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Section 11

Radiative Transfer
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11-2
Radiometry

Radiometry characterizes the propagation of radiant energy through an optical system.  
Radiometry deals with the measurement of light of any wavelength; the basic unit is the 
Watt (W).  The spectral characteristics of the optical system (source spectrum, 
transmission and detector responsivity) must be considered in radiometric calculations.

Radiometric terminology and units:
Energy Q Joules (J)
Flux  W Power
Intensity I W/sr Power per unit solid angle
Irradiance E W/m2 Power per unit area – incident
Exitance M W/m2 Power per unit area – exiting
Radiance L W/m2sr Power per unit area per unit solid angle

incident or exiting

The basic assumptions of radiometry:
- The source is incoherent.  Any scene is a collection of independently radiating point 
sources.  There is no interference.
- Geometric optics applies and light propagates along rays.  There is no diffraction.

In this simplified discussion, objects and images are assumed to be on-axis and 
perpendicular to the optical axis.  With this assumption, the projected area equals the area.
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11-3
Solid Angle

The solid angle  equals the surface area of the unit sphere that is subtended by a surface 
relative to a point at the center of the unit sphere.  There are 4 steradians in a full sphere.

The solid angle of an area A at a distance from a reference point is

2
 

dA
d

r

2
 
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r

In polar coordinates:

sin d d d  

Note that the solid angle is a function of  and , so that only the boundaries of that 
area are important in determination of the solid angle.
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11-4
Right Circular Cone

The solid angle of a right circular cone:
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Exact:  The area of a spherical end cap must be used.

   2
0 02 1 cos 4 sin / 2      

Hemisphere:

2 sr  
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11-5
Radiative Transfer

Geometrical optics aims to determine the image size location and quality.  Radiative 
transfer uses first-order geometrical principles to determine the amount of light from an 
object that reaches an image or a detector.   It models the propagation of radiant energy 
through an optical system.

The Problem:  An object is imaged with a lens of a particular f/#.  Given a certain amount 
of radiant power per unit area (irradiance or E) falling on the object, what is the power per 
unit area (irradiance) in the image?

Irradiance:

The scene is illuminated by a certain irradiance E (W/m2).

For solar illumination, the mean solar constant can be used:

E = 1368 W/m2 outside the atmosphere
E = 1000 W/m2 on the surface of the earth
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11-6
Radiative Transfer – Reflectance and Exitance

Exitance M is the amount of light leaving the surface per unit area.  Exitance and 
irradiance are related by the reflectance of the surface .  Note that this is the power 
reflectance (not the electric field amplitude reflectivity).

M E

Photographic research has shown that  = 18% for the average scene.  Exposures are 
often set using this value, and 18% gray cards are available to provide a reflectance 
reference.  This value is important as a simple photographic printer will expose the print 
to that average, so that the print reflectance ends up being 18% to match the average 
scene.  As a result, scenes that do not conform to this standard (snow, for example) are 
printed incorrectly.  18% gray snow results.

More advanced printers analyze the scene and vary the print reflectance to get better 
results.
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11-7
Radiative Transfer – Radiance and Lambertian Sources

The exitance M gives the power per unit area, but it contains no information about the 
directionality or angular distribution of the light leaving the scene.  This information is 
contained in the radiance L.

The most common assumption for diffuse scenes is that the radiance is constant or 
independent of angle.  This is a Lambertian source.

 , ConstantL  

A Lambertian source is considered to be perfectly diffuse.  
The intensity falls off with the apparent source size or its 
projected area.  This result comes from the fact that the 
source size appears to decrease as the extended source is 
viewed obliquely.  This is Lambert's law:  



I

0 cosI I 

The exitance M of a Lambertian source or scene is related to its radiance L by .

/  M L L E L E    

This relationship is  (instead of the expected 2 for a hemisphere) because of the falloff of 
the projected area with .
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11-8
Radiative Transfer – the Optical System

The next step is to determine the amount of optical power  from an area A on the source 
that is captured by the optical system.

z

z

zA
A




L LPA

  Object area Solid angle subtended by the lens   L LA

The object distance is z, and the area of the pupil is AP.  A thin lens equivalent system is 
assumed (both the EP and XP are at the lens and of equal size). 

All of this power is now transferred to the image with a magnification of m:

2 A m A

2
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11-9
Radiative Transfer – The Optical System - Continued

The object and image distances are related by the Gaussian equations.  
Assume a thin lens in air:

 1


m
z f

m

     

2

2 2 224 1 4 1 /#

 
  

 
PLA D LA

m f m f

 

The image plane irradiance can be found by dividing by the image area:

     
 2

2 2 2
4 1 /# 4 /#

    
  W

L L
E L NA

A m f f

  

Which can be simplified for distant objects:

 
 2

2
4 /#

   


L
E L NA

A f

 

This result is known as the Camera Equation, and it relates the image irradiance 
to the scene radiance.

0
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L
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11-10
Camera Equation

     
 2

2 2 2
4 1 /# 4 /#

   
 W

L L
E L NA

m f f

  

Spectral dependence can also be added, starting with the scene irradiance (now in units of 
power per unit area per unit wavelength, or for example, W/m2nm).

0 ( ) Object Irradiance

( ) Object Reflectance

( ) Object Radiance




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0
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( ) ( )
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
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E
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Which can be integrated for the total (non-spectral) irradiance:

2

1
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1
( ) ( )
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11-11
Exposure

For the camera equation, an on-axis Lambertian object and small angles are assumed.  
The object and image planes are perpendicular to the optical axis.  Including obliquity 
factors associated with off-axis objects leads to the cosine fourth law.  The image 
irradiance falls off as the cos4 of the field angle. 

Most detectors respond to energy per unit area rather than power per unit area.  Multiplying 
the image irradiance by the exposure time gives the exposure (J/m2):

 H E t
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11-12
Photometry

Photometry is the subset of radiometry that deals with visual 
measurements, and luminous power is measured in lumens lm. 

The lumen is a Watt weighted to the visual photopic response.  The 
peak response occurs at 555 nm, where the conversion is 683 lm/W.  
The dark-adapted or scotopic response peaks at 507 nm with 
1700 lm/W.

 (nm) lm/W

400 0.3

420 2.7

440 15.7

460 41.0

480 95.0

500 221

520 485

540 652

560 680

580 594

600 425

620 260

640 120

660 41.7

680 11.6

700 2.8

720 0.7

Luminous Photopic
Sensitivity

Photometric terminology and units:

Luminous power V lm

Luminous intensity IV lm/sr

Illuminance EV lm/m2

Luminous exitance MV lm/m2

Luminance LV lm/m2sr

Exposure HV lm s/m2

All of the rules and results of radiometry and radiative transfer apply. 
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11-13
More Photometric Units

Other common photometric units and conversions include:

IV: candela (cd) = lm/sr

EV: lux (lx) = lm/m2

foot-candle (fc) = lm/ft2

1 fc = 10.76 lx

LV: foot-lambert (fL) = 1/ cd/ft2

nit (nt) = cd/m2

1 fL = 3.426 nt

HV: lux-second (lx s) = lm s/m2

The unit meter-candle-second (mcs) is an obsolete unit of exposure equal to the lux-second.

Typical illuminance levels:

Sunny day: 105 lux Moonlit night: 10-1 lux

Overcast day: 103 lux Starry night: 10-3 lux

Interior: 102 lux Desk lighting: 103 lux

Remember, photometric quantities work just like radiometric quantities.

11-14
Candela

The candela (cd) is a fundamental SI unit for luminous intensity (lm/sr). It is the 
connection between photometric and radiometric units. 

“The candela is the luminous intensity, in a given direction, of a source that emits 
monochromatic radiation of frequency 540×1012 hertz (555 nm) and that has a radiant 
intensity in that direction of 1/683 watt per steradian.”

At 555 nm:

1 cd = 1 lumen per steradian = 1/683 Watt per steradian
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11-15
A Product

The flux through a system is given by

The assumptions implicit in this result are
- Small angles and on axis scene
- Lambertian Source
- Object, image and pupils are perpendicular to the optical axis (no obliquity 
effects or projected areas are included).

The AΩ product appears to be the geometric portion of the above relationship, while L 
would be related to the source characteristics. 

  Object area Solid angle subtended by the lens   L LA

half angleof coneat area A
2 

2 A A 

In an object or an image plane:

2

2 2 2 2 2 2Ж / Ж

 

   

A y u

A y u n nyu

 

 
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11-16
A Product - Continued

In a pupil plane:
2

2 2 2 2 2 2Ж / Ж

 

   

A y u

A y u n nyu

 

 

In both cases:
2 2 2Ж n A 

The n2AΩ product is proportional to the square of the Lagrange invariant.  The square 
is due to the fact that the A product involves areas, and the Lagrange invariant is a 
linear measure.  This quantity is known as the Basic Throughput and is invariant.

In air, the AΩ product is called the Throughput of the system, and it is also invariant.

2 2Ж 1  A n

   A A       LA L A

Reviewing the areas and solid angles under discussion:

A



A

or
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11-17
Conservation of Basic Throughput – Alternate Derivation

In conjugate planes:

2 2 2 2 2 2

2 2 2 2 2 2

2 2

2 2

y h
m

y h

y y

y n u ynu

y n u y n u

y n u y n u

A y u

n A n A




 

   

 

 
  



  

   

   

   

  

     2 2 2Жn A  

Basic Throughput is conserved.
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11-18
Conservation of Radiance

For a lossless optical system (no reflection or absorption losses), the flux Φ through the 
system is constant.  An index n = 1 is assumed.

Since the AΩ product is also a constant, the radiance L must also be constant throughout the 
system.

This is one of the basic laws of radiative transfer, and is very useful for system analysis.

1 1 1 2 2 2 3 3 3         L A L A L A

ConstantL

  i iLA

1 2
2

 
LA A

d

Note that radiance can be evaluated at any point along a ray.  Radiance can therefore 
be associated with images, pupils, etc.

A1

1

A2

2

d



O
P

T
I-502  O

ptical D
esign and Instrum

entation I
©

 C
opyright 2019    John E

. G
reivenkam

p

11-19
Camera Equation - Revisited

The conservation of radiance can be used to derive the camera equation:

 IMAGE SOURCEL L L L

  LA

    


E L
A

2   u

2 2( )  E L u L NA 

2
2

( )
4( /# )

  
W

L
E L NA

f



A'

'

u'

1 NA n u n

O
P

T
I-502  O

ptical D
esign and Instrum

entation I
©

 C
opyright 2019    John E

. G
reivenkam

p

11-20
Basic Radiance

If the index of refraction is not unity and changes, the radiance is not conserved.

When crossing a refractive boundary, the radiance will change across that boundary 
because the solid angle associated with a ray bundle changes. 

1 2

n

A1 A2

n'
1 2

1 1 2 2

1 2

  

    

 

L L

L L

The flux through the system is still constant and found by: 

Constant   L

Rewriting in terms of the invariant basic throughput:

2 ConstantL n

2 Constant n A

This is the Basic Radiance of the system and is invariant.

  2 2/ Constant   L n n A


