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Lens Tolerancing goals

• Modeling the “as built” performance of a 
lens system

• We want to know the associated statistics
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Tolerancing I
• Since lenses can not be perfectly manufactured some 

tolerancing must be specified
• Errors are associated with: radius, figure, index, 

wedge, thickness, spacing, opto-mechanics, 
assembling, etc.

• These errors decrease the design merit function and 
affect image quality.

• Tolerancing is a science and an art.
• Test plate fit, index fit, thickness fit
• Compensators: image plane distance; line of sight, 

aberrations, other
• Tolerances and cost
• Shop tendencies and communication
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Tolerancing II

• Set criteria for lens performance such as 
merit function; assume small changes. 

• Distribution of errors.
• Sensitivity
• Inverse sensitivity
• Worst case
• Standard deviation
• Montecarlo simulation
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Some references

• Shannon’s Chapter 6 and his chapter in the OSA 
Handbook of optics

• Warren Smith, Modern Lens Design, chapter 23
• Warren Smith, Fundamentals of the optical 

tolerance budget. SPIE paper.
• Papers by ORA Synopsys personnel, John 

Rogers
• Julie Bentley at IOR
• Rob Bates, Proc. SPIE 7793
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From R. Shannon

Parameter Commercial Precision High 
precision

Thickness 0.1 mm 0.01 mm 0.001 mm
Radius 1% 0.1% 0.001%
Index 0.001 0.0001 0.00001
V-number 1% 0.1% 0.01%
Decenter 0.1 mm 0.01 mm 0.001 mm
Tilt 1 arc min 10 arc sec 1 arc sec
Irregularity 1 ring 0.25 ring <0.1 ring
Sphericity 2 rings 1 ring 0.25 rings
Wavefront
residual

0.25 wave 
rms

0.1 wave 
rms

<0.07 wave 
rms
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From Warren Smith

Surface 
quality

Diamete
r, mm

Thickne
ss, mm

Radius Irregula
rity

Linear 
dimensi
on, mm

Angular 
dimensi
ons

Low cost 120-80 +/- 0.2 0.5 Gage Gage 0.5 Degrees

Commercial 80-50 +/- 0.07 .25 10 Fr. 3 Fr. 0.25 15 arc-
min

Precision 60-40 +/- 0.02 0.1 5 Fr. 1 Fr. 0.1 5-10 
arc-sec

Extra-
precise

60-40 +/- 0.01 0.02 1 Fr. 1/5 Fr. 0.01 Seconds

Plastic 80-50 10 Fr. 5 Fr. 0.02
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ATTRIBUTE COMMERCIAL 
QUALITY

PRECISION 
QUALITY

“MAXIMUM”
QUALITY

DIAMETER (mm) +0.00/-0.10 +0.000/-0.05 +0.000/-0.025

CENTER THICKNESS (mm) 0.150 0.050 0.025

RADIUS (POWER) 0.2% (8 rings) 0.1% (4 rings)
0.05% (2 

rings)

IRREGULARITY 
(Waves@633nm) 1 0.25 0.1

WEDGE (mm) 0.05 0.005 .0025

DECENTER (arc min) 0.05 0.01 0.005

SCRATCH - DIG 80 - 50 60 - 40 20 -10

AR COATING (R avg) < 1.5% < 0.5% < 0.25%

From Special Optics
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Sensitivity

Surface Item Design value Specified 
tolerance

Merit function 
change

2 radius 50.3 5 rings 0.005

3 thickness 13 0.1 mm 0.001

4 radius 24.34 0.2 mm 0.007

Inverse Sensitivity

Surface Item Design value Specified 
tolerance

Merit function 
change

2 radius 50.3 2 rings 0.001

3 thickness 13 0.01 mm 0.001

4 radius 24.34 0.03 mm 0.001

Tolerancing Analysis
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Worst case

1) Absolute: This involves evaluating the system in every possible
situation and finding the worst case. 
This procedure is not practical due the large 
number of possibilities.

2) Statistical: Use a statistical worse case approach form 
sensitivity data by summing the absolute values of the
individual performance change for each constructional parameter.  
This approach is pessimistic.
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The statistical nature of tolerancing

• Cannot predict perfectly the final 
performance

• Must use common sense and statistics
• We are after the statistics
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Experience shows that there is a distribution 
in the performance of lens systems
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Performance distribution
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Statistical theory I

• Let So be the nominal system performance:
• So = S( r0, k0, f0, n0, t0, …)
• Si is the change in system performance when 

the i-th system parameter changes from x0 to xi. 
• The change in system performance is: Si = Si -

S0
• Consider small changes and assume system is 

linear so that:
• Si = i xi and therefore: S = Si = i xi .
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Statistical theory II
• Note that each system parameter has its own probability 

distribution function: Uniform, normal, end limited, 
Poisson, etc. Shops for example tend to have lens 
thickness over the positive side.

• How do we relate these individual probability density 
functions to the overall probability function for the figure 
of merit ?

• We make use of the central limit theorem: For a set of n 
independent, random variables, y1, y2, y3,…. yn,  the 
probability density function for: z =  yi approaches a 
Gaussian density function as i for just about any set 
of probability density functions associated with the {yi} 
that are encountered in practice.
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Statistical theory III

In our case:
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Where: S is the 
standard variation.

So <S>
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Statistical theory IV
• Now the mean <S> is given by (Frieden p81):

<S>  = So + <Si> 
• <Si> would be zero if the system would be linear
• After assuming statistical independence the variance 

is given by: 2= [i xi]2

• If we assume xi = xi , then we obtain the famous 
Root Sum Squares (RSS) rule:
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Statistical theory V

Note:
• For  iXi = 1 then worst case performance change is: i; 

compare with standard deviation which gives:
• “It is the big-ones-that-dominate-effect” Assume that 

there are ten tolerances effects of +/- 1 and one of +/-
10.  The RSS rule gives +/- 10.49 for all of them vs. +/-
10 for the big one.

• We have assumed some linearity and independence in 
the merit function and random variables.
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Statistical theory VI

• By integrating the 
probability density 
function we can 
compute the 
probability of success 
or estimate how many 
systems will meet a 
given performance.

Smaximum/S Probability of 
success

0.67 0.50

0.80 0.58

1.00 0.68

1.50 0.87

2.00 0.95

2.50 0.99
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Monte Carlo Simulation
• Trial       Criteria           Change
• 1    0.011641912   -0.000416137
• 2    0.011852301   -0.000205748
• 3    0.012500180    0.000442130
• 4    0.013553553    0.001495504
• 5    0.013302508    0.001244459
• 6    0.012657815    0.000599766
• 7    0.012147368    8.9319E-005
• 8    0.012476468    0.000418418
• 9    0.012603767    0.000545718
• 10    0.013268314    0.001210265
• 11    0.012484824    0.000426775
• 12    0.012649567    0.000591518
• 13    0.012606634    0.000548585
• 14    0.012213631    0.000155581
• 15    0.012496208    0.000438159
• 16    0.012499526    0.000441477
• 17    0.013030449    0.000972400
• 18    0.012641473    0.000583423
• 19    0.013554178    0.001496128
• 20    0.012582269    0.000524220

•Nominal    0.012058049
•Best       0.011641912       
•Worst      0.013554178
•Mean       0.012638147
•Std Dev    0.000490635

90% <=     0.013302508            
50% <=     0.012582269            
10% <=     0.011852301 
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Example I

• 10 micrometers in thickness
• 20 micrometers in radius
• 20 arc-seconds in surface tilt
• 0.0001 in index
• 0.1 in Abbe number

• 500 Monte Carlo runs, 
no compensators except for focus

• Nominal    0.000478525
• Best       0.000563064
• Worst      0.003506513    
• Mean       0.001304656
• Std Dev    0.000487365
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Error Tree

System

22.3 nm rms

Design

7.0 nm rms

Environment

5.8 nm rms

Fabrication
assembly

20.4 nm rms

Lens 
fabrication
18 nm rms

Optical 
Testing

5 nm rms

Symmetrical

1.8 nm rms

Temperature

5 nm rms

Pressure

3 nm rms

Non-symmetrical

6.4 nm rms

Assembly

8.2 nm rms
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Other approaches to tolerancing

•Efficient tolerancing requires insight into what is happening
•Treat system as plane symmetric
•Parameters that relate the axial symmetry: r, t, n
•Parameters that relate to plane symmetry: surface tilt
•Element decenter is treated as thickness change and surface tilt

Surface Tilt = ∆y/R

Thickness change = (∆y)2/(2R)=Tilt X ∆y/2∆y
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Plane symmetric system

How does it behave?
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Aberrations of a
Plane symmetric 
system
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Plane symmetric aberration 
coefficients
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Uniform and linear coma
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Astigmatism
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Distortion

Possible distortion under surface tilts
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Field sampling

• With surface tilts there is no axial 
symmetry and then one most sample the 
field at several positions all over the field 
of view.



Prof. Jose Sasian

Design and tolerance approaches

• Statistical theory
• Monte Carlo simulation
• Aberration theory

• Relaxing the lens (several approaches)
• Global search and then sorting
• Optimization accounting for tolerances
• Accounting for uniform coma and linear 

astigmatism or distortion
• Using a multi-configuration setting that includes 

perturbed systems
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Summary

• In tolerancing we are after the statistics
• Statistical approach
• Monte Carlo runs
• Aberration theory approach
• Other approaches
• Tolerance error tree and budget


