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9-1

Section 9

Stops and Pupils
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9-2
Stops and Pupils

The aperture stop is the aperture in the system that limits the bundle of light that 
propagates through the system from the axial object point.  The stop can be one of the 
lens apertures or a separate aperture (iris diaphragm) placed in the system, however, the 
stop is always a physical or real surface. The beam of light that propagates through an 
axially symmetric system from a on-axis point is shaped like a spindle. 

The entrance pupil (EP) is the image of the stop into object space, and the exit pupil (XP) 
is the image of the stop into image space.  The pupils define the cones of light entering 
and exiting the optical system from any object point.

There is a stop or pupil in each optical space.  The EP is in the system object space, and 
the XP is in the system image space.  Intermediate pupils are formed in other spaces. 

Stop  

XP 

EP 

Object  Image  

z
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9-3
Aperture Stop

The limiting aperture of the system may not be obvious.  There are two common methods 
to determine which aperture in a system serves as the system stop:

The first method is to image each potential stop into object space (use the optical surfaces 
between the potential stop and the object).  The candidate pupil with the smallest angular 
size from the perspective of the axial object point corresponds to the stop.  An analogous 
procedure can also be done in image space.

Four apertures exist in this 
optical system.

Each aperture is imaged into 
object space to produced four 
potential EPs.

EP2 has the smallest angular 
subtense as viewed from O.

Aperture 2 is the system stop.

Note:  All of the potential EPs are in object space.  EP4 and EP2 are virtual.  Since lens A1

is the first optical element, its aperture is in object space, and A1 serves as EP1.
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1EP
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9-4
Aperture Stop

The second method to determine which aperture serves as the system stop is to trace a ray 
through the system from the axial object point with an arbitrary initial angle.  At each 
aperture or potential stop, form the ratio of the aperture radius ak to the height of this ray at 
that surface     .  The stop is the aperture with the minimum ratio: 

k

k

a
Aperture Stop  Minimum 

y




k k
j j j j

k kMIN MIN
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u u y y

y y
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 
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The limiting ray is found by scaling the 
initial ray:
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Scaled Ray:
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9-5
Limiting Apertures

Large changes in object position may cause different apertures to serve as the limiting 
aperture or system stop.  The EP with the smallest angular subtense can change.  A different 
aperture would then become the system stop.  

However when designing a system, it is usually critical that the stop surface does not change 
over the range of possible object positions that the system will be used with.
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9-6
Pupils

The pupil locations can be found by tracing a ray that goes through the center of the stop.  
The intersections of this ray with the axis in image space and object space determine the 
location of the exit and entrance pupils.

1L

z

2L

XPStopEP

The rays are extended to the axis to locate the pupil.  The EP and the XP are often virtual.

1L

z

2L

XP StopEP

The EP is in the system 
object space, and the XP is 
in the system image space.
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9-7
Intermediate Space Pupils

Intermediate pupils are formed in each optical space for multi-element systems.  If there 
are N elements, there are N+1 pupils (including the stop). 

z
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9-8
Marginal and Chief Rays

Rays confined to the y-z plane are called meridional rays.  The marginal ray and the chief 
ray are two special meridional rays that together define the properties of the object, 
images, and pupils.

The marginal ray starts at the axial object position, goes through the edge of the entrance 
pupil, and defines image locations and pupil sizes.  It propagates to the edge of the stop 
and to the edge of the exit pupil. 

The chief ray starts at the edge of the object, goes through the center of the entrance 
pupil, and defines image heights and pupil locations.  It goes through the center of the 
stop and the center of the exit pupil.  

marginal ray height

marginal ray angle

y

u




chief ray height

chief ray angle

y

u


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Object EP 
Marginal Ray 

y 

u

Chief Ray 
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9-9
Images and Pupils

The heights of the marginal ray and the chief ray can be evaluated at any z in any optical 
space.

When the marginal ray crosses the axis, an 
image is located, and the size of the image is 
given by the chief ray height in that plane.

Whenever the chief ray crosses the axis, a 
pupil or the stop is located, and the pupil 
radius is given by the marginal ray height in 
that plane.

Intermediate images and pupils are often 
virtual.

The chief ray is the axis of the unvignetted beam from a point at the edge of the field, and 
the radius of that beam at any cross section is equal to the marginal ray height in that plane.

PUPILy h

y 0

Pupil  

z

y 0

y h

Image 

z

On-Axis Ray Bundle

The stop limits the ray bundle from the axial object point.  The marginal ray is at the edge 
of the on-axis ray bundle.

The EP defines the ray bundle in object space from the axial object point.  The ray bundle 
that will propagate through the system fills the EP.

The XP defines the ray bundle converging to the axial image point in image space.  The 
ray bundle emerging from the system appears to come from a filled XP.

9-10

Stop  

XP EP
Object  

Image  

z

The stop and the intermediate image (not shown) define the ray bundle in the intermediate 
optical space.  

In any additional optical spaces, the intermediate pupils and images will define the ray bundles.
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Ray Bundles
9-11

Stop  

XP EP
Object  

Image  

z

The pupils are the image of the stop and do not change position or size with an off-axis 
object.  

The EP and the XP also define the skewed ray bundles that enter and exit the optical 
system for an off-axis object point.  The off-axis ray bundle that will propagate through 
the system fills the EP.  The off-axis ray bundle emerging from the system appears to 
come from a filled XP.

The skewed ray bundles are centered on the chief ray for that object point.
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9-12
Vignetting

For an off-axis object point, the beam of light through the system is shaped like a spindle 
of skew cone-shaped sections as long as no aperture other than the stop limits the beam.  

If the beam is intercepted by one or more additional apertures, vignetting occurs.  The top 
and or bottom of the ray bundle is clipped, and the beam of light propagating through the 
system no longer has a circular profile.

For example, reducing the lens diameters in the previous example produces vignetting at 
the top of the first lens and the bottom of the second lens.

XP

Vignetted XP

Vignetting
Apertures

XP Appearance:
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9-13
Field of View

The Field of View FOV of an optical system is determined by the object size or the image 
size depending on the situation:

- the maximum angular size of the object as seen from the entrance pupil

- the maximum object height

- the maximum image height

- the maximum angular size of the image as seen from the exit pupil

Field of View FOV: the diameter of the object/image

Half Field of View HFOV: the radius of the object/image 

Full Field of View FFOV is sometimes used instead of FOV to emphasize that this is 
a diameter measure.  
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9-14
Field of View – Object Measures

1/ 2HFOV 

 1/ 2tan 
h

L


 1/ 2tan 
h

u
L



z

EP

h
1/2

L

Since the EP is the reference position for the FOV, this defining ray becomes the chief 
ray of the system in object space.

For distant objects, the apparent angular size of the object as viewed from the EP or 
from the front principal plane P or the nodal point N are approximately the same.  

z

EP

1/2

P or N

1/2

For close or finite conjugate objects, it is usually better to define the FOV in terms of the 
object size.
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9-15
Field of View – Image Measures

1/2HFOV 

 1/2tan
h

L



 



 1/2tan
h

u
L




  


Since the XP is the reference position for the FOV, this defining ray becomes the chief ray 
of the system in image space.

While it is possible to define the FOV in terms of the angular image size, it is much more 
common to simply use the image size.

The required image size or the detector size often defines the FOV of the system. 

In general, the angular FOV in object space does not equal the angular FOV in image space.  
The object and image space chief ray angles are also not equal.

These quantities will be equal if the EP and the XP are located at the respective nodal points.  
This is the situation for a thin lens in air with the stop at the lens.

1/2 1/2 u u    

z

XP

1/2
h

L

O
P

T
I-502  O

ptical D
esign and Instrum

entation I
©

 C
opyright 2019    John E

. G
reivenkam

p

9-16
Field of View

The system FOV can be determined by the maximum object size, the detector size, or by 
the field over which the optical system exhibits good performance.  For rectangular image 
formats, horizontal, vertical and diagonal FOVs must be specified.

The fractional object FOB is used to describe objects of different heights in terms of the 
HFOV.  For example, FOB 0.5 would indicate an object that has size half the maximum.  
This is used in ray trace code to analyze a system performance at different field sizes.  

Common values are

FOB 0 on-axis

FOB 0.7 half of the object area is closer to the optical axis at this angle, and half is 
farther away (.72 ≡ .5) 

FOB 1 maximum field (edge of object)

Another method for defining angular FOV is to measure the angular size of the object 
relative to the front nodal point N.  This is useful because the angular sizes of the object 
and the image are equal when viewed from the respective nodal points.  This definition of 
angular FOV fails for afocal systems which do not have nodal points.  In focal systems 
with a distant object, the choice of using the EP or nodal point for angular object FOV is 
of little consequence.
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9-17
Paraxial Ray Angles

While they are referred to as angles, paraxial ray angles are not angles at all.  They 
measure an angle-like quantity, but these paraxial angles are actually the slope of the ray or 
the ratio of a height to a distance.   As a result, paraxial angles are unitless.  If the physical 
angle in degrees or radians is , then the paraxial angle u is given by the tangent of .

y 

t

u


tan



 

y
u

t

y
u

t


The use of ray slopes is critical for paraxial raytracing as it results in the linearity of 
paraxial raytracing.  This is easy to see from the transfer equation:

This linear equation for the paraxial ray is the equation of a line, and the constant of 
proportionality is the ray slope.  The need to use the ray slope is also apparent in the 
above figure.  As the physical angle goes from 0 to 90 degrees (or 0 to /2 radians), the 
ray height at the following surface goes from 0 to infinity.  Since the ray slope also goes 
from 0 to infinity, the paraxial raytrace equation correctly gives the correct result without 
any approximations.  The use of a physical angle in radians instead of the paraxial ray 
angle in the transfer equation is only valid by approximation for small angles or by the 
use of trig functions. 

  y y ut
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9-18
Small Angle Approximations

While it is true that for small angles the tangent of an angle (in radians) is approximately 
equal to the angle, this is only an approximation – even here the angle loses its units of 
radians in this conversion to obtain the unitless ray slope.  

Care must be used in making this approximation as paraxial angles are often used that 
exceed the small angle approximation.  Since the raytrace equations are linear in ray slope 
and not in ray angle, the ray slope must be used for the paraxial ray angles.

In general, a tangent is required to convert between paraxial angles (or more accurately 
slopes) and physical angles in degrees or radians.

Since the paraxial ray angle is a slope, it is incorrect to determine the paraxial ray angle 
as if it were a physical angle.

for small angles (  unitless;  radians)u u 

tan 
y

u
t



1tan
y

u
t

This proper conversion to paraxial 
angles commonly occurs when 
discussing FOV of a system:

tanu HFOV
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9-19
Pupil Positions by Paraxial Raytrace

The stop is a real object for the formation of both the entrance and exit pupil.

The pupil locations can be found by tracing a paraxial ray starting at the center of the 
aperture stop.  The ray is traced through the group of elements behind the stop and 
reverse traced through the group of elements in front of the stop.  The intersections of this 
ray with the axis in object and image space determine the locations of the entrance and 
exit pupils.  Both pupils are often virtual and are found using virtual extensions of the 
object space and image space rays.  

This ray becomes the chief ray when it is scaled to the object or image FOV.  The marginal 
ray height at the pupil locations gives the pupil sizes.

The trial ray used to determine which aperture serves as the system stop can be scaled to the 
produce the marginal ray.

Front 
Group 

Rear  
Group 

Stop EP XP 

z

k k
j j j j

k kMIN MIN

a a
u u y y
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  

 
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9-20
Pupil Positions by Gaussian Imagery

The pupil locations and sizes can also be found using Gaussian imagery.  Imaging the 
stop through the rear group of elements to find the XP is straightforward:

1 1 1
     (in air)

m

 



 

XP STOP RG

XP
XP XP XP STOP

STOP

z z f

z
D m D

z

Front 
Group 

Rear  
Group 

Stop 
EP 

XP 

z
FGP

FGP RGP
RGP

STOPz XPz

However for the EP, the stop is a real object to the right of the front group, and the 
Gaussian equations do not directly apply.

For the XP:
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9-21
Pupil Positions by Gaussian Imagery

The stop is a real object to the right of the front group.  Gaussian object and image 
distances must be measured relative to the principal plane in the same optical space.  In 
this case, the stop (or object) position is measured relative to       , and the EP (or image) 
position is measured relative to PFG.

Since the Gaussian equations require the light to propagate from 
left to right, or equivalently that a real object is to the left of the 
system, the simplest conceptual solution is to flip the problem 
(turn the paper upside down!).  The signs of the flipped 
distances are opposite the signs of  the original distances.

1 1 1
     EP EP STOP STOP

EP STOP FG

z z z z
z z f

      


 
 

Front 
Group 

Stop EP 

FGPFGP

STOPz
EPz

z

Front 
Group 

Rear  
Group 

Stop 
EP 

XP 

z
FGP

FGP RGP
RGP

STOPzEPz

FGP

1 1 1
   (in air)
 

 
EP STOP FGz z f
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9-22
Pupil Positions by Gaussian Imagery

Flipping the paper over is effective but awkward. The proper way to determine the EP 
location is to remember that the light from the real stop propagates from right to left to form 
the EP, and to assign a negative index to this imagery (just as is done after a reflection).  The 
object and image distances are measured from the principal plane of the front group that is in 
the same optical space as the object (stop) or image (pupil).  The stop (or object) position is 
measured relative to       , and the EP (or image) position is measured relative to PFG.

1
  1 (in air)


    

EP STOP FG

n n
n n

z z f

/1 1 1
     m

/

   
    


EP EP

EP EP EP STOP
EP STOP FG STOP STOP

z n z
D m D

z z f z n z

Front 
Group 

Rear  
Group 

Stop 
EP 

XP 

z
FGP

FGP RGP
RGP

STOPzEPz

FGP

For the EP:
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9-23
Example System

Two thin lenses with a stop halfway between:

1

2

1

1

100

75

50

Stop at 25 / 25

Stop Diameter = 20

Stop Radius 10

Object Height = 10

Two Positions:

100     (from L )

50     (from L )

STOP

A

B

f mm

f mm

t mm

mm mm

mm

a mm

mm

s mm

s mm






 

 
 

2L

z

1L

25mms

Stop

25mm
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9-24
Example System – Gaussian Solution

Exit Pupil:

Object/Image:

System: .0167/ 60

40 30

 
  

Emm f mm

d mm d mm



1 2

1 2

100     (from L ) 75     (from L )

50    (from L ) 150     (from L )
A A

B B

s mm s mm

s mm s mm

   
   

 

2
2

2

1 1 1
75 25

37.5 (tothe leftof L ) 20

37.5
1.5 =1.5 20 30

25

STOP
XP STOP

XP STOP

XP
XP XP XP STOP

STOP

f mm z mm
z z f

z mm D mm

z mm
m D m D mm mm

z mm

    


   
 

    


2L

z

1L

s

Stop

STOPz s

XPz

XP
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9-25
Example System – Gaussian Solution

Entrance Pupil (the light is going from right to left):

 

1

1
1

1

1
1

1 1 1
100 25

33.33 (tothe rightof L ) 20

33.33 1
1.333 =1.333 20 26.7

25 1

EP STOP

STOP
EP STOP

EP STOP

EP
EP EP EP STOP

STOP

n n
n n

z z f

f mm z mm
z z f

z mm D mm

z n mm
m D m D mm mm

z n mm


    



 
    



  
  

    


2L

z

1L

s

Stop

STOPz s


EPz

EP

Both the EP and the XP are virtual.
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9-26
Example System – Raytrace Solution – Pupil Locations

Start with an arbitrary ray going through the center of the stop.  The EP and XP are 
located where this ray crosses the axis in object space and image space. 

Entrance Pupil: 33.33 mm to the right of L1

Exit Pupil: 37.5 mm to the left of L2

f

-
t

y

u

Surface 0 1 2 3 4 5 6 7

100 - 75

-.01 - -.01333

-33.33 25 25 -37.5

0 -2.5 0 2.5 0

.075 .1* .1* .06667

EP L1 Stop L2 XP

* Arbitrary
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9-27
Example System – Raytrace Solution – Object at -100 mm; h = 10 mm

Trace a potential marginal ray for the image location. Scale this ray to the stop radius.  This 
marginal ray determines the pupil radii.  Trace a chief ray to determine the image height.

* Arbitrary

Object to EP = 100 + 33.33

Image Location: 112.5 mm to the right of XP
75.0 mm to the right of L2

Entrance Pupil Radius:     13.33 mm   (DEP = 26.7 mm)
Exit Pupil Radius: 15.0 mm (DXP = 30.0 mm)

.75 m

f

-
t

y

u

Surface 0 1 2 3 4 5 6 7

y

u

y

u

100 - 75

-.01 - -.01333

-33.33 25 25 -37.5 112.5133.33

1.333 1.00 1.00 1.00 1.50

.01 0 0 -.01333 -.01333.01*

0

13.33 10.0 10.0 10.0 15.00

.1 0 0 -.1333 -.1333.1

0

0 2.5 0 -2.5 010

-.075 -.1 -.1 -.06667 -.06667-.075

-7.5

EP L1 Stop L2 XP ImageObject

Chief Ray:

Potential Marginal Ray:

Marginal Ray: Scale to Stop Radius                        = 10/1 = 10STOP STOPa y

~

~

_

_
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9-28
Example System – Object at -100 mm

z

1L

EP
XP

Stop

2L
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9-29
Example System – Raytrace Solution – Object at -50 mm; h = 10 mm

The pupil positions and sizes from the previous analysis can be used.  The pupils do not 
depend on the object location.

Object to EP = 50 + 33.33 Image Location: 187.5 mm to the right of XP
150.0 mm to the right of L2

20
2.0

10

 
   

y
m

y

.16
2.0

.08
   

 
u

m
u

Surface
f

-
t

y

u

0 1 2 3 4 5 6 7

y

u

100 - 75

-.01 - -.01333

-33.33 25 25 -37.5 187.583.33

13.33 8.0 10.0 12.0 15.00

.16 .08 .08 -.08 -.08.16

0

0 4.0 0 -4.0 010.0

-.12 -.16 -.16 -.1067 -.1067-.12

-20.0

EP L1 Stop L2 XP ImageObject

Pupil RadiiMarginal Ray:

Chief Ray:_

_
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9-30
Example System – Object at -50 mm

z

1L

EP
XP

Stop

2L

Image
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9-31
Comparison of Two Object Positions

z

1L

EP
XP

Stop

2L

z

1L

EP
XP

Stop

2L
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9-32
Example System – Off-Axis Ray Bundle

z

1L

EP
XP

Stop

2L
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9-33
Example System – Ray Bundle Extent

z

1L

EP
XP

Stop

2L

Marginal Ray

y
y y

y y

y

y

  y y
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9-34
Numerical Aperture and F-Number

In an optical space of index nk, the Numerical Aperture NA describes an axial cone of 
light in terms of the real marginal ray angle Uk.  The NA can be applied to any optical 
space.

The F-Number f/# describes the image-space cone of light for an object at infinity:

sin k k k kNA n U n u

/#  E

EP

f
f

D
Diameter of the EPEPD

Note that there are often inconsistencies in the definition of f/#.  Sometimes the exit pupil 
diameter is used or just the “clear aperture.” 



Relating Numerical Aperture and F-Number

In general, the relative locations of the EP and the XP with respect to the front and rear 
principal planes are unknown.  The relative diameters of the EP and XP are also unknown.

Consider the marginal ray for an object at infinity: 

1 1
/ #

2 2 2
R R

EP EP EP

f ff
f

D n D n r n u NA

 
    

   

1
/#

2
f

NA
sinEP

R

r
u U

f
  



The only approximation is the small angle approximation.  The image space index is 
expressly included in NA; it is hidden in the effective focal length for the f/#.  

Optical
System

XP EP 

P P


XPz

EPr

zF


Rf

u

EPz

n

2EP EPD r EPz ?

 XPz ?

 ?XPD
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9-35
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9-36
Working F-Number

While the f/# is strictly-speaking an image-space, infinite-conjugate measure, the 
approximate relationship between NA and f/# allows an f/# to be defined for other optical 
spaces and conjugates.  As a result, an f/# can be defined for any cone of light.

This f/# is often called a working f/# or f/#W.  

The previous relationship between NA and f/# becomes a definition:

1 1
/# /#

2 2WWorking f f
NA n u

  
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9-37
Image Space Working F-Number

The most common use of working f/# is to describe the image-forming cone for a finite 
conjugate optical system.  This is the cone formed by the XP and the axial image point.

1 1
/# /#

2 2 2W
P

z
Working f f

NA n u n r


   

   /Pu r z 

(1 )   Rz m f Gaussian Equations
m = magnification

(1 ) (1 )
/#

2 2
R E

W
P P

m f m f
f

n r r

 
 



/# (1 ) /#Wf m f 

XP EP 

P P


XPz

EPr

z
Image

z

u

EPz
EPz ?

 XPz ?

n

Pr
XPr

n

Object

z

A useful relationship requires the EP size, not the ray height at P.  Assuming a thin lens 
with the stop at the lens:

P EP XPr r r 

(1 ) (1 ) (1 )
/#

2 2
E E E

W
P EP EP

m f m f m f
f

r r D

  
  
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9-38
Image Space Working F-Number (continued)

/# (1 ) /#Wf m f 

This relationship is valid only in situations that approximate a thin lens 
with the stop at the lens, or more specifically, situations where the 
pupils are located near their respective principal planes and 

Examples (n = 1): m = 0 f/#W = f/#

m = -1 f/#W = 2f/#           (1:1) 

Once again, f/#W is almost exclusively used for systems in air.

EP XPD D
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9-39
NAs and f/#s

Fast optical systems have small numeric values for the f/#.

Fast optical systems have large numeric values for the NA.

NA: Range   0 to n

f/#: Range   ∞ to 0

Most lenses with adjustable stops have f/#’s or f-stops labeled in increments of       .  The 
usual progression is f/1.4, f/2, f/2.8, f/4, f/5.6, f/8, f/11, f/16, f/22, etc, where each stop 
changes the area of the EP (and the light collection ability) by a factor of 2.

2

Notation: f 2 f 2

f 2 8 f 2 8

f 4 f 4

f 5 6 f 5 6

/ / #
/ . / # .

/ / #

/ . / # .

 
 
 
 
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9-40
Optical Invariant and Lagrange Invariant

The linearity of paraxial optics provides a relationship between the heights and angles of 
any two rays propagating through an optical system. 

Consider any two rays:

Refraction:

n u nu y   

n u nu y   

nu n u nu n u

y y


    
 

nuy n u y nuy n u y     

n u y n u y nuy nuy      Terms after refraction = Terms before refraction

Transfer: ty y t u   ty y t u  

t ty y y y
t

u u

   
 

t ty y y yt

n n u n u

  
 
    

t tn u y n u y n u y n u y         

t tn u y n u y n u y n u y          Terms after transfer = Terms before transfer

z

u

n
t

u

y

y

u

uu

u

ty

ty

n


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9-41
Optical Invariant and Lagrange Invariant

I nuy nuy y y    

Invariant on Refraction:

Invariant on Transfer:

n u y n u y nuy nuy     

t tn u y n u y n u y n u y         

Optical Invariant = Invariant on Refraction = Invariant on Transfer

If the two rays are the marginal and chief rays, the Lagrange Invariant is formed:

Ж     H nuy y

This expression is invariant both on refraction and transfer, and it can be evaluated at any 
z in any optical space, and often allows for the completion of apparently partial 
information in an optical space by using the invariant formed in a different optical space.  
Many of the results obtained from raytrace derivations can also be simply obtained with 
the Lagrange invariant.  The Lagrange invariant is particularly simple at images or 
objects and pupils.

Image or Object:

Pupil:

0y 

0y 

Ж      H nuy nuy y y

Ж   H nuy y
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9-42
Lateral Magnification and Ж

In an object or an image plane:

Ж  nuy

Ж   H nuy nuy

0y y 

Object:

Image: Ж    n u y

nuy n u y    

y nu
m

y n u





  

  

At the stop or in a pupil plane:

Ж PUPILnuy

Ж   H nuy nuy

0y y 

Pupil 1:

Pupil 2: Ж PUPILn u y  

PUPIL PUPILnuy n u y    

PUPIL
PUPIL

PUPIL

y nu
m

y n u





  

  

The pupil magnification is 
given by the ratio of  the chief 
ray angles at the two pupils.

The lateral image magnification 
is given by the ratio of the 
marginal ray angles at the object 
and image.

A marginal raytrace determines 
not only the object and image 
locations, but also the conjugate 
magnification

Since these two relationships
are derived using only the 
Lagrange invariant, they are valid 
for both focal and afocal systems.
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9-43
Infinite Conjugates and Ж

For an object at infinity, 
consider the chief ray in object 
and image space.

The marginal ray is parallel to 
the axis in object space (u = 0).

At any plane in object space (such as the first vertex):

At the image plane F':

Ж         n u y n u h

Equate: n u h nuy   

ny
h u

n u
  

 

From raytrace of a marginal ray:

n u

y


 
  E

y
f

n u
 

 

E Eh unf f  

In air: Eh uf 

This result can also be derived using 
the properties of the nodal points.

Ж  nuy

F z

n

u

y
h

u

Systemn

u



Lagrange Invariant

Possible or Impossible Optical Systems?  The marginal ray is shown for the “black box” systems.
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Lagrange Invariant - Answers
9-45

h 0

h 0

h 0

u 0

u 0

u 0

u 0 

u 0 

u 0 

h 0 

h 0 

h 0 

Ж    nuy nuhЖ   H nuy nuy At an image/object plane:

Possible:
Ж does not 
change sign.

Impossible:
Ж changes 

sign.

Impossible:
Ж changes 

sign.
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Lagrange Invariant
9-46

How big is the image?  

Possible or Impossible Optical Systems?  The marginal ray is shown for the “black box” systems.
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Lagrange Invariant - Answers
9-47

h 0
u 0

u 0 

h 0 

Ж    nuy nuhЖ   H nuy nuy At an image/object plane:

Possible:
Ж does not 
change sign.

How big is the image?  

h 0
u 0 u 0 

h 0 

The image must be inverted and small so that
Ж does not change sign or magnitude.

A system with an 
intermediate image 
produces this result.
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Telescopes and the Lagrange Invariant

The angular magnification of a telescope is also known as the Magnifying Power:

where the angle subtended by the object is , and the image size as seen through the telescope 
subtends an angle '.  The angles  and ' are often considered to be the paraxial chief ray 
angles as measured in the Entrance and Exit Pupils. 

In the pupils:

The pupils are conjugate and their sizes are related by the afocal lateral magnification m:
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9-48

Angular MagnificationMP




 

u
MP

u



 

 

XP EP 

EPy

zu

u
XPyAfocal Telescope

Shown with MP > 1

1n n 

Ж 2 2EP
EP XP EP EP XP XP

XP

yu
uy u y MP D y D y

u y


     

1EP
EP XP

XP

Du
mD D MP

u D m


    For a telescope that magnifies:

1 EP XPm D D 
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9-49
Paraxial Raytrace and Linearity

The linearity of a paraxial raytrace leads to the existence of the Optical or Lagrange 
Invariant.  A paraxial system is completely described by the ray data from two unrelated 
rays.  Given two rays, a third ray can be formed as a linear combination of the two rays.  
The coefficients are the ratios of the pair-wise invariants of the values for the three rays at 
some initial z.   

3 1 2y Ay By 
3 1 2u Au Bu 

32 12A I I
13 12B I I

ij i j j iI nu y nu y 

These coefficients A and B are evaluated at some location where initial ray height and 
angle data for the third ray are known.  The unknown ray height and angle values at 
other locations can then be found using these coefficients.  The expressions are valid 
at any z, in any optical space.

Changing the Lagrange invariant of a system scales the optical system.   Doubling the 
invariant while maintaining the same object and image sizes and pupil diameters halves 
all of the axial distances (and the focal length).
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9-50
Proof of Linearity

Transfer:

Refraction:

Linearity holds for both transfer and refraction.

 
   

3 3 3

3 1 2 1 2

3 1 1 2 2

3 1 2

t

y y u t

y Ay By Au Bu t

y A y u t B y u

y Ay By

   

      

       

   

3 1 2y Ay By 
3 1 2u Au Bu  n u nu y   

y y u t   

3 3 3

3 1 2 1 2

3 1 1 2 2

3 1 2

3 1 2

( ) ( )

( ) ( )

n u nu y

n u n Au Bu Ay By

n u A nu y B nu y

n u An u Bn u

u Au Bu





 

   

     

     

      

   

3 1 2u Au Bu   
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9-51
Linearity Coefficients

3 1 2y Ay By 

3 1 2u Au Bu 

1 3 1 1 1 2u y Au y Bu y 

3 1 1 1 2 1u y Au y Bu y 

Subtract:  1 3 3 1 1 2 2 1u y u y B u y u y  

1 3 3 1 1 3 3 1

1 2 2 1 1 2 2 1

u y u y nu y nu y
B

u y u y nu y nu y

 
 

 

13 12B I I

ij i j j iI nu y nu y 

B:

A: 3 1 2y Ay By 

3 1 2u Au Bu 

2 3 2 1 2 2u y Au y Bu y 

3 2 1 2 2 2u y Au y Bu y 

Subtract:  2 3 3 2 2 1 1 2u y u y A u y u y  

3 2 2 3 3 2 2 3

1 2 2 1 1 2 2 1

u y u y nu y nu y
A

u y u y nu y nu y

 
 

 

32 12A I I
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9-52
Use of the Lagrange Invariant

Consider an f/2 optical system in air with a focal length of 100 mm.

At the conjugates used, the system NA = 0.1.

If the image height is 10 mm, what is the angular field of view of the system in object space?

There is no need to assume DXP = DEP, or that thin lenses are used.

/ 2 2 
EP

f
f

D
50EPD mm 25EPr

0.1 0.1   NA u Marginal ray angle in image space

Ж  nuy nuy

Image Plane: 0 10 1    y y n

Ж 1    n u y

At EP: 25 0 1   EPy r y n

Ж 1 25  nuy u

.04u 1
1/2 tan 2.3U u   

This example shows that the Lagrange invariant helps relate known quantities in one 
optical space to unknown quantities in another optical space.


