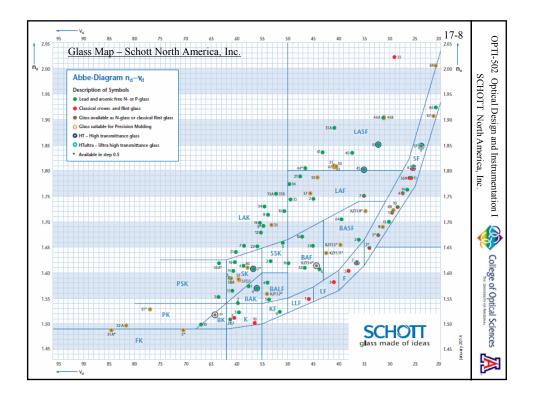
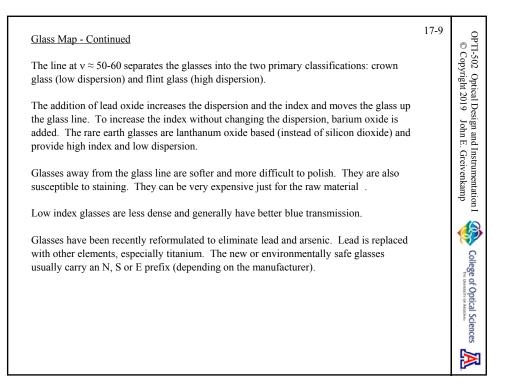

			S
Some common i	ndices:		pyr
vacuum		1.0	Copyright 2019
helium		1.000036	t 20
hydrogen		1.000132	61
air		1.000293	JC
water		1.33	John E.
fused silica		1.46	ц.
plastics		1.48-1.6	Jrei
borosilicate crow	vn glass	1.51	Greivenkamp
crown glass		1.52	lkar
light flint glass		1.57	qu
dense barium cro	own	1.62	
dense flint		1.72	1
diamond		2.4	1
ZnSe	@ 0.5 μm	2.8	
	@ 5 μm	2.2	
ZnS	@ 1 μm	2.5	THE UNIT
	@ 10 μm	2.4	VEBUY
Silicon	@ 10 μm	3.4	OF AND
Germanium	@ 13 μm	4.0	THE UNIVERSITY OF ALLODAN

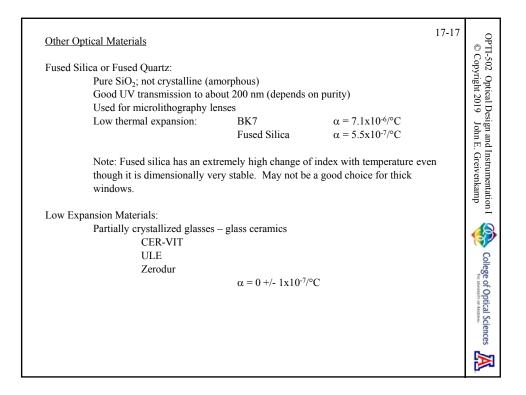




Abbe NumberAbbe number (or reciprocal relative dispersion) is the single number used to characterize the dispersion of the index of an optical material: $v = V = \frac{n_d - 1}{n_F - n_C}$ Refractivity Principal dispersionTypical values of the Abbe number for optical glass range from 25 to 65. Low v-values indicate high dispersion.Relative partial dispersion ratio or P-value gives the fraction of the total index change that occurs between the d and C wavelengths $n_d - n_C$.	17-6	OPTI-502 Optical Design and Instrumentation I © Copyright 2019 John E. Greivenkamp
$P = P_{d,C} = \frac{n_d - n_C}{n_F - n_C}$ Due to the flattening of the dispersion curve, $P_{d,C} < 0.5$. P-values can also be defined for other sets of wavelengths: $P_{x,y} = \frac{n_x - n_y}{n_F - n_C}$		College of Optical Sciences

Glass Code		17-10	OPTI ©
The six-digit glas	ss code specifies the index and the Abbe number:		-502 (Copyri
abcdef	$n_d = 1.abc$ $v = de.f$		Optical Ight 20
For example BK	7 (the single most common optical glass):		Design 19 Jol
517642	$n_d = 1.517$ $v = 64.2$		1 and In hn E. C
			OPTI-502 Optical Design and Instrumentation I © Copyright 2019 John E. Greivenkamp
The enhanced gla	ass code also encodes the density of the glass in g/cm ³ :		ntatio kamp
For BK7:	517642.251		n I
	The glass density is 2.51 g/cm ³		
			Colleg
			e of O
			v or Anzow
			College of Optical Sciences

Glass Data				ogies Inc. design m Ohara Corp.			ses	17-11	OPTI-502 © Cop
Material	Code	n_d	n_F	n_{c}	v	Р	Rel \$		°TI-502 Optical D © Copyright 2019
N-FK51*	487845	1.48656	1.49056	1.48480	84.5	0.306	35	-	
N-BK7	517642	1.51680	1.52238	1.51432	64.2	0.308	1.0)ptic ght
LLF1	548458	1.54814	1.55655	1.54457	45.8	0.298	5		:al 1 201
N-BaK4	569560	1.56883	1.57591	1.56575	56.0	0.303	2.5		9 9
N-KzFS4	613445	1.61336	1.62300	1.60922	44.5	0.301	23		ign Joh
N-F2	620364	1.62005	1.63208	1.61506	36.4	0.294	3.5		Optical Design and Instrumentation right 2019 John E. Greivenkamp
N-SK16	620603	1.62041	1.62756	1.61727	60.3	0.305	3.5		. Gr
N-SF2	648338	1.64769	1.66125	1.64210	33.8	0.292	3.5		trur
N-KzFS5	654397	1.65412	1.66570	1.64922	39.7	0.297	10		nen enk
N-LaK8	713538	1.71300	1.72222	1.70897	53.8	0.304	8		tatio
N-LaF21	788475	1.78800	1.79960	1.78301	47.5	0.301	15		on I
N-SF6	805254	1.80518	1.82783	1.79608	25.4	0.287	9		
N-LaSF31A	883408	1.88300	1.89822	1.87656	40.8	0.297	35		
N-LaSF46A	904313	1.90366	1.92411	1.89526	31.3	0.291	15		
Fused Silica	458678	1.45847	1.46313	1.45637	67.8	0.311			Colle
PMMA	492574	1.492	1.498	1.489	≈55	≈0.33			ne oge
Polycarbonate	585299	1.585	1.600	1.580	≈30	≈0.25			of O
Polystyrene	590311	1.590	1.604	1.585	≈31	≈0.26			ptica
Water	333560	1.333	1.337	1.331	≈60	≈0.33			al Sc
The properties of an ind	ividual samn	le especially	for the plast	ic materials a	nd water	can vary f	rom these	.	College of Optical Sciences
catalog values. For prec								-	8
designs. The listed indi- use in vacuum.								for	A


Other Glass Properties	17-12	OPTI-502 © Cop
In addition to index data at various wavelengths, the glass cat properties important for a design such as coefficients of therm coefficients of refractive index, internal transmission as a fun mechanical properties, and chemical resistance values.	nal expansion, temperature	© Copyright 2019 John E
Chemical properties (low is good): CR – Climate resistance, water vapor (Scale 1-4) FR – Stain resistance (Scale 0-5) SR – Resistance to acids (Scale 1-4 plus 51-53) AR – Alkali resistance (Scale 1-4) PR – Phosphate resistance (Scale 1-4)		esign and Instrumentation John E. Greivenkamp
α = Temperature coefficient of expansion T_g = Glass transition temperature C_p = Specific heat	[]	p Ion I
$\lambda =$ Thermal conductivity $\rho =$ Density	Approx. Glass Cost (2014):	S S
$\beta = Density$ HK = Knoop Hardness	N-BK7 \$11/lb	llege
τ_i = Internal transmission (5 mm and 25 mm thick)	N-LaK8 \$85/lb	c UNITES
dn/dt = Temperature coefficient of refractive index	N-FK51 \$280/lb	m or Au
Coefficients of the dispersion formula	N-LaSF31 \$380/lb	bollege of Optical Science

```
17-13
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               OPTI-502 Optical Design and Instrumentation I
                                    Glass Properties- Schott North America, Inc.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Internal transmittance t,
The internal transmittance in the wavelength range between 250 nm and
2500 nm is listed for thickness of 10 and 25 mm. The internal transmittance
and color code listed in the data sheet represent median values from
several mets of one glass type. For HT and HTutra grade, the internal
transmittance in the visible spectrum includes guaranteed minimum values.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           The constants are valid for a temperature range from -100°C to +140°C and a wavelength range from 0.365 \mu m to 1.014 \mu m. The temperature coefficients in the data sheets are guideline values.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    dn<sub>ats</sub> (A, T) =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Constants of the formula dn/dT
The temperature dependence of the refractive index can be calculated using
the following formula:
                                                                                                                                                                                    Relative partial dispersion The relative partial dispersions P_w and P_w' for the wavelengths x and y are derived from the equations.
                                                                                                                                                                                                                                                                                                                       Color code
The color code lists the wavelength \lambda_{w} and \lambda_{q} at which the transmittance
is 0.80 and 0.05 at 10 mm thickness. The values are rounded off to 10 nm
and denoted by eliminating the first digit. For high index glass types with
nd>1.83, the data of the color codes (marked by *) refers to the transmittance
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Refractive indices
The refractive indices n are listed for a maximum of 23 wavelengths in
the range between 248.2 nm and 2325.4 nm.
Deviation of the relative partial dispersion from the "normal line" \Delta P
The term \Delta P_{m} quantitatively describes a deviation relation of the dispersion
from the "normal glasses".
                                                                                                     \mathsf{P}_{xy} = \frac{\mathsf{n}_x - \mathsf{n}_y}{\mathsf{n}_F - \mathsf{n}_c} \text{ und } \mathsf{P}'_{xy} = \frac{\mathsf{n}_x - \mathsf{n}_y}{\mathsf{n}_F - \mathsf{n}_c}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     and C<sub>1</sub>,C<sub>2</sub>,C<sub>3</sub>.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     n^{2}(\lambda) - 1 =
                                                                                                                                                                                                                                                                                             values 0.70 and 0.05 (\Lambda_{70} and \Lambda_{5}).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Δn<sub>abs</sub> / ΔT referring to vacuum
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Temperature coefficient of refraction \Delta n_{\rm ref}/\Delta T referring to air at normal pressure 1013.3 mbar
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            the refractive indices for any wavelength within the range from the near UV to 2.3 \mum can be calculated with the help of the constants B<sub>h</sub>, B<sub>2</sub>, B<sub>3</sub>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Constants of the dispersion formula
From the Sellmeier dispersion formula
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    SCHOTT North America, Inc.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              λ<sup>2</sup> - C<sub>1</sub>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Β, λ<sup>2</sup>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    \frac{n^2(\lambda,T_0)-1}{2\,n(\lambda,T_0)}\,\left(D_0+2\,D_1\,\Delta T+3\,D_2\,\Delta T^2+\frac{E_0+2\,E_1\Delta T}{\lambda^2-\lambda^2\,r\kappa}\right)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2 n(A, T<sub>o</sub>)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           +
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       \frac{B_2 \Lambda^2}{\Lambda^2 - C_2} +
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           \frac{\mathsf{B}_3 \; \lambda^2}{\lambda^2 - \mathsf{C}_3}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           College of Optical Sciences
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             \lambda^2 - \lambda^2_{TK}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ×
```

OPTI-	502 Optical De SCHOTT N	OPTI-502 Optical Design and Instrumentation I College of Optical Sciences SCHOTT North America, Inc.
-14	Other characteristics	cteristics
17	CI _30/+70	 The coefficient of thermal expansion in the temperature range between – 30°C und + 70°C in 10°/K
	CI 20/300	= The coefficient of linear thermal expansion in the temperature range between + 20°C und + 300°C in 10 ⁴ /K
	Tg	 Transformation temperature in °C
	T 1013.0	= Temperature of the glass in °C at a viscosity of 10 ¹³ dPa·s
	T ₁₀ 7.6	= Temperature of the glass in °C at a viscosity of 1074 dPa-s
	°,	 average specific heat capacity in J/(g·K)
	7	= Thermal conductivity in W/(m·K)
	AT'	 Yield point/sag temperature in °C
	ρ	= Density in g/cm ³
	ш	 Elasticity modulus in 10³ N/mm²
	τ	= Poisson's ratio
<u>.</u>	×	 Stress optical coefficient in 10⁻⁸ mm²/N
Inc	¥	= Knoop hardness
ca,	HG	= Grindability class (ISO 12844)
neri	Abrasion Aa*	Grindability according to JOGIS**
North Ar	CR	 Climatic resistance Resistance to moisture in the air expressed in CR classes 1 (high) to 4 (low).
Schott 1	FR	 Stain resistance Resistance to stain formation expressed in FR classes 0 (high) to 5 (low).
erties –	SR	 Acid resistance Resistance to acid solutions expressed in SR classes 1 (high) to 4 (low) and 51 to 53 (very low).
ass Prop	AR	 Alkali resistance Resistance to alkaline solutions expressed in AR classes 1 (high) to 4 (low).
Gla	PR	 Phosphate resistance Resistance to alkaline phosphate containing solutions expressed in PR classes 1 (high) to 4 (low).

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

		N	[-]	BJ	K	7-	- 3	S	cł	10	ott	1	Ň	01	tł	1	A	m	er	ic	a,	I	n	c.																																1	7-16			20111-202
+80/ +80	+20/ +40	-40/ -20	70			Temperat		(uuf) ^{xii} v			E	D2	-		?	dh/dT	Constant		°,	C2	9	0	P.	8,	8	Formula	Constant		196.	A THE	-	Book 1	B312.6	1.MCE 0	n,	n _h	n ₀	n _F :	ng	n.				n _{ett}	n		P,	n,	n,	1 4000 0	9 5035 1	1 DUD: 1	B 2328.4		Refractive Indices		N-LAK8 713538.375	OLIO		
4.3	4	6	1060.0	00,70		ure Coeffic		0.213	0.00	629.10	4.30 - 10"	-1.60 - 10***	1.22.10	1 1 1 1 1	410.100		Constants of Dispersion		82.5827736	0.0216465439	0.00620023871		1.19084015	0.546623206	1.33183167		Constants of Dispersion			249.3	280.4	295.7	312.6	334.1	365.0	404.7	435.8	480.0	485.1	545.1	0.100	107.2	E COR	632.8	643.8	655.3	705.5	852.1	1014.0	1060.0	1529.6	1970.1	2325.4	¥ [nm]	e Indices		8 3.375	TUNTIT	TT Not	
52	50	4	•	N/- OLITO - VU	ALC: NO	ients of Ret				•		-					sion		8	439	1185			6	17		sion			T				1,75087	1,74573	1.73545	1.72944	1,72297	1,7222	1,71016	1. TOWN	171200	171289	1,71022	1,70962	1.70307	1,70%8	1.70161	1.69302	1.69710	1,68300	1,68075	1.67294					m Ame	th Δme	T DIE
+	5,8	5.4	╞			Temperature Coefficients of Refractive Index		ſ	-			Remarks		r Burdt v = 1		λ _{th} Λ,	Color Code		[Ī	3		8	270	250	N	20				2	ž	¥5	370	350	950	\$ 0	405	5	2			20	š	88	2	8	70	100	1530	1970	2325	2500	¥[nm]	Internal		n _d = 1.71300 n _e = 1.71616	SCHUTT INDIALICINA, IIK	SCHOTT North America Inc	
+	2.6 3.5	1.7 2.4	0.001	101	1	×						ŝ		d.			ode		╞	t	t					0.010	440.0	0.101		9000	0.500	657.0	0.877	0.905	0.946	0.965	0.977	0.961	0.988	0.992	Charles of	1004	0.064	0.968	0.968	0.968	0.968	0.968	0.968	0.962	0.960	0.707	0.358	1, (10mm)	Internal Transmittance :		71300 71616			TUCIENT
+	4.3	3,0	╞		4											37/30												01000		0000	0.185	0.470	0.720	0.780	0.870	0.915	0.943	0.952	07920	6760	Tetro	0.007	0.004	5650	0.994	0.994	265'0	9650	0.94	6250	CBBIO	0.420		 t, (25mm) 	Ince t		vd= 53.83 ve= 53.61			
			3	8	Ŗ	SR	78	R					3			K[10 ^{,6} mm ² N]	E	E[10 ³ N/mm ²]	p (o/cm ²)		A [WV(m-K)]	thu fluida	e CHIOKY	T., ⁷⁶ rci	T10 ¹³⁰ [*C]	T _a rcj	a+30+306.0 [10	[N. 01] 0-00-00-0	and a state	Other Properties		APia	ΔPgF	ΔP _{F.*}	APCS	APcJ	TION OF THE TOTAL OF	Partial Dispensions AP	Deviation of Relative		5		2	P		9	P		5		P.	Pac	P cs	P _s	Relative Partial Dispersion					
				11		52.3	N	64	'				•	, .	740	1.81	0.289	115	3.75		0.840	AVA: A	000	212	635	643	K) 6.7		ľ	8		-0.0428	-0.0083	-0.0026	0.0124	0.0265	mai Line	sions AP	elative		0.7030	0 100	0.4600	0.2363	0.2536	0.5643	0.2635		0.7764	0.5450	0.2383	0.3042	0.5403	0.2661	I Dispersion		nF -NC = 0.013245 nF -NC = 0.013359			DIJN ICUIDES
			-	-					1									_		-						-		-		_		_			-					-	_		-	_				_	_	_						-				anne in

-	Some are birefring					C C
	Some are onening	ent.				© Copyright 2019 John E.
	Others are polycry	stalline – pr	one to scatter	ing.		igh
	Often the only way					: 20
	Examples:	Si			and 25-300 µm	19
	1	Ge	$n \approx 4$	2-14 μm	·	Jc
		ZnS	$n\approx 2.2$	3-12 µm		hn
		ZnSe	$n \approx 2.4$.6-16 μm		E. Greivenkamp
		CaF_2	$n \approx 2.4$ $n \approx 1.4$.13-7 μm	(Fluorite)	rei
		NaCl	$n \approx 1.5$.2-20 μm		Greivenkamp
		LiF	$n \approx 1.35$.12-5 μm		ıkar
		CsBr	$n \approx 1.6$.22-55 μm		qu
		CsI	$n \approx 1.7$.25-55 μm		
	A high index impli	es high Fres	snel reflection	s (36% for G	e) – require AR coating.	
	Some of the materi	als are sens	itive to water	vapor.		- *
	Some provide exce	ellent transm	hission in the	UV and the I	R.	
	Some are very soft	and fragile	- hard to poli	sh.		
	For IR applications	s, some of th	ne materials m	ay be single	-point diamond turned.	n or
						ANCEST
Plastics:	Usually molded; ca					Y OF AL
	Index changes with	n water abso	orption.			120144
	Most common:	Acrylic	(PMMA) (Ple	exiglas)		The UNIVERSITY OF ARRONM
		Polystyr				
		Polycarl	oonate			