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§ 1. Introduction. 

1. In the competition between refractors and reflectors, the reflectors are at 
present gaining ground. Many and various of the former doubts concerning the 
precision and stability of large mirrors have been dismissed by the technical 
progress of recent years. At present glass mirrors with a silver-plated front side 
are commonly used. As the thickness of the silver layer turns out very even from 
experience, the exact form giving process used in the fabrication of lenses is also 
suitable for the fabrication of mirrors. Warping and temperature related strain can 
be reduced to a harmless measure by suitable mounting (Ritchey, Chicago). The 
low weather resistance (the silver layer quickly loses its high gloss) is 
compensated for by arranging the elements in such a way that the mirror can 
easily be taken out and can be freshly silvered during the course of a single day. 
 
With this obstacle removed, the advantages of reflecting telescopes are plainly 
shown, two of which stand in first place. The first to emphasize is the economic 
advantage offered by reflectors. An ordinary achromatic lens has four polished 
surfaces, the reflecting telescope (apart from the small plane mirror) has only one 
and the quality demand of the glass mass of the mirror (although it must be 
good) is not the very highest. Consequently, the price ratio between lenses and 
mirrors of the same diameter can rise up to 10:1 with large dimensions.  
In addition the mirror is free from all colour aberrations. While the secondary 
spectrum of the so-called achromatic lens is still it’s worst defect, no colour 
separation at all occurs at the mirror.  
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As well has having zero dispersion, the reflection capability of silver reaches far into 
the ultra violet, which is very valuable for photographic and spectral recordings. 
These advantages are opposed by one substantial disadvantage at least with 
the present reflecting telescopes: the restriction of the visual field. A 
parabolic mirror delivers a perfect image on the axis, but only half a degree 
from the axis with an aperture ratio of 1/4, a coma the size of 29" appears. In 
the following investigation the question is asked whether progress cannot be 
achieved in this point by using two mirrors of a suitably calculated shape 
instead of the commonly used parabolic mirrors with diagonal plane mirrors. 
The answer is a positive one.  I t is possible to design telescopes with 2 
mirrors,  that deliver the same expansion of the usable visual field (2°-
3° diameter) at an aperture ratio of 1/3, corresponding, for example, to 
the refractors of the same diameter commonly used in the enterprise of 
producing photographic sky maps. With this, it seems another application 
area is opening up for reflecting telescopes. 
 
2.  Summary: Instead of beginning with the special task mentioned above, the 
universal theory of third order aberrations for mirror systems is developed. It is a 
simplified analogue to Seidel’s aberration theory for lens systems, discussed in the 
previous paper I § 6.  As an application result, familiar notes about the aberration of a 
single parabolic mirror and a full overview is given on practical usability of systems 
of two mirrors. A particularly favourable system of this kind is isolated. Finally the 
area of validity of the third order aberration theory is expanded, the previously 
received mirror shapes are followed up to higher aperture degrees. The problem is to 
define a system with two mirrors that not only has a sharp focal point, but 
simultaneously strictly follows the sine condition. Using Abbe’s terminology such a 
system is described as an “aplanatic” system, free from spherical aberration and 
coma. The mirror meridians derive from a differential equation, which is in a strange 
way algebraically integratable. For these systems, which are recognised as 
particularly useful by the theory of third order aberrations in relation to remaining 
aberrations and by their general geometry, the exact mirror shapes are calculated from 
the integrals and compared to second order rotational surfaces which share a common 
pole.  
 

§ 2. Third order aberrations of mirror systems 
 
The entire development follows in close analogy with the derivation of the third order 
aberration theory of a lens system in the previous paper I. § 6. Even the terms stay 
almost the same throughout. I will therefore only carry out the calculation process 
without going into detailed reasoning.  
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3. The Eikonal of a single mirror.  Let the mirror be a rotational surface. The 
x-Axis coincides with the rotational axis and will be counted positive according to the 

direction of light propagation. The overview of the ray 
path is simplified, if you think of the mirror itself and the 
entire system of reflected rays mirrored at the tangential 
plane on the vertex of the mirror, replacing Fig. 1 by Fig.2.  
The advantage is that now light propagation always 
follows one direction. The analogy of the concave mirror 
and the convex lens is immediately apparent.  
 

For spherical mirrors the equation is: 
 

 

 
 

whereby a is the sagitta of the mirror, r is the radius, which is set positive for a hollow 
mirror, X, Y, Z are the coordinates of a point P on the mirror surface S. For the 
corresponding point P' on the surface S' the coordinates will be: 

 
 
By ascribing to the mirror an arbitrary spherical shape, except for the fourth order 
terms, we set exactly: 

  
and define b as the deformation of the mirror. It is by the way immediately 
recognisable that the mirror surfaces within this accuracy can always be replaced  by 
rotational ellipsoids or hyperboloids, whose equation reads  

 



6 K.Schwarzschild, 

If are the equations for the object 
plane, image plane, entrance and exit pupils respectively and we insert the exact same 
terms as in I§6,  

 
we get as the expression of the conjugated location of both plane pairs within the 
accuracy of Gaussian optics:  

 
in which K and L again stand for Abbe’s invariants.  
The magnification ratio of both plane pairs becomes 

 
Initially, the Angle Eikonal between the planes c0  and c1 is formed. 

 
The factors m0, p0, q0, m1, p1 and q1 retain the meanings ascribed to them in I, namely 
they are the direction cosines of the entering and reflected rays. 

  Replacing m with 
221 qp −− , X with the expression (3), eliminating X',Y',Z' with 

the help of (2) and then expanding a series to the 4th order, leads to: 

 
In this development, Y and Z can be replaced by their valid values within Gaussian 
theory 

  
 Hence W is established as a function of p0, q0, p1, q1. 
  Next is to change to the Seidel variables and the Seidel Eikonal. The latter 

consists of 4th order elements of W if we omit elements with orders higher than the 4th 
order of S4, and hence has the value: 

 
or in regard to (6) by rearranging 

 
Introducing the Seidel variables themselves simplifies the expression from the 
equations in paper I. (eq. 48), that were valid for lens systems, due to the fact that 
now n = n' = 1 . 
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Therefore the result is instead of I. (48), 

 
With the introduction of the abbreviation: 

 
this becomes: 

 
whereby (8) changes into 

 
using the terms 

 
 
then follows with constant usage of equation (6) in close analogy to I (52): 
 

 
 
Inserting these terms into S4 (equation (9), results in the desired Eikonal 
development: 
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We move on immediately and form 
 
4. The aberrations of an any mirror system. According to the derivation of 
the equations in I. § 5 we can achieve expressions for the total system aberrations by 
simply adding like terms representing the aberrations arising at individual mirrors, 
which can be represented by the coefficients of the Eikonal developed above.   
 
Differentiating the various mirrors placed one after the other by indices i = 1 to  
i = k, we find a complete analogy to I. § 6 (54): 
 

 

The radii of curvature Sρ  and Tρ , of the sagittal and -tangential focal surfaces  
are connected with C and D by the equation: 

 
 
All variables occurring here result from equations which are extracted from Gaussian 
theory and are analogous to the formulae (55), (56), (57), (58)  of I. : 

 
The meaning of the symbols are explained once again: 

ri  radius of curvature of the ith mirror (positive for concave mirrors),  
bi the deformation of the ith mirror (positive for increased mirror curvature at          
the marginal zone).        

            si , t,, s'i, t'i are the distances of the four planes to the vertex of the  i th  mirror, 
namely these planes are in sequence: 
The Gaussian image of the object plane, which is created by the (i-1)th mirror. 
The Gaussian image of the entrance pupil, which is displayed by the (i-1) mirror. 
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The Gaussian image of the object plane, which is displayed by the ith mirror. 
The Gaussian image of the entrance pupil, which is displayed by the ith mirror. 

 
The easiest way to determine the sign of these distances is to mirror the entire later 
system at the tangential plane in the vertex of each mirror repeating the process 
defined in Fig 1 and 2. The distances are positive if, after completion of this 
construction, the plane in question lies in front of the ith mirror (in the direction of 
light propagation). 
 
The factors hi are (by means of Gaussian theory) proportional to the perpendicular 
distances from the axis in which individual mirror planes are intersected by a ray 
originating from the centre of the object plane. The same is valid for the variables  Hi 
referring to a ray originating from the centre of the entrance pupil. The factors di are 
the always positive separations of the poles of successive mirrors. Ki and Li are 
Abbe’s invariants. 
 
To complete the overview, the formulae are repeated for the transformation to 
numerical aberrations according to I 21a) and 21b), in which we limit ourselves 
however to a infinitely distant object. Describing  f  as the focal length of the entire 
system and putting: 

 
Then you  get: 
                        B'v³ diameter of the blur circle caused by spherical                     

aberration. 
  E'g³  distortion. 
19a)  F'gv²  radial size of the coma. 

(2C'-D')g²v the radial axis of the blur ellipses created by 
astigmatism and image curvature. 

 D’g²v  the tangential axis of the blur ellipses created by     
                         astigmatism and image curvature. 
 

 
Here g stands for the visual field diameter with a diameter of 6° as a unit, v is the 
aperture ratio of the instrument with an aperture ratio of 1/10 as a unit. Because of the 
importance of the sign please compare with I. No.11. 
 
5. The Petzval condition for mirror systems. By subtracting the aberration 
D from C and considering (18), we obtain: 

 
or by introducing the radii of curvature of the tangential and sagittal focal surfaces: 
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This is Petzval’s equation for mirror systems. For an aberration free mirror system the 
following requirement has to be fulfilled:  

 
which means , that such a system can only be achieved by a combination of concave 
and convex mirrors (positive and negative r ). 
 

§ 3. The single mirror 
 
6. As a first application of the equations derived above we want to consider the 
aberrations of a single mirror and limit ourselves to a infinitely distant object (s =  ∞ ) 
. If we leave out the index i everywhere, we obtain from the formulae (17): 

 
and therefore:  

 
By moving the entrance pupil to the mirror itself, therefore not attaching a special 
aperture in front of the mirror, then t = 0 and it follows, if you directly turn to the 
numerical aberrations ( f = r/2):  

 
The deformation b will be used to eliminate the spherical aberration, therefore  
b + 1 = 0  which means according to (3) a parabolic profile of the mirror. 
For the parabolic mirror there are only two more aberrations, the curvature of the 
sagittal focal surface and the coma with numerical values of  20.3" and 28.3" 
respectively. What these aberrations amount to at different aperture ratios and 
different visual fields is shown in the following table calculated with (19a): 
 
                             diameter of  
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7. To evaluate these numbers, a comparison is recommended to the common 
two-element telescope objectives, the so called normal refractors, as used for 
example in photographic sky mapping. Using these objectives the spherical 
aberration, coma and distortion disappear, however sagittal and tangential focal 
surface curvature exists with the numerical values  2C'+ D' = – 104"  and  D' = – 
47".  The objectives have a aperture ratio of f/10 and they are regarded as useful for 
a visual field of 2.8° diameter (the maps are squares with a side length of 2°).  Under 
these conditions, we get a dispersion of 23" in radial and 10" in tangential direction 
due to the image curvature. The much larger blur caused by the existence of 
secondary spectrum is not even considered here. Comparing these results with the 
table above, we see that the parabolic mirror with the aperture ratio of f/10 can well 
compete with the two-piece refracting objective of the same aperture ratio even with 
regard to the usable visual field. Comparing the light concentrations in the above 
table, one must not forget that the mirror will be even more superior than indicated 
by the monochromatic aberration results in the table, due to the missing secondary 
spectrum, but is less suitable for exact measurements because the coma produces an 
asymmetrical blur patch and can therefore cause a systematic shift of brighter 
against fainter stars.1) 

If you change over to a mirror with a aperture ratio of f/3 the table shows that here 
the useful visual field has only ½ º diameter, being limited by coma, which takes 
on critical values at small distances from the axis. 

 
§ 4. Systems of two mirrors. 

By proceeding to dealing with systems of two mirrors (in which none of them is to be 
flat naturally), the goal is set by the last remark of the previous paragraph. 
Specifically, our goal is to obtain an extended visual field even at small aperture 
ratios, that is to remove besides the spherical aberration in particular the coma. The 
consideration of distortion is forgone throughout, as it is irrelevant to astronomical 
applications.   
 
8. Explicit aberration terms. The conditions required to make the spherical 
aberration and the coma disappear  for 2 mirrors are given below:  

 
 

1) compare H. C. Plummer, Monthly Notices of the Roy. Astr. Soc. Vol. 62. page 352 and Vol. 63 page 16. 
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Astigmatism and image curvature are defined by 

 
 
From the first two equations one can see that with any arbitrary arrangement of the 
mirror system one can choose the deformations   b1 and  b2  so that spherical aberration 
and coma disappear. We ask, what image blurring aberrations then still remain?  

One eliminates b1 and  b2  from the first two equations and inserts the result into  
D.  To achieve this we form the equation: 

 
which reduces to  h1 h2 D  with the elimination of  B and  F. this way one finds at 
once:  

 
 
 
 
 
or according to (18): 

 
 
 

Now all the factors present above are to be expressed by mirror radii, the mirror 
separation  d  and by the distance to the entrance pupil determined by t1=H1, 
whereby the objects must be at infinity  (s1 = ∞) .  It then follows from equation (17): 
 

 

One realises that the position of the entrance pupil described by t1 is no longer 
relevant, as predicted by the theorem of paper I. No. 11. Therefore, only the radii of 
curvature  r1, r2  and the mirror distance  d  are accountable for the remaining image 
aberrations. Before further discussion, it is recommended to link these three factors to 
the condition that the distance of the focal length of the system should have a 
prescribed value of  f.   
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By looking at the magnification between the object and image planes when the object 
is infinitely distant one sees immediately that the value of the focal length is: 

 

 
 
From the derived relationship follows: 
 

 
 
By eliminating  r2  from the terms  C  and  D , then follows: 

 
Thus we arrive at the final terms for the remaining image aberrations.  
For these it is unnecessary to know the size of the deformations  b2  and  b1. 
 
From the conditions  B = 0  and F = 0 we have two linear equations for  b1 and b2,  
which we now solve. Inserting the values given in (25) for all variables, and 
eliminating finally r2  with the help of (26) again, one obtains: 
 

 
 
We note the formula for the distance of the image plane behind the last mirror ( −s2' ): 
 

 
 
 
 

 
For the evaluation of the ray path in which a ray originating from an axial object 

intersects the two mirrors, the ratio  h2 / h1 of the heights is important after all,  
because the same ratio determines the mirror radii. For abbreviation we want to name 
this variable  λ .  This is: 
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f22  

9. Overview of the systems and their aberrations. Now the first problem 
we consider  will be to form an aberration free mirror system (apart from the 
distortion). There is such a system because C and D disappear if the following 
conditions are met: 
  
 d = 2f  r1= ±  
 
From the conditions  that  d  has to be positive and the image has to be real, it follows 

that f is to be taken positive and r1 negative. r2  yields the value fr 222 =  according 

to the Petzval condition. Furthermore s2 becomes fs )21(2 +=− . The system and 
the ray path in the mirror system is illustrated in figure 3. 
 
It is clear that this is  impractical 
due to the fact, that the mirror 
separation becomes double the 
focal length, and that the mutual 
obstruction of the mirrors does 
not allow a larger visual field no 
matter where you may place the 
pierced apertures on these 
mirrors. 

 

 

 

Therefore one shall abandon the 
thought of an aberration free system and instead restrict oneself to select those 
systems with practical configurations and with as little as possible aberration. The 
requirement for practical usability is that one mirror is not allowed to shadow the 
other mirror too much. Therefore a size ratio from the second to the first mirror must 
be sufficiently different from 1. Cases in which the second mirror (that is in reality the 
one closer to the object) is larger than first light receiving mirror are ruled out, 
because the size of the first mirror defines the aperture ratio and then you would need 
to give the second mirror an unseemly large diameter. Hence, the only remaining 
cases are where the second mirror is the smaller one. Here you need to distinguish 
two sub-cases: depending on whether the second mirror collects the light reflected 
from the first mirror before the focus of the first mirror ( λ  positive) or whether there 
lies a focal point between the first and second mirror ( λ  negative). The last sub-case 
proves itself in all respects unfavourable because the condition  λ  = 1 − 2d ⁄ r1 < 0  
results in too small values for  r1 and as a consequence remaining image aberrations  
C  and  D are too large. Thus, the first sub-case only remains in which the ray path 
essentially corresponds to that of the Cassegrain reflectors (ref. Figs. 8, 9). 

 
The following table gives an overview of the proportions which occur. The focal 
length  f  (here always positive) is set to 1. The systems are sorted according to the 
size ratio λ  of the second (smaller) to the first (larger) mirror.  The diameter of the 
latter is 1/3 of the focal length assuming v = 10⁄3.  
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V is the remaining effective aperture ratio  due to the small mirror in front.  
 
 
 
The variable  − s2'  gives the distance from the second mirror to the image (for f = 
1 this is numerically identical to λ ). Below that the separation  d of the two mirrors 
and their radii of curvature  r1 and r2 follows. The deformations b1 and b2  are 
given by equation (28) and have as unit – according to their definition – the 
difference of the paraboloid from parameter r1 and r2  respectively and its 
curvature sphere in the vertex . 

The two  most interesting variables finally follow, namely the radial and 
tangential scatter  Δy  and Δx  due to the aberrations  C  and  D. These  are calculated 
from the equations(19), (19a), (27), (29): 

 

 
 

which yield for the aperture ratio of f/3 and a visual field of diameter of 2º (g=1⁄3), the 
values of (27) according to (19) and (19a): 
 

 

One recognises a number of systems in this table that deliver a useful visual field of 
2° diameter and are permissible with their general layout. A better isolation of the 
best systems proceeds by the consideration of  

 
10.  Silhouetting in mirror systems. By this I mean the mutual shadowing of 
the two mirrors and the photographic plate situated in the image plane. You gain an 
overview of the quite complicated relationships by imagining the original system 
with the large mirror A, the small mirror B and also the circular virtual plate C  
imaged by reflection through the vertex planes of the two mirrors with the method 
explained above. In this way Figure 5 results from Figure 4.  The distances of the 
different apertures are noted. 
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Reflecting parts are distinguished from transparent parts by shading. 

 

We proceed with a related principle from Abbe and Helmhotz, and image all 
apertures to the front through the parts of the optical system lying in front of it, seek 
in other words the image of  B'  and  C'  projected trough  A  as well as the image of 
C" projected through B'  and  A .  After easy considerations one receives from 
Figure (5) the stated relations in Figure (6) according to Gaussian theory. 

 
Naming the diameter of the aperture with the associated letter, yields: 

 
Besides the two equal sized outer apertures  A  and  B'  there are therefore three more 
inner apertures B, C  and  C'  included in the ray path of which the latter two originate 
from the photographic plate itself. The image of C’ falls into infinity and therefore 
does not come into consideration.  

If we now let a pencil of parallel rays originate from an infinitely distant point, 
then those rays reach the plate, which can penetrate this aperture system with their 
undeviated straight path. Therefore we obtain the effective parts of the mirrors, by 
projecting the entire aperture system onto a plane perpendicular to the optical axis and 
by searching for the surface elements which are not covered by a projection of a non-
transparent aperture. At a short distance of the object from the axis one may be 
allowed to replace the projected ellipses by circles and only consider the centre 
displacement thereof. 
 
Instead of a general discussion with its case differentiations I will give a few 
examples. These are all made with regard to the aperture ratio of f/3. The figures  7a) 
– c)  are valid for the system λ = 0.3,  d = 1.4, the figures d) – f) for the system  λ = 
0.5, d = 1.25. Judging by the aberration scatters given above, both systems are useful 
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for a visual field of  2.5° – 3° diameter; they are selected so that they are almost free 
of aberration and almost entirely afflicted with astigmatism only. On first sight one 
would think it more favourable to give the second mirror  a radius of only  0.3 instead 
of 0.5 because there is a gain in light intensity associated in the ratio of 
 
 

 
 
and moreover one also reluctantly gives away the centre parts of the mirror as these 
are in practice easier to produce exactly. However, a look at the figures teaches 
you that this advantage is only valid for the axial pencil and if you are only a 
little off the axis, then the system with the smaller front mirror (λ=0.3) suffers 
larger silhouetting than the system (λ=0.5). Particularly troublesome with the first 
system is that the edge of the photographic plate strongly silhouettes rays travelling 
from the  primary mirror to the secondary mirror, even with a diameter of  2° , while 
in practice you need space for the fitting of the plate and you would in general like to 
take a slightly larger plate than the actual usable visual field. 
 

 
a) central object b) 1˚ displacement off the axis, c) 2˚ displacement off the axis, 
 plate diameter 2˚     plate diameter  4˚ 
 

 
d) Central Object e) 1˚ axis displacement   f) 2˚ axis displacement 
 plate diameter 4˚ plate diameter 4˚ 
 
The parts hatched from top left to bottom right are silhouetted from the photographic plate 
itself. 

Figure 7 
 
11. Selection of the best systems. It seems to me, that in practice the system λ 
= 0.5, d = 1.25 shows the most favourable proportions, whereby it should not be said 
that for special purposes one of the neighbouring shapes would not be more 
favourable. I summarise again the results of its construction. 
 
Focal distance  f = 1   mirror distance d = 1.25 

1 – 0.32   
1 – 0.52 = 1.21 
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  Diameter of the large mirror:   0.33 
  Diameter of the small mirror:   0.167 
  Effective aperture ratio:    1/3.5 
  Radii of curvature:   r1: 5.0 
       r2: 1.67 
  Deformation:    b1: -13.5 
       b2: +1.97 
  Radial scatter with 1° sideways of axis: Δy: -7" 
  Tangential scatter with 1° sideways of axis: Δz: +9" 
 
The system delivers nearly circular images of about  16"  diameter at 1.4°  from the 
axis at an aperture ratio of f/3.5 and has therefore approximately the same useful 
visual field as the previously mentioned normal refractors with an aperture ratio of  
1/10  . If you would increase the aperture ratio to an abnormally high value of  1/1.2,  
then there would still remain a usable visual field diameter of 1.5° . 
 
 
  $ 5    The aplanatic mirror system 
 
12.  When one thinks of a construction of a mirror with an aperture ratio of 1/3 or 
even 1/1, one must not forget that the entire theory of third order aberrations 
discussed up to now is an approximation only valid for paraxial rays. Therefore we 
have to try to calculate a mirror system of arbitrary aperture, which is strictly free 
of spherical aberration and at the same time fulfils the strict sine condition because 
the absence of coma is secured with the last condition according to I No.7 and 13. 
The focal point of the desired system must be an aplanatic point according to Abbe’s 
notation, therefore the entire system shall be called “aplanatic”. 

Because of the entirely new approach, the notation shall be selected 
independently from the way it was used previously as in figure (8). New relationships 
will have to be re-established later on. The smaller (formerly second) mirror may be 
termed as  S1 , the large one catching the first light termed with  S' . The two 
requirements to the mirror system can be formulated in the following way 

 
1) Rays from an infinitely distant point on the axis of the system 
(which we imagine to run horizontally) are to be united in the focal point F .  
Another expression of this condition is that the path length from this infinitely distant 
point to the focal point shall be the same for all rays according to the theorem which 

directly results from the minimal 
property of the Eikonal (which 
says that the optical path length 
of all those rays is identical 
which originate from one point 
and unite in a second point). By 
drawing the image plane 
perpendicular to the axis trough 
the focal point and by naming the 
distance on the incoming ray 
parallel to the axis from the point 
of intersection with the image 
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plane to the intersection with the mirror  S' as x' and by also naming the length of the 
ray between S'  and  S  as  ρ' , and between  S  and the focal point as  ρ , then our 
condition reads:  
 

 
 

wherein  e  represents a constant. 
 
2) The sine condition shall be fulfilled. If the object point moves further and 
further away, then the sines of the incoming angles of the rays will become more and 
more linearly proportional to the perpendicular distances  y'  of the rays from the axis 
where they meets the mirror. If we call the angle at the focal point α, then the sine 
condition for an object at infinity therefore reads: 

 
We want to set this constant equal  1, and request: 

 
By this we only determine the unit of measurement in which we want to measure the 
length specifically in such a way that the focal length of the entire system becomes 1, 
as can easily be seen from I. equation (16).  

 
13. The task now consists of determining  the equations of the meridian 
curves of both mirrors so that both conditions are fulfilled. The angles between 
ray and the normal onto the mirrors are named  β  and  γ .  One imagines the shape of 
the mirrors to be determined by initially defining  ρ  as a function of  α – whereby the 
equation of the meridian intersection of the mirror  S is specified in polar coordinates 
–  and further by defining  β and  ρ' or  x’  as functions of  α.  This represents a 
special way of representing the meridian intersection for the mirror S in terms of a 
single parameter. 

With these definitions, the slope  β  of the mirror normal from  S  toward the 
radius vector  ρ  is 

 
Furthermore we can read the following relationships from the figure : 

 
The equations (30) – (35) contain the mathematical expression of our task. By 
eliminating the angle  γ  with the help of (33), and the distance  x1  with the help of 
(34) and y' according to (31), the following system results: 
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By further eliminating ρ', the equations become: 

 
The first equation solved for  tan β gives:   

 
This leads to the following first order differential equation for the meridian 
intersection of the mirror S : 

 
This equation can be integrated in a very simple way. By setting firstly:  

 
we obtain the equation in the algebraic form: 

 
Introducing further a new variable  η  by: 
 
 

 
then follows: 
 
or: 
 
 
 
The integrating factor of this differential equation is: 

 
After multiplying the differential equation through by this and integrating we find: 
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whereby  c  is the integration constant, or in a slightly different form: 

 
By reintroducing the original variables  α  and  ρ , we obtain the polar equation for 
the mirror S : 
 
 
 
 
With that the task is basically solved. It remains to express  x'  as a function of  α , in 
order to obtain the shape of the mirror S'. 
According to 30) we have: 

 
 
From 36) and 37) it follows by eliminating  β: 
 
 
 
 
 
and with that: 
 
 

 
or: 
 
 
 
 
Inserting  ρ  for the expression 39) and adding the sine condition 31), the formulae 
deliver: 

 
the rectangular coordinates for the meridian intersection of the mirror 
S'  as a function  of the parameter  α . 
15. We now wish to visualise the relationship of the two constants c and e  with the 
geometrical quantities of the mirror system.  Also at this point we wish to establish 
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the  relationship to the previous notation. For an axial ray we get from Figure 
(8):  ρ = SF = λ,  whereby  λ  as previously, stands for the distance of the focal point 
from the small mirror  S  with the  focal length of  f = 1 , and also  ρ + x' = ρ + ρ' =  d  
whereby  d  is the separation of the two mirrors.  On the other hand, for  α = 0  
follows from the formulae 39) and 40): 

 
and through comparison we have: 

 

For further comparison with the previously approximated derivations the present 
expressions shall be developed in series expansion.  
With 39) we receive directly the expansion of  ρ  with powers of  sin² (α ⁄ 2) : 

 
Similarly we get from 40): 

 
From here on we change over to rectangular coordinates by having: 

 

By using 39) we can develop, from the equations of the last line, sin 2
α

 into a power 
series for  y  and y' respectively. The execution of the calculation leads to: 

 
Of course both expansions are identical up to the terms of the fourth order that are 
received from the previous approach to the mirror meridian in equation 3), if those 
values are introduced which allow the elimination of spherical aberration and coma. 
 
16. To find practical applications from the previous results, the mirror shapes 
of the system for which λ = 0.5, d = 1.25  that was recognised above as a particularly 
useful system shall be calculated according to the strict formulae and compared with 
the curvature of spheres and the osculating rotational surfaces of second order. 
With this selection of constants the mirror surfaces themselves are described by the 
following equations: 

 
 

Mirror  S: 
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Mirror  S': 
  
 
 
The equations of the meridians of the rotational surface of 2nd order, which have a 
fourth order touch with the mirror in the vertex, become according to (4): 
 
 
Mirror  S: 
 
Mirror  S': 
 
The first terms of the series expansion in rectangular coordinates are: 

 
The equations of the osculating spheres (osculating at the pole) are: 

 
The general arrangement and optical path in the system is evident from figure 9. The 
exact  dimensions are obtained from the following table.  

The numerical values of the table refer to a focal length of the system of 
1000 mm. The first column lists parameter α, the second column the effective aperture 
ratio αsin3  in consideration of the smaller front mirror, the columns  y  and  y'  list 
the distances in mm off axis of the ray intersection points with the mirrors (these are 
the required mirror radii for the respective aperture ratio).  Under the  x  and x'  
column, the x-coordinates are not listed in the sense used up to now, but are instead  
the distances of the mirror points from the contact surfaces in the mirror vertex.  The 
same variables follow for the curvature of spheres and the contacting surfaces of 2nd 
order. Finally, the deviations of the surfaces from each other are formed, in which the 
unit of one thousandth of a millimetre is chosen. 

 
f=1000 mm 

small mirror (S) 
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Large mirror (S') 

 
We recognise that the mirror surfaces can practically be replaced by an ellipsoid 

or a hyperboloid up to an aperture ratio of  1/3.  Beyond that down to an aperture ratio 
of approximately 1/1.4  the deviation of surfaces of 2nd order remains limited to a few 
hundredths of a millimetre.  

 
In practice the derivation and use of surfaces of 2nd order is of particular importance 
because the shape of their meridian intersections can be controlled by bringing a light 
source (virtual for the hyperboloid) into the one focal point and by examining the 
light union in the other focal point according to Foucault’s knife-edge method.  
 
Up to an aperture ratio of 1:2.8 the departure of such surfaces from spherical is so 
small that the production of such surfaces by gradually regrinding the original 
spherical mirrors presents no more difficulty than manufacturing a paraboloid mirror 
of the same aperture ratio. 
 
As a last check-up for the usability of the mirror system, two marginal rays were 
traced trigonometrically through the system for an aperture ratio of 1/3.3 originating 
from an object point offset 1.5° from the axis. This resulted in a radial scatter of 18". 
The conclusions on the usable visual field which were made at the end of the previous 
paragraph and which only took into consideration the theory of 3rd order aberrations 
corresponds herewith to the results of a strict calculation for aperture ratios of such 
magnitude in sufficient sharpness. 
 


