Sensor Field of View

A 25 mm diameter sensor is used with a 50 mm focal length optical system to image a distant scene. What is the angular FOV of the system? The system is in air.

Solution:

\[\tan \frac{\theta_{1/2}}{2} = \frac{12.5\text{mm}}{50\text{mm}} = 0.25 \]

\[\theta_{1/2} = 14.04^\circ \]

\[FOV = \theta = 2\theta_{1/2} \]

\[FOV = 28.07^\circ \]

Since the system is in air, the principal planes and nodal points are coincident. The ray angle transfers from \(P' \) to \(P \).

The object is distant (at infinity) so the chief ray through the Entrance Pupil will be parallel to this object space ray through the Front Principal Point/Nodal Point. This is independent of the Entrance Pupil position.

\[\bar{u}_0 = \tan \theta_{1/2} = 0.25 \]

In general, because the Exit Pupil is not located at the Rear Principal Plane, the image space chief ray is not parallel to the image space nodal ray:

\[\bar{u}' \neq \bar{u}_0 = \tan \theta_{1/2} \]