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Aberration
From the Latin, aberrare, to wander from; Latin, ab, away, errare, to wander.

Symmetry properties
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Overview of Aberrations
(Departures from ideal behavior)

• Basic reasoning
• Wave aberration function
• Aberration coefficients
• Aspheric contributions
• Stop shifting
• Structural aberration coefficients
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Wavefront
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Basic reasoning 

• Ideally wavefronts and rays converge to 
Gaussian image points. This implies that 
ideally wavefronts must be spherical and 
rays must be homocentric.
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Basic reasoning
• Actual image degradation by an optical system implies that the 

collinear transformation can not model accurately imaging. In the 
wave picture for light propagation we notice that wavefronts must be 
deformed from the ideal spherical shape.

• Wavefront deformation is determined by the use of a reference 
sphere with center at the Gaussian image point and passing by the 
exit pupil on-axis point.

Exit pupil

Image plane

Reference sphere
is centered at 
ideal image 
point

Reference
sphere

Deformed wavefront
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Basic reasoning
• An axially symmetric system can only have an axially symmetric 

wavefront deformation for an object point on-axis. In its simplest 
form this deformation can be quadratic or quartic with respect to the 
aperture. If the reference sphere is centered in the Gaussian image 
point then the quadratic deformation can not be present for the 
design wavelength.
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Basic reasoning
• For an object point that is off-axis the axial symmetry of the beam is 

lost and is reduced to plane symmetry. Therefore for that off-axis 
beam the wavefront deformation can have axial, plane, or double 
plane symmetry.
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Basic reasoning
• The simplest plane symmetric wavefront deformation shapes 

represent the primary aberrations. These are:

• Spherical aberration Axially symmetric
• Coma Plane symmetric
• Astigmatism Double plane symmetric
• Field curvature Axially symmetric
• Distortion Plane symmetric
• Longitudinal Axially symmetric

chromatic
• Lateral Plane symmetric

chromatic
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Aberration forms:
symmetry considerations

Focus

Spherical 
aberration

Distortion

Field curvature
Focus
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Spherical
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Wave aberration function 

• The wave aberration function is a function of  the field H and 
aperture ρ vectors.  Because this function represents a scalar, which 
is the wavefront deformation at the exit pupil, it depends on the dot 
product of the field and aperture vectors. The assumed axial 
symmetry leads to a select set of terms.
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Wave aberration function

• The field vector has its foot at the center of the object plane and the 
aperture vector has its foot at the center of the exit pupil plane. Both 
are normalized and so their maximum magnitude is unity. For 
convenience we draw the first order image of the field vector.

Aperture and field vectors

Exit pupil

Aperture vector Field vector

Image plane

Optical axis

H

ρ



Prof. Jose Sasian

Wave aberration function

• Note that defocus W020 and the change of scale W111 
terms are not needed because Gaussian optics 
accurately predict the location and size of the image. 
The piston terms W000, W200 and W400  represent a 
constant phase change that does not degrade the 
image. These piston terms do not depend on the 
aperture vector and so they do not produce transverse 
ray errors.

• Piston terms represent and advance or delay on the 
propagation of a wavefront.
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Summary of primary aberrations
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Aberration coefficients for a system of q 
surfaces 
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Aberration coefficients for chromatic 
aberrations
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Aberration coefficient parameters
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Aberration coefficients

• c is the surface curvature, ν is the ν number or 
reciprocal dispersive power.

• All with the marginal and chief ray first-order 
ray traces !!!

• Lens optimization started!!!

is the Lagrange invariant.Ж
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Comments on aberrations
• Third-order or fourth-order ?
• A well corrected system has its third-order aberrations 

almost zero
• Aberration cancellation is the main mechanism for 

image correction
• Presenting to the optimization routine a system with its 

third-order aberrations corrected is a good starting 
point

• Some simple systems are designed by formulas that 
relate third-order aberrations

• Note symmetry in third-order aberration coefficients
• Wave aberrations seem to be simpler to understand 

than transverse ray aberrations
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Example
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Example
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Summary of aberrations



Aspheric surfaces
(non-spherical) 

• Conic (or conicoids)
• Cartesian ovals
• Polynomials on x/y, r-theta, Zernikes
• Bernstein polynomials, Bezier curves
• Splines
• NURBS
• Freeform surfaces
• User defined
Prof. Jose Sasian
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Conic plus polynomial
(much used in lens design)
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Aspheric contribution can be thought 
of as a cap to the spherical part

Sag= sphere + aspheric cap
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Aspheric contributions to the 
Seidel sums
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Aspheric contributions explanation
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Aspheric contributions depend on chief ray 
height at the surface

•When the stop is at the aspheric surface only spherical aberration is contributed 
given that all the beams see the same portion of the surface 
.
•When the stop is away from the surface, different field beams pass through 
different parts of the aspheric surface and other aberrations are contributed
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Stop Shifting

Exit pupil Image plane

Optical axis

•Stop shifting is a change in the location of the aperture stop along the optical axis
•Stop shifting does not change  the f/#
•Stop shifting does not change the optical throughput
•Stop shifting selects a different portion of the wavefront for off-axis beams
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Stop shifting may produce light vignetting
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Stop shifting
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Change of Seidel sums with stop 
shifting
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Wave coefficients in terms of Seidel 
sums
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The ratio  y
yδ

Can be calculated at any plane in the optical system
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Structural coefficients σ
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Structural coefficients:
Thin lens (stop at lens)
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Bending of a lens
• Maintains the 

optical power
• Changes the 

optical shape
• Meniscus, plano-

convex, double-
convex, etc.

• Shape factor 
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Using a lens design program
• Must be able to interpret correctly the information 

displayed by the program
• In some instances the program is right but we think it is 

wrong. So we must carefully review our assumptions
• When there is disagreement between you an the 

program, there is an opportunity to learn
• Verify that  the program is modeling what you want
• Check and double check
• You must feel comfortable when using a program. 
• Read the manual
• Play with the program to verify that it does what you 

think it does
• Must reach the point when it is actually fun to use the 

program
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Summary

• Review of aberrations
• Aspheric surfaces
• Stop shifting
• Aberration coefficients
• Structural aberration coefficients

• Next class derivation of coefficients
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Mode matching concept

• Same mode diameter
• Same amplitude distribution
• Same phase distribution
• Same polarization
• Same x,y,z position
• Same angular position
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Fiber coupling efficiency
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