Diffractive Optical Elements

Lens Design OPTI 517
Diffractive Lenses

- What they are
- How they work
- Zone spacing and blaze profile roles
- First order properties
- Dispersion
- Two point construction model
- Phase model
- Sweatt model
- Efficiency
- Diffractive landscape lens
Terminology

- Diffractive optical element: generic term
- Fresnel lens: Scale of zones and lack of organized phasing
- Kinoform: Phased Fresnel lens. Phase modulation from surface relief
- Holographic optical element: Produced by interfering two or more beams
- Binary optics: Made by staircases that approximate the ideal surface relief
- Fresnel zone plate: A particular pattern that produces amplitude modulation.
- Hybrid lens: combined refractive and diffractive power
- Computer generated hologram: A hologram produced by calculations in a computer
The work of a diffractive optical element

Organized rearrangement of the wavefront
A Fresnel lens reduces the amount of bulk glass. Scale of zones is large and the wavefront segments are not rearranged to re-create a spherical wavefront. The ring-zone segments is not properly organized.
Two contexts for DOE: amplitude and phase

- Blaze determines amplitude of diffracted orders
- Geometry of zone boundary determines wavefront shape (phase)

- The wavefront deformation introduced by a DOE is equal to the wavefront deformation represented by the DOE when it is thought of as an interferogram

Prof. Jose Sasian
Example

- Straight fringes represent tilt and so the beam is deviated
Example

- Circular fringes represent defocus and so a DOE with these zone boundaries will introduce optical power.
- Depending on the spacing, spherical aberration can also be introduced.

Prof. Jose Sasian
An infrared DOE

From Michael Morris
A Fresnel lens cut-away
First-order properties

\[\sqrt{f^2 + r_n^2} = f + n\lambda \]
\[f^2 + r_n^2 = f^2 + 2nf\lambda + n^2\lambda^2 \]
\[r_n \approx \sqrt{2nf\lambda} \]

Given a focal length the zone boundaries are defined. The optical path difference between zones is one wavelength.
Paraxial diffractive lens definition

\[r_n = \sqrt{2nf\lambda} \]

Design of a wide field diffractive landscape lens

Dale A. Buralli and G. Michael Morris
Zone Spacing

\[r_n^2 \approx 2nf \lambda \]

\[r_n^2 - r_{n-1}^2 = (r_n + r_{n-1})(r_n - r_{n-1}) \approx 2r_n dr = 2f \lambda \]

Spacing = \(dr \approx \frac{f}{2r_n} 2\lambda \approx F / \# \text{micrometers} \)
Focal length for a given spacing

\[f = \frac{r_n \cdot dr}{\lambda_{\text{construction}}} \times \frac{\lambda_{\text{construction}}}{\lambda_{\text{reconstruction}}} = f_0 \times \frac{\lambda_{\text{construction}}}{\lambda_{\text{reconstruction}}} \]

Designed for \(\lambda_{\text{construction}} \)

Used at \(\lambda_{\text{reconstruction}} \)
Abbe’s number for a refractive lens

\[\phi_{\text{refractive}} = \frac{(n-1)}{R} \]

\[\frac{\partial \phi}{\partial \lambda} = \frac{1}{R} \frac{\partial n}{\partial \lambda} \]

\[\partial \phi = \frac{1}{R} \left(n_d - 1 \right) \frac{n_f - n_c}{n_d - 1} = \phi_d \frac{n_f - n_c}{n_d - 1} = \phi_d \frac{\phi}{\nu} \]

\[\nu_{\text{refractive}} = \frac{\phi}{\partial \phi} \]
Diffractive V-number

\[
\frac{\Delta \varphi}{\varphi} = \frac{r}{n_d - 1} \frac{n_f - n_c}{r} = \frac{n_f - n_c}{n_d - 1} = \frac{1}{\nu_{\text{refractive}}}
\]

\[
n' \sin(\theta') - n \sin(\theta) = \frac{m \lambda}{d}
\]

\[
f = \frac{1}{\varphi} \approx \frac{y}{\sin(\theta')} = \frac{y}{m \lambda / d}
\]

\[
\frac{\Delta \varphi}{\varphi} = \frac{y}{m \lambda_d / d} = \frac{m \left(\lambda_f - \lambda_c \right) / d}{y} = \frac{\lambda_f - \lambda_c}{\lambda_d} = \frac{1}{\nu_{\text{diffractive}}} \approx -3.5
\]
Diffractive focal length from grating perspective

\[f = \frac{1}{\varphi} \equiv \frac{y}{\sin(\theta')} = \frac{y}{m\lambda / d} \]

\[= \frac{y}{m\lambda_{\text{construction}} / d} \times \frac{\lambda_{\text{construction}}}{\lambda_{\text{reconstruction}}} \]

\[= f_0 \times \frac{\lambda_{\text{construction}}}{\lambda_{\text{reconstruction}}} \]
Modeling Diffractive Optics

• Two point construction model
• Phase function
• Sweatt model
Two point construction model

\[m, \lambda_{\text{construction}}, \lambda_{\text{reconstruction}} \]

\[B(X,Y,Z) \]

\[A(X,Y,Z) \]

Prof. Jose Sasian
Phase model

\[\phi(\rho) = 2\pi \cdot \left(a\rho^2 + b\rho^4 + c\rho^6 + d\rho^8 + \ldots \right) \]

\[\rho = \sqrt{x^2 + y^2} \]
Phase model

\[n' \sin(I') \cdot \Delta y = n \sin(I) \cdot \Delta y \]

\[n' \sin(I') \cdot \Delta y - n \sin(I) \cdot \Delta y = \Delta \varphi(y) \]

\[n' \sin(I') - n \sin(I) = \frac{\Delta \varphi(y)}{\Delta y} \rightarrow \frac{\partial \varphi(y)}{\partial y} \]

\[\frac{\partial \varphi(y)}{\partial y} = n' \sin(I') - n \sin(I) \]
Sweatt’s model

\[\delta = -\alpha (n - 1) \]

For \(n \approx 10,000 \) alpha must be very small to maintain the same deviation.

\[\varphi = \frac{n - 1}{r} \]

For a plano convex lens with \(n \approx 10,000 \) the radius must be very long to maintain the same optical power.
Sweatt Model justification

Start with the diffraction grating equation

\[
n'\sin(I') - n\sin(I) = \left[n'\cos(I') - n\cos(I)\right] \cdot \frac{m\lambda}{n'\cos(I') - n\cos(I)}^{(1/d)}
\]

\[
n'\sin(I') - n\sin(I) = \left[n'\cos(I') - n\cos(I)\right] \cdot \tan(\alpha)
\]

\[
n'\{\sin(I') - \cos(I')\tan(\alpha)\} = n\{\sin(I) - \cos(I)\tan(\alpha)\}
\]

\[
n'\{\cos(\alpha)\sin(I') - \cos(I')\sin(\alpha)\} = n\{\cos(\alpha)\sin(I) - \cos(I)\sin(\alpha)\}
\]

\[
n'\{\sin(I'-\alpha)\} = n\{\sin(I - \alpha)\}
\]
Sweatt’s Model

\[n'\{\sin(I'-\alpha)\} = n\{\sin(I-\alpha)\} \]

\[
\tan(\alpha) = \frac{m\lambda}{n'\cos(I') - n \cos(I)} \quad (1/d)
\]

For large \(n \)'s then \(\alpha \) is negligible and we have:

\[n'\sin(I) = n \sin(I) \]

Thus for high index diffraction becomes like refraction!
Dispersion in Sweatt’s model

\[\delta = -\alpha (n - 1) \]
\[\sin (I') \approx \sin (I) + (n_d - 1) \alpha \]
\[\Delta \approx \sin (I_F') - \sin (I_C') \approx (n_F - n_C) \alpha \]
\[
\frac{\delta}{\Delta} = v_{\text{refractive}} = \frac{(n_d - 1) \alpha}{(n_F - n_C) \alpha} = \frac{\lambda_d (10,000)}{\lambda_F (10,000) - \lambda_C (10,000)} = \frac{\lambda_d}{\lambda_F - \lambda_C} \approx -3.5
\]
Dispersion in Sweatt’s model

Consistent with diffraction case

\[
\sin(I'_d) - \sin(I_d) = \frac{m \lambda_d}{d} \approx \delta
\]

\[
\Delta \approx \sin(I'_F) - \sin(I'_C) = m \frac{\lambda_F - \lambda_C}{d}
\]

\[
\frac{\delta}{\Delta} = \nu_{\text{refractive}} \approx \frac{m \frac{\lambda_d}{d}}{m \frac{\lambda_F - \lambda_C}{d}} = \frac{\lambda_d}{\lambda_F - \lambda_C}
\]

In conclusion:
To include dispersion in the Sweatt model make the index of refraction equal to the wavelength times 10,000

Prof. Jose Sasian

Schott: \[n(\lambda)^2 = A + B\lambda^2 + \ldots \]
Structural coefficients: Thin lens (stop at lens)

\[S_I = \frac{1}{4} y^4 \phi^3 [AX^2 - BXY + CY^2 + D] \]

\[S_{II} = \frac{1}{2} \mathcal{K} y^2 \phi^2 [EX - FY] \]

\[S_{III} = \mathcal{K}^2 \phi \]

\[S_{IV} = \mathcal{K}^2 \phi \frac{1}{n} \]

\[S_V = 0 \]

\[C_L = y^2 \phi \frac{1}{\nu} \]

\[C_T = 0 \]

\[A = \frac{n + 2}{n(n-1)^2} \]

\[B = \frac{4(n+1)}{n(n-1)} \]

\[C = \frac{3n+2}{n} \]

\[D = \frac{n^2}{(n-1)^2} \]

\[E = \frac{n+1}{n(n-1)} \]

\[F = \frac{2n+1}{n} \]
Diffractive lens
(n very large @ X=0)

\[
\begin{align*}
\sigma_I &= 3Y^2 + 1 \\
\sigma_{II} &= -2Y \\
\sigma_{III} &= 1 \\
\sigma_{IV} &= 0 \\
\sigma_V &= 0 \\
\sigma_L &= \frac{1}{\nu_{\text{diffractive}}} \\
\sigma_T &= 0
\end{align*}
\]

C = 3; D = 1; F = 2
Aberration coefficients for Y=1; X=0

\[S_I = \frac{y^4}{f^3} \left(\frac{\lambda}{\lambda_0} \right)^3 \]

\[S_{III} = \frac{\gamma K^2}{f} \left(\frac{\lambda}{\lambda_0} \right) \]

\[S_{II} = \frac{-y^2}{f^2} \gamma K \left(\frac{\lambda}{\lambda_0} \right)^2 \]

\[S_{IV} = 0 \]

\[S_V = 0 \]

For general case one needs to be careful as the shape depends on the index for a given power.
Structural coefficients for diffractive lens

Structural aberration coefficients of a thin lens (Stop at lens)

<table>
<thead>
<tr>
<th>Paraxial identities</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi = (n'-n) \cdot (c_1 - c_2) = \frac{1}{R_1} - \frac{1}{R_2})</td>
</tr>
<tr>
<td>(X = \frac{c_1 + c_2}{c_1 - c_2} = \frac{R_1 + R_2}{R_1 - R_2})</td>
</tr>
<tr>
<td>(Y = \frac{w' + w}{w'' + w} = \frac{1 + m}{1 - m})</td>
</tr>
<tr>
<td>(c_1 = \frac{1}{2} \frac{\phi}{n - 1} (X + 1))</td>
</tr>
<tr>
<td>(c_2 = \frac{1}{2} \frac{\phi}{n - 1} (X - 1))</td>
</tr>
<tr>
<td>(w = u = -\frac{1}{2} (Y - 1) (\phi \cdot y))</td>
</tr>
<tr>
<td>(w' = u' = -\frac{1}{2} (Y + 1) (\phi \cdot y))</td>
</tr>
</tbody>
</table>

Structural aberration coefficients

\[\sigma_I = AX^2 - BXY + CY^2 + D \]

\[A = -\frac{n + 2}{n(n - 1)^2} \]

\[B = \frac{4(n + 1)}{n(n - 1)} \]

\[C = \frac{3n + 2}{n} \]

\[D = \frac{n^2}{(n - 1)^2} \]

\[E = \frac{n + 1}{n(n - 1)} \]

\[F = \frac{2n + 1}{n} \]

\[\sigma_I = \frac{4}{(\phi R_2)^2} - \frac{8Y}{\phi R_2} + 3Y^2 + 1 \]

\[\sigma_{II} = \frac{2}{\phi R_2} - 2Y \]

\[\sigma_{IV} = 0 \]

\[\sigma_{V} = 0 \]

\[\sigma_T = 0 \]

\[\sigma_{\text{III}} = 1 \]

Prof. Jose Sasian

diffractive

College of Optical Sciences
THE UNIVERSITY OF ARIZONA
Field curvature correction hybrid lens
Verification

Prof. Jose Sasian
OPD Alternate view

- OPD has two parts. One is due to material dispersion, the other to due to diffraction

\[
\begin{align*}
\text{OPD}_F &= \frac{y^2}{2R} \left((n_F - 1) + (n_d - 1) \frac{\lambda_F}{\lambda_d} \right) \\
\text{OPD}_F - \text{OPD}_C &= \frac{y^2}{2R} \left((n_F - 1) + (n_d - 1) \frac{\lambda_F}{\lambda_d} \right) \\
&\quad - \frac{y^2}{2R} \left((n_C - 1) + (n_d - 1) \frac{\lambda_C}{\lambda_d} \right) \\
&= \frac{y^2}{2R} \left((n_F - n_C) + (n_d - 1) \frac{\lambda_F - \lambda_C}{\lambda_d} \right) \\
&= \frac{y^2}{2} \phi \left(\frac{1}{\nu_{\text{ref}}} + \frac{1}{\nu_{\text{diff}}} \right)
\end{align*}
\]

\[\text{OPD} = n \times t + N \times \lambda\]
Spherical aberration

• Depending on the zone boundary distribution, DOE axially symmetric DOE can introduce different orders of spherical aberration

\[\phi(\rho) = 2\pi \cdot \left(a\rho^2 + b\rho^4 + c\rho^6 + d\rho^8 + \ldots \right) \]
Calculating order efficiency

• Simple case of an amplitude device with a square wave profile
• Duty cycle

\[\psi(x, y) = A_p \text{Comb}(x - nx_0)^{**\text{rect}} \left(\frac{x}{d} \right) \]
Square wave

\[F(\nu) \approx \frac{A}{2} \text{SINC} \left(\frac{\nu}{2\nu_0} \right) \sum_{-\infty}^{\infty} \partial (\nu - n\nu_0) = \frac{A}{2} \sum_{-\infty}^{\infty} \text{SINC} \left(\frac{n}{2} \right) \partial (\nu - n\nu_0) \]

\[f(t) = \text{square wave} = \frac{A}{2} \sum_{-\infty}^{\infty} \text{SINC} \left(\frac{n}{2} \right) e^{i2\pi n\nu_0 t} \]

\[= \frac{A}{2} + \frac{A}{\pi} \left[e^{i2\pi n\nu_0 t} + e^{-i2\pi n\nu_0 t} \right] + \frac{A}{3\pi} \left[e^{i2\pi n3\nu_0 t} + e^{-i2\pi n3\nu_0 t} \right] \]

\[+ \frac{A}{5\pi} \left[e^{i2\pi n5\nu_0 t} + e^{-i2\pi n5\nu_0 t} \right] + \frac{A}{7\pi} \left[e^{i2\pi n7\nu_0 t} + e^{-i2\pi n7\nu_0 t} \right] + \ldots \]

\[\nu_0 = T^{-1} \]

50% duty cycle \[\left(\frac{1}{\pi} \right)^2 \approx 0.1 \]

Prof. Jose Sasian
Binary optics technology

2 PHASE LEVELS

4 PHASE LEVELS

8 PHASE LEVELS

U.V. LIGHT

COMPUTER GENERATED AMPLITUDE

PHOTORESIST

SUBSTRATE (INDEX = n)

PHOTORESIST DEVELOPMENT

REACTIVE ION ETCH TO A DEPTH d = \frac{1}{2(n-1)}

REMOVE RESIDUAL PHOTORESIST

2 LEVEL ELEMENT
Efficiency for binary optics

\[\eta_1^N = \left(\frac{\sin(\pi/N)}{\pi/N} \right)^2 \]

<table>
<thead>
<tr>
<th>Number of Levels (N)</th>
<th>First-Order Efficiency (\eta_1^N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.41</td>
</tr>
<tr>
<td>3</td>
<td>0.68</td>
</tr>
<tr>
<td>4</td>
<td>0.81</td>
</tr>
<tr>
<td>5</td>
<td>0.87</td>
</tr>
<tr>
<td>6</td>
<td>0.91</td>
</tr>
<tr>
<td>8</td>
<td>0.95</td>
</tr>
<tr>
<td>12</td>
<td>0.98</td>
</tr>
<tr>
<td>16</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Prof. Jose Sasian
Efficiency

\[\sigma^2 = (n-1)^2 \frac{1}{2} \int_{-1}^{1} \left(\frac{hx}{N} \right)^2 dx = (n-1)^2 \left(\frac{h}{N} \right)^2 \frac{1}{2} x^3 \mid_{-1}^{1} = \frac{1}{3} (n-1)^2 \left(\frac{h}{N} \right)^2 \]

\[h = 1 \]
\[(n-1)2h = \lambda \]
\[\sigma^2 = \frac{1}{3} \frac{4}{4} (n-1)^2 \left(\frac{h}{N} \right)^2 = \frac{1}{12} \lambda^2 \left(\frac{1}{N} \right)^2 \]

\[S \approx 1 - \frac{\pi^2}{3} \left(\frac{1}{N} \right)^2 \]

\[N = 2 \ ; S = 0.17 \]
\[N = 4 \ ; S = 0.794 \]
\[N = 8 \ ; S = 0.948 \]
\[N = 16 \ ; S = 0.987 \]
\(\varepsilon = \sin c^2 \left(\pi \left[\frac{\lambda_{\text{construction}}}{\lambda_{\text{reconstruction}}} \frac{n(\lambda_{\text{reconstruction}}) - 1}{n(\lambda_{\text{construction}}) - 1} - m \right] \right) \)
Efficiency

\[\varepsilon \approx 1 - \left(\frac{2\pi}{\lambda \sigma} \right)^2 \approx 1 - \left(\frac{2\pi}{\lambda_{\text{reconstruction}}} \frac{\lambda_{\text{reconstruction}} - \lambda_{\text{construction}}}{3} \right)^2 \]

\[\Delta \approx \lambda_{\text{reconstruction}} - \lambda_{\text{construction}} \]
Comparison
Standard lens, Fresnel lens and DOE lens

Refracting lens
Fresnel lens
DOE lens

Prof. Jose Sasian
Images of extended objects

Acrylic powerless lens

Other orders produce images at different magnifications
Like ghost images

Prof. Jose Sasian
Canon’s multilayer DOE’s

Prof. Jose Sasian
How does it work?

Prof. Jose Sasian
How does it work?

$$\varepsilon(\lambda) = \sin^2 c^2 \left(\pi \left[\frac{\lambda_{\text{construction}}}{\lambda_{\text{reconstruction}}} \frac{n(\lambda_{\text{reconstruction}})^{-1}}{n(\lambda_{\text{construction}})^{-1}} - m \right] \right)$$

$$\varepsilon(\lambda) = \sin^2 c^2 \left(\pi \left[d \frac{n(\lambda_{\text{reconstruction}})^{-1}}{\lambda_{\text{reconstruction}}} - m \right] \right) = \sin^2 c^2 \left(\pi \left[d_{\text{construction}} \frac{d}{d_{\text{reconstruction}}} - m \right] \right)$$

$$\varepsilon(\lambda) = \sin^2 c^2 \left(\pi \left[d_2 \frac{n_2(\lambda_{\text{reconstruction}})^{-1}}{\lambda_{\text{reconstruction}}} \pm d_1 \frac{n_1(\lambda_{\text{reconstruction}})^{-1}}{\lambda_{\text{reconstruction}}} - m \right] \right)$$

or $$d_2 \left(n_2(\lambda_{\text{reconstruction}})^{-1} \right) \pm d_1 \left(n_1(\lambda_{\text{reconstruction}})^{-1} \right) = \lambda_{\text{reconstruction}}$$
100% at two wavelengths
Alternate view
100% efficiency at 2λ (no ripple)

$$\lambda_2 = 2\lambda_1 = 2(450nm)$$
An actual lens application for controlling chromatic change of magnification

Note lack of lens symmetry about the stop

Prof. Jose Sasian
Some Fresnel lens and DOE photographs

Plastic Fresnel lens; Diamond turned and replicated

Gray scale; note binary edge

Binary 8 levels

Binary 16 levels
Measurement of a DOE

3-Dimensional Interactive Display

Surface Stats:
Ra: 75.60 nm
Rq: 78.15 nm
Rt: 334.53 nm

Measurement Info:
Magnification: 10.24
Measurement Mode: PSI
Sampling: 820.31 nm
Array Size: 736 X 480

Prof. Jose Sasian
Beware

- Modeling assumes DOEs having no physical structure
- Real modeling faces sampling issues
- Scalar treatment
- Zones are about ~7\(\lambda\) or more
- Light scattered at boundaries and zone shadowing effects
- Fabrication: Diamond turning, microlithography printing techniques, Grey scale techniques.
Examples

- Diffractive landscape lens
- Correction of chromatic change in the landscape lens, eyepieces, fish-eye lenses, unsymmetrical lenses
- Null-corrector Certifier
- Modeling a few zones