Astigmatism Field Curvature Distortion

Lens Design OPTI 517

Earliest through focus images

T. Young, "On the mechanism of the eye," *Phil Trans Royal Soc Lond* 1801; 91: 23–88 and plates.

Astigmatism through focus

Astigmatism

 $W(H,\rho) = W_{111}H\rho\cos(\theta) + W_{020}\rho^{2} + W_{200}H^{2} + W_{040}\rho^{4} + W_{131}H\rho^{3}\cos(\theta) + W_{222}H^{2}\rho^{2}\cos^{2}(\theta) + W_{220}H^{2}\rho^{2} + W_{311}H^{3}\rho\cos(\theta) + W_{400}H^{4}$

Anastigmatic

- Aplanatic: free from spherical aberration and coma.
- Stigmatic ~ pointy
- Astigmatism: No pointy
- Anastigmatic: No-No pointy = pointy
- Anastigmatic: free from spherical aberration, coma, and astigmatism
- Aplanatic: coined by John Herschel
- Astigmatism: coined by George Airy

Cases of zero astigmatism

 $W_{222} = -\frac{1}{2}\overline{A}^2 \Delta \left\{\frac{u}{n}\right\} y$

Field behavior $W(H,\rho) = W_{222}H^2\rho^2\cos^2(\theta) + W_{220}H^2\rho^2$

Review of aberrations coefficients

 $W_{040} = \frac{1}{8}S_I$ $W_{131} = \frac{1}{2} S_{II}$ $W_{222} = \frac{1}{2} S_{III}$ $W_{220P} = \frac{1}{\Delta} S_{IV}$ $W_{311} = \frac{1}{2}S_V$ $\partial_{\lambda} W_{020} = \frac{1}{2} C_L$ $\partial_{\lambda} W_{111} = C_T$

Structural coefficients

Stop-shift from principal planes					
$\sigma_I^* = \sigma_I$					
$\sigma_{II}^* = \sigma_{II} + \overline{S}_{\sigma} \sigma_{I}$					
$\sigma_{III}^* = \sigma_{III} + 2\overline{S}_{\sigma}\sigma_{II} + \overline{S}_{\sigma}^2\sigma_{I}$					
$\sigma_{IV}^* = \sigma_{IV}$					
$\sigma_{V}^{*} = \sigma_{V} + \overline{S}_{\sigma} \left(\sigma_{IV} + 3\sigma_{III} \right) + 3\overline{S}_{\sigma}^{2} \sigma_{II} + \overline{S}_{\sigma}^{3} \sigma_{I}$					
$\sigma_L^* = \sigma_L$					
$\sigma_T^* = \sigma_T + \overline{S}_{\sigma} \sigma_L$					
$\overline{S}_{\sigma} = \frac{y_{p}\overline{y}_{p}\Phi}{2\mathcal{K}}$					
$\Delta \overline{S}_{\sigma} = \frac{y_{P} \Delta \overline{y}_{P} \Phi}{2\mathcal{K}} = \frac{y_{P}^{2} \Phi}{2\mathcal{K}} \overline{S}$					

Prof. Jos

Seidel sum for thin lens (stop at lens) $A = \frac{n+2}{n(n-1)^2}$ $S_{I} = \frac{1}{A} y^{4} \phi^{3} \Big[A X^{2} - B X Y + C Y^{2} + D \Big]$ $S_{II} = \frac{1}{2} \mathcal{K} y^2 \phi^2 \left[EX - FY \right]$ $B = \frac{4(n+1)}{n(n-1)}$ $S_{\mu\nu} = \mathcal{K}^2 \phi$ $C = \frac{3n+2}{n}$ $S_{IV} = \mathcal{K}^2 \phi \frac{1}{n}$ $X = \frac{c_1 + c_2}{1 - c_2} = \frac{r_2 + r_1}{1 - c_2}$ $c_1 - c_2 = r_2 - r_1$ $D = \frac{n^2}{(n-1)^2}$ $S_{V} = 0$ $Y = \frac{1+m}{1-m} = \frac{u'+u}{u'-u}$ $C_L = y^2 \phi \frac{1}{v}$ $E = \frac{n+1}{n(n-1)}$ $\phi = \Delta n \Delta c = (n-1)(c_1 - c_r)$ $C_{\tau} = 0$ $F = \frac{2n+1}{n}$

Thin lens astigmatism

 $S_{III} = \mathcal{K}^2 \phi$

When the stop is a the thin lens astigmatism is fixed.

Shifting the stop in the presence of spherical aberration or coma Allows changing astigmatism

$$\sigma_{III}^* = \sigma_{III} + 2\overline{S}_{\sigma}\sigma_{II} + \overline{S}_{\sigma}^2\sigma_{II}$$

Controlling astigmatism

1) Stop position: singlet lens

2) Canceling/balancing negative and positive astigmatism

Wave aberration coefficients of Cooke triplet									
Surface	$W_{_{000}}$	W 134	W 222	W 230	W 391	W.,	$\partial_A W_{000}$	$\delta_s W_{\rm m}$	
1	6.77	16.16	9.64	39.24	52.59	4.83	-10.83	-12.93	
2	3.78	-44.19	129.24	-2.33	-364.36	47.54	-5.91	34.58	
3	-16.16	96.72	-144.77	-28.29	301.39	-0.57	15.92	-47.64	
4	-8.01	-56.45	-99.48	-42.55	-325.33	-4.7	13.9	48.99	
5	1.34	20.24	76.6	13.42	391.53	57.08	-4.39	-33.26	
6	14.94	-32.46	17.64	36.86	-49.63	5.32	-10.24	11.13	
Image	2.66	0.02	-11.13	16.35	6.19	89.21	-1.57	0.87	

Prof. Jose Sasian

College of Optical Sciences

3-a) Adding a degree of freedom

- In this case one adds a lens which contributes the opposite amount of astigmatism.
- The spherical aberration and coma of the new lens are corrected by the system that has the degrees of freedom for such.
- New lens hopefully contributes little coma and spherical aberration.

3-b) Adding a degree of freedom Ritchey-Chretien I

1.7 waves of astigmatism @ f.3.3

At best surface (Sagittal field surface)

3-c) Adding a degree of freedom Ritchey-Chretien II

0.0 waves of astigmatism @ f/1.9 after conic tweak

4) Shells near the image plane (or aspheric plate)

Offner unit magnification relay

- •Offner relay system:
- •Three spherical mirrors
- •Negative unit magnification
- •No primary aberrations
- •Ring field concept
- •Improvement of field with shell

However; beware of ghosts

Field curvature

$$W_{220} = -\frac{1}{4} \sum \left(\mathcal{K}^2 P - \overline{A}^2 \Delta \left\{ \frac{u}{n} \right\} y \right) \qquad P = C \cdot \Delta \left(\frac{1}{n} \right)$$

al sum:
$$\frac{1}{n'_{k} \rho'_{k}} - \frac{1}{n_{1} \rho_{1}} = \sum \frac{n' - n}{n' n r}$$

Petzva

For a system of thin lenses:

$$\frac{1}{\rho'_k} = \sum \frac{\phi}{n}$$

Field curvature interpretation

- Assume same glass and consider sag of Petzval surface at a height y:
- If the Petzval sum is zero then the lens has constant thickness across the aperture or across the field.
- Compare with the image displacement S caused by a plano parallel plate:
- The conclusion is that Petzval field curvature arises because the overall lens thickness variation across the aperture (in the general case the index of refraction enters as a weight).

$$\frac{y^2}{2\rho'_k} = \sum \frac{n'-n}{n} \frac{y^2}{2r}$$

$$S = \frac{n-1}{n}t$$

Thickness variation in a telecentric lens

Four classical ways

- 1) A thick meniscus lens can contribute optical power but no field curvature if both surfaces have the same radius. Consider double Gasuss lens. Note the correction for color.
- 2) Separated thin lenses: Bulges and constrictions Consider the Cooke triplet and lenses for microlithography.
- 3) A field flattener: Fully contributes to Petzval but not to spherical, coma, or astigmatism. Also there is little contribution to optical power.

Consider Petzval lens with a field flattener.

• 4) New achromat: use to advantage new glass types.

Four classical ways

Use of a thick meniscus lens

Use of a field flattener lens

Four classical ways

Creating beam bulges and constrictions

Four classical ways: Use of glass

V-number for flint increases V-number for crown decreases

N for crown increases N for flint decreases

$$f_a \cdot v_a = f_b \cdot v_b = F \cdot (v_a - v_b)$$

F=100 mm

Distortion

 $W(H,\rho) = W_{111}H\rho\cos(\theta) + W_{020}\rho^2 + W_{200}H^2 +$ $+W_{040}\rho^{4} + W_{131}H\rho^{3}\cos(\theta) + W_{222}H^{2}\rho^{2}\cos^{2}(\theta) + W_{220}H^{2}\rho^{2} + W_{311}H^{3}\rho\cos(\theta) + W_{400}H^{4}$

With respect to chief ray, geometrical or physical centroid

Distortion

Top row, (barrel) distortion:0%, 2.5%, 5% and 10%. Bottom row, (pincushion) distortion 0%, 2.5%, 5% and 10%.

1) By Symmetry about the stop or phantom stop

Distortion is an odd aberration: It can be cancelled by symmetry About the stop

2) Aspheric plate or bending a field flattener

Exercise: Galilean telescope

A plano-convex lens objective with a focal length of about 750-1000 mm. A plano-concave lens for the eyepiece (ocular) with a focal length of about 50 mm. The objective lens was stopped down to an aperture of 12.5 to 25 mm. The field of view is about 15 arc-minutes. The instrument's magnifying power is 15-20.

