
Étendue 
This article is taken from parts of Chapter 2 of Illumination Engineering: Design with 
Nonimaging Optics.1  To learn more about étendue, please see this book, especially the 
electronic version that you can get from the UA Library.  Additionally, it is a focus of discussion 
in OPTI 306 and OPTI 485/585. 
 
Étendue is one of the most basic yet important concepts in the design of nonimaging and 
illumination optics.  First, it explains the flux transfer characteristics of the optical system, and, 
second, it plays an integral role in the ability to shape the distribution of radiation at the target.  
Interestingly, the concept of étendue was only formally accepted in the 1970s through a series 
of letters to a journal.2,3 ,4 ,5 Ref. 2 asked for input to a proposal to be submitted to the 
Nomenclature Sub-Committee of the International Commission for Optics in order to 
standardize the name for what ultimately became étendue.6 Initially the author of this journal 
letter favored the term “optical extent,” with the term étendue not likely due to “the typing 
disadvantage of é, (and) the pronunciation difficulty of the French u.”6 Through the series of 
replies, both in the journal and by private communications, the term étendue gained favor 
“since the accent will be dropped anyway.”5  The dropping of the accent is not applicable today 
since modern computer technology makes it simple to include.  This recent history of varied 
opinions and potential confusion illustrates the complexity inherent in the term étendue, 
indicating that it has the potential to be interpreted in many ways 
 
Étendue is a French word that means, as a verb, extended, and, as a noun, reach.2  In the field 
of optics étendue is a quantity arising out of the geometrical characteristics of flux propagation 
in an optical system.  As will be seen the use of étendue in the field of optics is in good 
agreement with the French root.  It describes both the angular and spatial propagation of flux 
through the system, so it obviously relates to the radiance propagation characteristics of a 
system.  In a lossless system, which is one without absorption, scatter, gain, or Fresnel 
reflection losses, all flux that is transmitted by the entrance pupil of the system is emitted from 
the exit pupil.  The étendue of a system is defined as2,3 
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where n is the index of refraction in source space and the integrals are performed over the 
entrance pupil.  The total flux that propagates through this system is found from L(r, â), which is 
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the source radiance at the point r in the direction of the unit vector â.  By integrating we obtain 
the flux, 
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where the spatial integral is over the source area which is in view of the entrance pupil and the 
angular integral is over the source emission that is within the field of view of the pupil, i.e., that 
subtended by the pupil from the source point r.  If a spatially uniform, Lambertian source is 
assumed, then the source radiance function is given by Ls, which upon substitution in Eq. (1.2) 
gives 
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So, the total flux that is transmitted by an optical system with a spatially uniform, Lambertian 
emitter in terms of the étendue is given by 
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Note that the étendue is a geometric quantity that describes the flux propagation 
characteristics for a lossless system.  The term lossless puts constraints on the interpretation of 
a system étendue.  The term implies that absorption, scatter, and reflection losses are not 
considered, but, more importantly, it restricts the integration of Eqs. (1.1) to (1.3) to that of the 
entrance pupil criterion.  In realistic systems there are not only absorption, aberration, 
diffraction, and reflection losses, but also losses associated to manufacturing tolerances and 
lack of capture of source flux by the entrance pupil.  Therefore, the geometric étendue provides 
a theoretical limit to flux transfer capability of a real-world optical system. 
 
Reference 1 then goes into detail about the conservation of étendue – which means the 
integral product of the projected area and the solid angle is maintained in a lossless optical 
system.  This says that the étendue in Eq. (1.4) is constant in this lossless optical system.  

Additionally, it can be seen that the term L/n2 is also conserved, such that the power, , is 
constant in a lossless optical system (i.e., conservation of energy).  Figure 1 depicts how one can 
do this proof using generalized radiance – see Ref. 1 for the gory details.  The question to ask 
yourself is, “Are optical systems lossless?”  Nope – not at all.  Here are some loss methods in 
optical systems: 
 



 
Figure 1. Representation of beam propagation from source space (r) to target space (r’) via an intermediate optical 

system.  This figure is used in Ref. 1 to prove generalized radiance: 

 

dxdydpdq = d  x d  y d  p d  q . 

 

• Vignetting, 

• Aberrations, 

• Scatter, 

• Fresnel reflections, 

• Absorption, and 

• Diffraction. 
 
There are others.  Thus, étendue and its conservation are purely theoretical constructs, but it 
does provide an upper limit to the capabilities of an optical system.  Additionally, the 
conservation of étendue also means that you can only keep étendue constant or it can increase 
(i.e., either a not-well designed optical system or you allow it to increase for tolerance reasons) 
in the optical system while maintaining the theoretical lossless aspect. 
 
Etendue is one of the most important aspects to describing and designing efficient optical 
systems.  It is important to remember that étendue is solely a geometric factor – it does not 
include any physical properties of the light.  However, due to that one can seemingly break the 
limits of étendue by using such optical phenomena as the spectrum, polarization, coherence, 
and even mixing to increase the flux in a beam.  A short explanation of each method to increase 
flux without affecting étendue is warranted: 
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• Spectral methods: a dichroic optical element can be used to add two separate beams 

with the same geometrical parameters.  The two beams have spectra of 1 and 2 

and fluxes of 1 and 2, and these spectra do not overlap.  One beam is reflected by the 

dichroic window, while the other is transmitted, so the total power is tot = 1 + 2 
with the original beam parameters. 

• Polarization methods: a polarization element can be used to add two orthogonally 
polarized beams with the same geometrical parameters.  Like the spectral case the total 

power is tot = 1 + 2 with the original beam parameters. 

• Coherence methods: interference can be used to provide a higher flux than delineated 
by conservation of étendue.  This is done through constructive and destructive 
interference. 

• Mixing methods: the arguments presented herein assumed that each ray was seeing the 
same optical system as the other rays.  However, you can have an optical system where 
some rays see m1 elements while another set of rays see m2 elements.  An illustrative 
example is a source coupled to a retroreflector over half its emission space.  The light 
that does not interact with the retroreflector propagates out with the expected 
étendue, while the retroreflected light matches this étendue (assuming the source 
emission is symmetric in the forward and backward directions).  You have doubled your 
flux while the étendue is half the expected value.  Realistically, there is source geometry 
obstructing perfect performance.  For example a filament lamp will essentially have the 
entire retroreflected radiation incident on the coil.  Some of this radiation will be 
absorbed, but some will scatter off the source geometry and add to the flux in the 
forward direction at no expense to the étendue. 

 
In conclusion, étendue is one of the most important parameters in the design and analysis of 
optical systems.  By understanding it (and also trying to break its limits) will help you as you go 
forward in your optics career, in fact, I have heard a number of companies will ask you about it 
during the interview process.  Simply, you have been using and will continue to use étendue 
and its conservation throughout your studies and career.  Explore it, try to break it, learn its 
nuances, and you will ultimately come to have a better love-hate relationship with it. 
 
 
We want to hear your thoughts about all of these proposals and welcome suggestions for 
others.  How useful will they be?  Will they be educational?  What?  So, we created a survey at: 
https://forms.gle/4Ka1AQJyhi2Ri6sd8.  
 
Photon Snacks is a column for Light Bytes edited by John Koshel, Associate Dean for 
Undergraduate Affairs in the Wyant College of Optical Sciences.  You can find the previously 
written articles at https://wp.optics.arizona.edu/jkoshel/photon-snacks/.  Additionally, make 
suggestions for articles (or even write one!) by emailing jkoshel@optics.arizona.edu or by 
visiting the survey anytime at https://forms.gle/ibC9LhPemeniJwhv9. 

https://forms.gle/4Ka1AQJyhi2Ri6sd8
https://wp.optics.arizona.edu/jkoshel/photon-snacks/
mailto:jkoshel@optics.arizona.edu
https://forms.gle/ibC9LhPemeniJwhv9

