

−ν−1

g−1
= S

N

P

The last image for which the curvature is being deter-
mined, therefore must coincide with the image that is
caused by a (fictitious) plane object after the rays com-
ing from it have passed all surfaces of radii P and radii
ρ, so that following equation XII one must get

−ν2k+1

g2k+1
= S

N

P
+ S

N

ρ

and therefore

ν−1

g−1
− ν2k+1

g2k+1
= S

N

ρ
(XIII.)

§9

It was already pointed out that the second most impor-
tant of the five conditions of an accurate flat image after
the extinction of the members multiplied by R′3 in I.
and V. or in VIII. and IX. is the one that requires that
the members multiplied by R′2R (II. and VI. or VIII.
and IX.) must be eliminated, thus besides S 1kalso
S 2k=0. On a common double objective assembled from
two lenses only the four radii are available as variable
quantities since the thicknesses are fixed to be very small
ahead of time for irrefutable reasons. Therefore one can
only satisfy four equations of which one is defined by
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the total focal length, a second moves the different col-
ored images of a distant object in the same plane, while
the third eliminates the deviation from the sphere in the
center of the field of view or equivalently sets S 1k= 0.
Different suggestions were made on the selection of the
fourth one. Our analysis suggests to set S 2k= 0 which
will cause not only the center of the field of view but also
its close neighborhood to be imaged as precisely as pos-
sible. A closer examination of that condition therefore
makes sense since there are references available in which
Utzschneider states that his great companion Fraunhofer
was lead to the known peculiar construction of the tele-
scope objective by following the goal to minimize the er-
ror in the image over the entire field of view.17 One can
do the test on the Koenigsberger Heliometer that’s cal-
culated based on Fraunhofers’ method and Bessel pub-
lished its constants (Astronomische Untersuchungen Bd.
I. p.101). If one first calculates the σ and h following
equation (2) having set σ−1 = 0 (due to the infinite dis-
tance of the object) and sets h0, which is arbitrary, equal
to the focal length +1131,4548 (in order to get σ7 = 1)
one gets

σ−1 = 0
σ1 = +0, 4671176 log h0 = 3, 0536373
σ3 = +2, 5035619 log h2 = 3, 0525602
σ5 = +0, 2350630 log h4 = 3, 0525602
σ7 = +1 log h6 = 3, 0521982

With these numbers I find the distinct member of S 1kto
be

-629,848
-85923,723

+90164,021
-3716,744

S 1k= -106,274

One recognizes that, since this sum does not com-
pletely vanish, a small spherical deviation remains for the
center of the field of view as was demonstrated by Bessel
in a.a.O. p. 103 and it does not only source in higher or-
der terms (that were included in Bessels’ trigonometric
calculations) but also in residuals of third order.18 If one
also calculates the members of S 2kone will find.19

17 Among other places one can find an indication of this in a letter
of Utzschneider to the ’Konferentzrath’ Schumacher as printed
in Astronominsche Nachrichten.

18 This residual causes an even slightly bigger longitudinal devi-
ation with trigonometric calculations. With our equations one
would find that the incoming rays parallel to the axis at the edge
of the objective would have their point of reunion 0,05114 lines
closer to the objective than the central rays while in accordance
to Bessel the difference in the same sense is 0,0461.

19 The logarithms of the quantities U of the four surfaces are,
6,8160542; 6,1687300; 6,1738214; 6,6503272

+0,412
-12,672

+13,454
-1,662

S 2k= -0,468

Although this sum does not vanish completely but
rather about 1

30 of its maximum value remains, I be-
lieve that the nearly achieved compensation of the pos-
itive and negative members did not happen by chance
but undoubtedly, as the above referenced comments from
Utzschneider imply, Fraunhofer truly intended to have
the spherical deviation as constant as possible over the
entire field of view. It is unlikely that he had an ana-
lytical expression that would have helped him but rather
achieved his goal through repeated trigonometric analy-
sis and therefore it appears to be resolved that the value
of S 2kremains bigger, compared to the biggest member
of the sum, than for S 1kwhere it is just 1

900 . Since not as
much of that error could appear due to the small field of
view as for the one that’s influenced only depends on the
aperture. For the same reason it’s also the less harmful
one.

I therefore believe that the condition

S 2k= 0

can be considered as the fourth condition of Fraunhofer
for the double objective and will allow myself to call it
after his name.

This condition shows a peculiar relation with the equa-
tion from Herschel, that as is generally known produces
a minimal change in the spherical deviation as the dis-
tance of the object varies. By following our path the
expression for that condition (while strictly considering
the thicknesses of the media) is easily derived. If the de-
viation from the sphere is not only to be eliminated in
the image plane to which h and σ relate to but also for
the ones for which h′ and σ′ are valid so not only

S 1k= S h

(
σ
−
− σ

+

N

)2

(ν
−

σ
−
− ν

+
σ
+
),

but also

S h′

σ
−
′ − σ

+

′

N

2

(ν
−

σ
−
′ − ν

+
σ
+

′)

must disappear. One can here eliminate the h′ and σ′, as
it was done earlier in the other expression, using equation
(19) and will therefore obtain an expression ordered by
the powers of T where the maximum member contains
T 4. The member without a T is again S 1k; the member
multiplied by χ3T 1, if it only arises from one surface, is

= h 2k− σ
−

2 + σ
+

2
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and therefore the sum over all surfaces becomes

= 4S 2k− σ2
−1 + σ2

2k+1

This member must primarily be extinguished if the de-
viation from the sphere is supposed to be eliminated for
objects of distance h′0

σ′−1
that are close to the h0

σ−1
, since

one has T = σ−1σ′−1
ν−1

(
h0

σ−1
− h′0

σ′−1

)
so that the condition

from Herschel in our terminology becomes

0 = S 2k− 1
4 (σ2

−1 − σ2
2k−1) (XIV).

It can only coexist with the Fraunhofer condition20if one
has

σ2
−1 = σ2

2k+1,

that can be obtain in three different ways:
α) It can be that σ2k+1

σ−1
= +1. This case happens if the

planes perpendicular to the axis are placed on the (from
Listing so called) nodal points of the instrument. (see
the note to p. 110 in Issue 871).

β) It can be that σ2k+1
σ−1

= −1. In this case the object
and image are at the anti points of the nodal points, that
is at the points that are as far from the corresponding
focal points as the nodal points but on the opposite side.

If the same medium e.g. atmospheric air is present at
the beginning and the end so that ν−1 = ν2k+1 then the
nodal points coincide with the Gaussian principal points
and the object and image in the cases α and β are of
equal size and have in the first case similar and in the
second opposite orientation. Only case β will be of some
practical importance, which occurs in a camera obscura
when objects are imaged to their natural size.

γ) The examination of the possibility of σ2
−1 and σ2

2k+1
becoming equal by being equal to zero is of more inter-
est. In that case the object as well as the image are at
infinite distance; it therefore occurs in a telescope in a
setting where it shows the stars clearly to a far sighted
observer. A telescope in that setting and viewed as a
whole is therefore a preferred instrument that has the
property of fulfilling the Fraunhofer and Herschel con-
dition simultaneously if it fulfills one of them; or for the
sameself the two advantages that on one hand imaging
an extended object at very far distance as free of errors
as possible and on the other hand always image the cen-
ter of the object precisely when it is moved closer are
inseparable.

20 For the error of color dispersion I already showed in the essay in
Issue 871 that if it is eliminated for the center of the image for an
object at specific distance the two conditions coincide, namely 1)
that the error is eliminated for the outer parts of the field of view
too and 2) that the deviation of distance remains eliminated as
the object changes distance. One can see that for the error of the
deviation of from the sphere these two conditions only become
identical in very specific cases but strange to say that a simple
relation amongst them exists.

The telescope objective can, strictly speaking, not have
that property since σ−1 = 0 but σ2k+1 will be dif-
ferent from zero. Only if it happens to be e.g. for
the Fraunhofer objective, that the member − 1

4 (σ2
−1 −

σ2
2k+1) of which the two expressions are different is much

smaller than the quantities within the single members
of S 2kthey have in common; e.g. for the discussed
Heliometer objective − 1

4 (σ2
−1 − σ2

2k+1) = +0, 250 or be-
ing not quite 1

50 of the biggest member of S 2kso that
the two errors of one and the same (Fraunhofer or Her-
schel) construction of the objective are reduced to a small
fraction of the deviations that are caused by the refrac-
tion on just one surface. The Heliometer-objective leaves
an even smaller error in equation (XIV) than it does in
equation S 2k= 0; however one obtains noticeably big-
ger errors in both for objectives that are calculated for
other conditions. One can say that the Fraunhofer con-
struction principle will produce the most perfect double
objective; whereas one must admit that it is difficult to
apply it with the accuracy that its advantage would be-
come noticeable; an analysis of the influence of imperfect
fabrication of the distinct radii has onto the rise of errors
in the image proves that especially the two most curved
surfaces must be ground to high precision if a very no-
ticeable spherical deviation should be avoided.

§10

One would have an instrument that would image objects
at all distances without third order errors if it would be
possible to eliminate all errors of that order in two differ-
ent image planes. Since the position of a straight line is
completely fixed by declaring its intersection points with
two planes, any ray that can arrive at the instrument
would leave the optical system accordingly (except for
the 5th order errors) as described with the approximated
equations from which the existence of the images of the
objects at all distances are calculated. If one therefore
wanted to calculate such an instrument, one would not
have to satisfy 10 distinct equations but rather 9; since
the equation S 3k− S 4k= 0 = S N

ρ contains nothing
that relates to a specific position of an image, it would
therefore be the unaltered one within the five equations
that are used to eliminate the errors in a second plane.
But an instrument that is really doing something can
not satisfy the 9 equations. One of the four conditions
that would be added to our five is namely the one from
Herschel , equation (XIV), that would have to coexist
with the one from Fraunhofer S 2k= 0 and since the
instrument would have to produce images of the same
quality for objects at all distances, σ2

−1 = σ2
2k+1 needed

always to be true, independent of the value of σ−1; that
is, from the geometrical meaning of σ all the rays com-
ing from any point on the axis after leaving the optical
system would have to have the same angle with respect
to the axis as before. Therefore the effect of the instru-
ment would mainly be reduced to that of a plane glass
or (if σ−1 = −σ2k+1) to that of a plane mirror; if one
requires functionality that goes beyond this simple one,
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one needs to abandon the requirement to obtain images
in two planes that only leave errors of fifth order.

One cannot even achieve that level of accuracy in a
single image plane if one doesn’t assign significant sepa-
ration to some of them, as well as proper determination
of the radii of the surfaces. For the special case where all
d = 0 it is simple to write the five expressions. The first
of them S 1ksuffers no change other than the simplifi-
cation that results from the comment that all h become
identical and therefore can be set = 1.

The expression S 2k , that becomes equal to

S

(
σ
−
−σ

+

N

)
(ν
−

σ
−
− ν

+
σ
+
) can be simplified if one writes

µ(σ
−
− σ

+
) + N

2 (σ
−
− σ

+
) instead of (ν

−
σ
−
− ν

+
σ
+
) whereas µ,

as above, is the arithmetic mean from ν
−

and ν
+
; therefore

the sum becomes

S 2k= S
µ

N
(σ
−
− σ

+
)2 + 1

2 (σ2
−1 − σ2

2k+1) (XV).

and similarly the Herschel expression (see XIV)

S 2k−1
4
(σ2

−1 − σ2
2k+1) =

S
µ

N
(σ
−
− σ

+
)2 + 1

4 (σ2
−1 − σ2

2k+1) (XVI).

Further results 3k= (ν
−

σ
−
− ν

+
σ
+
) and

S 3k= ν−1σ−1 − ν2k+1σ2k+1 (XVII).

Since 4k = 3k− N
ρ or here following equation (1)

= ν
−

σ
−
− ν

+
σ
+
− ν

−
σ
+

+ ν
+
σ
−

= 2µ(σ
−
− σ

+
) given one gets

S 4k= 2Sµ(σ
−
− σ

+
) (XVIII).

and finally 5k= 2µN = ν
−

2 − ν
+

2, therefore

S 5k= ν2
−1 − ν2

2k+1 (XIX).

This last expression will in most applications become 0
automatically since the whole instrument is immersed in
one single medium so that ν−1 = ν2k+1 if no or an even
number of reflections occur whereas ν−1 = −ν2k+1 for
an odd number of reflections. But if ν2

−1 = ν2
2k+1 the

expression S 3k= ν−1σ−1 − ν2k+1σ2k+1 can’t be made
to be zero without giving the whole instrument an infi-
nite focal length (compare Issue 871 equation VI), that is
(since with d = 0 it cant be a magnifying or demagnifying
telescope) without reducing its functionality again to be
equivalent to a mirror or a thin plane glass (that has no
function). It was already denoted above, §7, that for the
case of disappearing thicknesses the expressions of the
different errors can be conveniently obtained from row
(I) through (VII) by setting h’=0 and making σ′ equal
to ν. Indeed one obtains the same results as were just
derived an other way; whereby a control of proper elim-
ination is given with which the expressions (I) through
(VII) were transformed into (VIII) and (IX).

The equations (VIII) and (IX) can be verified with
some other controls too. For some portion they relate
to the symmetry of the expressions as the unit of ν and
N is arbitrary likewise h and σ can be assigned an arbi-
trary factor as well as -R can be written instead of +R
if one simultaneously changes ν into ν + π and an analo-
gous relation exists for R’ and ν′. Some other checks are
simple conclusions from the strict equations of refraction
from which e.g. no ∆ν can arise if ν′ = ν. In accordance
to the same equations the influence of a refracting sur-
face can not produce a new member in the expressions
of ∆ν if two consecutive planes of our transverse system
A (namely the one preceding the surface and the one in
the succeeding medium) virtually coincide in the center
of curvature of that surface. - If the ray is normal to the
surface it does not suffer any deviation; - all rays that in-
tersect with the normal in the same point and construct
the same angles with it are strictly rotated by the same
angle out of their direction and each of them will stay in
the plane that coincides with the normal and its direction
before refraction. Finally the errors ∆R and ∆ν, that are
viewed in the last plane of system A, can not at all de-
pend on the position of the planes of system B; therefore
the first mentioned must remain unaltered if one changes
T and simultaneously allows R’ and ν′ to vary so that
the same ray is kept unchanged. - The equations pass all
checks that result from these examinations. The confir-
mation of that, which is not hard to carry out, is hardly
of enough general interest that it would authorize me to
use up more space here.

Munich 1855 April 6. Ludwig Seidel


