Eye Model-Ray trace

Use a paraxial raytrace to determine the Gaussian properties of the eye model from the earlier problem (ϕ, f_F, f_R', F, F', P, P'; do not trace rays to determine the nodal point).

Do your answers agree with Gaussian reduction?
Dimensions are in mm. The front of the eye is in air.

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>t</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.8</td>
<td>3.6</td>
<td>1.336</td>
</tr>
<tr>
<td>2</td>
<td>10.0</td>
<td>3.6</td>
<td>1.413</td>
</tr>
<tr>
<td>3</td>
<td>-6.0</td>
<td>3.6</td>
<td>1.336</td>
</tr>
</tbody>
</table>

Solution

Trace a forward ray and a reverse ray – both parallel to the axis at a height of 1.

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th></th>
<th>F'</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>7.8</td>
<td>10.0</td>
<td>-6.0</td>
</tr>
<tr>
<td>t</td>
<td>?</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>n</td>
<td>1.0</td>
<td>1.336</td>
<td>1.413</td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-ϕ</td>
<td>-0.04308</td>
<td>-0.0077</td>
<td>-0.01283</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t/n</td>
<td>15.31</td>
<td>2.695</td>
<td>2.548</td>
<td>12.69</td>
<td></td>
</tr>
</tbody>
</table>

Forward Ray

y	1.0	1.0	0.8839	0.7568	0
nu	0.0	-0.04308	-0.04988	-0.05960	
u	0.0			-0.04461	

Reverse Ray

y	0.0	0.9126	0.9672	1.0	1.0
nu	0.05959	0.02028	0.01283	0.0	
u	0.05959			0.0	
Forward Ray:

\[
\frac{V'F'}{n_3} = 12.69\text{mm}
\]

\[
V'F' = 16.96\text{mm}
\]

\[
u_3' = -0.04461
\]

\[
y_3' = 0.7568\text{mm}
\]

Reverse Ray:

\[
VF = -15.31\text{mm}
\]

\[
u_1 = 0.05959
\]

\[
y_1 = 0.9126\text{mm}
\]

Reverse Ray: Object space is in air

\[
VF = -15.31\text{mm}
\]

\[
u_1 = 0.05959
\]

\[
y_1 = 0.9126\text{mm}
\]

\[
\phi = \frac{n_1 u_1}{y_3} = .0596/\text{mm}
\]

\[
y_3 = 1
\]

\[
f_E = \frac{1}{\phi} = 16.78\text{mm}
\]

\[
f_F = -16.78\text{mm}
\]

\[
d = VP = VF - f_F = 1.47\text{mm}
\]
Forward Ray: Image space is in an index $n_3 = 1.336$.

\[V'F' = 16.96 \text{mm} \]
\[u_3' = -0.04461 \]
\[y_3' = 0.7568 \text{mm} \]

\[\phi = \frac{-n_3u_3'}{y_1} = 0.0596/\text{mm} \quad n_3 = 1.336 \quad y_1 = 1 \]

\[f_R' = \frac{n_3}{\phi} = 22.41 \text{mm} \]

\[d' = V'F' - f_R' = -5.45 \text{mm} \]

Eye Model

\[\phi = 0.0596/\text{mm} \]

\[f_E = 16.78 \text{mm} \quad f_F = -16.78 \text{mm} \quad f_R' = 22.41 \text{mm} \]

\[d = 1.47 \text{mm} \quad PP' = 0.28 \text{mm} \]

\[d' = -5.45 \text{mm} \]