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Section 7

Gaussian Reduction
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Paraxial Raytrace Equations

Refraction occurs at an interface between two optical spaces.  The transfer distance t' 
allows the ray height y' to be determined at any plane within an optical space (including 
virtual segments).

nu   n n C   t
n

 

Refraction: n u nu y   

y    

Transfer: y y t u   

ty y n u
n


   


y y     

n 

y u
u

t

n

z

u y



PP
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Gaussian Reduction

Gaussian reduction is the process that combines multiple components two at a time into a 
single equivalent system.  The Gaussian properties (power, focal lengths, and the location 
of the cardinal points) are determined.

Two component system – System Power:

Trace a ray parallel to the optical axis in object space.  This ray must go through the rear 
focal point of the system.

Paraxial raytrace:     Refraction

Transfer

n u nu y y        

  y y n u t n y y            

1 2

1P P F2P
2y

2P

2 1n = n1n = n  3 2n =  n  = n

z



1y

1P

t = t

1 2u  = u  2u  = u1u = u  = 0

Define the system power by applying the refraction equation to the system:

2 1y       0  1y   



O
PTI-201/202  G

eom
etrical and Instrum

ental O
ptics

©
 C

opyright 2018    John E. G
reivenkam

p
7-4

Two Component System – System Power 

1 2

1P P F2P
2y

2P

2 1n = n1n = n  3 2n = n  = n

z



1y

1P

t = t

1 2u  = u  2u  = u1u = u  = 0

Trace the ray:

 
 

 

2 1 1 1 1 1 1

2 1 1

2 2 2 2

1 1 1 1 2

1 1 1 2 1 1 2

1 1 2 1 2 1

y y

y y

y

y y

y y y

y y

    



   

   

    

     

    

 

   

    

     

      
1y   

2

t
n

 

System power:

1 2 1 2       
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Two Component System – Rear Cardinal Points

1 2

1P P F2P
2y

2P

2 1n = n1n = n  3 2n = n  = n

z



1y

1P

t = t

1 2u  = u  2u  = u1u = u  = 0

d

Rf

 2P F

The system rear principal plane is the plane of unit system magnification.

2 1y yd
u
  


2 1 1y y  

1d
u
  


 
 

1 11

1

yd
n y

 
 


     

  

1 1

2

d t
n n

  
 


     



1y   

1 2 1 1y     

2
2

yP F
u
  


2Rf P F d     R
nf



 

If      is the rear vertex 
of the system, then the 
distance        is the BFD.2P F 

2P
Note that the shift d' of the system rear 
principal plane P' from the rear principal 
plane of the second element      occurs in the 
system image space n'.

2P
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Two Component System – Front Properties

Repeat the process to determine the front cardinal points.  Start with a ray at the system 
front focal point F.  It will emerge from the system parallel to the optical axis.

1 2

F P  1P 2P1P 2P
2 1n = n1n = n  3 2n = n  = n

z



2y
1y

t = t

1 2u  = u
 1u u  2u  = u  = 0

System: 2 2y       0 

2y 

Work the ray backwards from image space through the system.

2 2 2 2y     2 0 

2 2 2y 

2 1 2y y   

 1 2 2 2 21y y y      

1 1 1 1y    

1 1 1 1 2 1 1y y       

 1 2 2 2 1 21y y        

 2 1 2 1 2 2y y        

1 2 1 2      

System power: same result as for forward ray.

2

t
n

 
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Two Component System – Front Cardinal Points

1 2

F P  1P 2P1P 2P
2 1n = n1n = n  3 2n = n  = n

z



2y
1y

t = t

1 2u  = u1u=u  2u  = u  = 0

d

Ff
1PF

2 1y yd
u




2 2 2

2

yd
n y

   
 

  

2d
u
 



2 1 2y y   

2y 

2 2 2y 

2 2

2

d t
n n

  
 

  

1
1

yPF
u



1Ff PF d  F
nf


 

If P1 is the front vertex 
of the system, then the 
distance        is the FFD.P F1

Note that the shift d of the system front 
principal plane P from the front principal 
plane of the first element      occurs in the 
system object space n.

1P



O
PTI-201/202  G

eom
etrical and Instrum

ental O
ptics

©
 C

opyright 2018    John E. G
reivenkam

p
7-8

Gaussian Reduction - Summary

• P and P' are the planes of unit system magnification (effective refraction for the system).  
• d is the shift in object space of the front system principal plane P from the front principal plane 
of the first system     .
• d' is the shift in image space of the rear system principal plane     from the rear principal plane 
of the second system     .
• t is the directed distance in the intermediate optical space from the rear principal plane of the 
first system      to the front principal plane of the second system P2.  Both of these principal 
planes must be in the same optical space.
• Following reduction, the two original elements and the intermediate optical space n2 are not 
needed or used.

1 2 1 2      

2 2

2

d t
n n

  
 

   1 1

2

d t
n n

  
 


     



2

t
n

 

F
nf nf


   

R
nf n f



  
1

Ef f


 

1 2

t 

1P P F2P1P 2P

2n1n = n 3n = n

d

z



Rf
F 

d 

Ff

P

1P

2P

1P
P
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Vertex Distances

The surface vertices are the mechanical datums in a system and are often the reference 
locations for the cardinal points.

Back focal distance BFD:

Front focal distance FFD:

Object and image vertex distances are 
determined using the Gaussian distances:

  RBFD f d

 FFFD f d

 s z d

   s z d

BFD 

FFD 

d

d

P V

PF V

F

Ff

Rf

z

z

d

P

d

P VV

ss

z

z

z
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Thick Lens in Air

 1 2 1 1  n n C

 1 11  n C

 2 3 2 2n n C  

   2 2 21 1     n C n C

1 2 1 2      

   1 2 1 21 1 /      n C C n C C t n 2 
td VP
n




1    
td V P
n




1   R Ff f f


A thick lens is the combination of 
two refracting surfaces.

P V 

n1 = 1 n2 = n

t

C1 C2

VP

d

n3 = 1

The image part with relationship ID  
rId28 was not found in the file.

d

F

Rf = f

BFD

RBFD f d  

1 1
   

 F
nf 3 1  

 R
nf 1 2PP t d d t   


     

  21 21PP n  


   

The nodal points are located at the respective principal planes.

2

t t
n n

  
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Thin Lens in Air

0 0t  

1 2 1 2      

1 2   

 1 11  n C

 2 21n C   

  1 21n C C   

0d d  

f = BFD



The image part with relationship ID  
rId22 was not found in the file.

1 2

F

BFD f

The principal planes and nodal points are located at the lens.

1
E R Ff f f f


    
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Two Separated Thin Lenses in Air

2 1n

1 2 1 2t     

2d t


1d t


  

RBFD f d  

1
Rf f


 

The nodal points are coincident with the principal planes.

21 2PP t d d t


     

t 

P 
d 

t

P

d



The image part with relationship ID  
rId26 was not found in the file.

1 2

F

BFD
Rf = f
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Gaussian Reduction Example – Two Separated Thin Lenses in Air

Two 50 mm focal length lenses are separated by 25 mm.

 

1 2 1 2

21 1 1

1

0.02 0.02 0.02 25

0.03

33.333

  



  

  



 R

t

mm mm mm mm

mm

f f mm

   





16.667

  



RBFD f d

BFD mm

1
1

1

0.02 25
0.03

16.667




    

  

mmd t mm
mm

d mm




    -1
1 2 0.02 mm

1 2

z

t 25 mm

F

BFD

P V

d

Rf = f 
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Diopters

Lens power is often quoted in diopters D.

Units are 1m

-1(in m )

1 (  in m)E
E

D

D f
f





With closely spaced thin lenses, the total power is approximately the sum of the 
powers of the individual lenses.  Focal lengths do not add. 
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Multi-Element Reduction

Multiple element systems are reduced two elements at a time.

A single system power and pair of principal planes results.

Given these quantities, the focal lengths and other cardinal points can be found.

There are several reduction strategies possible for multiple elements or surfaces.

The system principal planes are usually measured relative to the front and rear vertices 
of the systems:

- The system front principal plane is located relative to the front principal plane of the 
first surface or element.

- The system rear principal plane is located relative to the rear principal plane of the last 
surface or element.

1  2  3  4    (12)  (34)  (1234)

1  2  3  4    (12)  3  4    (123)  4    (1234)

 

  
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Reduction in Pairs

1  2  3  4  
  (12)  (34)  

(1234)




 1n n
1C 2C 3C 4C

 1 2n n  2 3n n  3 4n n  4n n

V V1t 2t 3t

1 2 3 4

1t 2t 3t
1 1P   P 2 2P   P 3 3P   P 4 4P   P

12 12P        P 34 34P        P

12t

12 34
12d 34d12d 34d



1234d 1234d

d d

P       P

nn

n n3n

1P 4P

12 2 12 34

12 1234

34 1234

    

 

   

t t d d

d d d

d d d
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Reduction – One at a Time

1  2  3  4  
  (12)  3  4  

  (123)  4  
  (1234)






 1n n  1 2n n  2 3n n  3 4n n  4n n
1 2 3 4

1t 2t 3t
1 1P   P 2 2P   P 3 3P   P 4 4P   P

12 12P        P

123 123P            P

12t

12
12d12d



123d 123d

d d

P       P

nn

n n3n

3 3P   P 4 4P   P

1234d

123

123t

4nn n

4 4P   P

1234d

1P 4P

3t

4n

12 2 12

123 3 123

12 123 1234

1234

   

   

  

 

t t d

t t d

d d d d

d d
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Gaussian Reduction – Example 

Cemented Doublet

 1n n 1.0

1C 2C 3C

2n 1.517 3n 1.649   4n n 1.0

V V1t 2t

1 2 3

1 2 3

1 2 3

73.8950 51.7840 162.2252

.0135327 .0193110 .00616427

.00700 .00255 .00400

R R R

C C C

  

    

    

   

1

1
1

2

10.5

6.92

t
t
n



 


  

2

2
2

3

4.0

2.43

t
t
n



 


  
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Gaussian Reduction – Example – Continued 

First, reduce the first two surfaces:

12 1 2 1 2 1 .00457        

2
12 1

12

3.86 


   12 12d 

1
12 1

12

10.60 


     12 3 12 17.48   d n

12 2 12 21.48t t d    

At this point, the first two surfaces are represented by       and the principal planes        and       . 12P 12P12

12
12 2 12

3

13.03t
n

  


     

12P

12
12t

12d

12P 3V2V1V

12d 2t
z
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Gaussian Reduction – Example – Continued

Add the third surface:

12 3 12 3 12 .00833         

3
123 123 12 6.26d  


  

12
123 123 12 7.15d  


      

Object space   1n 

Image space   1n 

123 7.15     d  

12 123 12 123 2.40d d d       

.008333 120.0 120.0E R Ff f f     

12P

12t

d

12P 3V1V

123d

PP

123d

z

d

12d
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Gaussian Reduction – Example – Summary

123 7.15d      

12 123 12 123 2.40d d d       

.008333 120.0 120.0E R Ff f f     

1 117.6FVF PF f d    

3 112.85RV F P F f d        

Front Focal Distance  FFD

Back Focal Distance  BFD

Principal plane separation:

1 2PP VV d d t t d d           

4.95PP 

F

Rf

d

VV

d

PP

Ff
z

F

PP
FFD BFD
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Real Lens to Thin Lens Model
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Single Reflecting Surface

Consider a single reflecting surface with a radius of curvature of R.  The rays propagate in an 
index of refraction of n. 

The angles of incidence and refraction (I and I') are measured with respect to the surface 
normal.

The ray angles U and U', as well as the elevation angle A of the surface normal at the ray 
intersection are measured with respect to the optical axis.  The usual sign conventions apply. 

7-23

1Curvature C
R

 

O

V

CCO'

Center of
Curvature

U

y

n

U'

Reflecting
Surface

z

I

I'

Sag

R = 1/C

A
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Single Reflecting Surface

7-24

1Curvature C
R

 

O

V

CCO'

Center of
Curvature

U

y

n

U'

n'

Reflecting
Surface

z

I
I'

Sag

R = 1/C

A

A

U

Relating the angles at the ray intersection with the surface:

U A I
I U A I U A

  
    

1Curvature C
R

 

Apply the Law of Reflection:

   

I I

U A U A

  

    
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Single Reflecting Surface and the Law of Reflection

7-25

   

   

   

   

sin sin

sin cos cos sin sin cos cos sin

sin sinsin cos sin cos
cos cos

sin cos tan sin cos tan

Approximation #1: cos cos

sin sintan
cos

I I

U A U A

U A U A

U A U A U A U A

A AU U U U
A A

U U A U U A

U U

U A
U

  

    

    

    

             

    



     

   

tan
cos

tan tan tan tan

U A
U

U A U A

   

    

Approximation #1 implies that 
magnitude of the ray angle is 
approximately constant.

U U 

U z
U'
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Paraxial Angles

Reformulate in terms of the paraxial angles or ray slopes:

7-26

   tan tan tan tan

tan tan 2 tan

U A U A

U U A

    

   

tan tan tan

2

u U u U A

u u





   

   

V

CC

y

n

z

Sag

R = 1/C

A
 

tan yA
R Sag

   


Approximation #2 implies that 
the sag of the surface at the ray 
intersection is much less than the 
radius of curvature of the surface.

Approximation #2: Sag R

2

2

yu u
R

u u yC

   

   

y
R

  

This is the Paraxial 
Reflection Equation.
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Reflection and Refraction

Refraction:        n u nu y nu y n n C

if   n n

2      nu nu y nu nyC

2   u u yC

Reflection Equals Refraction with   n n

REFLECTION 2  nC

 

2

 

  
 





n n C
n n

nC

Note that a reflector with a positive curvature has a negative power.  

Reflection:
1

2 2F
n Rf

C
   


    

 R F
n nf f

 R Ff f

1 F R R
E

f f ff f
n n n

 
      



1
2 2F R E

n Rf f nf
C

      

n n  

The front and rear focal lengths are 
equal to half the radius of curvature.

n u nu y   
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Object and Image distances for a Single Reflecting Surface

7-28

The object and image distances (z and z') are also both measured from the surface vertex.

Approximation #3:  The object and image 
distances are much greater than the sag of 
the surface at the ray intersection.

 

 

tan

tan

y yu U
z Sag z

y yu U
z Sag z

    


     
 Sag z Sag z 

O

V

CCO'
U

y

n

U'

Reflecting
Surface

z

I

I'

Sag

A

z z'
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Surface Vertex Plane and Principal Planes

The same set of approximations hold for paraxial analysis of a reflecting surface as for a 
refraction surface:

By ignoring the surface sag in paraxial optics, the planes of effective refraction for the single 
reflecting surface are located at the surface vertex plane V. The Front and Rear Principal 
Planes (P and P') of the surface are both located at the surface.

The nodal points of a reflecting surface are located at its center of curvature as a ray 
perpendicular to the surface is reflected back on itself.

7-29

The surface sag is ignored and paraxial reflection occurs at the surface vertex.

The ray bending at each surface is small.

P
V

CCP'

n

Reflecting
Surface

z
N, N'

Vertex
Plane
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Transfer After Reflection

Transfer after reflection works exactly the same as for a refractive system, except that the 
distance to the next surface (to the left) is negative.

   y y t u

0 t
  


y yu
t

   t u y y

    y y

z
y 

t

u
y

The transfer equation is independent of the direction of transfer.

After reflection, the signs of  and  are opposite those of the corresponding u and t.  A 
drawing done in reduced distances and optical angles will unfold the mirror system 
and show a thin lens equivalent system.

Sign conventions and reflection:  
- Use directed distances as defined by the usual sign convention.  A distance to the left 
is negative, and a distance to the right is positive.
- The signs of all indices of refraction following a reflection are reversed.
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Optical Surfaces

The front and rear principal planes of an optical surface are coincident and located at the 
surface vertex V.  Both nodal points of a single refractive or reflective surface are located 
at the center of curvature of the surface. 

n R

CC CC

Rn = -n

zz F

n

F

 
R > 0

 > 0 n > n 
R < 0

> 0

VV

Rf Rf

( )( )
    n nn n C
R

1
C

R

1
 

Ef f
   

F E
nf nf 

  
R E
nf n f


  


F R

E
f ff
n n

R

F

f n
f n
 

 

A reflective surface is a special case with   n n

:

22    nnC
R

1
2 2

      
F R E
n Rf f nf

C
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Refractive and Reflective Surfaces

Power of a refractive surface:

Power of a reflective surface:

For the same optical power, a reflective surface requires approximately one quarter of the 
curvature of a refractive surface.  However the signs of the powers are opposite.

This is one advantage of using reflective surfaces.

7-32

( )

Assume  1  and  1.5

(0.5) / 2

n n C

n n

C C





 

 

 

( ) 2

Assume  1  

2

n n C nC

n

C





   



 
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Optical Surfaces – Cardinal points

( )( )
    n nn n C
R

1
C

R

   
F E
nf nf


  

R E
nf n f

, at surface vertex

, at center of curvature





P P

N N

Positive Refracting:
0

0



 





n n

C

n

R

z

n

F

Rf

F

Ff

P P N,N
CC



n

R

z

n

F

Rf

F

Ff

P PN,N
CC


0

0



 





n n

C
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Optical Surfaces – Cardinal points

Negative Refracting:
0

0



 





n n

C

n

R

z

n

F

Rf

F

Ff

P PN,N
CC



( )( )
    n nn n C
R

1
C

R

   
F E
nf nf


  

R E
nf n f

, at surface vertex

, at center of curvature





P P

N N

0

0



 





n n

C

n

R

z

n

F

Rf

F

Ff

P P N,N
CC
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Optical Surfaces – Cardinal points

22 
   nnC

R
1

C
R

, at surface vertex

, at center of curvature





P P

N N

Positive Reflecting:
0

0

0









C

n
R

n = -n

zF

F Rf f 

F P PN,N
CC



  n n


    
 R F
n nf f   F R Ef f nf

Negative Reflecting:
0

0

0









C

n
R

n = -n

zF

F Rf f 

FP P N,N
CC



2
 F R

Rf f

A concave mirror has a positive power and focal length, but negative front and rear focal lengths.
A convex mirror has a negative power and focal length, but positive front and rear focal lengths.
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Real and Virtual Images

Real images can be projected and made visible on a screen; virtual images cannot.

Real images– the actual rays in image space head towards the image.

FF z

Virtual – the actual rays in image space head away from the image.  The rays must be 
projected backwards to find the image (virtual ray segments).

F

F
z

F F z F

F
z
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Lens Bending

The power of a thin lens is proportional to the difference in the surface curvatures:

Even for a thick element, different shape lenses can be used to get the same power of focal 
length.  The locations of the principal planes shift.

P

P

P

P

d  = 0 d = 0

  1 21n C C   

For a relatively thin lens, the principal plane separation is independent of the lens bending.
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System Design Using Thin Lenses

1) Obtain the thin lens solution to the problem:

1 2
z

2) Include the principal plane separations of real elements:

1P z
2P1P 2P

3) Locate the vertices of the real components:

1P z
2P1P 2P

1V 1V 2V 2V

The vertices and vertex-to-vertex separations are the mechanical datums for the system.
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Gaussian Imagery and Gaussian Reduction

The utility of Gaussian optics and Gaussian reduction is that the imaging properties of 
any combination of optical elements can be represented by a system power or focal 
length, a pair of principal planes and a pair of focal points.  In initial design, the P-P'
separation is often ignored (i.e. a thin lens model).

P

BFD

P

FFD

FVV zF

FVV zF



Ff Rf 
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Methods of System Analysis
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System Cardinal Points
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Thin Lens Design – Overall Object-to-Image Distance

f
z

z'z

h

L

h'

1 1 1

Ez z f
 


1
E

mz f
m
   

 

hm
h




 1 Ez m f  

  11 E E
mL z z m f f

m
       

 

 21
E

m
L f

m


 

Real object and real image:

Minimum object to image distance: 

0 E Em z f z f   

1 4 Em L f  
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Reciprocal Magnifications

 21
E

m
L f

m


 Overall object-to-image distance:

For each L, there are two possible magnifications and conjugates:  Reciprocal magnifications.

m

1
m

   2
2 1 11

1
E

mL m
f m m


   
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Magnification Properties

z
P

h u
n 

P h

u
n

z

z

Ph

  
 

h z nm
h z n

   


P Ph hu u
z z

       
 

 P Ph hnu n u
z n z n

    
 

P Ph hz n z n

  
   


 
 

P

P

hh z nm
h z n h

num
n u

 
  




This angle relationship holds for all rays passing through on-axis conjugate points.

The Gaussian Magnification may also 
be determined from the object and 
image ray angles.
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The power and the relative locations of the cardinal points of a system completely define the 
imaging mapping.

Different combinations of elements can produce interesting situations.

As an example consider this true 1:1 imaging system consisting of cascaded 2f-2f systems.  
An inverted intermediate image is formed.

Cardinal Points Example
7-44

Because the object and image planes are planes of unit magnification, the system front and 
rear principal planes are coincident with the object and image planes.  

Where are the focal points?

-2f 2f -2f 2f

P P'

f f

z
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Cardinal Points Example - Continued

To find the rear focal point of the system, launch a ray parallel to the axis:

7-45

The system rear focal point is to the left of the system rear principal plane, and the system 
power is negative!  This infinity ray diverges from the rear principal plane.

0.5SYSTEM Rf f f  

1 2 1 2 2

2 4 2ft
f f f

         

1 2
1 4t f
f

   

1 1 / 4 2
2 /

     





fd t f f
f

In a simplified Gaussian model that ignores the 
P-P' separation, this system looks just like a 
negative thin lens:

By symmetry, the front focal point of the system 
is to the right of the system front principal plane.

zP'P

-2f f -3f 1.5f

P P'

f f

zF'

-.5f

1F

d
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Mini Quiz

7-46

Two 100 mm focal length thin lenses are separated by 50 mm.  What is the focal length of 
this combination of lenses?

[  ]  a.   66.67 mm
[  ]  b.   200 mm
[  ]  c.   50 mm
[  ]  d.   Infinity
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Mini Quiz – Solution 

7-47

Two 100 mm focal length thin lenses are separated by 50 mm.  What is the focal length of 
this combination of lenses?

[X]  a.   66.67 mm
[  ]  b.   200 mm
[  ]  c.   50 mm
[  ]  d.   Infinity
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The image part with relationship ID  
rId10 was not found in the file.
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