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Section 4

Imaging and Paraxial Optics
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Optical Systems

An optical system is a collection of optical elements (lenses and mirrors).  While the 
optical system can contain multiple optical elements, the first order properties of the 
system are characterized by a single focal length or magnification.
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lenses.zeiss.com
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Optical Systems
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oddstuffm
agazine.com

base24.com

tf.uni-kiel.de
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Mappings

A mapping is a conversion or transformation from one representation to another representation.

4-4

progonos.com
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Color Mappings

4-5

Color to Grayscale:

stackoverflow.com
False-color:

Wikipedia

Pseudo-color:

IR mapped to a visible color

Different tissues are displayed 
as different colors.
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Imaging as a Mapping

First-order optics is the optics of perfect imaging systems.  Aberrations are ignored.

The object is mapped or transformed to its image.  The process can be analyzed without 
knowing the details of the optical system.  

A small number of system properties will completely define and determine the mapping 
or first-order imaging properties.  These are known as the cardinal points of the imaging 
system.

This is a mapping from object space to image space.

4-6

Image from: supercoloring.com
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Imaging

Goal: Determine the size, orientation and location of an image for a given object. This is the 
optics of perfect imaging systems; aberrations are ignored.
Collinear Transformation – A generalized mapping from one space into another in which 
points map to points, lines map to lines, and planes map to planes.

Gaussian Imagery – A specific collinear transformation using assumptions that are appropriate 
for optical systems.  The cardinal points result.

First-Order Optics – The actual ray paths through a system can be expanded in a power series 
of heights and angles.  An axially symmetric system will have only odd power terms, and the 
first-order terms give the position and size of the image.  First-order optics is the optics of 
perfect optical systems.  The deviations from this perfection are the system aberrations.

Paraxial Optics – A method of determining the first-order properties of an optical system by 
tracing rays using the slopes of the rays instead of the ray angles. The angles of incidence and 
refraction or reflection at surfaces are assumed to be small. The sag* of the refracting or 
reflecting surface is ignored or is considered to be negligible compared to other distances. 

Paraxial analysis is also useful for relating the physical properties of a refracting or reflecting 
surface (curvature and index) to its Gaussian properties (focal length and cardinal points).

Fortunately, all of these theories are consistent and give the same results.

*The sag of a surface is the separation of the surface from a plane tangent to the surface 
vertex.
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Optical Spaces

Each time a refracting or reflecting surface is encountered, a new optical space is entered. 
Each space extends from                    and has an associated index. If a system has N 
surfaces, there will be N+1 optical spaces.  The first space is usually called object space 
and the last is called image space. 

1

2 3 4 51

43 52 6

1 43 521' 2' 3' 4' 5'
0 0' = I

Surface:

Object
Space

Image
Space

A single object or image exists in each space.  Each surface has an object space and image 
space of its own.  These intermediate optical spaces serve as the image space for the 
preceding surface and the object space for the following surface.  Each surface will form an 
image of the object in the preceding space. 

There are real and virtual segments of each optical space.  The real segment of an optical 
space is the volume between surfaces defining entry and exit into that space.  

to 
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Real and Virtual

Rays can be traced from optical space to optical space.  Within any optical space, a ray is 
straight and extends from                   with real and virtual segments.  Rays from adjoining 
spaces meet at the common optical surface.

to 

z
1n 2n

A real object is to the left of the surface; a virtual object is to the right of the surface.  A 
real image is to the right of the surface; a virtual image is to the left of the surface.  

In an optical space with a negative index (light propagates from right to left), left and 
right are reversed in these descriptions of real and virtual.

Alternate description:  If an object is upstream of the surface or system, it 
is considered to be real.  A downstream object is virtual.  Images 
downstream of the surface or system are real; images upstream are virtual.

It is also common to combine multiple optical surfaces into a single system element and 
only consider the object and image spaces of the element; the intermediate spaces within 
the element are then ignored. 
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Real and Virtual Confusion

The distinctions between real and virtual may become confused when discussing 
intermediate optical spaces.  Real and virtual can be discussed either from the perspective 
of a single surface or from the perspective of the system.  For example, it is common for 
the real image created by one surface to serve as a virtual object for the next surface.

3 4    

1 2

1

In a similar manner, the virtual image 
produced by Surface 3 can be considered to 
be a real object for Surface 4.

The real image formed by Surface 1 becomes 
virtual due to the presence of Surface 2, and this 
image serves as the virtual object for Surface 2. 
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General System

Consider a “black-box” model of an optical system.  An optical system is any collection 
of optical elements (lenses, mirrors, etc.) comprising a rotationally symmetric optical 
system.  A ray from an object at infinity will emerge from the system and go through the 
Rear Focal Point of the system F':

4-11

F z
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Planes of Effective Refraction

4-12

By extending the image space ray back to the height of the object space ray, the plane of 
effective refraction into image space for the system is found.  All of the refractions at the 
individual elements within the system are combined into a single effective refraction.

F zP

Rf

This plane of effective refraction into image space is called the Rear Principal Plane P'. 

The distance from the Rear Principal Plane to the Rear Focal Point is the Rear Focal 
Length of the system     .Rf 
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Planes of Effective Refraction

In a similar manner, the plane of effective refraction out of object space can be found by using 
a ray starting at the Front Focal Point of the system F.  The image ray is parallel to the axis.

4-13

F zP

This plane of effective refraction out of object space is called the Front Principal Plane P.

The distance from the Front Principal Plane to the Front Focal Point is the Front Focal 
Length of the system     .Ff

Ff
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Planes of Effective Refraction

4-14

For the system used at finite conjugates, the ray from the object point will appear to 
refract at the Front Principle Plane and emerge from the Rear Principal Plane at the same 
height.  The image point is located where this ray crosses the axis.

The object and image distances z and z' are measured from the respective Principal Planes.

This treatment allows the system to be considered to be just like a thin lens except the 
refraction occurs at separated planes of effective refraction. 

O zP P O

zz
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Paraxial Optics

In order to relate the physical parameters of an optical system (radii of curvature of 
surfaces, spacings and thicknesses) to its imaging properties, rays must be traced through 
the system using Snell’s law or the law of reflection.

While exact raytracing can be used, the first-order or imaging properties of the system 
can be found using the approximate ray paths computed by paraxial optics.  Rays are 
traced using the slopes of the rays instead of the ray angles. The amount a ray is bent at 
the refracting or reflecting surface is assumed to be small. The sag of the refracting or 
reflecting surface is ignored or is considered to be negligible compared to other distances.

The radius of curvature R of a surface is defined to be the distance from its vertex to its 
center of curvature CC.   

4-15

V

CC

Center of
Curvature

y

Surface

z

Sag

R

The sag of a surface is measured 
relative to a plane tangent to the 
surface vertex V.  The sag will vary 
with the radial position on the 
surface y.
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Single Refracting Surface

Consider a single refracting surface with a radius of curvature of R that separates an index of 
refraction n from and index of refraction n'. 

The angles of incidence and refraction (I and I') are measured with respect to the surface 
normal.

The ray angles U and U', as well as the elevation angle A of the surface normal at the ray 
intersection are measured with respect to the optical axis.  The usual sign conventions apply. 

4-16

1Curvature C
R

 

O

V

CC O'

Center of
Curvature

U

y

n

U'

n'

Refracting
Surface

z

I

I'

Sag

R = 1/C

A
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Single Refracting Surface

Relating the angles at the ray intersection with the surface:

4-17
1Curvature C
R

 

O

V

CC O'

Center of
Curvature

U

y

n

U'

n'

Refracting
Surface

z

I

I'

Sag

R = 1/C

A

U U'
A

A

A U I
I U A I U A

  
    

Apply Snell’s Law:

   

sin sin

sin sin

n I n I

n U A n U A

 

   
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Single Refracting Surface and Snell’s Law
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   

   

   

sin sin

sin sin

sin cos cos sin sin cos cos sin

sin sinsin cos sin cos
cos cos

sin cos tan sin cos tan

Approximation #1: cos cos

sin tan
cos

n I n I

n U A n U A

n U A U A n U A U A

A An U U n U U
A A

n U U A n U U A

U U

Un A
U

 

   

    

             

    



  

   

sin tan
cos

tan tan tan tan

Un A
U

n U A n U A

     

   

Approximation #1 implies 
that the ray bending at the 
surface is small.
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Paraxial Angles

Define the paraxial angles:

4-19

   tan tan tan tann U A n U A   

   

 

tan tan tanu U u U A

n u n u

n u nu n n



 



   

   

    

Paraxial angles are the tangents of the real ray angles and are the slopes of the rays.

Paraxial angles are not angles and are incorrectly called angles only because of tradition.

Paraxial angles are ray slopes.

Paraxial angles are unitless.
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Power of a Surface and Paraxial Raytrace Equation
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 

 

   

tan

Approximation #2: Sag R

n u nu n n

yA
R Sag

y
R

yn u nu n n nu n n yC
R







    

  




 

        

V

CC

y

n n'

z

Sag

R = 1/C

A

Define the Power  of the surface:

This is the Paraxial Raytrace Equation.

   n n
n n C

R


 
  

n u nu y   

Approximation #2 implies that 
the sag of the surface at the ray 
intersection is much less than the 
radius of curvature of the surface.

Note that the power of the surface depends 
only on the construction parameters (R, n, 
n') of the surface.  It is ray independent.
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Object and Image distances for a Single Refracting Surface
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The object and image distances (z and z') are also both measured from the surface vertex.

Approximation #3:  The object and image 
distances are much greater than the sag of 
the surface at the ray intersection.

 

 

tan

tan

y yu U
z Sag z

y yu U
z Sag z

    


     
 Sag z Sag z 

z

Vertex
Plane

z'

O

V
CC O'

U

y

n

U'

n'

Refracting
Surface

z
Sag

A
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Surface Vertex Plane and Principal Planes

Approximations #2 and #3 state that the sag is considered to be small with respect to the 
radius of curvature of the surface and with respect to the object and image distances.  Since 
these conditions are only truly met for small ray heights y on the surface, this method of 
analysis is called paraxial optics or paraxial raytracing.  Paraxial means “near axis”. 

By ignoring the surface sag in paraxial optics, the planes of effective refraction for the single 
refracting surface are located at the surface vertex plane V. The Front and Rear Principal 
Planes (P and P') of the surface are both located at the surface.

Here, the paraxial “angles” u and u' are shown with the refraction at the vertex plane.  The 
paraxial rays shown approximate the actual rays as the surface sag is ignored. Refraction is 
considered to occur at the surface vertex.

4-22

This is the paraxial model of refraction 
at a surface with power .

n u nu y   

O
V

O'
u

y

n

u'

n'

Refracting
Surface

Vertex
Plane



P'P

z z'
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Imaging and Focal Lengths of a Single Refracting Surface

-n u nu y  

yu
z




yu
z

  


y yn n y
z z

             

n n
z z



 


Rz z f   

R

n
f





 R
nf



 

Fz z f   

F

n
f


 F

nf


 

R F

n n
f f




  


R

F

f n
f n
 
 

z and z' are measured from the surface 
vertex or the Principal Planes.

Image at Infinity
Object at the Front Focal Point

Object at Infinity
Image at the Rear Focal Point
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Object-Image Relationship and the Focal length

n n
z z



 
 R F

n n
f f




  


1 F R
E

f ff f
n n


    



1

E

n n
z z f

 


Define the “THE” Focal Length, also called the Effective (or Equivalent) Focal Length EFL:

The “effective” or “equivalent” in EFL is actually unnecessary. There is a single focal length f.

The front and rear focal lengths are related to the focal length through the indices of refraction:

     F E
nf nf nf



    R E

nf n f n f


1n n
z z f

 


Note that the focal length f is the 
reduced front and rear focal lengths.
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Surface Sag

R

R

Sag

y

CC

Circle (or Sphere):  22 2y R Sag R  

2 2 2 2

2 2

2

2

2

2 0

2

   



 



y R R Sag Sag R

Sag y
y R Sag

ySag
R

This is the parabolic approximation for a circle or sphere.

The surface sag is the 
measure of the surface 

shape relative to a plane.
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Radius of Curvature Measurement

The surface sag over a fixed baseline is a common method of measuring radius of 
curvature in the optics shop.

The instrument is known as a Lens Clock or a Geneva Gauge.  It consists of three pins that 
contact the surface.  The outside two pins are fixed, separated by a distance D, and define a 
reference line.  The middle pin is spring loaded and connected to a displacement gauge. 

R
D = Separation of Fixed Pins

Displacement
Gauge

Surface Reference Line Defined by Fixed Pins

Sag

The gauge often reads in Diopters and assumes a specific index of refraction.  A convex 
surface reads a positive power and a concave surface reads a negative power.

A spherometer is a more precise instrument for measuring Radius of Curvature.  The 
surface is contacted with three fixed pins or a large ring.  A micrometer in the center 
reads the sag of the surface relative to the plane defined by the three pins or the ring.

2

2

8

8

DSag
R

DR
Sag




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Approximation Summary for Paraxial Optics

Approximation #1: Cosine Condition

This condition is met if the ray bending at a surface is small.  This will occur when the 
incident ray is approximately perpendicular to the surface at the ray intersection.  Note 
that this approximation does not require that the ray angles U and U' are small.

coscos cos or 1
cos

UU U
U


 

Approximation #3:  

The object and image distances are much greater than the sag of the surface at the 
ray intersection.

Approximation #2: 

This condition requires that the sag of the surface at the ray intersection is much less 
than the radius of curvature of the surface.

Sag z Sag z 

Sag R

The surface sag is ignored and paraxial refraction occurs at the surface vertex.

The ray bending at each surface is small.

4-27
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Approximation Summary for Paraxial Optics

Approximation #1:    Cosine Condition

4-28

0.99

1

1.01

1.02

1.03

1.04

-30 -20 -10 0 10 20 30

U (degrees)

co
sU

'/c
os

U

Surface
Normal

coscos cos or 1
cos

UU U
U


 

Consider a surface perpendicular 
to the optical axis:

U

n n'

z
U'

0A
I U



For 10 degU 

The error is about 1%

The error is about 3.5%

For 20 degU 

1.0 1.5n n 
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Approximation Summary for Paraxial Optics

Cosine Condition:  The situation of small ray bending at each surface is common in well-
design systems.  The rays are gently guided through the system.

4-29

US Patent 5,835,285 – Nikon Corporation

Lithography lens with 30 elements

Double Gauss photographic objective with 6 elements
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Approximation Summary for Paraxial Optics

Approximation #2 states that the sag of the surface at the ray intersection is much less 
than the radius of curvature of the surface.

Approximation #3 states that the object and image distances are much greater than the sag 
of the surface at the ray intersection.  The object and image distances for a ray are the 
distances to the ray crossings at the optical axis.

Consider:

4-30

Sag z Sag z 

Sag R

100 10R mm y mm 

2

0.5
2
ySag mm R
R

  

For an incident ray parallel to the axis:
V

CC

y

n n'

z

Sag

R = 1/C

A

1.0 1.5n n 

 
300R

n n Rz f mm Sag
n n

 
     

 
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Paraxial Raytrace – Thin Lens

This is the paraxial raytrace equation of a refracting surface where n = n′ = 1 n u nu y   

1
 Ef f



h

z
h

z

f

z

u uy

1




 

yu
z

u
z y

1

  



 


yu
z

u
z y

1 1 1

1

 



   

  

   

z z f

u u
y y f

yu u
f

u u y

Apply the imaging 
equation for a thin 
lens:

Let
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General System

The refractive properties of a general system can be used to define its system focal length f or 
system power .

For an arbitrary optical system, the system power  or system focal length f is determined so 
that the system obeys the paraxial refraction equation.

The system is treated as if it were a single refracting surface where the principal planes of the 
system are the planes of effective refraction. 

n u nu y    1
 Ef f



The paraxial raytrace equation becomes the definition of the system power and focal length

h

F P P F
h

z

Ff Rf

u uy

n n


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Rear Focal Length of a General System

Trace a ray parallel to the axis.  This corresponds to an object at infinity located on the 
optical axis.  The conjugate ray crosses the axis at the rear focal point.

0
   


   


 


n u nu y
nu
n u y

y n
u







R

R

yu
f

y f
u

  


 


1 
  


R

E
ff f
n

This is exactly the same 
relationship as for a single 

refracting surface.

Apply the paraxial refraction equation to the system:

R
nf


 


Equate:

P P F z

Rf

u 0 uy

n n


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Front Focal Length of a General System

Trace a ray from an object at the front focal point. The conjugate ray is parallel to the optical 
axis in image space.  This corresponds to an image at infinity located on the optical axis.  

0
   
  




n u nu y
n u
nu y
y n
u







F

F

yu
f

y f
u

 

 

1
   F

E
ff f
n

This is also exactly the 
same relationship as for a 
single refracting surface.

Apply the paraxial refraction equation to the system:

Equate:

F
nf  


P P z

 u 0y

n n



u

F

Ff
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Paraxial Raytrace and Imaging for a General System

yu
z




yu
z

  


1

E

n nn u nu y
z z

n y ny n ny
z z z z f


     



 
     

 

 



This is the same relationship as was determined for a single refracting surface.

Apply the paraxial refraction equation that defines the system power::

1
Ef f 



h

F P P

z
h

z

Ff Rf

u uy

n n


z
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Focal Lengths of a General System

R
nf n f



   F
nf nf


   

Repeating the results for the front and rear focal lengths:

1f




The focal length is the reduced rear focal length and minus the reduced front focal 
length.  In general, the focal length is not a physical distance.

The front and rear focal lengths are physical distances. They are the directed or signed 
distances from the Principal Planes to the respective Focal Points. 

These are exactly the same relationships between power and focal length as found for a 
single refracting surface, and they can be applied to any optical system.  

The principal planes are the effective planes of refraction in object space and image 
space.

For a refractive system in air:

1 R F
E

f ff f
n n


    


R

F

f n
f n
 
 

1
F Rf f f


    1n n 
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Comments on Paraxial Optics

There is a one-to-one correspondence between object and image points in paraxial optics.  
This is just a way of saying that there are no aberrations in paraxial or first-order optics –
it is the optics of perfect imaging systems.

A paraxial raytrace is linear with respect to ray angles and heights since all paraxial 
angles are defined to be the tangent of the actual ray angle – they are actually the slope of 
the ray.  In a paraxial analysis, these approximations (and the resulting linearity) are 
maintained even for large object and image heights and large ray angles.
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